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Abstract
We show the local in timewell-posedness of the Prandtl equations for datawithGevrey
2 regularity in x and Sobolev regularity in y. The main novelty of our result is that we
do not make any assumption on the structure of the initial data: no monotonicity or
hypothesis on the critical points. Moreover, our general result is optimal in terms of
regularity, in view of the ill-posedness result of Gérard-Varet and Dormy (J AmMath
Soc 23(2):591–609, 2010).

Keywords Fluid mechanics · Navier-Stokes equations · Boundary layers · Prandtl
equation

1 Introduction

We are interested in the 2D Prandtl equations

∂tU
P + U P∂xU P + V P∂yU P − ∂2y U P = ∂tU

E + U E∂xU E ,

∂xU P + ∂y V P = 0, (1)

set in the domain � = T × R+, completed with boundary conditions

U P |y=0 = V P |y=0 = 0, lim
y→+∞ U P = U E . (2)

These equations are a degenerate Navier-Stokes model, introduced by Prandtl in 1904
to describe the boundary layer, which is the region of high velocity gradients that
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forms near solid boundaries in incompressible flows at high Reynolds number. They
can be derived from the Navier-Stokes equation under the formal asymptotics

(uν, vν)(t, x, z) ≈ (U P (t, x, z/
√

ν),
√

νV P (t, x, z/
√

ν)),

(U P , V P ) = (U P , V P )(t, x, y), (3)

where ν is the inverse Reynolds number, and (uν, vν) is the Navier-Stokes solution.
This asymptotics is supposed to apply to the flow in the boundary layer region: the
typical scale

√
ν of the boundary layer in this model is inspired by the heat part of

the Navier-Stokes equation. Away from the boundary, one rather expects an inviscid
asymptotics of the type

(uν, vν)(t, x, z) = (uE , vE )(t, x, z),

where (uE , vE ) is the solution of the Euler equation. In order to match the two asymp-
totic expansions, one must impose the condition

lim
y→+∞ U P (t, x, y) = U E (t, x) := uE (t, x, 0),

which yields the boundary condition for y → ∞ in (2). The other two boundary
conditions at y = 0 express the usual no-slip condition at the boundary. We refer to
[6] for a more detailed derivation. Let us stress that the pressure in the Prandtl model
is independent of y: its value is given by the pressure in the Euler flow at z = 0. This
explains the right-hand side of (1), which depends only on t, x , and is coherent with
the third boundary condition in (2).

The Prandtl system (1)–(2) is very classical, as it appears in most textbooks on
fluid dynamics. Still, it is well-known from physicists that its range of applications
is narrow, due to underlying instabilities. Among those instabilities, one can mention
the phenomenon of separation, which is related to the development of a reverse flow
in the boundary layer [4,8]. Another example is the so-called Tollmien-Schlichting
wave, that is typical of viscous flows at high but finite Reynolds number [5,15]. Of
course, such instability mechanisms create difficulties at the PDE level, making the
mathematical analysis of boundary layer theory an interesting topic. The two main
problems that one needs to address are the well-posedness of the reduced model (1),
and the validity of the asymptotics (3). We shall focus on the former in the present
paper. About the validity of boundary layer expansions in the unsteady setting, there
are many possible references, among which [11,14,16,26,31,32]. About the steady
setting, see the recent works [10,17,19].

To analyse the well-posedness of the Prandtl model is uneasy, even at the level of
local in time smooth solutions. The key difference with Navier-Stokes is that there
is no time evolution for the vertical velocity, which is recovered only through the
divergence-free condition. Hence, the term v∂yu can be seen as a first order nonlinear
operator in x . Moreover, this operator is not skew-symmetric in Hs . As the diffusion in
(1) is only transverse, this prevents the derivation of standard Sobolev estimates. The
first rigorous study of the Prandtl equations goes back to Oleinik [29], who tackled
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the case of data U |t=0 that are monotonic in y. She established local well-posedness
of the system using the so-called Crocco transform, a tricky change of variables and
unknowns. Let us stress that such monotonicity assumption excludes the phenomenon
of reverse flow and therefore prevents boundary layer separation. More recently, the
local well-posedness result of Oleinik was revisited using the standard Eulerian form
of the equations, see [1,21,27] for the local theory in Sobolev spaces.

The analysis of non-monotonic data is much more recent, and has experienced
some strong impetus over the last years. Surprisingly, it was shown in [9] that the
Prandtl system is ill-posed in the Sobolev setting (cf. [13,18,24] for improvements).
Specifically, paper [9] centers on the linearization of (1)–(2) around shear flows, given
by (U , V ) = (Us(y), 0). The linearized system reads

∂t u + Us∂x u + U ′
sv − ∂2y u = 0,

∂x u + ∂yv = 0,

u|y=0 = v|y=0 = 0, lim
y→+∞ u = 0.

(4)

In the case where Us has one non-degenerate critical point, one can show that (4)
has unstable solutions of the form u(t, x, y) = eikxeσk t uk(y) for k arbitrarily large
and �σk ∼ λ

√
k. Such high frequency instability forbids the construction of Sobolev

solutions. To obtain positive results, onemust start from initial data uin that are strongly
localized in Fourier, typically for which |û0(k, y)| � e−δ|k|γ for some positive δ > 0,
γ ≤ 1. Such localization condition corresponds to Gevrey regularity in x (Gevrey
class 1/γ ). The first result in this direction is due to Sammartino and Caflisch [30],
who established existence of local in time solutions in the analytic setting (γ = 1).
See also the nice paper [22]. Note that the requirement for analyticity is natural in
view of standard estimates. For instance, at the level of the linearized equations (4),
one gets directly by testing against u that

∂t‖û(t, k, ·)‖L2
y

≤ C |k| ‖û(t, k, ·)‖L2
y

so that ‖û(t, k, ·)‖L2
y

≤ eC|k|t‖û0(k, ·)‖L2
y
. Hence, if ‖û0(k, ·)‖L2

y
� e−δ|k|, a uniform

control will be provided as long as t ≤ δ/C .
To relax the analyticity condition is much harder. In the special case where uin has

for each value of x a single non-degenerate critical point in y, the first author and
N. Masmoudi proved the local well-posedness of system (1)–(2) for data that are in
Gevrey class 7/4 with respect to x [12]. Well-posedness was extended to Gevrey class
2 in article [23], for data that are small perturbations of a shear flow with a single
non-degenerate critical point. Note that this exponent (corresponding to γ = 1/2) is
optimal in view of the instability mechanism of [9].

All the recent results mentioned above rely heavily on the structure of the initial
data: monotonicity for the Sobolev setting, single non-degenerate critical points for
the Gevrey setting. It is therefore natural to ask about the optimal regularity under
which local well-posedness of the Prandtl equations holds, without additional struc-
tural assumption. This is the problem that we solve in the present paper: we establish
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the short-time well-posedness of the Prandtl equations for general data with Gevrey 2
regularity in x and Sobolev regularity in y. We recall once more that such regularity
framework is the best possible. Indeed, from the results of [9], high frequency modes
k in x may experience exponential growth with rate

√
k. This means that to hope for

short time stability, the amplitude of these modes should be O(e−C
√

k), which is the
Fourier translation of a Gevrey 2 requirement.

2 Result

Let γ ≥ 1, τ > 0, r ∈ R. For functions f = f (x) of one variable, we define the
Gevrey norm

| f |2γ,τ,r =
∑

j∈N

(
τ j+1( j+1)r

( j !)γ
)2

‖ f ( j)‖2L2(T)
(5)

and for functions f = f (x, y) of two variables, the norm

‖ f ‖2γ,τ,r =
∑

j∈N

(
τ j+1( j+1)r

( j !)γ
)2

‖∂ j
x f ‖2j , (6)

where ‖ · ‖ j , j ≥ 0, denotes a family of weighted L2 norms. Namely,

‖ f ‖2j =
∫

T×R+
| f (x, y)|2ρ j (y) dx dy, (7)

where ρ j , j ≥ 0, is the family of weights given by

ρ0(y) = (1 + y)2m, ρ j (y) = ρ j−1(y)
(
1 + y

jα

)2 = ρ0(y)

j∏

k=1

(
1 + y

kα

)−2
, j ≥ 1,

for fixed constants α ≥ 0 and m ≥ 0 chosen later (m large enough and α matching
the constraints found from the estimates). The need for this family of weights will be
clarified later. Let us note that locally in y, this family of norms is comparable to more
classical families such as

||| f |||2γ,τ,r =
∑

j∈N

(
τ j+1( j+1)r

( j !)γ
)2

‖∂ j
x f ‖2L2 . (8)

For instance, for functions f which are zero for |y| ≥ M , one has

‖ f ‖γ,τ,r ≤ CM ||| f |||γ,τ,r , ||| f |||γ,τ,r ≤ CM,τ ′ ‖ f ‖γ,τ ′,r for any τ ′ > τ.
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The only difference is when y goes to infinity, where the family of weights ρ j puts
less constraints on the decay of the derivatives compared to a fixed weight ρ0 for
derivatives of any order.

With these spaces, we can now state our main result.

Theorem 1 There exists m and α such that: for all 0 < τ1 < τ0, r ∈ R, for all
T0 > 0, for all U E satisfying

sup
[0,T0]

|∂tU
E |2,τ0,r + |U E |2,τ0,r < +∞,

sup
[0,T0]

max
l=0,...,3

‖∂ l
t (∂t + U E∂x )U

E‖H6−2l (T) < +∞

for all U P
in satisfying

‖U P
in − U E |t=0‖2,τ0,r < +∞, ‖(1 + y)∂yU P

in ‖2,τ0,r < +∞,

‖(1 + y)m+6∂yU P
in ‖H6(T×R+) < +∞

and under usual compatibility conditions (see the last remark below), there exists
0 < T ≤ T0 and a unique solution U P of (1)–(2) over (0, T ) with initial data U P

in
that satisfies

sup
t∈[0,T ]

‖U P (t) − U E (t)‖22,τ1,r + sup
t∈[0,T ]

‖(1 + y)∂yU P (t)‖22,τ1,r

+
∫ T

0
‖(1 + y)∂2y U P (t)‖22,τ1,r dt < +∞

Remark

• The main novelty of the theorem is that we reach the optimal Gevrey regular-
ity although no structural assumption is made on the data: no monotonicity, or
hypothesis on the number and order of the critical points is needed. Only Gevrey
regularity of the data and natural compatiblity conditions are required.

• Our method of proof, explained below, is inspired by the hyperbolic part of the
Prandtl equations. It is based on both a tricky change of unknown and appropriate
choice of test function. This method would also allow to recover the Sobolev well-
posedness of the hyperbolic version of the Prandtl system by means of energy
methods. As far as we know, the well-posedness of this inviscid Prandtl model
had been only established in Ck spaces using the method of characteristics: see
[20] for more. This part will be detailed elsewhere. In the case of the usual Prandtl
equations studied here, our methodology has to be slightly modified to handle in
an optimal way the diffusion term. Still, commutators are responsible for the loss
of Sobolev regularity: only Gevrey 2 smoothness in x can be established.

• There is a loss on the Gevrey radius τ of the solutions through time, going from τ0
to τ1. This loss, which appears technical in the paper, is actually unavoidable. This
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8 Page 6 of 51 H. Dietert, D. Gérard-Varet

is due to the instabilities described in [9]: exponential growth of perturbations at
rate

√
k causes a decay of the Gevrey radius linearly with time.

• Besides the regularity requirements mentioned in Theorem 1, the initial data must
satisfy compatibility conditions. It is typical of parabolic problems in domains
with boundaries, cf. [28, Chapter 3] for a general discussion. Here, the value of
U P
in and of some of its derivatives at y = 0 cannot be arbitrary: they must be

related to U E accordingly to the equation and to the amount of regularity asked
for u (with respect to the y-variable). Let us note that locally near y = 0, most
of our estimates only involve U P − U E in L2

t H2
y (not mentioning the Gevrey

regularity in x). Such estimates could be carried with the single compatibility
condition U P

in |y=0 = 0. Still, the low norm ‖(U P , V P )‖low introduced in (19)
involves more y-derivatives: its control through Lemma 15 implies therefore a
fewmore compatibility conditions. For the sake of brevity, we do not provide their
explicit expressions, and refer to [33, Proposition 2.3] for a detailed discussion on
a variation of the Prandtl equations.

Outline of the strategyAs mentioned earlier, our analysis of the Prandtl equations
relies on the identification of new controlled quantities because the usual unknown u
and kinetic energy do not give enough information. To help to identify the relevant
quantities, it is a good idea to start from the study of the linearized system (4). After
Fourier transform in x and Laplace transform in time, we are left with the ODE

(λ + ikUs)∂y� − ikU ′
s� − ∂3y� = uin (9)

where� corresponds to the Fourier-Laplace transform of the stream function. At high
frequencies k, a natural idea (although not legitimate in the end) is to neglect the
diffusion term. We are then left with the first order ODE

(λ + ikUs)∂y� − ikU ′
s� = uin. (10)

We note that the standard estimate (based on taking ∂y� as a test function) yields a
control of the type

�λ ‖∂y�‖2L2 � k‖∂y�‖L2‖U ′
s�‖L2 + ‖uin‖L2‖∂y�‖L2

� k‖∂y�‖2L2 + ‖uin‖L2‖∂y�‖L2

where the last line comes from the Hardy inequality (as soon as |U ′
s(y)| = O(y−1)

at infinity). Such bound ensures the solvability of the resolvent equation (10) only for
λ ∼ k. This in turn yields a semigroup bound of the type eCkt , only compatible with
stability in the analytic setting.

To reach stability in lower regularity, an important point is to notice that the homo-
geneous equation has �s = (λ + ikUs) as a special solution. With the integrating
factor method in mind, it is then natural to set � = (λ + ikUs)ψ . The first order
equation (10) becomes

(λ + ikUs)
2∂yψ = uin
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which is much better than the original formulation. Indeed, we can test the equation
against φ = 1

λ+ikUs
∂yψ to obtain a control of ∂yψ in terms of uin, and from there a

control of � for any λ > 0.
Back to the full resolvent equation (9) we find for the same unknown ψ

(λ + ikUs)
2∂yψ − (λ + ikUs)∂

3
yψ = uin + [λ + ikUs, ∂

3
y ]ψ.

Testing again against φ = 1
λ+ikUs

∂yψ , the LHS allows the control

�λ ‖∂yψ‖2L2 + ‖∂2yψ‖2L2 .

In the commutator at the RHS, the worst error term is 3ik∂yUs∂
2
yψ , which is bounded

as

C
k

|�λ| ‖∂yψ‖L2‖∂2yψ‖L2 ≤ 1

2
‖∂2yψ‖2L2 + C2k2

|�λ|2 ‖∂yψ‖2L2 .

We see that under the constraint�λ ∼ k2/3, the estimate can be closed, and this can be
shown to imply short time stability for data with Gevrey regularity 3/2. This estimate
around a shear flow is detailed as Lemma 4.1 in [3].

In order to reach the optimal Gevrey exponent 2, we need to get rid of the commu-
tator term containing ∂2yψ , which comes with a worse control than ∂yψ . To do so, we
change a bit our new unknown ψ : we now define ψ through the relation

� = (λ + ikUs − ∂2y )ψ (11)

including the diffusion term. Hence, (9) becomes

(λ + ikUs − ∂2y )2∂yψ + (λ + ikUs − ∂2y )(ikU ′
sψ) − ikUs(λ + ikUs − ∂2y )ψ = uin.

Testing this time against the solution φ of (λ + ikUs − ∂2y )φ = ∂yψ (again with the
diffusion term), the LHS yields the same control, but the error term is now

�
∫

[λ + ikUs − ∂2y , ikU ′
s]ψ φ.

From the definition of φ it can be shown that ‖φ‖ � λ−1‖∂yψ‖ so that the error can
be bounded by

k

|�λ| ‖∂yψ‖2L2 .

The estimate can now be closed for �λ ∼ k1/2 yielding Gevrey regularity 2.
Obviously, such approach is no longer applicable as such to the nonlinear system

(1)–(2): we not only lose the linearity of the equations, but the coefficients are no
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longer of shear flow type. They notably depend on t and x , which forbids an easy
use of Fourier or Laplace transform. Rather than turning to the characterization of
Gevrey spaces in the Fourier variable k, we consider norms based on the x-variable,
see (5) and (6). Roughly, the idea is to work with time dependent norms, that is with
the quantities

‖(U P − U E )(t)‖γ,τ (t),r , τ (t) = τ0e
−βt .

By differentiating j-times the first line of the Prandtl system,we can derive an equation
on

u j (t) := τ(t) j+1( j+1)r

( j !)γ ∂
j
x

(
U P (t) − U E (t)

)

that can be written as

(∂t + β( j + 1))u j + U P∂x u j + V P∂yu j + v j∂yU P − ∂2y u j = Fj ,

v j = −
∫ y

0
∂x u j . (12)

Roughly, inspired by the shear flow case, the idea will be to introduce as a new
unknown the solution ψ j = ∫ y

0 Hj of

(∂t + β( j+1) + U P∂x − ∂2y )ψ j =
∫ y

0
u j dz.

which is reminiscent of the Fourier relation (11). The test function φ j should then
solve the reverse equation

(−∂t + β( j+1) − U P∂x − ∂2y )φ j = ∂yψ j

and be solved backward in time. Performing the same estimate as in the shear flow
case, we expect to find an inequality of the type

β( j+1)‖∂yψ j‖2 + ‖∂2yψ j‖2 � 1

β3( j+1)3
‖Fj‖2 + 1

β3( j+1)3
‖∂x∂yψ j‖2

By exploiting a relation of the form ‖∂x∂yψ j‖ ∼ jγ ‖∂yψ j+1‖ (that needs to be
shown!) and using that γ ≤ 2, we will then be able to sum over j and establish for
large enough β a control of

∑
j ‖∂yψ j‖2 in terms of

∑
j ‖Fj‖2.

In fact, in implementing this strategy, several refinements are necessary, and the
relations satisfied by ψ j = ∫ y

0 Hj or φ j need to be slightly modified. Particularly
problematic is the term V P∂y because V P ∼ −∂xU E y increases linearly with y:
this prevents from closing an energy estimate with a fixed weigth ρ = ρ(y). This
difficulty appears in various places in the literature on the Prandtl equations. This is
for instance the reason why article [12] is limited to the special case U E = 0 and
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decaying initial data. One can also mention [22], where this difficulty is overcome by
a clever change of variables, which is reminiscent of the method of characteristics and
allows to remove the bad part of the convection term from the momentum equation.
Energy estimates can then be established in these new coordinates x ′, y′, and yield
some local well-posedness result, with solutions that are analytic in x ′ and L2 in y′.
The disadvantage of this approach is that the regularity of the solution in the original
variables x and y is no longer clear at positive times. Here, we stick to the eulerian
variables, but overcome the difficulty by introducing the family of weights ρ j , j ≥ 0.
Theseweights allow to trade a power of y against a derivative in x , which is appropriate
to the commutator terms.Moreover, they put very little conditions on the derivatives of
the solution, so that they provide a very general framework for well-posedness. Note
that the specific expression of ρ j is important: it could not be for instance replaced by
the more natural guess (1 + y)2(m− j), as commutators with the diffusion term would
not be under control. Note also that the strategy used in [27], where Sobolev well-
posedness is established under monotonicity assumptions by increasing the weight
with the number of y-derivatives, does not extend to the Gevrey framework in variable
x .

The plan of the paper is as follows. In the next section, we first collect several
properties of the weight ρ j . We then write the equations satisfied by the x-derivatives
of the Prandtl solution in a form analogue to (12). This means that we put most of the
nonlinear terms at the right-hand side, and consider those equations as linear.We finish
the section by introducing the adapted quantities Hj andφ j . Themain section is Sect. 4:
a priori Gevrey estimates for the linear equations are performed, that provide a control
of the u j ’s in terms of the nonlinear terms F ′

j s. Note that such estimates are obtained

under a condition of the form β > C(1 + ‖(U P , V P )‖low)2, where ‖(U P , V P )‖low

is a low regularity norm of the solution. The treatment of the nonlinearity Fj is then
handled in Sect. 5. The last step in the derivation of a priori estimates is to recover
the control of the low regularity norm ‖(U P , V P )‖low, see Sect. 6. Finally, issues
regarding the construction and uniqueness of solutions are discussed in Sect. 7.

3 Preliminaries

The explicit form of the weights ρ j is only needed in the Sect. 5. In the other parts,
we just need a sufficient control of the logarithmic derivative (Lemma 2), a bound for
antiderivatives (Lemma 3) and relate ρ j to ρ j+1 (Lemma 4).

Lemma 2 Let m ≥ 0 and α ≥ 0. There exists a constant Cl such that for all y ∈ R
+,

j ∈ N

∣∣∣∣
∂yρ j (y)

ρ j (y)

∣∣∣∣ ≤

⎧
⎪⎨

⎪⎩

Cl( j+1)1−α if α < 1

Cl log( j+1) if α = 1

Cl if α > 1
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8 Page 10 of 51 H. Dietert, D. Gérard-Varet

and

(1 + y)

∣∣∣∣
∂yρ j (y)

ρ j (y)

∣∣∣∣ ≤ Cl ( j+1).

Proof Given the explicit form of ρ j , we can compute the logarithmic derivative of ρ

directly as

∂yρ j

ρ j
= ∂y log ρ j = ∂y log ρ0 − 2

j∑

k=1

∂y log
(
1 + y

kα

)

= 2m

1 + y
− 2

j∑

k=1

1

kα
(
1 + y

kα

) .

From this expression the result follows directly. �
Lemma 3 For m > 1

2 introduce the constant

Cm =
√

1

2m − 1
.

Then for all α ≥ 0, j ∈ N and all f = f (y),

sup
y≥0

(
ρ j (y)

ρ0(y)

)1/2 ∫ y

0
| f (z)| dz ≤ Cm ‖ f ‖L2(ρ j )

.

More generally, for 0 ≤ n ≤ j with n < m − 1
2 one has

sup
y≥0

(
ρ j (y)

ρn(y)

)1/2 ∫ y

0
| f (z)| dz ≤ Cm−n ‖ f ‖L2(ρ j )

.

Eventually, for all A = A(x, y) and B = B(x, y), the following inequality holds:

‖A
∫ y

0
B(z) dz‖ j ≤ Cm‖A‖L∞

x L2
y(ρ0)

‖B‖ j .

Proof Note that ρ j/ρn for j ≥ n is non-increasing. Hence

(
ρ j (y)

ρn(y)

)1/2 ∫ y

0
| f (z)| dz ≤

∫ y

0

(
ρ j (z)

ρn(z)

)1/2

| f (z)| dz

≤ ‖ f ‖L2(ρ j )

(∫ y

0

1

ρn(z)
dz

)1/2

,

where we used the Cauchy-Schwarz inequality in the second inequality.
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As α ≥ 0 we find directly that

1

ρn(y)
≤ (1 + y)−2m

j∏

k=1

(
1 + y

kα

)2 ≤ 1

(1 + y)2m−2n

whose integral over y ∈ R
+ gives C2

m−n . This proves the first and second bounds. The
remaining estimate with A and B follows directly. �

The weights are decaying so that ρ j ≤ ρk for j ≥ k. As α ≥ 0, we have for j ∈ N

that (1 + y)2ρ j+1 ≤ ( j+1)2αρ j and ρ j+1 ≥ ρ j

(1+y)2
. This shows:

Lemma 4 Let α ≥ 0. For j ∈ N, A = A(x, y) and B = B(x, y) it holds that for

‖A‖ j+1 ≤ ‖A‖ j , ‖(1 + y)A‖ j+1 ≤ ( j+1)α‖A‖ j

and

∥∥∥∥
A

(1 + y)

∥∥∥∥
j
≤ ‖A‖ j+1, ‖A

∫ y

0
B(z) dz‖ j ≤ Cm‖(1 + y)A‖L∞

x L2
y(ρ0)

‖B‖ j+1.

Let us insist again that most parts of the proof would work with constant weight
ρ instead of ρ j . The dependency on j will be only needed to treat the commutator
terms coming from V P∂yU P . The difficulty is that V P grows like y as soon as U E

is non-constant. Here the crucial property that we will use is that we can control
‖(1 + y)A‖ j+1 by ( j+1)α‖A‖ j .

The Prandtl equations are given for (U P , V P )with inhomogeneous boundary con-
ditions at y → ∞. In order to work with homogeneous boundary conditions at zero
and infinity, we introduce

U e(t, x, y) = (1 − e−y)U E (t, x), V e(t, x, y) = −(y + e−y − 1)∂xU E (t, x)

and set u = U P − U e, v = − ∫ y
0 ∂x u = V P − V e. Then,

∂t u + (u∂x + v∂y)u + (U e∂x + V e∂y)u + (u∂x + v∂y)U
e − ∂2y u = f e (13)

where

f e = ∂tU
E + U E∂xU E − ∂tU

e − U e∂xU e − V e∂yU e + ∂2y U e. (14)

In the new variables (u, v) the boundary conditions are

u = v = 0 at y = 0, and lim
y→∞ u = 0. (15)

The condition at y → ∞ will be encoded in the functional space of u.
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8 Page 12 of 51 H. Dietert, D. Gérard-Varet

To prove Theorem 1, the point is to obtain good estimates for Gevrey norms of u
of type (6) for time-dependent radius τ = τ(t). More precisely, we give ourselves
parameters m, α, γ, r , to be fixed later, as well as the time-dependent radius τ(t) =
τ0e−βt , with β > 0 to be fixed later. Then, for any function f = f (t, x) or f =
f (t, x, y) and j ∈ N we set

f j (t, ·) := M j ∂
j
x f (t, ·) with M j := τ(t) j+1( j+1)r

( j !)γ .

Taking j derivatives in x of (13) and multiplying by M j yields

(
∂t + β( j+1) + U P∂x + ( j+1)∂xU P + V P∂y − ∂2y

)
u j

+ ∂yU Pv j + j∂xyU P∂−1
x v j = Fj (16)

where Fj collects all terms with less than j derivatives in x as well as the weighted
derivative of the forcing f e. It is given by

Fj = f e
j + M j

[
u∂x , ∂

j
x

]
u + M j ∂x u ∂

j
x u

+ M j

[
∂yu, ∂

j
x

]
v + M j j ∂xyu ∂

j−1
x v + M jv ∂

j
x ∂yu

+ M j

[
U e∂x , ∂

j
x

]
u + M j j ∂xU e ∂

j
x u

+ M j

[
V e∂y, ∂

j
x

]
u

+ M j

[
∂xU e, ∂

j
x

]
u

+ M j

[
∂yU e, ∂

j
x

]
v + M j j ∂xyU e ∂

j−1
x v.

We now introduce our crucial auxiliary functions Hj (t, x, y) defined by

(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

) ∫ y

0
Hj dz =

∫ y

0
u j dz,

Hj |t=0 = 0, ∂y Hj |y=0 = 0, Hj |y→∞ = 0.
(17)

For the existence of Hj , one can consider (17) as a convection-diffusion equation for
A j = ∫ y

0 Hj dz, with boundary conditions A j |y=0 = ∂y A j |y→∞ = 0, which has a
solution by the classical theory of parabolic PDEs. The PDE (17) itself then implies
that ∂2y A j |y=0 = 0 so that taking Hj = ∂y A j gives the required solution.
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We further introduce the corresponding test functions φ j by

(
− ∂t + β( j+1) − U P∂x + j∂xU p − V P∂y − ∂y V P − V P ∂yρ j

ρ j

−
(

∂y + ∂yρ j

ρ j

)2
)

φ j = Hj ,

φ j |t=T = 0, φ j |y=0 = 0, φ j |y→∞ = 0.

(18)

Note here that the operator acting on φ j is the formal adjoint operator of the operator
acting on

∫ y
0 Hj dz in (17), with respect to the L2(ρ j ) scalar product, denoted 〈 , 〉 j .

This is a backward heat equation solved backward in time for t ∈ [0, T ].
Testing (18) against φ j in ‖ · ‖ j and integrating over [t, T ] yields

1

2
‖φ j (t)‖2j + β( j+1)

∫ T

t
‖φ j (s)‖2j ds +

(
j+1

2

)∫ T

t

〈
∂xU Pφ j , φ j

〉

j
ds

− 1

2

∫ T

t

〈(
∂y V P + V P ∂yρ j

ρ j

)
φ j , φ j

〉

j

ds +
∫ T

t
‖∂yφ j (s)‖2j ds

+
∫ T

t

〈
∂yρ j

ρ j
φ j , ∂yφ j

〉

j

ds

=
∫ T

t

〈
Hj , φ j

〉
j ds.

Hence we find

1

2
‖φ j (t)‖2j + 3β( j+1)

4

∫ T

t
‖φ j (s)‖2j ds + 1

2

∫ T

t
‖∂yφ j (s)‖2j ds

≤ 1

β( j+1)

∫ T

t
‖Hj (s)‖2j ds +

((
j+1

2

)
‖∂xU P‖∞ + 1

2

∥∥∥∥∂y V P+V P ∂yρ j

ρ j

∥∥∥∥∞

+1

2

∥∥∥∥
∂yρ j

ρ j

∥∥∥∥
2

∞

)∫ T

t
‖φ j (s)‖2j ds.

By Lemma 2, under the condition α ≥ 1
2 , we get the following control:

Lemma 5 Fix m ≥ 0 and α ≥ 1
2 . Then there exist a constant C = C(m, α) such that

for all j ∈ N it holds that

‖φ j (t)‖2j + β( j+1)
∫ T

t
‖φ j (s)‖2j ds +

∫ T

t
‖∂yφ j (s)‖2j ds

≤ 2

β( j+1)

∫ T

t
‖Hj (s)‖2j ds
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if

β ≥ C
(
1 + ‖∂xU P‖∞ + ‖∂y V P‖∞ +

∥∥∥∥
V P

1 + y

∥∥∥∥∞

)
.

Note that for α < 1
2 , the term with ‖ ∂yρ j

ρ j
‖2∞ could not have been absorbed. This a

priori estimate also ensure the existence of φ j as solution of (18). A similar estimate
holds for Hj which ensures the existence of Hj as solution of (17).

4 Linear Estimates

In this section we analyse the linearised equation (16) and obtain an estimate for the
solution in terms of the Fj containing the forcing and lower-order terms. For this,
we shall first analyse (16) for a fixed j . We will obtain a control of Hj in terms of
the forcing Fj and an error term ∂x Hj , which will be shown to be approximately
( j+1)γ Hj+1. By summing over j , we will find the following control.

Lemma 6 Fix m > 1
2 ,

1
2 ≤ α ≤ 1

2 +γ, 1 ≤ γ ≤ 2, r ∈ R. Then there exists a constant
C = C(m, α, γ, r) such that for all τ1, β and T such that

β ≥ C(1 + ‖(U P , V P )‖low)

(
1 + 1

τ1
+ ‖(U P , V P )‖low

)
and τ(T ) ≥ τ1

the Hj ’s defined by (17) for solutions u j ’s of (16) satisfy

∞∑

j=0

β2( j+1)2γ
[∫ T

0
‖Hj (t)‖2j dt + 1

β( j+1)
‖Hj (T )‖2j + 1

β( j+1)

∫ T

0
‖∂y Hj‖2j dt

]

≤ 16
∞∑

j=0

[
( j+1)2γ−4

β2

∫ T

0
‖Fj (t)‖2j dt + ( j+1)2γ−3

β
‖uin, j‖2j

]
.

Here we use a low-order control of U P and V P in order to control the commutator
error terms. From the required bounds, we define the low-order norm as

‖(U P , V P )‖low = sup
t∈[0,T ]

max

(
max
0≤k≤3

‖∂k
x U P‖∞, ‖∂x∂

2
y U P‖∞,

‖(1 + y)∂yU P‖∞, ‖(1 + y)∂2y U P‖∞,

‖(1 + y)∂yU P‖L∞
x L2

y(ρ0)
, ‖∂xyU P‖L∞

x L2
y(ρ0)

, ‖∂xxyU P‖L∞
x L2

y(ρ0)
,

‖(1 + y)2∂2y U P‖L∞
x L2

y(ρ0)
, ‖(1 + y)∂x∂

2
y U P‖L∞

x L2
y(ρ0)

, max
0≤k≤2

∥∥∥∥
∂k

x V P

1 + y

∥∥∥∥∞

)
.

(19)
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Although a main ingredient of our proof, the unknown Hj is less natural than the
usual u j , notably for the future treatment of the nonlinearity, which involves u j and
ω j = ∂yu j . This is why we shall we relate the control of Hj to u j and show:

Proposition 7 Fix m > 1
2 ,

1
2 ≤ α ≤ 1

2 + γ, 1 ≤ γ ≤ 2, r ∈ R. Then there exist
constants C = C(m, α, γ, r) and C = C(m, α, γ, r) such that for all τ1, β and T such
that

β ≥ C(1 + ‖(U P , V P )‖low)

(
1 + 1

τ1
+ ‖(U P , V P )‖low

)
and τ(T ) ≥ τ1

the solution u of (16) satisfies

∫ T

0
‖u‖2γ,τ,r dt + sup

t∈[0,T ]
1

β
‖u‖2

γ,τ,r− γ
2

+
∫ T

0

1

β
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2 ‖(1 + y)ω‖2
γ,τ,r+ 1

2−γ
+ 1

β2

∫ T

0
‖(1 + y)∂yω‖2

γ,τ,r+ 1
2−γ

dt

≤ C

⎡

⎣ 1

β2

∞∑

j=0

∫ T

0

1

( j+1)4−2γ ‖Fj‖2j dt

+ 1

β2

∞∑

j=0

∫ T

0

1

( j+1)2γ−1 ‖(1 + y)Fj‖2j dt

⎤

⎦

+ C

β2

∞∑

j=0

∫ T

0

1

( j+1)2γ−1 ‖Fj |y=0‖2L2
x
dt

+ C

[
1

β
‖uin‖2γ,τ0,r+γ− 3

2
+ 1

β2 ‖(1 + y)ωin‖2γ,τ0,r+ 1
2−γ

]
.

For γ ≥ 5/4 this is

∫ T

0
‖u‖2γ,τ,r dt + sup

t∈[0,T ]
1

β
‖u‖2

γ,τ,r− γ
2

+
∫ T

0

1

β
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2 ‖(1 + y)ω‖2
γ,τ,r+ 1

2−γ
+ 1

β2

∫ T

0
‖(1 + y)∂yω‖2

γ,τ,r+ 1
2−γ

dt

≤ C

⎡

⎣ 1

β2

∞∑

j=0

∫ T

0

1

( j+1)4−2γ

∥∥∥∥∥

(
1 + y

( j+1)2γ− 5
2

)
Fj

∥∥∥∥∥

2

j

dt

⎤

⎦

+ C

β2

∞∑

j=0

∫ T

0

1

( j+1)2γ−1 ‖Fj |y=0‖2L2
x
dt

+ C

[
1

β
‖uin‖2γ,τ0,r+γ− 3

2
+ 1

β2 ‖(1 + y)ωin‖2γ,τ0,r+ 1
2−γ

]
.
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4.1 Estimate for Hj

We focus first on Lemma 6. The idea is to use the solution φ j of (18) as a test function
in (16). Taking the weighted scalar product and integrating over [0, T ], we find for
the first term in (16):
∫ T

0

〈(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)
u j , φ j

〉

j
dt

= − 〈uin, j , φ j (0)
〉

j

+
∫ T

0

〈
u j ,

(
− ∂t + β( j+1) − U P∂x + j∂xU p − V P∂y − ∂y V P − V P ∂yρ j

ρ j

−
(

∂y + ∂yρ j

ρ j

)2
)

φ j

〉

j

dt

= − 〈uin, j , φ j (0)
〉

j +
∫ T

0

〈
u j , Hj

〉
j dt .

Note that there is no boundary term as u j and φ j vanish at the boundaries. Differen-
tiating (17), we can replace u j in the last integral and find
∫ T

0

〈
u j , Hj

〉
j dt

=
∫ T

0

〈(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)
Hj , Hj

〉

j
dt

+
∫ t

0

〈
(∂yU P∂x + j∂xyU P )

∫ y

0
Hj dz, Hj

〉

j
dt

+
∫ t

0

〈
∂xyU P

∫ y

0
Hj dz, Hj

〉

j
dt +

∫ T

0

〈
∂y V P Hj , Hj

〉

j
dt

= 1

2
‖Hj (T )‖2j + β( j+1)

∫ T

0
‖Hj (t)‖2j dt +

∫ T

0
‖∂y Hj (t)‖2j dt

+
∫ t

0

〈
(∂yU P∂x + j∂xyU P )

∫ y

0
Hj dz, Hj

〉

j
dt

+
∫ t

0

〈
∂xyU P

∫ y

0
Hj dz, Hj

〉

j
dt +

∫ T

0

〈
∂y V P Hj , Hj

〉

j
dt

+
(

j+1

2

)∫ T

0

〈
∂xU P Hj , Hj

〉

j
dt − 1

2

∫ T

0

〈(
∂y V P + V P ∂yρ j

ρ j

)
Hj , Hj

〉

j

dt

+
∫ T

0

〈
∂yρ j

ρ j
H j , Hj

〉

j

dt .

By the boundary values of Hj there are again no boundary terms from partial
integration in y. In the last expression, the first line contains the good controlled
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terms, the second line will cancel the leading contribution from the bad terms
∂yU Pv j + j∂xyU P∂−1

x v j (see below), while the last two lines collect the error terms.
Next, we compute the contribution from the terms with v j using v j =

−∂x
∫ y
0 u j dz:

∫ T

0

〈
∂yU Pv j , φ j

〉

j
dt

= −
∫ T

0

〈
∂yU P∂x

[(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)

∫ y

0
Hj dz

]
, φ j

〉

j
dt

= −
∫ T

0

〈
∂yU P

(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)

∂x

∫ y

0
Hj dz, φ j

〉

j
dt

−
∫ T

0

〈
∂yU P (∂xU P∂x + ( j+1)∂2x U P + ∂x V P∂y)

∫ y

0
Hj dz, φ j

〉

j
dt

= −
∫ T

0

〈(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)

[
∂yU P∂x

∫ y

0
Hj dz

]
, φ j

〉

j
dt

+
∫ T

0

〈(
(∂t +U P∂x +V P∂y)∂yU P −2∂2y U P∂y − ∂3yU P

)
∂x

∫ y

0
Hj dz, φ j

〉

j
dt

−
∫ T

0

〈
∂yU P (∂xU P∂x + ( j+1)∂2x U P + ∂x V P∂y)

∫ y

0
Hj dz, φ j

〉

j
dt

= −
∫ T

0

〈
∂yU P∂x

∫ y

0
Hj dz, Hj

〉

j
dt

+
∫ T

0

〈(
(∂t +U P∂x +V P∂y)∂yU P − 2∂2y U P∂y −∂3yU P

)
∂x

∫ y

0
Hj dz, φ j

〉

j
dt

−
∫ T

0

〈
∂yU P (∂xU P∂x + ( j+1)∂2x U P + ∂x V P∂y)

∫ y

0
Hj dz, φ j

〉

j
dt

and

∫ T

0

〈
j∂xyU P∂−1

x v j , φ j

〉

j
dt

= − j
∫ T

0

〈
∂xyU P

(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y − ∂2y

)
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∫ y

0
Hj dz, φ j

〉

j
dt

= − j
∫ T

0

〈
∂xyU P

∫ y

0
Hj dz, Hj

〉

j
dt

+ j
∫ T

0

〈(
(∂t + U P∂x + V P∂y)∂xyU P − 2∂x∂

2
y U P∂y − ∂x∂

3
yU P

)

∫ y

0
Hj dz, φ j

〉

j
dt .

In both cases the leading order term cancels. Hence collecting the terms we arrive at

1

2
‖Hj (T )‖2j + β( j+1)

∫ T

0
‖Hj (t)‖2j dt +

∫ T

0
‖∂y Hj (t)‖2j dt

≤
∫ T

0

〈
Fj , φ j

〉
dt + 〈

uin, j , φ j (0)
〉

j +
∫ T

0

5∑

i=1

Ei dt

where E1, . . . , E5 collect the lower-order error terms as

E1 = −
〈
∂xyU P

∫ y

0
Hj dz, Hj

〉

j
−
〈
∂y V P Hj , Hj

〉

j
,

E2 = −
(

j+1

2

) 〈
∂xU P Hj , Hj

〉

j
+ 1

2

〈(
∂y V P + V P ∂yρ j

ρ j

)
Hj , Hj

〉

j

−
〈
∂yρ j

ρ j
H j , Hj

〉

j

,

E3 = −
〈(

(∂t + U P∂x + V P∂y)∂yU P − 2∂2y U P∂y − ∂3yU P
)
∂x

∫ y

0
Hj dz, φ j

〉

j
,

E4 =
〈
∂yU P (∂xU P∂x + ( j+1)∂2x U P + ∂x V P∂y)

∫ y

0
Hj dz, φ j

〉

j
,

E5 = − j

〈(
(∂t +U P∂x +V P∂y)∂xyU P − 2∂x∂

2
y U P∂y − ∂x∂

3
yU P

) ∫ y

0
Hj dz, φ j

〉

j
.

Here E3 and E4 contain the worst terms, as they involve x-derivatives of Hj . They
are responsible for the Gevrey regularity requirement.

Assume m ≥ 0, α ≥ 1
2 and β large enough so that Lemma 5 applies. We can then

estimate the forcing terms as

∫ T

0

〈
Fj , φ j

〉
j dt ≤ 2

β3( j+1)3

∫ T

0
‖Fj (t)‖2j dt + β( j+1)

4

∫ T

0
‖Hj (t)‖2j dt
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and

〈
uin, j , φ j (0)

〉
j ≤ 2

β2( j+1)2
‖uin, j‖2j + β( j+1)

4

∫ T

0
‖Hj (t)‖2j dt .

Absorbing the terms with Hj we therefore find

‖Hj (T )‖2j + β( j+1)
∫ T

0
‖Hj (t)‖2j dt + 2

∫ T

0
‖∂y Hj (t)‖2j dt

≤ 4

β3( j+1)3

∫ T

0
‖Fj (t)‖2j dt + 4

β2( j+1)2
‖uin, j‖2j + 2

∫ T

0

5∑

i=1

Ei dt .

We now estimate the error terms, where we repeatedly use Lemma 3. For E1 we
find

E1 ≤
[
Cm‖∂xyU P‖L∞

x L2
y(ρ0)

+ ‖∂y V P‖∞
]
‖Hj‖2j .

For E2 we also use Lemma 2 and assume α ≥ 1
2

E2 ≤
[(

j+1

2

)
‖∂xU P‖∞ + 1

2
‖∂y V P‖∞ + Cl( j+1)

(
1 +

∥∥∥∥
V P

1 + y

∥∥∥∥∞

)]
‖Hj‖2j .

In the term E3 we have terms with ∂x Hj , which we want to estimate in ‖ · ‖ j+1 as
they will be later controlled by Hj+1. Using Lemma 4 we find

E3 ≤ Cm‖(1+y)(∂t + U P∂x + V P∂y − ∂2y )∂yU P‖L∞
x L2

y(ρ0)
‖∂x Hj‖ j+1‖φ j‖ j

+ 2‖(1+y)∂2y U P‖∞‖∂x Hj‖ j+1‖φ j‖ j

≤ 2‖(1+y)∂2y U P‖∞‖∂x Hj‖ j+1‖φ j‖ j

where we used the identity

(∂t + U P∂x + V P∂y)∂yU P − ∂2y∂yU P = 0. (20)

Similarly, we find for E4 that

E4 ≤ Cm‖(1+y)∂yU P∂xU P‖L∞
x L2

y(ρ0)
‖∂x Hj‖ j+1‖φ j‖ j

+ ( j+1)Cm‖∂yU P∂2x U P‖L∞
x L2

y(ρ0)
‖Hj‖ j‖φ j‖ j

+ ‖∂yU P∂x V P‖∞‖Hj‖ j‖φ j‖
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And finally for E5 we find

E5 ≤ (
jCm‖(∂t + U P∂x + V P∂y − ∂2y )∂xyU P‖L∞

x L2
y(ρ0)

+ 2 j

‖∂x∂
2
y U P‖∞

)‖Hj‖ j‖φ j‖ j

≤ (
jCm‖(∂xU P∂x + ∂x V P∂y)∂yU P‖L∞

x L2
y(ρ0)

+ 2 j‖∂x∂
2
y U P‖∞

)‖Hj‖ j‖φ j‖ j

where we took again advantage of (20).
We collect the various factors in constants D1, D2, D3 defined as folllows:

D1 = 4
(
‖(1+y)∂2y U P‖∞ + Cm‖(1+y)∂yU P∂xU P‖L∞

x L2
y(ρ0)

)

and

D2 = 2
(
( j+1)Cm‖∂yU P∂2x U P‖L∞

x L2
y(ρ0)

+ ‖∂yU P∂x V P‖∞

+ jCm‖(∂xU P∂x + ∂x V P∂y)∂yU P‖L∞
x L2

y(ρ0)
+ 2 j‖∂x∂

2
y U p‖∞

)

and

D3 = 2

(
Cm‖∂xyU P‖L∞

x L2
y(ρ0)

+ ‖∂y V P‖∞ +
(

j+1

2

)
‖∂xU P‖∞

+1

2
‖∂y V P‖∞ + Cl( j+1)

(
1 +

∥∥∥∥
V P

1 + y

∥∥∥∥∞

))
.

Then

2
∫ T

0

5∑

i=1

Ei dt ≤ D1

∫ T

0
‖∂x Hj‖ j+1‖φ j‖ j dt + D2

∫ T

0
‖Hj‖ j‖φ j‖ j dt

+ D3

∫ T

0
‖Hj‖2j dt

≤ 1

4

∫ T

0
β3( j+1)3‖φ j‖2j dt + 2D2

1

β3( j+1)3

∫ T

0
‖∂x Hj‖2j+1 dt

+
(

2D2
2

β3( j+1)3
+ D3

)∫ T

0
‖Hj‖2j dt

With Lemma 5 the φ integral can be estimated as

1

4

∫ T

0
β3( j+1)3‖φ j‖2j dt ≤ 1

2
β( j+1)

∫ T

0
‖Hj (t)‖2j dt

and thus can be absorbed in the LHS.
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Here ‖(U P , V P )‖low has been designed such that we can find numerical constants
c1, c2, c3 such that

D1 ≤ c1(1 + ‖(U P , V P )‖low)2,

D2 ≤ c2( j+1) (1 + ‖(U P , V P )‖low)2,

D3 ≤ c3( j+1) (‖(U P , V P )‖low).

Combining all the estimates we arrive at the following lemma.

Lemma 8 Assume α ≥ 1
2 and m > 1

2 . Then there exist a constant C = C(m, α) such
that for

β ≥ C(1 + ‖(U P , V P )‖low)

and j ∈ N the Hj defined by (17) for a solution u j of (13) satisfy

2‖Hj (T )‖2j + β( j+1)
∫ T

0
‖Hj (t)‖2j dt + 4

∫ T

0
‖∂y Hj (t)‖2j dt

≤ 8

β3( j+1)3

∫ T

0
‖Fj (t)‖2j dt + 8

β2( j+1)2
‖uin, j‖2j

+ 4c21(1 + ‖(U P , V P )‖low)4

β3( j+1)3

∫ T

0
‖∂x Hj‖2j+1 dt .

Proof Use the previous estimates. Note that the condition on β also implies that the
hypothesis of Lemma 5 is satisfied by choosing C large enough. �

4.2 Relating@xHj with Hj+1

To conclude the proof of Lemma 6, that will be achieved by summation of the previous
estimate over j , we need first to control ∂x Hj by Hj+1.

Lemma 9 Let m > 1
2 and α ≥ 1

2 . Then there exist constants C = C(m, α) and
C = C(m, α, r) such that for all τ1, β and T with

β ≥ C
(
1 + ‖(U P , V P )‖low

)2
, τ (T ) ≥ τ1,

it holds that

∫ T

0
‖∂x Hj‖2j+1dt ≤ C

( j+1)2γ

τ 21

∫ T

0
‖Hj+1‖2j+1 dt

+ C
( j+1)2α−2

β

∫ T

0
‖∂y Hj‖2j dt + C

β

∫ T

0
‖Hj‖2j dt .
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Proof From the definition of u j , it holds that ∂x u j (t) =
(

j+2
j+1

)r
( j+1)γ

τ (t) u j+1(t). Hence

we anticipate that

∂x Hj (t) ≈
(

j+2

j+1

)r
( j+1)γ

τ (t)
Hj+1(t).

Therefore we estimate the difference

� j := ∂x Hj −
(

j+2

j+1

)r
( j+1)γ

τ (t)
Hj+1.

From equation (17) (used with indices j and j+1), we find that

(
∂t + β( j+1) + U P∂x + ( j+2)∂xU P + V P∂y − ∂2y

) ∫ y

0
� j dz

= −
[
( j+1)∂xxU P + ∂x V P∂y

] ∫ y

0
Hj dz. (21)

We stress that
∫ y
0 � j dz does not converge to zero at infinity, so that one can not

perform L2 estimates on this quantity. However, we can notice by 3 that

‖(ρ j+1

ρ0

)1/2
∫ y

0
� j dz‖L2 ≤ ‖(ρ1

ρ0

)1/2‖L2
y
‖(ρ j+1

ρ1

)1/2
∫ y

0
� j dz‖L2

x L∞
y

≤ Cm−1‖� j‖ j+1

< +∞.

(22)

The square integrable quantity δ j = (ρ j+1
ρ0

)1/2 ∫ y
0 � j dz satisfies the equation

(
∂t + β( j+1) + U P∂x + ( j+2)∂xU P + V P∂y − ∂2y

)
δ j

= −( j+1)∂xxU P(ρ j+1

ρ0

)1/2
∫ y

0
Hj dz − ∂x V P(ρ j+1

ρ0

)1/2
Hj

+ V P∂y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j − 2∂y

((ρ j+1

ρ0

)1/2)
� j

− ∂2y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j .

(23)

As in (22), we obtain

‖( j+1)∂xxU P(ρ j+1

ρ0

)1/2
∫ y

0
Hj dz‖L2 ≤ Cm−1( j+1)‖∂xxU P‖∞‖Hj‖ j+1. (24)

We also get

‖∂x V P(ρ j+1

ρ0

)1/2
Hj‖L2 ≤ ‖ 1

1 + y
∂x V P‖∞‖Hj‖ j+1.
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By Lemma 2, we find

‖V P∂y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j‖L2 ≤ ‖ 1

1 + y
V P‖∞Cl( j + 1)‖δ j‖L2 .

Using again Lemma 2 and the identity

(ρ j+1

ρ0

)1/2
� j = ∂yδ j − ∂y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j

and defining

A j,α = max(( j+1)1−α, log( j+1), 1) (25)

we obtain

‖2∂y

((ρ j+1

ρ0

)1/2)
� j‖L2 ≤ 2Cl A j,α‖∂yδ j‖L2 + 2C2

l A2
j,α‖δ j‖L2 .

Eventually,

‖∂2y
((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j‖L2

= ‖∂y

( j+1∑

k=1

1

kα(1 + y
kα )

(ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j‖L2 ≤ C A2

j,α‖δ j‖L2

for some constant C = C(α). The previous bounds combined with an energy estimate
yield that for C large enough (we remind that α ≥ 1

2 ):

‖δ j (T )‖2L2 + β( j + 1)
∫ T

0
‖δ j‖2L2 dt

+
∫ T

0
‖∂yδ j‖2L2 dt ≤ ( j+1)

∫ T

0
‖Hj‖2j+1 dt . (26)

We can then take the x-derivative of equation (23) and proceed as above. For C large
enough, we get

‖∂xδ j (T )‖2L2 + β( j+1)
∫ T

0
‖∂xδ j‖2L2 dt +

∫ T

0
‖∂x∂yδ j‖2L2 dt

≤ ( j+1)
∫ T

0
(‖∂x Hj‖2j+1 + ‖Hj‖2j+1) dt

+
∫ T

0

(
2‖∂x V P∂y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j‖L2

+ 2( j+2)‖∂2x U Pδ j‖L2 + 2‖∂x V P∂yδ j‖L2

)
‖∂xδ j‖L2 dt
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We then use that

‖∂x V P∂y

((ρ j+1

ρ0

)1/2)(ρ j+1

ρ0

)−1/2
δ j‖L2 ≤

∥∥∥∥
∂x V P

1 + y

∥∥∥∥∞
Cl( j+1)‖δ j‖L2 ,

and

‖∂x V P∂yδ j‖L2 ≤
∥∥∥∥
∂x V P

1 + y

∥∥∥∥∞
Cl( j+1)‖δ j‖L2 +

∥∥∥∥
∂x V P

1 + y

∥∥∥∥∞
‖� j‖ j+1

and the bound (26) to end up with

‖∂xδ j (T )‖2L2 + β( j+1)

2

∫ T

0
‖∂xδ j‖2L2 dt +

∫ T

0
‖∂x∂yδ j‖2L2 dt

≤ 2( j+1)
∫ T

0
(‖∂x Hj‖2j+1 + ‖Hj‖2j+1 + ‖� j‖2j+1) dt .

(27)

To estimate directly � j , we differentiate the Eq. (21) with respect to y, which gives

(
∂t + β( j+1) + U P∂x + ( j+2)∂xU p + V P∂y + ∂y V P − ∂2y

)
� j

= −( j+1)∂xxU P Hj − ( j+1)∂xxyU P
∫ y

0
Hj − ∂xy V P Hj − ∂x V P∂y Hj

− ∂yU P∂x

∫ y

0
� j − ( j+2)∂xyU P

∫ y

0
� j .

We take the 〈 , 〉 j+1 scalar product with � j :

(
1

2
∂t + β( j+1)

)∥∥� j
∥∥2

j+1

−
[
( j+2) ‖∂xU P‖∞ + 1

2
‖∂y V P‖∞ + 1

2
‖V P ∂yρ j+1

ρ j+1
‖∞
] ∥∥� j

∥∥2
j+1

+ ‖∂y� j‖2j+1 −
〈
∂y� j ,

∂yρ j+1

ρ j+1
� j

〉

j+1

≤ ( j+1)
(‖∂xxU P‖∞ + Cm‖∂xxyU P‖L∞

x L2
y(ρ0)

+ ‖∂xy V P‖∞
)‖Hj‖ j+1

∥∥� j
∥∥

j+1

+
∥∥∥∥
∂x V P

1 + y

∥∥∥∥∞
‖(1+y)∂y Hj‖ j+1

∥∥� j
∥∥

j+1

+
(
‖∂yU P√

ρ0‖∞‖∂xδ j‖L2 + ( j+2)‖∂xyU P√
ρ0‖∞‖δ j‖L2

) ∥∥� j
∥∥

j+1 .

By the 1d Sobolev imbedding theorem, we find that for a constant C = C(m) it holds
that

‖∂yU P√
ρ0‖∞ ≤ C‖(U P , V P )‖low and ‖∂xyU P√

ρ0‖∞ ≤ C‖(U P , V P )‖low.
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Combining these last two inequalities with (26), (27) and the inequality

‖(1 + y)∂y Hj‖ j+1 ≤ ( j+1)α‖∂y Hj‖ j ,

and taking C large enough, we obtain

‖� j (T )‖2j+1 + β( j+1)
∫ T

0
‖� j‖2j+1 dt +

∫ T

0
‖∂y� j‖2j+1 dt

≤ ( j+1)
∫ T

0
‖Hj‖2j+1 dt + ( j+1)2α−1

∫ T

0
‖∂y Hj‖2j dt

+ 1

β( j+1)

∫ T

0
‖∂x Hj‖2j+1 dt .

(28)

Lemma 9 follows straightforwardly. �
Combining Lemmas 8 and 9, we will now prove Lemma 6.

Proof of Lemma 6 We choose C such that Lemmas 8 and 9 apply. We multiply the
inequality in Lemma 8 by β( j+1)2γ−1 and sum over j to get

∞∑

j=0

β2( j+1)2γ
[∫ T

0
‖Hj (t)‖2j dt + 1

β( j+1)
‖Hj (T )‖2j

+ 1

β( j+1)

∫ T

0
‖∂y Hj (t)‖2j dt

]

≤ 8
∞∑

j=0

[
( j+1)2γ−4

β2

∫ T

0
‖Fj (t)‖2j dt + ( j+1)2γ−3

β
‖uin, j‖2j

]

+
∞∑

j=0

4c21(1 + ‖(U P , V P )‖low)4

β2 ( j+1)2γ−4
∫ T

0
‖∂x Hj‖2j+1 dt .

Taking C large enough, we can then find by Lemma 9 a constant C = C(m, α, r)

such that
∞∑

j=0

( j+1)2γ−4
∫ T

0
‖∂x Hj‖2j+1 dt

≤ C

(
1 + 1

τ 2

) ∞∑

j=0

( j+1)4γ−4
∫ T

0
‖Hj‖2j dt

+ C

β

∞∑

j=0

( j+1)2(γ+α)−6
∫ T

0
‖∂y Hj‖2j dt

≤ C

(
1 + 1

τ 2

) ∞∑

j=0

( j+1)4γ−4
[∫ T

0
‖Hj‖2j dt

+ 1

β( j+1)

∫ T

0
‖∂y Hj‖2j dt

]
.
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We have used here that α ≤ γ + 1
2 . Hence, the last term at the right-hand side can be

absorbed if

1

2
β2( j+1)2γ ≥ 4Cc21(1 + ‖(U P , V P )‖low)4

β2

(
1 + 1

τ 2

)
( j+1)4γ−4,

which can be ensured by a suitable large C if γ ≤ 2. �

4.3 Control of uj and!j

We now relate the estimates on Hj to u j and start with an estimate for the L2 norm.

Lemma 10 Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m, α) such
that for

β ≥ C
(
1 + ‖(U P , V P )‖low

)

and for any ε1, ε2, ε3, ε4 > 0 it holds that

1

2

∫ T

0
‖u j‖2j dt − ε1

( j+1)2γ

∫ T

0
‖∂x u j‖2j+1 dt − ε2

β( j+1)γ

∫ T

0
‖∂yu j‖2j dt

− ε3

4β( j+1)γ
‖u j (T )‖2j − ε4

β2( j+1)2γ

∫ T

0
‖∂2y u j (t)‖2j dt

≤ β( j+1)γ

ε3
‖Hj (T )‖2j

+
[
16β2( j+1)2 + ( j+1)2γ

ε1
C2

m‖(1+y)∂yU P‖2L∞
t,x L2

y(ρ0)
+ β2( j+1)2γ

4ε4

]

∫ T

0
‖Hj‖2j dt

+
[
β( j+1)γ

4ε2
+ 16C2

l A2
j,α

] ∫ T

0
‖∂y Hj‖2j dt +

∫ T

0
‖Hj‖ j‖Fj‖ j dt

where u j is satisfying (16), A j,α is defined in (25) and Hj is defined by (17).

Proof Using the definition (17) of Hj we find

∫ T

0
‖u j (t)‖2j dt =

∫ T

0

〈(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p

+V P∂y + ∂y V P − ∂2y

)
Hj , u j

〉

j
dt

+
∫ T

0

〈
(∂yU P∂x + ( j+1)∂xyU P )

∫ y

0
Hj dz, u j

〉

j
dt .

(29)
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By the evolution equation (16) for u j , the first term can be written (from the partial
integration in y there is no boundary term as u|y=0 = 0)

∫ T

0

〈(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y + ∂y V P − ∂2y

)
Hj , u j

〉

j
dt

= 〈
Hj (T ), u j (T )

〉
j

+
∫ T

0

〈
Hj ,

(
−∂t + β( j+1) − U P∂x + j∂xU P − V P∂y − V P ∂yρ j

ρ j

)
u j

〉
dt

+
∫ T

0

〈
∂y Hj ,

(
∂y + ∂yρ j

ρ j

)
u j

〉

j

dt

= 〈
Hj (T ), u j (T )

〉
j +

∫ T

0

〈
Hj ,

(
2β( j+1) + (2 j+1)∂xU P − V P ∂yρ j

ρ j

)
u j

〉

j

dt

+
∫ T

0

〈
Hj , ∂yU Pv j + j∂xyU P∂−1

x v j

〉

j
dt −

∫ T

0

〈
Hj , Fj

〉
j dt

+
∫ T

0

〈
∂y Hj ,

(
∂y + ∂yρ j

ρ j

)
u j

〉

j

dt −
∫ T

0

〈
Hj , ∂

2
y u j

〉

j
dt .

The terms can now be bounded using Lemma 2:
〈

Hj ,

(
2β( j+1) + (2 j+1)∂xU P − V P ∂yρ j

ρ j

)
u j

〉

j

≤
∥∥∥∥2β( j+1) + (2 j+1)∂xU P − V P ∂yρ j

ρ j

∥∥∥∥∞
‖Hj‖ j‖u j‖ j

≤ ( j+1)

[
2β + 2‖∂xU P‖∞ + Cl

∥∥∥∥
V P

1 + y

∥∥∥∥∞

]
‖Hj‖ j‖u j‖ j .

Recalling that v j = −∂x
∫ y
0 u j dz we find

〈
Hj , ∂yU Pv j + j∂xyU P∂−1

x v j

〉

j
dt

≤ Cm‖(1+y)∂yU P‖L∞
x L2

y(ρ0)
‖Hj‖ j‖∂x u j‖ j+1 + j‖∂xyU P‖L∞

x L2
y(ρ0)

‖Hj‖ j‖u j‖ j .

For the forcing terms we find

− 〈Hj , Fj
〉

j ≤ ‖Hj‖ j‖Fj‖ j .

The diffusion terms give

〈
∂y Hj , (∂y + ∂yρ j

ρ j
)u j

〉

j

−
〈
Hj , ∂

2
y u j

〉

j

≤ ‖∂y Hj‖ j ‖∂yu j‖ j + Cl A j,α‖∂y Hj‖ j ‖u j‖ j + ‖Hj‖ j‖∂2y u j‖ j .
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The integrand in the second integral in (29) can be estimated as

〈
(∂yU P∂x + ( j+1)∂xyU P )

∫ y

0
Hj dz, u j

〉

j

≤ Cm‖(1+y)∂yU P‖L∞
x L2

y(ρ0)
‖Hj‖ j‖∂x u j‖ j+1 + jCm‖∂xyU P‖L∞

x L2
y(ρ0)

‖H‖ j‖u‖ j .

Collecting the terms we find by choosing C large enough that

∫ T

0
‖u j‖2 dt ≤ 〈

Hj (T ), u j (T )
〉

j + 4β( j+1)
∫ T

0
‖Hj‖ j‖u‖ j dt

+ 2Cm‖(1+y)∂yU P‖L∞
x L2

y(ρ0)

∫ T

0
‖Hj‖ j‖∂x u j‖ j+1 dt

+
∫ T

0

(
‖∂y Hj‖ j ‖∂yu j‖ j + Cl A j,α‖∂y Hj‖ j ‖u j‖ j

+ ‖Hj‖ j‖∂2y u j‖ j

)
dt

+
∫ T

0
‖Hj‖ j‖Fj‖ j dt .

Splitting the products gives the claimed estimate. �
The missing terms can be estimated by the evolution of u j and ω j = ∂yu j . For u j

we find:

Lemma 11 Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m, α) such
that for

β ≥ C
(
1 + ‖(U P , V P )‖low

)

the solution u j of (16) satisfies

1

2
‖u j (T )‖2j + 1

2

∫ T

0
‖∂yu j‖2 dt

− 4β( j+1)γ
∫ T

0
‖u j‖2j dt −

C2
m‖(1+y)∂yU P‖2

L∞
x L2

y(ρ0)

β( j+1)γ

∫ T

0
‖∂x u j‖2j+1 dt

≤ 1

2
‖uin, j‖2j + 1

β( j+1)γ

∫ T

0
‖Fj‖2j dt .

Proof By (16) we find

〈
∂t u j , u j

〉
j =

〈(
− β( j+1) − U P∂x − ( j+1)∂xU p − V P∂y + ∂2y

)
u j , u j

〉

j

−
〈
∂yU Pv j + j∂xyU P∂−1

x v j , u j

〉

j
+ 〈

Fj , u j
〉

j
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≤ −1

2
‖∂yu j‖2j + 4β( j+1)γ ‖u j‖2j

+
C2

m‖(1+y)∂yU P‖2
L∞

x L2
y(ρ0)

β( j+1)γ
‖∂x u j+1‖2j+1

+ 1

β( j+1)γ
‖Fj‖2j ,

where there is no boundary term from the partial integration in y as u j vanishes at the
boundary and we used in the inequality that C can be chosen large enough. Integrating
this over [0, T ] gives the claimed result. �

By differentiating (16) in y and find

(
∂t + β( j+1) + U P∂x + ( j+1)∂xU p + V P∂y + ∂y V P − ∂2y

)
ω j

+∂yyU Pv j + j∂xyyU P∂−1
x v j + ∂xyU P u j = ∂y Fj . (30)

This immediately yields the following control for ω j .

Lemma 12 Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m, α) such
that for

β ≥ C
(
1 + ‖(U P , V P )‖low

)

the vorticity ω j = ∂yu j satisfies

‖(1 + y)ω j (T )‖2j +
∫ T

0
β( j+1)‖(1 + y)ω j‖2j dt +

∫ T

0
‖(1 + y)∂yω j‖2j dt

≤
4C2

m‖(1 + y)2∂yyU P‖2
L∞

t,x L2
y(ρ0)

β( j+1)

∫ T

0
‖∂x u j‖2j+1 dt

+
4C2

m( j+1)‖(1 + y)∂xyyU P‖2
L∞

t,x L2
y(ρ0)

β

∫ T

0
‖u j‖2j dt

+ ‖(1 + y)ωin, j‖2j + 4
∫ T

0
‖(1 + y)Fj‖2j dt + 4

∫ T

0
‖Fj |y=0‖2L2

x
dt .

Proof Integrate (30) against (1 + y)2ω j in ‖ · ‖ j . This yields

1

2
∂t‖(1 + y)ω j‖2j + β( j+1)‖(1 + y)ω j‖2j + ‖(1 + y)∂yω j‖2j

≤ j‖∂xU P‖∞‖(1 + y)ω j‖2j +
∥∥∥∥V P

(
∂yρ j

ρ j
+ ∂y(1 + y)2

(1 + y)2

)∥∥∥∥∞
‖(1 + y)ω j‖2j

+‖ω j |y=0‖L2
x
‖∂yω j |y=0‖L2

x
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+‖(1 + y)∂yω j‖ j

∥∥∥∥(1 + y)

(
∂yρ j

ρ j
+ ∂y(1 + y)2

(1 + y)2

)
ω j

∥∥∥∥
j

+ Cm‖(1 + y)2∂yyU P‖L∞
x L2

y(ρ0)
‖∂x u j‖ j+1‖(1 + y)ω j‖ j

+ jCm‖(1 + y)∂xyyU P‖L∞
x L2

y(ρ0)
‖u j‖ j‖(1 + y)ω j‖ j

+‖(1 + y)Fj‖ j

∥∥∥∥(1 + y)

(
∂y + ∂yρ j

ρ j
+ ∂y(1 + y)2

(1 + y)2

)
ω j

∥∥∥∥
j

,

where we find a boundary term from the diffusion and there is no boundary term from
V P∂y because V P |y=0 = 0.

From (16) we find ∂yω j |y=0 = Fj |y=0. For ω j |y=0 write

|ω j (y = 0)| ≤
∫ 1

0

[
ω j

√
ρ j +

∫ y

0
|(ω j

√
ρ j )

′| dz

]
dy

to get

‖ω j |y=0‖2L2
x

≤ 2

(
1 +

∥∥∥∥
∂yρ j

ρ j

∥∥∥∥

)2

‖ω j‖2j + 2‖∂yω j‖2j .

BychoosingC large enough and using thatα ≥ 1
2 , the result follows after integration

over time. �
Combining the results, we can conclude this section.

Proof of Proposition 7 Adding the control of Lemma 11 with a factor ε3( j+1)−γ /β

and Lemma 12 with a factor ( j+1)1−2γ /β2 to the inequality of Lemma 10 yields

⎛

⎝1

2
− 4ε3 −

4C2
m‖(1 + y)∂xyyU P‖2

L∞
t,x L2

y(ρ0)

( j+1)2γ−2β3

⎞

⎠
∫ T

0
‖u j‖2j dt

+ ε3

4β( j+1)γ
‖u j (T )‖2j +

(
ε3

2β( j+1)γ
− ε2

β( j+1)γ

)∫ T

0
‖∂yu j‖2j dt

− ε4

β2( j+1)2γ

∫ T

0
‖∂2y u j (t)‖2j dt

−
⎛

⎝ ε1

( j+1)2γ
+

ε3Cm‖(1+y)∂yU P‖2
L∞

t,x L2
y(ρ0)

β2( j+1)2γ
x

+
4C2

m‖(1 + y)∂xyyU P‖2
L∞

t,x L2
y(ρ0)

( j+1)2γ β3

⎞

⎠
∫ T

0
‖∂x u j‖2j+1 dt

+ ( j+1)1−2γ

β2 ‖(1 + y)ω j (T )‖2j +
∫ T

0

( j+1)2−2γ

β
‖(1 + y)ω j‖2j dt
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+
∫ T

0

( j+1)1−2γ

β2 ‖(1 + y)∂yω j‖2j dt

≤ β( j+1)γ

ε3
‖Hj (T )‖2j

+
[
16β2( j+1)2 + ( j+1)2γ

ε1
C2

m‖(1+y)∂yU P‖2L∞
t L∞

x L2
y(ρ0)

+ β2( j+1)2γ

4ε4

]

∫ T

0
‖Hj‖2j dt

+
[
β( j+1)γ

4ε2
+ 16C2

l A2
j,α

] ∫ T

0
‖∂y Hj‖2j dt +

∫ T

0
‖Hj‖ j‖Fj‖ j dt

+ ε3

2β( j+1)γ
‖uin, j‖2j + ε3

β2( j+1)2γ

∫ T

0
‖Fj‖2j dt

+ ( j+1)1−2γ

β2 ‖ωin, j‖2j + 4( j+1)1−2γ

β2

∫ T

0
‖(1 + y)Fj‖2j dt

+4( j+1)1−2γ

β2

∫ T

0
‖Fj |y=0‖2L2

x
dt .

Using that ∂x u j (t) =
(

j+2
j+1

)r
( j+1)γ

τ (t) u j+1(t), we can sum over j and choose

ε1, ε2, ε3, ε4 appropriately to arrive for m > 1
2 , α ≥ 1

2 , γ ≥ 1, τ1 > 0, r ∈ R at
the control

∞∑

j=0

{∫ T

0
‖u j‖2j dt + 1

β( j+1)γ
‖u j (T )‖2j + ( j+1)2−2γ

β

∫ T

0
‖(1 + y)ω j‖2j dt

}

+
∞∑

j=0

( j+1)1−2γ

β2

{
‖(1 + y)ω j (T )‖2j +

∫ T

0
‖(1 + y)∂yω j (t)‖2j dt

}

≤ C
∞∑

j=0

{
β( j+1)γ ‖Hj (T )‖2j

+β2( j+1)2γ
∫ T

0
‖Hj‖2j dt + β( j+1)γ

∫ T

0
‖∂y Hj‖2j dt

}

+ C
∞∑

j=0

{
1

β( j+1)γ
‖uin, j‖2j + ( j+1)1−2γ

β
‖(1 + y)ωin, j‖2j

}

+ C
∞∑

j=0

{∫ T

0

1

β2( j+1)2γ
‖Fj‖2j dt + ( j+1)1−2γ

β2

∫ T

0
‖(1 + y)Fj‖2j dt

+ ( j+1)1−2γ

β2

∫ T

0
‖Fj |y=0‖2L2

x
dt .

}

(31)
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if

β ≥ C(1 + ‖(U P , V P )‖low)

(
1 + 1

τ1
+ ‖(U P , V P )‖low

)
and τ(T ) ≥ τ1

where C and C are constant only depending on m, α, γ, r (and not τ1).
Controlling H by Lemma 6 then yields the result for a fixed time T . Applying this

estimate for all T in [0, T ∗] then shows the claimed estimate.
For γ ≥ 5/4 we find that ( j+1)2γ−4 ≥ ( j+1)1−2γ so that

( j+1)2γ−4‖Fj‖2j + ( j+1)1−2γ ‖(1 + y)Fj‖2j ≤ 2( j+1)2γ−4‖
(
1 + y

( j+1)2γ− 5
2

)
Fj ‖2j ,

which proves the expression in this case. �

5 Nonlinear Estimates

In order to close the estimate, we have to estimate Fj .

Proposition 13 Fix the parameters m, α, γ, r and an additional parameter R such
that

γ ∈
[
3

2
, 2

]
, α ≤ γ − 1, m ≥ 2γ − 1

α
+ 1,

r > 2γ, R > 2γ + 1, R ≥ r + 3γ − 2.
(32)

Then there exists a constant C = C(m, α, γ, r) such that for β, τ1 and T with τ(T ) ≥
τ1,

∞∑

j=0

1

( j+1)4−2γ

∫ T

0

∥∥∥∥∥

(
1 + y

( j+1)2γ− 5
2

)
Fj

∥∥∥∥∥

2

j

dt

≤ 2
∫ T

0
‖(1 + y) f e

j ‖2γ,τ,r−2+γ dt

+ Cβ

τ 41

⎡

⎣ sup
[0,T ]

⎛

⎝‖u‖2
γ,τ,r− γ

2
+

‖(1 + y)ω‖2
γ,τ,r+ 1

2−γ

β
+ |U E |2γ,τ,R

⎞

⎠

⎤

⎦

∫ T

0

[
‖u‖2γ,τ,r + ‖(1 + y)ω‖2γ,τ,r+1−γ

β

]
dt .

We restrict to the case of γ ≥ 3/2 because we need α ≥ γ − 1 in order to control
the terms ∂k

x u∂ l−k+1
x u in Fj . Combined with the earlier requirement that α ≥ 1/2 this

yields γ ≥ 3/2.
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Proof Write Fj = f e
j +∑6

i=1 Fi
j with

F1
j = M j

[
u∂x , ∂

j
x

]
u + M j ( j+1) ∂x u ∂

j
x u,

F2
j = M j

[
∂yu, ∂

j
x

]
v + M j j ∂xyu ∂

j−1
x v + M jv ∂

j
x ∂yu,

F3
j = M j

[
U e∂x , ∂

j
x

]
u + M j j ∂xU e ∂

j
x u,

F4
j = M j

[
V e∂y, ∂

j
x

]
u,

F5
j = M j

[
∂xU e, ∂

j
x

]
u,

F6
j = M j

[
∂yU e, ∂

j
x

]
v + M j j ∂xyU e ∂

j−1
x v.

As γ ≥ 3/2 and α ≤ γ − 1, we have 2γ − 5
2 ≥ α, so that

∥∥∥∥∥

(
1 + y

( j+1)2γ− 5
2

)
Fj

∥∥∥∥∥
j

≤
∥∥∥∥

(
1 + y

( j+1)α

)
Fj

∥∥∥∥
j

so that it suffices to bound the right-hand side.
Analysis of F1

j . We write

F1
j =

⌊
j+1
2

⌋

∑

l=2

(
j

l

)
M j

Ml M j−l+1
ulu j−l+1

+
j−1∑

l=
⌊

j+1
2

⌋
+1

(
j

l

)
M j

Ml M j−l+1
ulu j−l+1 =: F1

j,low + F1
j,high .

For F1
j,low, we notice that for l ≤

⌊
j+1
2

⌋
there exist a constant C = C(r) with

(
j

l

)
M j

Ml M j−l+1
≤ C

τ1

(
j

l

)1−γ
( j+1)γ

(l+1)r
.

This shows

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F1

j,low

∥∥∥∥
j
≤ C

τ1

⌊
j+1
2

⌋

∑

l=2

(
j

l

)1−γ
( j+1)2γ−2

(l+1)r
‖ulu j−l+1‖ j−1

≤ C

τ1

⌊
j+1
2

⌋

∑

l=2

(
j

l

)1−γ
( j+1)2γ−2

(l+1)r

∥∥∥∥∥

(
ρ j−1

ρ j−l+1

)1/2

ul

∥∥∥∥∥
L∞

x,y

‖u j−l+1‖ j−l+1.
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Note that for an absolute constant Ca ,

(
j

l

)1−γ

( j + 1)2γ−2 ≤ Ca for all 2 ≤ l ≤
⌊

j + 1

2

⌋
. (33)

From the 1d Sobolev embedding and Lemma 3, we find that for n ≤ min(m − 1, l):

∥∥∥∥∥

(
ρ j−1

ρ j−l+1

)1/2

ul

∥∥∥∥∥
L∞

x,y

≤ CA

∥∥∥∥∥

(
ρ j−1

ρ j−l+1

)1/2

∂x ul

∥∥∥∥∥
L2

x L∞
y

≤ CA C1 sup
y

(
ρ j−1ρn

ρlρ j−l+1

)1/2

‖∂x∂yul‖l

≤ C

τ1
sup

y

(
ρ j−1ρn

ρlρ j−l+1

)1/2

(l+1)γ ‖(1 + y)ωl+1‖l+1

where CA is an absolute constant, C is a constant depending on m, r . Note that we
used here Lemma 4 to bound ‖ωl+1‖l by ‖(1 + y)ωl+1‖l+1.The factor with the ρ is
explicit:

(
ρ j−1ρn

ρlρ j−l+1

)1/2

=
∏l

k=1

(
1 + y

kα

)

∏ j−1
k= j−l+2

(
1 + y

kα

)∏n
k=1

(
1 + y

kα

) .

For l ≤ m − 1, we take n = l and find that

(
ρ j−1ρn

ρlρ j−l+1

)1/2

≤ 1.

For l > m − 1, we take n = m − 1 and find that

(
ρ j−1ρn

ρlρ j−l+1

)1/2

≤
∏l

k=1

(
1 + y

kα

)

∏ j−m+2
k= j−l+2

(
1 + y

kα

)∏m−1
k=1

(
1 + y

kα

)

≤
(

( j − l + 2) · · · ( j − m + 2)

m · · · l

)α

≤ C

(
j

l

)α

( j+1)−α(m−1)

for a constant C = C(m, α) and using that l ≤
⌊

j+1
2

⌋
.
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Hence we find for a constant C = C(m, α, r) that

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F1

j,low

∥∥∥∥
j

≤ C

τ 21

⌊
j+1
2

⌋

∑

l=2

(l+1)γ−r‖(1 + y)ωl+1‖l+1‖u j−l+1‖ j−l+1

using that 1 − γ + α ≤ 0 and 2γ − 2 ≤ α(m − 1).
The discrete Young’s convolution inequality implies for all t ∈ [0, T ] that

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F1

j,low

∥∥∥∥
2

j

≤ C
τ 41

( ∞∑

l=0

(l+1)γ−r‖(1 + y)ωl‖l

)2 ∞∑

j=0

‖u j‖2j

≤ C
τ 41

( ∞∑

l=0

(l+1)4γ−1−2r

)( ∞∑

l=0

(l+1)1−2γ ‖(1 + y)ωl‖2l
)⎛

⎝
∞∑

j=0

‖u j‖2j
⎞

⎠ .

As 4γ − 1 − 2r < −1, the first integral is finite. Hence we arrive at the required
estimate

∞∑

j=0

1

( j+1)4−2γ

∫ T

0
‖F1

j,low‖2j dt ≤ C

τ 21
sup

t∈[0,T ]
‖(1 + y)ω‖2γ,τ,r+1−γ

∫ T

0
‖u‖2γ,τ,r dt

with a constant C = C(m, α, γ, r).
For the treatment of F1

j,high swap the roles of ul and u j−l+1 so that

F1
j,high =

j−
⌊

j+1
2

⌋

∑

l=2

(
j

l − 1

)
M j

Ml M j−l+1
ulu j−l+1.

In the given range l = 2, . . . , j −
⌊

j+1
2

⌋
we find

(
j

l − 1

)
≤
(

j

l

)

so that it can be bounded as F1
j,low.
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Analysis of F2
j . We write

F2
j = −

⌊
j+1
2

⌋

∑

l=2

(
j

l

)
M j

Ml M j−l+1
∂yul ∂−1

x v j−l+1

−
j−1∑

l=
⌊

j+1
2

⌋
+1

(
j

l

)
M j

Ml M j−l+1
∂yul ∂−1

x v j−l+1 =: F2
j,low + F2

j,high

and note that it vanishes unless j ≥ 3.
By v j−l+1 = −∂x

∫ y
0 u j−l+1 dz we find for n ≤ min(m − 1, j − l + 1) using the

1d Sobolev inequality and Lemma 3 that

∥∥∥∥

(
1 + y

( j+1)α

)
∂yul∂

−1
x v j−l+1

∥∥∥∥
j

≤
∥∥∥∂yul∂

−1
x v j−l+1

∥∥∥
j−1

≤ Cm−n

∥∥∥∥∥

(
ρ j−1ρn

ρlρ j−l+1

)1/2

∂yul

∥∥∥∥∥
L∞

x L2
y(ρl )

‖u j−l+1‖ j−l+1

≤ C
τ1

sup
y

(
ρ j−1ρn

ρlρ j−l+1

)1/2

(l+1)γ ‖(1 + y)ωl+1‖l+1‖u j−l+1‖ j−l+1

for a constant C = C(m, r).

In the range l = 2, . . . ,
⌊

j+1
2

⌋
for F2

j,low we find that j − l + 1 ≥ j+1
2 and as we

can assume that j ≥ 3 we can always ensure that this is at least 2.
For j+1

2 ≤ m − 1, we can take n = 2 and find a constant C = C(m, r) such that

sup
y

(
ρ j−1ρn

ρlρ j−l+1

)1/2

≤ C

and otherwise we can taken n = m − 1 and find the same control as for F1
j,low as

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F2

j,low

∥∥∥∥
j

≤ C

τ 21

⌊
j+1
2

⌋

∑

l=2

(l+1)γ−r‖(1 + y)ωl+1‖l+1‖u j−l+1‖ j−l+1

and we can conclude as for F1
j,low.
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For F2
j,high we find

F2
j,high = −

j−
⌊

j+1
2

⌋

∑

l=2

(
j

l − 1

)
M j

Ml M j−l+1
∂−1

x vl ∂yu j−l+1.

For n = min(m − 1, l + 1) we find

∥∥∥∥

(
1 + y

( j+1)α

)
∂−1

x vl ∂yu j−l+1

∥∥∥∥
j

≤
∥∥∥∥∥

(
ρ j−1

ρ j−l

)1/2

∂−1
x vl

∥∥∥∥∥
L∞

x,y

‖(1 + y)ω j−l+1‖ j−l+1

≤ C

τ1
sup

y

(
ρ j−1ρn

ρl+1ρ j−l

)1/2

(l+1)γ ‖ul+1‖l+1‖(1 + y)ω j−l+1‖ j−l+1.

For l + 1 < m − 1 we can find a constant C = C(m) such that

(
j

l − 1

)
≤
(

j

l

)
( j+1)−1.

Using the stronger assumption 2γ − 1 ≤ α(m − 1), we can then conclude as in the
treatment of F1

j,low that

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F2

j,high

∥∥∥∥
j

≤ C

τ 21

j−
⌊

j+1
2

⌋

∑

l=2

(l+1)γ−r‖ul+1‖l+1 ( j+1)−1‖(1 + y)ω j−l+1‖ j−l+1.

Hence we find

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F2

j,high

∥∥∥∥
2

j

≤ C

τ 41

( ∞∑

l=0

(l+1)γ−r‖ul‖l

)2 ∞∑

j=0

( j+1)−2‖(1 + y)ω j‖2j

≤ C

τ 41

( ∞∑

l=0

(l+1)3γ−2r

)( ∞∑

l=0

(l+1)−γ ‖ul‖2l
)⎛

⎝
∞∑

j=0

( j+1)−2‖(1 + y)ω j‖2j
⎞

⎠ .
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As 3γ − 2r < −1, this gives the required estimate

∞∑

j=0

1

( j+1)4−2γ

∫ T

0
‖F2

j,high‖2j dt ≤ C

τ 41
sup

t∈[0,T ]
‖u‖2

γ,τ,r− γ
2

∫ T

0
‖(1 + y)ω‖2γ,τ,r−1 dt

with a constant C = C(m, α, γ, r). As r − 1 ≤ r + 1− γ this is the required control.
Analysis of F3

j and F5
j . We write

F3
j + F5

j = −
j∑

l=2

(
j

l

)
M j

Ml M j−l+1
U e

l u j−l+1 −
j∑

l=1

(
j

l

)
M j

Ml+1M j−l
U e

l+1u j−l

= −

⌊
j+1
2

⌋

∑

l=2

[(
j

l

)
+
(

j

l − 1

)]
M j

Ml M j−l+1
U e

l u j−l+1

+
j+1∑

l=
⌊

j+1
2

⌋
+1

[(
j

l

)
+
(

j

l − 1

)]
M j

Ml M j−l+1
U e

l u j−l+1

=: F3,5
j,low + F3,5

j,high

with the convention that

(
j

j + 1

)
= 0.

Using the definition of U e and the 1d Sobolev embedding theorem we find

‖U e
l ‖L∞

x,y
≤ ‖U E

l ‖L∞
x

≤ Cs(l+1)γ

τ1
‖U E

l+1‖.

As l ≥ 2, this implies

∥∥∥∥

(
1 + y

( j+1)α

)
U e

l u j−l+1

∥∥∥∥
j
≤ Cs(l+1)γ

τ1
‖U E

l+1‖ ‖u j−l+1‖ j−l+1.

For l = 2, . . . ,
⌊

j+1
2

⌋
we find for a constant C = C(γ, r)

[(
j

l

)
+
(

j

l − 1

)]
M j

Ml M j−l+1
≤ C

τ1

(
j

l

)1−γ
( j+1)γ

(l+1)r
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so that as l ≥ 2

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,low

∥∥∥∥
j
≤ C

τ 21

⌊
j+1
2

⌋

∑

l=2

(l+1)γ−r‖U E
l+1‖ ‖u j−l+1‖ j−l+1.

Hence we find

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,low

∥∥∥∥
2

j

≤ C

τ 41

( ∞∑

l=0

(l+1)γ−r‖U E
l ‖
)2 ∞∑

j=0

‖u j‖2j

≤ C

τ 41

( ∞∑

l=0

(l+1)2γ−2R

)( ∞∑

l=0

(l+1)2R−2r‖U E
l ‖2

)⎛

⎝
∞∑

j=0

‖u j‖2j
⎞

⎠ .

As 2γ − R < −1 this gives the bound

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,low

∥∥∥∥
2

j
dt

≤ C

τ 41
sup

t∈[0,T ]
|U E |2γ,τ,R

∫ T

0
‖u‖2γ,τ,r dt .

For l =
⌊

j+1
2

⌋
+ 1, . . . , j we find

[(
j

l

)
+
(

j

l − 1

)]
M j

Ml M j−l+1
≤ C

τ1

(
j

l − 1

)1−γ
(l+1)γ

( j−l+1)r

so that

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,high

∥∥∥∥
j

≤ C

τ 21

j∑

l=
⌊

j+1
2

⌋
+1

(l+1)3γ−2‖U E
l+1‖ ( j−l+1)−r‖u j−l+1‖ j−l+1.

Hence we find

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,high

∥∥∥∥
2

j
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≤ C
τ 41

⎛

⎝
∞∑

j=0

( j+1)−r‖ul‖l

⎞

⎠
2 ∞∑

l=0

(l+1)6γ−4‖U E
l+1‖

≤ C
τ 41

⎛

⎝
∞∑

j=0

( j+1)−2r

⎞

⎠

⎛

⎝
∞∑

j=0

‖ul‖2l
⎞

⎠
( ∞∑

l=0

(l+1)6γ−4‖U E
l+1‖2

)
.

As r > 1
2 this gives the bound

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F3,5

j,high

∥∥∥∥
2

j
dt

≤ C
τ 41

sup
t∈[0,T ]

|U E |2γ,τ,r+3γ−2

∫ T

0
‖u‖2γ,τ,r dt,

which is the required bound as R ≥ r + 3γ − 2.
Analysis of F4

j . This term is creating trouble with the integrability in y as V e ∼ y
and is the reason for most technical difficulties.

We write

F4
j = −

⌊
j+1
2

⌋

∑

l=1

(
j

l

)
M j

Ml+1M j−l
∂−1

x V e
l+1∂yu j−l

−
j∑

l=
⌊

j+1
2

⌋
+1

(
j

l

)
M j

Ml+1M j−l
∂−1

x V e
l+1∂yu j−l

=: F4
j,low + F4

j,high .

As l ≥ 1 we find

∥∥∥∥

(
1 + y

( j+1)α

)
∂−1

x V e
l+1∂yu j−l

∥∥∥∥
j

≤
∥∥∥∥∥
∂−1

x V e
l+1

1 + y

∥∥∥∥∥
L∞

x,y

∥∥∥∥

(
1 + y

( j+1)α

)
(1 + y)ω j−l

∥∥∥∥
j

≤ C

τ
(l+1)γ ‖U E

l+2‖ ‖(1 + y)ω j−l‖ j−l

where C = C(r) is constant. In the last line we used the 1d Sobolev inequality and
that

√
ρ j

ρ j−l

(
1 + y

( j+1)α

)
≤ C .
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For l = 1, . . . ,
⌊

j+1
2

⌋
we find

(
j

l

)
M j

Ml+1M j−l
≤ C

τ1

(
j

l

)1−γ

(l+1)γ−r

so that

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F4

j,low

∥∥∥∥
j

≤ C

τ 21

⌊
j+1
2

⌋

∑

l=1

(
j

l

)1−γ

(l+1)2γ−r ( j+1)γ−2‖U E
l+2‖ ‖(1 + y)ω j−l‖ j−l

≤ C

τ 21

⌊
j+1
2

⌋

∑

l=1

(l+1)2γ−r‖U E
l+2‖ ( j+1)−1‖(1 + y)ω j−l‖ j−l .

Hence we find

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F4

j,low

∥∥∥∥
2

j

≤ C
τ 41

( ∞∑

l=0

(l+1)2γ−r‖U E
l+2‖

)2
⎛

⎝
∞∑

j=0

( j+1)−2‖(1 + y)ω j‖2j
⎞

⎠

≤ C
τ 41

|U E |2γ,τ,R

⎛

⎝
∞∑

j=0

( j+1)−2‖(1 + y)ω j‖2j
⎞

⎠

as 4γ − 2R < −1. This gives the bound

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F4

j,low

∥∥∥∥
2

j
dt

≤ C
τ 41

sup
t∈[0,T ]

|U E |2γ,τ,R

∫ T

0
‖(1 + y)ω‖2γ,τ,r−1 dt,

which is the required bound as −1 ≤ 1 − γ .
For F4

j,high we find

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F4

j,high

∥∥∥∥
j
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≤ C

τ 2

j∑

l=
⌊

j+1
2

⌋
+1

(l+1)3γ−2

( j−l+1)r
‖U E

l+1‖ ‖(1 + y)ω j−l‖ j−l .

As −1 + γ − r < − 1
2 this gives the bound

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F4

j,high

∥∥∥∥
2

j
dt

≤ C
τ 41

sup
t∈[0,T ]

|U E |2γ,τ,r+3γ−2

∫ T

0
‖(1 + y)ω‖2γ,τ,r+1−γ dt .

As R ≥ r + 3γ − 2 this is the required result.
Analysis of F6

j . We write

F6
j = −

⌊
j+1
2

⌋

∑

l=2

(
j

l

)
M j

Ml M j−l+1
∂yU e

l ∂−1
x v j−l+1

−
j∑

l=
⌊

j+1
2

⌋
+1

(
j

l

)
M j

Ml M j−l+1
∂yU e

l ∂−1
x v j−l+1 =: F6

j,low + F6
j,high .

As ∂yU e is exponentially decaying, we find

∥∥∥∥

(
1 + y

( j+1)α

)
∂yU e

l ∂−1
x v j−l+1

∥∥∥∥
j
≤ C‖U E

l ‖L∞
x

‖u j−l+1‖ j−l+1

≤ C(l+1)γ

τ
‖U E

l+1‖ ‖u j−l+1‖ j−l+1.

For F6
j,low we find (using that

( j
l

) M j
Ml M j−l+1

≤ C(l + 1)−r for l = 2, . . . ,
⌊

j+1
2

⌋
):

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F6

j,low

∥∥∥∥
j
≤ C

τ 21

⌊
j+1
2

⌋
+1

∑

l=2

(l+1)γ−r‖U E
l+1‖ ‖u j−l+1‖ j−l+1.

As γ − R < − 1
2 this gives the control

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F6

j,low

∥∥∥∥
2

j
dt

≤ C
τ 41

sup
t∈[0,T ]

|U E |2γ,τ,R

∫ T

0
‖u‖2γ,τ,r dt .
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For F6
j,high we find

1

( j+1)2−γ

∥∥∥∥

(
1 + y

( j+1)α

)
F6

j,high

∥∥∥∥
j

≤ C

τ 21

j∑

l=
⌊

j+1
2

⌋
+1

(l+1)2γ−2‖U E
l+1‖ ( j+1)γ−r‖u j−l+1‖ j−l+1.

As γ − r < − 1
2 this gives the control

∫ T

0

∞∑

j=0

1

( j+1)4−2γ

∥∥∥∥

(
1 + y

( j+1)α

)
F6

j,high

∥∥∥∥
2

j
dt

≤ C
τ 41

sup
t∈[0,T ]

|U E |2γ,τ,r+1−γ

∫ T

0
‖u‖2γ,τ,r dt,

which is the required control as R ≥ r + 1 − γ . �
As a direct consequence of Proposition 7 andProposition 13,we can state the following
corollary, where we use that Fj |y=0 = f e

j |y=0 as u and v vanish at y = 0.

Corollary 14 Fix the parameters m, α, γ, r , R as in (32) and α ≥ 1/2. There exists C
and C such that for all β, τ1, T with

β ≥ C(1 + ‖(U P , V P )‖low)

(
1 + 1

τ1
+ ‖(U P , V P )‖low

)
, and τ(T ) ≥ τ1

we have

|||u|||2 ≤ C
[
1

β
‖uin‖2γ,τ0,r+γ− 3

2
+ 1

β2 ‖(1 + y)ωin‖2γ,τ0,r+ 1
2−γ

]

+ C
[
+ 1

β2

∫ T

0
‖ f e

j |y=0‖2γ,τ,r−2+γ dt

+ 1

β2

∫ T

0
‖(1 + y) f e

j ‖2γ,τ,r−2+γ dt

]

+ C

τ 41

(
1

β
|U E |2γ,τ,R + |||u|||2

)
|||u|||2

(34)

where

|||u|||2 =
∫ T

0
‖u‖2γ,τ,r dt + sup

t∈[0,T ]
1

β
‖u‖2

γ,τ,r− γ
2

+ 1

β

∫ T

0
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2 ‖(1 + y)ω‖2
γ,τ,r+ 1

2−γ
+ 1

β2

∫ T

0
‖(1 + y)∂yω‖2

γ,τ,r+ 1
2−γ

dt

(35)
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6 Control of the Low Norm and Final A Priori Estimate

Corollary 14, which shows an a priori bound on the Gevrey norm of u, was derived
under a lower bound on β involving ‖(U P , V P )‖low. The last step is to see how this
low norm relates to |||u|||. A convenient approach is to establish an additional estimate
on a weighted Sobolev norm, namely

‖ f ‖2Hs =
∑

|ᾱ|≤s

∫

T×R+
|∂ᾱ f |2(1 + y)2ᾱ2ρ0(y) dx dy,

where the summation variable is the multiindex ᾱ = (ᾱ1, ᾱ2). In this setting, we can
state the following estimate.

Lemma 15 Let s ≥ 3 be an even integer, m ≥ s + 2, α ≥ 0, r ∈ R, γ ≥ 1, and define
|||u||| as in (35). Then, there exists C depending on s, m, α, γ, r such that

d

dt
‖ωP‖2Hs + ‖∂yω

P‖2Hs ≤ C‖ωP‖s
Hs + C

(
1 + ‖U E‖Hs+1(T) + |||u|||

)
‖ωP‖2Hs

+
s
2∑

l=0

‖∂ l
t (∂t + U E∂xU E )‖2Hs−2l .

(36)

where ωP = ∂yU P .

Proof A similar estimate was established in [27, Proposition 5.6], so that we will only
explain the main steps. The starting point is the advection-diffusion equation on the
vorticity

(∂t + U P∂x + V P∂y)ω
P − ∂2yωP = 0. (37)

One applies ∂α to the equation, test it against (1+y)2α2ρ0∂
αωP , and sum over |α| ≤ s.

Then,

1

2
∂t‖ωP‖2Hs + ‖∂yω

P‖2Hs ≤
∑

|α|≤s

∫
V P∂y((1 + y)2α2ρ0)|∂αωP |2

−
∑

|α|≤s

∫
[∂α, (U P∂x + V P∂y)]ωP ∂αωP (1 + y)2α2ρ0

−
∑

|α|≤s

∫

�

∂y((1 + y)2α2ρ0)∂y∂
αωP ∂αωP

−
∑

|α|≤s

∫

{y=0}
∂y∂

αωP ∂αωP .

123



Well-Posedness of the Prandtl Equations Without Any… Page 45 of 51 8

Using the equation onU P , one can obtain recursively boundary conditions for the odd
derivatives ∂2k+1

y ωP , starting from the Neumann condition

∂yω
P |y=0 = −∂tU

E − U E∂xU E .

More precisely, the boundary data ∂2k+1
y ωP |y=0 can be expressed in terms of the data

U E and of products of mixed derivatives ∂
ρ1
x ∂

ρ2
y ωP |y=0 with ρ2 ≤ 2k − 2. We refer

to [27, Lemma 5.9] for the expressions of these boundary conditions. This allows to
establish the following bound, cf equations (5.20)-(5.22) in [27]:

−
∑

|α|≤s

∫

{y=0}
∂y∂

αωP ∂αωP

≤ Cs‖ωP‖s
Hs + Cs

s
2∑

l=0

‖∂ l
t (∂t + U E∂xU E )‖2Hs−2l + 1

4
‖∂yω

P‖2Hs .

The diffusion term does not raise any difficulty: we find

−
∑

|α|≤s

∫

�

∂y((1 + y)2α2ρ0)∂y∂
αωP ∂αωP ≤ C‖ωP‖2Hs + 1

4
‖∂yω

P‖2Hs .

where C depends on s and m. Also, through standard estimates, we find

∑

|α|≤s

∫
V P∂y((1 + y)2α2ρ0)|∂αωP |2 ≤ C‖ωP‖3Hs

and

∑

|α|≤s

∫
[∂α, U P∂x ]ωP ∂αωP (1 + y)2α2ρ0 ≤ C‖ωP‖3Hs .

The other part of the commutator is slightly more delicate. First, one can show that

∑

|α|≤s,α1 �=s

∫
[∂α, V P∂y]ωP ∂αωP (1 + y)2α2ρ0 ≤ C‖ωP‖3Hs .

Note that the weight (that grows with the number of y-derivatives) allows to compen-
sate for the linear growth in y of V P . The success of this trick comes from the fact that
we are interested here in Sobolev estimates (contrary to the former Gevrey estimates).
When α1 = s, namely α = (s, 0), one can show similarly that

∫
[∂α, V P∂y]ωP ∂αωPρ0 −

∫
∂αV P∂yωP ∂αωPρ0 ≤ C‖ωP‖3Hs .
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However, the term where the s derivatives with respect to x apply to V P cannot be
handled with usual manipulations. It is the well-known loss of x-derivative peculiar
to the Prandtl equation: in particular, one cannot control ‖(1 + y)−1∂s

x V P‖L2(ρ0)
by

‖ωP‖Hs . This is where |||u||| is involved. We find that

∫
∂αV P∂yωP ∂αωPρ0 ≤ ‖(1 + y)−1∂s

x V P‖∞ ‖(1 + y)∂yω
P‖L2

x L2(ρ0)
‖ωP‖L2

x L2(ρ0)

≤ C(‖U E‖Hs+1 + |||u|||)‖ωP‖2Hs

using that ‖(1 + y)−1∂s
x V P‖∞ ≤ C‖∂s+1

x u P‖∞ ≤ C |||u||| as soon as m ≥ s + 2.
Putting together the previous estimates yields the result. �
We conclude this section with

Proposition 16 Let us fix s = 6, m ≥ s +2, α, γ , r , R as in (32) and α ≥ 1/2. Further
fix τ1 > 0. Let

Min = 2max(C, 1)
(
‖uin‖2γ,τ0,r+γ− 3

2
+ ‖(1 + y)ωin‖2γ,τ0,r+ 1

2−γ
+ ‖ωP |t=0‖2Hs

)

where C is the constant appearing in Corollary 14. There exists β∗ and T∗ depending
on τ1, Min, on ‖ωP |t=0‖Hs , on sup[0,T0] |U E |2γ,τ0,R and on various Sobolev norms of

U E , such that, for all β > β∗ and for all T ≤ T∗ with τ(T ) ≥ τ1: if |||u|||2 ≤ 2Min
β

,

then |||u|||2 ≤ 3Min
2β .

Proof Let β, T such that |||u|||2 ≤ 2Min
β

≤ 2Min (assuming β ≥ 1). We first apply
Lemma 15, which yields

d

dt
‖ωP‖2Hs + ‖∂yω

P‖2Hs ≤ C‖ωP‖s
Hs + C(1 + ‖U E‖Hs+1(T) +√

2Min)‖ωP‖2Hs

+
s
2∑

l=0

‖∂ l
t (∂t + U E∂xU E )‖2Hs−2l .

(38)

Integrating this differential inequality shows

sup
t∈[0,T ]

‖ωP (t)‖Hs ≤ 2‖ωP |t=0‖Hs (39)

for T ≤ T1, where T1 depends on Min, supt∈[0,T0] ‖U e(t)‖Hs+1(T),
∫ T0
0 ‖∂ l

t (∂t +
U E∂xU E )‖2

Hs−2l dt and on ‖ωP |t=0‖Hs .
Standard Sobolev imbeddings imply that

max
0≤k≤3

‖∂k
x U P‖∞ + max

0≤k≤2

∥∥∥∥
∂k

x V P

1 + y

∥∥∥∥∞
≤ C

(
max
0≤k≤3

‖∂k
x U E‖∞ + |||u|||

)
.
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As regards the other terms defining ‖(U P , V P )‖low, cf (19), they all involve ωP and
are controlled by ‖ωP‖Hs as soon as s ≥ 5. Hence, it follows from (39) that

‖(U P , V P )‖low ≤ K

for T ≤ T1 and for some K depending on Min, ‖ωP |t=0‖Hs and various norms of
U E . If we now choose

β∗ ≥ C(1 + K )

(
1 + 1

τ1
+ K

)
, and τ(T ) ≥ τ1

where C is the constant appearing in Corollary 14, we obtain for β ≥ β∗:

|||u|||2 ≤ Min

2β
+ C

β2

∫ T

0
‖(1 + y) f e

j ‖2γ,τ,r−2+γ dt + C

βτ 41

(
|U E |2γ,τ,R + 2Min

)
|||u|||2.

Taking β∗ large enough so that

C

β∗τ 41
sup

t∈[0,T0]

(
|U E |2γ,τ0,R + 2Min

)
≤ 1

2

we get

|||u|||2 ≤ Min + 2C
β2

∫ T

0
‖(1 + y) f e

j ‖2γ,τ,r−2+γ dt + 2C
β2

∫ T

0
‖ f e

j |y=0‖2γ,τ,r−2+γ dt

If we take T∗ ≤ T1 such that 2C
∫ T∗
0 ‖(1 + y) f e

j ‖2γ,τ,r−2+γ dt ≤ 1
2 Min, the result

follows. �

7 Existence and Uniqueness

On the basis of the previous a priori estimates, we now complete the proof of Theo-
rem 1:we construct a unique solution of (1)–(2)with dataU P

in . This obviously amounts
to constructing a unique solution of (13)–(15) with data uin := U P

in − U e|t=0.
We fix s = 6, γ = 2. We take m ≥ s + 2 and α ≥ 1

2 that satisfy the inequalities in
the first line of (32). Let 0 < τ1 < τ0, r ∈ R, T0 > 0, and U E , U P

in = uin + U e|t=0
satisfying the assumptions of the theorem. Let now (τ ′

0, τ
′
1) with 0 < τ1 < τ ′

1 < τ ′
0 <

τ0. Let r ′ and R′ as in the second line of (32). As τ0 > τ ′
0, we have

‖uin‖2γ,τ ′
0,r

′+γ− 3
2

+ ‖(1 + y)ωin‖2γ,τ ′
0,r+ 1

2−γ

≤ C
(
‖uin‖2γ,τ0,r + ‖(1 + y)ωin‖2γ,τ0,r

)
< +∞
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while

‖ωP |t=0‖2Hs ≤ C( sup
[0,T0]

|U E |2,τ0,r + ‖(1 + y)m+6ωin‖H6(T×R+)) < +∞

and

sup
[0,T0]

|U E |2,τ ′
0,R′ ≤ C sup

[0,T0]
|U E |2,τ0,r < +∞

for a constant C possibly depending on τ0, τ
′
0, r , r ′, R′.

The idea is then to apply Proposition 16 to a solution of an approximate system,
for which well-posedness is granted. Inspired by [27], we consider the regularized
equation

∂t u + (u∂x + v∂y)u + (U e
ε ∂x + V e

ε ∂y)u + (u∂x + v∂y)U
e
ε − ε∂2x u − ∂2y u = f e

ε ,

(40)

adding a tangential diffusion −ε∂2x u. The modified vector field (U e
ε , V e

ε ) takes the
form

U e
ε = ∂y(e

−εy(y + e−y − 1))U E
ε , V e

ε = −e−εy(y + e−y − 1)∂xU E
ε

where U E
ε is an analytic approximation of U E , converging to U E in the norm | |2,τ0,r

as ε → 0. Note that (U e
ε , V e

ε ) is still divergence-free, but has now fast decay in y, so
that all difficulties generated by the linear growth of V e vanish. Accordingly, the right-
hand side f e is modified into f e

ε replacing U E by U E
ε , resp. (U e, V e) by (U e

ε , V e
ε )

in (14). Similarly, one regularizes the initial data to obtain some uin,ε real analytic in
x, y, with fast decay at infinity in y (and obeying suitable compatibility conditions).

One can show that system (40) is well-posed following classical methods for fully
parabolic equations. For instance, for Tε,max small enough, one can prove the existence
of a Sobolev solution uε on (0, Tε,max ) through a fixed point argument applied to

Tεu(t) = et(ε∂2x +∂2y )uin,ε +
∫ t

0
e(t−s)(ε∂2x +∂2y )Fε[u](s) ds

with Fε[u] = f e
ε − (u∂x + v∂y)u − (U e

ε ∂x + V e
ε ∂y)u − (u∂x + v∂y)U e

ε . Moreover, uε

remains (real) analytic in (x, y) as long as the Sobolev norm of uε does not blow up,
that is on (0, Tε,max ). This property, related to the analytic regularization of the heat
kernel is well-known, even in the more difficult context of the Navier-Stokes equation:
see [2,7,25] and references therein.

We now claim that all a priori estimates obtained for a solution u of (13) can be
established for uε solution of (40), uniformly in ε. For this, one just needs to adapt
the definitions of the auxiliary quantities Hj and φ j : we rather consider

(
∂t +β( j+1)+U P∂x + ( j+1)∂xU p+V P∂y − ε∂2x − ∂2y

) ∫ y

0
Hj dz =

∫ y

0
u j dz,

Hj |t=0 = 0, ∂y Hj |y=0 = 0, Hj |y→∞ = 0. (41)
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and

(
−∂t + β( j+1) − U P∂x + j∂xU p − V P∂y − ∂y V P − V P ∂yρ j

ρ j
− ε∂2x

−
(

∂y + ∂yρ j

ρ j

)2
)

φ j = Hj ,

φ j |t=T = 0, φ j |y=0 = 0, φ j |y→∞ = 0.

(42)

The additional good terms coming from −ε∂2x allow to control the extra commutator
terms that it generates. Hence, we can apply Proposition 16 with τ ′

0, τ
′
1, r ′ and R′

instead of τ0, τ1, r , and R. Let β∗ and T∗ given by the proposition (note that they are
independent of ε). We then introduce

Tε,∗ = sup{T ≤ Tε,max , |||u|||2 ≤ 2Min/β}

where β > β∗ is fixed, and |||u||| is defined in (35). Note that |||u||| implicitly depends
on T . By continuity in time of uε , one has Tε,∗ > 0. But from Proposition 16, one
deduces easily that for any T ≤ T∗, Tε,max ≥ Tε,∗ ≥ T .

From there, by standard compactness arguments, one obtains a solution to the
Prandtl system over [0, T ], with the regularity properties stated in the theorem. It
remains to show uniqueness. For this, we take two solutions u1 and u2 up to time T .
The difference ud then satisfies (from (13))

∂t u
d + u1∂x ud + ud∂x u2 + vd∂yu1 + v2∂yud

+(U e∂x + V e∂y)u
d + (ud∂x + vd∂y)U

e − ∂2y ud = f d,e.

We then find for ud
j that

(
∂t + β( j+1) + U 1,P∂x + ( j+1)∂xU 1,P + V 2,P∂y − ∂2y

)
ud

j

+ ∂yU 1,Pvd
j + j∂xyU 1,P∂−1

x vd
j = Fd

j + ∂x udud
j ,

where again Fd
j consists of f d,e

j and mixed terms with less than j derivatives on u1,

u2 or ud . Comparing with (16), we see that the only difference is the replacement of
(U P , V P ) by (U 1,P , V 2,P ). Let us stress that the latter field not being divergence-free
is not an issue: none of the a priori estimates carried in Sect. 4 and Sect. 5 were using
the fact that (U P , V P )was divergence-free. One can therefore obtain a similar Gevrey
bound on ud , under a lower bound on β (involving the low norms of (U 1,P , V 1,P )

and (U 2,P , V 2,P )). This provides a stability estimate which shows uniqueness. These
considerations now finish the proof of our main result Theorem 1.
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