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Abstract

We show the local in time well-posedness of the Prandtl equations for data with Gevrey
2 regularity in x and Sobolev regularity in y. The main novelty of our result is that we
do not make any assumption on the structure of the initial data: no monotonicity or
hypothesis on the critical points. Moreover, our general result is optimal in terms of
regularity, in view of the ill-posedness result of Gérard-Varet and Dormy (J Am Math
Soc 23(2):591-609, 2010).

Keywords Fluid mechanics - Navier-Stokes equations - Boundary layers - Prandtl
equation

1 Introduction

We are interested in the 2D Prandtl equations

qUT +UPB U + VP U —JUP =, UF + U UE,

aUP +a,vF =0, (D
set in the domain Q2 = T x R, completed with boundary conditions
UPlyeo=VPy20=0, lim U" =UE. )
7 y—>—+00

These equations are a degenerate Navier-Stokes model, introduced by Prandtl in 1904
to describe the boundary layer, which is the region of high velocity gradients that
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forms near solid boundaries in incompressible flows at high Reynolds number. They
can be derived from the Navier-Stokes equation under the formal asymptotics

", vt x,2) ~ (UL (t,x, 2/vV), VOV (1, x, 2/ V),
wr,vh =wWw?, vha,x,y), 3)

where v is the inverse Reynolds number, and (1", v”) is the Navier-Stokes solution.
This asymptotics is supposed to apply to the flow in the boundary layer region: the
typical scale /v of the boundary layer in this model is inspired by the heat part of
the Navier-Stokes equation. Away from the boundary, one rather expects an inviscid
asymptotics of the type

", "), x,2) = W, vE)(t, x, 2),

where (u”, v%) is the solution of the Euler equation. In order to match the two asymp-
totic expansions, one must impose the condition

lim U@, x,y)=UF@t, x):=uf@, x,0),

y——+00

which yields the boundary condition for y — oo in (2). The other two boundary
conditions at y = 0 express the usual no-slip condition at the boundary. We refer to
[6] for a more detailed derivation. Let us stress that the pressure in the Prandtl model
is independent of y: its value is given by the pressure in the Euler flow at z = 0. This
explains the right-hand side of (1), which depends only on ¢, x, and is coherent with
the third boundary condition in (2).

The Prandtl system (1)—(2) is very classical, as it appears in most textbooks on
fluid dynamics. Still, it is well-known from physicists that its range of applications
is narrow, due to underlying instabilities. Among those instabilities, one can mention
the phenomenon of separation, which is related to the development of a reverse flow
in the boundary layer [4,8]. Another example is the so-called Tollmien-Schlichting
wave, that is typical of viscous flows at high but finite Reynolds number [5,15]. Of
course, such instability mechanisms create difficulties at the PDE level, making the
mathematical analysis of boundary layer theory an interesting topic. The two main
problems that one needs to address are the well-posedness of the reduced model (1),
and the validity of the asymptotics (3). We shall focus on the former in the present
paper. About the validity of boundary layer expansions in the unsteady setting, there
are many possible references, among which [11,14,16,26,31,32]. About the steady
setting, see the recent works [10,17,19].

To analyse the well-posedness of the Prandtl model is uneasy, even at the level of
local in time smooth solutions. The key difference with Navier-Stokes is that there
is no time evolution for the vertical velocity, which is recovered only through the
divergence-free condition. Hence, the term vdyu can be seen as a first order nonlinear
operator in x. Moreover, this operator is not skew-symmetric in H*. As the diffusion in
(1) is only transverse, this prevents the derivation of standard Sobolev estimates. The
first rigorous study of the Prandtl equations goes back to Oleinik [29], who tackled
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the case of data U|;—¢ that are monotonic in y. She established local well-posedness
of the system using the so-called Crocco transform, a tricky change of variables and
unknowns. Let us stress that such monotonicity assumption excludes the phenomenon
of reverse flow and therefore prevents boundary layer separation. More recently, the
local well-posedness result of Oleinik was revisited using the standard Eulerian form
of the equations, see [1,21,27] for the local theory in Sobolev spaces.

The analysis of non-monotonic data is much more recent, and has experienced
some strong impetus over the last years. Surprisingly, it was shown in [9] that the
Prandtl system is ill-posed in the Sobolev setting (cf. [13,18,24] for improvements).
Specifically, paper [9] centers on the linearization of (1)—(2) around shear flows, given
by (U, V) = (Us(y), 0). The linearized system reads

i + Usdyu + Ujv — d3u = 0,

3xu+3yv—0, (4)
Ul = —0) — 0, I n u—=— O
|) 0 v|y 0 y‘>1+00

In the case where U, has one non-degenerate critical point, one can show that (4)
has unstable solutions of the form u(¢, x, y) = elkx €%y (y) for k arbitrarily large
and Moy ~ Avk. Such high frequency instability forbids the construction of Sobolev
solutions. To obtain positive results, one must start from initial data u;;, that are strongly
localized in Fourier, typically for which |ig(k, y)| < e %" for some positive § > 0,
y < 1. Such localization condition corresponds to Gevrey regularity in x (Gevrey
class 1/y). The first result in this direction is due to Sammartino and Caflisch [30],
who established existence of local in time solutions in the analytic setting (y = 1).
See also the nice paper [22]. Note that the requirement for analyticity is natural in
view of standard estimates. For instance, at the level of the linearized equations (4),
one gets directly by testing against u that

Illa(r, &, 2 < CIkI (e, ks )iz

so that || (¢, k, Mz = eC Ikl 4o (k, )12 Hence, if lliuotk, )2 < eIl a uniform
control will be provided as long as t < §/C. '

To relax the analyticity condition is much harder. In the special case where u;, has
Jor each value of x a single non-degenerate critical point in y, the first author and
N. Masmoudi proved the local well-posedness of system (1)—(2) for data that are in
Gevrey class 7/4 with respect to x [12]. Well-posedness was extended to Gevrey class
2 in article [23], for data that are small perturbations of a shear flow with a single
non-degenerate critical point. Note that this exponent (corresponding to y = 1/2) is
optimal in view of the instability mechanism of [9].

All the recent results mentioned above rely heavily on the structure of the initial
data: monotonicity for the Sobolev setting, single non-degenerate critical points for
the Gevrey setting. It is therefore natural to ask about the optimal regularity under
which local well-posedness of the Prandtl equations holds, without additional struc-
tural assumption. This is the problem that we solve in the present paper: we establish
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the short-time well-posedness of the Prandtl equations for general data with Gevrey 2
regularity in x and Sobolev regularity in y. We recall once more that such regularity
framework is the best possible. Indeed, from the results of [9], high frequency modes
k in x may experience exponential growth with rate +/k. This means that to hope for

short time stability, the amplitude of these modes should be O(e’c‘/%), which is the
Fourier translation of a Gevrey 2 requirement.

2 Result

Lety > 1,7t > 0,7 € R. For functions f = f(x) of one variable, we define the
Gevrey norm

Jj+1 1) 2 )
1 er =D (t(](#) £ 2y 3)

jeN

and for functions f = f(x, y) of two variables, the norm

j+1¢; ry 2
2 /T +1) i o2
LF1er =D <W 181 £11%, ©)
jeN
where || - ||, j > 0, denotes a family of weighted L? norms. Namely,
115 = / |/ (e, 9)1Ppj(y) dx dy, @
TxR*

where p;, j > 0, is the family of weights given by

Pj-1(y) .
o) = (L4302, pj () = P22 = g (y)H( e
(1+3)
for fixed constants « > 0 and m > 0 chosen later (m large enough and « matching
the constraints found from the estimates). The need for this family of weights will be

clarified later. Let us note that locally in y, this family of norms is comparable to more
classical families such as

JHls 1) 2 .
|||f|||y”—2(’f—”)) 102 £12,. ®)

Y
= GUhH
For instance, for functions f which are zero for |y| > M, one has

”f”y,r,r = CM|||f|||)/,‘[‘r7 |||f|||yrr =< CM,t’”f”y,r/,r for any >
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The only difference is when y goes to infinity, where the family of weights p; puts
less constraints on the decay of the derivatives compared to a fixed weight pg for
derivatives of any order.

With these spaces, we can now state our main result.

Theorem 1 There exists m and o such that: for all 0 < 11 < 10, ¥ € R, for all
To > 0, for all UE satisfying

sup 18 U% |2 + U270 < +00,
[0,To]

sup max ||8 0, +UEd)UE | 621y < 400
[0.70] I=0----

forall U van sfying

IUE — UE|ioll2,z.r < +00, (14 Y)UL 12,0, < 400,

(L + )" 00U | o rum,y < +00

and under usual compatibility conditions (see the last remark below), there exists
0 < T < Ty and a unique solution uP of (1)—(2) over (0, T) with initial data UP
that satisfies

sup [|U (t)—UE(t)IlzflrJr SUP I+ 03, U 03, ,
1€[0,T] 0.7]

T
+/ 1A+ »RUT OIS, , df < +o00
0
Remark

e The main novelty of the theorem is that we reach the optimal Gevrey regular-
ity although no structural assumption is made on the data: no monotonicity, or
hypothesis on the number and order of the critical points is needed. Only Gevrey
regularity of the data and natural compatiblity conditions are required.

e Our method of proof, explained below, is inspired by the hyperbolic part of the
Prandtl equations. It is based on both a tricky change of unknown and appropriate
choice of test function. This method would also allow to recover the Sobolev well-
posedness of the hyperbolic version of the Prandtl system by means of energy
methods. As far as we know, the well-posedness of this inviscid Prandtl model
had been only established in C* spaces using the method of characteristics: see
[20] for more. This part will be detailed elsewhere. In the case of the usual Prandtl
equations studied here, our methodology has to be slightly modified to handle in
an optimal way the diffusion term. Still, commutators are responsible for the loss
of Sobolev regularity: only Gevrey 2 smoothness in x can be established.

e There is a loss on the Gevrey radius 7 of the solutions through time, going from 7¢
to 71. This loss, which appears technical in the paper, is actually unavoidable. This
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is due to the instabilities described in [9]: exponential growth of perturbations at
rate +/k causes a decay of the Gevrey radius linearly with time.

e Besides the regularity requirements mentioned in Theorem 1, the initial data must
satisfy compatibility conditions. It is typical of parabolic problems in domains
with boundaries, cf. [28, Chapter 3] for a general discussion. Here, the value of
Uiﬁ and of some of its derivatives at y = 0 cannot be arbitrary: they must be
related to U accordingly to the equation and to the amount of regularity asked
for u (with respect to the y-variable). Let us note that locally near y = 0, most
of our estimates only involve U” — U¥ in L,ZH}Z, (not mentioning the Gevrey
regularity in x). Such estimates could be carried with the single compatibility
condition Uiﬁlyzo = 0. Still, the low norm |[(U*, V) ||;ow introduced in (19)
involves more y-derivatives: its control through Lemma 15 implies therefore a
few more compatibility conditions. For the sake of brevity, we do not provide their
explicit expressions, and refer to [33, Proposition 2.3] for a detailed discussion on
a variation of the Prandtl equations.

Outline of the strategy As mentioned earlier, our analysis of the Prandtl equations
relies on the identification of new controlled quantities because the usual unknown u
and kinetic energy do not give enough information. To help to identify the relevant
quantities, it is a good idea to start from the study of the linearized system (4). After
Fourier transform in x and Laplace transform in time, we are left with the ODE

(A +1kU) 3, ¥ —ikUW — 30 = ujp ©

where W corresponds to the Fourier-Laplace transform of the stream function. At high
frequencies k, a natural idea (although not legitimate in the end) is to neglect the
diffusion term. We are then left with the first order ODE

(A + 1kUy) 9y — ikU W = ujp. (10)

We note that the standard estimate (based on taking ByE as a test function) yields a
control of the type

AN W2, S KNy W 21U 2 + lluinll 2119y @l 2
S klay W7, + lluinll 211059 |l 2

where the last line comes from the Hardy inequality (as soon as |U/(y)| = O(y™})
at infinity). Such bound ensures the solvability of the resolvent equation (10) only for
A ~ k. This in turn yields a semigroup bound of the type e¥’, only compatible with
stability in the analytic setting.

To reach stability in lower regularity, an important point is to notice that the homo-
geneous equation has Wy = (A 4 ikUy) as a special solution. With the integrating
factor method in mind, it is then natural to set W = (A + ikU)yr. The first order
equation (10) becomes

O+ ikU)? 8¢ = uin
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which is much better than the original formulation. Indeed, we can test the equation
against ¢ = ;75 k 7 —7 Oy 1// to obtain a control of 0y in terms of u;,, and from there a
control of W for any A > 0.

Back to the full resolvent equation (9) we find for the same unknown r

(b +ikUs)* 339 — (L + kU85 = uin + [ + ikUs, 8519

Testing again against ¢ = 0, ¥, the LHS allows the control

)L+lkU
RNy wll72 + 105917,

In the commutator at the RHS, the worst error term is 3ikd, U; 331//, which is bounded
as

272

Ck
—— 10, ¥ll 211059 ]l 2 < —||a vllz, + Ay

0
|<m| |m|2” g

We see that under the constraint iA ~ k2/3, the estimate can be closed, and this can be
shown to imply short time stability for data with Gevrey regularity 3/2. This estimate
around a shear flow is detailed as Lemma 4.1 in [3].

In order to reach the optimal Gevrey exponent 2, we need to get rid of the commu-

tator term containing 33,1#, which comes with a worse control than 9,1 To do so, we
change a bit our new unknown ¥: we now define i through the relation

= (L +ikU, — )y (11)
including the diffusion term. Hence, (9) becomes
(A +ikUs — 99)%0y % + (0 + ikUy — 07) (kU ) — ikUy (A + ikUy — 95)% = ui.

Testing this time against the solution ¢ of (A + kU — 3)2,)45 = ByJ (again with the
diffusion term), the LHS yields the same control, but the error term is now

m/[,\ +ikUs — 85, ikU1yr ¢.

From the definition of ¢ it can be shown that ||¢] < A~! oy so that the error can
be bounded by

|q kl

The estimate can now be closed for %A ~ k!/? yielding Gevrey regularity 2.
Obviously, such approach is no longer applicable as such to the nonlinear system

(1)—(2): we not only lose the linearity of the equations, but the coefficients are no
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8 Page8of51 H. Dietert, D. Gérard-Varet

longer of shear flow type. They notably depend on ¢ and x, which forbids an easy
use of Fourier or Laplace transform. Rather than turning to the characterization of
Gevrey spaces in the Fourier variable k, we consider norms based on the x-variable,
see (5) and (6). Roughly, the idea is to work with time dependent norms, that is with
the quantities

U —UEYOycayrs T() = 1067

By differentiating j-times the first line of the Prandtl system, we can derive an equation
on

)G+

Gy (VT -Utw)

Mj(t) =
that can be written as
@+ BG + D)uj+ U 0uj + VFoyuj +vjo,U" —dju; = Fj,

y
sz—/ Bxuj. (12)
0

Roughly, inspired by the shear flow case, the idea will be to introduce as a new
unknown the solution v; = ;' H; of

y
@+ BG+D + U9 —a)y; =/O ujdz.

which is reminiscent of the Fourier relation (11). The test function ¢; should then
solve the reverse equation

(=0 + BG+D) — U3, — dD)¢j = dyy;

and be solved backward in time. Performing the same estimate as in the shear flow
case, we expect to find an inequality of the type

BUDI0, 12 + 102012 S s IF 1+ s 0,0, 12
Y RGN g
By exploiting a relation of the form [[3,0y¥;ll ~ jY[[dy¥ ;41| (that needs to be
shown!) and using that y < 2, we will then be able to sum over j and establish for
large enough B a control of Zj 0y |% in terms of Zj | F; 2.

In fact, in implementing this strategy, several refinements are necessary, and the
relations satisfied by ¥; = ;' H; or ¢; need to be slightly modified. Particularly
problematic is the term V7 dy because VP ~ —3,UFy increases linearly with y:
this prevents from closing an energy estimate with a fixed weigth p = p(y). This
difficulty appears in various places in the literature on the Prandtl equations. This is
for instance the reason why article [12] is limited to the special case UF = 0 and
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decaying initial data. One can also mention [22], where this difficulty is overcome by
a clever change of variables, which is reminiscent of the method of characteristics and
allows to remove the bad part of the convection term from the momentum equation.
Energy estimates can then be established in these new coordinates x’, y’, and yield
some local well-posedness result, with solutions that are analytic in x’ and L? in y'.
The disadvantage of this approach is that the regularity of the solution in the original
variables x and y is no longer clear at positive times. Here, we stick to the eulerian
variables, but overcome the difficulty by introducing the family of weights p;, j > 0.
These weights allow to trade a power of y against a derivative in x, which is appropriate
to the commutator terms. Moreover, they put very little conditions on the derivatives of
the solution, so that they provide a very general framework for well-posedness. Note
that the specific expression of p; is important: it could not be for instance replaced by
the more natural guess (1 + y)z(m’j ), as commutators with the diffusion term would
not be under control. Note also that the strategy used in [27], where Sobolev well-
posedness is established under monotonicity assumptions by increasing the weight
with the number of y-derivatives, does not extend to the Gevrey framework in variable
X.

The plan of the paper is as follows. In the next section, we first collect several
properties of the weight p;. We then write the equations satisfied by the x-derivatives
of the Prandtl solution in a form analogue to (12). This means that we put most of the
nonlinear terms at the right-hand side, and consider those equations as linear. We finish
the section by introducing the adapted quantities H; and ¢ ;. The main section is Sect. 4:
a priori Gevrey estimates for the linear equations are performed, that provide a control
of the u;’s in terms of the nonlinear terms F jfs. Note that such estimates are obtained

under a condition of the form 8 > C(1 4+ (U, V) l1ow)?, where [[(U, V) |[10w
is a low regularity norm of the solution. The treatment of the nonlinearity F; is then
handled in Sect. 5. The last step in the derivation of a priori estimates is to recover
the control of the low regularity norm |[(U P V) 10w, see Sect. 6. Finally, issues
regarding the construction and uniqueness of solutions are discussed in Sect. 7.

3 Preliminaries

The explicit form of the weights p; is only needed in the Sect. 5. In the other parts,
we just need a sufficient control of the logarithmic derivative (Lemma 2), a bound for
antiderivatives (Lemma 3) and relate p; to p;41 (Lemma 4).

Lemma2 Letm > 0 and a > 0. There exists a constant C; such that for all y € R,
jeN

CI(j+D)'™ ifa <1
< Clog(j+1) ifa=1
C ifo>1

8ypj(y)
P (y)
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8 Page100of 51 H. Dietert, D. Gérard-Varet

and

dyp;(y)

1+
(1+7) Pi(y)

=G (+D.

Proof Given the explicit form of p;, we can compute the logarithmic derivative of p
directly as

vy J
vPj _ dylog pj = 9y log pp — 228y log (1 + %)
Pi k=1 k
Dy
= -2
ok ()
From this expression the result follows directly. O

Lemma3 Form > % introduce the constant

1

Cp = )
" 2m — 1

Then foralloe > 0, j € Nand all f = f(y),

oM\ Y
i‘;lo’ <—p;(y)> /0 |f@1dz = Cu 1 fll2p))-

More generally, for0 <n < j withn <m — % one has

) /2 py
Sul()) (21 Eii) /0 [f()]dz < Cip ”f”Lz(/Jj)'
yz0 \Fn

Eventually, for all A = A(x, y) and B = B(x, y), the following inequality holds:

IIA/0 B(z)dzllj = CnllAll Lo 12 (o I B -

Proof Note that p;/p, for j > n is non-increasing. Hence

. 1/2 y y . 1/2
(p/(y)) / ()] dz 5/ <P4/(Z)) ()] dz
on(y) 0 0 on(2)

v 1/2
< 1f20) (/0 m@ ’

where we used the Cauchy-Schwarz inequality in the second inequality.
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As @ > 0 we find directly that

J
_ Y \2 1
<4y (1+—) <
Pn(y) ,El k* (1 + y)2m=2n

whose integral over y € R gives C 317”. This proves the first and second bounds. The
remaining estimate with A and B follows directly. O

The weights are decaying so that p; < o for j > k. Asa > 0, we have for j € N
that (1 + y)?pj41 < (j+1)**p; and pj4+1 > . This shows:

Pj
(1+y)?
Lemma4 Leta > 0. For j e N, A = A(x, y) and B = B(x, y) it holds that for

[Alj+1 < 1All;, 1A+ A+ < GHDYIAL

and

A y
<lAllj+1, A [ B@dzllj < Culld + »)A| 1 Bl j+1.
H(1+y) j_ll lj+rs fo (@ dzllj = Cnll(X + ) All Lo 12 (o) 1 Bl j+1

Let us insist again that most parts of the proof would work with constant weight
p instead of p;. The dependency on j will be only needed to treat the commutator
terms coming from V* U P The difficulty is that V¥ grows like y as soon as UZ
is non-constant. Here the crucial property that we will use is that we can control
1L+ Y)Allj41 by G+DA] ;.

The Prandtl equations are given for (U, V) with inhomogeneous boundary con-

ditions at y — oo. In order to work with homogeneous boundary conditions at zero
and infinity, we introduce

Ut x,y) = (1 —e N UE@, x), Ve, x,y)=—(+e? — 1D UEE x)
andsetu = UP —U®, v = —foy d,u = VP — Ve Then,
O+ (udy + vdy)u + (U0 + Ve0y)u + (udy + vd,)U¢ — Bfu = f¢ (13)
where
fo=0UF + U UF —8,U° — U9, U — Vea,U° + 3;U°. (14)
In the new variables (u, v) the boundary conditions are

u=v=0 aty=0, and lim u =0. (15)

y—>00

The condition at y — oo will be encoded in the functional space of u.
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8 Page12of51 H. Dietert, D. Gérard-Varet

To prove Theorem 1, the point is to obtain good estimates for Gevrey norms of u
of type (6) for time-dependent radius t = t(¢). More precisely, we give ourselves
parameters m, «, Y, r, to be fixed later, as well as the time-dependent radius t(t) =
10e P!, with B > 0 to be fixed later. Then, for any function f = f(t,x) or f =
f(t,x,y)and j € N we set

() G+1)"

fit, ) = M; ol f(t,) with M;:= G

Taking j derivatives in x of (13) and multiplying by M yields

(a, + B+ +UPd + (+Da, UP +vFo, — ag)u,
+ U v 4+ ja, U 8 v = F; (16)

where F; collects all terms with less than j derivatives in x as well as the weighted
derivative of the forcing f°. It is given by

Fy = 15+ M; [ude, o] | u+ M; 0,0l
+ M [0y, o | v+ My j agu o™ v+ Mjvalagu
+ M (U0, 0] [+ M j 0.0 o]

+M; [veay, ol |u

]
+ M, [0.U° ol | u
]

+ M (0,0, 8] v+ M j o, U ol
We now introduce our crucial auxiliary functions H; (¢, x, y) defined by

y y
(8,~|—/3(j+1)+UP8x~I—(j+1)8xUp+VP8y—8y2)/0 dez:/O u,-dz,m)

Hj|t=O=0» ayI{jly=O=O» Hj|y—>oo=O~

For the existence of H;, one can consider (17) as a convection-diffusion equation for
Aj = |3 Hj dz, with boundary conditions Aj|,—o = dyAjly—oc = 0, which has a
solution by the classical theory of parabolic PDEs. The PDE (17) itself then implies
that 3§A jly=0 = 0 so that taking H; = d,A; gives the required solution.
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We further introduce the corresponding test functions ¢; by

8 .
(—3,+/3(j~|—1)—UP8x+j8xUp—VP8y—ByVP—VPy—p’
pj
o\ (18)
(a + yp’) )¢j=Hj,
Pj

¢j |t:T =0, ¢j |y:0 =0, ¢j|y—>oo =0.

Note here that the operator acting on ¢; is the formal adjoint operator of the operator
acting on foy Hj dz in (17), with respect to the L2(,0j) scalar product, denoted ( , )j.
This is a backward heat equation solved backward in time for ¢ € [0, T'].

Testing (18) against ¢; in || - || ; and integrating over [¢, T'] yields

1 T 1 T
—||¢,-<z>||§+ﬂ<j+1>f ||¢,-<s>||§ds+(j+—)/ (007 9;.9) ds
2 t 2 t J

L P pOyPj T 5
[ (v v i) on0) a5 1ok
t j i .
0;
+/t < DPiy. ¢/>

T
Z/t <Hj’¢/>j ds

Hence we find

1 3Gi+1) [T 1 [T
5||¢j<r>||§+%/ I8 ds + 5 [ 10,5001 ds
t t

- ;/T||H~(s)||2ds+ <<'+1) 19U [l + =
S BGTD S, T Iy ) I e

1oy |*\ [T 5
+5 ‘ f ll9; ()15 ds.
00 t

yPj
2
By Lemma 2, under the condition o > 5, we get the following control:

dypj

yvPtvF
Pj

]

Pj

Lemmab5 Fixm > 0 and o > % Then there exist a constant C = C(m, o) such that
forall j € Nit holds that

T T
||¢,-<r>||§+ﬂ<j+1>/ ||¢,-(s>||5ds+f ldye; ()11 ds
t t

< LfT IH;(s)]15d
=BG+ ), LT
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8 Page 14 0f 51 H. Dietert, D. Gérard-Varet

if
P
ﬂzC(1+||axUP||oo+||ava||oo+H ‘ )
I+l
Note that for o < % the term with || M ||C2>O could not have been absorbed. This a

Pj
priori estimate also ensure the existence of ¢; as solution of (18). A similar estimate

holds for H; which ensures the existence of H; as solution of (17).

4 Linear Estimates

In this section we analyse the linearised equation (16) and obtain an estimate for the
solution in terms of the F; containing the forcing and lower-order terms. For this,
we shall first analyse (16) for a fixed j. We will obtain a control of H; in terms of
the forcing F; and an error term d, H;, which will be shown to be approximately
(j+1)Y Hj41. By summing over j, we will find the following control.

Lemma6 Fixm > % % <a< %—l—y, 1 <y <2,r € R. Then there exists a constant
C=C(@m,a,y,r) such that for all t|, B and T such that

1
B=CA+ U, VO liow) (1 ot Iur, VP)IIlow) and T(T) > 1|

the H;’s defined by (17) for solutions u ;’s of (16) satisfy

S r 1 1 T
20 2y ) 2 ' 2 . 2
/X_(:)ﬁ (+1) [/0 ||H,(t)||]dt+ﬁ(j+1)|IH,(T)||,+'B(J__H)/O ||3)Hj||jdt}

o ; 2y—4 ,T ; 2y-3
(Jj+D™ (+DY
<16 [T/o ||F,-<r>||§dr+T||um,jn§ :
j=0

Here we use a low-order control of U” and V¥ in order to control the commutator
error terms. From the required bounds, we define the low-order norm as

IW”, V) liow = sup max(max 105U oo 18050 " [lco
1€[0,T] 0<k=<3

(1 + )8y U loon 11+ 933U oo,

(19)
1+ 300U e 1200 105U L2y 1000y U e 1200y

J

akv
I+y

2q277P 277P
1+ y)7o5U ||L;oL§(pO),||(1+y)3x3yU ||L30L§(po), 01;1151;(2
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Well-Posedness of the Prandtl Equations Without Any... Page 150f51 8

Although a main ingredient of our proof, the unknown H; is less natural than the
usual u j, notably for the future treatment of the nonlinearity, which involves u ; and
wj = dyu ;. This is why we shall we relate the control of H; to u; and show:

Proposition 7 Fix m > %,% <a < % +y,1 <y <2,r € R Then there exist

constants C = C(m, a, y,r)andC = C(m, «, vy, r) such that for all Ty, B and T such
that

1
B=CA+INTUL, V) iow) (1 ot Iur, v”>||low> and T(T) > 1|

the solution u of (16) satisfies

T T
1 1
/0 Il o 0t + sup Sl + /0 I+ 00 oy 4
1

ref0,71 B
1 2 T 2
A — 1 )
+t€s[lé})T] 5 I[¢ +y)w||y,“+%_y+ﬂ2/0 lI( +y)8>wlly7r’r+%_y dr
<c|L / I Fjl2
2 . 4-2y Jj
B o (+D

1 (7 1 )
+EZ/0 W||(1+Y)Fj||jdf
j=0

+ o E —1 Fily— dt
B j=0 0 (j—i—l)z?’*l I J|y_0”L;zc
+ _,3 ||”1n||y’t0,r y g + _’32 1+ y)wm”%mJ % E

Fory > 5/4 this is

T T
1 1
2 2 2
e+ sup 2l [0
1

ref0,71 B
L+ vl ' 1+ y)dyol? dr
+tes[l(;,pT] ,32” +yw||y,r,r+%—y+ﬂ2 0 | +y yw“%ﬁ”‘%—y
2
1 °°/T 1 y
=C|—= —ay (\ V5 ) Fi| dr
ﬁsz:(:) 0 (+D (+D¥—3 ;

c X T 1 )
j=0

1 2 1 2
+C [g””m”y‘mmg + g+ y)wmanH} :
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8 Page160of 51 H. Dietert, D. Gérard-Varet

4.1 Estimate for H;

We focus first on Lemma 6. The idea is to use the solution ¢; of (18) as a test function
in (16). Taking the weighted scalar product and integrating over [0, T'], we find for
the first term in (16):

T
/ (3 +BG+D + UP 8+ GHDOUP + VF0y = 02)uj g5
0 J

= —(uin,j, ¢, (0)).,

T 9.0
+/ <u,», (— 8 + BG+1) — UPd, + ja,UP — vPa, —a,vP —yP 2L
0

pj
a0\
—<ay+’—p’>>¢,> d
ps ‘

J

T
= —(in.j. ;(0)); +/ (. Hj); dr.
0

Note that there is no boundary term as u; and ¢; vanish at the boundaries. Differen-
tiating (17), we can replace u ; in the last integral and find

T
/0 <uj, Hj)]. dt

T
- / ((a, +BG+D) +UP 0, + (j+1)a, U +VPa, — ag)Hj, H,) dr
0

J

t y
+/ <(8yUP8x+j8nyP)/ H;dz, H,~> dr
0 0 j

t y T
+/ <avaP/ dez,Hj> dt+f (o, v7Hy 1) e
0 ’ 0 j 0 J
1 2 g 2 r 2
=§||Hj(T>||,~+f3<j+1>fo ||Hj(r>||,,dt+/0 oy Hj (1)]12 de

t y
+/ <(8yUP8x+j3nyP)/ H;dz, H,~> dr
0 0 j

t y T
+/ <anyP/ H;dz, Hj> dt—i—/ (o,v7 Hj 1) e
0 0 j 0 J
1 ! P Lt P POyPj
+ (g5 ) [ (v Hy ) ar= o, vP+vPELI) goH) e
2) Jo j 2 Jo Pj j

T
aY .
—|—/ <_}ijijj> dr.
0 Pj j

By the boundary values of H; there are again no boundary terms from partial
integration in y. In the last expression, the first line contains the good controlled
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Well-Posedness of the Prandtl Equations Without Any... Page 17 of 51 8

terms, the second line will cancel the leading contribution from the bad terms
dyUPv; + jde,UP 3 v; (see below), while the last two lines collect the error terms.

Next, we compute the contribution from the terms with v; using v; =
—0y [5 ujdz:

/0T<ayU”vj,¢,->j dr

T
- _/ <ayuf’ax [(a, +BUHD + UP o+ (HDAUT + VP, - 02)
0

fijdz],¢j> dr
0 j

T
= —/ <3yUP<8, +BG+D + U + (j+Da,UP + Vo, — a}%)
0

y
8x/ H; dz,¢j> dr
0 J

T y
—/ <ayUP(axUPax+(j+1)a§U”+axVPay)/ deZ,¢j> dr
0 0

J

T
= —/ <(a, +BG+D + U + (j+Da,UP + VFa, — ag)
0

y
|:8yUP3x/ dez},¢j> dr
0 i

T y
<<(8,+UPax+vPay)ayUP_zaf,UPay - BSUP>ax/(; Hj dz,¢j>' dr

J
T

| +
S— S—

y
<ayUP(axUPax+(j+1)a§U”+avaay)/ H; dz,¢j> dr
0 j
T y
=_/ <8yUP8x/ H;dz, Hj> dr
0 0 j
T y
+/ <((8,+U”ax+vpay)ayuf’—233U”ay—aﬁup)ax/ dez,¢j> dr
0 : . 0 j

T y
—f <ayUP(axUPax+(j+1)a§UP+axVPay)/ deZ,¢j> dr
0 0 j

and
T
/<j8nyP8X_lvj,¢j>'dt
0 J
T
= —j/ <any”(az +BUHD +UP o+ (DU + VP9, = 07)
0
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8 Page18of 51 H. Dietert, D. Gérard-Varet

y
/deZ,¢j> dr
0 J
T y
:—j/ <anyP/ H,dz,H,~> dr
0 (. j

T
_hﬁ/ <«@‘%UP@“+VP8ﬂawUP-—2ma§UPay—aﬂﬁuP>
0

y

H; dZ,¢j> dr.

0 J

In both cases the leading order term cancels. Hence collecting the terms we arrive at

1 T T
5||H,-<T)||%+ﬁ(j+1>/ ||H,»(z>||§dr+/ oy H; ()11 dt
. 0 0 .

T T2
5/0 (Fj. ;) dt+<”in,j’¢/(0))j+/0 D Eide
i=1

where E1, ..., Es5 collect the lower-order error terms as

y
E, = _<any”fo H;dz, H,->' —<a},vPHj,H,>j,
J

1 1 dyp;
Ey=— <j+—> <axUPHj, H,»>' ¥- <(ayv” + VP>—”’) H;, H,->
2 ;2 Pi i

dypj
—<—.HJ’HJ ’
Pj j

E; = <((Bt+U 0+ VFPaya,ur —207U" 0, — f H;dz, ¢,> :
E4=<ayUP(axUPax+(j+1)a§UP+avaay)f H; dz,¢j> :
0 j

y
Es=—j <((a,+UPax+VPay)any”— 20,0;U "9y — 8x8§’UP)/ H;dz, ¢j> :
0 i

Here E3 and E4 contain the worst terms, as they involve x-derivatives of H;. They
are responsible for the Gevrey regularity requirement.

Assumem > 0, a > % and g large enough so that Lemma 5 applies. We can then
estimate the forcing terms as

T 2 (T G (T
[ tEon) 0= s [imoga+ 220 [y o a
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and

(.. #(0)), < 1+ £ / 1H; 012 .

2
I BHD?
Absorbing the terms with H; we therefore find
2 ! 2 ! 2
IIHj(T)||j+ﬂ(j+1)f IIHj(t)Idet+2f oy Hj (o)l dr

: /
S Sy ) ROV PO S +2/ E;dr.
B (j+1)3 B ( G2 Zl

We now estimate the error terms, where we repeatedly use Lemma 3. For E| we
find

Er = [Calldny U s 12 + 105V oo | 1 1.

For E> we also use Lemma 2 and assume o > %

o1 p 1 p _ vF )
E; < J*3 0 U ||oo+§||ayv lo + Ci(j+D | 1+ e 1H;ll5-
In the term E3 we have terms with 9 H;, which we want to estimate in || - || j 4 as

they will be later controlled by H; . Using Lemma 4 we find

E3 < Cunll(143) @ + U 0x + V7 9y — 908y U Pl e 13 ) 105 Hijl| 4116511
+ 20430 lloo0: Hjll 1111651 5
<201 A4+9)35U P loollOx Hj Il 41119511

where we used the identity
@+ U0 +VPopa,u” —970,U" =0. (20)
Similarly, we find for E4 that

E4 < Cm||(1+y)8yUP8xUP||L;°L?V(p0)||3xHj||j+1||¢j||j
+ GHDCnlldy U870 N oo 12 (o 1 Hj 111511
+10,UP 9.V ol Hj 111
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8 Page20of 51 H. Dietert, D. Gérard-Varet

And finally for E5 we find

Es < (jCull@ + U"0x + V70y = 00)05,U " 20200 + 2J
192050 o) I1H 1 151
; P P P
< (]Cm”(axU Ox +0xV 8)‘)ayU ”LQOL%
+2j110:95U P lloo) I Hllj b1

(o)

where we took again advantage of (20).
We collect the various factors in constants D, D,, D3 defined as folllows:

D1 = 4(IA+0RU oo + Cull 14300, U 0.0 1013 )

and
Dy = 2((j+l)Cm||8yUP8§UP||L§oL§(pO) F 19,078, VP oo
+ JCull U8 + 0: V008, U | o 12 ) + 2j||axa§U"||oo)
and
D3 =2 (cm||any”||L;oL;<pO> + 10,V P lloo + (j+%> 10:U P lloo
+l||8yVP||oo + Ci(j+1) (1 + H v ‘ ))
2 1+ ¥l

Then

T 5 T T
2/(; > Eidi < D1/0 llaxHj||j+1||¢j||jdf+D2/0 I1Hjllj i)l de
i=1

T
+ D3/ I1Hj 1% de
0

2

<1fTﬁ3<'+1>3||¢»||2dr+ 2Dj ana H;I2 dr
=3), "V Mg G Jy Tl

2D3 T 5
+ | =2 + D f H;|%dr
g ) Jy M

With Lemma 5 the ¢ integral can be estimated as

1 T ) 1 ] T
—/ ﬂ3(1+1>3||¢j||§drs—ﬂ(1+1)/ 1H; ()15 de
4 Jo 2 0

and thus can be absorbed in the LHS.
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Here [|[(U”, V) |l10w has been designed such that we can find numerical constants
c1, ¢2, ¢3 such that

Dy < c1(1+ 1UTP, V) l10w)?,
Dy < c2GGHD) (L4 U, V) l10u)?,
D3 < c3(+D (IUF, V) liow)-

Combining all the estimates we arrive at the following lemma.

Lemma 8 Assume a > % and m > % Then there exist a constant C = C(m, o) such
that for

B=CU+ WU, VP iow)

and j € N the H; defined by (17) for a solution u j of (13) satisfy

T T
2\ H; (D))} + ﬁ(j+1)/0 1H; (1) dt +4/0 1y Hj (1)1 dt

T
/0 1Fj ()15 dr +

8 2
< iy 12
=BG+ gz mil

At (L + NUP V) o) [T 2
e loxH; I3, dr.
B>(j+D 0
Proof Use the previous estimates. Note that the condition on 8 also implies that the
hypothesis of Lemma 5 is satisfied by choosing C large enough. O

4.2 Relating 9xH; with Hj

To conclude the proof of Lemma 6, that will be achieved by summation of the previous
estimate over j, we need first to control 9y H; by Hj .

Lemma9 Let m > % and o > % Then there exist constants C = C(m, o) and
C = C(m, «, r) such that for all Ty, B and T with

2
Bz (11U V)lou) 7D 27,

it holds that

T . 2 T
(+1¥
/0 1< Hj 1000 < C=— | H sl ar
1

(j+])20172 T C T
+CT/0 ||ayH,»||§dt+E/0 1H; |13 dt.
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. r .
Proof From the definition of u ;, it holds that 9, u ; (1) = (%) y j(}))y uj41(1). Hence

we anticipate that

o~ (IEY D
axHj(t)""<j+1) ) H]+1(t)'

Therefore we estimate the difference

j+2>r G+
e J+L

Aj =3 Hj— _—
s <j+1 (1)

From equation (17) (used with indices j and j+1), we find that
P P P 2 Y
(at +BG+D) + U0, + (j+2)0.U" + Vo, — ay)/ Ajdz
0
y
- [(j+1)8xxUP n avaay] / H;dz. Q1)
0

We stress that [j A; dz does not converge to zero at infinity, so that one can not
perform L? estimates on this quantity. However, we can notice by 3 that

Pj+iy12 7 P1\1/2 Pj+iy12 7
(=) / Ajdzlle < (2200 (ALY / Ajdzl 2
0 Lo Y o1 0 A

00
22
< ot 18141 22
< +00.
The square integrable quantity §; = (%)1/ 2 Jo Aj dz satisfies the equation
( + BU+D + U0 + (420U + VFa, = 82)5;
_ _(j+1)axxUP(p,/+l)l/2/ H, dz_axvp(pj-i-l)l/ZHj
L0 0 ro (23)
Pj+1\1/2 [ Lj+1y—~1/2 Pj+1\1/2
+ VP (B2 2) (B2 ™1 — 20, () '?2) 4,
() P) 228y, (22 ),
Pj+1\1/2 [ Lj+1\—~1/2
e (e B [ WP
(2t ) (),

As in (22), we obtain

Pj+141/2
(2)

y
IG+DdU” / Hjdzllp2 < Coet GADIO U ool Hjllj1. (24)
0
We also get
Pj+11/2 1 P
o, v P (E = Hil,» <||—9,V Hill ot
” X ( 00 ) j”L _”1+)’ gy ||oo|| ]||j+1
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By Lemma 2, we find

Pjt1n1/2)  Pjr1N—1/2 1 .
||vPay((;—0) / )(;—0) 8,2 < IV o iy + D18 -

Using again Lemma 2 and the identity

Pj+iN1/2 o < Pj+1 1/2) Pj+iy—1/2¢
—) "TA; =09y6; — 0y (—— i b
(po) s )(,00) (,00) !

and defining
Aj o =max((G+1)'7% log(j+1), 1) (25)
we obtain

Pj+1\1/2
||2ay((/fo—0) / )Aj||L2 < 2C1 A} alldydjll 2 + 2CF A2 1851 2.

Eventually,

Pj+1\1/2\ Pj+1\—1/2
193 (5 () 7851,
Y ( £0 ) (/00 ) JIL
« 1 Pj+1\172\ (Pj+1\—1/2
E Jt Ly — 5
- ( , ) 8jll2 = CA3 G181 .2
ykzlka(1+1glu)(P0) (,00) JiL Jalloflie

for some constant C = C(«). The previous bounds combined with an energy estimate
yield that for C large enough (we remind that o > %):

T
||8,-<T)||iz+ﬁ(j+1>f0 187117, de
T T
+ /0 1y8;117, dr < (j+1) /0 1H; 13, de. (26)

We can then take the x-derivative of equation (23) and proceed as above. For C large
enough, we get

T T
18:8, (D113 +ﬁ<j+1>fo 1:8512, dt+/0 183,812, di
g 2 2
< <j+1>f0 (102 Hj 124y + I1Hj 124 dt

T
Pj+1\1/2\ (Pj+1\—1/2
+/ (2||8 VP8;<— )— Sillz2
0 X Y ( 00 ) ( 20 ) JllL

+2G4+)02U %8112 + 2118, VT 8,8, ||L2) 1828112 de
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8 Page24of51 H. Dietert, D. Gérard-Varet

We then use that

P
Pj+1\1/2\ (Pj+1\—1/2 .
vy ((BE5)2) (B2 ™12, < CiG+DIS 2.
00 00 0
and
P P ax P
18:V 73,812 < cz<j+1)||8,-||Lz+‘ e
o0 y oo

and the bound (26) to end up with

G+ (T r
19:8; (T 172+ —5— [ 19:8j172de + [ 110:9,8; 17 ds
2 0 0
, 27)
< 2<j+1)/ WoxHj 1y + 1H; 154y + 18115, de.
0
To estimate directly A ;, we differentiate the Eq. (21) with respect to y, which gives
: P : p P P 2
(a, +BGHD) + U, + (420, U7 + VP, +0,VF — 8y>A
. P . r [’ P P
= —(j+ D) U H; — (413 U / H; -, VPH —8,vPa,H
0

y y
—ayUPax/O Aj—(j+2)8nyP/0 A;.

We take the (, ) ;. scalar product with A :

1 . 2
Eaz-i-ﬁ(ﬁ‘l) HA.i”jﬂ
1
= [+ o+ 310,V 51V I

dypj+1
2 yYFj+
+||8ij||j+1—<8ij, ol Aj>
j j+1

< GHD (1952 U oo + Cnlldrey Ul Lo 12 0y + 1855V E lloo) I H L1 A

Jj+1

Ox

P
T4y ‘OO I(1+3)ay Hjllj1 [ A, “,/+1

+ (18,0 /R0l 10281122 + G20 U /p0lloo81122) [ A -

l

By the 1d Sobolev imbedding theorem, we find that for a constant C = C(m) it holds
that

10,U" /polleo < CIUT, V) liow and |8,y U /00lloe < CIHTUT, V) 10w
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Combining these last two inequalities with (26), (27) and the inequality
1L+ oy Hjllj+1 < G+D* N9y Hjll

and taking C large enough, we obtain

||A,-<T)||§+1+ﬂ(j+1>/o Iy |I2+1dt+/ 19y A 1174,

< <j+1>/OT I1H; 12, dr + (j+1>2°‘—1/0 o, H 12 dr (28)
+%/T||axHj||2~ dr.
BG+D) Jo s
Lemma 9 follows straightforwardly. O

Combining Lemmas 8 and 9, we will now prove Lemma 6.

Proof of Lemma 6 We choose C such that Lemmas 8 and 9 apply. We multiply the
inequality in Lemma 8 by 8(j+1)?"~! and sum over j to get

o0 T 1
2, 2y i 2 ) 2
§ B=(j+1D) UO 1Hj ()5 dr + ﬂ(jH)IIH,(T)II,»

j=0

1 r 5
+ﬂ(j+1)/ ||ayH,~<r>||,»dr}

Jj+1 )2V - (+1)> 3
582[ A ||Fj(r)||§dr+T||um,,~||§
j_O

A0+ U, VY liow)*
+y 5

T
(12 /O 10 H 1P dr.

J=0

Taking C large enough, we can then find by Lemma 9 a constant C = C(m, «, r)
such that

00 T
S G+ fo 10 H; 12, dr

j=0
1) & r
L . hdy—4 2
c(1+fz>g(1+1) fo 1 H113 dr

C & r

j=0

1 dy—4 g 2
— 1 Y= .
<cC (1 + T2> ;_0:(1+1) UO 1H113 dr

1 T
+— / ||a,H-||2.dt].
BG+D Jo WY
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We have used here that e < y + % Hence, the last term at the right-hand side can be
absorbed if

1 4Cci(1+ |(UP, VP 4 1
—ﬂz(j+1)2y > 1( IIC . Miow) (1 + _2> (j+l)4y—4,
2 B T

which can be ensured by a suitable large C if y < 2. O

4.3 Control of uj and @;

We now relate the estimates on H; to u; and start with an estimate for the L? norm.

Lemma 10 Let m > % and o > % Then there exists a constant C = C(m, o) such
that for

B=C(1+1W" VD)liow)

and for any €1, €3, €3, €4 > 0 it holds that

L R — — [ a2 d — —2 [ a2 d
E o ”u]“, t_(j—i—l)zV 0 [ xu]||j+1 t_,B(j‘i‘l)y 0 I yu]”j t
T
€3 2 €4 2 2
——  ui D) - = 32w (1)||% dt
o I /32(j+1)2V/<> 102 1) 112
BG+1)7
< ————|lH;(D)|;
€3
+ [ 1682(i+1)* +
T 2
I1H 115 dr

G+D
e A (RO N

ﬁ2<j+1)2y}

2
I 20 ¥ 4,

o\ T

[BG+DY r g
g T 16C7 AT, 19y Hjll3de + | 1H; Il de
0 0

where uj is satisfying (16), A; o is defined in (25) and H; is defined by (17).

Proof Using the definition (17) of H; we find

T T
/ luj 115 de =/ <(a, +BG+D + U B + (j+1DaUP
0 0

P P42
+VPa, + 0,V —ay)Hj,uj>j dr (29)

T y
+f <(8yUP8x+(j+l)3nyP)/ dez,uj> dr.
0 0

J
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By the evolution equation (16) for u , the first term can be written (from the partial
integration in y there is no boundary term as u|y—o = 0)

T
/ (3 +BGHD + U 0+ GHDOUP + VPoy + 0,V = 02 Hjouy) di
0 J
= (H;(T), u;(T))

T 3y 0
+/0 <Hj, (—B,+ﬂ(j+1)—UP8x+j8xUP —VPay—vP;—p’> uj>dt

J
T 0v0;
+/ <ayH,-,<ay+>—p’) u,-> dt
0 Pj j
T v 0
:(Hj(T),uj(T))j—i-/o <H,-,(2/3(j+1)+(2j+1)axUP—v“%f)uj> dr
J i

J
T 90 T
+/ <ayH,,<ay+>—pf)uj> dt—/ (H. 02u,) ar.
0 Pj j 0 J

The terms can now be bounded using Lemma 2:

T T
+/ (Hj. 0,07 v, + o U M;) dt—/ (H;. Fy), di
0 0

87 /
<H,-, <2ﬂ(j+1) +Qj+DoxU" ~ vi"’%’) u,->
J i

. . 0yPj
< 28G+D + Qj+1D)a,U” — VP21 H | lujll;
Pj o
» P
S(j+1)[2ﬁ+2I|3xU loo + Ci ’ ]qunjnu,-n,-.
1+y .

Recalling that v; = —dy [ u; dz we find

J
< Coll (1405 U 1o 1 10021 1 + 7185 U W e 12 1 5 1

() 0,07 v + joUP o7 v,) ar

For the forcing terms we find
—(Hj, Fj)j < IH;l;I1F;ll;.
The diffusion terms give

a .
<8ij, @y + y_p])"‘j> - <H./" ay2“./'>.
19 j J

< 1oy Hjlljloyujllj + CiAjolloyHjllj llujllj + IIHj||j||3§Mj||j~
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8 Page28of51 H. Dietert, D. Gérard-Varet

The integrand in the second integral in (29) can be estimated as

J
< Cal 498U e 2oy VL 102151+ FCm 19y Ul 20 12y 1L .

y
<(ayUPax+(j+1)anyP)/0 H; dz,uj>

Collecting the terms we find by choosing C large enough that

T T
[l ar < a1y () apGn [ 0

T
+ 2Cm||(1+y)3yUPIIL;oL§(p0) /o 1 Hjllj 10l j1 de

T
+f <||3ij||j||3yuj||j+C1Aj,a||3ij||j lluejll j
0
+LH; 111931 ) dr
T
+/ 1 H;ll; 11 F1 5 de.
0

Splitting the products gives the claimed estimate. O

The missing terms can be estimated by the evolution of u ; and w; = dyu ;. For u;
we find:

Lemma 11 Let m > % and o > % Then there exists a constant C = C(m, o) such
that for

Bz (1+1W” V) liow)
the solution u j of (16) satisfies
1 , 1T )
z”uj(T)”j+§ A l9yu;l”de

C2(1+y)d, U
BG+1)Y

2
L®L2(pp) [T
— D)3, de

T
- 4/3<j+1>V/0 ot 12 dr —

< N2 4 =2 /T||F»||2dt
=2 T gy Jy M

Proof By (16) we find

(o0j ), = (( = BG+D = U0 = GHDRUT = VFoy 402 Ju, u.,~>j

_<8yUij +j3nyP8x_1vj,uj>j +<Fj,uj>j
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1 .
< =0y 15+ 4BG+DY 1
Coll(+y)a, U7

L L (po)
+ : :
B(j+1Y

2
||ax’4j+1||j+1

+— F 2'7
g+ 110

where there is no boundary term from the partial integration in y as u; vanishes at the
boundary and we used in the inequality that C can be chosen large enough. Integrating
this over [0, T'] gives the claimed result. O

By differentiating (16) in y and find
(8 + BG+D + U0+ GHDUT + VP, 4+ 0,VF = 7)o
+3yy U v + joeyyUP 8 v + 8, U uj = 3, F;. (30)
This immediately yields the following control for ;.

Lemma12 Let m > % and o > % Then there exists a constant C = C(m, «) such
that for

B=C (141U V)l

the vorticity wj = dyu; satisfies

T T
||<1+y>w,-<T>||§+/0 ﬁ<j+1>||<1+y)wj||§dr+/0 (1 + y)dyaw; |2 de

2 2 P2
4C5, 11+ y)“ay,U ”L;{OXL%(po) T 2
< - - ||3x’4j||j+1dt
B+1) 0
2. P2
AC,GHDIA+ 900y Um0 12y T
lluejll5 de

t,x™y
p

T T
+ 1+ Y)win j 115 + 4/ 11+ ) Fj1I5 de + 4/ IFjly=oll7> dz.
0 0 *

_I_

Proof Integrate (30) against (1 + y)2a)j in || - ||;. This yields

1 .
SN+ 9);l5 + BGHDIA + VoI5 + 10+ »)dyw; I

vP (3y/’j + dy(1 +)°
0 1+ y)?

< jla:U" ol (1 +y>w,»||§+' )H I+ y)ajli
o

+llwjly=oll 2 18yw;1y=oll 2
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8 Page300f51 H. Dietert, D. Gérard-Varet

dypi  dy(1+y)>2
+ 11+ y)dyo;ll; oy 2 j

pj (14 y)? i
+Conll (14 902853 U | e 13 o) 1952 1 11+ )
+J Conl (14 9)3x3y U Nl 20 12 oy 11 1L+ )

dyp;  dy(1+y)?
(1+y)<8 + =+ -
o a2 )

(1+y)<

+IIL+ ) Fill;

)

J
where we find a boundary term from the diffusion and there is no boundary term from

VP9, because VP |,—o = 0.
From (16) we find dyw;|y=0 = Fj|y=0. For w;|y—o write

1 y
lwj(y =0)] 5/0 [wj«/p,/ +/0 I(w,/\/p,/)’le] dy
to get

dyPj 2
llojly=oll7> <2 (1 - ’ = ) leoj 1% + 2[1Bye; 115

Pj

By choosing C large enough and using thata > %, the result follows after integration
over time. O

Combining the results, we can conclude this section.

Proof of Proposition 7 Adding the control of Lemma 11 with a factor e3(j+1)7" /8
and Lemma 12 with a factor (j+1)!727 /B2 to the inequality of Lemma 10 yields
] ACENA+ 00U e 120,00\ (7 ,

~ /0 Juej 12 dr

Z _des —
27 G+ 2B

T
B BT N s @ 12
iy MO+ <2ﬂ(j+1)V ﬂ(j+1)V> /o 1By dr

T
€4
“Fge |, o

&Cnll (1498, U |17

€1 LS L3 (po)

Grow * B+

2 P2
+4Cm||(1 + Moy U ”L?%L,%(pt)) /T 9u; |2, dt
G+ p3 o
(D'
ﬁ2

T (ii1)2-2v
+ ||(1+y>w,~(T)||§+fO %uaﬂwﬁdr
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Well-Posedness of the Prandtl Equations Without Any... Page310f51 8

+1 1-2y
/(’ L0+ a2 dr

- B(j+1)”
€3

1H;(T)]);
G+D¥ ﬁ2(1+1)2V]
€

2 P
——C, 1 (+y)o, U ||L°°L°°L2(/)O)+ dey

+ [16ﬂ2(j+1)2 4+ —

’ 2

/0 1 H |3 d

BG+DY ! !
+[—+16C,2A§,a /0 ||ayH,-||§c1z+/0 I H;ll; 1L F; 1 de

dey

T
8 23 2
oy ||um,j||,-+ﬁz(jﬂ)zyfO 1Fj 12 de
G+D!% A+ T
T||wm,j||§+T/O (1 + ) Fj1I5 de

4G+ T 2
A2 [ 1ol

+

. . r . y .
Using that dyu;(1) = (%) %Mj+](t), we can sum over j and choose
€1, €2, €3, €4 appropriately to arrive for m > %,a > %,y > 1,71 > 0,r € Rat

the control

o0

(j+1)2—2y T
Z{/O 112 dr +ﬂ( T DI T/o ||<1+y>wj||5dr}

j=0

Hi-2r r
+Z Gt ) {||(1+y)wj<T)||§+/o ||(1+y)8ywj<t>||?df}

j=0

Z {ﬁ<j+1>y||Hj<T>||§

T T
+ﬂ2(j+1)2”/0 ||H,~||§dt+ﬂ<j+1>yfo ||ayH,~||§dt} (3D

00 . 1-2
1 G+ 2}
+C E ——— || ¢in. j 2-+— 14+ y)win. i lI5
i:o{ﬁ(J 1Y l m,j”] 8 Il y) m,j”]

o0 T i 1-2 T
1 G+~ 2
+C {f T ||F-||2~dr+—/ ICL+ ) 115 dr
jgo o BRG+DT Y B> Jo T

GOt >
+T A ||F/|y:0||L%dt-
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8 Page32of51 H. Dietert, D. Gérard-Varet

if
1
B=CA+ WU, V) liow) (1 +—+ Iu?, VP)IIIow) and ©(T) > 7
1

where C and C are constant only depending on m, «, y, r (and not 7).

Controlling H by Lemma 6 then yields the result for a fixed time 7. Applying this
estimate for all 7" in [0, T*] then shows the claimed estimate.

For y > 5/4 we find that (j41)?Y~* > (j+1)!727 so that

. _ . _ . _ y
GADZHIFIE 4+ GAD2 A + ) F 13 <2G+D7 4 {14+ —— ) FlI5,
' G2/ o

which proves the expression in this case. O

5 Nonlinear Estimates

In order to close the estimate, we have to estimate F' Iz

Proposition 13 Fix the parameters m, «, y,r and an additional parameter R such
that
2y — 1
Y4
o (32)
r>2y, R>2y+1, R>r+43y -2

3
VE[E,Z], aiy_17 mi

Then there exists a constant C = C(m, «, y, r) such that for B, t1 and T with t(T) >
71,

2
i ! fT (1+ Y )F d
ST — | Fi
o UL o (j+1)2r—2 ;
r 2
<2 f 1+ 9 FE2 s de
0
1+ y)o|?
C,B 2 ”( y,r,r-&-l—y E2
+¥ [?)u}“)] el e,y + p EERAL

r I+ ol
/ -, + LIV L dr.
0 |: T B

We restrict to the case of y > 3/2 because we need @« > y — 1 in order to control
the terms 8¥ud!~**+1y in F;. Combined with the earlier requirement that @ > 1/2 this
yields y > 3/2.
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Well-Posedness of the Prandtl Equations Without Any... Page330f51 8

Proof Write Fj = f¢ + Y _; F! with
F} =M; [u&x, af]u + M;(j+1) oxu alu,
F> = M; [ayu, a){] vt M;j dgyudi v+ Mv oo,
FY = M; (U0, ol |u+ M, j o,U¢ ol u,
Fi=M;[vea,. o |u,

F? = M;|8.U°, 0} |u,

F§ = M; |0,U°.0f [v+ M;j sy U] v,
Asy z3/2anda§y—1,wehave2y—%zoz,sothat
y y
1+ —— | F; <1+ - )F
‘ ( (j+1>2y—3> I, G+ne)

so that it suffices to bound the right-hand side.
Analysis of F ,1 We write

<

J

)
2 . M

J j

F} = — U
= % (]) s
1=2
j—1 .
J M; | X
+ —— w4 = F, 4+ Fl .
, <1)M1Mj—l+1ulu] i J.low Jhigh
l={%J+1
For F},,,» we notice that for / < L%J there exist a constant C = C(r) with
/ M; c /(i\"" G+
<]> i _(J) (j+1)
1) MM~ t\l I+
This shows
|5
’ N 1=Y (i1)2r—2
! Y I ¢ 7\ T GHD
—— (1 F! = [
(j+1)2—]/ < + (J+1)a> Jj.low i — 7 ; (l) (l+1)r ||M1Mj [+1”] 1

-~

[~.
+

|+]

IA
4

ala

~

(j) Y (122
— \! d+nr

i 1/2
()
Pj—I+1

i)

)

e j—gallj—r41.
Ly,
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8 Page34of51 H. Dietert, D. Gérard-Varet

Note that for an absolute constant C,

<;) G+ 2<c, forall2<I< L%J (33)

From the 1d Sobolev embedding and Lemma 3, we find that for n < min(m — 1, 1):

' 1/2 _ 1/2
’(—pll ) uj ‘(—pjl ) Oxu;
Pj—i+1 Pj—1+1 ~
/ / L2L3

1/2

Pj—1pP

CaCy sup<#) 118 dyuas |l
y \PIPj—I+1

C < Pj—1Pn

— su
1y \PIPj—I+1

<Ca
LYy

IA

IA

12
) A+D7 1A+ Yl

where C4 is an absolute constant, C is a constant depending on m, r. Note that we
used here Lemma 4 to bound ||w;+1||; by ||(1 4+ y)wi+1l1+1-The factor with the p is
explicit:

< 0j—1Pn )1/2 _ [Tt (1 + %)
PIPj—I+1 n,{;}_lﬂ (14 2) [Tz (1+ )

Forl <m — 1, we take n = [ and find that

1/2
( Pj—1Pn ) / -
PLPj—1+1 -

Forl > m — 1, we take n = m — 1 and find that

( Pj—1Pn )1/2 - [Ticr (1+ %)
PIPj=1+1 TS (U ) TR (14 )

((j—l+2)--~(j—m+2)>“

<

me--l

N o
sc(j) (DY

for a constant C = C(m, ) and using that / < L%J
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Well-Posedness of the Prandtl Equations Without Any... Page350f51 8

Hence we find for a constant C = C(m, «, r) that
1

Y 1
—_— 1+ )F
. — ( . J,low
(+D=v (J+DH* i

&

2

D+ TN + Yol lluj -l
[=2

C

=2
7

usingthat 1 —y + o <0and2y —2 < a(m — 1).
The discrete Young’s convolution inequality implies for all ¢ € [0, T] that
> G
(j+D*=2r

y 1
1+ — )Fjlow
oy < G+bh*/ -

00 2 %
C
s—4<§ (l+1>y’||(1+y)wz||z> > i3
j=0

T

00 2

J

=0
C o0 o0 o0
=5 (Z(Hl)‘”’lz’) (Z(l+l)12” It +y)w1I|12> > lujl?
I \i=0 =0 j=0

As 4y — 1 — 2r < —1, the first integral is finite. Hence we arrive at the required
estimate

- 1 T e ¢ 2 T
a3 1E;jowllidi < — sup [[(1+ y)ol _ / Nully, 7, dt
jX:(:) (j+D*2r ./o Jlowly T2 1ef0,7] rorty ner

with a constant C = C(m, «, v, r).
For the treatment of FJ1 high SWap the roles of u; and u ; ;41 so that

J'*L'/;IJ ‘ y
J j
Fl.. = E ( )—u1u<1+1.
J-high = \—1) MM /

In the givenrange [ =2, ..., j — L#J we find

J < (/
I—1) — \U
so that it can be bounded as F!

J.low*
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8 Page360f51 H. Dietert, D. Gérard-Varet

Analysis of FJ2 We write

F?=— <1>L3 ula Vi_i+1
/ 1) MMy !

j—1 .
J M;
) () a3 -t = i

and note that it vanishes unless j > 3.

By vj_i+1 = —0x Jg #j—i+1dz we find forn < min(m — 1, j — [ + 1) using the
1d Sobolev inequality and Lemma 3 that
—1
H( +1)“> e v

-1
< it
J—

. 1/2
(M) Dy
PLPj—1+1

C pj—ipn \'*
< —sup (—’ - A+DY 1+ Vsl w1l j—i41
T1 y \PIPj—I+1

< Cnn et j—11llj—141

LEL3 (o)

for a constant C = C(m, r).

Intherangel =2, ..., L/TJ for szlow we find that j — [ + 1 > % and as we

can assume that j > 3 we can always ensure that this is at least 2.
For % < m — 1, we can take n = 2 and find a constant C = C (m, r) such that

, 1/2
y \PIPj—I+1

and otherwise we can taken n = m — 1 and find the same control as for F!
1

j,low
y 2
— 1+ —) F
. 2— < . J.low
(J+D=r (j+D« F

2]

/42-1
DA+ + Yol -l
=2

as

C
)
1

and we can conclude as for F ]1 low"
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Well-Posedness of the Prandtl Equations Without Any... Page370of51 8

2
For Fj’hl.gh we find

J Mj
F?, = E ————— 0, v OyUj—4].
J high (l _ 1) Mle—l+1 x UVl OyUj—]+1

Forn = min(m — 1,1 + 1) we find

H( (J+1)“> O vy
. 1/2

(22)"0
.

C pj—ion \'?
— sup (—-’ ! ) A+DY Nt i1 1+ Y01 llj—i41-
Tty \PI+1Pj—I

J

1+ Ywj—it1llj—1+1
Lf?f’y

IA

Forl/+ 1 < m — 1 we can find a constant C = C(m) such that

J I\, . 1
(1 : 1) < <l>(1+1) .

Using the stronger assumption 2y — 1 < a(m — 1), we can then conclude as in the
treatment of F that

y )2

F2 .

H J.high
( (Jj+De L

Jlow

(J+1)2 v
C ' L%
< = A+D7 " Nurgillisr GHD A + o)t llj—i41-
1 =2

Hence we find

]

1
Z i 4-2
o GO

2

M 2
I+ —) F:hion
J,nig
( (j+D* i

2 o0
= <Z<l+1>y ’||uz||z> D GAD A+ y)ojl;

=
o \ico j=0

=5 <Z<l+1>3y 2’) <Z(l+1)_”lluz||12> Y GHD I + po)l
T \ico 1=0 j=0

@ Springer
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As 3y —2r < —1, this gives the required estimate

e 1

C T
a5 IF I3dr < = sup ful? _,/ I+ Vol ., d
,Z=(:) (J+D)*2r /(; h’gh f:e[o,T ror=x rorel

with a constant C = C(m, «, y,r). Asr — 1 <r + 1 — y this is the required control.
Analysis of Fj3 and F 15 We write

3, 5 g M; L (] M;
F 4 FS = <>—Ueu~_1 . ()—u ‘i
J J Z l Mle—l+1 1 J + ; l Ml+1M]—[ l"rl J
J J J Mj e
=- + — ) Ufujpa
p [(l) (l - 1)] MMy T

=2
j+1

J J M;
E —1  y¢
" , [<l>+(l—1>} MM 141 P
l:LﬂJ+l

= F +F hlgh

7, low

S}

[~
ofF

with the convention that

<jil)=0'

Using the definition of U and the 1d Sobolev embedding theorem we find

Cs(I+1)Y

1Uf llzge, < U llege < T—]IIUﬁ] I.
As [ > 2, this implies
Ci(I+1)”
H( (]+1)a> Ufujoirt| < —————IU I luj—rs1llj-r41-

J

Forl=2,..., L%J we find for a constant C = C(y, r)

() () = ()
[ [ —1 MM;_ 1~ 1 \! (I+1)r
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sothatas/ > 2

y 3,5
(1+ e Pl

Hence we find

ofF

1
(J+D*

| 5]
A+ NOE N =g 1l =41
=2

<

c
2
4

J

o0

1 < y ) 35 |7
E — 1+ F
: 4-2 i Jilow
o GHhTY (j+D* i

C
<= (ZUH)V "t ||> Znu]n

IA
|

1 1=0 =0

C o0 o o
- (Z(1+1)2V—2R> (Z(l+1)2R‘2’IIUlE||2> D Il
j=0

As 2y — R < —1 this gives the bound

2
Yy 3,5

14+ — >F.’l dt
( (D) e

[0+ () =50 1)
1) " \i=1) oy T w\i-1) Gty

1
(j+D*7

so that

J

Y 3,5
(1+ e P

J
=z S DY RNUE N G=D T s i1
St
Hence we find

o0

1
Z i 4-2
o GO

y 3,5
(1 * (j+1)“> Fihign

J
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C o0 200
= o | 20Dl | Y _a+DTTHIUL,

I \j=0 1=0

c E . —2r B 2 E 6y—4 E 2
= > G+ ]Zonuzn, (123(1“) ||U,+1||>.

Asr > % this gives the bound
2
dr

y 3,5
§ 1+—) F>
(i 1\4—2y < ; Jhigh
/ (J‘H) v (+De ) TR

C T
<— sup U2, .5 2/ lull .., dt,
) ref0.7] VRIRYTE Jo v

which is the required bound as R > r + 3y — 2.
Analysis of F?. This term is creating trouble with the integrability in y as V¢ ~ y

and is the reason for most technical difficulties.
We write

j M;
()i
My M

J j M
— — 1 5-lye Oyt j_y
.21: <Z>M1+1M/ xR
= |+

4
FJ low

4
+Fj high*

Asl > 1 we find
y —1
H (1 " (j+1>a> O Vi Byt
3 Vi
I+y

J
‘(1+ Y )(1+y)a)~1
(+D !

C
;(l-l—l)y”U[iz” 1L+ Ywj—illj—1

J

LTy

IA

where C = C(r) is constant. In the last line we used the 1d Sobolev inequality and

that
[Li (1+ - >§C
Pj—1 (Jj+D*
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Forli=1,..., L%J we find

. . N 1—y
(= S0) o
L) MpaMj—p — ti\l

so that

1 y 4

1 F

GrE ( +(j+1)0,> How],

j+1

C LJTJ j 1—-y

=5 (l) A+D2 T GHDY NUELINIA + y)wj—llj—
1 =1
oL

=5 DD NN GAD A + Yol
1 =1

Hence we find

o0 1 y 2
) m— _) F

. 4-2 < : Jilow
A (J+D® j

o \i2o j=0

j=0

as 4y — 2R < —1. This gives the bound

T 1
[ o=
0 o GHDT

77 1€[0,T]

which is the required bound as —1 < 1 — y.
For F;t,high we find

1
(j+D*7

M 4
(1 * (j+1>a) Fiigh

J

2
C [ >
<= <Z<I+1>ZV’||U£2||> D GHD T + pej 15

c o,
IV g D GAD A + y)ojl;
1

y
1 F
( * <j+1>a>

C T
<5 s WUPE g [0+ 0l

@ Springer



8 Page42of51 H. Dietert, D. Gérard-Varet

=<

c & 2
= ———— U5 A+ @il

2 = (LY
I:L%J-H
As—14+y—r< —% this gives the bound

4
fO Z ]+1)4 2y < + J+1)a)Fj.high

<& s UER.,. 2/ 10+ ol ., dr.
Tf 1e0.T] Y, T,r+3y— 0 Y. T, r+1—y

2
dr

J

As R > r 4+ 3y — 2 this is the required result.
Analysis of F;’. We write

FO = — jLBUE)vll
/ 1) MMy " T

J .
- N, VU it =2 Ff g+ F i pign-
1) MiMj_141 * Jrlow '8

1=| |+

As 9, U¢ is exponentially decaying, we find

Y _
H (1 + m) 0,U[ 0 lvj,1+1

< CIUE Lo lluj—rsllj—is1
J
C(+1)Y
< fHUHlH lj—i1llj—141-
. NOM; _ i1 |,
For F] 1o We find (using that (f)m <Cl+1D"forl=2,..., L]TJ)
kR
T <1+ : )F'6 <£LZJ D NUE N Nt ] o1
(j+D*7 (D) ) = & il =l =1

Asy — R < —% this gives the control

T ©© 2
/ Z ! — F dt
0 = (D (j+D ) " lew]
]:O J
<— up \UE 2 / lull? , , dr.
Tf rel0.T Y, T,R 0 V,T,r
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6
For Fj’hl.gh we find

1
(j+D*7

M 6
1+.—) FO i
J.ng
( (J+1)~ j
C

J
=z S D 2L GAD T i i
l:L%JH

Asy —r < —% this gives the control

2

M 6
1+ ——)F;,. dt
/ Z(J_|_1)4 2y < + (j+1)oz) Jj,high j
C T
< — sup U2 / lul? ., dr,
Tf‘te[OT] Yy, T, r+1—y 0 Y, T,r
which is the required controlas R > r + 1 — y. O

As adirect consequence of Proposition 7 and Proposition 13, we can state the following
corollary, where we use that Fj|y—o = f7|y—o as u and v vanish at y = 0.

Corollary 14 Fix the parameters m, ., y, r, R as in (32) and o > 1/2. There exists C
and C such that for all B, 1, T with

1
B=CA+ITUT, V)iow) (1 ot Iwt, V”)uzaw) , andt(T) > 71

we have
2
llull? < € [Enumny N 52 I+ Yol?, y}
1 T )
+C |:+E f ||fje|y=0”y,r,r—2+y dr
34
1 (34)
+ﬁ ||(1+y)f IIVH 24y A1
C 1 E 2 2 2
+ r_f‘ <E|U 15z, & + lleellI= ) Mieelll
where

T T
1
|||u|||2=/O ||u||y”dr+tes%pﬂ§nu||§” , +Ef0 10+ Dol dt

1 T
s Aol 4 [ I el

t€l0,T]
(35)
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6 Control of the Low Norm and Final A Priori Estimate

Corollary 14, which shows an a priori bound on the Gevrey norm of u, was derived
under a lower bound on 8 involving ||(U, VF)||;pw. The last step is to see how this
low norm relates to [||u|||. A convenient approach is to establish an additional estimate
on a weighted Sobolev norm, namely

113 = Z/ 0% F12(1 + y)** po(y) dx dy,
TXR+

loe|<s

where the summation variable is the multiindex & = (a1, &>). In this setting, we can
state the following estimate.

Lemma 15 Lets > 3 be an even intege,m > s +2, . > 0, r € R, y > 1, and define
lue|ll as in (35). Then, there exists C depending on s, m, «, y, r such that

d
0" I + 18,07 13y = Cllo” g +C (14 10F sy + il ) llo” I
: (36)

2
+ Y 10 @+ UF0UF)
=0

where o = 8yUP.

Proof A similar estimate was established in [27, Proposition 5.6], so that we will only
explain the main steps. The starting point is the advection-diffusion equation on the
vorticity

@+ U3, + VP oo’ — 90" =0. (37)

One applies 9“ to the equation, test it against (1+ )22 p53%w ", and sum over |a| < s.
Then,

1
EACH R I Y / VP9, ((1+ y)* po) |0 " |

lor] <s

- /[a“, W8 + VT3]’ 8% (14 3> py

ler] <s

=3 [ oy, ate” ot
Q

la|<s
— Z/ Iy’ 3w’
(y=0)

ler] <s
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Using the equation on U ”, one can obtain recursively boundary conditions for the odd
derivatives 8\2,’““ b, starting from the Neumann condition

dyol o= -8, UF —UFHUE.

More precisely, the boundary data 83k+la)P |y=0 can be expressed in terms of the data

U¥ and of products of mixed derivatives 97" sza)P ly=o with pp < 2k — 2. We refer
to [27, Lemma 5.9] for the expressions of these boundary conditions. This allows to
establish the following bound, cf equations (5.20)-(5.22) in [27]:

- Z/ 3%’ 99w’
(y=0)

oe| <s

s

2
1
< Gllo® 15 + Co D 1070+ UF8UP) 1300 + 2100”174
=0

The diffusion term does not raise any difficulty: we find
1
-y / 0y (1 + )2 p0)3y 30" 0%0" < Cllo” I3 + 213y 134
ol <s 7 <2
where C depends on s and m. Also, through standard estimates, we find
> / VP (14 3)**2p0)|0%w” 1> < Cllo” 134
loe|<s

and

> [ vt e’ o (1 4y < Clo 1.

la|<s
The other part of the commutator is slightly more delicate. First, one can show that
> 1% VP le” 0%0” (1 + 3)**2 00 < Clo” |13,
loe|<s,c17#s

Note that the weight (that grows with the number of y-derivatives) allows to compen-
sate for the linear growth in y of V¥ The success of this trick comes from the fact that
we are interested here in Sobolev estimates (contrary to the former Gevrey estimates).
When o = s, namely o = (s, 0), one can show similarly that

/[a“,vf’ay]wf’ a“w”po—/aavf’aywp 0po < Clo” 3.
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However, the term where the s derivatives with respect to x apply to V' cannot be
handled with usual manipulations. It is the well-known loss of x-derivative peculiar
to the Prandt] equation: in particular, one cannot control || (1 + y)~! S;VP 1 22(0) DY

lw® ||l 3¢s. This is where [[|u|| is involved. We find that

/ 3*VPoy0p 3%0” po < 111+ 1) 7103V lloo 11+ 33y 12125 10" 1121240
< CUUE N gsr + NullD o 15

using that [|(1 + ») 7135V |0 < CII5H uP || < Clllulll as soon as m > s + 2.
Putting together the previous estimates yields the result. O

We conclude this section with

Proposition 16 Letusfixs =6,m > s+2,«, y,r, Rasin (32)and o > 1/2. Further
fixty > 0. Let

P L2 12 P 2
Mip = 2max (€. D) (il s+ 1A+ )0l? 1+ 0 ol

where C is the constant appearing in Corollary 14. There exists By and Ty depending
on t1, My, on |o® ;=0 |3, on SUP[o, 7] |UE|JZ, w0.R and on various Sobolev norms of

UE, such that, for all B > By and for all T < T, with t©(T) > 11: if|||u|||2 < ZMT“‘,
then |lull> < 5.

Proof Let B, T such that ||u||*> < 21;17"‘ < 2M;j, (assuming B > 1). We first apply
Lemma 15, which yields

d )
Enw”n% + 1yl 7 < Clo” 5y + CA+ 1UE | gosi ) + V2Mi) 07 1345

$ (38)
+ Y 19 @+ UE0UE) 3,
=0

Integrating this differential inequality shows

sup [lo” (0)]l3¢s < 2ll0” [1=0ll7es 39)
tel0,7T]

for T < Ty, where T; depends on Min, sup;cio 1) |U° O gs+1(T)s fOTO ||8,l(8, +
UEQ U2,y dt and on [l [i—oll7e:
Standard Sobolev imbeddings imply that

kvP

max_[|¥UF ||oo + max
0<k<3 0=<

kyrE
< C | max [|0yU" oo + Illulll ) -
k=<2 o0 0=k=3

X
1+y

@ Springer



Well-Posedness of the Prandtl Equations Without Any... Page 47 of 51 8

As regards the other terms defining [|[(U”, V) |lj0w, cf (19), they all involve »” and
are controlled by ||w”||7s as soon as s > 5. Hence, it follows from (39) that

U, V) liow < K

for T < Ty and for some K depending on Mi,, ||@” |;—0ll7s and various norms of
UE. If we now choose

Bx >C(+K) <1+i+K>, and t(T) > 11
7]

where C is the constant appearing in Corollary 14, we obtain for § > f,:

My, C [T C
el < ﬂ+p/ ||(1+y>fe||y”2+ydt+/8 (1UEE ¢ p + 20 ) ).

Taking B, large enough so that

N =

E2
sup (IU | +2M<)§
Bit] 1€[0.T] y.ro.R "

we get
2Cc (T 2Cc (T
|||Lt|||2 < M, + F‘/(; 11+ y)fe”y T,r—=2+y dr + — ﬂz / ||fje|y=0||)2/,r,r—2+y dr

If we take T, < Tj such that 2C fo 1+ y)fje||y =24y dr < %Min, the result
follows. O

7 Existence and Uniqueness

On the basis of the previous a priori estimates, we now complete the proof of Theo-
rem 1: we construct a unique solution of (1)—(2) with data Uif; . This obviously amounts
to constructing a unique solution of (13)—(15) with data uj, := U-lfl) — U®|~0.

Wefixs =6,y =2. Wetakem > s +2and o > % that satisfy the inequalities in
the first line of (32). Let0 < 71 < 79,7 € R, Ty > 0, and UZ, Uif; = uin + U¢|s=0
satisfying the assumptions of the theorem. Let now (7§, 7/) with0 < 7; < 7] < 73 <
79. Let 7 and R’ as in the second line of (32). As 79 > 7, we have

2
lltin | Ty =3 + 11 +)’)wmllyr oy

<cC (||um||y wr F I+ VRl o) < +00
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while

o li=0l13 < CCsup [UF |2y + 11 + 3" winll o (rr, ) < +00
[0,70]

and

E E
sup |U |2’t(/)’R/ < C sup |[U%2,¢,r <-+00
[0,T6] [0,To]

for a constant C possibly depending on g, 7j, 7, 7', R'.

The idea is then to apply Proposition 16 to a solution of an approximate system,
for which well-posedness is granted. Inspired by [27], we consider the regularized
equation

it + (W + vdy)u + (ULde + VEdy)u + (udy + vdy)US — ediu — d5u = f£,
(40)

adding a tangential diffusion —ed2u. The modified vector field (U¢, V¢) takes the
form

US=dy(e ™ (y+e” —I)OUE, Vi=—e(y+e” - UE

where U, EE is an analytic approximation of U, converging to U¥ in the norm | 12, 70,7
as € — 0. Note that (U, V¢) is still divergence-free, but has now fast decay in y, so
that all difficulties generated by the linear growth of V¢ vanish. Accordingly, the right-
hand side f¢ is modified into £¢ replacing UF by UE, resp. (U¢, V¢) by (U¢, V¢)
in (14). Similarly, one regularizes the initial data to obtain some u;, ( real analytic in
x, y, with fast decay at infinity in y (and obeying suitable compatibility conditions).

One can show that system (40) is well-posed following classical methods for fully
parabolic equations. For instance, for T¢ ;4 small enough, one can prove the existence
of a Sobolev solution u. on (0, T¢ mqax) through a fixed point argument applied to

Ny ! a2, 92
Teu(r) = Uy, 4 / e T OHI F[ul(s) ds
0

with Fe[u] = ff — (uoy +voy)u — (UEdy + VEOy)u — (udy 4 vdy)US . Moreover, u®
remains (real) analytic in (x, y) as long as the Sobolev norm of u. does not blow up,
that is on (0, T¢ juqx). This property, related to the analytic regularization of the heat
kernel is well-known, even in the more difficult context of the Navier-Stokes equation:
see [2,7,25] and references therein.

We now claim that all a priori estimates obtained for a solution u of (13) can be
established for u, solution of (40), uniformly in €. For this, one just needs to adapt
the definitions of the auxiliary quantities H; and ¢ ;: we rather consider

y y
(at+ﬂ(j+1)+UPax+(j+1)axUP+VPay—633—33)/ dez:/ uj dz,

0 0
Hjli=0=0,  9yHjly=0=0, Hjly»0c =0. (41)
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and

a .
(—a, + B+ = U8 + jo,UP —VFPy, —a,VF — yr 2Pl _ €d?
) 0

N2
-~ <3y + ai’)—é’) ) ¢j = Hj, “2

J
¢j|t=T =0, ¢j|y=0 =0, ¢]|y~>oo =0.

The additional good terms coming from —e 83 allow to control the extra commutator
terms that it generates. Hence, we can apply Proposition 16 with 7, 7/, r’ and R’
instead of 79, 71, r, and R. Let B, and T given by the proposition (note that they are
independent of €). We then introduce

Te s = SUp{T < Temax, llull* < 2Min/ B}

where B > B is fixed, and |||u||| is defined in (35). Note that |||«||| implicitly depends
on T. By continuity in time of €, one has T, . > 0. But from Proposition 16, one
deduces easily that forany T < T, Te pax = Te s > T.

From there, by standard compactness arguments, one obtains a solution to the
Prandtl system over [0, T'], with the regularity properties stated in the theorem. It
remains to show uniqueness. For this, we take two solutions «! and x> up to time 7.
The difference u? then satisfies (from (13))

8,ud + ulaxud + udaxuz + vd8yu1 + vzayud
+H(U D + VO u! + oy + vlay) U — 0ju’ = f°.

We then find for u‘f that

(a, +BGHD + U o, + (j+Da UM + vEPy — a;%)u(j.

1,P. d . 1,Pa—1 d __ rd d. d
+0,U vj+]any 0 vj—Fj + 0y u us,
1

where again F /’?l consists of f;i’e and mixed terms with less than j derivatives on u ",

u® or u¢. Comparing with (16), we see that the only difference is the replacement of

WUP, vPyby (UVP, V2P). Let us stress that the latter field not being divergence-free
is not an issue: none of the a priori estimates carried in Sect. 4 and Sect. 5 were using
the fact that (U?, V¥) was divergence-free. One can therefore obtain a similar Gevrey
bound on «?, under a lower bound on B (involving the low norms of (U LP ylLPy
and (U>F, V>P)). This provides a stability estimate which shows uniqueness. These
considerations now finish the proof of our main result Theorem 1.
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