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Abstract It is well-known that small, regular, spherically symmetric characteristic
initial data to the Einstein-scalar-field system which are decaying towards (future
null) infinity give rise to solutions which are forward-in-time global (in the sense of
future causal geodesic completeness). We construct a class of spherically symmetric
solutions which are global but the initial norms are consistent with initial data not
decaying towards infinity. This gives the following consequences:

1. We prove that there exist forward-in-time global solutions with arbitrarily large
(and in fact infinite) initial bounded variation (BV) norms and initial Bondi masses.

2. While general solutions with non-decaying data do not approach Minkowski space-
time, we show using the results of Luk and Oh (Anal PDE 8(7):1603–1674,
2014. arXiv:1402.2984) that if a sufficiently strong asymptotic flatness condi-
tion is imposed on the initial data, then the solutions we construct (with large BV
norms) approach Minkowski spacetime with a sharp inverse polynomial rate.

3. Our construction can be easily extended so that data are posed at past null infinity
and we obtain solutions with large BV norms which are causally geodesically
complete both to the past and to the future.
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Finally, we discuss applications of our method to construct global solutions for other
nonlinear wave equations with infinite critical norms.

1 Introduction

We study the Einstein-scalar-field system for a Lorentzian manifold (M, g) and a
real-valued function φ : M → R:

⎧
⎪⎨

⎪⎩

Ricμν − 1
2 Rgμν = 2Tμν,

Tμν = ∂μφ∂νφ − 1
2gμν(g−1)αβ∂αφ∂βφ,

�gφ = 0

(1.1)

in (3 + 1) dimensions with spherically symmetric data. It is known [2,4] that small,
regular and sufficiently decaying initial data give rise to forward-in-time global solu-
tions in the sense that they are future causally geodesically complete. In this paper,
we show that the decay condition can be removed and be replaced by the requirement
that the growth of the integral of the data is suitably mild at infinity (see Theorem 1.1).
As a particular consequence, we construct global solutions with arbitrarily large (and
in fact infinite) BV norms and Bondi masses1.

To further discuss our results, we recall the reduction of (1.1) in spherical symmetry.
It is well-known that in spherical symmetry we can introduce null coordinates (u, v)

such that the metric g takes the form

g = −�2du · dv + r2dσS2 ,

where dσS2 is the standard metric on the unit round sphere and r is the area-radius of
the orbit of the symmetry group SO(3) (see Section 2.1). We normalize the coordinates
so that u = v on the axis of symmetry 	 = {r = 0}. Defining the Hawking mass m
by the relation

�2 = −4∂ur∂vr

1 − 2m
r

, (1.2)

the Einstein-scalar-field system reduces to the following system of equations for
(r, φ,m) in (1 + 1) dimensions, which we will also call the spherically symmetric
Einstein-scalar-field (SSESF) system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u∂vr = 2m∂ur∂vr
(1− 2m

r )r2 ,

∂u∂v(rφ) = 2m∂ur∂vr
(1− 2m

r )r2 φ,

∂ur∂um = 1
2 (1 − 2m

r )r2(∂uφ)2,

∂vr∂vm = 1
2 (1 − 2m

r )r2(∂vφ)2.

(SSESF)

1 See definition in (1.5) and (1.6).
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We will consider solutions to (SSESF) via studying the characteristic initial value
problem for which initial data are posed on a constant u curve Cu0 := {(u, v) :
u = u0, v ≥ u0}. On Cu0 , after imposing the gauge condition (∂vr)(u0, v) = 1

2 and
the boundary conditions r(u0, u0) = m(u0, u0) = 0, the initial value for 
(v) :=
2(∂v(rφ))(u0, v) can be freely prescribed. It is easy to show that if 
(v) is C1, then
there exists a unique local solution to (SSESF). We refer the readers to Section 2.1 for
further discussions on the characteristic initial value problem.

As mentioned earlier, (SSESF) is known to have global solutions for small, regular
and decaying initial data. More precisely, Christodoulou [2] showed that there exists
a universal constant δ0 > 0 such that if

sup
v

(
(1 + r)3|
|(v) + (1 + r)4|∂v
|(u0, v)

)
≤ δ0, (1.3)

then the solution is forward-in-time global. An analogous small data result in fact
holds without assuming spherical symmetry as long as the higher derivatives of the
scalar field and appropriate geometric quantities are also small and decaying. In the
vacuum case, this was first proved by Christodoulou-Klainerman [6]. An alternative
proof was later given by Lindblad-Rodnianski [8], who also treated the case of the
Einstein-scalar-field system.

Returning to the special case of spherical symmetry, in fact a much stronger result
is known: Christodoulou showed in [4] that only the bounded variation (BV) norm of
the initial data 
 is required to be small2, i.e., there exists a universal constant δ1 > 0
such that if3

∫ ∞

u0

|∂v
|(v′) dv′ ≤ δ1, (1.4)

then the solution is global toward the future.
On the other hand, in the large data regime, Christodoulou showed in [3] that not all

initial data give rise to future causally geodesically complete solutions. In particular,
for some class of initial data, the future Cauchy development contains a black hole
region and is future causally geodesically incomplete.

The purpose of this paper is to construct a class of solutions which on one hand are
global (in the sense of future causal geodesic completeness), but on the other hand their
initial data are non-decaying and therefore large when measured using an integrated
norm4. One way to measure the size of the initial data is by the BV norm

∫ ∞

u0

|∂v
|(v′) dv′, (1.5)

2 In [4], the initial data for 
 are in fact allowed to be in BV. In this paper, however, while we will use the
BV norm as a measure of the size of the initial data, we will only consider initial data such that 
 is at least
a C1 function, in which case the BV norm is equivalent to the norm in (1.4).
3 Notice that for δ0 sufficiently small, initial data satisfying (1.3) obviously also obey (1.4).
4 On the other hand, we emphasize that the initial data that we allow in the main theorem are in fact small
in a pointwise sense.
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which is a scaling-invariant quantity and as mentioned above, the smallness of the BV
norm guarantees that the solution is global. We will also quantify the largeness of the
initial data by the initial Bondi mass, which is defined as the limit of the Hawking
mass as v → ∞ on the initial curve, i.e.,

Mu0 := lim
v→∞m(u0, v). (1.6)

In fact, our construction allows both the initial BV norm and Bondi mass to be infinite.
More precisely, the following is the main result of this paper:

Theorem 1.1 Consider the characteristic initial value problem from an outgoing
curve Cu0 with v ≥ u0, ∂vr �Cu0

= 1
2 and r(u0, u0) = m(u0, u0) = 0. Suppose

the data on the initial curve Cu0 is given by

2∂v(rφ)(u0, v) = 
(v),

where 
 : [u0,∞) → R is a smooth function satisfying the following conditions for
some γ > 0:

∫ v

u
|
(v′)| dv′ ≤ ε(v − u)1−γ , |
(v)| + |
′(v)| ≤ ε, ∀v ≥ u ≥ u0. (1.7)

Then there exists ε > 0 depending only on γ such that the unique solution to (SSESF)
arising from the given data is future causally geodesically complete. Moreover, the
solution satisfies the following uniform a priori estimates:

∂vr >
1

3
, −1

6
> ∂ur > −2

3
,

2m

r
<

1

2
, (1.8)

and

|φ| ≤ Cε min{1, r−γ }, |∂v(rφ)| ≤ C(|
(v)| + ε min{1, r−γ }), |∂u(rφ)| ≤ Cε,

|∂2
v (rφ)| + |∂2

v r | + |∂2
u (rφ)| + |∂2

ur | ≤ Cε (1.9)

for some constant C > 0 depending only on γ .

Remark 1.2 We note explicitly that the constants ε and C in the above theorem are
independent of u0.

Remark 1.3 In addition, if the second derivative of the data 
 is bounded (i.e.,
|
′′(v)| ≤ C), we will show that the solution obeys corresponding higher regular-
ity bounds which are uniform with respect to u0; see Proposition 3.18.

The proof of this theorem will occupy most of this paper. Global existence of a unique
solution in an appropriate coordinate system will be established in Section 3. As a
brief comment on the proof, we note that even for spherically symmetric solutions
to the linear wave equation �R1+3φ = 0, if the initial data on an outgoing null cone
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Cu0 are only required to satisfy (1.7), then the solutions φ and its first derivatives in
general do not decay in time. In fact, φ only satisfies decay estimates in r . In our
setting, since we can use the method of characteristics in spherical symmetry, we will
only need to integrate the error terms along null curves and the r decay is therefore
already sufficient to close a nonlinear problem.

Since our solution does not decay in time, even after establishing global existence
of the solution in an appropriate coordinate system, it does not immediately follow that
the solution is future causally geodesically complete. For this we need an additional
geometric argument, which will be carried out in Section 6.

An immediate corollary of Theorem 1.1 is the following result, which follows
simply from the observation that there exists 
 satisfying the assumptions of Theorem
1.1 such that (1.5) and (1.6) are both infinite. The proof of this corollary will be carried
out in Section 5.

Corollary 1.4 There exist solutions to (1.1)with spherically symmetric data such that
the data have arbitrarily large (in fact infinite) BV norm and initial Bondi mass, while
the development is future causally geodesically complete.

Remark 1.5 We remark that to achieve the arbitrarily large initial Bondi mass in Corol-
lary 1.4, we need to arrange the data to be “suitably spread out”. To illustrate this,
let us compare our result with the black hole formation theorem of Christodoulou
in [3]. [3] implies5 that for initial data given on Cu0 with v ≥ u0, ∂vr �Cu0

= 1
2

and r(u0, u0) = m(u0, u0) = 0, for every 0 < v1 < v2 < ∞, there exists c > 0
depending on v1 and v2 such that if m(u0, v2)−m(u0, v1) > c, then the development
of the data is future causally geodesically incomplete. Notice that for ε sufficiently
small, the conditions in Theorem 1.1 in particular guarantee that the mass difference
on any finite v-interval is suitably small and that the data do not verify the black hole
formation criterion in [3]. On the other hand, Corollary 1.4 holds since the conditions
of Theorem 1.1 do not require the data to decay and one can appropriately “spread
out” the initial data. As a consequence, one can arrange the initial data to satisfy the
conditions of Theorem 1.1 (and such that the mass difference on any finite v-interval
is small), while at the same time the total mass can be arbitrarily large.

We now briefly describe some generalizations and consequences of Theorem 1.1,
but we will refer the readers to Sections 1.1 and 1.2 for more details. First, while The-
orem 1.1 itself does not show that the solution “decays” while approaching timelike
infinity6, if we assume in addition a sufficiently strong asymptotic flatness condition,
then we can apply the results in [9] to show that solution satisfies a pointwise inverse
polynomial decay rate. In fact, Theorem 1.1 also gives the first examples of solutions
with large initial BV norms which satisfy the assumptions of the conditional decay
result in [9]. As a consequence of the pointwise decay, (a subclass of) these solu-
tions are also stable with respect to small but not necessarily spherically symmetric
perturbations [10]. See further discussion in Section 1.1.

5 In fact, [3] gives a precise estimate on the constant c. We refer the readers to [3] for details
6 Since the solution to the linear wave equation with data satisfying the assumptions of Theorem 1.1 does
not decay, general solutions constructed in Theorem 1.1 in fact may not decay in time.
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Second, a consequence of the proof of Theorem 1.1 is the construction of a large
data spacetime solution which is causally geodescally complete both to the future
and the past. This is achieved by making use of the uniformity of the estimates of
Theorem 1.1 in u0 and taking the limit u0 → −∞. We refer the readers to Theorem
1.8 in Section 1.2 for a precise statement.

Before turning to further discussions of our results, we note that the problem
of constructing large data global solutions to supercritical nonlinear wave equa-
tions has attracted much recent attention. We refer the readers to [1,7,11,12] and
the references therein for some recent results. The ideas in the work [11] in
particular is inspired by the monumental work of Christodoulou [5] in general rel-
ativity on the formation of trapped surfaces, which is itself a semi-global7 large
data result. Our result appears to be the first in which the large data solutions
are global both to the future and to the past. As an example of the robust-
ness of our methods, we also consider the much simpler supercritical semilinear
equation

�R1+3φ = ± φ7. (1.10)

We show that (1.10) admits solutions with infinite Ḣ
7
6 × Ḣ

1
6 norms for all time and

are global both to the future and to the past (see Theorem A.1), thus extending8 the
results of Krieger-Schlag [7] and Beceanu-Soffer [1].

1.1 Quantitative decay rates and nonlinear stability

In general, the solutions that are constructed in Theorem 1.1 may not exhibit uniform
decay in v. Nevertheless, in this section we show that if one imposes the following
strong asymptotic flatness condition on the C1 initial data:

lim sup
v→∞

(
(1 + v)ω

′ |
|(v) + (1 + v)ω
′+1|∂v
|(v)

)
≤ A0 < ∞ (1.11)

for ω′ > 1, then in fact the solution decays9 in v.
To see this, we apply the result in [9] by the first two authors. In [9], the long time

asymptotics of spherically symmetric, causally geodesically complete solutions to the
Einstein-scalar-field system was studied. It was shown that (see Theorems 3.1 and 3.2
and Remark 3.9 in [9]) sharp pointwise inverse polynomial decaying bounds hold for
the solution even for large initial data, as long as the solution is assumed to satisfy

7 in the sense that the large data solution constructed in [5] is global towards past null infinity.
8 We emphasize however that the solutions we construct are in different regimes compared to [7] and [1].
See Remark A.3 for a more detailed comparison.
9 Notice that if (1.11) holds, the linear solution obviously decays.

123



Einstein-scalar-field system in spherical symmetry Page 7 of 59 3

the bound10

sup
u

∫

Cu∩{r≤R}

(
|∂2

v (rφ)|p(u, v) + (∂vr)
−p|∂2

v r |p(u, v)
)

dv ≤ C (1.12)

for some p > 1, R > 0 and C > 0. Here, and below, we use the convention that Cu

denote a constant u curve.
In [9], it was further proved using the work of Christodoulou [4] that the pointwise

decay results holds if the initial data obey (1.11) and have small BV norm. On the
other hand, the work [9] leaves open the question whether there exist any solutions
with large BV norm that satisfy both (1.11) and (1.12). Our present work provides a
construction of such spacetimes. More precisely, we have

Theorem 1.6 Assume, in addition to the assumptions of Theorem 1.1, that 
 obeys
the following bounds for some A0 > 0 and ω′ > 1:

sup
v∈[u0,∞]

(
(1 + v)ω

′ |
|(v) + (1 + v)ω
′+1|∂v
|(v)

)
≤ A0 < ∞.

Then the following decay estimates hold for ω := min{ω′, 3} and for some A1 > 0:

|φ| ≤ A1 min{u−ω, r−1u−(ω−1)}, (1.13)

|∂v(rφ)| ≤ A1 min{u−ω, r−ω}, (1.14)

|∂u(rφ)| ≤ A1u
−ω, (1.15)

|∂2
v (rφ)| ≤ A1 min{u−(ω+1), r−(ω+1)}, (1.16)

|∂2
u (rφ)| ≤ A1u

−(ω+1), (1.17)

|∂2
v r | ≤ A1 min{u−3, r−3}, (1.18)

|∂2
ur | ≤ A1u

−3. (1.19)

Proof By Theorems 3.1 and 3.2 and Remark 3.9 in [9], the desired decay rates hold
if for some p > 1, R > 0 and C > 0, we have

sup
u

∫

Cu∩{r≤R}

(
|∂2

v (rφ)|p(u, v) + (∂vr)
−p|∂2

v r |p(u, v)
)

dv ≤ C.

This latter bound indeed holds (for any p > 1 and any R > 0) in view of the estimates
(1.8) and (1.9) in Theorem 1.1. 
�

10 In [9], it was shown that alternatively,

sup
u

∫

Cu∩{r≤R}

(
|∂2

v (rφ)|(u, v) + (∂vr)
−1|∂2

v r |(u, v)
)

dv → 0

is sufficient to guarantee that the inverse polynomial decaying bounds hold. We cite (1.11) instead as it is
more convenient to apply in the proof of Theorem 1.6.
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Remark 1.7 As already noted in [9], the decay rates that are obtained in Theorem 1.6
are sharp.

Given these decay rates, it seems natural to ask whether the solutions constructed
in Theorem 1.6 are stable with respect to small perturbations even outside spherical
symmetry. This question will be addressed in a forthcoming paper [10] in which we
answer this question in the affirmative11, thus extending the proof of the nonlinear
stability of Minkowski spacetime to a more general class of dispersive spacetimes.

1.2 Large data solutions which are both future and past complete

Theorem 1.1 constructs future causally geodesically complete solutions to the future
of the hypersurface Cu0 . On the other hand, a priori estimates in Theorem 1.1 are
independent of u0. One can therefore12 take u0 → −∞ and obtain solutions to
(SSESF) for (u, v) ∈ {(u, v) : −∞ < u < ∞, u ≤ v < ∞}. The solutions
constructed in this manner are moreover causally geodesically complete both towards
the future and the past. More precisely, we have the following theorem:

Theorem 1.8 Let 
 : R → R be a smooth function such that (1.7) holds for some
γ > 0, i.e.,

∫ v

u
|
(v′)| dv′ ≤ ε(v − u)1−γ , |
(v)| + |
′(v)| ≤ ε, ∀ − ∞ < u ≤ v < ∞

and

sup
v

|
′′(v)| < ∞. (1.20)

Then for every γ > 0, there exists ε > 0 such that there exists a solution to (SSESF)
which is both future and past casually geodesically complete and obeys

lim
u→−∞ 2∂v(rφ)(u, v) = 
(v), lim

u→−∞ ∂vr(u, v) = 1

2
.

The proof of global existence in a suitable double null coordinate system will be
carried out in Section 4. Future and past causal geodesic completeness of the solution
will be proved in Section 6.

We contrast Theorem 1.8 with the works [11,12] on large solutions to nonlinear
wave equations. In [11,12], the key idea, inspired by [5], is to construct solutions which
are large but “sufficiently outgoing”. For instance, on an initial Cauchy hypersurface
{t = 0}, this means that ∂vφ is appropriately small, while ∂uφ is allowed to be large.

11 To be precise, this holds for a subclass of the solutions constructed in Theorem 1.6. In particular, some
(not necessarily small) higher derivative bounds for the initial data are also required.
12 To be precise, in order to justify this procedure, one need an additional assumption on the second
derivative of 
 (see (1.20) below) as well as potentially taking ε > 0 to be smaller. We explicitly note,
however, that the smaller of ε is independent of the second derivative bounds of 
.
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This approach, while useful to obtain a global solution to the future, does not seem
applicable to construct solutions which are global both to the future and to the past as
in Theorem 1.8. On the other hand, we also note that the work [11] allows the initial
data to be large in a compact region in space, whereas in Theorem 1.8, the “largeness”
of the initial data is only achieved by the lack of decay at infinity.

1.3 Outline of the paper

We end the introduction with an outline of the remainder of the paper. In Section 2, we
will discuss some preliminaries, including the geometric setup and some identities that
we will repeatedly use. The main theorem (Theorem 1.1) will then be proved in Section
3, modulo the assertion that the resulting spacetime is future causally geodesically
complete. Then using the estimates obtained in Section 3, we will prove Theorem 1.8
in Section 4, again modulo causal geodesic completeness. In Section 5, we will then
return to the proof of Corollary 1.4. In Section 6, we finally complete the proof of
Theorems 1.1 and 1.8 by establishing the causal geodesic completeness statements.
Lastly, in “Appendix A”, we will apply the methods in this paper to study the equation
�R1+3φ = ±φ7, and show that there exists solutions global to the future and the past

which have infinite critical Ḣ
7
6 × Ḣ

1
6 norm and infinite critical Strichartz norm.

2 Preliminaries

In this section, we further explain the geometric setup of the problem and introduce
the notation that we will use for the rest of the paper.

2.1 Setup

As discussed in the introduction, (SSESF) arises as a reduction of the (3+1)-
dimensional Einstein-scalar-field equation under spherical symmetry, written in a
double null coordinate system. Here we describe (SSESF) as a (1+1)-dimensional
system, which is the point of view we adopt in our analysis throughout this paper until
Section 6.

Consider the (1 + 1)-dimensional domain

Q = {(u, v) ∈ R
1+1 : u ∈ (−∞,∞), v ∈ [u,∞)},

with partial boundary

	 = {(u, u) ∈ Q : u ∈ (−∞,∞)}.

We define causality in Q with respect to the ambient metric m = −du · dv of R1+1,
and the time orientation in Q so that ∂u and ∂v are future pointing. We use the notation
Cu and Cv for constant u and v curves in Q, respectively. We call Cu an outgoing
null curve and Cv as an incoming null curves, in reference to their directions (to the
future) relative to 	. Moreover, given −∞ < u0 < u1 < ∞, let
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Q[u0,u1] = {(u, v) ∈ Q : u ∈ [u0, u1]},
Q[u0,∞) = {(u, v) ∈ Q : u ∈ [u0,∞)}.

We introduce the notion of a Ck solution to (SSESF) as follows.

Definition 2.1 Let −∞ < u0 < u1 < ∞. We say that a triple (r, φ,m) of real-valued
functions on Q[u0,u1] is a Ck solution to (SSESF) if it satisfies this system of equations
and the following conditions hold:

(1) The following functions are Ck in Q[u0,u1]:

∂ur, ∂vr, φ, ∂v(rφ), ∂u(rφ).

(2) For ∂vr and ∂ur , we have

inf
Q[u0,u1]

∂ur > −∞, inf
Q[u0,u1]

∂vr > 0.

(3) For each point (a, a) ∈ 	 ∩ Q[u0,u1], the following boundary conditions hold:

r(a, a) =0, (2.1)

m(a, a) =0. (2.2)

Moreover, if (r, φ,m) is a Ck solution on Q[u0,u1] for every u1 greater than u0, then
we say that it is a global Ck solution on Q[u0,∞).

The boundary condition (2.1) can be combined with the regularity assumption
to deduce higher order boundary order conditions for r and rφ. More precisely, let
(r, φ,m) be a Ck solution on Q[u0,u1]. Since u = v on 	 = {r = 0}, we have

(∂v + ∂u)
�r(a, a) = 0, (∂v + ∂u)

�(rφ)(a, a) = 0, (2.3)

for every � = 0, . . . , k and (a, a) ∈ 	 ∩ Q[u0,u1].
Consider the characteristic initial value problem for (SSESF) with data

(∂vr)
−1∂v(rφ) �Cu0

= 
, (2.4)

and initial gauge condition13

(∂vr) �Cu0
= 1

2
, (2.5)

on some outgoing null curve Cu0 . This problem is locally well-posed for Ck data
(k ≥ 1) in the following sense: Given any Ck data 
 with k ≥ 1, there exists a unique

13 We call (2.5) an initial gauge condition since it can be enforced for an arbitrary initial data set by a
suitable reparametrization of the coordinate v, which is a gauge symmetry of the problem. See Remark 2.2.
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Ck solution to (SSESF) on Q[u0,u1] for some u1 > u0, which only depends on u0 and
the Ck norm of 
. We omit the proof, which is a routine iteration argument using, for
instance, the equations stated in Section 2.2 below.

Remark 2.2 The system (SSESF) is invariant under reparametrizations of the form
(u, v) �→ (U (u), V (v)); this is the gauge invariance of (SSESF). Note that we have
implicitly fixed a gauge in the setup above, by requiring that u = v on 	 and imposing
the initial gauge condition (2.5).

Remark 2.3 As discussed in the introduction, reduction of the Einstein-scalar-field
system under spherical symmetry yields the above (1+1)-dimensional setup, where
	 corresponds to the axis of symmetry {r = 0}. Furthermore, the boundedness of
the function ∇αr∇αr = 1 − 2m

r on 	 translates to the boundary condition m = 0
on 	. Conversely, any suitably regular solution (r, φ,m) on Q0 ⊆ Q gives rise to a
spherically symmetric (3+1)-dimensional solution (g, φ) to the Einstein-scalar-field
system on M = Q0 × S

2, where g is as in the introduction.

Remark 2.4 Finally, although it is stated slightly differently, it can be checked that the
notion of C1 solution in [9] is equivalent to the present definition.

2.2 Structure of (SSESF)

Following [4], we introduce the shorthands

λ = ∂vr, ν = ∂ur, μ = 2m

r
.

These dimensionless quantities will play an important role in this paper, as they encode
key geometric information about the spacetime.

In what follows, we will rewrite (SSESF) using normalized derivatives λ−1∂v and
ν−1∂u instead of ∂v and ∂u . Unlike ∂v and ∂u , these normalized derivatives are invariant
under reparametrizations of v and u. Moreover, it turns out that writing (SSESF) in
such a form leads to decoupling of the evolutionary equations under mild assumptions
on the quantities λ, ν and μ, which is convenient for analysis; see Remark 2.5 below
for a more detailed discussion.

The wave equation for φ, in terms of λ−1∂vφ and ν−1∂uφ, takes the form

∂u

(
λ−1∂v(rφ)

)
= − 2mν

(1 − μ)r2

(
λ−1∂v(rφ)

)
+ 2mν

(1 − μ)r2 φ, (2.6)

∂v

(
ν−1∂u(rφ)

)
= − 2mλ

(1 − μ)r2

(
ν−1∂u(rφ)

)
+ 2mλ

(1 − μ)r2 φ. (2.7)

The wave equation for r , in terms of log λ and log ν, takes the form

∂u log λ = 2mν

(1 − μ)r2 , (2.8)
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∂v log ν = 2mλ

(1 − μ)r2 . (2.9)

The equations for the Hawking mass m read

λ−1∂vm = 1

2
(1 − μ)r2(λ−1∂vφ)2, (2.10)

ν−1∂um = 1

2
(1 − μ)r2(ν−1∂uφ)2. (2.11)

Moreover, the following Raychaudhuri equations can be derived from (SSESF):

λ−1∂v log | ν

1 − μ
| = r(λ−1∂vφ)2, (2.12)

ν−1∂u log | λ

1 − μ
| = r(ν−1∂uφ)2. (2.13)

By the wave equation for r , we also have the commutator formulae

[∂u, λ−1∂v] = − 2mν

(1 − μ)r2 λ−1∂v, (2.14)

[∂v, ν
−1∂u] = − 2mλ

(1 − μ)r2 ν−1∂u . (2.15)

Remark 2.5 Once we have a suitable control of the underlying geometry, namely
upper and lower bounds for λ, ν and (1 − μ), the evolutionary equations (2.6), (2.7),
(2.8) and (2.9) are essentially all decoupled from each other. This observation allows
us to close bounds for λ−1∂v derivatives of rφ first, and then derive bounds for other
variables (such as log λ, ν−1∂u(rφ) and log ν) afterwards. Moreover, from (2.6), (2.8)
and (2.14), it is clear that a key step in propagating the incoming waves λ−1∂v(rφ)

and log λ is to control the factor 2mν
(1−μ)r2 . Similarly, controlling 2mλ

(1−μ)r2 is important

for propagating the outgoing waves ν−1∂u(rφ) and log ν.

Finally, for aCk solution (r, φ,m), note that the boundary conditions in (2.3) imply

(λ−1∂v − ν−1∂u)
�r(a, a) = 0, (λ−1∂v − ν−1∂u)

�(rφ)(a, a) = 0, (2.16)

for � = 0, . . . , k on the axis. These equations, along with the wave equations
stated above, can be used to compute (ν−1∂u)

k(rφ) and (ν−1∂u)
k−1 log ν in terms

of (λ−1∂v)
k(rφ), (λ−1∂v)

k−1 log λ and lower order terms.

2.3 Averaging operators and commutation with λ−1∂v

Observe that a number of quantities in the nonlinearity of (SSESF) are given in terms
of averaging formulae. For instance, by the boundary conditions (2.1), (2.2) and the
equation (2.10), we have
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φ(u, v) = 1

r(u, v)

∫ v

u
λ−1∂v(rφ) λ(u, v′) dv′, (2.17)

2m

r2 (u, v) = 1

r2(u, v)

∫ v

u
(1 − μ)r(λ−1∂vφ)2 rλ (u, v′)dv′. (2.18)

Motivated by these formulae, we define the s-order averaging operator Is on out-
going null curves by

Is[ f ](u, v) = 1

rs

∫ v

u
f (v′) rs−1λ(u, v′) dv′.

By pulling out f outside the integral and using the fundamental theorem of calculus,
we obtain the basic estimate

|Is[ f ](u, v)| ≤ 1

s
sup

v′∈[u,v]
| f | (2.19)

The averaging operator Is turns out to obey a nice differentiation formula with respect
to λ−1∂v .

Lemma 2.6 For any real number s ≥ 1, the following identity holds.

λ−1∂v Is[ f ](u, v) = Is+1[λ−1∂v f ](u, v). (2.20)

Proof In what follows, we will often omit writing u, which is fixed throughout the
proof. Making the change of variable ρ = rs(u, v) so that

srs−1λ dv = dρ, λ−1∂v = sρ
s−1
s ∂ρ,

we may rewrite Is[ f ] and λ−1∂v Is[ f ] as

Is[ f ](ρ) = 1

sρ

∫ ρ

0
f (ρ′) dρ′,

(λ−1∂v Is[ f ])(ρ) = ρ
s−1
s ∂ρ

( 1

ρ

∫ ρ

0
f (ρ′) dρ′),

where we abuse notation and write Is[ f ](ρ) = Is[ f ](v(ρ)), f (ρ′) = f (v(ρ′)) etc.
Note that

∂ρ

( 1

ρ

∫ ρ

0
f (ρ′) dρ′) = 1

ρ2

∫ ρ

0
(∂ρ f )(ρ′) ρ′dρ′.

The previous identity follows quickly by, say, making a further change of variables
σ ′ = ρ′/ρ. Plugging this in the expression for λ−1∂v Is[ f ] and changing the variable
back to v, we arrive at (2.20). 
�
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Applying Lemma 2.6 to the formulae (2.17) and (2.18), we obtain

λ−1∂vφ(u, v) = 1

r2(u, v)

∫ v

u
(λ−1∂v)

2(rφ) rλ(u, v′) dv′, (2.21)

λ−1∂v

(2m

r2

)
(u, v) = 1

r3(u, v)

∫ v

u
(λ−1∂v)

(
(1 − μ)r(λ−1∂vφ)2

)
r2λ(u, v′) dv′.

(2.22)

Such differentiated averaging identities are useful near the axis. On the other hand,
far away from the axis, it is more effective to simply commute λ−1∂v with r , as in the
following identities:

r λ−1∂vφ = λ−1∂v(rφ) − φ, (2.23)

r2 λ−1∂v

(2m

r2

)
= λ−1∂v(2m) − 4m

r
. (2.24)

An entirely analogous discussion holds with the roles of u and v interchanged.
Indeed, with the definition

I s[g](u, v) = 1

rs

∫ v

u
g(u′) rs−1ν(u′, v) du′, (2.25)

the following analogue of Lemma 2.6 can be proved.

Lemma 2.7 For any real number s ≥ 1, the following identity holds.

ν−1∂u I s[g](u, v) = I s+1[ν−1∂ug](u, v). (2.26)

3 Forward-in-time global solution

The main goal of this section is to establish Theorem 1.1 modulo future causal geodesic
completeness, which is proved in Section 6. We also formulate and prove uniform
estimates for higher derivatives (Proposition 3.18), which will be useful in the proof
of Theorem 1.8 in the next section.

This section is structured as follows. In Sections 3.1–3.5, we carry out the main
bootstrap argument, which lies at the heart of our proof of Theorem 1.1. The proof
of Theorem 1.1 is then completed in Section 3.7. Finally, in Section 3.8, we prove
estimates for higher derivatives (Proposition 3.18), which are uniform with respect to
the initial curve u0.

3.1 Bootstrap assumptions

Suppose that (r, φ,m) is a C1 solution to (SSESF) on Q[u0,u1]. We introduce the
following bootstrap assumptions on Q[u0,u1]:
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(1) Assumptions on the geometry.

λ >
1

3
, −1

6
> ν > −2

3
, 1 − μ >

1

2
. (3.1)

(2) Assumptions on the inhomogeneous part of λ−1∂vφ.

∫ u

u0

| 2mν

(1 − μ)r2 φ(u′, v)| du′ ≤ 2εr−γ
+ , (3.2)

where r+ := max{1, r}.
(3) Assumption on (λ−1∂v)

2(rφ).

|(λ−1∂v)
2(rφ)| ≤ 3ε. (3.3)

Henceforth until Section 3.5, the domain for each bound isQ[u0,u1] unless otherwise
specified. We will use the convention that unless otherwise stated, the constants C
depend only on γ . Moreover, we will also use the notation � such that the implicit
constants are allowed to depend only on γ .

3.2 Preliminary estimates

Recall that r vanishes on the boundary 	 and λ > 1/3 by the bootstrap assumption.
Moreover, by the bootstrap assumptions on ν and 1 − μ, we have ∂uλ ≤ 0. It follows
that

1

3
< λ ≤ 1

2
. (3.4)

This bound implies that at the point (u, v) the radius r(u, v) is comparable to the
difference v − u up to a constant:

1

3
(v − u) ≤

∫ v

u
λ(u, v′) dv′ = r(u, v) ≤ 1

2
(v − u). (3.5)

In the proof, we will frequently need estimates for integrals of powers of r . We will
collect these estimates in Lemma 3.1. To this end, the notation

r+ := max{1, r}

introduced above will be convenient.
The following lemma holds also due to (3.4) and the assumption that r vanishes on

the boundary 	.

Lemma 3.1 Assume the bootstrap assumption on the geometry (3.1). Then for all
k > 1, we have

123



3 Page 16 of 59 J. Luk et al.

∫ v

u
r−k+ (u, v′) dv′ ≤ C min{1, r}(u, v), (3.6)

∫ u

u0

r−k+ (u′, v) du′ ≤ Cr−k+1+ (u, v) (3.7)

for some constant C depending only on k.

Proof For (3.6), the case when r(u, v) ≤ 1 is easy to verify. The lower bound for λ

implies that

∫ v

u
r−k+ (u, v′) dv′ ≤

∫ v

u
(λ−1λ)(u, v′) dv′ ≤ 3

∫ v

u
∂vr(u, v′) dv′ = 3r(u, v).

When r(u, v) > 1, let v∗ be the unique v value such that r(u, v∗) = 1. Then we have

∫ v

u
r−k+ (u, v′) dv′ ≤ 3r(u, v∗) + 3

∫ v

v∗
(λr−k+ )(u, v′) dv′ ≤ 3k

k − 1
.

The proof for (3.7) is very similar where we make use of the bootstrap assumption on
the lower bound of −ν. More precisely, for r(u, v) > 1, we have

∫ u

u0

r−k+ (u′, v) du′ ≤ 6
∫ u

u0

(−νr−k+ )(u′, v) du′ ≤ 6

k − 1
r−k+1+ (u, v).

On the other hand, if r(u, v) ≤ 1, we defined u∗ to be the unique u value such that
r(u∗, v) = 1. We then obtain

∫ u

u0

r−k+ (u′, v) du′ ≤ 6

k − 1
+ 6

∫ u

u∗
(−∂ur(u

′, v)) du′ ≤ 6k

k − 1
= 6k

k − 1
r−k+1+ (u, v).


�
Estimate (3.6) bounds the integral from the axis to the given point (u, v)on the outgoing
null hypersurface Cu . It will be used if we want to control some quantity by using the
data on the axis, e.g., the mass m. Estimate (3.7) controls the integral from the point
(u0, v) on the initial hypersurface Cu0 to the given point (u, v). We will use it when
we want to control the solution from the data given on Cu0 .

3.3 Estimates for φ

The following lemma will be crucial for many estimates to follow.

Lemma 3.2 For any u1 ≤ u2, we have

∫ u2

u1

2m(−ν)

(1 − μ)r2 (u, v) du = log
λ(u1, v)

λ(u2, v)
. (3.8)
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Hence, under the bootstrap assumptions (3.1)–(3.3), we have

0 ≤
∫ u2

u1

2m(−ν)

(1 − μ)r2 (u, v) du ≤ log
3

2
. (3.9)

Proof Equation (3.8) is an immediate consequence of the equation (2.8). Then (3.9)
follows from (3.1) and (3.4). 
�

We now derive estimates for the scalar field φ and its λ−1∂v derivatives.

Proposition 3.3 Under the bootstrap assumptions (3.1)–(3.3), we have the following
estimates for the scalar field:

|λ−1∂v(rφ)(u, v)| � |
(v)| + εr−γ
+ , (3.10)

|φ(u, v)| � εr−γ
+ , (3.11)

|λ−1∂vφ(u, v)| � min{ |
(v)| + εr−γ
+

r
, ε}, (3.12)

|r(λ−1∂v)
2φ(u, v)| � ε. (3.13)

Here the implicit constants depend only on γ .

Proof By (2.6), we have the integral formula

(λ−1∂v)(rφ)(u, v) = e
− ∫ u

u0
2mν

(1−μ)r2 (u′,v) du′
(λ−1∂v)(rφ)(u0, v)

+
∫ u

u0

e
− ∫ u

u′ 2mν

(1−μ)r2 (u′′,v) du′′ 2mν

(1 − μ)r2 φ(u′, v) du′.

Then using Lemma 3.2 and the bootstrap assumption (3.2), we have

|λ−1∂v(rφ)(u, v) −
(λ(u0, v)

λ(u, v)

)
λ−1∂v(rφ)(u0, v)|

≤ 3

2

∫ u

u0

| 2mν

(1 − μ)r2 φ(u′, v)| du′ � εr−γ
+ . (3.14)

Recalling that λ−1∂v(rφ)(u0, v) = 
(v), the desired estimate (3.10) follows.
Once we have estimate (3.10), we can then use the averaging formula (2.17) to

control the scalar field φ:

|φ(u, v)| ≤ 1

r

∫ v

u
|λ−1∂v(rφ)(u, v′)|λ dv′

� 1

r

∫ v

u
|
(v′)| dv′ + ε

r

∫ v

u
(λr−γ

+ )(u, v′) dv′

� ε

r
min{v − u, (v − u)1−γ } + ε(r1−γ

+ − 1)

r
� εr−γ

+
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Here we have used the condition (1.7) and the relation (3.5) to estimate the integral of

(v′). The inequality

r1−γ
+ − 1

r
≤ r−γ

+

follows from the fact that r+ = max{1, r}, r ≥ 0, 0 < γ < 1.
Estimate (3.10) for ∂v(rφ) and estimate (3.11) together with (2.23) give us the

following bound for λ−1∂vφ:

|λ−1∂vφ(u, v)| ≤ 1

r
(|λ−1∂v(rφ)| + |φ|)

� 1

r

(
|
(v)| + εr−γ

+
)

.

Such an estimate is favorable in the region far away from the axis.
On the other hand, using the differentiated averaging formula (2.21) and the boot-

strap assumption (3.3), we are able to show that ∂vφ is uniformly bounded near the
axis, which completes the proof of (3.12):

|λ−1∂vφ(u, v)| ≤ 1

r2

∫ v

u
|(λ−1∂v)

2(rφ)(u, v′)|(rλ)(u, v′) dv′

� εr−2
∫ v

u
dr2 � ε.

Finally, (3.13) follows from the commutation formula

r(λ−1∂v)
2φ = (λ−1∂v)

2(rφ) − 2λ−1∂vφ, (3.15)

as well as the bootstrap assumption (3.3) and estimate (3.12). 
�

3.4 Estimates for the Hawking mass

Once we have estimate for the solution ∂vφ, we can derive bounds for the mass m.

Proposition 3.4 Under the bootstrap assumptions (3.1)–(3.3), we have

m(u, v) � ε2 min{r3, r1−γ }. (3.16)

We remark that the gain of the positive power in r is crucial to close the bootstrap
assumptions on the nonlinearity near the axis. Indeed, as a quick consequence of
(3.16), we have

m

rk
≤ Cε2r−k+1−γ

+ (3.17)

for all 0 ≤ k ≤ 3, where the constant C depends only on k and γ .

123



Einstein-scalar-field system in spherical symmetry Page 19 of 59 3

Proof By (2.2) and (2.10), we have

m(u, v) = 1

2

∫ v

u
(1 − μ)r2(λ−1∂vφ)2λ(u, v′) dv′. (3.18)

Recall that 1
2 ≤ 1 − μ ≤ 1 by the bootstrap assumption (3.1). From estimates (3.10)–

(3.12), we can show that

m(u, v) ≤ 1

2

∫ v

u

(r∂vφ

λ

)2
λ(u, v′) dv′

� min{
∫ v

u
|
(v′)|2 dv′ + ε2

∫ v

u
(λr−2γ

+ )(u, v′) dv′, ε2
∫ v

u
λr2(u, v′) dv′}

� min{ε
∫ v

u
|
(v′)| dv′ + ε2r1−2γ

+ , ε2r3}

� ε2 min{r1−γ
+ , r3}.

Here we have used the condition (1.7) to control the integral of |
(v′)|. 
�
We also derive estimates for λ−1∂v of 2m and 2m/r2, which will be needed for

closing the bootstrap assumption for (λ−1∂v)
2(rφ).

Proposition 3.5 Under the bootstrap assumptions (3.1)–(3.3), we have

|λ−1∂v(2m)| �ε2 min{r2, 1}, (3.19)

|λ−1∂v

(2m

r2

)
| �ε2 min{1, r−2}. (3.20)

An important point is that λ−1∂v

(
2m
r2

)
is uniformly bounded near the axis; this fact

will be clear by the use of the differentiated averaging formula (2.22).

Proof Estimate (3.19) is a simple consequence of the equation (2.10), as well as the
bootstrap assumption (3.1) and estimate (3.12).

To establish (3.20), we begin by showing that

|λ−1∂v

(2m

r2

)
| � ε2, (3.21)

which is acceptable in the region {r ≤ 1} near the axis. Using the differentiated
averaging formula (2.22), we have

|λ−1∂v

(2m

r2

)
(u, v)| ≤ 1

r3

∫ v

u

(
λ−1∂v

(
(1 − μ)r(λ−1∂vφ)2

))
r2λ dv′

≤ sup
v′∈[u,v]

|λ−1∂v

(
(1 − μ)r(λ−1∂vφ)2

)
|.
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To estimate the last line, we expand

λ−1∂v

(
(1 − μ)r(λ−1∂vφ)2

)
=

(
1 − λ−1∂v(2m)

)
(λ−1∂vφ)2

+ 2(1 − μ)λ−1r(λ−1∂v)
2φ λ−1∂vφ

Then by (3.12), (3.13), (3.19) and the fact that μ ≥ 0, it follows that the absolute value
of the preceding expression is uniformly bounded by � ε2. Hence (3.21) is proved.

In order to complete the proof of (3.20), it suffices to prove

|λ−1∂v

(2m

r2

)
| � ε2r−2, (3.22)

which is favorable in the region {r ≥ 1} away from the axis. In this case, recall that
by (2.24), we have

r2 λ−1∂v

(2m

r2

)
= λ−1∂v(2m) − 4m

r
.

The desired estimate (3.22) now follows from (3.16) and (3.19). 
�

3.5 Closing the bootstrap assumptions

The purpose of this subsection is to improve the bootstrap assumptions (3.1)–(3.3),
using the estimates for the scalar field in Proposition 3.3 and the bounds for the mass
in Propositions 3.4 and 3.5. Combined with local well-posedness of (SSESF) for C1

solutions, global existence of the solution then follows.
We begin by improving the bootstrap assumption (3.1) on the geometry. A corollary

of Proposition 3.4 is that μ = 2m
r is small for sufficiently small ε; this improves the

bootstrap assumption on 1 − μ.

Corollary 3.6 Under the bootstrap assumptions (3.1)–(3.3), we have

1 − Cε2 ≤ 1 − μ ≤ 1 (3.23)

for some constant C depending only on γ .

To close the bootstrap argument for λ, as well as for (3.2) below, a key role is played
by the following lemma.

Lemma 3.7 Under the bootstrap assumptions (3.1)–(3.3), we have

| 2mν

(1 − μ)r2 | ≤ Cε2r−1−γ
+ , (3.24)

for some constant C depending only on γ .

Proof The desired estimate follows from (3.1) and (3.16) in Proposition 3.4. 
�
With Lemma 3.7, we can immediately prove an improved bound for λ.
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Proposition 3.8 Under the bootstrap assumptions (3.1)–(3.3), we have

λ(u, v) ≥ 1

2
e−Cε2r−γ

+ (3.25)

for some constant C depending only on γ .

Proof By integrating (2.8) and using (3.24), we can show that

log λ(u, v) − log λ(u0, v) =
∫ u

u0

2mν

(1 − μ)r2 (u′, v) du′

≥ −Cε2
∫ u

u0

(λr−1−γ
+ )(u′, v) du′

≥ −Cε2r−γ
+ ,

where we have used Lemma 3.1 on the last line. Recalling our initial gauge condition
that λ = 1

2 on the initial hypersurface Cu0 , (3.25) follows. 
�
In order to estimate ν, the following lemma is needed.

Lemma 3.9 Under the assumption (1.7) on the initial data, for all u < v∗ < v we
have

∫ v

v∗
(v′ − u)−1|
(v′)| dv′ ≤ Cε(v∗ − u)−γ (3.26)

for some constant C depending only on γ .

Proof Let

F(s) =
∫ s

u
|
(v′)| dv′

for s ≥ v∗. Then F ′(s) = |
(s)|. From the assumption (1.7), we have

F(s) ≤ ε(s − u)1−γ .

Therefore we can show that
∫ v

v∗
(v′ − u)−1|
(v′)| dv′ =

∫ v

v∗
(v′ − u)−1F ′(v′) dv′

= (v′ − u)−1F(v′)
∣
∣
∣
v

v∗ +
∫ v

v∗
(v′ − u)−2F(v′) dv′

≤ ε(v − u)−γ + ε

∫ v

v∗
(v′ − u)−1−γ dv′

≤ ε(1 + γ −1)(v∗ − u)−γ ,

as desired. 
�
Using the above lemma, we now estimate ν.
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Proposition 3.10 Under the bootstrap assumptions (3.1)–(3.3), we have

1

2
e−Cε2 ≤ −ν(u, v) ≤ 1

2
eCε2

(3.27)

for some constant C depending only on γ .

Proof We rely on the Raychaudhuri equation (2.12). From that we obtain the repre-
sentation for ν:

log
−ν

1 − μ
(u, v) = log

−ν

1 − μ
(u, u) +

∫ v

u

(r∂vφ

λ

)2 λ

r
(u, v′) dv′. (3.28)

To control the integral on the right-hand side, define v∗ to be the unique v value such
that r(u, v∗) = 1. We then divide the integral into the regions [u, v∗] and [v∗, v]. By
(1.7), (3.12) and (3.26), we have

∫ v

u

(r∂vφ

λ

)2 λ

r
(u, v′) dv′ =

∫ v∗

u

(r∂vφ

λ

)2 λ

r
(u, v′) dv′ +

∫ v

v∗

(r∂vφ

λ

)2 λ

r
(u, v′) dv′

� ε2
∫ v∗

u
(rλ)(u, v′) dv′ +

∫ v

v∗
r−1(|
|2 + ε2r−2γ

+ )(u, v′) dv′

� ε2(v∗ − u) + ε

∫ v

v∗
(v′ − u)−1|
(v′)| dv′

+ ε2
∫ v

v∗
r−1−2γ
+ (u, v′) dv′

� ε2(1 + r(u, v∗)−γ ) � ε2.

Here we have used estimate (3.7) to bound the integral of r−1−2γ
+ . Using also the

following identities on the axis 	

ν + λ = 0, μ = 0,

we can bound ν as follows:

log
−ν

1 − μ
(u, v) = log

−ν

1 − μ
(u, u) +

∫ v

u

(r∂vφ

λ

)2 λ

r
(u, v′) dv′

≤ log λ(u, u) + Cε2

for some constant C depending only on γ . Moreover, since the last term in (3.28) is
non-negative, we have the trivial bound

log
−ν

1 − μ
(u, v) ≥ log

−ν

1 − μ
(u, u) = log λ(u, u).

Then from Corollary 3.6 and estimate (3.25) in Proposition 3.8, we have

1

2
e−Cε2

(1 − Cε2) ≤ λ(u, u)(1 − μ) ≤ −ν(u, v) ≤ λ(u, u)eCε2 ≤ 1

2
eCε2
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for some constant C depending only on γ . Estimate (3.27) in the proposition then
follows. 
�

Next, we establish an estimate for the inhomogeneous part of λ−1∂v(rφ), which
improves the bootstrap assumption (3.2). The key ingredient is Lemma 3.7.

Proposition 3.11 Under the bootstrap assumptions (3.1)–(3.3), we can show that

∫ u

u0

| 2mν

(1 − μ)r2 φ(u′, v)| du′ ≤ Cε3r−2γ
+ (u, v) (3.29)

for some constant C depending only on γ .

Proof Using Lemma 3.7 and (3.11), we may estimate

∫ u

u0

| 2mν

(1 − μ)r2 φ(u′, v)| du′ � ε3
∫ u

u0

(r−1−γ
+ r−γ

+ )(u′, v) du′ � ε3r−2γ
+ (u, v),

where we have used estimate (3.7) to bound the integral. 
�
It remains to close the bootstrap assumption (3.3) for (λ−1∂v)

2(rφ). Analogous to
the role played by Lemma 3.7 in the preceding proof, this task requires a good bound
on the factor

λ−1∂v

( 2mν

(1 − μ)r2

)
.

This is the subject of the following lemma.

Lemma 3.12 Under the bootstrap assumptions (3.1)–(3.3), we have

|λ−1∂v

( ν

1 − μ

)
| � ε2 min{r, 1

r
}, (3.30)

|λ−1∂v

( 2mν

(1 − μ)r2

)
| � ε2 min{1,

1

r2 } + ε4 min{r2,
1

r2 }. (3.31)

Proof Estimate (3.30) is an immediate consequence of the Raychaudhuri equation
(2.12), the bootstrap assumption (3.1) and estimate (3.12). Estimate (3.31) then follows
from (3.16), (3.20) and the preceding bound. 
�
We are ready to prove an improved estimate for (λ−1∂v)

2(rφ).

Proposition 3.13 Under the bootstrap assumptions (3.1)–(3.3), we have

|(λ−1∂v)
2(rφ)| ≤

(3

2

)2
ε + C(ε3 + ε5) (3.32)

for some constant C depending only on γ .
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Proof Commuting λ−1∂v with the equation (2.6) for (λ−1∂v)φ, we arrive at the equa-
tion

∂u

(
(λ−1∂v)

2(rφ)
)

= − 4mν

(1 − μ)r2 (λ−1∂v)
2(rφ)

− λ−1∂v

( 2mν

(1 − μ)r2

)
λ−1∂v(rφ) + λ−1∂v

( 2mν

(1 − μ)r2 φ
)

=: − 4mν

(1 − μ)r2 (λ−1∂v)
2(rφ) + N2.

Hence we have

(λ−1∂v)
2(rφ)(u, v) = e

− ∫ u
u0

4mν

(1−μ)r2 (u′,v) du′
(λ−1∂v)

2(rφ)(u0, v)

+
∫ u

u0

e
− ∫ u

u′ 4mν

(1−μ)r2 (u′′,v) du′′
N2(u

′, v) du′.
(3.33)

By (3.9) and the bootstrap assumption (3.1), the integration factor is bounded by

e
− ∫ u

u0
4mν

(1−μ)r2 (u′,v) du′
≤

( 1
2
1
3

)2 =
(3

2

)2
. (3.34)

Combined with the initial condition |λ−1∂v
| ≤ ε, we see that the contribution of
the data on Cu0 is acceptable. Hence, using (3.34) again, recalling the definition of
N2(u, v) and using Leibniz’s rule, it only remains to establish

∫ u

u0

|λ−1∂v

( 2mν

(1 − μ)r2

)
|
(
|λ−1∂v(rφ)| + |φ|

)
du′ +

∫ u

u0

| 2mν

(1 − μ)r2 ||λ−1∂vφ| du′

� ε3 + ε5,

uniformly in u ∈ [u0, v] and v. This bound is an immediate consequence of the Leibniz
rule, (3.10), (3.12), (3.24) and (3.31). 
�

By Corollary 3.6 and Propositions 3.8, 3.10, 3.11 and 3.13, there exists a constant
0 < ε1 < 1 (depending only on γ ) such that the bootstrap assumptions (3.1)–(3.3)
for Q[u0,u1] are improved if ε ≤ ε1. Then by a standard continuity argument, the C1

solution (r, φ,m) exists globally on Q[u0,∞), which satisfies the bootstrapped bounds
(3.1)–(3.3) as well as the estimates derived in this section so far.

In the remainder of this section, we require that ε ≤ ε1 and take (r, φ,m) to be
such a global C1 solution obeying (3.1)–(3.3).

3.6 Estimate for ∂v derivatives of r and φ

Let (r, φ,m) be the global C1 solution constructed above obeying (3.1)–(3.3); we
assume furthermore that ε < ε1 < 1. Here we show that (r, φ,m) obeys the estimates
for ∂2

v (rφ) and ∂2
v r stated in Theorem 1.1; see Corollary 3.15.
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We start by establishing an estimate for λ−1∂v log λ, which follows from essentially
the same estimates used in Proposition 3.13.

Proposition 3.14 For the global solution we have constructed for (SSESF), we have

|λ−1∂v log λ| � ε2, (3.35)

where the implicit constant depends only on γ .

Proof Taking λ−1∂v of the equation for ∂u log λ, we obtain

∂u

(
λ−1∂v log λ

)
= − 2mν

(1 − μ)r2 λ−1∂v log λ + λ−1∂v

( 2mν

(1 − μ)r2

)
.

Note furthermore that ∂v log λ(u0, v) = 0, due to the initial gauge condition λ = 1
2 .

Hence

λ−1∂v log λ =
∫ u

u0

e
− ∫ u

u′ 2mν

(1−μ)r2 (u′′,v) du′′
λ−1∂v

( 2mν

(1 − μ)r2

)
(u′, v) du′.

As before, the integration factor can be bounded by (3.9) in Lemma 3.2 and the bound
(3.1) on the geometry i.e.,

e
− ∫ u′

u
2mν

(1−μ)r2 du′
≤ 3

2
.

Therefore it only remains to prove

∫ u

u0

|λ−1∂v

( 2mν

(1 − μ)r2

)
(u′, v)| du′ � ε2,

uniformly in u, which in turn is a quick consequence of (3.31). 
�
Since λ−1∂v log λ = λ−2∂vλ, the previous proposition gives an estimate for ∂vλ.

In turn, this estimate can be used bound ∂2
v (rφ); indeed

(λ−1∂v)
2(rφ) = λ−2∂2

v (rφ) − (λ−2∂vλ)λ−1∂v(rφ),

and we have estimates (3.3) and (3.10) for (λ−1∂v)
2(rφ) and λ−1∂v(rφ), respectively.

We record these bounds in the following corollary.

Corollary 3.15 For the global solution we have constructed for (SSESF), we have

|∂2
v (rφ)| � ε, |∂2

v r | � ε2,

where the implicit constant depends only on γ .
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3.7 Estimates for ∂u derivatives of r and φ

As before, let ε < ε1 < 1 and take (r, φ,m) to be a C1 solution obeying (3.1)–(3.3)
on u ∈ [u0,∞). We now derive estimates for the outgoing wave ν−1∂u(rφ) and
(ν−1∂u)

2(rφ), as well as ν−1∂u log ν.

Proposition 3.16 For the global solution we have constructed for (SSESF), we have
the following estimates for the ∂u derivatives of r and φ:

|ν−1∂u(rφ)(u, v)| ≤ Cε + Cε3 min{r2, 1}, (3.36)

|ν−1∂uφ(u, v)| ≤ Cε min{1, r−1}, (3.37)

|(ν−1∂u)
2(rφ)(u, v)| ≤ Cε, (3.38)

|ν−1∂u log ν(u, v)| ≤ Cε2 (3.39)

for some constant C depending only on γ .

Proof We start with (3.36). By the boundary condition (λ−1∂v−ν−1∂u)(rφ)(u, u) = 0
and (3.10), it follows that

|ν−1∂u(rφ)(u, u)| � ε. (3.40)

Similar to the case of λ−1∂v(rφ), the equation for ∂v(ν
−1∂u(rφ)) leads to the following

integral formula for ν−1∂u(rφ):

ν−1∂u(rφ)(u, v) = e
− ∫ v

u
2mλ

(1−μ)r2 (u,v′)dv′
ν−1∂u(rφ)(u, u)

+
∫ v

u
e
− ∫ v

v′ 2mλ

(1−μ)r2 (u,v′′)dv′′ 2mλ

(1 − μ)r2 φ(u, v′) dv′.

For any v1 < v2, we have the identity

∫ v2

v1

2mλ

(1 − μ)r2 (u, v) dv =
∫ v2

v1

∂u log(−ν)(u, v) dv = log
(−ν)(u, v2)

(−ν)(u, v1)
. (3.41)

Then from the bound (3.1), we derive

|ν−1∂u(rφ)(u, v) −
(ν(u, u)

ν(u, v)

)
ν−1∂u(rφ)(u, u)|

�
∫ v

u

m

r2 |φ|(u, v′) dv′

� ε3
∫ v

u
min{r(u, v′), r−1−2γ (u, v′)} dv′ � ε3 min{r2, 1}.

(3.42)

Here we used estimate (3.16) to control 2m
r2 , (3.11) for |φ| and (3.6) of Lemma 3.1 to

bound the integral.
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Next, we turn to ν−1∂uφ. Simply by commuting ν−1∂u with r , we have

rν−1∂uφ = ν−1∂u(rφ) − φ.

Hence by (3.11) and (3.36), we obtain

|rν−1∂uφ| � ε,

which is favorable away from the axis.
To obtain the uniform boundedness of ν−1∂uφ near the axis, one option is to use

an averaging formula for ν−1∂uφ (as in the proof of (3.12) for λ−1∂vφ), which relies
on proving a bound for (ν−1∂u)

2(rφ). Alternatively, using the bound that we already
have for λ−1∂vφ, we can derive the desired uniform bound of ν−1∂uφ near the axis
from the previous estimate (3.36). Indeed, commuting r and ∂u in estimate (3.42), we
can show that

|rν−1∂uφ(u, v)| � ε3 min{1, r2(u, v)} + |ν−1(u, v)||(νφ)(u, v) − (νφ)(u, u)|
� ε3 min{1, r2(u, v)} +

∫ v

u
|∂v(νφ)(u, v′)| dv′

� ε3 min{1, r2(u, v)} +
∫ v

u
(|φ 2mνλ

(1 − μ)r2 | + |ν∂vφ|)(u, v′) dv′

� ε3 min{1, r2(u, v)} +
∫ v

u

m

r2 |φ|(u, v′) dv′

+
∫ v

u
|λ−1∂vφ| λ(u, v′) dv′ � ε3 min{1, r2(u, v)} + εr(u, v).

(3.43)

Here we have used the equation (SSESF) on the geometry ∂vν = ∂v∂ur , the estimate
for the integral of mr−2φ, which has been carried out in the previous estimate (3.36),
and (3.12) for λ−1∂vφ. Dividing by r on both sides, it follows that

|ν−1∂uφ| � ε,

which proves (3.37).
Finally, we prove the bounds (3.38) and (3.39) for (ν−1∂u)

2(rφ) and ν−1∂u log ν,
respectively. As before, one may proceed in analogy with the cases of (λ−1∂v)

2(rφ)

(Proposition 3.13) and λ−1∂v log λ (Proposition 3.14), using averaging formulae near
the axis and commutation of r and ν−1∂u far away. However, for the sake of simplicity,
we take a more direct route here, exploiting the bound (3.37) that is already closed.

We begin by bounding the data for (ν−1∂u)
2(rφ) and ν−1∂u log ν on the axis. By

the regularity of (r, φ,m), it follows that

(λ−1∂v − ν−1∂u)
2(rφ)(u, u) = 0, (λ−1∂v − ν−1∂u)

2r(u, u) = 0.

By the boundary condition (2.1), the wave equations for φ and r and the estimates
proved so far, we see that the mixed derivative terms involving (λ−1∂v)(ν

−1∂u) and
(ν−1∂u)(λ

−1∂v) vanish. By (3.3) and (3.35), it follows that
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|(ν−1∂u)
2(rφ)(u, u)| = |(λ−1∂v)

2(rφ)(u, u)| � ε,

|ν−1∂u log ν(u, u)| = |λ−1∂v log λ(u, u)| � ε2.

Next, a direct computation shows that

∂v

(
(ν−1∂u)

2(rφ)
)

= − 4mλ

(1 − μ)r2 (ν−1∂u)
2(rφ)

+ 6mλ

(1 − μ)r2 ν−1∂uφ − λ

(1 − μ)
r(ν−1∂uφ)3,

∂v

(
ν−1∂u log ν

)
= − 2mλ

(1 − μ)r2 ν−1∂u log ν

− 4mλ

(1 − μ)r3 + λ

1 − μ
(λ−1∂uφ)2.

These lead to integral formulae for (ν−1∂u)
2(rφ) and ν−1∂u log ν, with integrating

factors that are bounded by (3.41). Using (3.1), (3.16) and (3.37), we may estimate

|(ν−1∂u)
2(rφ)(u, v)| � |(ν−1∂u)

2(rφ)(u, u)| + |
∫ v

u

6mλ

(1 − μ)r2 ν−1∂uφ(u, v′) dv′|

+ |
∫ v

u

λ

(1 − μ)
r(ν−1∂uφ)3(u, v′) dv′|

� ε + ε3
∫ v

u
min{r, 1

r2+γ
}(u, v′) dv′

+ ε3
∫ v

u
min{r, 1

r2 }(u, v′) dv′ � ε,

as well as

|ν−1∂u log ν(u, v)| � |ν−1∂u log ν(u, u)| + |
∫ v

u

4mλ

(1 − μ)r3 (u, v′) dv′|

+ |
∫ v

u

λ

1 − μ
(ν−1∂uφ)2(u, v′) dv′|

� ε2 + ε2
∫ v

u
min{1,

1

r2+γ
}(u, v′) dv′

+ ε2
∫ v

u
min{1,

1

r2 }(u, v′) dv′ � ε2.

This completes the proof of estimates (3.38) and (3.39). 
�
By an argument similar to that for Corollary 3.15, we obtain the following bounds

on ∂2
u (rφ) and ∂2

ur from Proposition 3.16.

Corollary 3.17 For the global solution we have constructed for (SSESF), we have

|∂2
u (rφ)| � ε, |∂2

ur | � ε2,
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where the implicit constant depends only on γ .

This completes the proof of the second order derivative bounds for rφ and r stated in
Theorem 1.1.

3.8 Estimates for higher derivatives of r and φ

Finally, we derive estimates for higher derivatives of r and φ, which are uniform with
respect to choice of an initial null curve Cu0 . These estimates require an additional
C2 regularity assumption on the initial data 
, as well as possibly taking ε smaller
compared to a constant depending only on γ . They will be crucial for passing to the
limit u0 → −∞ in the next section.

Given u0 ∈ R and 
 satisfying (1.7) with ε ≤ ε1, let (r, φ,m) be the global C1

solution to (SSESF) that we have constructed earlier. Suppose furthermore that 


belongs to C2. By a routine persistence of regularity argument, it follows that log λ,
log ν, λ−1∂v(rφ) and ν−1∂u(rφ) are C2 on their domain; in short, we will say that
(r, φ,m) is a global C2 solution to (SSESF). Our goal is to show that, by taking ε

smaller if necessary, theC2 norm of these variables obeys a uniform bound independent
of u0. A more precise statement is as follows.

Proposition 3.18 Given v0 ∈ [u0,∞), let

A = sup
v∈[u0,v0]

|(λ−1
0 ∂v)

2
(v)|

where λ0 = 1
2 , and let D(u0, v0) be the domain of dependence of the curve {u0} ×

[u0, v0], i.e.,

D(u0, v0) = {(u, v) ∈ Q : u ∈ [u0, v0], v ∈ [u, v0]}.

There exists a constant ε2 > 0, which is independent of u0, v0 and A, such that if
ε ≤ ε2 then we have the uniform bounds

sup
D(u0,v0)

|(λ−1∂v)
3(rφ)| �A + ε, (3.44)

sup
D(u0,v0)

|(λ−1∂v)
2 log λ| �εA + ε2, (3.45)

sup
D(u0,v0)

|(ν−1∂u)
3(rφ)| �A + ε, (3.46)

sup
D(u0,v0)

|(ν−1∂u)
2 log ν| �εA + ε2, (3.47)

with an implicit constant independent of u0, v0, A and ε.

We begin by establishing (3.44) and (3.45). As in the proofs of Propositions 3.13
and 3.14, the key step is to bound

123



3 Page 30 of 59 J. Luk et al.

(λ−1∂v)
2
( 2mν

(1 − μ)r2

)
. (3.48)

To achieve this end, we need a few preliminary estimates for λ−1∂v derivatives of
φ and m. The ensuing computation is somewhat tedious, but the principle is simple:
We rely on the differentiated averaging formulae (see Lemma 2.6) to derive estimates
which are favorable near the axis {r = 0}, whereas we simply commute r with λ−1∂v

in the region {r � 1} away from the axis.

Lemma 3.19 For the global C2 solution considered above, the following estimates
hold.

|(λ−1∂v)
2φ(u, v)| � sup

v′∈[u,v]
|(λ−1∂v)

3(rφ)(u, v′)|, (3.49)

|r (λ−1∂v)
3φ(u, v)| � sup

v′∈[u,v]
|(λ−1∂v)

3(rφ)(u, v′)|, (3.50)

|(λ−1∂v)
2(2m)| �ε2, (3.51)

|(λ−1∂v)
2
(2m

r2

)
(u, v)| �ε sup

v′∈[u,v]
|(λ−1∂v)

3(rφ)(u, v′)| + ε4, (3.52)

|r2 (λ−1∂v)
2
(2m

r2

)
(u, v)| �ε2, (3.53)

|(λ−1∂v)
2
( ν

1 − μ

)
(u, v)| �ε2 min{1,

1

r
}. (3.54)

Proof Since it is rather routine, we will only sketch the proof of each estimate, spec-
ifying the relevant computation and previous bounds needed.

Estimate (3.49) follows directly from taking (λ−1∂v)
2 of the averaging formula

(2.17) for φ using Lemma 2.6 and bounding the resulting term using (2.19).
For (3.50), we simply commute r with (λ−1∂v)

3 to arrive at the formula

r(λ−1∂v)
3φ = (λ−1∂v)

3(rφ) − 3(λ−1∂v)
2φ,

from which (3.50) follows using (3.49).
For (3.51), we compute

(λ−1∂v)
2(2m) = (λ−1∂v)

(
(1 − μ)r2(λ−1∂vφ)2

)

= (1 − λ−1∂v(2m))r(λ−1∂vφ)2 + (1 − μ)r(λ−1∂vφ)2

+ 2(1 − μ)r2λ−1∂vφ(λ−1∂v)
2φ,

then use (3.12), (3.13) and (3.19) to estimate the right-hand side.
To prove (3.52), we first use Lemma 2.6 to take (λ−1∂v)

2 of the averaging formula
(2.18), which leads to

|(λ−1∂v)
2
(2m

r2

)
(u, v)| � sup

v′∈[u,v]
|(λ−1∂v)

2
(
(1 − μ)r(λ−1∂vφ)2

)
(u, v′)|.
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Expanding the right-hand side, we obtain the formula

(λ−1∂v)
2
(
(1 − μ)r(λ−1∂vφ)2

)
= 2(1 − μ)λ−1∂vφ r(λ−1∂v)

3φ

+ 2(1 − μ)r
(
(λ−1∂v)

2φ
)2

+ 2
(

1 − λ−1∂v(2m)
)
λ−1∂vφ(λ−1∂v)

2φ

−
(
(λ−1∂v)

2(2m)
)
(λ−1∂vφ)2.

Then the desired estimate follows using (3.12), (3.13), (3.19), (3.49), (3.50) and (3.51).
For (3.53), we commute r2 with λ−1∂v and obtain

r2(λ−1∂v)
2
(2m

r2

)
=(λ−1∂v)

2(2m) − 4
λ−1∂v(2m)

r
+ 12m

r2 .

Then the desired estimate follows from (3.16), (3.19) and (3.51).
Finally, for (3.54), we first compute

(λ−1∂v)
2
( ν

1 − μ

)
=(λ−1∂v)

( ν

1 − μ
r(λ−1∂vφ)2

)

= ν

1 − μ
r2(λ−1∂vφ)4 + ν

1 − μ
(λ−1∂vφ)2

+ 2
ν

1 − μ
rλ−1∂vφ(λ−1∂v)

2φ,

and then use (3.1), (3.12), (3.13) to estimate the right-hand side. 
�
As an immediate consequence of Lemma 3.19, we have

|(λ−1∂v)
2
( 2mν

(1 − μ)r2

)
(u, v)| �ε sup

v′∈[u,v]
|(λ−1∂v)

3(rφ)(u, v′)| + ε4,

|(λ−1∂v)
2
( 2mν

(1 − μ)r2

)
(u, v)| �ε2

r2 .

These can be combined to a single slightly weaker but more convenient bound as
follows.

Corollary 3.20 For the global C2 solution considered above, we have

|(λ−1∂v)
2
( 2mν

(1 − μ)r2

)
(u, v)| �ε

(
ε + sup

v′∈[u,v]
|(λ−1∂v)

3(rφ)(u, v′)|
)

min{1,
1

r2 }.
(3.55)

We are ready to establish (3.44) and (3.45). The proofs are similar to those of
Propositions 3.13 and 3.14, respectively.
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Proof of (3.44) and (3.45) We first prove (3.44). Commuting (λ−1∂v)
2 with the equa-

tion (2.6) using (2.14), we obtain

∂u

(
(λ−1∂v)

3(rφ)
)

= − 6mν

(1 − μ)r2 (λ−1∂v)
3(rφ)

−
(
λ−1∂v

( 6mν

(1 − μ)r2

))
(λ−1∂v)

2(rφ)

−
(
(λ−1∂v)

2
( 2mν

(1 − μ)r2

))
(λ−1∂v)(rφ)

+ (λ−1∂v)
2
( 2mν

(1 − μ)r2 φ
)

=: − 6mν

(1 − μ)r2 (λ−1∂v)
3(rφ) + N3.

As in the proof of Proposition 3.13, we may derive an integral formula for
(λ−1∂v)

3(rφ), where the integration factor is uniformly bounded by (3.9). Then we
have

|(λ−1∂v)
3(rφ)(u, v)| ≤

(3

2

)3
A +

(3

2

)3
∫ u

u0

|N3(u
′, v)| du′.

For (u, v) ∈ D(u0, v0), we claim that

∫ u

u0

|N3(u
′, v)| du′ � ε2

(
ε + sup

D(u0,v0)

|(λ−1∂v)
3(rφ)|

)
. (3.56)

Once (3.56) is proved, the desired estimate (3.44) follows by taking ε > 0 sufficiently
small and absorbing the term ε2 supD(u0,v0)

|(λ−1∂v)
3(rφ)| into the left-hand side.

To establish (3.56), we first expand N3 as

N3 = −
(
λ−1∂v

( 6mν

(1 − μ)r2

))
(λ−1∂v)

2(rφ)−
(
(λ−1∂v)

2
( 2mν

(1 − μ)r2

))
(λ−1∂v)(rφ)

+
(
(λ−1∂v)

2
( 2mν

(1 − μ)r2

))
φ

+ 2
(
λ−1∂v

( 2mν

(1 − μ)r2

))
λ−1∂vφ + 2mν

(1 − μ)r2 (λ−1∂v)
2φ.

Then using (3.3), (3.10), (3.11), (3.12), (3.24), (3.31) and (3.55), the desired estimate
(3.56) follows.

Next, to establish (3.45), we first commute (λ−1∂v)
2 with the equation (2.8) using

(2.14) to obtain

∂u

(
(λ−1∂v)

2 log λ
)

= − 4mν

(1 − μ)r2 (λ−1∂v)
2 log λ
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−
(
λ−1∂v

( 2mν

(1 − μ)r2

))
λ−1∂v log λ + (λ−1∂v)

2
( 2mν

(1 − μ)r2

)

=: − 4mν

(1 − μ)r2 (λ−1∂v)
2 log λ + M3.

Since (λ−1∂v)
2 log λ(u0, v) = 0 thanks to the initial gauge condition λ(u0, v) = 1

2 ,
we have

|(λ−1∂v)
2 log λ(u, v)| ≤

(3

2

)2
∫ u0

u
|M3(u

′, v)| du′,

where we again used (3.9) to bound the integration factor. By (3.31), (3.35) and (3.55),
as well as (3.44) that we just proved, we have

∫ u

u0

|M3(u
′, v)| du′ � ε(ε + A)

which proves (3.45). 
�
It remains to prove (3.46) and (3.47). This can be done by a similar argument as

in the proofs of(3.44) and (3.45), with the roles of u and v interchanged. To avoid
repetition, we only sketch the argument.

Sketch of proof of (3.46) and (3.47) As in Lemma 3.19, we can prove that

|(ν−1∂u)
2φ(u, v)| � sup

u′∈[u,v]
|(ν−1∂u)

3(rφ)(u′, v)|,

|r (ν−1∂u)
3φ(u, v)| � sup

u′∈[u,v]
|(ν−1∂u)

3(rφ)(u′, v)|. (3.57)

Proceeding as in the proofs of Lemmas 3.7, 3.12 and Corollary 3.20, we also obtain

| 2mλ

(1 − μ)r2 (u, v)| �ε2r−1−γ
+ ,

|ν−1∂u

( 2mλ

(1 − μ)r2

)
(u, v)| �ε2 min{1,

1

r2 },

|(ν−1∂u)
2
( 2mλ

(1 − μ)r2

)
(u, v)| �ε

(
ε + sup

u′∈[u,v]
|(ν−1∂u)

3(rφ)(u′, v)|
)

min{1,
1

r2 }.

Furthermore, since ∂vr , ∂ur , ∂v(rφ) and ∂u(rφ) are C2 up to the axis 	 = {u = v},
we have

(λ−1∂v − ν−1∂u)
3(rφ)(u, u) = 0, (λ−1∂v − ν−1∂u)

3r(u, u) = 0.

Then by the wave equations for r and φ, as well as (3.44)–(3.45), we obtain

|(ν−1∂u)
3(rφ)(u, u)| �A + ε,
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|(ν−1∂u)
2 log ν(u, u)| �εA + ε2.

Commuting (ν−1∂u)
2 with (2.7) and (2.9), estimating the initial data at v = u by the

preceding bounds and estimating the inhomogeneous terms using the earlier bounds,
the desired estimates (3.46) and (3.47) follow as in the proofs of (3.44) and (3.45). 
�

4 Forward- and backward-in-time global solution

The goal of this section is to deduce Theorem 1.8 from Theorem 1.1 and Proposi-
tion 3.18. The proof of the causal geodesic completeness assertions are again postponed
to Section 6.

Let 
 be a C2 function on R satisfying the hypothesis of Theorem 1.8. Define
also14

A := sup
v∈R

|(λ−1
0 ∂v)

2
(v)| < ∞,

where λ0 = 1
2 . Consider a sequence un ∈ R tending to −∞ as n → ∞. For each n =

1, 2, . . ., let (r (n), φ(n),m(n)) be the solution of (SSESF) with λ(n) �Cun
= ∂vr (n) �Cun

=
1
2 and

(λ(n))−1∂v(r
(n)φ(n))(un, v) = 
(v).

Let ε > 0 be sufficiently small (depending on γ > 0), so that Theorem 1.1 applies to
each solution (r (n), φ(n),m(n)). Our aim now is to show that (r (n), φ(n),m(n)) tends
to a solution (r, φ,m) that obeys the conclusions of Theorem 1.8.

As a consequence of Theorem 1.1, Proposition 3.18 and the estimates (3.12), (3.37),
(3.49) and (3.57), for ε > 0 sufficiently small we have the uniform bounds

2∑

k=0

sup
Q[un ,∞)

(
|∂kv φ(n)| + |∂kuφ(n)|

)
� A + ε,

2∑

k=0

sup
Q[un ,∞)

(
|∂k+1

v (r (n)φ(n))| + |∂k+1
u (r (n)φ(n))|

)
� A + ε,

2∑

k=0

sup
Q[un ,∞)

(
|∂k+1

v r (n)| + |∂k+1
u r (n)|

)
� ε(A + ε).

Uniform bounds for a corresponding number of mixed derivatives follow from the
wave equations for φ and r . Using the equations for m (see also the bounds (3.16),
(3.19) and (3.51)), it also follows that the C2 norm of m(n) is uniformly bounded on
any compact subset of Q[un ,∞). Hence by the Arzela-Ascoli theorem, there exists a
limit (r, φ,m) on Q such that r = m = 0 on 	, and

14 The finiteness of course follows also from the hypothesis of Theorem 1.8.
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(
φ, ∂v(r

(n)φ(n)), ∂u(r
(n)φ(n))

)
→

(
φ, ∂v(rφ), ∂u(rφ)

)
in C1(�),

r (n) → r in C2(�),

m(n) →m in C1(�),

on every compact subset � ⊆ Q. By this convergence, it is clear that (r, φ,m) solves
(SSESF) in the classical sense. Moreover, the a priori bounds we have proved in the
finite u0 case (e.g., (1.8) and (1.9)) still hold for the limiting solution (r, φ,m), as long
as they are uniform in u0.

It remains to justify that the limiting solution (r, φ,m) assumes 
 as the data on
the past null infinity. More precisely, we claim that

lim
u→−∞ λ(u, v) = 1

2
, lim

u→−∞ λ−1∂v(rφ)(u, v) = 
(v), (4.1)

for every v ∈ (−∞,∞).
Recalling the proof of Proposition 3.8, for any u ≥ un we have

| log λ(n)(u, v) − log
1

2
| ≤ |

∫ u

un

2m(n)ν(n)

(1 − μ(n))(r (n))2
(u′, v) du′|

� ε2 (max{(v − u), 1})−γ .

Taking the limit n → ∞ first and then letting u → −∞, we obtain the desired
statement for λ. Similarly, proceeding as in the proof of Proposition 3.11,

|(λ(n))−1∂v(r
(n)φ(n))(u, v) − λ(n)(un, v)

λ(n)(u, v)

(v)| � ε3 (max{(v − u), 1})−2γ ,

where we recall that λ(n)(un, v) = 1
2 . Taking the limits n → ∞ and u → −∞ in

order as before, we obtain (4.1).

Remark 4.1 As a byproduct of the Arzela-Ascoli theorem, observe that ∂2
v (rφ),

∂2
u (rφ), ∂2

v r and ∂2
ur are Lipschitz. Their weak derivatives obey the bounds

ess sup
Q

(
|∂3

v (rφ)| + |∂3
u (rφ)|

)
� A + ε, ess sup

Q

(
|∂3

v r | + |∂3
ur |

)
� ε(A + ε).

5 Proof of Corollary 1.4

In this section, we prove Corollary 1.4, i.e., we show that the initial data 
 can be
chosen to satisfy the assumptions of Theorem 1.1 while at the same time having infinite
BV norm and infinite Bondi mass.

Proof of Corollary 1.4 Let χ : R → [0, 1] be a non-negative smooth bump function
such that χ is compactly supported in [1, 6] and χ(x) = 1 for x ∈ [3, 4]. For some
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ε′ > 0 to be fixed later, let 
 be defined by the following sum of translated bump
functions:


(v) := ε′
∞∑

k=3

χ(v − u0 − 2k). (5.1)

We will show that 
 satisfies the assumptions of Theorem 1.1 and have infinite BV
norm and initial Bondi mass.

Step 1: Verifying (1.7) Since k ≥ 3, for every v at most one term in the sum (5.1) is
non-zero. Therefore, for every ε > 0, one can choose ε′ > 0 sufficiently small such
that |
(v)| + |
′(v)| ≤ ε. This gives the second condition in (1.7).

Fix any γ > 0. Given u and v such that u0 ≤ u ≤ v, we consider two cases. If
v − u ≤ 5, then we just use the bound

∫ v

u

(v′) dv′ ≤ ε′(v − u) ≤ 5γ ε′(v − u)1−γ .

If v − u > 5, we use the fact that the support of at most (log2�v − u�) + 100 bumps
intersect the interval (u, v). Since

∫ ∞
−∞ χ(x) dx ≤ 5, we thus have

∫ v

u

(v′) dv′ ≤ 5ε′ (log2�v − u� + 100

) ≤ Cγ ε′(v − u)1−γ

for some Cγ > 0 depending only on γ as long as γ < 1. In both cases, the first
condition in (1.7) is satisfied after choosing ε′ to be sufficiently small depending on ε

and γ .

Step 2: Infinite BV norm We now show that 
 gives rise to data with infinite BV norm.
To this end, one observes that

∫ ∞
−∞ |χ ′(x)| dx ≥ cχ for some cχ > 0. Hence

lim
v→∞

∫ v

u0

|∂v
|(v′) dv′ ≥ ε′ lim
N→∞

(
N∑

i=0

cχ

)

= ∞.

Step 3: Infinite Bondi mass Finally, we prove that the data have infinite initial Bondi
mass, i.e., the limit of the Hawking mass as v → ∞ is infinite. We first recall that the
Hawking mass obeys the following equation

∂vm = 1

2
r2(1 − 2m

r
)
(∂vφ)2

λ
,

i.e.,

∂v(me
∫ v
u0

r (∂vφ)2

λ
(v′) dv′

) = 1

2
r2 (∂vφ)2

λ
e
∫ v
u0

r (∂vφ)2

λ
(v′) dv′

.
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This implies

m(u0, v) = 1

2
e
− ∫ v

u0
r (∂vφ)2

λ
(u0,v

′) dv′ ∫ v

u0

r2 (∂vφ)2

λ
(u0, v

′)e
∫ v′
u0

r (∂vφ)2

λ
(u0,v

′′) dv′′
dv′.

(5.2)

To compute the limit as v → ∞, we first write ∂vφ in terms of 
. We then show

that with the choice of 
 in (5.1), r (∂vφ)2

λ
is integrable, while r2 (∂vφ)2

λ
is not, thus

demonstrating that limv→∞ m(u0, v) = ∞.
To compute ∂vφ, we note that

∂vφ(u0, v) = 1

r
∂v(rφ)(u0, v) − λφ

r
(u0, v) = 


2r
(u0, v) −

∫ v

u0

(v′) dv′

4r2(u0, v)
. (5.3)

In other words, using also the following condition on Cu0

∂vr = λ = 1

2
, r(u0, u0) = 0 �⇒ r(u0, v) = 1

2
(v − u0),

we get

r(∂vφ)(u0, v) = 
(u0, v)

2
−

∫ v

u0

(v′) dv′

2(v − u0)
.

Therefore, for some C > 0 independent of ε′, we have

lim
v→∞

∫ v

u0

r
(∂vφ)2

λ
(v′) dv′

≤ C lim
v→∞

⎛

⎝

∫ v

u0


2(u0, v
′)

v′ − u0
dv′ +

∫ v

u0

(
∫ v′
u0


(v′′) dv′′)2

(v′ − u0)3 dv′
⎞

⎠

≤ C(ε′)2 lim
N→∞

N∑

k=1

2−k

+C(ε′)2 lim
v→∞

∫ v

u0+9

(1 + log(v′ − u0 + 2))2

(v′ − u0)3 dv′ ≤ C(ε′)2.

On the last line, we used the bound
∫ v′
u0


(v′′) dv′′ � ε′(1 + log(v′ − u0 + 2)), as well
as the fact that 
(v) = 0 for u0 ≤ v ≤ u0 + 9 by definition. Moreover, in a similar
manner, we have15

lim
v→∞

∫ v

u0

(
∫ v′
u0


(v′′) dv′′)2

(v′ − u0)2 dv′ ≤ C(ε′)2.

15 Notice that up to a constant factor, this is the contribution to the integral of r2(∂vφ)2 by the second term
in (5.3).
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Therefore, by (5.2), we obtain

m(v) ≥ c
∫ v

u0

r2(∂vφ)2(u0, v
′) dv′ ≥ c

∫ v

u0


2(u0, v
′) dv′ − C(ε′)2 (5.4)

for some 0 < c < C . On the other hand, by a similar argument as the proof of the
infinitude of the BV norm, we get

lim
v→∞

∫ v

u0


2(u0, v
′) dv′ → ∞. (5.5)

Combining (5.4) and (5.5) gives

m(v) → ∞

as v → ∞, as is to be proved. 
�
Remark 5.1 We note that for the data given by (5.1) in the proof of Corollary 1.4, the
global solution that arises from the data (which exists by Theorem 1.1) in fact has
infinite BV norm on each Cu , as well as infinite Bondi mass everywhere along future
null infinity. More precisely, for every u ≥ u0, we have

lim
v→∞

∫ v

u
|(λ−1∂v)

2(rφ)(u, v′)| dv′ = ∞, lim
v→∞m(u, v) = ∞.

To establish the infinitude of the BV norm, note first that by (3.33) and (3.34), we
have

∫ v

u
|(λ−1∂v)

2(rφ)(u, v′)| dv′ ≥
∫ v

u
|(λ−1∂v)
(v′)| dv′

−
(3

2

)2
∫ v

u

∫ u

u0

|N2(u
′, v′)| du′ dv′

where

N2 = −λ−1∂v

( 2mν

(1 − μ)r2

)
λ−1∂v(rφ) + λ−1∂v

( 2mν

(1 − μ)r2 φ
)
.

Note furthermore that 
 as given by (5.1) satisfies the assumptions of Theorem 1.1
with any γ ∈ (0, 1). Using estimates (3.10), (3.11), (3.12), (3.24) and (3.31), as well
as exploiting the explicit form of |
(v)| in (5.1), it can be shown that

sup
u,v:u0≤u≤v<∞

∫ v

u

∫ u

u0

|N2(u
′, v′)| du′ dv′

�
∫ ∞

u0

∫ v′

u0

(
ε3r−2−γ

+ + ε2r−2+ |
(v′)|
)

du′ dv′ < ∞.
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On the other hand, since limv→∞
∫ v

u |(λ−1∂v)
(v′)| dv′ = ∞ as in the proof of
Corollary 1.4, the desired conclusion follows.

Next, to see that the Bondi mass is infinite everywhere along future null infinity, we
again apply Theorem 1.1, but now with γ > 1

2 . Then according to (2.23), (3.4), (3.11),
(3.14) and (3.25), it can be seen that that the main contribution to the Bondi mass is
given by limv→∞

∫ v

u 
2(u, v′) dv′ in a similar manner as in the proof of Corollary
1.4. Therefore, one can argue as in the proof of Corollary 1.4 to show that the Bondi
mass is infinite for every u ≥ u0.

6 Causal geodesic completeness

In this section, we complete the proof of Theorems 1.1 and 1.8 by establishing causal
geodesic completeness of the solutions constructed in Sections 3 and 4. We will
first show the future causal geodesic completeness of these spacetimes. Once this
is achieved, it is easy to see that the past causal geodesic completeness for solutions
constructed in Theorem 1.8 can be proven in an almost identical manner. We will
return to this at the end of the section.

6.1 Geodesics inM

Let γ : I → M (where I is an interval) be a future pointing causal geodesic on
the spacetime M constructed in Theorems 1.1 or 1.8. Given any function f on M,
we adopt the convention of denoting by f (s) the value of f at the point γ (s) i.e.,
f (s) = f (γ (s)). We also write ḟ (s) = d

ds f (s) and f̈ (s) = d2

ds2 f (s).
In order to describe the geodesic γ , it is convenient to use the double null coordinates

(u, v, θ, ϕ) whenever possible, since then we can directly use the bounds in Theorem
1.1. Under our convention, we may write

γ (s) = (u(s), v(s), θ(s), ϕ(s)), γ̇ (s) = (u̇(s), v̇(s), θ̇ (s), ϕ̇(s)).

Let us note that these are only defined away from the axis 	. On the other hand, it is
easy to verify that in fact v(s) and u(s) can be extended to continuous functions in
M. (Notice that in contrast, u̇(s) and v̇(s) may be discontinuous.)

As γ is future pointing causal, we have

u̇ ≥ 0, v̇ ≥ 0.

We now discuss conserved quantities of a geodesic. We denote by C2 (the minus of)
the magnitude of the 4-velocity γ̇ (s), i.e.,

C2(s) = −gαβ�γ (s)γ̇
α(s)γ̇ β(s),

where we recall the metric

g = −�2 du · dv + r2(dθ2 + sin2 θ dϕ2)
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on M. The quantity C2 is conserved (i.e., constant in s). The choice of the sign is so
that C2 > 0 when γ is a time-like geodesic. In the double null coordinates, it takes
the form

C2 = �2u̇v̇ − r2(gS2,θθ θ̇ θ̇ + gS2,ϕϕϕ̇ϕ̇). (6.1)

Since the spacetime (M, g) is spherically symmetric, conservation of angular momen-
tum holds for geodesics. Let �x , �y , �z be the standard generators of the rotation
group SO(3) (i.e., infinitesimal rotations about the x-, y-, and z-axes). Let

Jk(s) = gαβ �γ (s) �α
k �γ (s) γ̇ β(s), k = x, y or z.

It can be easily verified that Jx , Jy , Jz are conserved. We define the (conserved) total
angular momentum squared as

J2 := J 2
x + J 2

y + J 2
z .

In the double null coordinates, J2 takes the form

J2 = r4
(
gS2,θθ θ̇ θ̇ + gS2,ϕϕϕ̇ϕ̇

)
. (6.2)

This statement is an immediate consequence of the identity

�x ⊗ �x + �y ⊗ �y + �z ⊗ �z = ∂θ ⊗ ∂θ + 1

sin2 θ
∂ϕ ⊗ ∂ϕ

which concerns only the standard sphere S
2. This identity, in turn, can be verified by

observing that each side defines a contravariant symmetric 2-tensor on S
2 which is

invariant under rotations (i.e., Lie derivatives with respect to �x , �y , �y vanish) and
yields 1 when tested against dϕ ⊗ dϕ on the equator θ = π

2 ; such a tensor is clearly
unique.

By (6.1) and (6.2), we obtain the useful identity

�2u̇v̇ = C2 + r−2J2 (6.3)

where C2 and J2 are conserved.
A basic tool for studying completeness of future pointing causal geodesics is the

following lemma.

Lemma 6.1 [Continuation of future pointing causal geodesics] Any future pointing
causal geodesic γ : [0, s f ) → M can be continued past s f if there exists a compact
subset K ⊆ M such that {γ (s) ∈ M : s ∈ [0, s f )} ⊆ K.

Proof First, observe that it suffices to consider a future causal geodesic γ whose
image intersects M \ Cu0 . Otherwise, the image of γ is contained in Cu0 . Since the
unique future pointing causal vector tangent to Cu0 is its null generator, γ is a radial

123



Einstein-scalar-field system in spherical symmetry Page 41 of 59 3

null geodesic contained in Cu0 , which is complete thanks to uniform boundedness of
| log �| in (1.8).

Without loss of generality, we may assume that γ (0) ∈ M \Cu0 . Since γ is future
pointing causal, the closure of its image γ ([0, s f )) = {γ (s) ∈ M : s ∈ [0, s f )} is
disjoint from Cu0 . Then by the compactness assumption, it follows that there exists a
sequential limit point p ∈ M\Cu0 of γ ([0, s f )), i.e., there exists a sequence sn → s f
such that γ (sn) → p.

Recall now the standard result that there exists a geodesically convex neighborhood
around any non-boundary point in a smooth Lorentzian manifold. Let U be a geodesi-
cally convex neighbordhood of p ∈ M \ Cu0 . By definition, there exists s′ ∈ [0, s f )
such that γ (s′) ∈ U ; since γ is a future pointing causal geodesic, it follows that the
γ ([s′, s f )) ⊆ U . Then γ can be continued as the unique geodesic inU passing through
γ (s′) and p. 
�

6.2 Preliminary discussions

Our strategy for proving geodesic completeness is to argue by contradiction, i.e.,
we assume that there is a future pointing causal geodesic γ which is not complete
and terminates at some finite time s f and derive a contradiction (to Lemma 6.1 or
otherwise). The following is the simplest case:

Lemma 6.2 If γ (s) : [0, s f ) �→ M is incomplete, then either C �= 0 or J �= 0.

Proof If C = 0 and J = 0, then the geodesic γ is a spherically symmetric constant
u curve or constant v curve. These geodesics are complete since 1

�2 ∂u and 1
�2 ∂v are

geodesic vector fields and | log �| is uniformly bounded. 
�
Before proceeding to the other cases, we need some preliminary considerations.

First, we will see that some difficulties arise because the (u, v, θ, ϕ) coordinate system
is not regular at the axis. It is therefore useful to have the following:

Lemma 6.3 If γ (s) : [0, s f ) �→ M is incomplete, then the set {s : r(s) = 0} is a
discrete subset of [0, s f ) (with a possible accumulation point at s f ).

Proof By standard existence and uniqueness theory for ODEs, it suffices to show that
the axis 	 is a complete geodesic. (Indeed, then if {s : r(s) = 0} is not a discrete subset
of [0, s f ), then the image of γ coincides with 	 and contradicts the incompleteness of
γ .) To see that 	 is a complete geodesic, we note that λ �	= −ν �	, ∂vλ �	= −∂uν �	

together with m
r2 �	= 0 imply that ∂v log � �	= ∂u log � �	 . Then by an explicit

calculation, one checks that the vector field 1
�

(∂v + ∂u) �	 , which is tangent to 	, is a
geodesic vector field. Since | log �| is uniformly bounded, 	 is a complete geodesic.


�
Consider the following (smooth) quantity

E(s) = −gαβ �γ (s) T
α �γ (s) γ̇ β(s),
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where T is a smooth vector field on M which is given in the (u, v, θ, ϕ) coordinate
system by

T = − 2ν

�2 ∂v + 2λ

�2 ∂u . (6.4)

Observe that T is radial, future time-like, and tangent to the constant r hypersurfaces,
i.e., Tr = 0. In the (u, v, θ, ϕ) coordinates, E takes the form

E(s) := λv̇(s) − νu̇(s). (6.5)

In particular, this shows that away from the axis 	, E(s) is non-negative as λ, v̇, −ν,
u̇ are non-negative.

It will be useful to have the following slightly stronger statement:

Lemma 6.4 Let γ (s) : [0, s f ) �→ M be a future causal geodesic with either J �= 0
or C �= 0, then E(s) > 0 for s ∈ [0, s f ).

Proof Case 1. J �= 0. In this case, r(s) > 0 for s ∈ [0, s f ) and hence we can use the
(u, v, θ, ϕ) coordinate system. If E(s) = 0, then by (6.5), v̇(s) = u̇(s) = 0. By (6.3),
0 = �2(u̇v̇)(s) ≥ r−2(s)J2 > 0, which is a contradiction.

Case 2. C �= 0. If r(s) > 0, the proof proceeds in the same way as in Case 1. If
r(s) = 0 and E(s) = 0, by Lemma 6.3, there exists a sequence {si } with si → s such
that r(si ) → 0 and E(si ) → 0. On the other hand, by (6.5), (6.3) and the boundedness
of | log �|, E(si ) �

√
v̇u̇(si ) � C, which is uniformly bounded below. This is again

a contradiction. 
�
Recall that

ṙ(s) = λv̇(s) + νu̇(s). (6.6)

Our analysis heavily relies on the evolution equations for E(s), ṙ(s) and γ (s).

Lemma 6.5 Let γ be a geodesic onM. If γ (s) = (u, v, θ, ϕ)(s) lies outside the axis
	, then

v̈(s) = −�−2∂v�
2(s)v̇2(s) − 2r−3ν�−2(s)J2,

ü(s) = −�−2∂u�
2(s)u̇2(s) − 2r−3λ�−2(s)J2,

Ė(s) = −r v̇2(∂vφ)2 + r u̇2(∂uφ)2,

r̈(s) = −r v̇2(∂vφ)2 − r u̇2(∂uφ)2 − 4r−3νλ�−2(s)J2 + 2∂uλu̇v̇.

(6.7)

Proof In a coordinate patch, recall that the geodesic equation reads γ̈ λ = −	λ
αβγ̇ αγ̇ β .

Hence in order to find the equation for v̈, it suffices to compute the Christoffel symbols
of the form 	v

αβ . By explicit computation, it can be verified that

	v
vv = �−2∂v�

2, 	v
θθ = 2r−3ν�−2r4gS2,θθ , 	v

ϕϕ = 2r−3ν�−2r4gS2,ϕϕ,
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while all the other components vanish. Recalling the identity (6.2), the equation for v̈

follows. Similarly we have the equation for ü.
Next we use the equations for u̇, v̇ to derive the evolution equations for ṙ and E .

By using the Raychaudhuri equations (2.12), (2.13), we can compute that

d

ds
(λv̇ ± νu̇) = λv̈ + λ̇v̇ ± (νü + ν̇u̇)

= v̇(u̇∂uλ + v̇∂vλ) − λ
(
�−2∂v�

2(s)v̇2(s) + 2r−3ν�−2(s)J2
)

± u̇(u̇∂uν + v̇∂vν) ∓ ν
(
�−2∂u�

2(s)u̇2(s) + 2r−3λ�−2(s)J2
)

= −v̇2λ∂v log | ν

1 − μ
| ∓ u̇2ν∂u log | λ

1 − μ
|

+ (1 ± 1)(−2r−3νλ�−2(s)J2 + ∂uλu̇v̇)

= −r v̇2(∂vφ)2 ∓ r u̇2(∂uφ)2 + (1 ± 1)(−2r−3νλ�−2(s)J2 + ∂uλu̇v̇).

Here note that ∂uλ = ∂vν. By the definition of E(s) and the equation for ṙ(s), the plus
case leads to the equation for ṙ(s) while the minus case gives the equation for E(s). 
�

6.3 Basic features of incomplete geodesics in M

Now a very basic feature of an incomplete geodesic is that the quantity E(s) blows
up.

Lemma 6.6 If γ (s) : [0, s f ) �→ M is incomplete with J �= 0 or C �= 0, then

E(s) ≥ C

s f − s
, ∀s < s f (6.8)

for some constant C depending only on the constants in Theorem 1.1.

Proof Step 1 We first claim that

lim sup
s→s f

E(s) = ∞.

To see this, first note the estimate u̇(s) + v̇(s) ≤ CE(s) for some C > 0, which
is a consequence of (6.5), and holds away from the axis. By Lemma 6.3 and using
the continuity of u(s) and v(s) (which also holds at the axis), we thus deduce that if
lim sup
s→s f

E(s) is bounded, then u, v are bounded. In particular the geodesic γ lies in a

compact set in M. By Lemma 6.1, the geodesic can be continued beyond s f which
contradicts the assumption.

Step 2 We next make use of the evolution equation for E(s) obtained in the previous
lemma. The bounds (1.9) on φ imply that r(∂uφ)2 + r(∂vφ)2 is bounded above.
Therefore, for any s such that r(s) > 0, we have
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Ė(s) ≤ C∗(u̇2 + v̇2)(s) ≤ 36C∗(λv̇ − νu̇)2(s) = 36C∗E2(s) (6.9)

for some constant C∗ > 0. We now divide into two cases.
Case 1. There exists s0 ∈ [0, s f ) such that r(s) > 0 whenever s ≥ s0. Let s0 <

s∗ < s∗∗ < s f . Integrating (6.9) from s∗ to s∗∗, we get

E(s∗)−1 − E(s∗∗)−1 ≤ 36C∗(s∗∗ − s∗). (6.10)

Notice that this makes sense thanks to Lemma 6.4. Taking lim infs∗∗→s f and using
Step 1, we thus obtain

E(s∗)−1 ≤ 36C∗(s f − s∗)

for every s∗ ∈ (s0, s f ), as desired16.
Case 2. There exists a sequence {sk} with sk → s f such that r(sk) = 0. By Lemma

6.3, we can assume that r(s) > 0 if s �= sk . In this case we need to be slightly more
careful since (6.9) only holds when s �= sk .

Let s∗, s∗∗ ∈ [0, s f ) be such that s∗∗ > s∗ ≥ s2 and let k∗ = min{k : sk ≥ s∗} and
k∗∗ = max{k : sk ≤ s∗∗}. Assume that k∗∗ > k∗. We then compute

(
E(s∗)−1 − E(sk∗)

−1
)

+
(
E(sk∗∗)

−1 − E(s∗∗)−1
)

+
k∗∗−1∑

k=k∗

(
E(sk)

−1 − E(sk+1)
−1

)

≤ 36C∗

⎛

⎝s − sk∗ +
k∗∗−1∑

k=k∗
(sk+1 − sk)

⎞

⎠ .

(6.11)

This again leads to (6.10) and gives the desired conclusion as in Case 1. 
�
Another feature of future causal incomplete geodesics is that they approach the axis
(at least along a sequence of times). More precisely, we have

Lemma 6.7 If γ (s) : [0, s f ) �→ M is incomplete, then for any r0 > 0 and any
s0 ∈ [0, s f ), there exists s ∈ [s0, s f ) such that r(s) < r0.

Proof Suppose not, i.e., we assume that r(s) ≥ r0 for all s ∈ [s0, s f ) and some
constants r0 > 0 and s0 ∈ [0, s f ). Consider the geodesic equation (6.7) for v̇. We can
write

−�−2∂v�
2v̇2 − 2r−3ν�−2J2 = − (�−2∂v�

2v̇ + �−2∂u�
2u̇)v̇

+ �−4∂u�
2(C2 + r−2J2) − 2r−3ν�−2J2.

16 We note of course that by choosing C large if necessary, we only need to obtain (6.8) for s sufficiently
close to s f .
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Hence, we have v̈(s) = −Ṙ(s)v̇(s) + F(s), where

R = log �2, F = �−4∂u�
2(C2 + r−2J2) − 2r−3ν�−2J2.

It follows that

d

ds
(�2v̇)(s) = �2F(s).

By the bounds in Theorem 1.1 (which also holds for solutions constructed in Theo-
rem 1.8), as well as conservation of C2 and J2, | log �| and |F | are uniformly bounded
on [s0, s f ). It follows that v̇ is uniformly bounded. In particular v is uniformly bounded.
Since u ≤ v, we derive that γ (s) lies in a compact set in M. This contradicts Lemma
6.1. 
�

6.4 Proof of geodesic completeness

We can now rule out the case when the geodesic is spherically symmetric.

Lemma 6.8 Assume γ (s) : [0, s f ) �→ M is incomplete. Then J �= 0.

Proof Assume for the sake of contradiction that J = 0 (and by Lemma 6.2, we can
assume without loss of generality thatC �= 0). We consider the following cases (Notice
that by Lemma 6.3, they exhaust all possibilities):

Case 1. There exists a sequence {sk} with sk → s f such that ṙ(sk) = 0 and
r(sk) > 0. This condition, J = 0 and (6.3) together imply that u̇(sk) and v̇(sk) are
uniformly bounded. This contradicts Lemma 6.6.

Case 2. There exists s0 ∈ [0, s f ) such that17 ṙ(s) > 0 and r(s) > 0, ∀s ∈ [s0, s f ).
Without loss of generality, we may assume r(s0) > 0. Then r(s) ≥ r(s0) on [s0, s f )
which contradicts Lemma 6.7.

Case 3. There exists s0 ∈ [0, s f ) such that ṙ(s) < 0 and r(s) > 0, ∀s ∈ [s0, s f ).
By definition and the bounds on ν, λ, we have v̇ ≤ 4u̇. Combine this with the uniform
bound on u̇v̇ (which follows from (6.3)). We conclude that v̇ is uniformly bounded. In
particular v is uniformly bounded. Since u ≤ v, the geodesic γ (s) lies in a compact
set, which contradicts Lemma 6.1. 
�

It now remains to rule out the possibility of J �= 0. It is convenient to note that in
this case, we have r(s) > 0 for s ∈ [0, s f ). As a first step, we observe that if J �= 0,
then Lemma 6.5 implies that ü, v̈ and r̈ have a particular sign if u̇, v̇ have size r−1 and
r is sufficiently small.

Lemma 6.9 There exists r0 > 0 such that if J �= 0 and at some time s0

1

100
r−1(s0)�

−1(s0)J ≤ u̇(s0), v̇(s0) ≤ 100r−1(s0)�
−1(s0)J, r(s0) < r0,

17 Notice that if there exists a sequence {s′k } with s′k → s f such that r(s′k ) = 0, then by Lemma 6.3 we
are necessarily in Case 1.
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then

v̈(s0) > 0, ü(s0) < 0, r̈(s0) > 0.

Proof The lemma follows from the equations (6.7) for ü, v̈, r̈ together with the bounds
on the geometry from Theorem 1.1. 
�

Given Lemma 6.9, one sees that an incomplete geodesic with J �= 0 cannot stay
inside a small cylinder around the axis.

Lemma 6.10 Assume γ (s) : [0, s f ) �→ M is incomplete and J �= 0. Then there
exists r0 > 0 such that for every s0 ∈ [0, s f ) the geodesic γ (s) exits the cylinder with
radius r0 at some time to the future of s0, that is, there exists s1 ∈ (s0, s f ) such that
r(s1) > r0.

Proof Since J �= 0, the geodesic does not intersect the axis and in particular we can
use the (u, v, θ, ϕ) coordinate system. Take r0 be the constant in Lemma 6.9. We prove
this lemma by a contradiction argument. Assume the geodesic γ (s) lies in the cylinder
with radius r0 for all s ∈ [s0, s f ).

Step 1 We claim that

ṙ(s) ≤ 0, ∀s ∈ [s0, s f ). (6.12)

Otherwise there exists s′ ∈ [s0, s f ) such that ṙ(s′) > 0. Then by Lemma 6.7, there
exists s′′ > s′ such that ṙ(s′′) < 0. Take

s∗ = sup{s : s′ ≤ s ≤ s′′, ṙ(s) ≥ 0}.

Then ṙ(s∗) = 0, ṙ(s) < 0 when s∗ < s ≤ s′′. Recall that ṙ(s∗) = νu̇(s∗) + λv̇(s∗).
Then the identity (6.3) implies that u̇(s∗), v̇(s∗) satisfy the conditions in Lemma 6.9.
In particular, r̈(s∗) > 0 which contradicts ṙ(s) < 0 when s∗ < s ≤ s′′. Hence (6.12)
holds.

Step 2 Next we prove that there exists t0 ∈ (s0, s f ) such that

1

10
u̇(t0) ≤ v̇(t0). (6.13)

Otherwise 1
10 u̇ > v̇ for all s ∈ (s0, s f ) which implies that

ṙ(s) = (λv̇ + νu̇)(s) < − 1

10
u̇(s).

Integrating from time s0 to s, we derive that u is uniformly bounded. From the relation
v̇ < 1

10 u̇, we derive that v is also uniformly bounded. It then violates Lemma 6.1.
Step 3 Given t0 satisfying (6.13), we now show that

1

10
u̇(s) ≤ v̇(s), ∀s ∈ [t0, s f ). (6.14)
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Define:

s∗ = sup{s : 1

10
u̇(s′) ≤ v̇(s′), ∀s′ ∈ [t0, s]}.

If s∗ = s f , then (6.14) holds. Otherwise by continuity, 1
10 u̇(s∗) ≤ v̇(s∗). Since

ṙ(s) ≤ 0 (by Step 1), we have v̇(s∗) ≤ 10u̇(s∗). Then from the identity (6.3), we
see that u̇(s∗), v̇(s∗) satisfy the conditions in Lemma 6.9. In particular, v̈(s∗) > 0,
ü(s∗) < 0. Therefore there exists t1 > s∗ such that

1

10
u̇(s) ≤ 1

10
u̇(s∗) ≤ v̇(s∗) ≤ v̇(s), ∀s ∈ [s∗, t1].

This contradicts the definition of s∗. Hence the inequality (6.14) holds.
Step 4The argument above using Lemma 6.9 also implies that ü(s) < 0, v̇(s) ≤ 10u̇(s)
for all s ∈ [t0, s f ). In particular both u̇ and v̇ are uniformly bounded. Hence the
geodesic γ (s) lies in a compact set. This contradicts Lemma 6.1 and thus concludes
the proof of the lemma. 
�

Lemmas 6.7 and 6.10 together show that as s → s f , the geodesic must enter and
leave the cylinder {r = r0} infinitely many times. However, this will be prohibited by
the following lemma:

Lemma 6.11 Assume γ (s) : [0, s f ) �→ M is incomplete and r(s) > 0 for all
s ∈ [0, s f ). Suppose there exists a sequence {sn} with sn → s f such that ṙ(sn) = 0.
Then lim

n→∞(u̇v̇)(sn) = ∞.

Proof By (6.6), ṙ(sn) = 0 implies thatC−1u̇(sn) ≤ v̇(sn) ≤ Cu̇(sn) for some constant
C > 0 independent of n. This therefore implies (by (6.5)) E(sn) �

√
(u̇v̇)(sn). The

conclusion follows from Lemma 6.6. 
�

Proof of future geodesic incompleteness We are now ready to obtain a contradiction
by assuming that γ (s) is an incomplete future pointing causal geodesic. By Lemma
6.8, we can assume J �= 0. Take r0 sufficiently small so that Lemma 6.10 holds.
Consider the cylinder {r = r0}. Lemma 6.7 together with Lemma 6.10 imply that
γ (s) intersects {r = r0} infinitely many times. In particular we can find a sequence
sn → s f such that ṙ(sn) = 0 but r(sn) ≥ r0. Therefore the identity (6.3) shows that
u̇(sn)v̇(sn) are uniformly bounded which contradicts Lemma 6.11. 
�

This concludes the proof of the future causal geodesic completeness in Theorems 1.1
and 1.8. The remaining past causal geodesic completeness statement in Theorems 1.8
can be proved in a completely identical manner after reversing the time-orientation and
noticing that we have very similar bounds for the scalar field, the metric components
and their derivatives.
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Appendix A: Nonlinear wave equation with seventh-order nonlinearity

In this appendix, we consider the equation

�R1+3φ = ±φ7. (NLW)

The nonlinearity is said to be defocusing if the sign on the right-hand side is plus, and

focusing if the sign is minus. The critical Sobolev space is Ḣ
7
6 × Ḣ

1
6 , and hence (1.10)

is called energy supercritical.
Our aim in this appendix is to apply the techniques developed in this paper to

construct a solution with infinite critical Sobolev norm that exists globally in the
future and the past. A more precise statement is as follows.

Theorem A.1 Consider either the focusing or the defocusing (NLW). There exists a
smooth solution φ to the equation (NLW) (in both the focusing and defocusing cases)
which exists globally on R

1+3 and has infinite Ḣ
7
6 × Ḣ

1
6 norm on each constant t

hypersurface, i.e.,

‖(φ, ∂tφ)(t, x)‖
Ḣ

7
6
x ×Ḣ

1
6
x

= ∞ for every t ∈ R. (A.1)

Moreover, the space-time L12 norm, which is a scale invariant Strichartz norm, is
finite on every bounded time interval, i.e.,

‖φ‖L12([−T,T ]×R3) < ∞ for all T > 0. (A.2)

However, the space-time L12 norm is infinite towards the future and the past, i.e.,

‖φ‖L12([0,∞)×R3) = ∞, ‖φ‖L12((−∞,0]×R3) = ∞. (A.3)

Remark A.2 More precisely, by (A.1), we mean that (φ, ∂tφ)(t, x) does not belong to

the space Ḣ
7
6
x × Ḣ

1
6
x , which in turn is defined to as the completion of S ×S under the

Ḣ
7
6
x × Ḣ

1
6
x norm defined in (A.16).

Remark A.3 [Comparison with Krieger-Schlag [7] and Beceanu-Soffer [1]] A brief
comparison of Theorem A.1 with the previous works [7] and [1] is in order. Both
papers, among other results, established the forward-in-time global existence of solu-

tions to (1.10) arising from a class of initial data with infinite Ḣ
7
6 × Ḣ

1
6 norms. We

emphasize that of course the solutions we construct are in a different regime as that
of [7] and [1]. On the one hand, unlike in [7], our solutions are not close to any self-
similar solutions. On the other hand, as opposed to the scattering solutions in [1], our
solutions do not scatter; see (A.3). Moreover, we do not obtain the statement in [7] and
[1] that there are some subclass of solutions with large L∞ norms (in the defocusing
case for [7]). Finally, we mention that the solutions that we construct are manifestly
stable in some sufficiently regular topology in spherical symmetry but we do not obtain

stability in Ḣ
7
6 × Ḣ

1
6 as in [7] and [1].
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In Section 1, we first prove analogues of Theorems 1.1 and 1.8 for (1.10), which are
the main tools for our proof of Theorem A.1. Then in Sections 1 and 1, we construct
an initial data set 
 at the past null infinity and show that it gives rise to a global
solution with properties claimed in Theorem A.1.

Due to the simplicity of the nonlinearity, the proof of the existence theorems in this
case is considerably simpler than for the Einstein-scalar-field system (see the proof
of Proposition A.4). Most of the work in this appendix in fact goes into verifying that
the critical norms are infinite, i.e., (A.1) and (A.3).

A.1. Main existence statements

For the sake of concreteness, we fix the sign in (NLW) to be −; it will however be
clear that our argument does not depend on this sign.

As in the case of (SSESF), we work with spherically symmetric solutions to (NLW).
Using the double null coordinates (u, v) defined18 by the formula (t, r) = (v +u, v −
u), the equation reduces to

∂u∂v(rφ) = rφ7. (A.4)

As before, φ can be recovered from ∂v(rφ) by the averaging formula

φ(u, v) = 1

r

∫ v

u
∂v(rφ)(u, v′) dv′. (A.5)

We remark that (u, v) was chosen so that ∂vr = −∂ur = 1.
For k = 0, 1, . . ., we say that φ is a (spherically symmetric) Ck solution to (NLW)

on Q[u0,u1] if it obeys (A.4) and φ, ∂v(rφ) and ∂u(rφ) are Ck on Q[u0,u1]. If these
conditions hold for every u1 which is larger than u0, we say that φ is a global Ck

solution on Q[u0,∞).
Consider the characteristic initial value problem from an outgoing curveCu0 , where

we prescribe

∂v(rφ)(u0, v) = 
(v).

By a routine iteration argument employing integration along characteristics, it follows
that (NLW) is locally well-posed for any 
 ∈ Ck with k ≥ 0, i.e., there exists a unique
Ck solution to (NLW) on Q[u0,u1] with the given data, where u1 > u0 depends only
on the Ck norm of 
.

The analogue of Theorem 1.1 for (NLW) reads as follows.

Proposition A.4 Consider the characteristic initial value problem from an outgoing
curve Cu0 with data 
. Suppose that the following condition holds for some 0 ≤ γ <
2
3 :

18 We note that the null variables u and v are normalized in slightly differently from Theorem 1.1 to simplify
the constants in the expressions.
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∫ v

u
|
(v′)| dv′ ≤ ε(v − u)

2
3 −γ , sup |
| ≤ ε. (A.6)

Then there exists ε1 > 0 depending only on γ such that if ε ≤ ε1, then the data above
give rise to a unique global C0 solution φ to (NLW) on Q[u0,∞), which obeys the
following bounds.

|∂v(rφ)(u, v) − 
(v)| �ε7r
− 1

3 −7γ

+ , (A.7)

|φ(u, v)| �εr
− 1

3 −γ

+ (A.8)

|∂u(rφ)(u, v)| �ε. (A.9)

Suppose furthermore that 
 ∈ C1. Then for every v0 > u0, we have

sup
D(u0,v0)

|∂2
v (rφ)| � sup

v∈[u0,v0]
|
′| + ε7, (A.10)

sup
D(u0,v0)

|∂2
u (rφ)| � sup

v∈[u0,v0]
|
′| + ε7. (A.11)

Proof As in the proof of Theorem 1.1, we begin by performing a bootstrap argument
with the bound

∫ u

u0

|rφ7(u′, v)| du′ ≤ 2εr
− 1

3 −7γ

+ . (A.12)

Indeed, assume that (A.12) holds on Q[u0,u1] for some u0 < u1. Then by (A.4) and
(A.5), we obtain

|∂v(rφ)(u, v) − 
(v)| ≤ 2εr
− 1

3 −7γ

+ , |φ| � ε(r
− 1

3 −γ

+ + r
− 1

3 −7γ

+ ) � εr
− 1

3 −γ

+ ,

on the same domain. Hence, the following pointwise bound for the nonlinearity holds:

|rφ7| � ε7r
− 4

3 −7γ

+ (A.13)

Integrating19 (A.13) in the incoming direction from u0 to u, we obtain an improvement
of the bootstrap assumption (A.12) for ε sufficiently small. Then by a routine continuity
argument using C0 local well-posedness20 of (A.4), global existence of φ follows.
Moreover, by (A.4) and (A.13), the bounds (A.7)–(A.9) follow.

Now assume that 
 ∈ C1, and let v0 > u0. To prove (A.10), it suffices to show
that

|∂v

∫ u

u0

rφ7(u′, v) du′| � ε7

19 Here, we use an analogue of (3.7), which in the semilinear setting here, is very easy to obtain.
20 We recall again our convention that a C0 solutions means that all of φ, ∂v(rφ) and ∂u(rφ) are in C0.
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for (u, v) ∈ D(u0, v0) := {(u, v) ∈ R
2 : u ∈ [u0, v0], v ∈ [u, v0]}. This estimate

follows from (A.7), (A.8) and the simple identity

r∂vφ = ∂v(rφ) − φ.

To show (A.11), note that at the axis of symmetry {u = v}, we have

(∂v + ∂u)
2(rφ)(u, u) = 0.

By (A.4) the mixed derivative ∂u∂v(rφ) vanishes on the axis; hence we have

|∂2
u (rφ)(u, u)| = |∂2

v (rφ)(u, u)| � sup
v∈[u0,v0]

|
′| + ε7.

Then (A.11) follows from the estimate

|∂u
∫ v

u
rφ7(u, v′) dv′| � ε7

for (u, v) ∈ D(u0, v0), which is proved using (A.8) and (A.9) as before. 
�

Taking the limit as u0 → −∞, we obtain the following analogue of Theorem 1.8.

Proposition A.5 Let 
 : (−∞,∞) → R be a C2 function satisfying (A.6), as well
as

A = sup
v∈(−∞,∞)

|
′(v)| < ∞.

Let ε1 > 0 be the constant introduced in Proposition A.4. Then if ε ≤ ε1, there exists
a unique global C0 solution φ to (NLW) on Q, whose data at the past null infinity
coincide with 
, i.e.,

lim
u→−∞ ∂v(rφ)(u, v) = 
(v) for every v ∈ (−∞,∞). (A.14)

The solution φ obeys the bounds (A.7)–(A.9). Furthermore, ∂v(rφ) and ∂u(rφ) are
Lipschitz continuous onQ, and the weak derivatives ∂2

v (rφ), ∂2
u (rφ) obey the bounds

ess sup
Q

|∂2
v (rφ)| + ess sup

Q
|∂2
u (rφ)| � A + ε7. (A.15)

As in the proof of Theorem 1.8, this proposition is a simple consequence of the uniform
C1 bounds (A.10), (A.11), the Arzela-Ascoli theorem, as well as the bound (A.8) to
justify that data are as prescribed at the past null infinity. We omit the details.
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A.2 Initial data construction

The goal of this subsection is to construct an initial data set 
(v) on the past null

infinity, so that the free wave development of 
(v) has infinite Ḣ
7
6 × Ḣ

1
6 norm on

the slice �0 = {t = 0} and 
(v) obeys (A.6). In Section 1, we will show that this
initial data set leads to a global solution with properties stated in Theorem A.1. (One
can compare this construction with that in the proof of Corollary 1.4.)

We begin with a few preliminary facts about fractional Sobolev spaces on R
d . Let

S(Rd) and S ′(Rd) be the spaces of Schwartz test functions and tempered distributions
on R

d , respectively. For 0 < s < d
2 , we define Ḣ s(Rd) ⊆ S ′(Rd) to be the closure of

the space S(Rd) with respect to the norm

‖ f ‖Ḣ s = ‖|∇|s f ‖L2 , (A.16)

where |∇|s = (−�)
s
2 is the fractional Laplacian. For s ∈ (0, 2), this operator admits

the integral formula

|∇|s f (x) = cd,s

∫

Rd

f (x) − f (y)

|x − y|d+s
dy, (A.17)

for an appropriate constant cd,s �= 0. For s ∈ (1, 2), we have the equivalence

‖ f ‖Ḣ s � ‖∇ f ‖Ḣ s−1 � ‖ f ‖Ḣ s .

If f ∈ Ḣ s(Rd), then it follows that

χR f → f in Ḣ s as R → ∞,

where χR(·) = χ(·/R) for any χ ∈ C∞
0 (Rd) with χ(0) = 1. Hence in order to show

that a tempered distribution f does not belong to Ḣ s , it suffices to show that ‖χR f ‖Ḣ s

diverges as R → ∞.
We now begin the construction of 
 in earnest. Our idea is to start with a function

with the desired property on {t = 0}, and then find a compatible 
. Let η be a smooth
bump function on (−∞,∞), which is non-negative, vanishes outside (−2, 0), equals
1 on (− 3

2 ,− 1
2 ). For every R ≥ 4, we define a radial function ηR on R

3 by the formula

ηR(r) = 1

(4π)
1
2 r

η(r − R).

Note that ηR is supported on the annulus {R − 2 < r < R} with ‖ηR‖L2(R3) equal
to a nonzero constant independent of R. Furthermore, for every k = 0, 1, 2, . . ., there
exist 0 < bk < Bk independent of R such that

bk ≤ ‖∂kr ηR‖L2(R3) ≤ Bk . (A.18)
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In particular, by interpolation, there exist constants 0 < b < B independent of R such
that

b ≤ ‖∂rηR‖
Ḣ

1
6 (R3)

≤ B. (A.19)

Given ε > 0, we define a radial function f on R
3 by

f (r) = ε

∞∑

k=1

η4k (r). (A.20)

Lemma A.6 For f defined as above, we have

‖∂r f ‖
Ḣ

1
6

= ∞, (A.21)

or more precisely, ‖χR∂r f ‖
Ḣ

1
6

→ ∞ as R → ∞.

A key ingredient for the proof is the following localization lemma for the fractional
Laplacian.

Lemma A.7 Let d be a positive integer and 0 < s < min{ d2 , 2}. Let ψ be a smooth
function supported on a dyadic annulus {x ∈ R

d : 2k−1 < |x | < 2k} for some k ∈ Z.
Then for any integer � /∈ [k − 1, k + 1], we have

‖|∇|sψ‖L2({2�−1<|x |<2�}) � 2−s(max{k,�})‖ψ‖L2 ,

where the implicit constant depends only on d and s.

Proof For concreteness, we only consider the case � ≥ k + 1; the case � ≤ k − 1
can be handled analogously. Let x ∈ {2�−1 < |x | < 2�}. Recall the integral formula
(A.17); since ψ(x) = 0 and supp ψ ⊆ {2k−1 < |x | < 2k}, we have

||∇|sψ(x)| = |cd,s

∫

{2k−1<|y|<2k }
−ψ(y)

|x − y|d+s
dx | � 2−�(d+s)

∫

{2k−1<|y|<2k }
|ψ(y)| dy.

By Cauchy-Schwarz, the right-hand side is bounded by � 2−�( d2 +s)‖ψ‖L2 . Then
taking the L2 norm over {2k−1 < |x | < 2k}, the lemma follows. 
�
Proof of Lemma A.6 For K ≥ 1, let

fK (r) = ε

K∑

k=1

η4k (r).

By the support property of η4k , the desired statement (A.21) would follow once we
etablish

‖∂r fK ‖
Ḣ

1
6

� εK 1/2, (A.22)
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where the implicit constant is independent of K . Observe furthermore that it is enough
to prove (A.22) for only sufficiently large K .

Expanding ‖∂r fK ‖2

Ḣ
1
6

, we have

‖∂r fK ‖2

Ḣ
1
6

= ε2
K∑

k=1

‖∂rη4k‖2

Ḣ
1
6

+ 2ε2
∑

1≤k<�≤K

〈|∇| 1
6 ∂rη4k , |∇| 1

6 ∂rη4�〉L2 .

For the diagonal terms, we have a lower bound

ε2
K∑

k=1

‖∂rη4k‖2

Ḣ
1
6

≥ b2ε2K , (A.23)

by (A.19). For the cross terms, we first estimate

|〈|∇| 1
6 ∂rη4k , |∇| 1

6 ∂rη4�〉L2 | ≤
∑

j

∫

{2 j−1<|y|<2 j }
||∇| 1

6 ∂rη4k |∇| 1
6 ∂rη4� | dy.

Note that

supp η4k ⊆ {22k−1 < |x | < 22k}, supp η4� ⊆ {22�−1 < |x | < 22�},

where 22k < 22�−1 < 22�. Hence we may apply Lemma A.7 to |∇| 1
6 ∂rη4k when

2 j ≥ 22�−1, and to |∇| 1
6 ∂rη4� when 2 j < 22�−1. Using the upper bounds in (A.18)

and (A.19), we obtain

|〈|∇| 1
6 ∂rη4k , |∇| 1

6 ∂rη4�〉L2 | � 2− 1
3 �ε2BB1.

Summing up this bound, we obtain

2ε2|
∑

1≤k<�≤K

〈|∇| 1
6 ∂rη4k , |∇| 1

6 ∂rη4�〉L2 | � ε2,

where the implicit constant depends only on B and B1. Comparing this upper bound
with the uniform lower bound (A.23), the desired bound (A.22) follows for sufficiently
large K . 
�

We now seek an initial data set 
 on the past null infinity whose free wave devel-
opment restricts to f on the slice �0 = {t = 0} = {u + v = 0}. This condition is
equivalent to

1

r

∫ r/2

−r/2

(v′) dv′ = f (r). (A.24)
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We will furthermore require 
(v) to be even with respect to v = 0, i.e.,


(−v) = 
(v).

This implies that the time derivative of the free wave development restricts to zero on
�0. By the evenness condition, (A.24) can be achieved by defining


(r) = d

dr
(r f (r)) for r ≥ 0.

Recalling the definition of f , we see that 
 is given by


(v) = ε

(4π)1/2

∞∑

k=1

(
η′(v − 4k) + η′(−v − 4k)

)
. (A.25)

With the preceding formulae, it can be readily checked that 
 obeys the hypothesis
(A.6) of Proposition A.5.

Lemma A.8 Let 
 be defined as above. Then we have

∫ v

u
|
(v′)| dv′ � ε min{log(2 + (v − u)), (v − u)}, sup |
| � ε, sup |
′| � ε.

Proof The latter two bounds are immediate from the formula (A.25) for 
. For the
first bound, due to the exponential separation of the bumps in (A.25), observe that the
number of bumps η′(·− 4k) whose support intersects the interval [u, v] is bounded by
� log(v − u) if v − u ≥ 2. The estimate is obvious when v − u < 2. 
�

A.3 Completion of the proof of Theorem A.1

By Lemma A.8, 
 satisfies the hypothesis of Proposition A.5 with any 0 ≤ γ < 2
3 .

Hence, taking ε sufficiently small, we may apply Proposition A.5 to construct a global
solution φ with 
 as data at the past null infinity (in the sense of (A.14)), which
moreover obeys the bounds (A.7)–(A.9) and (A.15). Our goal is to show that this
solution possesses the properties listed in Theorem A.1.

We decompose φ = φhom + φinhom , where

φhom(u, v) =1

r

∫ v

u

(v′) dv′,

φinhom(u, v) =1

r

∫ v

u

∫ u

−∞
rφ7(u′, v′) du′ dv′,

Since φhom ��0= f and 
 is even with respect to v = 0, we have

∂vφ
hom(− r

2 , r
2 ) = f ′(r). (A.26)

123



3 Page 56 of 59 J. Luk et al.

Hence Lemma A.6 applies to ∂vφ
hom . On the other hand, the following improved

estimates hold for ∂vφ
inhom on �0.

Lemma A.9 Let φinhom be defined as above. Then we have

‖∂vφ
inhom‖L2(�0)

+ ‖∂u∂vφ
inhom‖L2(�0) + ‖∂2

v φinhom‖L2(�0)
� ε7. (A.27)

Proof We need to show that

∫ ∞

0
r2(∂vφ

inhom)2(− r
2 , r

2 ) dr �ε7, (A.28)
∫ ∞

0
r2(∂u∂vφ

inhom)2(− r
2 , r

2 ) dr �ε7, (A.29)
∫ ∞

0
r2(∂2

v φinhom)2(− r
2 , r

2 ) dr �ε7. (A.30)

The plan is to establish pointwise estimates for successively higher derivatives of
φinhom , from which (A.28)–(A.30) follow. Fix a number 0 < γ < 2

3 sufficiently close
to 2

3 ; in the remainder of the proof, all implicit constants may depend on γ .
By the definition of φinhom and (A.8), we have

|∂v(rφ
inhom)| � ε7r

− 1
3 −7γ

+ , |∂u(rφinhom)| � ε7, |φinhom | � ε7r−1+ . (A.31)

Note in particular the rapid decay of ∂v(rφinhom) in r compared to ∂v(rφhom) = 
.
This feature will be key to the improved bounds below.

By differentiating the averaging formula using Lemma 2.6, we obtain

∂vφ
inhom = 1

r2

∫ v

u

∫ u

−∞
∂v(rφ

7)(u′, v′) du′ r(u, v′) dv′,

whereas simply commuting r with ∂v gives

r∂vφ
inhom = ∂v(rφ

inhom) − φinhom .

As a consequence, we obtain the estimate

|∂vφ
inhom | � ε7

(
r
− 4

3 −7γ

+ + r−2+
)
, (A.32)

which immediately implies (A.28), provided that γ is sufficiently large (i.e., γ >

1/42).
In order to estimate ∂uφ

inhom , note that

∂v(r∂uφ
inhom) = ∂u∂v(rφ

inhom) + ∂vφ
inhom = rφ7 + ∂vφ

inhom .
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Integrating over v′ ∈ [u, v] and using (A.7) and (A.32), we obtain

|∂uφinhom | � ε7r−1+ . (A.33)

Next, by the identity

r∂u∂vφ
inhom = ∂u∂v(rφ

inhom) + (∂v − ∂u)φ
inhom = rφ7 + (∂v − ∂u)φ

inhom,

and estimates (A.8), (A.32) and (A.33), we arrive at the bound

|r∂u∂vφ
inhom | � ε7r−1+ , (A.34)

from which (A.29) follows.
Finally, note that

r∂2
v φinhom(u, v) =∂2

v (rφinhom)(u, v) − 2∂vφ
inhom(u, v)

=
∫ u

−∞
∂v(rφ

7)(u′, v) du′ − 2∂vφ
inhom(u, v).

Therefore, using (A.7), (A.8) and (A.32), we have

|r∂2
v φinhom | � ε7(r−1−7γ

+ + r−2+ ). (A.35)

This bound is sufficient to establish (A.30), which completes the proof of the lemma.

�

We are now ready to establish Theorem A.1.

Proof of Theorem A.1 In this proof, we employ the polar coordinates (t, r) instead of
the double null coordinates (u, v).

As a first step, we claim that

‖(φ, ∂tφ)‖
Ḣ

7
6 ×Ḣ

1
6 (�0)

= ∞. (A.36)

Let L = ∂t + ∂r , which coincides with ∂v in the double null coordinates. By (A.26),
we have ‖Lφhom‖

Ḣ
1
6

= ∞, whereas by Lemma A.9 and interpolation it follows that

‖Lφinhom‖
Ḣ

1
6 (�0)

� ‖Lφinhom‖H1(�0)
� ε7 < ∞.

Hence we have proved

‖Lφ‖
Ḣ

1
6 (�0)

= ∞,

which implies (A.36).
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Next, observe that the L12
x norm of φ on every time slice �t = {t = const} is finite

by (A.8). Therefore, the critical Strichartz norm ‖φ‖L12((−T,T )×R3) is finite for every
0 < T < ∞. It follows that

‖(φ, ∂tφ)‖
Ḣ

7
6 ×Ḣ

1
6 (�t )

= ∞ for all t ∈ (−∞,∞). (A.37)

Indeed, if (A.37) failed for any t , then by finiteness of the L12
t,x norm on finite time inter-

vals and the standard well-posedness theory for (1.10), we would contradict (A.36).
To complete the proof of Theorem A.1, it only remains to show that the critical

Strichartz norm diverges towards both the future and the past. By the explicit formula
(A.25) and the mean value theorem, we may find a doubly infinite increasing sequence
{tn}∞n=−∞ such that limn→−∞ tn = −∞, limn→∞ tn = ∞ and

φhom(tn, 0) = 

( tn

2

)
= ε

(4π)1/2 .

By uniform C1 regularity of 
, there exists universal constants δ > 0 and c > 0 such
that

φhom(t, r) ≥ cε for all (t, r) ∈ [tn − δ, tn + δ] × [0, δ].

On the other hand, we have a uniform bound |φinhom | � ε7 for φinhom . Hence for
ε > 0 sufficiently small, we have

φ(t, r) ≥ c

2
ε for all (t, r) ∈ [tn − δ, tn + δ] × [0, δ].

Since tn is doubly infinite with tn → ±∞ as n → ±∞, it follows that the L12
t,x norm

of φ (as a matter of fact, any space-time norm L p
t L

r
x with 1 ≤ p < ∞) diverges to

infinity towards both the future and the past, as desired. 
�
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