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Abstract Magnetohydrodynamics (MHD) studies the dynamics of magnetic fields in
electrically conducting fluids. In addition to the sound wave and electromagnetic wave
behaviors, magneto-fluids also exhibit an interesting phenomenon: They can produce
the Alfvén waves, which were first described in a physics paper by Hannes Alfvén in
1942. Subsequently, Alfvén was awarded the Nobel prize for his fundamental work
on MHD with fruitful applications in plasma physics, in particular the discovery of
Alfvén waves. This work studies (and constructs) global solutions for the three dimen-
sional incompressible MHD systems (with or without viscosity) in strong magnetic
backgrounds. We present a complete and self-contained mathematical proof of the
global nonlinear stability of Alfvén waves. Specifically, our results are as follows:

• We obtain asymptotics for global solutions of the ideal system (i.e.,viscosity μ =
0) along characteristics; in particular, we have a scattering theory for the system.
• We construct the global solutions (for small viscosity μ) and we show that as

μ→ 0, the viscous solutions converge in the classical sense to the zero-viscosity
solution. Furthermore, we have estimates on the rate of the convergence in terms
of μ.
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• We explain a linear-driving decay mechanism for viscous Alfvén waves with arbi-
trarily small diffusion. More precisely, for a given solution, we exhibit a time Tn0

(depending on the profile of the datum rather than its energy norm) so that at time
Tn0 the H2-norm of the solution is small compared to μ (therefore the standard
perturbation approach can be applied to obtain the convergence to the steady state
afterwards).

The results and proofs have the following main features and innovations:

• We do not assume any symmetry condition on initial data. The size of initial data
(and the a priori estimates) does not depend on viscosity μ. The entire proof is
built upon the basic energy identity.
• The Alfvén waves do not decay in time: the stable mechanism is the separation

(geometrically in space) of left- and right-traveling Alfvén waves. The analysis
of the nonlinear terms are analogous to the null conditions for non-linear wave
equations.
• We use the (hyperbolic) energy method. In particular, in addition to the use of

usual energies, the proof relies heavily on the energy flux through characteristic
hypersurfaces.
• The viscous terms are the most difficult terms since they are not compatible with

the hyperbolic approach. We obtain a new class of space-time weighted energy
estimates for (weighted) viscous terms. The design of weights is one of the main
innovations and it unifies the hyperbolic energy method and the parabolic esti-
mates.
• The approach is ‘quasi-linear’ in nature rather than a linear perturbation approach:

the choices of the coordinate systems, characteristic hypersurfaces, weights and
multiplier vector fields depend on the solution itself. Our approach is inspired by
Christodoulou–Klainerman’s proof of the nonlinear stability of Minkowski space-
time in general relativity.

Keywords Alfvén waves ·MHD · Nonlinear stability
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1 Introduction

Magnetohydrodynamics (MHD) studies the dynamics of magnetic fields in electri-
cally conducting fluids. It has wide and profound applications to plasma physics,
geophysics, astrophysics, cosmology and engineering. In most interesting physical
applications, one uses low frequency/velocity approximations so that one may focus
on the mutual interaction of magnetic fields and the fluid (or plasma) velocity field. As
the name indicates, MHD is in the scope of fluid theories so that it has many similar
wave phenomena as usual fluids do. Roughly speaking, the most common restoring
forces for perturbations in fluid theory is the gradient of the fluid pressure and the
sound waves are the corresponding wave phenomena. In addition to the fluid pressure,
the magnetic field in MHD provides two forces: the magnetic tension force and the
magnetic pressure force. The magnetic pressure plays a similar role as the fluid pres-
sure and it generates (fast and slow) magnetoacoustic waves (similar to sound waves).
The magnetic tension force is a restoring force that acts to straighten bent magnetic
field lines and it leads to a new wave phenomenon, to which there is no analogue in
the ordinary fluid theory. The new waves are called Alfvén waves, named after the
Swedish plasma physist Hannes Olof Gösta Alfvén. On 1970, H. Alfvén was awarded
the Nobel prize for his ‘fundamental work and discoveries in magnetohydrodynam-
ics with fruitful applications in different parts of plasma physics’, in particular his
discovery of Alfvén waves [1] in 1942.

We discuss briefly the physical origin of Alfvén waves. For detailed descriptions,
the reader may consult the original paper [1] or text books on MHD, e.g., [4]. One can
think of Alfvén waves as vibrating strings or more precisely transverse inertial waves.
In a electrically conducting fluid, if the conductivity is sufficiently high, one will
observe that the magnetic field lines tend to be frozen into the fluid. In other words, the
fluid particles tend to move along the magnetic field lines. Therefore, we may suppose
that the fluid lies along a steady constant magnetic field B0 and we perturb the fluid by
a small velocity field v which is perpendicular to B0. The magnetic field line will be
swept along with the fluid and the resulting curvature of the lines provides a restoring
force (magnetic tension force) on the fluid. The fluid will eventually go back to the
rest state and then the Faraday tensions will reverse the flow. The waves developed by
the oscillations are precisely the Alfvén waves. According to this description, Alfvén
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wave is different from sound waves and electromagnetic waves. It is driven by the
Lorentz force.

We now give a heuristic description for Alfvén waves. Let B0 = (0, 0, 1) be a
constant magnetic field along the x3-axis. We assume that the fluids are frozen along
the magnetic lines. Let v = (0,�v, 0) be an infinitesimal velocity perturbation (per-
pendicular to B0) for a fluid particle. Therefore, the Lorentz force on the particle is
proportional to v× B = (�v, 0, 0). After a small time �t , the Lorentz force leads to a
velocity change proportional to v1 = (v×B)�t = (�v�t, 0, 0) in x1 direction. Like-
wise, the velocity component v1 provides the Lorentz force v1× B = (0,−�v�t, 0),
which is opposite to the initial velocity perturbation. Thus, it acts as a restoring force
to push the particle back to the original position; hence, waves develop.

An Alfvén wave is a transverse wave. It propagates anisotropically in the direction
of the magnetic field. In other words, the motion of the fluid particles (such as ions) and
the perturbation of the magnetic field are in the same direction and transverse to the
direction of propagation. It also propagates the incompressibility, involving no changes
in plasma density or pressure. We remark that, in contrast, the magnetoacoustic waves
reflect the compressibility of the plasma.

The theory of Alfvén waves supports the existing explanations for the origin of
the earth’s magnetic field. The magnetic fields have an ability to support two inertial
waves, the Alfvén waves and the magnetostropic waves (involving the Coriolis force).
Both of the inertial waves are of considerable importance in the geodynamo-theory
and they are useful in explaining the maintenance of the earth’s magnetic fields in
terms of a self-excited fluid dynamo. Alfvén waves are also fundamental in the astro-
physics, particularly topics such as star formation, magnetic field oscillation of the
sun, sunspots, solar flares and so on.

In [1], when Alfvén first discovered the waves named after him, he also provided a
formal linear analysis. He considered the following situation: the conductivity is set
to be infinite, the permeability is 1 and the background constant magnetic field B0 is
homogenous and parallel to the x3-axis of the space. He then took the plane waves
ansatz by assuming all the physical quantities depending only on the time t and the
variable x3. The MHD equations (see also (1.1) below) become

−4πρ

B2
0

∂2b

∂t2 +
∂2b

∂x2
3

= 0,

where b is the magnetic field and ρ is the plasma density. This is a 1+ 1 dimensional
wave equation and it implies immediately that the Alfvén waves move along the x3-
axis (in both directions) with the velocity (so called the Alfvén velocity) VA = B0√

4πρ
.

The linear analysis also indicates that the Alfvén waves are dispersionless. In the real
world, the MHD waves obey the nonlinear dynamics and many of them detected sofar
seem to be stable, such as the solar wind and waves generated by a solar flare rapidly
propagating out across the solar disk. It is surprising that Alfvén’s linear analysis
provides a rather good approximation for nonlinear evolutions. The nonlinear terms
may pose serious difficulties in the mathematical studies of the propagation of the
Alfvén waves in the MHD system, especially in the dispersionless situation. One
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of the main objects of the paper is to analyze the relationship between the genuine
nonlinear evolution and the linearized analysis.

The phenomena for the Alfvén waves are ubiquitous and complex. The existing
mathematical theories on Alfvén waves are mostly concerning the linearized equations
and are far from being complete. In the present work, we study the incompressible
fluids and consider the nonlinear stability of the Alfvén waves. The word ‘stability’
roughly means the following two things: 1) the asymptotics of the waves as t →∞ for
the ideal case (no viscosity); 2) the asymptotics for the viscous waves as the viscosity
μ → 0 and as t → ∞. In particular, our work will provide a way to justify why
the linearized Alfvén waves provide a good approximation for the nonlinear evolution
and how the viscosity damps the Alfvén waves–two interesting phenomena commonly
described in text books on MHD, e.g., [4], but there is no rigorous mathematical
explanation for the phenomena.

Next, we write down the incompressible MHD equations. For simplification, we
assume that both the fluid (plasma) density and the permeability equal 1. Then the
incompressible MHD equations read

∂tv + v · ∇v = −∇ p + (∇ × b)× b + μ�v,

∂t b + v · ∇b = b · ∇v + μ�b,
div v = 0,

div b = 0,

(1.1)

where b is the magnetic field, v, p are the velocity and scalar pressure of the fluid
respectively, μ is the viscosity coefficient or equivalently the dissipation coefficient.

We can write the Lorentz force term (∇ × b)× b in the momentum equation in a
more convenient form. Indeed, we have

(∇ × b)× b = −∇
(

1

2
|b|2
)
+ b · ∇b.

The first term ∇( 1
2 |b|2) is called the magnetic pressure force since it is in the gradient

form just as the fluid pressure does. The second term b · ∇b = ∇ · (b ⊗ b) is the
magnetic tension force, which produces Alfvén waves. Therefore, we can use p again
in the place of p + 1

2 |b|2. The momentum equation then reads

∂tv + v · ∇v = −∇ p + b · ∇b + μ�v.

We study the most interesting situation when a strong back ground magnetic field
B0 presents (to generate Alfvén waves). Heuristically, if μ is large, the influence
of v on b is negligible, the magnetic field is dissipative in nature (so that the mag-
netic disturbance b − B0 tends to decay very fast). If μ is small, the velocity v will
strongly influence b so that the situation is similar to ideal Alfvén waves and the
damping from the dissipations is so weak that it takes a long time to see the effect.
We will rigorously justify these facts later on. The heuristics can be depicted as fol-
lows:
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ideal case: μ = 0 small diffusion μ � 1 strong diffusion μ ≥ 1

disturbance strength |b − B0| disturbance disturbance

B0
B0 B0

oscillation and no dispersion. fast dampingoscillation with slow damping.

We now give a formal (or linear analysis) discussion about the properties showed in
the above figures. Let B0 = |B0| e3 be a uniform constant (non-vanishing) background
magnetic field. The vector e3 is the unit vector parallel to x3-axis. We remark that the
pair (0, B0) solves the incompressible MHD system. We consider an infinitesimal
perturbation (v, b− B0) of (0, B0). We take v to be perpendicular to B0. The leading
order terms of the MHD system satisfy the following system of equations:

∂tv − B0 · ∇b = −∇ p + μ�v,

∂t b − B0 · ∇v = μ�b.

We remark that for convenience we do not distinguish b from b−B0 because they have
the same derivatives. Taking the curl of the above equations, we obtain the vorticity
equations, namely, for ω = curl v and j = curl b, we have

∂tω − B0 · ∇ j = μ�ω,

∂t j − B0 · ∇ω = μ� j.
(1.2)

Alternatively, since ∇ p is a quadratic term, we can ignore it for linear analysis.
We study the dispersion relation f (ξ) of the above linearized equations (1.2).

Considering the plane wave solutions

ω = ω0 exp [i(ξ · x − f (ξ)t)], j = j0 exp [i(ξ · x − f (ξ)t)],

we obtain

f (ξ)2 + 2iμ|ξ |2 f (ξ)− (|B0|2ξ2
3 + μ2|ξ |4) = 0,

or equivalently,
f (ξ) = −iμ|ξ |2 ± |B0|ξ3. (1.3)

We remark that according to the physics literatures, the plane waves with dispersive
relation

f 2(ξ)− |B0|2ξ2
3 = 0

are called Alfvén waves, i.e., μ = 0. We study the following three cases for (1.3) and
this analysis can also be found in [4].
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Case-1 The ideal case μ = 0. We have

f (ξ) = ±|B0|ξ3.

Both the phase velocity f (ξ)
|ξ | and group velocity ∇ξ f (ξ) are vA = |B0|, i.e.,

the Alfvén velocity. It represents two families of plane waves propagating in
the direction (or the opposite direction) of the magnetic field with velocity vA.
There is no dispersion. This corresponds to the first situation in the previous
figure.

Case-2 The case when 1 >> μ > 0 is small. We have a closed form for f (ξ). In
fact, we have

f (ξ) = −iμ|ξ |2 ± vAξ3.

It represents plane waves propagating in the direction (or the opposite direc-
tion) of the magnetic field with velocity vA and damped by a weak dissipation
(μ << 1).

Case-3 The case μ >> 1. We have

f (ξ) ∼ −iμ|ξ |2.

It represents the situation that the disturbance damped rapidly by the dissipa-
tions. This corresponds to the third drawing in the previous figure.

The third case corresponds to systems with strong diffusion. The mathematical
analysis of such systems is analogous to the small data problem for the classical
Navier–Stokes equations in three dimensional space. Since the theory is rather clas-
sical and well-understood, we will not consider the case in the paper. In the first two
cases, the plane waves can travel across a vast distance before we see a significant
effect of damping caused by the dissipation. The wave patterns can survive for a long
time, which is approximately at least of time scale O( 1

μ
). We will provide a rigorous

justification for Case-1 and Case-2 in the nonlinear setting.

1.1 Main Theorem (First Version) and Previous Works

We recall that, by incorporating the magnetic pressure into the fluid pressure, we can
rewrite the incompressible MHD equations as

∂tv + v · ∇v = −∇ p + b · ∇b + μ�v,

∂t b + v · ∇b = b · ∇v + μ�b,
div v = 0,

div b = 0,

(1.4)

where the viscosity μ is either 0 or a small positive number. We introduce the Elsässer
variables:

Z+ = v + b, Z− = v − b.
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Then the MHD equations (1.4) read

∂t Z+ + Z− · ∇Z+ − μ�Z+ = −∇ p,
∂t Z− + Z+ · ∇Z− − μ�Z− = −∇ p,

div Z+ = 0,

div Z− = 0.

(1.5)

We use B0 = |B0|(0, 0, 1) to denote a uniform background magnetic field and we
define

z+ = Z+ − B0, z− = Z− + B0.

The MHD equations can then be reformulated as

∂t z+ + Z− · ∇z+ − μ�z+ = −∇ p,
∂t z− + Z+ · ∇z− − μ�z− = −∇ p,

div z+ = 0,

div z− = 0.

(1.6)

For a vector field X on R
3, its curl is defined by curl X = (∂2X3 − ∂3X2, ∂3X1 −

∂1X3, ∂1X2 − ∂2X1) or curl X = εi jk∂i X j∂k . We use the Einstein’s convention: if an
index appears once up and once down, it is understood to be summing over {1, 2, 3}.

By taking curl of (1.6), we derive the following system of equations for ( j+, j−):

∂t j+ + Z− · ∇ j+ − μ�z+ = −∇z− ∧ ∇z+,

∂t j− + Z+ · ∇ j− − μ�z− = −∇z+ ∧ ∇z−,
(1.7)

where
j+ = curl z+, j− = curl z−.

We remark both j+ and j− are divergence free vector fields. The explicit expressions
of the nonlinearities on the righthand side are

∇z− ∧ ∇z+ = εi jk∂i z
l−∂l z

j
+∂k, ∇z+ ∧ ∇z− = εi jk∂i z

l+∂l z
j
−∂k . (1.8)

Before introducing more notations, we now provide a first version of our main
theorem. It is a rough version in the sense that it only states the global existence part
of the result. We will give more precise versions of the main theorem later on. The
main result can be stated as follows:

Theorem 1.1 (First version) Let B0 = (0, 0, 1) be a given background magnetic field.
Given constants R ≥ 100 and N∗ ∈ Z≥5, there exists a constant ε0 so that for all
given smooth vector fields (v0(x), b̃0)(x) on R

3 with the following bound
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∥∥( log(R2 + |x |2) 1
2
)2

(v0, b̃0)
∥∥2
L2(R3)

+
N∗∑
k=0

∥∥(R2 + |x |2) 1
2

(
log(R2 + |x |2) 1

2

)2 ∇k+1(v0, b̃0)
∥∥2
L2(R3)

+ μ
∥∥(R2 + |x |2) 1

2

(
log(R2 + |x |2) 1

2

)2 ∇N∗+2(v0, b̃0)
∥∥2
L2(R3)

≤ ε2
0,

for the initial data (to the MHD system (1.4)) of the form

v(0, x) = v0(x), b(0, x) = B0 + b̃0(x),

the MHD system (1.4) admits a unique global smooth solution. In particular, the
constant ε0 is independent of the viscosity coefficient μ.

Remark 1.1 The proof for the viscous case when μ > 0 is in fact considerably harder
than the ideal case μ = 0. This seems to contradict the intuition that diffusions help
the system to stabilize (This intuition will be proved and justified towards the end of
the paper). In the statement of the theorem, the weight functions for (v, b) are different
from those for the higher order terms. If μ = 0, we can choose the weights in a uniform
way and in a much simpler form. However, if μ > 0, the choice of different weights
plays an essential role in the proof and it unifies the hyperbolic estimates (for waves)
and the parabolic estimates (for diffusive systems). This is one of the main innovations
of the paper and we will explain this point when we discuss the ideas of the proof.

Remark 1.2 From now on, we will only consider the case where |B0| = 1. We can
also use B0 = |B0|(0, 0, 1) to model the constant background magnetic field. The
choice of the constant ε0 will depend on |B0| but not on the viscosity μ.

We end this subsection by a quick review of the results on three dimensional incom-
pressible MHD systems with strong magnetic backgrounds. Bardos, Sulem and Sulem
[2] first obtained the global existence in the Hölder spaceC1,α (not in the energy space)
for the ideal case (μ = 0). They do not treat the case with small diffusion, which we
believe is fundamentally different from the ideal case. For the case with strong fluid
viscosity but without Ohmic dissipation, [9] (see also [5]) studies the small-data-
global-existence with very special choice of data. We remark that the smallness of
the data depends on the viscosity, while the data in the current work are independent
of the viscosity coefficient μ. Technically speaking, the work [2] treats the system
as one dimensional wave equations and it relies on the convolution with fundamental
solutions; the work [9] observes that the system can be roughly regarded as a damped
wave equation in Lagrangian coordinates ∂2

t Y − μ�∂t Y − ∂2
3Y ≈ 0 and the proof is

based on Fourier analysis (more precisely on Littlewood-Paley decomposition).
The proof, which will be presented in the sequel, is different from the aforemen-

tioned approaches. We will regard the MHD system as a system of 1+ 1 dimensional
wave equations and the proof makes essential use of the fact that the system is defined
on three dimensional space. We derive energy estimates purely in physical space. The
characteristic geometry (see next subsection) defined by two families of characteristic
hypersurfaces of nonlinear solutions underlies the entire proof. The approach is in
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nature quasi-linear and is similar in spirit to the proof of the nonlinear stability of
Minkowski spacetime [3]. In order to make this remark transparent, we first introduce
the underlying geometric structure defined by a solution of (1.5).

1.2 The Characteristic Geometries

We study the spacetime [0, t∗] ×R
3
x1,x2,x3

associated to a solution (v, b) of the MHD
equations or equivalently (1.5). More precisely, we assume a smooth solution (v, b)
exists on [0, t∗]×R

3 and we study the foliation of the characteristic hypersurfaces asso-
ciated to (v, b). We recall that [0, t∗]×R

3 admits a natural time foliation
⋃

0≤t≤t∗ 
t ,
where 
t is the constant time slice (in particular, 
0 is the initial time slice where the
initial data are given).

We first define two characteristic (spacetime) vector fields L+ and L− as follows

L+ = T + Z+, L− = T + Z−, (1.9)

where the time vector field T is the usual ∂t defined in the Cartesian coordinates (we
also use the same notations to denote the partial differential operators L+ = ∂t+Z+·∇
and L− = ∂t + Z− · ∇).

Given a constant c, we use S0,c to denote the 2-plane x3 = c in 
0. Therefore,⋃
x3∈R S0,x3 is a foliation of the initial hypersurface 
0. We define the characteristic

hypersurfaces C+x3
and C−x3

to be the hypersurfaces emanated from S0,x3 along the
vector fields L+ and L− respectively. A better way to define C± is to understand
the hypersurface as the level set of a certain function. We define the optical function
u+ = u+(t, x) as follows

L+u+ = 0, u+
∣∣

0
= x3. (1.10)

Similarly, we define the optical function u− by

L−u− = 0, u−
∣∣

0
= x3. (1.11)

Therefore, the characteristic hypersurfaces C+x3
and C−x3

are the level sets {u+ = x3}
and {u− = x3} respectively. We will use the notations C+u+ and C−u− to denote them.
By construction, L+ is tangential to C+u+ and L− is tangential to C−u− .

We remark that the spacetime [0, t∗] × R
3 admits two characteristic foliations:⋃

u+∈R C+u+ and
⋃

u−∈R C−u− . The intersection C+u+
⋂


t is a two-plane, denoted by

S+t,u+ . Similarly, we denote C−u−
⋂


t by S−t,u− . Therefore, for each t , we obtain two

foliations
⋃

u+∈R S+t,u+ and
⋃

u−∈R S−t,u− of 
t . In general, they may differ from each
other.

Similar to the definitions of u±, we also define x±1 = x±1 (t, x) and x±2 = x±2 (t, x).
For i = 1 or 2, we require
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L+x+i = 0, L−x−i = 0

x+i
∣∣

0
= xi , x−i

∣∣

0
= xi . (1.12)

We remark that if we let i = 3 in the above defining formulas, we obtain x±3 = u±.
We use the following pictures to illustrate the above geometric constructions:

x3 = u−x3 = u+

Σt

Σ0

S−
t,u−

S−
0,u−

S+
t,u+

S+
0,u+

C+
u+

L+

L+

L+

L+

L−

T

T

L−

L−

C−
u−

The right-traveling hypersurfaces C+u+ are painted grey; the left-traveling hypersur-
faces C−u− are tiled with grey lines. The dashed lines are integral curves of either L+
or L−.

In order to specify the region where the energy estimates are taken place, for t ,
u1+, u2+, u1− and u2− given with u1+ < u2+ and u1− < u2−, we define the following
hypersurfaces / regions:




[
u1+,u2+

]
t =

⋃
u+∈

[
u1+,u2+

] S
+
t,u+ , W

[
u1+,u2+

]
t =

⋃
τ∈[0,t]




[
u1+,u2+

]
τ ,




[
u1−,u2−

]
t =

⋃
u−∈

[
u1−,u2−

] S
−
t,u− , W

[
u1−,u2−

]
t =

⋃
τ∈[0,t]




[
u1−,u2−

]
τ .

Roughly speaking, W
[u1+,u2+]
t =⋃τ∈[0,t]


[u1+,u2+]
τ is the spacetime region bounded by

the two grey hypersurfaces in the above picture.

As a subset of R
4, the domain W

[u1+,u2+]
t or W

[u1−,u2−]
t admits a standard Euclidean

metric. By forgetting the x1 and x2 axes, the outwards normals of the boundaries of
the above domains are depicted schematically as follows:
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C+
u1
+ C+

u2
+

Σ
[u1

+,u2
+]

t

Σ
[u1

+,u2
+]

0

W
[u1

+,u2
+]

t W
[u1

−,u2
−]

t

Σ
[u1

−,u2
−]

t

Σ
[u1

−,u2
−]

0
C−

u1
−

C−
u2
−

T

−T

ν+
1

ν+
2 ν−

1

ν−
2

T

−T

The outward unit normal of 
0 and 
t are −T and T respectively. We use ν+1 to
denote the outward unit normal of C+

u1+
. Since C+

u1+
is the level set of u+, we have

ν+1 = −
(∂t u+,∇u+)√

(∂t u+)2 + |∇u+|2

Similarly, for the outward unit normals ν+2 , ν−1 and ν−2 of C+
u2+

,C−
u1−

and C−
u2−

respec-

tively, we have

ν+2 =
(∂t u+,∇u+)√

(∂t u+)2 + |∇u+|2
, ν−1 = −

(∂t u−,∇u−)√
(∂t u−)2 + |∇u−|2

,

ν−2 =
(∂t u−,∇u−)√

(∂t u−)2 + |∇u−|2
.

1.3 Main Theorems (Second Version)

The notation a � b means that there exists a universal constant C such that a ≤ Cb.
We use the notation Cω1,ω2,··· to represent the constant that depends on the parameters
ω1, ω2, · · · .

For a multi-index α = (α1, α2, α3) with αi ∈ Z≥0, we define z(α)
± = (

∂
∂x1

)α1

(
∂

∂x2

)α2
(

∂
∂x3

)α3 z±; for a positive integer k, we define |z(k)± | = (
∑
|α|=k |z(α)

± |2)
1
2 . One

can also define j (α)
± and | j (k)± | in a similar way. Let R and ε0 be two positive numbers.

They will be determined later on. In principle, R is large and ε0 is small.
We introduce two weight functions 〈w+〉 and 〈w−〉 as follows

〈w+〉 =
(
R2 + |x+1 |2 + |x+2 |2 + |u+|2

) 1
2 , 〈w−〉 =

(
R2 + |x−1 |2 + |x−2 |2 + |u−|2

) 1
2 .

We remark that L+〈w+〉 = 0 and L−〈w−〉 = 0.
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For a given multi-index α, we define the energy E (α)
∓ and flux F (α)

∓ (associated to
characteristic hypersurfaces) of the solution z± as follows:

E (α)
∓ (t) =

∫

t

〈w±〉2
(

log〈w±〉
)4|∇z(α)

∓ |2dx, |α| ≥ 0,

F (0)
∓ (∇z∓) =

∫
C∓u∓
〈w±〉2

(
log〈w±〉

)4|∇z∓|2dσ∓,

F (α)
∓ ( j∓) =

∫
C∓u∓
〈w±〉2

(
log〈w±〉

)4| j (α)
∓ |2dσ∓, |α| ≥ 1,

where dσ± is the surface measure of the characteristic hypersurface C±u± . We define

the diffusion D(α)
∓ as follows

D(α)
∓ (t) = μ

∫ t

0

∫

τ

〈w±〉2
(

log〈w±〉
)4|∇2z(α)

∓ |2dxdτ, |α| ≥ 0.

We remark that, for |α| ≥ 1, the flux parts contain only the vorticity component rather
than the full derivatives of ∇z(α)

± . This is a technical choice that makes it easier to
deal with the nonlinear contribution from the pressure term. If we consider the energy
identities (2.24)–(2.28) (see below), the corresponding weight functions λ+ and λ−
will be 〈w−〉2

(
log〈w−〉

)4 and 〈w+〉2
(

log〈w+〉
)4. In particular, we have L+λ− = 0

and L−λ+ = 0.
The lowest order energy and flux are defined as

E∓(t) =
∫


t

(
log〈w±〉

)4|z∓|2dx, F∓(z∓) =
∫
C∓u∓

(
log〈w±〉

)4|z∓|2dσ∓.

The lowest order diffusion is defined as

D∓(t) = μ

∫ t

0

∫

τ

(log〈w±〉)4|∇z∓|2dxdτ.

In view of the energy identities (2.24)–(2.28), the corresponding weight functions
λ+ and λ− will be

(
log〈w−〉

)4 and
(

log〈w+〉
)4. The constraints L+λ− = 0 and

L−λ+ = 0 still hold.

Remark 1.3 Unlike the usual choice, the weight functions 〈w±〉 indeed depend on the
solutions z±. This reflects the quasilinear nature of the problem.

Remark 1.4 The weight functions for the lowest order energy and flux are different
from those for higher order energy and flux. The difference is exactly 〈w±〉2. These
special weights are designed to control the diffusion terms μ�z±. Indeed, for the ideal
MHD system (μ = 0), we can choose the weight functions in a much simpler and

uniform manner, say 〈w±〉 = (R2 + |u±|2) 1+δ
2 for some small δ > 0. The choice

of different weights is essential to the proof and it incorporates the hyperbolic and
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parabolic estimates at the same time. Since we use different weights and consider a
hyperbolic-parabolic mixed situation, we also say the energy estimates are hybrid.

To make the statement of the energy estimates simpler, we introduce the total energy
norms, total flux norms and total diffusions as follows:

E∓ = sup
0≤t≤t∗

E∓(t), Ek∓ = sup
0≤t≤t∗

∑
|α|=k

E (α)
∓ (t),

F∓ = sup
u∓∈R

F∓(z∓), F0∓ = sup
u∓∈R

F0∓(∇z∓),

Fk∓ = sup
u∓∈R

∑
|α|=k

F (α)
∓ ( j∓), Dk∓ =

∑
|α|=k

D(α)
∓ (t∗).

The first theorem is about the global existence to the MHD system (1.5) with small
μ ≥ 0.

Theorem 1.2 (Second version with a priori estimates) Let B0 = (0, 0, 1), R = 100
and N∗ ∈ Z≥5. There exists a constant ε0, which is independent of the viscosity
coefficient μ, such that if the initial data of (1.4) or equivalently (1.5) satisfy

Eμ(0) =
∑
+,−

(∥∥( log(R2 + |x |2) 1
2
)2
z±(0, x)

∥∥2
L2
x

+
N∗∑
k=0

∥∥(R2 + |x |2) 1
2
(

log(R2 + |x |2) 1
2
)2∇k+1z±(0, x)

∥∥2
L2
x

+ μ
∥∥(R2 + |x |2) 1

2
(

log(R2 + |x |2) 1
2
)2∇N∗+2z±(0, x)

∥∥2
L2
x

)
≤ ε2

0,

then (1.5) admits a unique global solution z±(t, x). Moreover, there exists a constant
C independent of Eμ(0) and μ, such that the solution z±(t, x) enjoys the following
energy estimate:

sup
t≥0

(
E±(t)+

N∗∑
k=0

Ek±(t)+μEN∗+1
± (t)

)+ sup
u±∈R

(
F±(z±)+ F0±(∇z±)+

N∗∑
k=1

Fk±( j±)
)

+ (D± +
N∗∑
k=0

Dk∓ + μDN∗+1∓
)∣∣
t∗=∞ ≤ CEμ(0).

(1.13)

As a direct consequence of the above theorem, we obtain the global existence result
for ideal MHD for the data with the following bound

∑
+,−

(∥∥( log(R2 + |x |2) 1
2
)2
z±(0, x)

∥∥2
L2(R3)

+
N∗∑
k=0

∥∥(R2 + |x |2) 1
2
(

log(R2 + |x |2) 1
2
)2∇k+1z±(0, x)

∥∥2
L2(R3)

)
≤ ε2

0 .
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Due to the absence of the viscous terms, we can actually do much better. As we men-
tioned above, the different weights on z± and higher derivatives of z± are designed to
deal with the small diffusions. Roughly speaking, when we derive the usual (hyper-
bolic or wave) energy estimates, the procedure of integrations by parts acting on the
viscosity term will generate a linear term. This term is extremely difficult to control. It
mirrors the fact that the hyperbolic type of energy estimates is not entirely compatible
with the small diffusions. This is one of the main difficulties of the problem. When
μ = 0, we are free of the above contraint and we can use much simpler choices of

weights, such as (R2 + |u±|2) 1+δ
2 or (R2 + |x±1 |2 + |x±2 |2 + |u±|2)

1+δ
2 . This leads to

the following theorem:

Theorem 1.3 (Global existence for ideal MHD)Letμ = 0, B0 = (0, 0, 1), δ ∈ (0, 1),
R = 100 and N∗ ∈ Z≥5. There exists a constant ε0, such that if the initial data of
(1.4) or equivalently (1.5) satisfy

Eμ=0(0) =
∑
+,−

N∗+1∑
k=0

∥∥(R2 + |x3|2) 1+δ
2 ∇k z±(0, x)

∥∥2
L2(R3)

≤ ε2
0,

the ideal MHD system (1.5) (μ = 0) admits a unique global solution z±(t, x). More-
over, there is a universal constant C, so that, for all k ≤ N∗, we have

sup
t≥0

∥∥(R2 + |u∓|2) 1+δ
2 ∇k+1z±(t, x)

∥∥2
L2(R3)

+ sup
u±

∫
C±u±

(R2 + |u∓|2)1+δ|z±|2dσ±

+ sup
u±

∫
C±u±

(R2 + |u∓|2)1+δ| j (k)± |2dσ± ≤ CEμ=0(0).

Remark 1.5 For the ideal MHD system, we could prove more stronger existence results
in the sense that the weighted L2 condition on z± can be removed in Theorem 1.2
and Theorem 1.3. The key point lies in the proof to Theorem 1.2 and Theorem 1.3.
In fact, the lowest order energy estimates of z± are not needed for the ideal MHD
under the assumption ‖z±(t, ·)‖L∞ ≤ 1

2 . Thanks to the Gagliardo-Nirenberg interpola-

tion inequality, ‖z±(t, ·)‖L∞ can be bounded by C‖∇z±(t, ·)‖
1
2
L2‖∇2z±(t, ·)‖

1
2
L2(� ε)

which is enough to close the argument by the continuity method. This is merely a tech-
nical improvement and we will not pursue this direction in the paper.

As applications of the above theorems, we are now ready to study the nonlinear
asymptotic stability of Alfvén waves.

1.4 Nonlinear Stability of Ideal Alfvén Waves: A Scattering Picture

We now focus on the ideal incompressible MHD system. The goal is to understand
the global dynamics of the Alfvén waves, or equivalently the asymptotics of z± for
t →∞. For this purpose, we introduce a so-called scattering diagram for the Alfvén
waves. The idea is to capture the behavior of waves along each characteristic curves.
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It is similar to the Penrose diagram in general relativity (which keeps record of the
null/characteristic geometry of the spacetime).

radiation field z∞
+ (x1, x2, u−)

radiation field z∞
− (x1, x2, u+)

left future characteristic infinity C+

L−

L−

L+

L+

l− = (x1, x2, u−)

l+ = (x1, x2, u+)

(x1, x2, x3)

future time infinity T+: t = +∞

right future characteristic infinity C−

left space infinity S+: x3 = −∞ right space infinity S−: x3 = +∞

constant time slice Σt

Σ0

characteristic hypersurface C−
u− with u− = x3 characteristic hypersurface C+

u+
with u+ = x3

Given a point (x1, x2, x3) ∈ 
0, it determines uniquely a left-traveling character-
istic line: it is parameterized by (x1, x2, u−, t), where u− = x3 and t ∈ [0,+∞).
This line is denoted by l−(x1, x2, u−) (with u− = x3) or simply l−. We use C+ to
denote the collection of all the characteristic lines and we call it the left future char-
acteristic infinity. We use (x1, x2, u−) as a global coordinate system on C+ so that
C+ can be regarded as a differentiable manifold. In the picture, C+ is depicted as the
double-dotted dashed line on the left hand side. The picture shows that l− starts from
(x1, x2, x3) ∈ 
0 and hits C+ at (x1, x2, u−) with u− = x3. The tangent vector field
of the line l− is exactly L−. We remark that a line l−(x1, x2, u−) lies on the charac-
teristic hypersurface C−u− . The intersection of C−u− with C+ should be understood as
the collection of all the l−(x1, x2, u−)’s, where u− ∈ R.

Similarly, we can also define the right future characteristic infinity C− as the col-
lection of all the right-traveling characteristic lines.

We use T+ to denote the virtual intersection of C+ and C− in the picture. We call
it the future time infinity since it represents morally t → +∞. Besides T+, C+ has
another endpoint S+ in the picture. It represents the left space infinity, i.e., x3 →−∞.
Similarly, we can define the right space infinity S−. For an arbitrary time slice 
t , it
is depicted by the horizontal dotted line in the picture. We remark that each 
t ends
at S− and S+.

We can now define the scattering fields z(scatter)
+ (x1, x2, u−) on C+ and z(scatter)

−
(x1, x2, u+) on C−:

Definition 1.6 Given points l∓ ∈ C±with coordinates (x1, x2, u∓), the corresponding
scattering field of the ideal Alfvén waves for the solutions z± are defined by the
following formulas
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z(scatter)
+ (x1, x2, u−) = lim

t→∞ z+(x1, x2, u−, t),

z(scatter)
− (x1, x2, u+) = lim

t→∞ z−(x1, x2, u+, t).
(1.14)

Similarly, we also introduce the scattering vorticities (and their derivatives) as limits
of the corresponding objects along the characteristics:

(
curl z(scatter)

+
)

(x1, x2, u−) = lim
t→∞(curl z+)(x1, x2, u−, t),(

curl z(scatter)
−

)
(x1, x2, u+) = lim

t→∞(curl z−)(x1, x2, u+, t).
(1.15)

Remark 1.7 (Notation Convention) We would like to avoid confusions when we switch
between coordinates. Given a vector field f on Rt×R

3,∇ f , div f or curl f are defined
on each time slice with respect to the standard coordinates (x1, x2, x3). Geometrically,
they are defined with respect to the standard Euclidean metric on 
t . It is in this
sense that they are globally defined, in particular, are independent of the choices
of coordinates. On the other hand, for the quantities defined as scattering limit (e.g.
curl z(scatter)

+ ), the corresponding∇, div and curl are merely symbols rather than having
any geometric meanings.

To better illustrate the idea, we consider some examples.

1) ∇ p are understood as vector field in R
4 and it is coordinate independent. More

precisely, we can write (∇ p)(t, x+1 , x+2 , x+3 ). It simply means the vector field ∇ p
evaluated at the point (t, x+1 , x+2 , x+3 ) rather than (∂t p, ∂x+1

p, ∂x+2
p, ∂x+3

p).
2) z+ are obviously global defined as the real physical objects. If we change coordi-

nates according to� : (y0, y1, y2, y3) �→ (t, x1, x2, x3), then z+(y0, y1, y2, y3) =
z+|(t,x1,x2,x3)=�(y0,y1,y2,y3) represents the same vector field on the same space-time
point.

In physics, the scattering fields have more pratical/physical meaning than the orig-
inal fields. They are the fields received and measured by a far-away observer. Based
on Theorem 1.3, we will prove that the scattering fields are well-defined. In fact, we
will prove that ∇ p is integrable over each l± and the scattering fields are given by the
following explicit formulas:

z(scatter)
+ (x1, x2, u−) = z+(x1, x2, u−, 0)−

∫ ∞
0

(∇ p)(x1, x2, u−, τ )dτ, (1.16)

and

z(scatter)
− (x1, x2, u+) = z−(x1, x2, u+, 0)−

∫ ∞
0

(∇ p)(x1, x2, u+, τ )dτ. (1.17)
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The vorticities of the scattering fields can be written down explicitly:

(
curl z(scatter)

+
)

(x1, x2, u−) = (curl z+)(x1, x2, u−, 0)

−
∫ ∞

0
(∇z− ∧ ∇z+)(x1, x2, u−, τ )dτ. (1.18)

and

(
curl z(scatter)

−
)

(x1, x2, u+) = (curl z+)(x1, x2, u+, 0)

−
∫ ∞

0
(∇z+ ∧ ∇z−)(x1, x2, u+, τ )dτ. (1.19)

The above analysis also provides a framework, via the scattering fields, to compare
the nonlinear Alfvén waves with the linearized theory of Alfvén waves (à la Alfvén).
For the linearized theory, one assumes that v · ∇v ∼ 0, ∇ p ∼ 0 and b · ∇ ∼ B0 · ∇
(they are of order O(ε2

0) in the nonlinear evolution). The linearized ideal MHD system
reduces to

∂tv−B0 · ∇b = 0, ∂t b − B0 · ∇v = 0,

or equivalently,

∂t z+−B0 · ∇z+ = 0, ∂t z− + B0 · ∇z− = 0.

Given initial data z±(x1, x2, x3, 0), the linearized system can be solved directly
by the method of characteristics. Therefore, the solutions of the linearized system can
also define a similar scattering diagram as above. To give a precise description, we first
fix a measure dσ̃± on C±. By virtue of the coordinates (x1, x2, u∓) on C±, we require
that dσ̃± = dx1 ∧ dx2 ∧ du∓. Intuitively, if we regard C± as the limits of C±u± , we
would like to define the measure as limiting objects of dσ± onC±u± as u± → ∓∞. Our
definition may be different from the limiting measures by universal constants (thanks
to the proof to Theorem 1.3) and this will not effect any statement in this subsection.
Then we introduce the following weighted Sobolev spaces:

HN∗+1,δ(
0) = the completion of compactly supported smooth vector fields on R
3

with respect to the norm
N∗+1∑
k=0

‖(R2 + |x3|2) 1+δ
2 ∇k f (x)‖2

L2(R3)
,

HN∗+1,δ(C±) = the completion of compactly supported smooth vector fields f on R
3

with respect to the norm
∫
C±

(R2 + |u∓|2)1+δ| f |2dσ̃±

+
N∗∑
k=0

∫
C±

(R2 + |u∓|2)1+δ|∇k(curl f )|2dσ̃±.
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We now define the following linear solution operator or linear scattering operator:

Slinear : HN∗+1,δ(
0)× HN∗+1,δ(
0)→ HN∗+1,δ(C−)× HN∗+1,δ(C+),(
z(0)
− , z(0)

+
)
�→ (

z(0)
− , z(0)

+
)
,

(1.20)

where we identify 
0 with C± by the coordinates (x1, x2, x3) �→ (x1, x2, u∓)(u∓ =
x3).

For the nonlinear scattering theory, we can similarly define the nonlinear scattering
operator as follows:

S : HN∗+1,δ(
0)× HN∗+1,δ(
0)→ HN∗+1,δ(C−)× HN∗+1,δ(C+),(
z(0)
− , z(0)

+
)
�→ (

z(scatter)
− , z(scatter)

+
)
,

(1.21)

where (z(scatter)
− , z(scatter)

+ ) are the scattering fields associated to the initial data

(z(0)
− , z(0)

+ ). By the a priori estimates in Theorem 1.3, S is an continuous operator.

T+

S+ S−

C+ C−

linear theory
S+ S−

C+ C−

nonlinear theory

T+

z
(linear)
+ z

(linear)
− z

(scatter)
+ z

(scatter)
−

We compare the linear (scattering) theory and the nonlinear scattering theory. In the
linear theory, we use z(linear)

± to denote the scattering fields. In the above pictures, the
characteristic curves of the linearized equations are straight lines; the characteristic
curves of the nonlinear equations are curved lines. Since in both theories we can use
(x1, x2, u∓) as common coordinate systems for C±, we can compute the differences
z(scatter)
± −z(linear)

± to quantify the difference between the linear theory and the nonlinear
theory:

(
z(scatter)
± − z(linear)

±
)
(x1, x2, u∓, τ ) = −

∫ ∞
0

(∇ p)(x1, x2, u∓, τ )dτ

=
∫ ∞

0

(∇�−1∂i∂ j
(
zi−z

j
+
))

(x1, x2, u∓, τ )dτ.

Therefore, the deviation of the nonlinear theory from the linearized theory reflects the
nonlinear interactions between the nonlinear left-traveling wave z+ and the nonlinear
right-traveling wave z−. Based on this formula, we show that the linearization of the
nonlinear scattering operator is the linear scattering operator:
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Theorem 1.4 Assume the initial data of the idealMHDsystem satisfy ‖z±‖HN∗+1,δ(
0)≤ ε0 with N∗ ≥ 5 and ε0 being determined in Theorem 1.3. Therefore, the scattering
fields given in (1.14) is well defined. Similarly, the scattering vorticities fields given in
(1.15) is also well-defined. Moreover, regarded as operators between Hilbert spaces:

H N∗+1,δ(
0)× HN∗+1,δ(
0)→ H0,δ(C−)× H0,δ(C+),

the differential of S at 0 ∈ HN∗+1,ω(
0)× HN∗+1,ω(
0) is equal to Slinear, i.e.,

d S
∣∣
0 = Slinear. (1.22)

Remark 1.8 The map S : HN∗+1,δ(
0) × HN∗+1,δ(
0) → H0,δ(C−) × H0,δ(C+)

considered in the theorem only addresses the L2 norm of the scattering fields. Indeed,
to recover all the derivatives at infinity, this motivates the study of the inverse scat-
tering problem for the ideal Alfvén waves. Since the problem is of great independent
interests and difficulties (in particular because this would be a quasi-linear type inverse
scattering theory), we will discuss this issue in a forthcoming paper.

1.5 Nonlinear Stability of Viscous Alfvén Waves

The main application of the estimates given in Theorem 1.2 is the study of global
dynamics of viscous Alfvén waves. The analysis of the Alfvén waves in the previous
subsection is subject to the constraint that the MHD system is ideal. In reality, all the
physical systems have diffusion phenomena and the corresponding wave phenomena
will be damped by the diffusion.

For the presentation of our main result, for a fixed μ, we first introduce the so called
the classical μ-small-data parabolic regime for (1.6). Once the viscosity μ is given, as
one usually does for the Navier–Stokes equations, one can regard (1.6) as semi-linear
heat equations rather than a quasi-linear system. Therefore, the classical approach for
the Navier–Stokes equations shows that, there exists a constant εμ, such that if the
H2-norm of the initial data are bounded above by εμ, then we can construct global
solutions of (1.6) by regarding the system as a small perturbation of the linearized
equation. We remark that usually εμ = O(μ). Intuitively, in the small-data parabolic
regime, the diffusion is so strong (compared to the convection) so that the solution
will stay in this regime and converge to the steady state of the system.

In Theorem 1.2, the size of initial data is of order ε. We emphasize that ε is inde-
pendent of μ. Since μ can be arbitrarily small, we can think of the size of the data
as being very large compared to εμ. It is in this sense that the initial data given in
Theorem 1.2 is far away from the classical μ-small-data parabolic regime. Now the
problem on global dynamics of viscous Alfvén waves can be formulated that, given a
μ, how and when the solution of the MHD system from a far away position will enter
the small-data parabolic regime.

To understand the mechanism of the small dissipation for the energy, we begin
with two families of special data to see the dissipative properties of the corresponding
viscous solutions. Their behaviors are very different near the time Tc = O( 1

μ
). This
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on one hand shows the rich dynamical phenomena of the viscous Alfvén waves; on the
other hand, this shows that it is more natural to consider the small diffusion problem via
the hyperbolic method rather than the parabolic method, since the dissipative property
of a solution is sensitive to the initial data. In the following discussion, we assume that
μ is given.

Example 1 The first family of data is so-called the low frequency data or data with
very small oscillations. We may take

(v(0, x), b(0, x)) = (ε5/2 f1(εx), ε
5/2 f2(εx)),

where f1(x) and f2(x) are two compactly supported smooth divergence-free vector
fields and ε ≤ ε0 measures the smallness of the data. According to the energy estimates
in Theorem 1.2, one can show that

∫
R3

(|∇v|2 + |∇b|2)dx � ε3.

Roughly speaking, the main reason of having ε3 instead of ε2 in the energy is that
the initial data on one derivative of (v, b) is one-order-in-ε smaller than (v, b) itself.
According to the basic energy identity, we have

∫
R3

(|v(T1, x)|2 + |(b − B0)(T1, x)|2
)
dx =

∫
R3

(|v(0, x)|2 + |(b − B0)(0, x)|2)dx
− 2μ

∫ T1

0

∫
R3

(|∇v(τ, x)|2 + |∇b(τ, x)|2)dxdτ

≥
∫

R3

(|v(0, x)|2 + |(b − B0)(0, x)|2)dx − μT1ε
3.

Since the initial energy is proportional to ε2, for the time T1 = 1
μ

, the dissipation of

energy is approximately ε3. Therefore, almost no energy has been consumed due to
viscosity all the way up to the time T1. In other words, for the data with very small
oscillations, the dissipation on the waves is very weak within the time T1 and the
viscous waves resemble the ideal Alfvén waves.

Example 2 The second family of data contains considerable oscillations. We mea-
sure the oscillations by looking at the energies. Let Ek(t) =

∫
R3 |∇kv(t, x)|2 +

|∇k(b(t, x)− B0)|2dx . We assume that

E0(0) ∼ E1(0) ∼ E2(0).

We recall that for the low frequency data, we have E0(0) >> E1(0) >> E2(0). To
avoid dealing with too many constants, we further assume that E0(0) = E1(0) =
E2(0) = ε2 and the analysis for the general case is the same. Similar to the analysis
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in the low frequency data case, since E2(t) ≤ Cε2, we have

E1(t) = E1(0)− 2μ

∫ t

0
E2(τ )dτ ≥ ε2 − 2Cμε2t.

In fact, we have neglected the contribution of the nonlinear terms since they are all of
order ε3. Therefore, we have

E1(t) ≥ 1

2
ε2, for t ≤ 1

4Cμ
.

This implies that, for T2 = 1
4Cμ

, we have

E0(T2) = E0(0)− 2μ

∫ T2

0
E1(τ )dτ ≤ ε2 − 2μ

1

2
ε2T2 =

(
1− 1

4C

)
ε2.

We remark thatC is the universal constant in the energy estimates in Theorem 1.2. This
analysis shows that for oscillating data, within the time T2, a considerable amount of
energy has been dissipated. Indeed, by suffering a loss of derivatives (since the viscous
terms require one more derivative), we can further iterate the above analysis to amplify
the dissipation. This shows that the highly oscillating solutions damp much faster than
the low frequency data.

These two examples show that on one hand, the viscous Alfvén waves (for small
μ) preserve the wave profile for a long time (approximately 1

μ
) and the behavior of

the waves in this regime is very similar to that of the ideal Alfvén waves; on the other
hand, after a sufficiently long time (> 1

μ
), the dissipation accumulates and the wave

amplitude begins to dissipate and will eventually vanish. The time scale Tc = O( 1
μ
) is

called the characteristic time for the system which is also suggested by the physics (see
[4]). It is roughly the time for the transition from non-dissipative wave like solutions
to solutions of the heat equation (with fast decay in time). It also indicates on when
solutions decay to the μ-small-data parabolic regime.

The main theorem of the subsection is as follows:

Theorem 1.5 (Nonlinear stability of viscous Alfvén waves) Let B0 = (0, 0, 1), μ0 >

0, R ≥ 100 and N∗ ∈ Z≥5. For all μ ≤ μ0, there exists a constant ε0, which
is independent of the viscosity coefficient μ, so that if the initial data of (1.4) or
equivalently (1.5) satisfy

∑
+,−

(∥∥( log(R2 + |x |2) 1
2
)2
z±(0, x)

∥∥2
L2(R3)

+
N∗∑
k=0

∥∥(R2 + |x |2) 1
2
(

log(R2 + |x |2) 1
2
)2∇k+1z±(0, x)

∥∥2
L2(R3)

+ μ
∥∥(R2+|x |2) 1

2
(

log(R2+|x |2) 1
2
)2∇N∗+2z±(0, x)

∥∥2
L2(R3)

)
def= Eμ(0)=ε2≤ε2

0,

(1.23)
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then (1.5) admits a unique global solution zμ±(t, x) or (vμ, bμ). We remark that the
solutions zμ±(t, x) have the same initial data and we use z±(t, x) or (v, b)to denote the
solution corresponding to the ideal system. The solutions zμ±(t, x) satisfy the following
properties:

1) (Convergence to the ideal solution) For any given T > 0, we have

‖zμ±(t, x)− z±(t, x)‖2
L∞t L2

x

(
[0,T ]×R3

) � μεeεT . (1.24)

2) (Decay to the small-data parabolic regime) We fix ε0 (determined by Theo-
rem 1.2) and fix the initial data (z+(x, 0), z−(x, 0)) so that it satisfies (1.23). We
define the total energy Eμ(t) as

Eμ(t) =
∑
+,−

(
E±(t)+

∑
|α|≤N∗

E (α)
± (t)+ μ

∑
|α|=N∗+1

E (α)
± (t)

)
,

For arbitrary small μ > 0, there exist a universal constant C and a sequence of
time T1 < T2 < · · · < Tn0 in such way that, for any k ≤ n0, we have

Eμ(Tk) ≤ (CE(0))
k
2+1.

Moreover,

Eμ(Tn0) ≤ εμ.

In other words, at time Tn0 the solution enters the μ-small-data parabolic regime.

The next figure shows the intuitive idea of the decay:

parabolic regime

Eµ(0) ≈ ε2

Eµ(T1) ≈ ε3

Eµ(T2) ≈ ε4

Eµ(Tn0) ≤ εµ

the initial datum

T1

T2

Tn0−1

Tn0

steady state

diffusion

The gray region is the classical μ-small-data parabolic regime in the energy space
(roughly H2(R3)) and the curve is the evolution curve of the solution. The solution
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initially is far-way from the grey region. In the course of the evolution, the viscosity
damps the total energy. The total energy may decay very slowly (the rate depends
on the profile of the data) before the solution enters the parabolic regime. Once it
enters the grey region at time Tn0 , the diffusion takes over and we see that the solution
converges to the steady state (denoted by a circle in the figure) very fast.

Remark 1.9 It is routine to repeat the proof of (1.24) to show that, for k ≤ 4, we have

‖zμ±(t, x)− z±(t, x)‖2
L∞t Hk

x

(
[0,T ]×R3

) � μεeεT .

In particular, for any fixed time interval [0, T ], in the classical sense (with respect to
the topology of L∞t C2

x ([0, T ] × R
3)), we have

lim
μ→0

(vμ, bμ)−→(v, b).

Moreover, for fixed μ, it shows that viscous Alfvén waves are very close to the ideal
Alfvén waves at least for t ≤ | log μ− 2 log ε|/ε.

Remark 1.10 (Choice of Tk) We emphasize that the choice of Tk depends not only on
the size of energy norms of the initial data but also on the profile of the data.

In the course of the proof of the above theorem (which will be at the end of the
paper), we have to iterate the following decay estimates:

Eμ(t) � Iμ(t; 0)+ log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0)+ (Eμ(0)
) 3

2 . (1.25)

The function Iμ(t; 0) is completely and explicitly determined by the initial data in a
straightforward manner. It has the property that Iμ(t; 0) → 0 for t → ∞. Roughly
speaking, it measures the distribution of the data in the low frequency (in Fourier
space) region. The exact form of the function is not enlightening so that we only give
the expression in the proof.

Remark 1.11 (Comparison to known decay estimates which are based on the parabolic
method) If we assume the initial data are in L1(R3), classical results such as [7] or [8]
suggest that the energy of the system should have the following decay estimates:

‖z+(t)‖2L2 + ‖z−(t)‖2L2 � (1+ μt)−
3
2
(‖z+(0)‖2L1∩L2 + ‖z−(0)‖2L1∩L2

)

+
(‖z+(0)‖2

L2 + ‖z−(0)‖2
L2

)2
μ2 (1+ μt)−

1
2 .

In the case where E0(0) = ε2 � μ2, for t � ε4/μ3, we see that the upper bound of
the energy from the above inequality is extremely large compared to ε2. This cannot
help to justify the characteristic time Tc = O( 1

μ
) as the physics suggested. Therefore,

in a large time scale (up to time ε4/μ3) the classical estimates do not capture the decay
mechanism for the small diffusion.
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In our approach, with the additional assumption that the datum is in L1(R3), we
can improve (1.25) to

Eμ(t) �
log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0)+ (Eμ(0)
) 3

2 .

It is straightforward to see that, if t � Tc = O( 1
μ
), the total energy becomes o(ε2).

Therefore, much energy has been dissipated at Tc. This provides a theoretical support
to the characteristic time and it is also consistent with the previous two examples.

We also want to point out that, in the classical estimates, the factor μ−2 makes the
estimates rougher. It comes from the estimates for convection terms in the equations
since they are treated as nonlinear terms. Our approach is quasi-linear hyperbolic
energy method and the convection terms do not contribute extra negative power of μ.

Remark 1.12 Once the solution enters the classical μ-small-data regime, classical
approach yields immediately the final decay rate for t →∞:

‖(vμ, bμ − B0)‖L∞(R3) � μ

(1+ μt)
3
4

.

In particular, due to the diffusion, (vμ, bμ) converges to the steady state (0, B0).

1.6 Comments on the Proof

We would like to address the motivations for difficulties in the proof.

• Separation of Alfvén waves and null structures

A main difficulty in understanding the three dimensional Euler equations is the accu-
mulation of the vorticity. In fact, the vorticity ω for incompressible Euler equations
satisfies the following equation:

∂tω + v · ∇ω = ∇v ∧ ∇v.

This is a transport type of equation and in general we do not expect decay in time for
ω. The righthand side can be roughly regarded as |ω|2 and this nonlinearity of Ricatti
type is hard to control.

In the current work, the strong magnetic background provides a cancellation struc-
ture for the nonlinear terms. It resembles the null structure (à la Klainerman) in many
nonlinear wave equations. First of all, it is crucial to realize that the solutions are
indeed waves (Alfvén waves) and we have two families of waves z+ and z−. The
vorticity equations now read as (up to a sign)

∂t j± + Z∓ · ∇ j± = −∇z± ∧ ∇z∓.

Here, z+ and z− are 1+ 1 dimensional waves and we do not expect any decay in time
for each of them (just as for Euler equations!). The remarkable fact is that z+ and z−
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travel in opposite directions. Therefore, after a long time, z+ and z− are far apart from
each other and their distance can be measured by the time t . Therefore, the quadratic
nonlinearity∇z+∧∇z− must be small (in sharp contrast to the Euler equations!) since
z+ and z− are basically supported in different regions. This observation provides the
decay mechanism to control the nonlinear terms. We remark that, in the context of the
standard null structure for wave equations, z+ and z− can be regarded as incoming
and outgoing waves and the null structure says that incoming waves can only couple
with outgoing waves.

More precisely, we have the following schematic equations:

∂t z+ + Z− · ∇z+ = · · · , ∂t z− + Z+ · ∇z− = · · · , Z− ∼ −B0, Z+ ∼ B0.

Therefore, we can roughly think of the waves z+ and z− as follows:

a) z+ travels along the −B0 direction (we say that it is left-traveling) with speed
approximately 1. It is centered around (0, 0,−t).

b) z− travels along the B0 direction (we say that it is right-traveling) with speed
approximately 1. It is centered around (0, 0, t).

The centers of z+ and z− are moving away from each other. We will later on say that
z± separate from each other to refer to this phenomenon. This picture indeed underlies
each step in the proof. For instance, although ∇z+ and ∇z− are not decaying in L∞
norm, but their product satisfies the following decay estimate:

|∇z+(t, x)∇z−(t, x)| � 1

1+ t

( 1

log(2+ t)

)2
.

Moreover, the decay is fast enough so that righthand side is integrable in t .

• Weighted estimates and (1+ 1)−dimension wave equations

As we have noted before, at least on the linearization level, the Alfvén waves z± satisfy
1+ 1 dimensional wave equations. It is well-known that (1+ 1)-dimension waves are
conformally invariant (the energy-momentum tensor of a linear wave is trace-free!).
We briefly recall the conformal structure of (1 + 1)-dimensional Minkowski space
(R1+1,m = −dt ⊗ dt + dx ⊗ dx). If we let u = −t + x and u = t + x , we
have m = 1

2 (du ⊗ du + du ⊗ du). The optical functions u and u are analogues of
the Riemann invariants for the 2 × 2 conservation laws and the defining functions
for the characteristic surfaces u+ and u− in the current paper are also similar. We
define L = ∂t + ∂x and L = ∂t − ∂x (analogues of L± in this paper). Therefore, all
the conformal Killing vector fields on R

1+1 are linear combinations of f (u)L and
g(u)L . The associated energy current will provide conservation quantities (energies)
for (1+1)-waves. In a more analytical way, the above analysis shows that, if one wants
to define a good conserved energy, we can systematically multiply the equations by
f (u)ϕ or g(u)ϕ (ϕ is a solution of the wave equations) and then integrate by parts.

This idea underlies all the energy estimates in the sequel. We will multiply the
MHD equations by f (u−)z+ or g(u+)z− to derive energy estimates. This leaves
another important issue: the choices of the weights f (u−) and g(u+). This question is
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far from being trivial since we also have to take the viscosity terms into account. This
term indeed prevents (via damping) the solution from behaving like (1 + 1)-waves
(dispersionless). We will discuss this issue later on.

• Energy flux through characteristic hypersurface

In the study of fluid problems, it is common to use energy associated to each slice 
t ,
e.g., the standard energy such as

∫
R3 |v(t, x)|2dx . However, given the facts that the

solutions are waves (Alfvén wave), there are other more natural energy type quantities,
called the energy flux. In our work, the flux comes into play merely as auxiliary
(except for the scattering picture for ideal Alfvén waves) quantities, but it is indeed
indispensable for each step of the proof. The use of the flux is indeed one of the main
innovations in our approach.

To make the meaning of flux more transparent, we consider the left-traveling char-
acteristic hypersurface C−u− . The associated energy flux for z− is defined as

F(z−) =
∫
C−u−
|z−|2dσ−,

where dσ− is the surface measure forC−u− . Since z− is right-traveling and is transversal
to C−u− , the flux F(z−) measures exactly the amount of energy carried by z− through
C−u− .

Besides its clear physical meaning, the flux is a robust technical tool to explore
the “decay” of (1 + 1)-waves. Indeed, the weighted fluxes provide decays such as

(1 + |u−|2)− 1+δ
2 . We may think of |u−| as |x3 + t |. This factor is not integrable in t

but is integrable in u−! This on one hand indicates that the usual quantities associated
to 
t may be inadequate in the proof and on the other hand shows the importance of
the quantities (such as flux!) associated to u− or C−u− . This will be clear in the course
of the proof.

• The quasi-linear approach versus linear perturbation

One of the main innovations of the current work is to use the ‘quasi-linear’ approach
to attack the problem. It consists of two main ingredients: first of all, we use the
characteristic surfaces defined by the solution itself rather than the ‘linear’ solution
(or equivalently the background solution (0, B0)); secondly, the multiplier vector fields
and the weight functions that we use to derive energy estimates are also constructed
from the solutions. Roughly speaking, each step in the course of obtaining the main
estimates depends completely on the solution and we believe that a less ‘non-linear’
approach may not work.

As we mentioned, this shares many main features with the proof of nonlinear
stability of Minkowski spacetime [3] in general relativity. In fact, in [3], the authors
use the solution (≈ spacetime) itself to construct the outgoing and incoming light
cones and they are defined as the level sets of two optical functions u and u. In the
current paper, we have constructed the functions u+ and u− as analogues of optical
functions and the left-traveling and right-traveling characteristic hypersurfaces C±u±
play a similar role as light cones. In [3], the authors also use the solution to construct
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the multiplier vector fields, such as ∂t and Morawetz vector field K . We point out
that in the situation of relativity the time function t is not a priori defined (since the
spacetime is not defined yet and it is the solution that one is looking for) and one has
to define it by knowing the solution. In our approach, the weight functions 〈w±〉 or
the multiplier vector fields L± are also defined by the solutions.

We would like to point out that, if one uses a more ‘linear’ approach, it may not
work (even for the global existence part of the main theorems). This is in contrast
to the proof of stability of Minkowski spacetime. Indeed, Lindblad and Rodnianski
in [6] proved a weaker version of the stability of Minkowski spacetime based on the
multiplier vector fields and light cones of the Minkowski spacetime (near infinity, the
spacetime should be more like a Schwarzschild solution rather than a flat solution).
The main reason is that free waves in three dimensions decay fast (of order 1

t while
z± behave more like a 1-dimension waves which have no decay!) and the decoupling
structure of Einstein equations in harmonic coordinates still allows one to use the null
structure. In the current work, if we use the linear characteristic hypersufaces defined
by u(linear)

± = x3 ∓ t and the corresponding w
(linear)
± , when we derive the energy

estimates, since L±(u(linear)
± ) �= 0, we obtain linear terms like

∫ t

0

∫

τ

L±
(

log2
〈
w

(linear)
±

〉)
|z∓|2dxdτ.

We can show that L±
(

log2
〈
w

(linear)
±

〉)
≥ ε

1+|x3∓t | and the decay is too weak to close

the energy estimates. We remark that using the characteristic hypersurfaces of a real
solution one can avoid this linear term.

• The hybrid energy estimates

The most difficult part of the proof is to deal with the viscosity terms (small diffusion)
since one seeks for estimates independent of the viscosity μ. To make this clear, we first
consider the ideal MHD system which is free of diffusion. As we mentioned before,

we can use weight functions (1+ |u∓|2) 1+δ
2 = 〈u∓〉1+δ for z± and the derivatives of

z±. The uniform choice of the weights reflects the fact that the solution z± behaves in
all the scale like waves. When viscosity presents, we may also attempt to use the same
weight. In the course of deriving energy estimates, we use integration by parts for the
viscous term and the derivative will hit the weights to generate linear terms such as

μ

∫ t

0

∫

τ

∇2(〈u∓〉1+δ
)|z±|2dxdτ, μ

∫ t

0

∫

τ

∇2(〈u∓〉1+δ
)|∇z±|2dxdτ, · · · .

(1.26)
Since we do not have decay estimates for terms like

∫

τ
∇2
(〈u∓〉1+δ

)|z±|2dx , we can
not use usual energy type estimates for wave equations to close the argument. This
difficulty is indeed natural since the diffusion terms are not a wave phenomenon one
does not expect to bound those terms by usual energy estimates (unless there is a new
idea).

One possible approach is to lower the weight to 〈u∓〉 instead of 〈u∓〉1+δ . We can
show that |∇(〈u∓〉)| � 1 and the second term μ

∫ t
0

∫

τ
∇2
(〈u∓〉)|∇z±|2dxdτ in
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(1.26) can be bounded by μ
∫ t

0

∫

τ
|∇z±|2dxdτ . Hence, it is bounded by the basic

energy estimates. It implies that μ
∫ t

0

∫

τ
|∇z±|2dxdτ is bounded by the initial energy.

However, the first term in (1.26) cannot be bounded in this way since there is no
estimates at the moment to control terms like μ

∫ t
0

∫

τ
|z±|2dxdτ . We remark that,

although this approach does not work, we can actually use this idea to show that the

lifespan of the solution is at least min( 1
μ
, e

1
ε ). Combined with the iteration method

mentioned at the end of the last subsection, we can show that for μ ≈ ε, the solution
is global. This is in fact much better than most of the small-global-existence results in
three dimensional fluids whose smallness on energy is relative to the size of μ.

The new idea in our approach is to use hybrid weights to combine the hyperbolic
and parabolic estimates at the same time. In fact, by lowering the weights of z± to
log-level, the first term in (1.26) will be bounded by a term that looks like

μ

∫ t

0

∫

τ

(
log〈w±〉

)4
〈w±〉2 |z∓|2dxdτ.

By Hardy inequalities with respect to a right coordinates system defined by the solu-
tions, the above terms will be bounded by

μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ.

This quantity will be bounded in (2.54) and we believe that this is a new estimate to
deal with small diffusion terms. This new estimate plays a central role in the proof
and makes use of the full strength of the basic energy identity for the viscous MHD
system.

Finally, we emphasize again that the estimate on

μ

∫ t

0

∫

τ

(
log〈w±〉

)4
〈w±〉2 |z∓|2dxdτ

will make an essential use of the basic energy identity. In some sense, the basic energy
identity is cornerstone of the entire proof.

• Three dimensional feature of the problem

Although the viscous Alfvén waves z± behave very similar to (1 + 1)-dimension
waves on a large time scale (≈ 1

μ
), the analysis indeed relies heavily on the fact

that the problem is over the three dimensional space. This is another indication why
the viscous case is more difficult than the ideal case (where we can only use weights
function in u± so that it is very similar to 1-dimension theory). A key step in the proof is
to bound the weighted spacetime viscous energy μ

∫ t
0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ by
the initial energy. We use 3-dimensional Hardy’s inequality in the moving coordinate
systems (x±1 , x±2 , x±3 ) for 
t to obtain desired estimates. It forces the weight functions

involving the three dimensional radius functions r± =
√

(x±1 )2 + (x±2 )2 + (x±3 )2

(rather than x±3 = u± as in the ideal case).
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The physical picture is clear: the weight functions defined by 〈w±〉 indicate that
the Alfvén waves can be thought of as localized in all the directions in a small region
of space with support moving along the characteristics.

• Linear-driving decay mechanism for Alfvén waves with very small viscosity

We would like to discuss the intuition for the decay (second statement) in Theorem 1.5.
We treat the MHD system as (1+1)-dimensional wave equations and regard the small
diffusion term more or less as an error term, therefore the estimates obtained do not
provide any information on the decay, just like the usual (1+1)-dimensional waves. In
order to explore the possible decay mechanism, the new idea is now to treat the system
as heat equations (with small diffusion). In a schematic manner, we can simplify the
system to the following model equation:

∂t f − μ� f = · · ·︸︷︷︸
error terms

.

By the a priori energy estimates, we can show that the error terms are of order ε2 (say,
according to L∞ norm). Therefore, by inverting the heat operator, we can think of f
as

f (t) = etμ� f (0)+ · · ·︸︷︷︸
error terms of order ε2

.

We remark that the best estimate for the error terms at the moment is a bound of order
ε2 and there is no decay so far for the errors.

We make the following key observation: the linear part etμ� f (0) decays! Therefore,
after a long time T1, although initially f (0) ∼ ε, the linear decay forces f (T1) to be
of order ε2. We then use the a priori energy estimates again but set T1 as the initial
time for the system, this shows that after T1, the solution is already of order ε2 so that
we have

f (t) = e(t−T1)μ� f (T1)+ · · ·︸︷︷︸
error terms of order ε3

.

It is clear how to repeat the above linear-driving decay mechanism to improve the
order of ε by 1 each time. This eventually pushes the solution into the μ-small-data
parabolic regime.

In reality, we explore the decay of L2-norms of the semi-group etμ�. The reason is
that we can only prove L2-type estimates are propagated (via the hyperbolic method)
and the iteration requires the estimates must be propagated in evolution. It is well-
know that limt→∞ ‖etμ� f (0)‖L2 = 0 without an explicit decay rate. Indeed, the
decay behavior of ‖etμ� f (0)‖L2 depends on the distribution of f̂ (ξ) around zero
frequency. This is exactly the reason why the decay behavior in Theorem 1.5 depends
not only on the energy norm but also on the profile of the initial data.

The rest of the paper consists of two sections. The next section is the technical heart
of the paper and it proves the main a priori energy estimates (and Theorem 1.2). The
last section proves Theorem 1.3, Theorem 1.4 and Theorem 1.5.
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2 Main A Priori Estimates

2.1 Ansatz for the Method of Continuity

To use the method of continuity, we have three sets of assumptions concerning the
underlying geometry and the energy of the waves.

The first set describes the geometry defined by the solution. Recall that,
(x+1 , x+2 , x+3 (= u+)) are the L+-transported functions which coincide with the Carte-
sian coordinates (x1, x2, x3) on 
0. For a given time t ∈ [0, t∗], the restrictions
of (x+1 , x+2 , x+3 ) on 
t yield a new coordinate system. We consider the change of
coordinates (x1, x2, x3) → (x+1 , x+2 , x+3 ) on 
t and we use

(
∂x+i /∂x j

)
1≤i, j≤3 to

denote the corresponding Jacobian matrix. Similarly, we have another change of coor-
dinates (x1, x2, x3) → (x−1 , x−2 , x−3 ) on 
t and the corresponding Jacobian matrix(
∂x−i /∂x j

)
1≤i, j≤3.

We make the following ansatz on the underlying geometry:

∣∣(∂x±i
∂x j

)− I
∣∣ ≤ 2C0ε ≤ 1

10
,
∣∣∇(∂x±i

∂x j

)∣∣ ≤ 2C0ε ≤ 1

10
, for all (t, x) ∈ [0, t∗] × R

3,

(2.1)

where I is the 3 × 3 identity matrix and C0 is a universal constant which will be
determined towards the end of the proof.

The second ansatz is about the amplitude of z±. We assume that

‖z±‖L∞ ≤ 1

2
. (2.2)

The third set of ansatz is designed for the energy and flux. We fix a positive integer
N∗ ≥ 5. For all k ≤ N∗, we assume that

E± ≤ 2C1ε
2, F± ≤ 2C1ε

2, μEN∗+1
± + Ek± ≤ 2C1ε

2, Fk± ≤ 2C1ε
2, Dk± ≤ 2C1ε

2, k ≤ N∗.

(2.3)

Here C1 will be determined by the energy estimate.
We will use the standard continuity argument: since (2.1) and (2.3) hold for the

initial data, they remain correct for a short time, say [0, tmax]where tmax is the maximal
possible time so that the three sets of ansatz remain valid. Without loss of generality,
we can assume tmax = t∗. We need two steps to close the continuity argument:

Step 1 There exists a ε0, for all ε < ε0, we can improve the constant 2 in (2.3) to 1,
i.e.,

E± ≤ C1ε
2, F± ≤ C1ε

2, μEN∗+1± + Ek± ≤ C1ε
2, Fk± ≤ C1ε

2, k ≤ N∗.
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Step 2 There exists a ε0, for all ε < ε0, we can improve the constant 2C0 to C0 in
(2.1), i.e., we have

∣∣(∂x±i
∂x j

)− I
∣∣ ≤ C0ε,

∣∣∇(∂x±i
∂x j

)∣∣ ≤ C0ε, for all (t, x) ∈ [0, t∗] × R
3,

Once we complete the above two steps, the method of continuity implies global solu-
tions for the MHD system. We emphasize that the smallness of ε0 in the above two
steps does not depend on the size of viscosity μ and does not depend on the lifespan
[0, t∗]. It indeed depends only on the background stationary magnetic field B0.

2.2 Preliminary Estimates

In this subsection, we assume that the geometric ansatz (2.1) and the amplitude ansatz
(2.2) hold.

Let ψ±(t, y) = (ψ1±(t, y), ψ2±(t, y), ψ3±(t, y)) (the mapping from 
0 to 
t ) be
the flow generated by Z±, i.e.,

d

dt
ψ±(t, y) = Z±(t, ψ±(t, y)), ψ±(0, y) = y, (2.4)

where y ∈ R
3. Here and in what follows, if we use the flow map, we use y as the

initial label(or the Lagrangian coordinates), and x as the present label (or the Eulerian
coordinates). Since z± = Z± ∓ B0 (recall that B0 = (0, 0, 1)), after integration, we
obtain

ψ±(t, y) = y +
∫ t

0
Z±(τ, ψ±(τ, y))dτ = y ± t B0 +

∫ t

0
z±(τ, ψ±(τ, y))dτ. (2.5)

We remark that the flows ψ± are the analogues of the Lagrangian coordinates in the
ordinary fluid theory.

Let ∂ψ±(t,y)
∂y be the differential of ψ(t, y) at y. Thanks to the privileged Cartesian

coordinates on R
3, we regard ∂ψ±(t,y)

∂y as a 3× 3 matrix. By definition, we know that

ψ±(t, ·)∗x±i = xi , i.e., x±(t, ψ±(t, y)) = y. Therefore, we indeed have

∂x±

∂x
|x=ψ±(t,y) =

(∂ψ±(t, y)

∂y

)−1
, ∇x

(∂x±
∂x

)|x=ψ±(t,y)

= ∇y
{(∂ψ±(t, y)

∂y

)−1}(∂ψ±(t, y)

∂y

)−1
.

Therefore, we can rephrase the geometric ansatz (2.1) as

∣∣ ∂ψ±(t, y)

∂y
− I
∣∣ ≤ C ′0ε ≤

1

2
,
∣∣∇y

(∂ψ±(t, y)

∂y

)∣∣ ≤ C ′0ε ≤
1

2
, for all t ∈ [0, t∗], y ∈ R

3,

(2.6)
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This ansatz gives the following bounds on the weight functions:

Lemma 2.1 (Differentiate Weights) We have

|∇ i 〈w±〉| ≤ 2, for i = 1, 2. (2.7)

In particular, for all ω1, ω2 ∈ R, we have for i = 1, 2

∣∣∇ i 〈w+〉ω1
∣∣ ≤ Cω1〈w+〉ω1−1,

∣∣∇ i 〈w−〉ω2
∣∣ ≤ Cω2〈w−〉ω2−1,

∣∣∇ i (〈w+〉ω1〈w−〉ω2
)∣∣

≤ Cω1,ω2

〈w+〉ω1〈w−〉ω2

R
,

∣∣∇ i ( log〈w±〉
)ω1
∣∣ ≤ Cω1

(
log〈w±〉

)ω1−1

〈w±〉 ,
∣∣∇ i
(
〈w±〉ω1

(
log〈w±〉

)ω2
)∣∣

≤ Cω1,ω2〈w±〉ω1−1( log〈w±〉
)ω2 .

Proof It suffices to show (2.7) and the rest inequalities are immediate consequences
of this inequality. It suffices to bound ∇ i 〈w+〉 for i = 1, 2. The inequalities for 〈w−〉
will be similar to derive.

In view of the the definition of 〈w+〉 and the chain rule for differentiation, letting
k ∈ {1, 2, 3}, we have

∂k〈w+〉 =
x+1

∂x+1
∂xk
+ x+2

∂x+2
∂xk
+ u+ ∂u+

∂xk(
R2 + |x+1 |2 + |x+2 |2 + |u+|2

) 1
2

.

By the geometric ansatz (2.1), we have
∣∣ ∂x+l

∂xk

∣∣ ≤ 2 for all l (recall that x+3 = u+).
Then we obtain |∇〈w+〉| ≤ 2. Similarly, by the chain rule and the ansatz (2.1), we
could obtain that |∇2〈w+〉| ≤ 2. Therefore, (2.7) is proved. This completes the proof
of lemma. ��

As an application of this lemma, we claim the following weighted Sobolev inequal-
ities hold:

Lemma 2.2 (Sobolev inequalities) For all k ≤ N∗ − 2 and multi-indices α with
|α| = k, we have

|z∓| � 1(
log〈w±〉

)2
(
E∓ + E0∓ + E1∓

) 1
2 ,

|∇z(α)
∓ | �

1

〈w±〉
(

log〈w±〉
)2
(
Ek∓ + Ek+1∓ + Ek+2∓

) 1
2 .

(2.8)

Proof We only give the proof concerning the right-traveling Alfvén wave z−. The
estimates for z+ can be derived in the same manner.

123



5 Page 34 of 105 L.-B. He et al.

By the standard Sobolev inequality, we have

∣∣( log〈w+〉
)2
z−
∣∣2 � ‖( log〈w+〉

)2
z−‖2H2(R3)

=
∑
|β|≤2

∥∥∂β
((

log〈w+〉
)2
z−
)∥∥2

L2 .

According to Lemma 2.1, we have

∣∣∣∂β
((

log〈w+〉
)2
z−
)∣∣∣ ≤∑

γ≤β

∣∣∣∇γ
(

log〈w+〉
)2
z(β−γ )
−

∣∣∣
�
∑
γ≤β

∣∣∣( log〈w+〉
)2
z(β−γ )
−

∣∣∣.

Hence,

∣∣( log〈w+〉
)2
z−
∣∣2 �

∑
|β|≤2

∥∥( log〈w+〉
)2
z(β)
−
∥∥2
L2

� E− + E0− + E1−.

This gives the L∞ bound on z−.
For higher order derivatives, we have

∣∣〈w+〉( log〈w+〉
)2∇z(α)

−
∣∣2 �

∑
|β|≤2

∥∥∂β
(
〈w+〉

(
log〈w+〉

)2∇z(α)
−
)∥∥2

L2

Lemma 2.1
�

∑
k≤|β|≤k+2

∥∥〈w+〉( log〈w+〉
)2∇z(β)

−
∥∥2
L2 .

The last line is obviously bounded by Ek− + Ek+1− + Ek+2− . This completes the proof
of the lemma. ��

We present the lemma about the separation property of the left- and right-traveling
waves.

Lemma 2.3 Assume that ‖z±‖L∞ ≤ 1
2 , R > 10, we have

t ≤ |u+ − u−| ≤ 3t. (2.9)

Moreover, there hold

〈w+〉〈w−〉 ≥ (R2 + |u+|2) 1
2 (R2 + |u−|2) 1

2 ≥ R

2
(R2 + t2)

1
2 ,

log〈w+〉 log〈w−〉 ≥ log(R2 + |u+|2) 1
2 log(R2 + |u−|2) 1

2 ≥ log R

2
log(R2 + t2)

1
2 .

(2.10)
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Proof By virtue of ψ±(t, y), we solve u± from L±u± = 0 as follows

u±(t, ψ±(t, y)) = y3.

Thanks to (2.5), we have

u±(t, ψ±(t, y)) = ψ3±(t, y)∓ t −
∫ t

0
z3±(τ, ψ±(τ, y))dτ.

Then

u±(t, x) = x3 ∓ t −
∫ t

0
z3±(τ, ψ±(τ, ψ−1± (t, x)))dτ,

which gives rise to

|(u− − u+)− 2t | ≤
∫ t

0
(‖z3+‖L∞ + ‖z3−‖L∞)dt ≤ t,

where we used the assumption ‖z3±‖L∞ ≤ 1
2 . This yields the estimate (2.9). And (2.9)

gives rise to |u+| + |u−| ≥ t which shows that either |u+| ≥ t
2 or |u−| ≥ t

2 . Then
there holds (2.10). The lemma is proved. ��

Remark 2.4 The estimate (2.9) shows that if ‖z3±‖L∞ is small than the background
magnetic field, the left-traveling hypersurfaceC+u+ and the right-traveling hypersurface
C−u− will separate from each other after the initial time. And at time t , the distance
between them is of order O(t).

We now state a lemma to control the normal derivatives of the characteristic hyper-
surfaces in [0, t∗] × R

3:

Lemma 2.5 Assume that ‖z±‖L∞ ≤ 1
2 . Then for all u+ and u−, we have

7

16
≤ 〈L−, ν+〉|C+u+ ≤ 4,

7

16
≤ 〈L+, ν−〉|C−u− ≤ 4, (2.11)

where ν± is the normal vector field of C±u± .

Proof We prove the first inequality and the second can be derived exactly in the same
manner.

Since L− = (1, Z1−, Z2−, Z3−) and ν+ = − ∇̃t,x u+|∇̃t,x u+| = −
(∂t u+,∇u+)√
|∂t u+|2+|∇u+|2

, we have

〈L−, ν+〉 = 1

|∇̃t,xu+|
(−∂t u+ − Z− · ∇u+

)
. (2.12)
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Let e3 = (0, 0, 1). Since ∂t u+ + Z+ · ∇u+ = 0, we have

〈L−, ν+〉 = 1

|∇̃t,xu+| (Z+ − Z−) · ∇u+

= 1

|∇̃t,xu+|
(
2e3 · ∇u+ + (z+ − z−) · ∇u+

)

and

|∇̃t,xu+| =
√
|Z+ · ∇u+|2 + |∇u+|2

=
√
|∂3u+|2 + |z+ · ∇u+|2 + |∇u+|2 + 2∂3u+(z+ · ∇u+).

In view of (2.1), we obtain

|∇u+ − e3| ≤
√

2C0ε.

By virtue of (2.2) i.e., ‖z±‖L∞ ≤ 1
2 , we have

|z± · ∇u+| ≤ 1

2
+√2C0ε.

It is straightforward to see that the numerator in (2.12) is in [ 78 , 25
8 ]; the denominator

in (2.12) is in [ 78 , 2], provided ε is sufficiently small. This completes the proof. ��
We will also need a weighted version of div-curl lemma:

Lemma 2.6 (div-curl lemma) Let λ(x) be a smooth positive function on R
3. For all

smooth vector field v(x) ∈ H1(R3) with the following properties

div v = 0,
√

λ∇v ∈ L2(R3),
|∇λ|√

λ
v ∈ L2(R3),

we have

‖√λ∇v‖2L2 � ‖√λcurl v‖2L2 +
∥∥ |∇λ|√

λ
v
∥∥2
L2 . (2.13)

Proof Since div v = 0, we have−�v = curl curl v. We now multiply this identity by
λv and then integrate over R

3. We obtain

∫
R3

λ|∇v|2dx = −
∫

R3

3∑
i=1

∂iλ∂iv · vdx +
∫

R3
curl v · curl (λv)dx

≤
∫

R3
λ|curl v|2dx + 2

∫
R3
|∇λ||v||∇v|dx

≤
∫

R3
λ|curl v|2dx + 2

∫
R3

|∇λ|2
λ
|v|2dx + 1

2

∫
R3

λ|∇v|2dx .

To complete the proof, it suffices to move the last term to the left hand side. ��
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Remark 2.7 Because of div z± = 0, this lemma allows us to switch the term ∇z(γ )
± in

energy to the vorticity term j (γ )
± . This enables us to use the vorticity formulation (1.7)

of the MHD system. And we will show that it is difficult for us to avoid investigating
the vorticity formulation (1.7), especially for the highest order energy estimates.

Remark 2.8 In applications, we will take weight function λ satisfying the following
property:

|∇λ| � λ. (2.14)

Therefore, (2.13) becomes

‖√λ∇v‖2L2(R3)
� ‖√λcurl v‖2L2(R3)

+ ‖√λv‖2L2(R3)
.

In particular, for v = ∇z(γ )
+ which is divergence free, we have

∥∥√λ∇z(γ )
+
∥∥2
L2(
τ )

�
∥∥√λ j (γ |)+

∥∥2
L2(
τ )

+ ∥∥√λ∇z(|γ |−1)
+

∥∥2
L2(
τ )

. (2.15)

For 1 ≤ |γ | ≤ N∗, we can iterate (2.15) to derive

∥∥√λ∇z(γ )
+
∥∥2
L2(
τ )

�
∥∥√λ∇z+

∥∥2
L2(
τ )

+
|γ |∑
k=1

∥∥√λ j (k)+
∥∥2
L2(
τ )

. (2.16)

We remark that in (2.16), we do not iterate ‖√λ∇z+‖2L2(
τ )
by ‖√λ j+‖2L2(
τ )

+
‖|∇λ|√

λ
z+‖2L2(
τ )

. We will see that it is difficult to control ‖ |∇λ|√
λ
z+‖2L2(
τ )

by taking

λ = λ(u+, u−).

The geometric ansatz (2.1) also provides a trace theorem for restrictions of functions
to the characteristic hypersurfaces C±u± :

Lemma 2.9 (Trace) For all f (t, x) ∈ L2([0, t∗]; H1(R3)), the restriction of f to
C±u± belongs to L2(C±u±). In fact, we have

‖ f ‖L2(C±u± ) � ‖ f ‖L2([0,t∗];H1(R3)).

Proof Let a+ be a fixed real number and we will prove the trace estimates for C+a+ .

By definition, we have S+t,u+ = ∂ 

[u+,+∞)
t and C+u+ =

⋃
0≤τ≤t∗ S+τ,u+ . On each 
t ,

we will write S+t,a+ as a graph over (x1, x2) plane. We emphasize that (x1, x2, x3) is
the standard Cartesian coordinates system on 
t .

We claim that S+t,a+ ⊂ 
t is the following graph

S+t,a+ = {(x1, x2, x3) | x3 = η+(t, xh), xh = (x1, x2)} (2.17)

where η+ is defined by ∂tη+ + zh+ · ∇xhη+ = 1 + z3+ with η+|t=0 = a+ and zh+ =
(z1+, z2+). In fact, the equation for η+ is equivalent to ∂t (x3−η+)+Z+·∇(x3−η+) = 0.
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Therefore, it is easy to see that u+(t, x) = x3 − η+(t, xh)+ a+ and

C+a+ = {(t, x) | x3 = η+(t, xh), with η+(0, xh) = a+}.

To prove the lemma, we will first of all control the hypersurface measure on C+a+ :

dσ+ =
√

1+ |∇t,xhη+|2dx1dx2dt =
√

1+ |∇t,xh u+|2dx1dx2dt.

Since ∂t u+ + Z+ · ∇u+ = 0, we have

dσ+ =
√

1+ |Z+ · ∇u+|2 + |∇xh u+|2dx1dx2dt. (2.18)

By (2.2), for sufficiently small ε, we have |z+| ≤ Cε. By (2.1), we have |∇u+− e3| ≤
Cε. Therefore, we obtain that

√
2− Cε ≤

√
1+ |Z+ · ∇u+|2 + |∇xh u+|2 ≤

√
2+ Cε.

As a consequence, we have

∫
C+u+
| f |2dσ+ ≤ 4

∫ t

0

∫
R2

(
f (τ, x)

∣∣
x3=η+(τ,xh)

)2
dx1dx2dτ. (2.19)

We consider a change of coordinates on 
t :

(x1, x2, x3)→ (x̃1, x̃2, x̃3)

where the new coordinate x̃1 = x1, x̃2 = x2 and x̃3 = x3 − η+(t, xh). We define

f̃ (t, x̃) = f (t, x̃1, x̃2, x̃3 + η+(t, x̃1, x̃2)).

Hence,

f (t, x)|x3=η+(t,xh) = f̃ (t, x̃h, x̃3)|x̃3=0.

By the standard trace theorem, we have

‖ f̃ (t, x̃h, 0)‖L2(R2) � ‖ f̃ (t, x̃)‖H1(R3).

In view of (2.19), we have

∫
C+u+
| f |2dσ+ �

∫ t

0

(‖ f̃ (τ, x̃)‖2L2(R3)
+ ‖∇x̃ f̃ (τ, x̃)‖2L2(R3)

)
dτ. (2.20)
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We now change the (x̃1, x̃2, x̃3) coordinates back to (x1, x2, x3). Since ∂ x̃(x)
∂x

=
⎛
⎝ 1 0 0

0 1 0
−∂1η+ −∂2η+ 1

⎞
⎠, the inverse Jacobian matrix reads as

(
∂ x̃(x)
∂x

)−1 =
⎛
⎝ 1 0 0

0 1 0
∂1η+ ∂2η+ 1

⎞
⎠ . As a result, we have det

(
∂ x̃(x)
∂x

) = 1. We also remark that

∇x̃ =
(

∂ x̃(x)
∂x

)−T∇x .

Because det
(

∂ x̃(x)
∂x

) = 1, we have

‖ f̃ (τ, x̃)‖2L2(R3)
= ‖ f (τ, x)‖2L2(R3)

.

Furthermore, we have

‖∇x̃ f̃ (τ, x̃)‖2L2(R3)
= ∥∥(∂ x̃(x)

∂x

)−T∇x f (τ, x)∥∥2
L2(R3)

≤ ‖∇x f (τ, x)‖2L2(R3)
+ ∥∥((∂ x̃(x)

∂x

)−T − I
)∇x f (τ, x)∥∥2

L2(R3)

≤ (1+ ‖∇hη+‖2L∞(R2)

)‖∇x f (τ, x)‖2L2(R3)

= (1+ ‖∇hu+‖2L∞(R2)

)‖∇x f (τ, x)‖2L2(R3)
.

By (2.1), we have

‖∇x̃ f̃ (τ, x̃)‖2L2(R3)
� ‖∇x f (τ, x)‖2L2(R3)

.

Combining all the estimates with (2.20), this completes the proof of lemma. ��

2.3 Energy Estimates for Linear Equations

We start by deriving energy identities for the following linear system of equations:

∂t f+ + Z− · ∇ f+ = ρ+,

∂t f− + Z+ · ∇ f− = ρ−.
(2.21)

We emphasize that Z+ and Z− are divergence-free vector fields.
We consider two weight functions λ+ and λ− defined on [0, t∗] × R

3. They will
be determined later on in the paper. We require that

L+λ− = 0, L−λ+ = 0.

We start with the estimates on f− which corresponds to the right-traveling Alfvén
waves. By multiplying (or taking inner product with) λ− f− to the second equation in
(2.21), we have
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1

2
λ−∂t

(| f−|2)+ 1

2
λ−(Z+ · ∇)

(| f−|2) = λ− f− · ρ−. (2.22)

By the definition of L+, the left hand side can be rewritten as 1
2λ−L+

(| f−|2). In view
of the fact that L+λ− = 0, it again can be reformulated as 1

2 L+
(
λ−| f−|2

)
.

We use d̃iv to denote the divergence of R
4 with respect to the standard Euclidean

metric. Since div Z+ = 0, therefore, d̃iv L+ = 0. We integrate equation (2.22) on

W
[u1+,u2+]
t . According to the Stokes formula, the left hand side of the resulting equation

yields

C+
u1
+ C+

u2
+

Σ
[u1

+,u2
+]

t

Σ
[u1

+,u2
+]

0

W
[u1

+,u2
+]

t

T

−T

ν+
1

ν+
2

Σ
[u1

+,u2
+]

τ

τ ∈ [0, t]

1

2

∫∫
W

[
u1+,u2+

]
t

L+
(
λ−| f−|2

)
dxdτ

= 1

2

∫∫
W

[
u1+,u2+

]
t

d̃iv
(
λ−| f−|2L+

)
dxdτ − 1

2

∫∫
W
[u1+,u2+]
t

λ−| f−|2d̃iv L+dxdτ

︸ ︷︷ ︸
d̃iv L+=0 ⇒ This term is 0.

Stokes= 1

2

∫



[
u1+,u2+

]
t

λ−| f−|2〈L+, T 〉dx − 1

2

∫



[
u1+,u2+

]
0

λ−| f−|2〈L+, T 〉dx

+ 1

2

∑
k=1,2

∫
C+
uk+

λ−| f−|2 〈L+, ν+k 〉︸ ︷︷ ︸
L+ is tangential to C+

uk+
⇒This term is 0

dσ+.

(2.23)
Finally, we obtain by using 〈L+, T 〉 = 1 that

∫



[
u1+,u2+

]
t

λ−| f−|2dx =
∫




[
u1+,u2+

]
0

λ−| f−|2dx + 2
∫ t

0

∫



[
u1+,u2+

]
τ

λ− f− · ρ− dxdτ.

(2.24)
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We now derive the estimates for f+ in W
[u1+,u2+]
t . In view of the facts that L− =

T + Z− and L−λ+ = 0, by taking inner product with λ+ f+ for the first equation in
(2.21), we obtain

1

2
L−
(
λ+| f+|2

) = λ+ f+ · ρ+. (2.25)

We integrate equation (2.25) on W
[u1+,u2+]
t . Similar to the previous calculation, by

virtue of Stokes formula and the fact that div Z− = 0, the left hand side of (2.25)
gives

1

2

∫∫
W

[
u1+,u2+

]
t

L−
(
λ+| f+|2

)
dxdτ

= 1

2

∫∫
W

[
u1+,u2+

]
t

d̃iv
(
λ+| f+|2L−

)
dxdτ − 1

2

∫∫
W

[
u1+,u2+

]
t

λ+| f+|2d̃iv L− dxdτ

︸ ︷︷ ︸
d̃iv L−=0 ⇒ This term is 0.

Stokes= 1

2

∫



[
u1+,u2+

]
t

λ+| f+|2dx − 1

2

∫



[
u1+,u2+

]
0

λ+| f+|2dx

+ 1

2

∑
k=1,2

∫
C+
uk+

λ+| f+|2〈L−, ν+k 〉dσ+.

Finally, we obtain

∫



[
u1+,u2+

]
t

λ+| f+|2dx +
∫
C+
u1+

λ+| f+|2〈L−, ν+1 〉dσ+

=
∫




[
u1+,u2+

]
0

λ+| f+|2dx +
∫
C+
u2+

λ+| f+|2〈L−,−ν+2 〉dσ+

+ 2
∫ t

0

∫



[
u1+,u2+

]
τ

λ+ f+ · ρ+ dxdτ.

(2.26)

Similarly, on W
[u1−,u2−]
t , we have

∫



[
u1−,u2−

]
t

λ+| f+|2dx =
∫




[
u1−,u2−

]
0

λ+| f+|2dx + 2
∫ t

0

∫



[
u1−,u2−

]
τ

λ+ f+ · ρ+ dxdτ.

(2.27)
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and ∫



[
u1−,u2−

]
t

λ−| f−|2dx +
∫
C−
u2−

λ−| f−|2〈L+, ν−2 〉dσ−

=
∫




[
u1−,u2−

]
0

λ−| f−|2dx +
∫
C−
u1−

λ−| f−|2〈L+,−ν−1 〉dσ−

+ 2
∫ t

0

∫



[
u1−,u2−

]
τ

λ− f− · ρ− dxdτ.

(2.28)

Under the bootstrap ansatz (2.1) and (2.2), we study the energy estimates for the
following viscous linear system:

∂t f+ + Z− · ∇ f+ − μ� f+ = ρ+,

∂t f− + Z+ · ∇ f− − μ� f− = ρ−,
(2.29)

where Z+ and Z− are divergence free.

Proposition 2.1 For all weight functions λ± with the properties L±λ∓ = 0, we have

sup
0≤τ≤t

∫

τ

λ±| f±|2dx + 1

2
sup
u±

∫
C±u±

λ±| f±|2dσ± + μ

∫ t

0

∫

τ

λ±|∇ f±|2dxdτ

≤ 2
∫


0

λ±| f±|2dx+4
∫ t

0

∫

τ

λ±| f±||ρ±|dxdτ+μ

∫ t

0

∫

τ

|∇λ±|2
λ±

| f±|2dxdτ

+ 2μ2 sup
u±

∫
C±u±

λ±|∇ f±|2dσ±. (2.30)

We remark that except for the coefficients of the first terms in the first and second
line of (2.30), the exactly numerical constants are irrelevant to the rest of the proof.

Proof We only give the estimates for f+. The estimates on f− can be derived in the
same manner.

By setting u1− = −∞ and u2− = ∞ in (2.27), we have

1

2

∫

t

λ+| f+|2dx −μ

∫ t

0

∫

τ

� f+ · λ+ f+dxdτ

︸ ︷︷ ︸
the viscosity term

= 1

2

∫

0

λ+| f+|2dx +
∫ t

0

∫

τ

λ+ f+ · ρ+dxdτ.
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Integrating by parts, we can deal with the viscosity term as follows:

Viscosity term =μ

∫ t

0

∫

τ

λ+|∇ f+|2dxdτ + μ

∫ t

0

∫

τ

∂iλ+ f+ · ∂i f+dxdτ

︸ ︷︷ ︸
Cauchy-Schwarz

≥μ

∫ t

0

∫

τ

λ+|∇ f+|2dxdτ − (1

2
μ

∫ t

0

∫

τ

λ+|∇ f+|2dxdτ

+ 1

2
μ

∫ t

0

∫

τ

|∇λ+|2
λ+

| f+|2dxdτ
)

= 1

2
μ

∫ t

0

∫

τ

λ+|∇ f+|2dxdτ − 1

2
μ

∫ t

0

∫

τ

|∇λ+|2
λ+

| f+|2dxdτ.

Therefore, we obtain

∫

t

λ+| f+|2dx + μ

∫ t

0

∫

τ

λ+|∇ f+|2dxdτ

≤
∫


0

λ+| f+|2dx + 2
∫ t

0

∫

τ

λ+ f+ · ρ+dxdτ + μ

∫ t

0

∫

τ

|∇λ+|2
λ+

| f+|2dxdτ.

(2.31)
By setting u1+ = u+ and u2+ = ∞ in (2.28), we have

∫


[u+,+∞)
t

λ+| f+|2dx +
∫
C+u+

λ+| f+|2〈L−, ν+〉dσ+
︸ ︷︷ ︸

I I

−2μ

∫∫
W
[u+,+∞)
t

� f+ · λ+ f+dxdτ

︸ ︷︷ ︸
I

=
∫



[u+,+∞)

0

λ+| f+|2dx + 2
∫∫

W
[u+,+∞)
t

λ+ f+ · ρ+dxdτ, (2.32)

where L− = (1, Z1−, Z2−, Z3−) and ν+ = − (∂t u+,∇u+)√
|∂t u+|2+|∇u+|2

. After an integration by

parts, the viscosity term I can be written as

I = 2μ

∫∫
W
≥u+
t

λ+|∇ f+|2dxdτ

︸ ︷︷ ︸
I1

+ 2μ

∫∫
W
≥u+
t

∂iλ+ f+ · ∂i f+dxdτ

︸ ︷︷ ︸
I2

−2μ

∫
C+u+

λ+ f+ ·
3∑

i=1

νi+∂i f+dσ+
︸ ︷︷ ︸

I3

,

where ν+ = (ν0+, ν1+, ν2+, ν3+).
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We can bound I2 and I3 by Cauchy-Schwarz inequality:

|I2| ≤ μ

∫∫
W
[u+,+∞)
t

λ+|∇ f+|2dxdτ + μ

∫∫
W
[u+,+∞)
t

|∇λ+|2
λ+

| f+|2dxdτ,

|I3| ≤ 1

2

∫
C+u+

λ+| f+|2dσ+ + 2μ2
∫
C+u+

λ+|∇ f+|2dσ+.

Hence,

I ≥ μ

∫∫
W
[u+,∞)
t

λ+|∇ f+|2dxdτ − 1

2

∫
C+u+

λ+| f+|2dσ+

− μ

∫∫
W
[u+,∞)
t

|∇λ+|2
λ+

| f+|2dxdτ − 2μ2
∫
C+u+

λ+|∇ f+|2dσ+.

(2.33)

To bound the term I I in (2.32), we use Lemma 2.5. Indeed, since 〈L−, ν+〉 ∼ 1, we
have

I I =
∫
C+u+

λ+| f+|2〈L−, ν+〉dσ+ ∼
∫
C+u+

λ+| f+|2dσ+,

Together with (2.31), (2.32) and (2.33), this completes the proof of the proposition. ��
A byproduct of the proof is the energy inequality (2.31). Since it will be used many

times to control the viscosity terms, we restate the estimates in the following lemma:

Corollary 2.10 For all weight functions λ± with the properties L±λ∓ = 0, we have

∫

t

λ±| f±|2dx + μ

∫ t

0

∫

τ

λ±|∇ f±|2dxdτ

≤
∫


0

λ±| f±|2dx + 2
∫ t

0

∫

τ

λ± f± · ρ±dxdτ + μ

∫ t

0

∫

τ

|∇λ±|2
λ±

| f±|2dxdτ.

(2.34)

By the trace estimates in Lemma 2.9, we can indeed remove the last flux term in (2.30):

Corollary 2.11 We make an extra assumption that μ << 1. For all weight functions
λ± with the properties L±λ∓ = 0, |∇λ±| ≤ |λ±| and |∇2λ±| ≤ |λ±|, we have

sup
0≤τ≤t

∫

τ

λ±| f±|2dx + 1

2
sup
u±

∫
C±u±

λ±| f±|2dσ± + 1

2
μ

∫ t

0

∫

τ

λ±|∇ f±|2dxdτ

≤ 2
∫


0

λ±| f±|2dx + 4
∫ t

0

∫

τ

λ±| f±||ρ±|dxdτ

+ 2μ

∫ t

0

∫

τ

|∇λ±|2
λ±

| f±|2dxdτ + 2μ2
∫ t

0

∫

τ

λ±|∇2 f±|2dxdτ.

(2.35)
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Proof According to Lemma 2.9, we have

μ2
∫
C+u+

λ+|∇ f+|2dσ+ � μ2
∫ t

0
‖√λ+∇ f+‖2H1(
τ )

dτ

= μ2
∫ t

0

∫

τ

λ+|∇ f+|2dxdτ

︸ ︷︷ ︸
I

+μ2
∫ t

0
‖∇(√λ+∇ f+

)‖2L2(
τ )︸ ︷︷ ︸
I I

dτ.

We can ignore the term I . The reason is as follows: Since μ << 1, the term I will be
absorbed by the viscosity term on the left hand side of (2.30).

We bound the term I I as follows:

I I ≤ ‖√λ+∇2 f+‖2L2(
τ )
+ ‖(∇√λ+)∇ f+‖2L2(
τ )︸ ︷︷ ︸

I I1

.

We can ignore the term I I1. The reason is as follows: since |∇√λ+|2 = |∇λ+|2
λ+ and

μ << 1, the contribution of the I I1 term can be absorbed by the viscosity term on
the left hand side of (2.30).

Then, the corollary follows immediately from the above analysis. ��

2.4 Energy Estimates on the Lowest Order Terms

In this section, we will apply Proposition 2.1 to the system

∂t z+ + Z− · ∇z+ − μ�z+ = −∇ p,
∂t z− + Z+ · ∇z− − μ�z− = −∇ p. (2.36)

The weight functions λ± will be chosen as
(

log〈w∓〉
)4. We remark that by choosing

the constant weights λ± = 1, we have the energy identities:

∫

t

|z±|2dx + 2μ

∫ t

0

∫

τ

|∇z±|2dxdτ =
∫


0

|z±|2dx . (2.37)

In particular, it implies that

μ

∫ t

0

∫

τ

|∇z±|2dxdτ ≤ 1

2

∫

0

|z±|2dx .

This is the cornerstone of all the estimates in this work.
In this section, our task is to prove the following proposition concerning the lowest

order energy estimate.

Proposition 2.12 Under the bootstrap ansatz (2.1) (or (2.6)) and
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sup
0≤l≤2

El∓ ≤ 2C1ε
2,

for ε sufficiently small, there holds

E±(t)+ 1

4
sup
u±

F±(z±)+ 1

2
D±(t) � E±(0)+ sup

0≤l≤2

(
El∓
) 1

2 sup
u±

F0±(∇z±)+2μD0±(t).

(2.38)

2.4.1 Estimates on the Pressure

The current subsection is devoted to derive the following estimates concerning the
pressure term ∇ p:

Proposition 2.13 Under the ansatz (2.1), for all t ∈ [0, t∗], we have
∣∣∣
∫ t

0

∫

τ

(
log〈w∓〉

)4|z±||∇ p|dxdτ

∣∣∣ �
2∑

k=0

(
Ek∓
) 1

2
(
sup
u±

F±(z±)+ sup
u±

F0±(∇z±)
)
.

(2.39)

Proof We only derive bound on I = ∣∣ ∫ t0 ∫
τ

(
log〈w−〉

)4|z+||∇ p|dxdτ
∣∣. To do this,

we start with a decomposition on ∇ p. Since div z± = 0, by taking the divergence of
the first equation of (2.36), we obtain

−�p = ∂i
(
z j+∂ j z

i−
)
.

Therefore, on each time slice 
τ , we have

∇ p(τ, x) = − 1

4π
∇
∫

R3

1

|x − y|∂i (z
j
+∂ j z

i−)(τ, y)dy.

We choose a smooth cut-off function θ(r) so that

θ(r) =
{

1, for |r | ≤ 1,

0, for |r | ≥ 2.

After a possible integration by parts, we can split ∇ p as

∇ p(τ, x) =− 1

4π

∫
R3
∇ 1

|x − y| · θ(|x − y|) · (∂i z j−∂ j z
i+
)
(τ, y)dy

︸ ︷︷ ︸
A1(τ,x)

+ 1

4π

∫
R3

∂i

(
∇ 1

|x − y| ·
(
1− θ(|x − y|))) · (z j+∂ j z

i−
)
(τ, y)dy

︸ ︷︷ ︸
A2(τ,x)

.

(2.40)
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According to this decomposition, we split I into two parts:

I =
∫ t

0

∫

τ

(
log〈w−〉

)4|z+||A1|dxdτ

︸ ︷︷ ︸
I1

+
∫ t

0

∫

τ

(
log〈w−〉

)4|z+||A2|dxdτ

︸ ︷︷ ︸
I2

.

We deal with I1 first. In fact, we have

I1 =
∫ t

0

∫

τ

(
log〈w−〉

)2
〈w+〉 1

2
(

log〈w+〉
) |z+| · ( log〈w−〉

)2〈w+〉 1
2
(

log〈w+〉
)|A1|dxdτ

≤
∫ t

0

∥∥
(

log〈w−〉
)2

〈w+〉 1
2
(

log〈w+〉
) z+∥∥L2(
τ )

∥∥( log〈w−〉
)2〈w+〉 1

2
(

log〈w+〉
)
A1
∥∥
L2(
τ )

dτ.

By the definition of A1, we have

(
log〈w−〉

)2〈w+〉 1
2 log〈w+〉|A1(τ, x)|

≤
∫
|y−x |≤2

weight functions with x as variables︷ ︸︸ ︷{(
log〈w−〉

)2〈w+〉 1
2 log〈w+〉

}
(t, x) |∇z−(τ, y)||∇z+(τ, y)|

|x − y|2 dy. (2.41)

The following auxiliary lemma allows us to switch the x variables in the above
functions to y variables. ��
Lemma 2.14 For |x − y| ≤ 2, R ≥ 100, we have

〈w±〉(τ, x) ≤
√

2〈w±〉(τ, y), log〈w±〉(τ, x) ≤ 2 log〈w±〉(τ, y). (2.42)

Proof In fact, by the geometric ansatz (2.1) and the mean value theorem, we have

|x±i (τ, x)| ≤ |x±i (τ, y)| + |x±i (τ, x)− x±i (τ, y)|
≤ |x±i (τ, y)| + |x − y| sup |∇x±i |
≤ |x±i (τ, y)| + 4,

where i = 1, 2, 3 and x±3 = u±. Thus, for R ≥ 100, we have

〈w±〉(τ, x) =
(
R2 + |x±|2) 1

2 (τ, x) ≤ √2
(
R2 + |x±|2) 1

2 (τ, y) = √2〈w±〉(τ, y)

This proves the first inequality in (2.42). For the second one, we have

log〈w±〉(τ, x) ≤ log(
√

2)+ log〈w±〉(τ, y) ≤ 2 log〈w±〉(τ, y).

This ends the proof of the lemma. ��
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We return to (2.41) and we now have

(
log〈w−〉

)2〈w+〉 1
2 log〈w+〉|A1(τ, x)|

≤ 8
∫
|y−x |≤2

(
log〈w−〉

)2〈w+〉 1
2 log〈w+〉(t, y)|∇z−(τ, y)||∇z+(τ, y)|

|x − y|2 dy

≤ 8‖〈w+〉(log〈w+〉)2∇z−‖L∞
∫
|x−y|≤2

1

|x − y|2
(

log〈w−〉
)2|∇z+(τ, y)|

〈w+〉 1
2 log〈w+〉

dy

(2.8)
�

2∑
k=0

(
Ek−(τ )

) 1
2

∫
|x−y|≤2

1

|x − y|2
(

log〈w−〉
)2|∇z+(τ, y)|

〈w+〉 1
2 log〈w+〉

dy. (2.43)

By Young’s inequality, we obtain

∥∥( log〈w−〉
)2〈w+〉 1

2 log〈w+〉A1(τ, x)
∥∥
L2(
τ )

�
2∑

k=0

(
Ek−(τ )

) 1
2
∥∥ 1

|x |2
∥∥
L1(|x |≤2)

∥∥∥∥
(

log〈w−〉
)2∇z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

�
2∑

k=0

(
Ek−(τ )

) 1
2

∥∥∥∥
(

log〈w−〉
)2∇z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

.

(2.44)

Therefore, we can bound I1 as follows:

I1 �
2∑

k=0

(
Ek−(τ )

) 1
2

∫ t

0

∥∥∥∥
(

log〈w−〉
)2
z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

∥∥∥∥
(

log〈w−〉
)2∇z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

dτ

�
2∑

k=0

(
Ek−(τ )

) 1
2
(∫ t

0

∫

τ

(
log〈w−〉

)4|z+(τ, x)|2
〈w+〉

(
log〈w+〉

)2 dxdτ

︸ ︷︷ ︸
I11

+
∫ t

0

∫

τ

(
log〈w−〉

)4|∇z+(τ, x)|2
〈w+〉

(
log〈w+〉

)2 dxdτ

︸ ︷︷ ︸
I12

)
. (2.45)

We will use the flux to bound I11 and I12. For this purpose, we consider the following
change of coordinates on R

3 × [0, t∗):

�+ : R3 × [0, t∗)→ R
3 × [0, t∗),

(x1, x2, x3, τ ) �→ (x1, x2, u+, t) = (x1, x2, u+(τ, x), t).

In view of the geometric ansatz (2.1), it is straightforward to see that the Jacobian
d�+ of �+ satisfies

det(d�+) = ∂3u+ = 1+ O(ε). (2.46)
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Therefore, to compute the integral I11, up to the Jacobian factor coming from the
change of coordinates, we use (x1, x2, u+, t) as reference coordinates. As a result, by
using the obtained result (2.18) that dσ+ = (

√
2+ O(ε))dx1dx2dt , we have

I11 �
∫
u+

(∫
C+u+

(
log〈w−〉

)4|z+(τ, x)|2
〈w+〉

(
log〈w+〉

)2 dσ+

)
du+

≤
∫
u+

(∫
C+u+

(
log〈w−〉

)4|z+(τ, x)|2
(R2 + |u+|2) 1

2
(

log((R2 + |u+|2) 1
2 )
)2 dσ+

)
du+.

(2.47)

Since u+ is constant along C+u+ , we then have

I11 ≤ sup
u+

[ ∫
C+u+

(
log〈w−〉

)4|z+|2dσ+
] ∫

R

1

(R2 + |u+|2) 1
2
(

log((R2 + |u+|2) 1
2 )
)2

︸ ︷︷ ︸
integrable!

du+

� sup
u+

F+(z+) (2.48)

For I12, proceeding exactly in the same manner as for (2.47) and (2.48), we obtain

I12 � sup
u+

[ ∫
C+u+

(
log〈w−〉

)4|∇z+|2dσ+
]
= sup

u+
F0+(∇z+).

We then conclude that

I1 �
2∑

k=0

(
Ek−
) 1

2
(
sup
u+

F+(z+)+ sup
u+

F0+(∇z+)
)

(2.49)

We turn to the estimate on I2. We first split A2(t, x) as

|A2(τ, y)| �
∫

R3

1− θ(|x − y|)
|x − y|3 |z+(τ, y)||∇z−(τ, y)|dy

︸ ︷︷ ︸
A21(t,x)

+
∫

R3

θ ′(|x − y|)
|x − y|2 |z+(τ, y)||∇z−(τ, y)|dy

︸ ︷︷ ︸
A22(t,x)

.

(2.50)

Since the support of θ ′ is in [1, 2], the contribution of the A22(t, x) term to I2 is
essentially the same as the contribution of A1(t, x) to I1, i.e.,

∫ t

0

∫

τ

(log〈w−〉)4|z+||A22|dxdτ �
2∑

k=0

(
Ek−
) 1

2 sup
u+

F+(z+).
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Therefore,

I2 �
2∑

k=0

(
Ek−
) 1

2 sup
u+

F+(z+)+
∫ t

0

∫

τ

(
log〈w−〉

)4|z+||A21|dxdτ

︸ ︷︷ ︸
I21

.

To bound I21, we first prove the following lemma concerning the weights:

Lemma 2.15 For |y − x | ≥ 1, R ≥ 100, we have

〈w±〉(τ, x) ≤ 2|x− y|〈w±〉(τ, y), log〈w±〉(τ, x) ≤ 4 log〈w±〉(τ, y) log
(
2|y− x |).

(2.51)

Proof By (2.7) and mean value theorem, we have

〈w±〉(τ, x) ≤ 〈w±〉(τ, y)+ 2|x − y|
≤ 2|x − y|〈w±〉(τ, y).

Therefore,

log〈w±〉(τ, x) ≤ log
(
2|x − y|)+ log〈w±〉(τ, y) ≤ 4 log

(
2|x − y|) log〈w±〉(τ, y).

This completes the proof of the lemma. ��
By the above Lemma 2.15, we have

I21 =
∫ t

0

∫

τ

(
log〈w−〉(τ, x)

)2|z+(τ, x)|
[(

log〈w−〉(τ, x)
)2|A21(τ, x)|

]
dxdτ

�
∫ t

0

∫

τ

(
log〈w−〉

)2|z+|
[ ∫
|y−x |≥1

(
log(2|x − y|))2
|x − y|3

(
log〈w−〉(τ, y)

)2|z+(τ, y)||∇z−(τ, y)|dy
]

︸ ︷︷ ︸
A3(τ,x)

dxdτ.

We now rewrite A3(τ, x), i.e., the term in the bracket in last line, as follows

∫
|y−x |≥1

(
log(2|x − y|))2
|x − y|3

(
log〈w−〉(τ, y)

)2
〈w+〉(τ, y) 1

2 log〈w+〉(τ, y)
|z+(τ, y)|

〈w+〉(τ, y)
(

log〈w+〉(τ, y)
)2

〈w+〉(τ, y) 1
2 log〈w+〉(τ, y)︸ ︷︷ ︸
D

|∇z−(τ, y)|dy
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We will change the denominator D, which is a function in y, to a function in x so that
we can move it to the outside of the integral. In fact, according to (2.51), we have

1

〈w+〉(τ, y) 1
2 log〈w+〉(τ, y)

� |x − y| 12 log(2|x − y|)
〈w+〉(τ, x) 1

2 log〈w+〉(τ, x)
.

Therefore,

I21 �
∫ t

0

∫

τ

(
log〈w−〉

)2|z+|
〈w+〉 1

2 log〈w+〉
·

·
∫
|y−x |≥1

(
log(2|x − y|))3
|x − y| 52

(( log〈w−〉
)2|z+|

〈w+〉 1
2 log〈w+〉

· 〈w+〉
(

log〈w+〉
)2|∇z−|dy

)
(τ, y)

︸ ︷︷ ︸
A4(t,x)

dxdτ

�
∫ t

0

∥∥∥∥
(

log〈w−〉
)2|z+|

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

‖A4(t, x)‖L2(
τ )dτ.

For A4(t, x), according to the Young’s inequality, we have

‖A4(t, x)‖L2(
τ ) =
∥∥∥∥ (log(2|x |))3

|x | 52
χ|x |≥1

∗
((

log〈w−〉
)2|z+|

〈w+〉 1
2 log〈w+〉

· 〈w+〉
(

log〈w+〉
)2|∇z−|

)∥∥∥∥
L2(
τ )

≤
∥∥∥∥ (log(2|x |))3

|x | 52
χ|x |≥1

∥∥∥∥
L2(
τ )

∥∥∥∥
(

log〈w−〉
)2|z+|

〈w+〉 1
2 log〈w+〉

· 〈w+〉
(

log〈w+〉
)2|∇z−|

∥∥∥∥
L1(
τ )

�
∥∥∥∥
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

z+
∥∥∥∥
L2(
τ )

∥∥〈w+〉( log〈w+〉
)2∇z−∥∥L2(
τ )

�
(
E0−(τ )

) 1
2

∥∥∥∥
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

z+
∥∥∥∥
L2(
τ )

.

(2.52)
Hence,

I21 �
(
E0−
) 1

2

∫ t

0

∥∥∥∥
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

z+
∥∥∥∥

2

L2(
τ )

dτ.
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The righthand side is exactly the same as for I11, so it is bounded by
(
E0−
) 1

2 supu+
F+(z+). As a result, we also have

I2 �
2∑

k=0

(
Ek−
) 1

2 sup
u+

F+(z+). (2.53)

Two inequalities (2.49) and (2.53) complete the proof of the proposition. ��

2.4.2 Estimates on the Viscosity Terms

The current subsection is devoted to derive the following estimates on the viscosity
term:

Proposition 2.16 Under the ansatz (2.1), for all t ∈ [0, t∗] and R ≥ 100, we have

μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ ≤ 1000
(
E±(0)+

2∑
l=0

(
El∓
) 1

2
(
F±+F0±

))
. (2.54)

Proof We will use (2.34) twice by induction. Indeed, for the kth-time, we will choose
the weight function λ± = (log〈w∓〉)2k , where k = 1, 2. In this situation, (2.34) shows
that

∫

t

(log〈w∓〉)2k |z±|2dx + μ

∫ t

0

∫

τ

(log〈w∓〉)2k |∇z±|2dxdτ

≤
∫


0

(log〈w∓〉)2k |z±|2dx + 2
∫ t

0

∫

τ

∣∣(log〈w∓〉)2k z±
∣∣∣∣∇ p∣∣dxdτ

+ μ

∫ t

0

∫

τ

|∇( log〈w∓〉
)2k |2

(log〈w∓〉)2k |z±|2dxdτ.

We only treat z+ and the estimates on z− can be derived in the same manner. Since
k ≤ 2, the first term on the righthand side are bounded by the initial data and the second
term can be bounded thanks to Proposition 2.13 from last subsection. Therefore, we
have

μ

∫ t

0

∫

τ

(log〈w−〉)2k |∇z+|2dxdτ ≤ E+(0)+
2∑

l=0

(
El−
) 1

2
(
F+ + F0+

)

+ μ

∫ t

0

∫

τ

|∇( log〈w−〉
)2k |2

(log〈w−〉)2k |z+|2dxdτ.

According to (2.7) (and its immediate consequences in the Lemma), we see that

|∇( log〈w−〉
)2k |2

(log〈w−〉)2k ≤ 16k2

(
log〈w−〉

)2(k−1)

〈w−〉2 .

123



MHD and Alfvén Waves Page 53 of 105 5

Therefore, we have

μ

∫ t

0

∫

τ

(log〈w−〉)2k |∇z+|2dxdτ ≤ E+(0)+
2∑

l=0

(
El−
) 1

2
(
F+ + F0+

)

+16k2μ

∫ t

0

∫

τ

(
log〈w−〉

)2(k−1)

〈w−〉2 |z+|2dxdτ. (2.55)

Step 1. k = 1. It suffices to estimate
∫ t

0

∫

τ

|z+|2
〈w−〉2 dxdτ in (2.55). Noticing that

〈w−〉 = (R2 + |x−|2)2 and x−(t, ψ−(t, y)) = y, we will use Lagrangian coordi-
nates y. Therefore, since det

( ∂ψ−(t,y)
∂y

) = 1, we have

∫ t

0

∫

τ

|z+|2
〈w−〉2 dxdτ =

∫ t

0

∫

0

|z+(τ, ψ−(t, y))|2
R2 + |y|2 dydτ.

Now by using the Hardy’s inequality1 on each 
0, we obtain

∫ t

0

∫

τ

|z+|2
〈w−〉2 dxdτ ≤ 4

∫ t

0

∫

0

|∇yz+(τ, ψ−(t, y))|2dydτ.

On the other side, we have

∇yz+(τ, ψ−(t, y)) = (∇x z+)|x=ψ−(t,y)
∂ψ−(t, y)

∂y
.

Then changing back to the Eulerian coordinates on 
τ and using (2.6) with small ε,
we obtain

μ

∫ t

0

∫

τ

|z+|2
〈w−〉2 dxdτ ≤ 5μ

∫ t

0

∫

τ

|∇z+(τ, x)|2dxdτ

(2.37)≤ 5
∫


0

|z+|2dτ ≤ 5E+(0)

2(log R)4 .

Here we used the most basic energy identity (2.37).
Finally, going back to (2.55), taking R ≥ 100, we obtain

μ

∫ t

0

∫

τ

(log〈w−〉)2|∇z+|2 ≤ 7

6
E+(0)+

2∑
l=0

(
El−
) 1

2
(
F+ + F0+

)
. (2.56)

1 On R
3, the Hardy’s inequality is

∫
R3

| f (x)|2
|x |2 dx ≤ 4

∫
R3
|∇ f (x)|2dx .
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Step 2. k = 2. It suffices to estimate
∫ t

0

∫

τ

(log〈w−〉)2|z+|2
〈w−〉2 dxdτ in (2.55). As we have

observed in Step 1, we can freely switch the Eulerian coordinates x to Lagrangian
coordinates y. We have

μ

∫ t

0

∫

τ

(log〈w−〉)2|z+|2
〈w−〉2 dxdτ

det
(

∂ψ−
∂y

)
=1=

μ

∫ t

0

∫

0

(log(R2 + |y|2) 1
2 )2|z+(τ, ψ−(τ, y))|2

R2 + |y|2 dydτ

Hardy≤ 4μ

∫ t

0

∫

0

∣∣∣∇y

[
log(R2 + |y|2) 1

2 z+(τ, ψ−(τ, y))
]∣∣∣2dydτ

≤ 8μ

∫ t

0

∫

0

(∣∣z+(τ, ψ−(τ, y))
∣∣2

R2 + |y|2
+ ( log(R2 + |y|2) 1

2
)2∣∣∇yz+(τ, ψ−(τ, y))

∣∣2)dydτ

≤ 8μ

∫ t

0

∫

τ

( |z+|2
〈w−〉2 +

5

4
(log〈w−〉)2|∇z+|2

)
dxdτ.

Since both terms in the last line have been estimated in Step 1, we obtain that

μ

∫ t

0

∫

τ

(log〈w−〉)2|z+|2
〈w−〉2 dxdτ ≤ 13E+(0)+ 10

2∑
l=0

(
El−
) 1

2
(
F+ + F0+

)
. (2.57)

In view of (2.55) and (2.57), we obtain

μ

∫ t

0

∫

τ

(log〈w−〉)4|∇z+|2dxdτ ≤ 1000
(
E+(0)+

2∑
l=0

(
El−
) 1

2
(
F+ + F0+

))
.

(2.58)
This completes the proof. ��

2.4.3 Completion of the Estimates on Lowest Order Terms

In this subsection, we will end the proof of Proposition 2.12.
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Proof of Proposition 2.12 We specialize (2.35) to the current situation: f± = z±,
ρ± = ∇ p and λ± =

(
log〈w∓〉

)4. Hence,

∫

t

(
log〈w∓〉

)4|z±|2dx + 1

2
sup
u±

∫
C±u±

(
log〈w∓〉

)4|z±|2dσ±

+ 1

2
μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ ≤ 2
∫


0

(
log〈w∓〉

)4|z±|2dx
+ 4

∫ t

0

∫

τ

(
log〈w∓〉

)4|z±||∇ p|dxdτ + 128μ

∫ t

0

∫

τ

(log〈w∓〉)2

〈w∓〉2 |z±|2dxdτ

+ 2μ2
∫ t

0

∫

τ

(
log〈w∓〉

)4|∇2z±|2dxdτ.

The second and third terms have been controlled by (2.39) and (2.57) in the previous

two subsections (notice that for λ± =
(

log〈w∓〉
)4 we have |∇λ±|2

λ± ≤ 64 (log〈w∓〉)2

〈w∓〉2 ).

While the last term is controlled by 2μD0±(t). We then have

∫

t

(
log〈w∓〉

)4|z±|2dx + 1

2
sup
u±

∫
C±u±

(
log〈w∓〉

)4|z±|2dσ±

+ 1

2
μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ

� E±(0)+
2∑

l=0

(
El∓
) 1

2
(
F± + F0±

)+ 2μD0±(t).

In other words, if
∑2

l=0 E
l∓ ≤ 2C1ε

2 with ε sufficiently small, we have

E±(t)+ 1

4
sup
u±

F±(z±)+ 1

2
D±(t) � E±(0)+

2∑
l=0

(
El∓
) 1

2 F0± + 2μD0±(t).

This proves the proposition. ��

2.5 Energy Estimates for the First Order Terms

This section is devoted to derive energy estimates on ∇z±. For this purpose, we first
commute one derivative with (1.5) and we obtain

∂t∂z+ + Z− · ∇∂z+ − μ�∂z+ = −∂∇ p − ∂z− · ∇z+,

∂t∂z− + Z+ · ∇∂z− − μ�∂z+ = −∂∇ p − ∂z+ · ∇z−,

where ∂z± denotes for some ∂i z± with i = 1, 2, 3. The main result of this section is
stated as follows:
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Proposition 2.17 Assume that ‖z±‖L∞ ≤ 1
2 , R ≥ 100 and

sup
0≤l≤3

El∓ ≤ 2C1ε
2,

for ε sufficiently small. Then under the ansatz (2.1) (or (2.6)), for all t ∈ [0, t∗], we
have

E0±(t)+ sup
u±

F0±(∇z±)+ D0±(t) � E0±(0)+ sup
0≤l≤3

(
El∓
) 1

2 sup
u±

F1±( j±)

+ μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ + 2μD1±(t).
(2.59)

Remark 2.18 Thanks to (2.54), we can bounded the third term in the righthand side

of (2.59) by E±(0)+∑2
l=0

(
El∓
) 1

2 (F± + F0±). Then we obtain

E0±(t)+ sup
u±

F0±(∇z±)+ D0±(t) � E±(0)+ E0±(0)

+
3∑

l=0

(
El∓
) 1

2 sup
u±

(F±(z±)+ F1±( j±))+ 2μD1±(t). (2.60)

2.5.1 Estimates on the Pressure

The subsection is devoted to derive the following estimates concerning the pressure
p:

Proposition 2.19 Under the assumptions of Proposition 2.17, for all t ∈ [0, t∗], we
have

∣∣∣
∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇z±||∇2 p|dxdτ

∣∣∣

�
3∑

k=0

(
Ek∓
) 1

2
(
E0± + sup

u±

(
F0±(∇z±)+ F1±( j±)

))
. (2.61)

Proof We only derive bound on I = ∫ t0 ∫
τ
〈w−〉2

(
log〈w−〉

)4|∇z+||∇2 p|dxdτ . Sim-
ilar to the proof of Proposition 2.13, we choose the same cut-off function θ(r) and we
have

∂∇ p(τ, x) = − 1

4π

∫
R3

(
∂∇ 1

|x − y|
) · (∂i z j+∂ j z

i−
)
(τ, y)dy.
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We split ∂∇ p as

∂∇ p(τ, x) =− 1

4π

∫
R3

∂∇ 1

|x − y| · θ(|x − y|) · (∂i z j−∂ j z
i+
)
(τ, y)dy

︸ ︷︷ ︸
A1(τ,x)

− 1

4π

∫
R3

(
∂∇ 1

|x − y| ·
(
1− θ(|x − y|))) · (∂i z j+∂ j z

i−
)
(τ, y)dy

︸ ︷︷ ︸
A2(τ,x)

.

(2.62)
This gives the following decomposition for I :

I =
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+||A1|dxdτ

︸ ︷︷ ︸
I1

+
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+||A2|dxdτ

︸ ︷︷ ︸
I2

.

For I1, after an integration by parts, we first rewrite A1 as (to avoid the non-integrable
singularity 1

|x−y| )

A1 = 1

4π

∫
R3
∇ 1

|x − y| · ∂θ(|x − y|) · (∂i z j+∂ j z
i−
)
(τ, y)dy

︸ ︷︷ ︸
A11

+ 1

4π

∫
R3
∇ 1

|x − y| · θ(|x − y|) · (∂∂i z
j
+∂ j z

i−
)
(τ, y)dy

︸ ︷︷ ︸
A12

+ 1

4π

∫
R3
∇ 1

|x − y| · θ(|x − y|) · (∂i z j+∂∂ j z
i−
)
(τ, y)dy

︸ ︷︷ ︸
A13

.

(2.63)

We have

I1 =
∫ t

0

∫

τ

〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

|∇z+| · 〈w−〉
(

log〈w−〉
)2〈w+〉 1

2 log〈w+〉|A1|dxdτ

≤
3∑

k=1

∫ t

0

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

∇z+
∥∥∥∥
L2(
τ )

∥∥〈w−〉( log〈w−〉
)2〈w+〉 1

2

log〈w+〉A1k
∥∥
L2(
τ )

dτ.
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For A1k , since the integration is taken place for |y − x | ≤ 2, by (2.42), we have

〈w±〉(τ, x)
(

log〈w±〉(τ, x)
)2 � 〈w±〉(τ, y)

(
log〈w±〉(τ, y)

)2
.

In particular, it implies that

〈w−〉
(

log〈w−〉
)2〈w+〉 1

2 log〈w+〉|A1(τ, x)|

≤
2∑

l1,l2=1

∫
|y−x |≤2

〈w−〉(τ, y)
(

log〈w−〉(τ, y)
)2〈w+〉(τ, y) 1

2 log〈w+〉(t, y)|∇l1 z−(τ, y)||∇l2 z+(τ, y)|
|x − y|2 dy

≤
2∑

l1,l2=1

‖〈w+〉(log〈w+〉)2∇l1 z−‖L∞
∫
|x−y|≤2

1

|x − y|2
( 〈w−〉( log〈w−〉

)2|∇l2 z+|
〈w+〉 1

2 log〈w+〉
)
(τ, y)dy

(2.8)
�

3∑
l=0

(
El−
) 1

2

2∑
l2=1

∫
|x−y|≤2

1

|x − y|2
( 〈w−〉( log〈w−〉

)2|∇l2 z+|
〈w+〉 1

2 log〈w+〉
)
(τ, y)dy,

where (l1, l2) = (1, 1), (1, 2) or (2, 1). By Young’s inequality, we have

∥∥〈w−〉( log〈w−〉
)2〈w+〉 1

2 log〈w+〉A1(τ, x)
∥∥
L2(
τ )

�
3∑

l=0

(
El−
) 1

2
∥∥ 1

|x |2
∥∥
L1(|x |≤2)

2∑
l2=1

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2∇l2 z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

�
3∑

l=0

(
El−
) 1

2

2∑
l2=1

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2∇l2 z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

.

Therefore, thanks to Hölder inequality and div-curl lemma, we can bound I1 as follows:

I1 �
3∑

l=0

(
El−
) 1

2

∫ t

0

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2∇z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

2∑
l2=1

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2∇l2 z+

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

dτ

(2.16),Hölder
�

3∑
l=0

(
El−
) 1

2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+(τ, x)|2

〈w+〉
(

log〈w+〉
)2 dxdτ

+
3∑

l=0

(
El−
) 1

2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j+(τ, x)|2

〈w+〉
(

log〈w+〉
)2 dxdτ.

(2.64)
This is exactly the same situation as for (2.45) in the proof of Proposition 2.13. We
repeat the procedure to obtain

I1 �
3∑

l=0

(
El−
) 1

2 sup
u+

(
F0+(∇z+)+ F1+( j+)

)
. (2.65)

We move to the bound on I2. We first make the following observation: ��
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Lemma 2.20 For |x − y| ≥ 1, R ≥ 100, we have

〈w±〉(τ, x)
(

log〈w±〉(τ, x))2 ≤ 8〈w±〉(τ, y)
(

log〈w±〉(τ, y)
)2

+ 4|x − y|( log(4|x − y|))2. (2.66)

Proof To see this, we recall that by (2.7) and mean value theorem, we have

〈w±〉(τ, x) ≤ 〈w±〉(τ, y)+ 2|x − y|.

Therefore, we either have 1
2 〈w±〉(τ, x) ≤ 〈w±〉(τ, y) or 1

2 〈w±〉(τ, x) ≤ 2|x − y|.
If 1

2 〈w±〉(τ, x) ≤ 〈w±〉(τ, y), we have

〈w±〉(τ, x)
(

log〈w±〉(τ, x)
)2 ≤ 2〈w±〉(τ, y)

(
log
(
2〈w±〉(τ, y))

)2
≤ 4〈w±〉(τ, y)

((
log 2

)2 + ( log〈w±〉(τ, y)
)2)

≤ 8〈w±〉(τ, y) log
(〈w±〉(τ, y)).

If 1
2 〈w±〉(τ, x) ≤ 2|x − y|, we have

〈w±〉(τ, x)
(

log〈w±〉(τ, x)
)2 ≤ 4|x − y|( log

(
4|x − y|))2.

This completes the proof of the lemma. ��
According to the lemma, we have

I2 =
∫ t

0

∫

τ

〈w−〉(log〈w−〉)2|∇z+| · 〈w−〉(log〈w−〉)2|A2|dxdτ

�
∫ t

0

∫

τ

〈w−〉(log〈w−〉)2|∇z+|
∫
|x−y|≥1

1

|x − y|3 ·
(〈w−〉(log〈w−〉)2|∇z+||∇z−|

)
(τ, y)dy

︸ ︷︷ ︸
B1(τ,x)

dxdτ

︸ ︷︷ ︸
I21

+
∫ t

0

∫

τ

〈w−〉(log〈w−〉)2|∇z+|
∫
|x−y|≥1

(
log(4|x − y|))2
|x − y|2 · (|∇z+||∇z−|)(τ, y)dy

︸ ︷︷ ︸
B2(τ,x)︸ ︷︷ ︸

I22

.

To deal with I21, we bound B1(τ, x) by

∫
|y−x |≥1

1

|x − y|3
〈w−〉

(
log〈w−〉

)2
〈w+〉 1

2 log〈w+〉
|∇z+| · 〈w+〉

(
log〈w+〉

)2
〈w+〉 1

2 log〈w+〉︸ ︷︷ ︸
D

|∇z−|dy
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According to (2.51), we have

1

〈w+〉(τ, y) 1
2 log〈w+〉(τ, y)

� |x − y| 12 log(2|x − y|)
〈w+〉(τ, x) 1

2 log〈w+〉(τ, x)
. (2.67)

Therefore,

I21 �
∫ t

0

∫

τ

〈w−〉
(

log〈w−〉
)2|∇z+|

〈w+〉 1
2 log〈w+〉∫

|y−x |≥1

log(2|x−y|)
|x−y| 52

〈w−〉
(

log〈w−〉
)2|∇z+|

〈w+〉 1
2 log〈w+〉

· 〈w+〉
(

log〈w+〉
)2|∇z−|dy

︸ ︷︷ ︸
B′1(t,x)

dxdτ

�
∫ t

0

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2|∇z+|

〈w+〉 1
2 log〈w+〉

∥∥∥∥
L2(
τ )

‖B ′1(t, x)‖L2(
τ )dτ.

Since log(2|x |)
|x | 52

χ|x |≥1 ∈ L2(R3), we can repeat the proof of (2.52) to obtain

‖B ′1(τ, x)‖L2(
τ ) �
(
E0−
) 1

2

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

∇z+
∥∥∥∥
L2(
τ )

.

Hence,

I21 �
(
E0−
) 1

2

∫ t

0
‖〈w−〉

(
log〈w−〉

)2
〈w+〉 1

2 log〈w+〉
∇z+‖2L2(
τ )

dτ �
(
E0−
) 1

2 sup
u+

F0+(∇z+).

To deal with I22, we have

I22 ≤
∫ t

0
‖〈w−〉

(
log〈w−〉

)2∇z+‖L2(
τ )‖B2‖L2(
τ )dτ �
(
E0+
) 1

2

∫ t

0
‖B2‖L2(
τ )dτ.

Then we only need to bound ‖B2‖L2(
τ ). We rewrite B2 as follows

B2 ≤
∫
|x−y|≥1

(
log(4|x − y|))2
|x − y|2

· 〈w−〉
(

log〈w−〉
)2|∇z+|(τ, y) · 〈w+〉( log〈w+〉

)2|∇z−|(τ, y)
〈w−〉

(
log〈w−〉

)2〈w+〉( log〈w+〉
)2

(τ, y)
dy.
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Since ‖z±‖L∞ ≤ 1
2 , by virtue of the separation property (2.10), we have

1

〈w−〉
(

log〈w−〉
)2〈w+〉( log〈w+〉

)2
(τ, y)

� 1

(R2 + τ 2)
1
2
(

log(R2 + τ 2)
1
2
)2 . (2.68)

Notice that

(
log(4|x |)

)2

|x |2 χ|x |≥1 ∈ L2(R3). Then we obtain

‖B2‖L2(
τ )

(2.68),Young’s
� 1

(R2 + τ 2)
1
2
(

log(R2 + τ 2)
1
2
)2
∥∥∥∥
(

log(4|x |))2
|x |2 χ|x |≥1

∥∥∥∥
L2(R3)

· ∥∥〈w−〉( log〈w−〉
)2∇z+∥∥L2(
τ )

∥∥〈w+〉( log〈w+〉
)2∇z−∥∥L2(
τ )

�
(
E0+
) 1

2
(
E0−
) 1

2

(R2 + τ 2)
1
2
(

log(R2 + τ 2
) 1

2 )2
,

which gives rise to

I22 � ε3
∫ t

0

1

(R2 + τ 2)
1
2
(

log(R2 + τ 2)
1
2
)2 dτ �

(
E0−
) 1

2 E0+.

Combining all the estimates, we complete the proof of the proposition. ��

2.5.2 Completion of the Estimates on the First Order Terms

Proof of Proposition 2.17 We specialize (2.35) to the current situation: f± = ∂z∓,
ρ± = ∂∇ p + ∂z± · ∇z∓ and λ± = 〈w∓〉2

(
log〈w∓〉

)4, with ∂ = ∂1, ∂2, ∂3. Hence,

∫

t

〈w∓〉2
(

log〈w∓〉
)4|∇z±|2dx + 1

2
sup
u±

∫
C±u±
〈w∓〉2

(
log〈w∓〉

)4|∇z±|2dσ±

+ 1

2
μ

∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇2z±|2dxdτ

≤ 2
∫


0

〈w−〉2
(

log〈w∓〉
)4|∇z±|2dx

+ 4
∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇z±|(|∇2 p| + |∇z+||∇z−|

)
dxdτ

+ 2μ

∫ t

0

∫

τ

|∇λ±|2
λ±

|∇z±|2dxdτ+2μ2
∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇3z±|2dxdτ.

Notice that the first part involving ∇2 p of the second term on the righthand side
can be estimated by (2.61) while the last term can be bounded by 2μD1±. For λ± =
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〈w∓〉2
(

log〈w∓〉
)4, we have

|∇λ±|2
λ±

�
(

log〈w∓〉
)4

.

We then have

E0±(t)+ sup
u±

F0±(∇z±)+ D0±(t)

� E0±(0)+
3∑

k=0

(
Ek∓
) 1

2
(
E0± + sup

u±
(F0±(∇z±)+ F1±( j±))

)

+ μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ

+ 2μD1± +
∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇z±||∇z+||∇z−|dxdτ

︸ ︷︷ ︸
nonlinear interactionI±

.

It remains to bound the nonlinear interaction term I±. We only handle I+.

I+ =
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+|2

〈w+〉
(

log〈w+〉
)2 〈w+〉

(
log〈w+〉

)2|∇z−|︸ ︷︷ ︸
L∞

dxdτ

(2.8)
�

2∑
l=0

(
El−
) 1

2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+|2

〈w+〉
(

log〈w+〉
)2 dxdτ.

Similar to (2.47) and (2.48), we obtain

I+ �
2∑

l=0

(
El−
) 1

2 sup
u+

∫
C+
u+
〈w−〉2

(
log〈w−〉

)4|∇z+|2dσ+ �
2∑

l=0

(
El−
) 1

2 F0+.

Then we have

E0±(t)+ sup
u±

F0±(∇z±)+ D0±(t)

� E0±(0)+
3∑

k=0

(
Ek∓
) 1

2
(
E0± + F0± + F1±

)

+ μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ + 2μD1±(t).

(2.69)
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Since sup0≤l≤3 E
l∓ ≤ 2C1ε

2 for sufficiently small ε, we obtain

1

2
E0±(t)+ 1

2
sup
u±

F0±(∇z±)+ D0±(t) � E±(0)+ E0±(0)+ sup
0≤l≤3

(
El∓
) 1

2 F1±

+ μ

∫ t

0

∫

τ

(
log〈w∓〉

)4|∇z±|2dxdτ + 2μD1±(t).

This ends the proof of the proposition. ��
Remark 2.21 Estimate (2.59) in Proposition 2.17 is not good in the sense that we use
one more derivative of flux term, i.e. F1±, in the righthand side which is caused by the
nonlocal and nonlinear term∇ p. It will bring the trouble to close the energy estimates.
This is the main reason that we turn to the investigation of the system of j± = curl z±.

2.6 Energy Estimates on Higher Order Terms

To derive higher order energy estimates, we first commute derivatives with the vorticity
equations. For a given multi-index β with 1 ≤ |β| ≤ N∗, we apply ∂β to the system
(1.7) and we obtain

{
∂t j

(β)
+ + Z− · ∇ j (β)

+ − μ� j (β)
+ = ρ

(β)
+ ,

∂t j
(β)
− + Z+ · ∇ j (β)

− − μ� j (β)
− = ρ

(β)
− ,

(2.70)

where source terms ρ
(β)
± are defined as

ρ
(β)
+ = −∂β(∇z− ∧ ∇z+)− [∂β, z− · ∇] j+,

ρ
(β)
− = −∂β(∇z+ ∧ ∇z−)− [∂β, z+ · ∇] j−.

Then we could obtain the following proposition concerning the energy estimates
to (2.70).

Proposition 2.22 Assume that R ≥ 100, μ is very small and

Ek± ≤ 2C1ε
2, for 0 ≤ k ≤ N∗

for ε sufficiently small. Then under the assumption (2.1) (or (2.6)), we obtain

N∗∑
k=1

(
Ek±(t)+ sup

u±
Fk±( j±)+ Dk+(t)

)

�
N∗∑
k=1

Ek±(0)+ sup
k≤N∗

(
Ek±
) 1

2 sup
u±

F0±(∇z±)+ 1

R2 E
0±(t)+ 2

R2 D
0±(t)

+ μ2
∫ t

0

∫

τ

〈w∓〉2
(

log〈w∓〉
)4|∇ j (N∗+1)

± |2dxdτ.

(2.71)
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Proof We divide the proof into several steps:

Step 1. Energy estimate for the linear system. Applying (2.35) to (2.70) and choos-
ing the weight functions λ± to be 〈w∓〉2

(
log〈w∓〉

)4 yield (we only deal with the
left-traveling waves)

∫

t

〈w−〉2
(

log〈w−〉
)4| j (β)
+ |2dx + sup

u+
F (β)
+ ( j+)

+ 1

2
μ

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j (β)

+ |2dxdτ

≤ 2
∫


0

〈w−〉2
(

log〈w−〉
)4| j (β)
+ |2dx + 4

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4| j (β)
+ ||ρ(β)

+ |dxdτ

︸ ︷︷ ︸
nonlinear interaction I

+ 2 μ

∫ t

0

∫

τ

(log〈w−〉)4| j (β)
+ |2dxdτ

︸ ︷︷ ︸
diffusion term I I

+2 μ2
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇2 j (β)

+ |2dxdτ

︸ ︷︷ ︸
parabolic term I I I

,

(2.72)

where we have used the fact that
∣∣∣ |∇λ+|2

λ+

∣∣∣ �
(

log〈w−〉
)4 for the diffusion term I I

(λ+ = 〈w−〉2
(

log〈w−〉
)4).

Step 2. Estimates on the nonlinear interactions. This step is devoted to the study
of the nonlinear interaction term I in (2.72). The source term ρ

(β)
+ in (2.70) can be

bounded by

|ρ(β)
+ | ≤

∑
γ≤β

Cγ
β |∇z(γ )

− ||∇z(β−γ )
+ | +

∑
0 �=γ≤β

Cγ
β |z(γ )
− ||∇ j (β−γ )

+ |

|∇ j (β−γ )
+ |≤|∇z(|β|−(|γ |−1))

+ |
�

∑
k≤|β|
|∇z(k)− ||∇z(|β|−k)+ |.

(2.73)

As a consequence, we obtain

I �
∑
k≤|β|

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4| j (β)
+ ||∇z(k)− ||∇z(|β|−k)+ |dxdτ. (2.74)

According to the size of |β|, we have two cases:

Case 1. 1 ≤ |β| ≤ N∗ − 2.
In this case, we can use Sobolev inequality on ∇z(k)− because k + 2 ≤ N∗. Therefore,
we have
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I �
∑
k≤|β|

∫ t

0

∫

τ

〈w−〉
(

log〈w−〉
)2

j (β)
+ · 〈w−〉

(
log〈w−〉

)2|∇z(|β|−k)+ |
〈w+〉

(
log〈w+〉

)2
〈w+〉

(
log〈w+〉

)2|∇z(k)− |︸ ︷︷ ︸
L∞

dxdτ

(2.8)
�

∑
k≤|β|

k+2∑
l=k

(
El−
) 1

2

∫ t

0

∫

τ

〈w−〉
(

log〈w−〉
)2

j (β)
+ · 〈w−〉

(
log〈w−〉

)2|∇z(|β|−k)+ |
〈w+〉

(
log〈w+〉

)2 dxdτ

︸ ︷︷ ︸
I1

.

To bound I1, we will make use of (2.16). In fact, we have

I1 �
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4| j (β)
+ |2

〈w+〉
(

log〈w+〉
)2 dxdτ

+
∑
k≤|β|

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z(k)+ |2

〈w+〉
(

log〈w+〉
)2 dxdτ

︸ ︷︷ ︸
apply (2.16)

�
∑

1≤k≤|β|

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4| j (k)+ |2

〈w+〉
(

log〈w+〉
)2 dxdτ

+
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z+|2

〈w+〉
(

log〈w+〉
)2 dxdτ.

(2.75)

Remark 2.23 We remark that, when one applies (2.16), one has to stop at∇z+ instead
of descending one more step to z+. The main obstacle is that the weight functions for
the lowest order terms are different from those for higher order terms. In fact, in the

course of using (2.16), the weight functions for lowest order term takes the form |∇λ|2
λ

.
Since in (2.75) the weight function is a mixture of w+ and w−, the differentiation on
λ cannot lower the weights in w−.

From (2.75), we can repeat the proof for (2.47) and (2.48). This allows us to use
the flux terms to control I1. Finally we are led to

I � sup
l≤N∗

(
El−
) 1

2
(
F0+ +

∑
1≤k≤|β|

Fk+
)
.

Case 2. |β| = N∗ − 1 or N∗.
We rewrite I as

I �
( ∑
k≤N∗−2︸ ︷︷ ︸

I1

+
∑

N∗−1≤k≤|β|︸ ︷︷ ︸
I2

) ∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)2| j (β)
+ ||∇z(k)− ||∇z(|β|−k)+ |dxdτ.
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The first sum I1 can be controlled in the same manner as in Case 1 so that

I1 � sup
l≤N∗

(
El−
) 1

2
(
F0+ +

∑
1≤k≤|β|

Fk+
)
.

For k ≥ N∗ − 1, one can not use L∞ estimates directly on ∇z(k)− since one can not
afford more than N∗ derivatives (via Sobolev inequality). Instead, we will use L∞
estimates on ∇z(|β|−k)+ in a different way:

I2 �
|β|∑

k=N∗−1

∫ t

0

∫

τ

〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

| j (β)
+ |

︸ ︷︷ ︸
L2

τ L
2
x

· 〈w+〉
(

log〈w+〉
)2|∇z(k)− |︸ ︷︷ ︸

L∞τ L2
x

· 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

|∇z(|β|−k)+ |
︸ ︷︷ ︸

L2
τ L
∞
x

dxdτ

�
|β|∑

k=N∗−1

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

j (β)
+
∥∥∥∥
L2

τ L
2
x︸ ︷︷ ︸

�
(

supu+ Fβ
+( j+)

) 1
2

‖〈w+〉
(

log〈w+〉
)2∇z(k)− ‖L∞τ L2

x︸ ︷︷ ︸
≤
(
Ek−
) 1

2

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

∇z(|β|−k)+
∥∥∥∥
L2

τ L
∞
x︸ ︷︷ ︸

I ′2

,

where we bounded the first term in the righthand side in the same manner as (2.47)
and (2.48). Therefore, we obtain

I2 � sup
N∗−1≤k≤|β|

(
Ek−
) 1

2
(
F |β|+

) 1
2

|β|+1−N∗∑
k=0

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

∇z(k)+
∥∥∥∥
L2

τ L
∞
x︸ ︷︷ ︸

I ′2

.
(2.76)

For the most difficult term I ′2, we use Sobolev inequality with weight function

〈w−〉
(

log〈w−〉
)2

〈w+〉
1
2 log〈w+〉

. In fact, we have

|I ′2|2 �
∥∥∥∥ 〈w−〉

(
log〈w−〉

)2
〈w+〉 1

2 log〈w+〉
∇z(k)+

∥∥∥∥
2

L2
τ (L2(
τ ))

+
∥∥∥∥∇2( 〈w−〉( log〈w−〉

)2
〈w+〉 1

2 log〈w+〉
∇z(k)+

)∥∥∥∥
2

L2
τ (L2(
τ ))

.
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Since ∇l
( 〈w−〉( log〈w−〉

)2

〈w+〉
1
2 log〈w+〉

)
� 〈w−〉

(
log〈w−〉

)2

〈w+〉
1
2 log〈w+〉

for l = 1, 2, we have

|I ′2|2 �
k+2∑
l=k

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

∇z(l)+
∥∥∥∥

2

L2
τ L

2
x

(2.16)
�
∥∥∥∥ 〈w−〉

(
log〈w−〉

)2
〈w+〉 1

2 log〈w+〉
∇z+

∥∥∥∥
2

L2
τ L

2
x

+
∑

1≤l≤k+2

∥∥∥∥ 〈w−〉
(

log〈w−〉
)2

〈w+〉 1
2 log〈w+〉

j (l)+
∥∥∥∥

2

L2
τ L

2
x

.

� F0+ +
∑

1≤l≤k+2

Fl+,

where we bound I ′2 by the flux terms in a similar manner as for (2.47) and (2.48). Then
we have

I2 � sup
N∗−1≤k≤|β|

(
Ek−
) 1

2
(
F |β|+

) 1
2
(
F0+ +

∑
1≤l≤3

Fl+
) 1

2

N∗≥5, Hölder
� sup

k≤N∗

(
Ek−
) 1

2
(
F0+ +

∑
1≤k≤|β|

Fk+
)
.

Finally, we can bound the nonlinear interaction term I by

I � sup
k≤N∗

(
Ek−
) 1

2
(
F0+ +

∑
1≤k≤|β|

Fk+
)
. (2.77)

Step 3 Completion of the higher order energy estimates. For the diffusion term I I ,
we have for 1 ≤ |β| ≤ N∗,

I I ≤ 2μ

R2

∫ t

0

∫

τ

〈w−〉2(log〈w−〉)4|∇z(|β|)+ |2dxdτ = 2

R2 D
|β|−1
+ (t).

Thanks to the div-curl lemma (Lemma 2.6), we have

∫

t

〈w−〉2
(

log〈w−〉
)4|∇z(|β|)+ |2dx ≤

∫

t

〈w−〉2
(

log〈w−〉
)4| j (|β|)+ |2dx

+ 1

R2

∫

t

〈w−〉2
(

log〈w−〉
)4|z(|β|)+ |2dx
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and

μ

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z(|β|+1)

+ |2dxdτ

≤ μ

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j (|β|)+ |2dxdτ

+ μ

R2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇z(|β|)+ |2dxdτ.

These estimates enable us to replace the first and the third term in the left hand side of
(2.72) by the terms in the left hand side of the above two estimates respectively. Then
with the estimates on I and I I , we obtain that

E |β|+ (t)+ sup
u+

F |β|+ ( j+)+ D|β|+ (t)

� E |β|+ (0)+ sup
k≤N∗

(
Ek−
) 1

2 F0+ + sup
k≤N∗

(
Ek−
) 1

2
∑

1≤k≤|β|
Fk+ +

1

R2 E
|β|−1
+ (t)

+ 2

R2 D
|β|−1
+ (t)+ μ2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇2 j (|β|)+ |2dxdτ

︸ ︷︷ ︸
parabolic term I I I � μD|β|+1

+ (t)

.

(2.78)

Then we sum up (2.78) for all 1 ≤ |β| ≤ N∗: each flux term supk≤N∗
(
Ek−
) 1

2∑
1≤k≤|β| Fk+ from the righthand side of (2.78), by virtue of assumption supk≤N∗ E

k− ≤
2C1ε

2 with sufficiently small ε, they are absorbed by the sum of the lower flux for
1 ≤ k ≤ |β| on the lefthand side; each energy term 1

R2 E
|β|−1
+ (t) and each diffusion

term 2
R2 D

|β|−1
+ (t) except for |β| = 1 can be controlled from the estimates for lower

order terms, by taking R large, they are absorbed by lower order energy and diffusion
terms on the lefthand side; all parabolic terms I I I except for |β| = N∗ can also be
controlled from the viscosity terms on the lefthand side for higher order terms(μ <<

1). Therefore, we finally obtain that

N∗∑
k=1

(
Ek+(t)+ sup

u+
Fk+( j+)+ Dk+(t)

)

�
N∗∑
k=1

Ek+(0)+ sup
k≤N∗

(
Ek−
) 1

2 F0+ +
1

R2 E
0+(t)+ 2

R2 D
0+(t)

+ μ2
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j (N∗+1)

+ |2dxdτ.

(2.79)

This ends the proof. ��
Combining (2.38), (2.60) and (2.71), we could obtain the following proposition.
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Proposition 2.24 Assume that R is very large, μ is very small, ‖z±‖L∞ ≤ 1
2 and

Ek± ≤ 2C1ε
2, for 0 ≤ k ≤ N∗

for ε sufficiently small. Then under the assumption (2.1) (or (2.6)), we obtain

E± +
∑

0≤k≤N∗
Ek± + sup

u±
F±(z±)+ sup

u±
F0±(∇z±)

+
∑

1≤k≤N∗
sup
u±

Fk±( j±)+ D± +
∑

0≤k≤N∗
Dk±

� E±(0)+
∑

0≤k≤N∗
Ek±(0)+ μ2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j (N∗+1)

+ |2dxdτ

︸ ︷︷ ︸
top order parabolic term

.

(2.80)

2.7 Top Order Parabolic Estimates

This section is devoted to a typical parabolic type estimate designed to control the
highest order terms due to the presence of non-zero viscosity. We only study the
estimates for the left-traveling Alfvén wave z+. The estimates for the right-traveling
waves can be derived exactly in the same manner.

For |β| = N∗ + 1, we work with the following system of equations

{
∂t j

(β)
+ + Z− · ∇ j (β)

+ − μ� j (β)
+ = ρ

(β)
+ ,

∂t j
(β)
− + Z+ · ∇ j (β)

− − μ� j (β)
− = ρ

(β)
− .

(2.81)

Then we shall prove the following proposition.

Proposition 2.25 Assume that R ≥ 100 and μ is sufficiently small. Then under the
ansatz (2.1), we have

μEN∗+1
+ (t)+ μDN∗+1

+ (t)

� μEN∗+1
+ (0)+ μEN∗+ (t)+ μDN∗+ (t)+

(
sup
l≤N∗

(
El−
) 1

2

+
(

N∗∑
k=1

Dk−(t)

) 1
2

⎞
⎟⎠
(

sup
l≤N∗

El+ +
N∗∑
k=1

Dk+(t)

)
.

(2.82)
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Proof Applying (2.34) to (2.81) and choosing the weight functions λ± = μ〈w∓〉2(
log〈w∓〉

)4 (we only deal with the left-traveling waves) yield

μ

∫

t

〈w−〉2
(

log〈w−〉
)4| j (β)
+ |2dxdτ + μ2

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|∇ j (β)

+ |2dxdτ

� μE |β|+1
+ (0)+ μ

∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4|ρ(β)

+ | · | j (β)
+ |dxdτ

︸ ︷︷ ︸
nonlinear interaction I

+μ2
∫ t

0

∫

τ

(
log〈w−〉

)4| j (β)
+ |2dxdτ

︸ ︷︷ ︸
diffusion term I I�μD|β|−1

+ (t)

(2.83)

It remains to control the nonlinear term I . We recall (2.73) (|β| = N∗ + 1)

|ρ(β)
+ | �

∑
k≤N∗+1

|∇z(k)− ||∇z(N∗+1−k)
+ |.

We rewrite I as

I � μ

⎛
⎜⎜⎜⎜⎜⎝
∑

k≤N∗−2︸ ︷︷ ︸
I1

+
∑

N∗−1≤k≤N∗+1︸ ︷︷ ︸
I2

⎞
⎟⎟⎟⎟⎟⎠
∫ t

0

∫

τ

〈w−〉2
(

log〈w−〉
)4

|∇z(k)− ||∇z(N∗+1−k)
+ || j (β)

+ |dxdτ.

For I1, since k ≤ N∗ − 2, we bound 〈w+〉
(

log〈w+〉
)2∇z(k)− in L∞. Hence,

I1 �
∑

k≤N∗−2

‖∇z(k)− ‖L∞τ L∞x︸ ︷︷ ︸
(2.8)
� ∑k+2

l=k
(
El−
) 1

2

·√μ
∥∥〈w−〉( log〈w−〉

)2∇z(N∗+1−k)
+

∥∥
L2

τ L
2
x︸ ︷︷ ︸

�
(
DN∗−k+ (t)

) 1
2

· √μ
∥∥〈w−〉( log〈w−〉

)2
j (β)
+
∥∥
L2

τ L
2
x︸ ︷︷ ︸

�
(
DN∗+ (t)

) 1
2

Hölder
� sup

l≤N∗

(
El−
) 1

2 ·
N∗∑
k=1

Dk+(t).

123



MHD and Alfvén Waves Page 71 of 105 5

For I2, we proceed as follows:

I2 ≤
N∗+1∑

k=N∗−1

∥∥〈w−〉( log〈w−〉
)2∇z(N∗+1−k)

+
∥∥
L∞τ L∞x︸ ︷︷ ︸

(2.8)
� ∑N∗−k+3

l=N∗−k+1

(
El+
) 1

2

·√μ‖∇z(k)− ‖L2
τ L

2
x︸ ︷︷ ︸

�
(
Dk−1− (t)

) 1
2

· √μ
∥∥〈w−〉( log〈w−〉

)2
j (β)
+
∥∥
L2

τ L
2
x︸ ︷︷ ︸

�
(
DN∗+ (t)

) 1
2

Hölder
�

(
N∗∑
k=1

Dk−(t)

) 1
2
(

sup
l≤N∗

El+ +
N∗∑
k=1

Dk+(t)

)
.

Finally, we have

I �
(

sup
l≤N∗

(
El−
) 1

2 + (
N∗∑
k=1

Dk−(t)
) 1

2
)(

sup
l≤N∗

El+ +
N∗∑
k=1

Dk+(t)
)
. (2.84)

Going back to (2.83), by virtue of div-curl lemma (Lemma 2.6), we can replace the
first term and the second term in the lefthand side of (2.83) by μEN∗+1

+ (t)−μEN∗+ (t)

and μDN∗+1
+ (t)−μDN∗+ (t). Then thanks to (2.84), we obtain the top order parabolic

estimates (2.82). This ends the proof of the proposition. ��
Combining (2.80) and (2.82), we obtain the total energy estimates and then close

the energy estimates.

Proposition 2.26 Assume that R ≥ 100, μ is very small, ‖z±‖L∞ ≤ 1
2 and

Ek± + Dk± ≤ 2C1ε
2, for 0 ≤ k ≤ N∗

for ε sufficiently small. Then under the assumption (2.1) (or (2.6)), we obtain

E± +
∑

0≤k≤N∗
Ek± + μEN∗+1

± + sup
u±

F±(z±)+ sup
u±

F0±(∇z±)+
∑

1≤k≤N∗
sup
u±

Fk±( j±)

+ D± +
∑

0≤k≤N∗
Dk± + μDN∗+1

± � E±(0)+
N∗∑
k=0

Ek±(0)+ μEN∗+1
± (0).

(2.85)

2.8 Proof of the Main A Priori Estimates and Theorem 1.2

We now complete the continuity argument (from Sect. 2.1) and hence the proof of
Theorem 1.2. It consists of four steps.
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Step 1 Improving ansatz (2.3). Under the ansatz (2.1), (2.2) and (2.3) by virtue of
Proposition 2.26, taking ε sufficiently small, we can find such C1 > 0 such that

E± +
∑

0≤k≤N∗
Ek± + μEN∗+1

± + sup
u±

F±(z±)+ sup
u±

F0±(∇z±)+
∑

1≤k≤N∗
sup
u±

Fk±( j±)

+ D± +
∑

0≤k≤N∗
Dk± + μDN∗+1

± ≤ C1Eμ
0 ≤ C1ε

2.

This improves the Ansatz 2.3.

Step 2 Improving ansatz (2.1) (or equivalently (2.6)). We just improve the ansatz (2.6).
We recall that ψ±(t, y) be the flow generated by Z± and they are given by

ψ±(t, y) = y +
∫ t

0
Z±(τ, ψ±(τ, y))dτ = y ± t B0 +

∫ t

0
z±(τ, ψ±(τ, y))dτ.

We only give the proof for ψ+. According to (2.5), we have

∂ψ+(t, y)

∂y
= I+

∫ t

0
(∇z+)(τ, ψ+(τ, y))

∂ψ+(τ, y)

∂y
dτ. (2.86)

Therefore, we have

∣∣∂ψ+(t, y)

∂y
− I
∣∣ ≤

∫ t

0
|(∇z+)(τ, ψ+(τ, y))|∣∣∂ψ+(τ, y)

∂y
− I
∣∣dτ

+
∫ t

0
|(∇z+)(τ, ψ+(τ, y))|dτ.

It suffices to bound the righthand side of the above equation, which is denoted by
G(t, y). We deduce from (2.86) that

d

dt
G(t, y) = |(∇z+)(t, ψ+(t, y))|∣∣∂ψ+(t, y)

∂y
− I
∣∣+ |(∇z+)(t, ψ+(t, y))|

≤ |(∇z+)(t, ψ+(t, y))|G(t, y)+ |(∇z+)(t, ψ+(t, y))|.

By virtue of Gronwall’s inequality, we obtain

G(t, y) ≤
∫ t

0
exp
(∫ t

s
|(∇z+)(τ, ψ+(τ, y))|dτ

)
|(∇z+)(s, ψ+(s, y))|ds

≤ exp
(∫ t

0
|(∇z+)(τ, ψ+(τ, y))|dτ

) ∫ t

0
|(∇z+)(τ, ψ+(τ, y))|dτ

︸ ︷︷ ︸
A

.
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Then, to get the bound of G(t, y), we have to bound the integration A. Firstly, by (2.8)
and ansatz (2.3), we have

|∇z+(τ, ψ+(τ, y))| � ε

〈w−〉(log〈w−〉)2

� ε

(R2 + |u−|2) 1
2
(

log(R2 + |u−|2) 1
2
)2∣∣

x=ψ+(τ,y)

.

Then we will switch the variable τ to u− in the integration A. To do this, we have to
calculate the Jacobian as follows

d

dτ
u−(τ, ψ+(τ, y)) = (∂t u−)(τ, ψ+(τ, y))+ ∂tψ+(τ, y) · (∇u−)(τ, ψ+(τ, y))

Notice that L−u− = 0 and ∂tψ+(τ, y) = Z+(τ, ψ+(τ, y)), we have

d

dτ
u−(τ, ψ+(τ, y)) = (Z+ − Z−)(τ, ψ+(τ, y)) · (∇u−)(τ, ψ+(τ, y))

= 2(∂3u−)
∣∣
x=ψ+(τ,y) +

(
(z+ − z−) · (∇u−)

)∣∣
x=ψ+(τ,y)

(2.1),(2.2)≥ 1− 4
√

2C0ε.

By taking ε small, we obtain

d

dτ
u−(τ, ψ+(τ, y)) ≥ 1

2
. (2.87)

With the above inequality, by changing variables, we have

A �
∫ t

0

ε

(R2 + |u−|2) 1
2
(

log(R2 + |u−|2) 1
2
)2∣∣

x=ψ+(t,y)

dτ

�
∫ ∞

0

ε

(R2 + |u−|2) 1
2 (log(R2 + |u−|2) 1

2 )2
du− sup

τ

1
d
dτ
u−(τ, ψ+(τ, y))

(2.87)
� ε.

This implies ∣∣∣∂ψ±(t, y)

∂y
− I
∣∣∣ ≤ eA A ≤ C ′0ε. (2.88)

This improves the first part of ansatz (2.6).
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To improve the second part, applying ∂k (with k = 1, 2, 3) to (2.86), one gets by
the chain rule that

∂k

(∂ψ+(t, y)

∂x

)
=
∫ t

0
(∇z+)(τ, ψ+(τ, y))∂k

(∂ψ+(τ, y)

∂y

)
dτ

+
∫ t

0
∂k

(
(∇z+)(τ, ψ+(τ, y))

)(∂ψ+(τ, y)

∂y

)
dτ,

from which and Gronwall’s inequality, we obtain that

∣∣∂k
(∂ψ+(t, y)

∂y

)∣∣ ≤ exp
(∫ t

0
|(∇z+)(τ, ψ+(τ, y))|dτ

)
∫ t

0
|(∂2z+)(τ, ψ+(τ, y))|∣∣∂ψ+(τ, y)

∂y

∣∣2dτ.

Thanks to (2.88), we then obtain that

∣∣∂k
(∂ψ+(t, y)

∂y

)∣∣≤2 exp
(∫ t

0
|(∇z+)(τ, ψ+(τ, y))|dτ

︸ ︷︷ ︸
A

)∫ t

0
|(∂2z+)(τ, ψ+(τ, y))|dτ

︸ ︷︷ ︸
B

.

The previous proof shows that A � ε. By virtue of (2.8), we also have

|∇2z+(τ, ψ+(τ, y))| � ε

〈w−〉(log〈w−〉)2

� ε

(R2 + |u−|2) 1
2 (log(R2 + |u−|2) 1

2 )2
∣∣
x=ψ+(τ,y)

.

The same argument as A, we obtain that

B � ε.

Therefore, by taking ε sufficiently small, we could obtain that

∣∣∣∇y
∂ψ±(t, y)

∂y

∣∣∣ ≤ 2eAB ≤ C ′′0 ε. (2.89)

This improves the second part of ansatz (2.6). Notice that one may take C0 ≥
max{C ′0,C ′′0 } by taking ε small enough.

Step 3 Improving ansatz (2.2). The Sobolev inequality (2.8) shows that

‖z±‖L∞
(2.8)≤ C

(log R)2

(
E± + E0± + E1±

) 1
2

(2.3)≤ C
√

6C1

(log R)2 ε
ε�1≤ 1

4
.

This improves ansatz (2.2).
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Step 4 Existence and uniqueness. The local existence for smooth data is well-known.
The global existence and uniqueness of the solution is a direct consequence of the a
priori energy estimate (1.13).

The above four steps complete the proof of Theorem 1.2.

3 Proof of Main Theorems

3.1 Proof of Theorem 1.3

The proof is indeed very similar to and much easier than that of Theorem 1.2: first of
all, we do not have diffusion terms; secondly, we can deal with the first order energy
estimates and higher order energy estimates in the same way. The treatment of the
pressure estimates will be different due to the choice of different weight functions. We
only sketch the necessary modifications.

We fix a small number δ > 0 and let ω = 1 + δ. Let 〈u+〉 = (R2 + |u+|2) 1
2 and

〈u−〉 = (R2 + |u−|2) 1
2 . We define the energy and flux norms as follows:

E (α)
∓ (t) =

∫

t

〈u±〉2ω|∇z(α)
∓ |2dx, F (α)

∓ ( j∓) =
∫
C∓u∓
〈u±〉2ω| j (α)

∓ |2dσ∓, |α| ≥ 0.

The lowest order energy and flux are defined as

E∓(t) =
∫


t

〈u±〉2ω|z∓|2dx, F∓(z∓) =
∫
C∓u∓
〈u±〉2ω|z∓|2dσ∓.

The total energy norms and total flux norms as defined as before, e.g.,

E∓ = sup
0≤t≤t∗

E∓(t), Ek∓ = sup
0≤t≤t∗

∑
|α|=k

E (α)
∓ (t).

The three sets of ansatz for continuity method remain the same. Since the energy
and flux norms are stronger than the original norms, all the estimates in the Sect. 2.2
still hold. We can improve the Sobolev inequalities to

|z∓| � 1

〈u±〉ω
(
E∓ + E0∓ + E1∓

) 1
2 , |∇z(α)

∓ |

� 1

〈u±〉ω
(
Ek∓ + Ek+1∓ + Ek+2∓

) 1
2 for |α| = k.

(3.1)

3.1.1 A Better Control on the Underlying Geometry

The essential improvement in the ideal case is that we can obtain a much more precise
picture for the characteristic hypersurfaces.

We recall and repeat some definition and argument from last section. The defining
equation for the flow ψ±(t, x) generated by Z± is d

dt ψ±(t, x) = Z±(t, ψ±(t, x)).
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where x ∈ R
3. Since z+ = Z+ ∓ B0, we obtain ψ±(t, x) = x ± t B0 +∫ t

0 z±(τ, ψ±(τ, x))dτ . This is exactly (2.5).

Let ∂ψ±(t,x)
∂x be the differential of ψ(t, x). Repeat the proof for (2.88) and (2.89),

we obtain for k = 0, 1 ∣∣∂k(∂ψ±(t, x)

∂x
− I
)∣∣ � ε. (3.2)

Similarly, it follows that
|∇u±| ≤ 2, |∇2u±| � ε.

The key improvement can be stated in the following lemma:

Lemma 3.1 For sufficiently small ε, we have

|u±(t, x)− (x3 ∓ t)| ≤ C0ε

δRδ
. (3.3)

In particular, we can measure the separation of u±:
∣∣∣(u+ − u−

)− 2t
∣∣∣ � ε.

Proof By the definition of ψ±, we have

ψ3±(t, y) = y3 ± t +
∫ t

0
z3±(τ, ψ±(τ, x))dτ,

where ψ3± and z3± are the x3-coordinate component of ψ± and z± respectively. Since
u±(t, ψ±(t, y)) = y3, we have

u±(t, ψ±(t, y)) = ψ3±(t, y)∓ t −
∫ t

0
z3±(τ, ψ±(τ, x))dτ.

We can repeat the proof (2.88) to derive

∫ t

0
|z±(τ, ψ±(τ, x))|dτ ≤ C0ε

δRδ
.

This completes the proof of the lemma. ��
Remark 3.2 In the viscous case, the decay of z± in the ansatz is roughly

(
log(1 +

|u±|)
)−2; in the current situation, the decay of z± in the ansatz is roughly (1 +

|u±|)−(1+δ) which is integrable. The faster decay in the ideal case allows us to integrate
the equation z±. This is why we can control u± in a great precision.

As a corollary, we can measure the separation of z± in terms of decay in t :
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Lemma 3.3 (Separation Estimates) For all α and β with |α|, |β| ≤ 2, we have

∣∣z(α)
+ (t, x)z(β)

− (t, x)
∣∣ � ε2

(1+ t)ω
. (3.4)

Proof The bootstrap assumptions and the previous lemma immediately imply

∣∣z(α)
+ (t, x)z(β)

− (t, x)
∣∣ ≤ 4ε2

(1+ |x3 + t |)ω(1+ |x3 − t |)ω .

Since for all x3, at least one of the inequalities |x3 + t | ≥ t
2 and |x3 − t | ≥ t

2 holds.
The above inequality yields the lemma. ��
On the contrary, for the self-intersections such as z(α)

+ (t, x)z(β)
+ (t, x), we can not obtain

a decay factor in t . Since near the center of z+, the wave is approximately of size ε.
The best pointwise estimate one can hope is

∣∣z(α)
+ (t, x)z(β)

+ (t, x)
∣∣ � ε2.

3.1.2 The A Priori Energy Estimates in the Ideal Case

We now prove the energy estimates on the lowest order terms. This part corresponds
to the estimates derived in Sect. 2.4. We first prove the following pressure estimates:
for all t ∈ [0, t∗], we have

∣∣∣
∫ t

0

∫

τ

〈u∓〉2ω|z±||∇ p|dxdτ

∣∣∣ � ε3. (3.5)

Firstly, by Hölder inequality, we have

∣∣∣
∫ t

0

∫

τ

〈u∓〉2ω|z±||∇ p|dxdτ

∣∣∣
�
(∫ t

0

∫

τ

〈u∓〉2ω

〈u±〉ω |z±|
2dxdτ

) 1
2
(∫ t

0

∫

τ

〈u∓〉2ω〈u±〉ω|∇ p|2dxdτ
) 1

2
.

Changing the variables from (x1, x2, x3, t) to (x1, x2, u+, u−) (see in Sect. 2.4) and
noticing that the denominator 〈u±〉ω is integral in 〈u±〉, we have

∫ t

0

∫

τ

〈u∓〉2ω

〈u±〉ω |z±|
2dxdτ � F(z±) � ε2.

Thus, to prove (3.5), we only need to verify the following inequality:

∫ t

0

∫

τ

〈u∓〉2ω〈u±〉ω|∇ p|2dxdτ � ε4. (3.6)
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To derive the above estimates, we first decompose ∇ p as

∇ p(t, x) =− 1

4π

∫
R3
∇ 1

|x − y|θ(|x − y|)(∂i z j−∂ j z
i+)(t, y)dy

︸ ︷︷ ︸
A1(t,x)

− 1

4π

∫
R3

∂i∂ j

(
∇ 1

|x − y|
(
1− θ(|x − y|)))(zi−z j+)(t, y)dy

︸ ︷︷ ︸
A2(t,x)

.

(3.7)

where the smooth cut-off function θ(r) is chosen in such way that θ(r) ≡ 1 for r ≤ 1
and θ(r) ≡ 0 for r ≥ 2. Therefore, it suffices to bound the following two terms:

∫ t

0

∫

τ

〈u−〉2ω〈u+〉ω|A1|2dxdτ

︸ ︷︷ ︸
I1

+
∫ t

0

∫

τ

〈u−〉2ω〈u+〉ω|A2|2dxdτ

︸ ︷︷ ︸
I2

.

By definition, we have

〈u−〉ω〈u+〉 ω2 |A1| ≤
∫
|x−y|≤2

|∇z−(τ, y)||∇z+(τ, y)|〈u−〉ω(τ, x)〈u+〉 ω2 (τ, x)

|x − y|2 dy.

For |x − y| ≤ 2, it is straightforward to check that 〈u±〉(τ, x) � 〈u±〉(τ, y). Hence,

〈u−〉ω〈u+〉 ω2 |A1| �
∫
|x−y|≤2

|∇z−(τ, y)||∇z+(τ, y)|〈u−〉ω(τ, y)〈u+〉 ω2 (τ, y)

|x − y|2 dy

≤ ‖〈u+〉ω∇z−‖L∞
∫
|x−y|≤2

〈u−〉ω(τ, y)|∇z+(τ, y)|
〈u+〉 ω2 (τ, y)|x − y|2 dy

(3.1)≤ ε

∫
|x−y|≤2

1

|x − y|2
〈u−〉ω(τ, y)

〈u+〉 ω2 (τ, y)
|∇z+(τ, y)|dy.

(3.8)
By Young’s inequality, similar to (2.44), we obtain

‖〈u−〉ω〈u+〉 ω2 A1‖L2(
τ ) � ε
∥∥ 〈u−〉ω
〈u+〉 ω2

∇z+
∥∥
L2(
τ )

. (3.9)

Therefore, by the virtue of div-curl lemma (Lemma 2.6), we can bound I1 as

I1 � ε2
∫ t

0

∫

τ

〈u−〉2ω

〈u+〉ω |∇z+|
2dxdτ � ε4. (3.10)
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To bound I2, we split A2(t, x) as

|A2(t, x)| �
∫

R3

1− θ(|x − y|)
|x − y|4 |(zi−z j+)(t, y)|dy︸ ︷︷ ︸

A21(t,x)

+
∫

R3

(θ ′′(|x − y|)
|x − y|2 + θ ′(|x − y|)

|x − y|3
)|(zi−z j+)(t, y)|dy︸ ︷︷ ︸

A22(t,x)

.

(3.11)

We then split I2 as

I2 ≤
∫ t

0

∫

τ

〈u−〉2ω〈u+〉ω|A21|2dxdτ

︸ ︷︷ ︸
I21

+
∫ t

0

∫

τ

〈u−〉2ω〈u+〉ω|A22|2dxdτ

︸ ︷︷ ︸
I22

.

In view of the property of the cut-off function θ(r), we can bound A22 as

A22(t, x) �
∫
|x−y|≤2

1

|x − y|2 |z
i−(t, y)||z j+(t, y)|dy.

Therefore, I22 can be bounded similarly as I1. This leads to

I22 � ε4. (3.12)

We turn to I21. Since |u±(τ, x)| ≤ |u±(τ, y)| + 2|x − y|, we conclude that

〈u−〉ω(τ, x) � 〈u−〉ω(τ, y)+ |x − y|ω,

and
(〈u−〉ω〈u+〉 ω2 )(τ, x) �

(〈u−〉ω〈u+〉 ω2 )(τ, y)+ |x − y| 3ω
2 .

Therefore, we can bound I21 by

I21 �
∫ t

0

∫

τ

( ∫
|x−y|≥1

|z−(τ, y)||z+(τ, y)|
|x − y|4− 3ω

2

dy
)2
dxdτ

︸ ︷︷ ︸
I211

+
∫ t

0

∫

τ

( ∫
|x−y|≥1

|z−(τ, y)||z+(τ, y)|
|x − y|4 〈u−〉ω〈u+〉 ω2 (τ, y)dy

︸ ︷︷ ︸
A3(τ,x)

)2
dxdτ

︸ ︷︷ ︸
I212

.
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We use Hölder and Young inequalities to bound I211:

I211 �
∫ t

0

∥∥∥( 1

|x |4− 3ω
2

χ|x |≥1
) ∗ (z−z+)

∥∥∥2

L2(
τ )
dτ

�
∫ t

0

∥∥∥ 1

|x |4− 3ω
2

∥∥∥2

L2(|x |≥1)
‖z−z+‖2L1(
τ )

dτ

ω∈
(

1, 5
3

)
�

∫ t

0
‖z−z+‖2L1(
τ )

dτ.

(3.13)

Since 1
〈u−〉ω〈u+〉ω � 1

(R+τ)ω
, we have

I211 �
∫ t

0

∥∥∥ 1

〈u+〉ω〈u−〉ω 〈u+〉
ωz−〈u−〉ωz+

∥∥∥2

L1(
τ )
dτ

�
∫ t

0

1

(R + τ)2ω
‖〈u−〉ωz+‖2L2(
τ )

‖〈u+〉ωz−‖2L2(
τ )
dτ

� ε4
∫ t

0

1

(R + τ)2ω
dτ � ε4.

(3.14)

For I212, we first bound A3(τ, x) as follows:

‖A3‖L2(
τ ) �
∥∥∥χ|x |≥1

|x |4 ∗
( 〈u−〉ω
〈u+〉 ω2

|z+| · 〈u+〉ω|z−|
)∥∥∥

L2(
τ )

�
∥∥∥χ|x |≥1

|x |4
∥∥∥
L1(
τ )

∥∥∥ 〈u−〉ω〈u+〉 ω2
|z+| · 〈u+〉ω|z−|

∥∥∥
L2(
τ )

� ‖〈u+〉ωz−‖L∞(
τ )

∥∥∥ 〈u−〉ω〈u+〉 ω2
z+
∥∥∥
L2(
τ )

� ε

∥∥∥ 〈u−〉ω〈u+〉 ω2
z+
∥∥∥
L2(
τ )

.

This implies

I212 � ε2
∫ t

0

∫
R3

〈u−〉2ω

〈u+〉ω |z+|
2dxdτ � ε4.

Combined with (3.10), (3.12) and (3.14), we obtain (3.6). Then we finally have
(3.5).

We then turn to the first and higher order terms. The proof goes exactly as in
Sect. 2.6. Indeed, in Sect. 2.6, by virtue of the flux, the only essential use of the weight
is the fact that 1

〈w±〉
(

log(〈w±〉)
)2 is integrable in u±. In the current situation, the factor

is replaced by 1
〈u±〉ω which is still integrable.

According to the above discussion, we can control all the nonlinear terms in the a
priori energy estimates. This completes the proof of Theorem 1.3.
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3.2 Proof of Theorem 1.4

We divide the proof into three steps.
Step 1 Explicit formulas for scattering fields.
We only prove this for z+. We integrate ∂t z+ + Z− · ∇z+ = −∇ p along L−: for any
given point q = (y1, y2, y3, 0) on the initial hypersurface 
0, along the L− direction,
the characteristic line emanated from this point hits 
t at the point (y1, y2, u−, t). We
then integrate the equation over the characteristic line segment between (y1, y2, u−, 0)

and (y1, y2, u−, t). Therefore,

z+(y1, y2, u−, t) = z+(y1, y2, u−, 0)−
∫ t

0
(∇ p)(y1, y2, u−, τ )dτ. (3.15)

In order to understand (3.15), we now derive (3.15) by characteristics method.
Indeed, we first introduce the coordinate transformations on R

3× [0,∞) as follows:

�− : R
3 × [0,∞)→ R

3 × [0,∞)

(x1, x2, x3, t) �→ (x1, x2, u−, t) = (x1, x2, u−(x1, x2, x3, t), t),

where u− is defined by (1.11) with u−(x, 0) = y3 at point q. Thanks to Theo-
rem 1.3, we have det(d�−) = ∂3u− = 1 + O(ε) (see also (2.46)). Denoting by

z̃±(x1, x2, u−, t)
def= z±|(x,t)=�−1− (x1,x2,u−,t), we deduce that z̃+ satisfies

∂t z̃+ + z̃−h · ∇h z̃+ = −(∇x p)|(x,t)=�−1− (x1,x2,u−,t),

where �−1− is the inverse of the mapping �−, and z̃−h = (z̃−1, z̃−2), ∇h = (∂1, ∂2).
Notice that on C−u− , u− is a constant. Then for fixed u−, we define the flow

φ−(u−)(y1, y2, t) (the mapping from S0,u− to St,u− ) associated to z̃−h as follows:

d

dt
φ−

(u−)
(y1, y2, t) = z̃−h(x1, x2, u−, t)|

(x1,x2)=φ−
(u−)

(y1,y2,t)
, φ−

(u−)
(y1, y2, 0) = (y1, y2).

Thanks to Theorem 1.3, the Jacobian dφ−(u−) satisfies det(dφ−(u−)) = 1+ O(ε). Then
denoting by z+(y1, y2, u−, t) = z̃+(x1, x2, u−, t)|(x1,x2)=φ−

(u−)
(y1,y2,t)

, we have

dz+
dt
= −(∇x p)|(x,t)=�−1− (φ−

(u−)
(y1,y2,t),u−,t),

which implies that

z+(y1, y2, u−, t) = z+(y1, y2, u−, 0)−
∫ t

0
(∇x p)|(x,τ )=�−1− (φ−

(u−)
(y1,y2,τ ),u−,τ )

dτ.

Notice that

z+(y1, y2, u−, 0) = z̃+(y1, y2, u−, 0) = z+(y1, y2, y3, 0).

123



5 Page 82 of 105 L.-B. He et al.

Without confusion, we use notation z+(y1, y2, u−, t) to present z+(y1, y2, u−, t)
which is the expression for z+ in terms of the coordinates (y1, y2, u−, t). So does
(∇ p)(y1, y2, u−, τ ). Then we obtain (3.15).

Similarly, we integrate ∂t j+ + Z− · ∇ j+ = −∇z− ∧ ∇z+ to derive

(curl z+)(y1, y2, u−, t) = j+(y1, y2, u−, 0)−
∫ t

0
(∇z− ∧ ∇z+)(y1, y2, u−, τ )dτ.

(3.16)
Step 2 The scattering fields are well-defined.
To show that z(scatter)

+ is well defined, in view of (3.15), it suffices to prove that ∇ p is
integrable (in time) along any left-traveling characteristic line.

In view of (3.7), we have (∇ p)(t, x) = A1(t, x)+ A2(t, x), where

A1 = − 1

4π

∫
R3
∇ 1

|x − x ′|θ(|x − x ′|)(∂i z j−∂ j z
i+
)
(t, x ′)dx ′,

A2 = − 1

4π

∫
R3

∂i∂ j

(
∇ 1

|x − x ′|
(
1− θ(|x − x ′|)))(zi−z j+)(t, x ′)dx ′.

Similar to (3.8), setting ω = 1+ δ, we have

〈u−〉ω〈u+〉ω|A1|� ε

∫
|x−x ′|≤2

1

|x − x ′|2 〈u−〉
ω(t, x ′)|∇z+(t, x ′)|dx ′

� ε
∥∥ 1

|x |2
∥∥
L1(|x |≤2)

‖〈u−〉ω∇z+‖L∞(
t )

� ε2.

Hence, ∣∣A1
∣∣ � ε2

〈u−〉ω〈u+〉ω . (3.17)

According to (3.11), we further split A2(t, x) as A21(t, x)+ A22(t, x). Since

A22(t, x) �
∫
|x−x ′|≤2

1

|x − x ′|2 |z
i−(t, x ′)||z j+(t, x ′)|dx ′,

it can be estimated in the same manner as for A1(t, x). Therefore, we can ignore this
term.

It remains to bound A21(t, x) =
∫

R3
1−θ(|x−x ′|)
|x−x ′|4 (zi−z

j
+)(t, x ′)dx ′. Since (1+ t) �

〈u+〉〈u−〉, we have

(1+ t)ω|A21(t, x)| �
∫
|x−x ′|≥1

1

|x − x ′|4 |〈u+〉
ω(t, x ′)zi−(t, x ′)||〈u−〉ω(t, x ′)z j+(t, x ′)|dx ′

Young
�

∥∥ 1

|x |4
∥∥
L1(|x |≥1)

‖〈u−〉ω)z+‖L∞(
t )‖〈u+〉ω)z−‖L∞(
t ).

123



MHD and Alfvén Waves Page 83 of 105 5

Therefore, ∣∣A21
∣∣ � ε2

(1+ t)ω
.

Combined with (3.17), we obtain that

∣∣(∇ p)(y1, y2, u−, τ )
∣∣ ≤ ε2

(1+ τ)ω
.

This implies that limt→∞
∫ t

0 (∇ p)(y1, y2, u−, τ )dτ is well-defined.

To show that (curl z)(scatter)
+ is well defined, in view of (3.16), it suffices to bound

∇z− ∧ ∇z+. According to Lemma 3.3, we have

|∇z− ∧ ∇z+| � ε2

(1+ τ)ω
,

which is integrable in t . Therefore (curl z)(scatter)
+ is well defined.

Similarly, the higher derivatives of the scattering fields are well-defined and we
omit the routine details.

Step 3 Calculate the differential of S : HN∗+1,δ(
0)×HN∗+1,δ(
0)→ H0,δ(C−)×
H0,δ(C+).

We first clarify the relation of the measure dσ̃± on C± and the measure dσ± on
C±u± . Recall that in the proof of Lemma 2.9, dσ+ on C+u+ was calculated as follows:

dσ+ =
√

1+ |Z+ · ∇u+|2 + |∇xh u+|2dx1dx2dt
(2.1)= (

√
2+ O(ε))dx1dx2dt.

Similar to the definitions of �− and φ−(u−), we introduce the coordinates trans-
formation �+ : (x1, x2, x3, t) �→ (x1, x2, u+, t) = (x1, x2, u+(x1, x2, x3, t), t) (the
mapping from R

3×[0,∞) to R
3×[0,∞)) and the flow φ+(u+)(y1, y2, t) (the mapping

from S0,u+ to St,u+ ) which is generated by zh+(x1, x2, u+, t) for fixed u+. Since u+ is
a constant on C+u+ , then by the fact that det(dφ+(u+)) = 1+ O(ε), we have

dσ+ = (
√

2+ O(ε))dy1dy2dt.

Observe that for fixed u+,

d

dt
u−(y1, y2, u+, t) = d

dt
u−
(
�−1+ (φ+(u+)(y1, y2, t), u+, t)

)

= (∇x,t u−)(y1, y2, u+, t) · d
dt

�−1+
(
φ+(u+)(y1, y2, t), u+, t

)

=
(
∂t u− + Z+ · ∇u−

)
(y1, y2, u+, t)

L−u−=0=
((

Z+ − Z−
) · ∇u−

)
(y1, y2, u+, t)

(2.1)= 2+ O(ε).

(3.18)
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Since u+ is a constant on C+u+ , by changing the variable t to u− via u− =
u−(y1, y2, u+, t), we obtain

dσ+ = (2
√

2+ O(ε))dy1dy2du−.

Finally, to compare the measure dσ̃+ (on C+) with dσ+ (on C+u+), we use the
common coordinates (y1, y2, u−). Since by definition we take dσ̃+ = dy1dy2du−,
we finally claim that

dσ̃+ ∼ dσ+,

where the difference is a universal constant which will not effect any estimate there-
after.

We remark that the continuity of S at 0 is an immediate consequence of the a priori
estimates for the ideal MHD system. For the differential of S, we derive weighted
L2-estimates for z(scatter)

+ − z(linear)
+ .

According to (3.15) (or (1.16)), we have

(
z(scatter)
+ − z(linear)

+
)

(y1, y2, u−) = −
∫ ∞

0
(∇ p)(y1, y2, u−, τ )dτ

We will switch the τ -variable to u+ by τ �→ u+(y1, y2, u−, τ ) in the integral. Indeed,
similar to (3.18), we have

d

dτ
u+(y1, y2, u−, τ ) = −2+ O(ε). (3.19)

Therefore,

∫ ∞
0
|(∇ p)(y1, y2, u−, τ )|dτ �

∫
R

|(∇ p)(y1, y2, u−, u+)|du+

�
(∫

R

1

〈u+〉ω du+
) 1

2
(∫

R

〈u+〉ω|(∇ p)(y1, y2, u−, u+)|2du+
) 1

2

�
(∫

R

〈u+〉ω|(∇ p)(y1, y2, u−, u+)|2du+
) 1

2
.

Thus, we have

∫
C+
〈u−〉2ω

∣∣z(scatter)
+ − z(linear)

+
∣∣2dσ̃+

�
∫
C+
〈u−〉2ω

(∫
R

|(∇ p)(y1, y2, u−, u+)|du+
)2
dσ+

�
∫

R3

∫
R

〈u−〉2ω〈u+〉ω|(∇ p)(y1, y2, u−, u+)|2du+dy1dy2du−.

(3.20)
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We then use the coordinate (x1, x2, x3, τ ) instead of (y1, y2, u−, u+). Since

dy1dy2du−du+ =
∣∣ d
dτ

u+(y1, y2, u−, τ )
∣∣dy1dy2du−dτ

= det
(
dφ−(u−)

)−1∣∣ d
dτ

u+(y1, y2, u−, τ )
∣∣dx1dx2du−dτ

= det(d�+) det
(
dφ−(u−)

)−1| d
dτ

u+(y1, y2, u−, τ )|dx1dx2dx3dτ

in view of (3.19) and the facts that det(d�+) = 1+O(ε) and det(dφ−(u−)) = 1+O(ε),
we have

dy1dy2du−du+ = (2+ O(ε))dx1dx2dx3dτ.

Therefore, (3.20) yields the following estimate:

∫
C+
〈u−〉2ω

∣∣z(scatter)
+ − z(linear)

+
∣∣2dσ̃+ �

∫ t

0

∫
R3
〈u−〉2ω〈u+〉ω|∇ p(x, τ )|2dxdτ.

(3.21)
Thanks to (3.6), we obtain that

∫
C+
〈u−〉2ω

∣∣z(scatter)
+ − z(linear)

+
∣∣2dσ̃+ � ε4. (3.22)

In other words, we obtain

∥∥z(scatter)
+ − z(linear)

+
∥∥
H0,δ(C+)

� ε2. (3.23)

The similar estimate also holds for z−. Since ‖(z(0)
− , z(0)

+ )‖HN∗+1,δ(
0)×HN∗+1,δ(
0)
∼ ε,

for ε→ 0, this implies
d S
∣∣
0 = Slinear.

3.3 Proof of Theorem 1.5

There are two statements in the theorem and we will prove them one by one.

3.3.1 Proof of the First Statement

We fix μ and T . Let Z± = zμ± − z±. By (1.5), we have

∂tZ± + Z∓ · ∇Z± = −Z∓ · ∇zμ± − ∇(pμ − p)+ μ�zμ±. (3.24)
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We remark that divZ± = 0 and Z±
∣∣
t=0 ≡ 0. We multiply both sides of (3.24) by Z±

and we integrate over 
t . By virtue of the divergence-free property of Z±, this yields

1

2

d

dt

(‖Z+‖2L2(
t )
+ ‖Z−‖2L2(
t )

)

= −
∫


t

(
Z− · ∇zμ+

) · Z+dx
︸ ︷︷ ︸

I1

−
∫


t

(
Z+ · ∇zμ−

) · Z−dx

− μ

∫

t

∇zμ+ · ∇Z+dx︸ ︷︷ ︸
I2

−μ

∫

t

∇zμ− · ∇Z−dx

According to the μ-independent a priori estimates derived in Theorem 1.2, we have

|I1| � ‖∇zμ+‖L∞‖Z+‖L2(
t )
‖Z−‖L2(
t )

� ε
(‖Z+‖2L2(
t )

+ ‖Z−‖2L2(
t )

)
,

and

|I2| � μ‖∇zμ+‖L2(
t )
‖∇Z+‖L2(
t )

� με2.

Therefore, we obtain

d

dt

(‖Z+‖2L2(
t )
+ ‖Z−‖2L2(
t )

)
� ε
(‖Z+‖2L2(
t )

+ ‖Z−‖2L2(
t )

)+ με2.

For all τ ∈ [0, T ], we integrate this equation over [0, τ ] and we use Gronwall’s
inequality to obtain

‖Z+‖2L2(
τ )
+ ‖Z−‖2L2(
τ )

� με(eετ − 1).

This completes the proof for the first statement.

3.3.2 Proof of the Second Statement

Since we have many coordinate systems in the proof, to make the notations simpler,
we define the so-called Lagrangian forms ṽ±(t, y) of v±(t, x) as

ṽ±(t, y) = v±(t, x)|x=ψ∓(t,y),

where ψ∓(t, y) is the flow generated by Z∓ and y ∈ 
0. In other words, ṽ±(t, y) is
the expression of the vector field v in the (t, y1, y2, y3) coordinates.
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We divide the proof into several steps.
Step 1 The linear and nonlinear decomposition of solutions.

For the given solution (z+, z−), we decompose it as z±
def= z(lin)

± + z(non)
± where the

linear part z(lin)
± and nonlinear part z(non)

± satisfy

∂t z
(lin)
± + Z∓ · ∇z(lin)

± − μ�z(lin)
± = 0,

z(lin)
± |t=0 = z±(0, x),

(3.25)

and
∂t z

(non)
± + Z∓ · ∇z(non)

± − μ�z(non)
± = −∇ p,

divz(non)
± = −divz(lin)

± ,

z(non)
± |t=0 = 0.

(3.26)

We shall use E (α)
±,(lin)(t) to denote the energies for z(lin)

± while we use E (α)
±,(non)(t) to

denote the energies for z(non)
± . We shall also use D(lin)

± , D(lin),k
± to denote the diffusions

for z(lin)
± while we use D(non)

± , D(non),k
± to denote the diffusions for z(non)

± . All the above
notations are defined in the same manner as that for z±. We define the following total
energy for the linear part:

Eμ

(lin),±(t)
def= ∥∥(log〈w∓〉)2z(lin)

± (t, x)
∥∥2
L2(R3)

+
∑
|α|≤N∗

E (α)
±,(lin)(t)+ μ

∑
|α|=N∗+1

E (α)
±,(lin)(t),

Similarly, we can define Eμ

(non),±(t).
For linear system (3.25), we regard Z± as given divergence-free vectore fields,

similar to (1.13), for all t ≥ 0, u± ∈ R we have

Eμ

(lin),±(t)+ F±
(
z(lin)
±
)+

N∗∑
k=0

Fk±
(∇z(lin)

±
)

+ (D(lin)
± +

N∗∑
k=0

D(lin),k
∓ + μD(lin),N∗+1

∓
)|t∗=∞ � Eμ(0).

(3.27)

To derive energy estimates for (3.26), we first point out a modification of Lemma 2.6
for general vector field v:

‖√λ∇v‖2L2 � ‖√λdivv‖2L2 + ‖
√

λcurl v‖2L2 +
∥∥ |∇λ|√

λ
v
∥∥2
L2 . (3.28)
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Since the initial data z(non)
± |t=0 are zero, in view of (1.13) and (3.27), for all t ≥ 0,

u± ∈ R, we have

Eμ

(non),±(t)+ F±
(
z(non)
±

)+ F0±
(∇z(non)

±
)+

N∗∑
k=1

Fk±
(
curl z(non)

±
)

+ (D(non)
± +

N∗∑
k=0

D(non),k
∓ + μD(non),N∗+1

∓
)∣∣
t∗=∞ �

(
Eμ(0)

) 3
2 .

(3.29)

As a consequence, we have

Eμ(t) �
∑
+,−

(
Eμ

(lin),±(t)+ Eμ

(non),±(t)
)

�
∑
+,−

Eμ

(lin),±(t)+ (Eμ(0)
) 3

2 . (3.30)

Step 2 Estimate on the total linear energy Eμ

(lin),±.

By symmetry, it suffices to bound Eμ

(lin),+. For simplicity, we set z = z(lin)
+ . Therefore,

we have
∂t z + Z− · ∇z − μ�z = 0, (3.31)

and z|t=0 = z+(0, x). By taking L2 inner product of (3.31) with z, (log〈w−〉)2z and
(log〈w−〉)4z respectively, we have

1

2

d

dt
‖z‖2

L2 + μ‖∇z‖2
L2 = 0,

1

2

d

dt
‖ log〈w−〉z‖2

L2 + μ‖ log〈w−〉∇z‖2
L2 ≤ 4μ‖ log〈w−〉∇z‖L2

∥∥ z

〈w−〉
∥∥
L2 ,

1

2

d

dt
‖(log〈w−〉)2z‖2

L2 + μ‖(log〈w−〉)2∇z‖2
L2 ≤ 8μ‖(log〈w−〉)2∇z‖L2

∥∥ log〈w−〉
〈w−〉 z

∥∥
L2 .

We remark that we have already proved that ‖ z
〈w−〉‖L2 � ‖∇z‖L2 and ‖ log〈w−〉

〈w−〉 z‖L2 �
‖∇z‖L2 + ‖ log〈w−〉∇z‖2L2 by Hardy’s inequality.

For higher order energy estimates, we apply ∂α with |α| ≥ 1 to (3.31) to derive

∂t (∂
αz)+ Z− · ∇(∂αz)− μ�(∂αz) = −[∂α, z−] · ∇z, (3.32)

where ∂αz|t=0 = (∂αz+)(0, x). By taking L2 product with 〈w−〉2(log〈w−〉)4∂αz, we
obtain

1

2

d

dt
‖〈w−〉(log〈w−〉)2∂αz‖2L2 + μ‖〈w−〉(log〈w−〉)2∇(∂αz)‖2L2

≤ 12μ‖〈w−〉(log〈w−〉)2∇(∂αz)‖L2‖(log〈w−〉)2(∂αz)‖L2 + fα(t),
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The nonlinear terms fα is defined as follows:

fα(t) =
∣∣∣∣
∫


t

([∂α, z−] · ∇z
) · (∂αz)〈w−〉2(log〈w−〉)4dx

∣∣∣∣.

It is straightforward to see that
∫
t≥0 fα(t) (for 1 ≤ |α| ≤ N∗ + 1) can be controlled

by the flux terms in (3.27) while μ
∫
t≥0 fα(t) (for |α| = N∗ + 2) can be bounded by

the diffusion terms. Therefore, thanks to (3.27) and (1.13), we have

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠∫ ∞

0
fα(t)dt �

(
Eμ(0)

) 3
2 , (3.33)

where we use the notation

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ Fα

def=
∑

1≤|α|≤N∗+1

Fα + μ
∑

|α|=N∗+2

Fα.

Putting the above differential inequalities together, we obtain there exist constants
c, c00, c01, c02 and {cα}1≤|α|≤N∗+2 such that

d

dt

(
c00‖z‖2L2 + c01‖ log〈w−〉z‖2L2 + c02‖(log〈w−〉)2z‖2L2

+
∑

1≤|α|≤N∗+1

cα‖〈w−〉(log〈w−〉)2∂αz‖2L2 + μ
∑

|α|=N∗+2

cα‖〈w−〉(log〈w−〉)2∂αz‖2L2

)

+ cμ
(
‖∇z‖2L2 + ‖ log〈w−〉∇z‖2L2 + ‖(log〈w−〉)2∇z‖2L2

+
∑

1≤|α|≤N∗+1

‖〈w−〉(log〈w−〉)2∇(∂αz)‖2L2

)

+ cμ2
∑

|α|=N∗+2

‖〈w−〉(log〈w−〉)2∇(∂αz)‖2L2 ≤
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ fα(t).

(3.34)
To further simplify the notations, we introduce

z00 = z, z01 = log〈w−〉z, z02 = (log〈w−〉)2z, zα = 〈w−〉(log〈w−〉)2∂αz.

Using the new notations, we have

Eμ

(lin),+(t) ∼
2∑

k=0

‖z0k(t)‖2L2 +
∑

1≤|α|≤N∗+1

‖zα(t)‖2L2 + μ
∑

|α|=N∗+1

‖∇zα(t)‖2L2 . (3.35)
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By virtue of (3.33), for all t ≥ 0, we have

∑
k≤2

‖z0k‖2L2 +
∑

1≤|α|≤N∗+1

‖zα‖2L2

+ μ
∑

|α|=N∗+2

‖zα‖2L2 + μ

∫ ∞
0

⎛
⎝∑

k≤2

‖∇z0k‖2L2 +
∑

1≤|α|≤N∗+1

‖∇zα‖2L2

⎞
⎠ dt

+ μ2
∑

|α|=N∗+2

∫ ∞
0
‖∇zα‖2L2dt � Eμ(0),

(3.36)

where L2 should be understood as L2(
t ).
Step 3 Decomposition of zα and the refined energy for (3.31).
By definition, z0k and zα satisfy the following equations:

∂t z00 + Z− · ∇z00 − μ�z00 = 0,

∂t z01 + Z− · ∇z01 − μ�z01 = −2μ
(∇(log〈w−〉) · ∇

)
z − μz�(log〈w−〉),

∂t z02 + Z− · ∇z02 − μ�z02 = −2μ
(∇((log〈w−〉)2) · ∇)z − μz�

(
(log〈w−〉)2),

∂t zα + Z− · ∇zα − μ�zα = −2μ
(∇(〈w−〉(log〈w−〉)2) · ∇)∂αz

− μ∂αz�
(〈w−〉(log〈w−〉)2)

− [∂α, z−] · ∇z · 〈w−〉(log〈w−〉)2.

(3.37)
Step 3.1 Decomposition of zα . We split zα into two parts zα = Yα+ Rα . The vector

fields Yα and Rα satisfy

∂t Yα + Z− · ∇Yα − μ�Yα = −2μ
(∇(〈w−〉(log〈w−〉)2) · ∇)∂αz

− μ∂αz�
(〈w−〉(log〈w−〉)2),

Yα|t=0 = zα|t=0
( = (〈w−〉(log〈w−〉)2∂αz+)(0, x)

)
,

(3.38)

and

∂t Rα + Z− · ∇Rα − μ�Rα = −[∂α, z−] · ∇z〈w−〉(log〈w−〉)2,

Rα|t=0 = 0.
(3.39)

Step 3.2 Energy estimates for (3.38). By taking L2(
t )-product with Yα , (3.38)
yields

1

2

d

dt
‖Yα‖2L2 + μ‖∇Yα‖2L2 = −μ

∫

t

[2(∇(〈w−〉(log〈w−〉)2) · ∇)∂αz · Yα

+ ∂αz�
(〈w−〉(log〈w−〉)2) · Yα]dx .

Since |∇(〈w−〉(log〈w−〉)2
)| � (log〈w−〉)2 and ‖ Yα〈w−〉‖L2�‖∇Yα‖L2 , integrating the

second term in the righthand side by parts will lead to the following upper bound for
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the righthand side:

μ‖〈w−〉(log〈w−〉)2∇(∂αz)‖L2‖∇Yα‖L2 + μ‖(log〈w−〉)2∂αz‖L2‖∇Yα‖L2 .

Hence,

d

dt
‖Yα‖2L2 + μ‖∇Yα‖2L2 � μ‖〈w−〉(log〈w−〉)2∇(∂αz)‖2L2 + μ‖(log〈w−〉)2∂αz‖2L2 .

Since ‖〈w−〉(log〈w−〉)2∇(∂αz)‖L2 can be bounded by

∑
1≤|β|≤|α|

‖∇(〈w−〉(log〈w−〉)2(∂β z)
)‖L2 + ‖∇((log〈w−〉)2z

)‖L2 + ‖∇(log〈w−〉z
)‖L2 ,

Then we have

d

dt

⎛
⎝ ∑

1≤|α|≤N∗+1

‖Yα‖2L2 + μ
∑

|α|=N∗+2

‖Yα‖2L2

⎞
⎠

+ μ
∑

1≤|α|≤N∗+1

‖∇Yα‖2L2 + μ2
∑

|α|=N∗+2

‖∇Yα‖2L2

� μ

2∑
k=0

‖∇z0k‖2L2 + μ
∑

1≤|α|≤N∗+1

‖∇zα‖2L2 + μ2
∑

|α|=N∗+2

‖∇zα‖2L2 .

(3.40)

Integrating over t , (3.40) together with (3.36) gives the following bound on Yα:

sup
t≥0

⎛
⎝ ∑

1≤|α|≤N∗+1

‖Yα‖2L2 + μ
∑

|α|=N∗+2

‖Yα‖2L2

⎞
⎠

+ μ
∑

1≤|α|≤N∗+1

∫ ∞
0
‖∇Yα‖2L2dt + μ2

∑
|α|=N∗+2

∫ ∞
0
‖∇Yα‖2L2dt � Eμ(0).

(3.41)
Step 3.3 Energy estimate for (3.39). Once again, similar to the derivation of (1.13),

for all t ≥ 0 and u+ ∈ R, we have

∑
1≤|α|≤N∗+1

‖Rα(t)‖2
L2 + μ

∑
|α|=N∗+2

‖Rα(t)‖2
L2 +

∑
1≤|α|≤N∗+1

∫
Cu+
|Rα|2dσ+

+ μ
∑

1≤|α|≤N∗+1

∫ t

0
‖∇Rα(τ )‖2

L2dτ + μ2
∑

|α|=N∗+2

∫ t

0
‖∇Rα(τ )‖2

L2dτ

�

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠
∣∣∣∣
∫ t

0

∫
R3

(([∂α, z−] · ∇z
)〈w−〉(log〈w−〉)2

)
· Rαdxdτ

∣∣∣∣︸ ︷︷ ︸
Iα

123



5 Page 92 of 105 L.-B. He et al.

Since z = z(lin)
+ , in view of (1.13) and (3.27), we have for 1 ≤ |α| ≤ N∗ + 1

Iα � Eμ(0)
(

sup
u+

∫
Cu+
|Rα|2dσ+

) 1
2
.

Whereas for |α| = N∗ + 2, we have

μIα � √μ

∫ t

0
‖([∂α, z−] · ∇z

)〈w−〉(log〈w−〉)2‖L2dτ ·
(

sup
0≤τ≤t

μ‖Rα(τ )‖2L2

) 1
2

�

⎛
⎜⎜⎜⎜⎜⎝

∑
0≤k≤N∗−2︸ ︷︷ ︸

A1

+
∑

N∗−1≤k≤N∗+1︸ ︷︷ ︸
A2

⎞
⎟⎟⎟⎟⎟⎠
√

μ

∫ t

0
‖(∂N∗+2−k z−)

· (∂k∇z)〈w−〉(log〈w−〉)2‖L2dτ ·
(

sup
0≤τ≤t

μ‖Rα(τ )‖2L2

) 1
2
.

For A1, we have

A1 �
∑

0≤k≤N∗−2

√
μ
∥∥〈w+〉(log〈w+〉

)2
∂N∗+2−k z−

∥∥
L2

τ L
2
x

·
∥∥∥ 〈w−〉(log〈w−〉)2

〈w+〉
(
log〈w+〉

)2 ∂k∇z
∥∥∥
L2

τ L
∞
x

�
∑
k≤N∗

(
Dk−
) 1

2
∑
k≤N∗

(
Fk+(∇z)) 1

2 .

For A2, we have

A2 �
∑

N∗−1≤k≤N∗+1

√
μ
∥∥〈w+〉(log〈w+〉

)2
∂N∗+2−k z−

∥∥
L2

τ L
∞
x

·
∥∥∥ 〈w−〉(log〈w−〉)2

〈w+〉
(
log〈w+〉

)2 ∂k∇z
∥∥∥
L2

τ L
2
x

�
∑
k≤N∗

(
D− + Dk−

) 1
2
∑
k≤N∗

(
Fk+(∇z)) 1

2 ,

where we used the Gagliardo–Nirenberg interpolation inequality ‖u‖L∞ � ‖∇u‖
1
2
L2

‖∇2u‖
1
2
L2 . Then by virtue of (1.13) and (3.27), we have

μIα � Eμ(0)
(

sup
0≤τ≤t

μ‖Rα(τ )‖2L2

) 1
2
.
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Thus, by the smallness of Eμ(0), for all t ≥ 0, u+ ∈ R, we finally obtain

∑
1≤|α|≤N∗+1

‖Rα(t)‖2
L2 + μ

∑
|α|=N∗+2

‖Rα(t)‖2
L2 +

∑
1≤|α|≤N∗+1

∫
Cu+
|Rα|2dσ+

+ μ
∑

1≤|α|≤N∗+1

∫ t

0
‖∇Rα(τ )‖2

L2dτ + μ2
∑

|α|=N∗+2

∫ t

0
‖∇Rα(τ )‖2

L2dτ �
(Eμ(0)

) 3
2 .

(3.42)
Step 3.4 Energy estimates for the Lagrangian forms. We recall that ṽ(t, y) =

v(t, ψ−(t, y)) is a Lagrangian form of v, i.e., in the Lagrangian coordinates system.
Since det

( ∂ψ−
∂y

) = 1, we have ‖v‖L2 = ‖̃v‖L2 . When we write∇ṽ(t, y), the derivative
∇ is always understood as taken with respect to y. Therefore, (3.34) and (3.40) together
give the following estimates (the L2 norms are taken on 
0):

d

dt

⎛
⎝ 2∑

k=0

c0k‖z̃0k‖2L2 +
∑

1≤|α|≤N∗+1

cα‖z̃α‖2L2 + μ
∑

|α|=N∗+2

cα‖z̃α‖2L2

+
∑

1≤|α|≤N∗+1

c′α‖Ỹα‖2L2 + μ
∑

|α|=N∗+2

c′α‖Ỹα‖2L2

⎞
⎠

+ cμ
2∑

k=0

‖∇ z̃0k‖2L2 + μ
∑

1≤|α|≤N∗+1

(
c‖∇ z̃α‖2L2 + c′‖∇Ỹα‖2L2

)

+ μ2
∑

|α|=N∗+2

(
c‖∇ z̃α‖2L2 + c′‖∇Ỹα‖2L2

)

≤
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ fα(t).

(3.43)

Step 3.5 The refined energy X (t). Let

X (t) =
2∑

k=0

c0k‖z̃0k‖2L2 +
∑

1≤|α|≤N∗+1

(cα + c′α)‖Ỹα‖2L2 +μ
∑

|α|=N∗+2

(cα + c′α)‖Ỹα‖2L2 .

(3.44)
In view of the fact that zα = Yα+ Rα and estimates (3.35), (3.41) and (3.42), we have

Eμ

(lin),+ +
(
Eμ(0)

) 3
2 ∼ X (t)+ (Eμ(0)

) 3
2 . (3.45)

We rewrite (3.43) as

d

dt
X (t)+ cμ

⎛
⎝ 2∑

k=0

‖∇ z̃0k‖2L2 +
∑

1≤|α|≤N∗+1

‖∇Ỹα‖2L2 + μ
∑

|α|=N∗+2

‖∇Ỹα‖2L2

⎞
⎠ ≤ F(t),

(3.46)
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where

F(t)=
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠( fα(t)− 2cα

d

dt

∫

t

Ỹα · R̃αdy − cα

d

dt
‖R̃α‖2L2

)
.

(3.47)

To further refine the estimates, we quickly introduce a dyadic decomposition. Let
ψ and φ be non-negative smooth functions so that supp ψ ⊂ B 4

3
= {y | |y| ≤ 4

3 },
supp φ ⊂ C = {y | 3

4 ≤ |y| ≤ 8
3 } and

ψ(y)+
∑
j≥0

φ(2− j y) = 1.

Let p−1(y) = ψ(y). For j ≥ 0, we define p j (y) = φ(2− j y). We use f̂ to denote the
Fourier transform of a function or a vector field f on R

3.
By Hardy inequality, we have

2− j‖p j z̃‖L2 �
∥∥ p j z̃

〈y〉
∥∥
L2 � ‖∇(p j z̃)‖2L2 .

Hence,

‖∇ z̃‖2L2∼
∞∑

j=−1

(‖p j∇ z̃‖2L2 + 2−2 j‖p j z̃‖2L2

)∼
∞∑

j=−1

(‖∇(p j z̃)‖2L2 + 2−2 j‖p j z̃‖2L2

)
.

(3.48)
We now pick up a function h(t) ≥ 0 and it will be determined later on. By Plancherel
theorem, we have

‖∇ z̃‖2L2 �
∫

R3
|ξ |2 |̂̃z(ξ)|2dξ ≥ h(t)2‖̃z‖2L2 − h(t)2

∫
|ξ |≤h(t)

|̂̃z(ξ)|2dξ. (3.49)

By (3.48) and (3.49), we deduce that

2∑
k=0

‖∇ z̃0k‖2L2 +
∑

1≤|α|≤N∗+1

‖∇Ỹα‖2L2 + μ
∑

|α|=N∗+2

‖∇Ỹα‖2L2

�
∑
k≤2
j≥−1

‖∇(p j z̃0k)‖2L2 +
∑

1≤|α|≤N∗+1
j≥−1

‖∇(p j Ỹα)‖2L2 + μ
∑

|α|=N∗+2
j≥−1

‖∇(p j Ỹα)‖2L2
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� h(t)2X (t)− h(t)2
∫
|ξ |≤h(t)

⎛
⎜⎜⎝
∑
k≤2
j≥−1

| p̂ j z̃0k(ξ)|2 +
∑

1≤|α|≤N∗+1
j≥−1

|̂p j Ỹα(ξ)|2

+μ
∑

|α|=N∗+2
j≥−1

|̂p j Ỹα(ξ)|2
⎞
⎟⎟⎠ dξ.

We then deduce from (3.46) that

d

dt
X (t)+ cμh(t)2X (t)

≤ F(t)+ cμh(t)2
∫
|ξ |≤h(t)

⎛
⎜⎜⎝
∑
k≤2
j≥−1

| p̂ j z̃0k(ξ)|2 +
∑

1≤|α|≤N∗+1
j≥−1

|̂p j Ỹα(ξ)|2

+μ
∑

|α|=N∗+2
j≥−1

|̂p j Ỹα(ξ)|2
⎞
⎟⎟⎠ dξ.

(3.50)

The integral terms on the right-side will be called low frequency terms.
Step 4 Estimates on the low frequency terms in (3.50).

Step 4.1 Estimates on
∫
|ξ |≤h(t) |̂p j Ỹα|2dξ . Since ψ−(t, y) is the flow generated by

Z− which defines the coordinates (t, y1, y2, y3), we have

(∂t + Z− · ∇) f |x=ψ−(t,y) = ∂t f̃ (t, y), ∇ f |x=ψ−(t,y) =
(∂ψ−(t, y)

∂y

)−T∇y f̃ (t, y).

Let A− =
( ∂ψ−(t,y)

∂y

)−1( ∂ψ−(t,y)
∂y

)−T . By the divergence free property of Z−, we have

det
( ∂ψ−(t,y)

∂y

) = 1 so that
( ∂ψ−(t,y)

∂y

)−1 is the adjoint matrix of ∂ψ−(t,y)
∂y . Then we have

div
( ∂ψ−(t,y)

∂y

)−1 = 0 and

� f |x=ψ−(t,y) = ∇y ·
(
A−∇y f̃ (t, y)

)
,

Thus, (3.38) can be written as

∂t Ỹα − μ�Ỹα = μdiv
(
(A− − I )∇Ỹα

)− 2μ
(∂ψ−

∂y

)−T∇(〈y〉(log〈y〉)2) · ∇̃∂αz

− μ∂̃αzdiv
(
A−∇[〈y〉(log〈y〉)2]),

(3.51)
In the above expression, we used the fact that 〈w±〉|x=ψ±(t,y) = 〈y〉.
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We decompose (3.51) by multiplying p j for each j ≥ −1:

∂t (p j Ỹα)− μ�(p j Ỹα) = −2μ∇ p j · ∇Ỹα − μ�p j Ỹα︸ ︷︷ ︸
L1

α

+μp jdiv
(
(A− − I )∇Ỹα

)
︸ ︷︷ ︸

L2
α

− 2μ
(∂ψ−

∂y

)−T∇(〈y〉(log〈y〉)2) · (p j ∇̃∂αz)
︸ ︷︷ ︸

L3
α

−μ(p j ∂̃αz)div
(
A−∇[〈y〉(log〈y〉)2])︸ ︷︷ ︸

L4
α

.

(3.52)
We use Lα to denote the righthand side of (3.52). In frequency space, we have

d

dt

∣∣̂p j Ỹα

∣∣2 + 2μ|ξ |2∣∣̂p j Ỹα

∣∣2 = 2Re
(
L̂α · ̂p j Ỹα

)
,

which implies

∣∣̂p j Ỹα

∣∣2(t, ξ) = e−2μt |ξ |2 ∣∣̂p j Ỹα(0, ξ)
∣∣2 + 2

∫ t

0
e−2μ(t−s)|ξ |2Re

(
L̂α · ̂p j Ỹα

)
(s, ξ)ds,

Therefore,

∫
|ξ |≤h(t)

∣∣̂p j Ỹα

∣∣2(t, ξ)dξ ≤
∫

R3
e−2μt |ξ |2 ∣∣̂p j Ỹα

∣∣
t=0

∣∣2ψ( 3|ξ |
4h(t)

)
dξ

+ 2Re
∫ t

0

∫
R3

e−2μ(t−s)|ξ |2ψ
( 3|ξ |

4h(t)

)(
L̂α · ̂p j Ỹα

)
(s, ξ)dξds

︸ ︷︷ ︸
T α
j

. (3.53)

By Plancherel theorem, we have

|T α
j | �

∣∣ ∫ t

0

∫
R3

Lα · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds

∣∣.

where we take the following a1, a2 ∈ S(R3):

a1 =
(

2
√

μ(t − s)
)−3

e−
|x |2

8μ(t−s) ⇔ â1 = e−2μ(t−s)|ξ |2 ,

a2 =
(

4

3
h(t)

)3

ψ̆

(
4

3
h(t)x

)
⇔ â2 = ψ

(
3|ξ |

4h(t)

)
.

There exists a universal constant C independent of t, s, μ, such that

‖a1‖L1 + ‖a2‖L1 ≤ C.
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To proceed, we first make the following observation

∇ p j = ∇ p j

⎛
⎝ ∑
| j−k|≤2

pk

⎞
⎠ = ∇ p j p

′
j , p j 〈y〉−1 ≤ 2− j p j , |∂k p j | � 2−k j p′j ,

(3.54)
where p′j =

∑
| j−k|≤2 pk .

We first bound T α
j1

def= ∫ t0 ∫R3 L1
α · a1 ∗ a2 ∗

(
p j Ỹα

)
dyds, i.e., the contribution from

L1
α in T α

j . By integration by parts, we have

T α
j1 = μ

∫ t

0

∫
R3

(�p j )Ỹα · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds

+ 2μ

∫ t

0

∫
R3

(∂p j )Ỹα · ∂
(
a1 ∗ a2 ∗ (p j Ỹα)

)
dyds.

According to (3.54), we have

∣∣T α
j1

∣∣ � μ

∫ t

0

∫
R3

∣∣p′j Ỹα

∣∣ · (2−2 j |a1 ∗ a2 ∗
(
p j Ỹα

)|
+ 2− j

∣∣∂((a1 ∗ a2 ∗ (p j Ỹα)
)∣∣)dyds

|y|∼2 j

� μ

∫ t

0
‖p′j Ỹα‖L2

(
2− j
∥∥ 1

|y|a1 ∗ a2 ∗
(
p j Ỹα

)∥∥
L2

+ 2− j
∥∥∇(a1 ∗ a2 ∗ (p j Ỹα)

)∥∥
L2

)
ds.

In view of the fact that supp â2 ⊂ {|ξ | ≤ h(t)}, by Young’s and Hardy’s inequalities
and Plancherel theorem, we have

∥∥ 1

|y|a1 ∗ a2 ∗
(
p j Ỹα

)∥∥
L2

� ‖∇(a1 ∗ a2 ∗ (p j Ỹα)
)‖L2 � ‖a1 ∗ (|∇|∇a2) ∗

(|∇|−1(p j Ỹα)
)‖L2

� h(t)2‖a1‖L1‖a2‖L1‖|∇|−1(p j Ỹα)
)‖L2 � h(t)2

∥∥ 1

|ξ |
̂p j Ỹα

∥∥
L2

Hardy
� h(t)2‖∇ξ

̂p j Ỹα‖L2 � h(t)2‖̂yp j Ỹα‖L2

|y|�2 j

� 2 j h(t)2‖p j Ỹα‖L2 .

Hence,

2− j
∥∥ 1

|y|a1 ∗ a2 ∗
(
p j Ỹα

)∥∥
L2 � 2− j‖∇(a1 ∗ a2 ∗ (p j Ỹα)

)‖L2 � h(t)2‖p j Ỹα‖L2 .

(3.55)
Thus, we obtain

|T α
j1| � μh(t)2

∫ t

0
‖p j Ỹα‖L2‖p′j Ỹα‖L2ds � μh(t)2

∫ t

0
‖p′j Ỹα‖2L2ds. (3.56)
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We then bound T α
j2 =

∫ t
0

∫
R3 L2

α · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds, i.e., the contribution from

L2
α in T α

j . By integration by parts, we have

T α
j2 = −μ

∫ t

0

∫
R3

(∇ p j · (A− − I )∇Ỹα

) · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds

−μ

∫ t

0

∫
R3

p j (A− − I )∇Ỹα · ∇
(
a1 ∗ a2 ∗ (p j Ỹα)

)
dyds.

Similar to the argument used to bound T α
j1, we have

T α
j2 � μ

∫ t

0
‖A− − I‖L∞y

(‖p′j∇Ỹα‖L2 + ‖p j∇Ỹα‖L2
)‖a1 ∗ a2 ∗ ∇(p j Ỹα)‖L2ds.

By Young’s inequality, we have ‖a1 ∗ a2 ∗ ∇(p j Ỹα)‖L2 � ‖∇(p j Ỹα)‖L2 . We then
conclude that

|T α
j2| � μ‖A− − I‖L∞t,y

∫ t

0
‖p′j∇Ỹα‖L2‖∇(p j Ỹα)‖L2ds. (3.57)

We move to the bound on T α
j3 =

∫ t
0

∫
R3 L3

α · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds. First of all,

since ∇̃∂αz = ( ∂ψ−
∂y

)−T∇ ∂̃αz, we rewrite L3
α as

L3
α = − 2μ∇(〈y〉(log〈y〉)2) · (p j∇ ∂̃αz)︸ ︷︷ ︸

L31
α

− 2μ∇(〈y〉(log〈y〉)2) · ((∂ψ−
∂y

)−T − I
)
(p j∇ ∂̃αz)

︸ ︷︷ ︸
L32

α

− 2μ
((∂ψ−

∂y

)−T − I
)
∇(〈y〉(log〈y〉)2) · (p j ∇̃∂αz)

︸ ︷︷ ︸
L33

α

.

For i ≤ 3, let T α
j3i be the contribution of L3i

α in T α
j3. For T α

j31, by integration by parts
and (3.54), we have

|T α
j31| � μ

∫ t

0

∫
R3

(|p j
(〈y〉(log〈y〉)2∂̃αz

)|∣∣a1 ∗ a2 ∗
(
p j Ỹα

)
〈y〉2

∣∣

+ |p′j
(〈y〉(log〈y〉)2∂̃αz

)|2− j
∣∣a1 ∗ a2 ∗

(
p j Ỹα

)
〈y〉

∣∣)dyds
+ μ

∫ t

0

∫
R3
|p j
(〈y〉(log〈y〉)2∂̃αz

)| · ∣∣∇
(
a1 ∗ a2 ∗ (p j Ỹα)

)
〈y〉

∣∣dyds.
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We observe that p j
1
〈y〉 � p j2− j and 〈y〉(log〈y〉)2∂̃αz = z̃α . Thanks to (3.55), we

have

|T α
j31| � μh(t)2

∫ t

0
‖p′j z̃α‖L2‖p j Ỹα‖L2ds.

To bound T α
j32 and T α

j33, we have

∣∣T α
j32 + T α

j33

∣∣ � μ

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

∫ t

0

(‖p j
(〈y〉(log〈y〉)2∇ ∂̃αz

)‖L2

+ ‖p j
(〈y〉(log〈y〉)2∇̃∂αz

)‖L2
)∥∥a1 ∗ a2 ∗

(
p j Ỹα

)
〈y〉

∥∥
L2ds

Hardy
� μ

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

∫ t

0

∥∥p j
(〈y〉(log〈y〉)2∇̃∂αz

)∥∥
L2

‖a1 ∗ a2 ∗ ∇(p j Ỹα)‖L2ds

� μ

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

∫ t

0
‖p j
(〈y〉(log〈y〉)2∇̃∂αz

)‖L2

‖∇(p j Ỹα)‖L2ds.

As a result, we finally have

∣∣T α
j3

∣∣ � μh(t)2
∫ t

0
‖p′j z̃α‖L2‖p j Ỹα‖L2ds

+ μ

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

∫ t

0

∥∥p j
(〈y〉(log〈y〉)2∇̃∂αz

)∥∥
L2‖∇(p j Ỹα)‖L2ds.

(3.58)
It remains to bound T α

j4 =
∫ t

0

∫
R3 L4

α · a1 ∗ a2 ∗
(
p j Ỹα

)
dyds. Since L4

α can be
written as

L4
α = −μ(p j ∂̃αz)�[〈y〉(log〈y〉)2])− μ(p j ∂̃αz)div

(
(A− − I )∇[〈y〉(log〈y〉)2]),

we can proceed exactly in the same manner as for T α
j3 and we obtain

|T α
j4| � μh(t)2

∫ t

0
‖p′j z̃α‖L2‖p j Ỹα‖L2ds + μ‖A−

− I‖L∞t,y
∫ t

0
‖p j
(〈y〉(log〈y〉)2∇̃∂αz

)‖L2‖∇(p j Ỹα)‖L2ds.

(3.59)
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Finally, in view of (3.48), when we sum over j , (3.56)–(3.59) together yield

∞∑
j=−1

|T α
j | � μh(t)2

∫ t

0

(‖z̃α‖2L2 + ‖Ỹα‖2L2

)
ds

+μ
(‖A− − I‖L∞t,y +

∥∥(∂ψ−
∂y

)−T − I
∥∥
L∞t,y
)

×
∫ t

0

(‖〈y〉(log〈y〉)2∇̃∂αz‖2L2 + ‖∇Ỹα‖2L2

)
ds

� μth(t)2 sup
t≥0

(‖zα‖2L2 + ‖Yα‖2L2

)

+μ
(‖A− − I‖L∞t,y +

∥∥(∂ψ−
∂y

)−T − I
∥∥
L∞t,y
)

×
∫ t

0

(‖〈w−〉(log〈w−〉)2∇∂αz‖2L2 + ‖∇Yα‖2L2

)
ds.

By (3.36) and (3.41), we obtain

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ ∞∑

j=−1

|T α
j |

� μth(t)2Eμ(0)+
⎛
⎝‖A− − I‖L∞t,y +

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

⎞
⎠ Eμ(0). (3.60)

As a consequence, (3.53) yields

∑
1≤|α|≤N∗+1

j≥−1

∫
|ξ |≤h(t)

|̂p j Ỹα(ξ)|2dξ + μ
∑

|α|=N∗+2
j≥−1

∫
|ξ |≤h(t)

|̂p j Ỹα(ξ)|2dξ

� μth(t)2Eμ(0)+ (‖A− − I‖L∞t,y + ‖
(∂ψ−

∂y

)−T − I‖L∞t,y
)
Eμ(0)

+
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ ∑

j≥−1

∫
R3

e−2μt |ξ |2 |̂p j Ỹα(0, ξ)|2ψ( 3|ξ |
4h(t)

)
dξ.

(3.61)
Step 4.2 Estimates on

∫
|ξ |≤h(t) | p̂ j z̃0k |2dξ for k = 0, 1, 2.

From (3.37), we deduce that

∂t z̃0k − μ�z̃0k = μdiv
(
(A− − I )∇ z̃0k

)− 2μ
(∂ψ−

∂y

)−T∇((log〈y〉)k) · ∇̃z
− μ̃zdiv

(
A−∇[(log〈y〉)k]). (3.62)
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We can compared with this equation with (3.51) by replacing ∂αz, Yα and
〈y〉(log〈y〉)2 by z, z0k and (log〈y〉)k respectively. Therefore, following the simialr
derivation, we also have similar estimates (compared to (3.61)):

∑
j≥−1

∫
|ξ |≤h(t)

∣∣ p̂ j z̃0k
∣∣2(t, ξ)dξ � μth(t)2Eμ(0)

+ (‖A− − I‖L∞t,y +
∥∥(∂ψ−

∂y

)−T − I
∥∥
L∞t,y
)
Eμ(0)

+
∑
j≥−1

∫
R3

e−2μt |ξ |2 ∣∣ p̂ j z̃0k(0, ξ)
∣∣2ψ( 3|ξ |

4h(t)

)
dξ.

(3.63)

Step 5 The decay of X (t).
By virtue of (3.50), (3.61) and (3.63), we conclude that there exists universal constant
c and C (independent of μ) such that

d

dt
X (t)+ cμh(t)2X (t) ≤ F(t)+ Cμh(t)2 Iμ(t)+ Cμ2th(t)4Eμ(0)

+ Cμh(t)2(‖A− − I‖L∞t,y +
∥∥(∂ψ−

∂y

)−T − I
∥∥
L∞t,y
)
Eμ(0),

(3.64)
where the new function Iμ(t) are determined by the initial data as follows:

Iμ(t) =
∫

R3

∞∑
j=−1

e−2μt |ξ |2ψ
(

3|ξ |
4h(t)

)( 2∑
k=0

∣∣ p̂ j z̃0k(0, ξ)
∣∣2

+
∑

1≤|α|≤N∗+1

∣∣̂p j Ỹα(0, ξ)
∣∣2 + μ

∑
|α|=N∗+2

∣∣̂p j Ỹα(0, ξ)
∣∣2
⎞
⎠ dξ.

(3.65)

We also notice that |Iμ(t)| � Eμ(0).

Multiplying both sides of (3.64) by the factor e
c
2 μ
∫ t

0 h(τ )2dτ , we obtain

d

dt

(
e
c
2 μ
∫ t

0 h(τ )2dτ X (t)
)
+ c

2
μh(t)2e

c
2 μ
∫ t

0 h(τ )2dτ X (t)

≤ e
c
2 μ
∫ t

0 h(τ )2dτ
(
F(t)+ · · ·

)
︸ ︷︷ ︸

Righthand side of(3.64)

. (3.66)

We first give the bound of F(t). In view of its definition in (3.47), we obtain that

e
c
2 μ
∫ t

0 h(τ )2dτ F(t) =
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ e

c
2 μ
∫ t

0 h(τ )2dτ fα(t)

− d

dt
G(t)+ c

2
μh(t)2G(t),
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where

G(t) = e
c
2 μ
∫ t

0 h(τ )2dτ

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠
(

2cα

∫
R3

Ỹα · R̃αdy + cα‖R̃α‖2L2

)
.

We can bound G(t) as

|G(t)| ≤e c
2 μ
∫ t

0 h(τ )2dτ

⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠(cα‖Yα‖2L2 + 2cα‖Rα‖2L2

)
.

Thanks to (3.42) and the expression of X (t) in (3.44), we obtain that

e
c
2 μ
∫ t

0 h(τ )2dτ X (t)+ G(t) � e
c
2 μ
∫ t

0 h(τ )2dτ X (t)− Ce
c
2 μ
∫ t

0 h(τ )2dτ
(
Eμ(0)

) 3
2 , (3.67)

and

c

2
μh(t)2G(t) ≤ c

2
μh(t)2e

c
2 μ
∫ t

0 h(τ )2dτ X (t)+ C
c

2
μh(t)2e

c
2 μ
∫ t

0 h(τ )2dτ
(
Eμ(0)

) 3
2 .

Thus, (3.66) implies that

d

dt

(
e

c
2 μ
∫ t

0 h(τ )2dτ X (t)+ G(t)
)

≤
⎛
⎝ ∑

1≤|α|≤N∗+1

+μ
∑

|α|=N∗+2

⎞
⎠ e

c
2 μ
∫ t

0 h(τ )2dτ fα(t)+ Cμh(t)2e
c
2 μ
∫ t

0 h(τ )2dτ
(Eμ(0)

) 3
2

+ Cμh(t)2e
c
2 μ
∫ t

0 h(τ )2dτ Iμ(t)+ Cμ2th(t)4e
c
2 μ
∫ t

0 h(τ )2dτEμ(0)

+ Cμh(t)2e
c
2 μ
∫ t

0 h(τ )2dτ

⎛
⎝‖A− − I‖L∞t,y +

∥∥∥∥∥
(

∂ψ−
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

⎞
⎠ Eμ(0).

(3.68)
We set from now on that

c

2
h(t)2 = (μt + e)−1(log(μt + e)

)−1
.

Thus, we have e
c
2 μ
∫ t

0 h(τ )2dτ = log(μt + e). By integrating (3.68) on [0, t] and by the
estimate (3.33) on fα and the estimate (3.67), we obtain

log(μt + e)X (t) ≤ 2X (0)+ Cμ

∫ t

0

Iμ(s)

μs + e
ds + C log

(
log(μt + e)

)
Eμ(0)

+ C log(μt + e)
[(
Eμ(0)

) 3
2 + (‖A− − I‖L∞t,y +

∥∥(∂ψ−
∂y

)−T − I
∥∥
L∞t,y
)
Eμ(0)

]
.
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Since X (0) � Eμ(0), we get

X (t) �
log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0)+ μ
∫ t

0
Iμ(s)
μs+e ds

log(μt + e)

+ (Eμ(0)
) 3

2 + (‖A− − I‖L∞t,y +
∥∥(∂ψ−

∂y

)−T − I
∥∥
L∞t,y
)
Eμ(0).

We bound the second term on the righthand side as follows:
For s ≤ 1

μ
log(μt + e), we use Iμ(t) � Eμ(0) and we obtain

μ
∫ 1

μ
log(μt+e)

0
Iμ(s)
μs+e ds

log(μt + e)
�

log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0).

For s ≥ 1
μ

log(μt + e), we use |h(s)|2 ≤ 2
c (log(μt + e)+ e)−1

[
log
(
log(μt + e)+

e
)]−1 and the definition of Iμ(t) to obtain

μ
∫ t

1
μ

log(μt+e)
Iμ(s)
μs+e ds

log(μt + e)

�
∞∑

j=−1

∫
|ξ |2≤ 8

c (log(μt+e)+e)−1

⎛
⎝ 2∑

k=0

∣∣ p̂ j z̃0k (0, ξ)
∣∣2 + ∑

1≤|α|≤N∗+1

∣∣̂p j Ỹα(0, ξ)
∣∣2 + μ

∑
|α|=N∗+2

∣∣̂p j Ỹα(0, ξ)
∣∣2
⎞
⎠ dξ

︸ ︷︷ ︸
Iμ(t;0)

.

We remark that Iμ(t; 0) is determined by the initial data and limt→∞ Iμ(t; 0) = 0.
Finally, we obtain that the decay estimate on X (t):

X (t) �
log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0)+ Iμ(t; 0)

+ (Eμ(0)
) 3

2 + (‖A− − I‖L∞t,y +
∥∥(∂ψ−

∂y

)−T − I
∥∥
L∞t,y
)
Eμ(0).

(3.69)

Step 6 Decay mechanism on energy and convergence to the parabolic regime.
By virtue of (3.30), (3.45) and (3.69), we have the following decay estimates for

the total energy:

Eμ(t) �
log
(
log(μt + e)+ e

)
log(μt + e)

Eμ(0)+ Iμ(t; 0)

+ (Eμ(0)
) 3

2︸ ︷︷ ︸
H1

+
∑
+,−

(
‖A± − I‖L∞t,y +

∥∥(∂ψ±
∂y

)−T − I
∥∥
L∞t,y

)
Eμ(0)

︸ ︷︷ ︸
H2

. (3.70)

We remark that the higher order term H1 comes from the non-linear structure of the
system while the term H2 comes from the change of the coordinates from (x1, x2, x3) to
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(y1, y2, y3) (the label of 
0). And we also emphasize that the estimates of ‖A±− I‖L∞t,y
and ‖( ∂ψ±

∂y

)−T − I‖L∞t,y depend only on the total energy at the time t = 0 since at the

beginning t = 0, it holds (x±1 , x±2 , x±3 )|t=0 = (x1, x2, x3).
For t ≥ s, we define

Iμ(t; s) =
∑
+,−
j≥−1

∫
|ξ |2≤ 8

c (log(μ(t−s)+e)+e)−1

(
2∑

k=0

∣∣ ̂p j z̃±,0k(s, ξ)
∣∣2

+
∑

1≤|α|≤N∗+1

∣∣̂p j z̃±,α(s, ξ)
∣∣2 + μ

∑
|α|=N∗+2

∣∣ ̂p j z̃±,α(s, ξ)
∣∣2
⎞
⎠ dξ,

where

z±,00 := z±, z±,01 := log〈w∓〉z±, z±,02 := (log〈w∓〉)2z±,

zα,± := 〈w∓〉(log〈w∓〉)2∂αz±.

Then it is easy to generalize (3.70) to

Eμ(t) �
log
(
log(μ(t − s)+ e)+ e

)
log(μ(t − s)+ e)

Eμ(s)+ Iμ(t; s)

+ (Eμ(s)
) 3

2 +
∑
+,−

⎛
⎝‖A± − I‖L∞t,y +

∥∥∥∥∥
(

∂ψ±
∂y

)−T
− I

∥∥∥∥∥
L∞t,y

⎞
⎠ Eμ(s),

(3.71)
where we use the global energy estimate (1.13).

An easy but useful observation on Iμ(t; s) is that, for a fixed s, we have Iμ(t; s)→
0 as t →∞. Since Eμ(0) ∼ ε2 and

‖A± − I‖L∞t,y +
∥∥(∂ψ±

∂y

)−T − I
∥∥
L∞t,y

�
(
Eμ(0)

) 1
2 ,

there exists T1 > 0 and a universal constant C such that

Eμ(T1) ≤
(
CEμ(0)

) 3
2 .

Therefore, at time T1, the total energy drops for an order of ε. It is obvious that the
time T1 depends on the profile of the initial data and there is no uniform (with respect
to the energy norms) control on T1.

We can now iterate the above decay process: we treat T1 as an initial time and by
(3.71), for t ≥ T1, we obtain that

Eμ(t) � Iμ(t; T1)+ log
(
log(μ(t − T1)+ e)+ e

)
log(μ(t − T1)+ e)

Eμ(T1)+
(
Eμ(0)

) 1
2 Eμ(T1).
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Since limt→∞ Iμ(t; T1) = 0, there also exists T2 > T1 in such a way that

Eμ(T2) ≤
(
CEμ(0)

) 1
2 Eμ(T1) ≤

(
CEμ(0)

)2
.

By repeating the process, we can find time T1, T2, · · · , Tn0 such that

Eμ(Tn0) ≤
(
CEμ(0)

) n0
2 +1

.

We take n0 = 2# log εμ

log(
√
Cε)
$ + 1 where #m$ denotes the maximum integer which does

not exceed m. Therefore it holds

Eμ(Tn0) ≤ ε2
μ.

In particular, the H2-norm of the system at Tn0 are bounded above by εμ. Therefore,
the solutions are in the classical small-data parabolic regime. This completes the proof
of the theorem.
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