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Abstract For the 2D Euler equation in vorticity formulation, we construct localized
smooth solutions whose critical Sobolev norms become large in a short period of time,
and solutions which initially belong to L∞∩H1 but escapes H1 immediately for t > 0.
Our main observation is that a localized chunk of vorticity bounded in L∞ ∩ H1 with
odd-odd symmetry is able to generate a hyperbolic flow with large velocity gradient
at least for a short period of time, which stretches the vorticity gradient.

Keywords Euler equations · Ill-posedness · Yudovich solutions · Lagrangian
approach

1 Introduction and the Main Statement

We consider the vorticity formulation of 2D incompressible Euler equation on the
torus T2 = [−1, 1)2:

∂tω + u · ∇ω = 0, (1)

where the velocity u is determined from ω by the Biot-Savart law

u(t, x) = 1

2π

∑

n∈Z2

∫

[−1,1)2

(x − y − 2n)⊥

|x − y − 2n|2 ω(t, y)dy, (2)
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with the convention (v1, v2)⊥ = (−v2, v1). It is well known that (1) is well-posed
in C([0,∞); Hs(T2)) for s > 1 and in C∞([0,∞) × T

2) when the initial data is
smooth. If ω(t, ·) ∈ Hs(T2) for s > 1 then u(t, ·) is Lipschitz in x and the following
ordinary differential equation

d

dt
�(t, x) = u(t,�(t, x)) and �(0, x) = x (3)

defines the area-preserving flow maps �(t, ·) : T2 → T
2 along which the vorticity is

transported;

ω(t,�(t, x)) = ω0(x). (4)

In this note, we will provide a simple proof of the strong illposedness of the Euler
equation (1) in the critical Sobolev space H1(T2), which was obtained recently by
Bourgain and Li [3]. The following result shows that so-called norm inflation occurs
in H1 for smooth initial data.

Theorem 1 For any ε > 0, there exists an initial data ω0 ∈ C∞(T2) and a time
moment 0 < t < ε such that

‖ω0‖H1∩L∞ < ε, supp(ω0) ⊂ B0(ε) and ‖ω(t, ·)‖H1 > ε−1,

where B0(ε) is the ball of radius ε around the origin.

Next, we show that a localized solution which is initially small in L∞ ∩ H1 can
immediately escape H1 for t > 0, which have also appeared in [3]:

Theorem 2 For any s, p such that sp = 2 and 1 ≤ s < 6/5, there is ω0 ∈ L∞(T2)∩
Ws,p(T2) which is C∞ away from the origin that for any 0 < t0 ≤ 1,

ess-sup0<t≤t0‖ω(t, ·)‖Ws,p ≥ ess-sup0<t≤t0‖ω(t, ·)‖H1 = +∞.

Therefore, for 1 ≤ s < 6/5 and sp = 2, there are initial data in Ws,p which escapes
not only Ws,p but also H1 for t > 0. Actually our proof of Theorem 2 can be modified
a little bit to prove ill-posedness statements in Ws,p for all values of 1 ≤ s < 2: there
exists ω0 ∈ L∞(T2) ∩Ws,p(T2) whose Ws,p-norm becomes instantaneously infinite
for t > 0.

In the work of Bourgain and Li [3], the existence of localized initial data which
escapes H1 was obtained by carefully “patching” together an infinite sequence
{ω(n)

0 }∞n=1 of C∞ data whose support becomes smaller but grows in H1 with a larger
rate in a shorter period of time as n → ∞. It is possible that the C∞ solutions that
we construct in Theorem 1 can be patched together to obtain the desired statement as
well. However, this seems to require a rather involved analysis, and we have chosen
to establish Theorem 2 via exhibiting a simple explicit initial data in L∞ ∩ H1, see
(14).
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The problem of well-posedness will not be an issue in the above statements as there
is a unique, global-in-time solution of the extended system (2)–(4) in L∞([0,∞) ×
L∞(T2)) (so-called Yudovich solutions) for ω0 just in L∞(T2), even though in this
case, u(t, ·) is only log-Lipschitz in general. A simple proof of this fact may be found
in [8], for instance.

The space H1 is called critical since we barely cannot close the standard energy
estimate

d

dt
‖∇ω‖L2(T2) ≤ ‖∇u‖L∞(T2)‖∇ω‖L2(T2),

as ω ∈ H1(T2) or even ω ∈ H1(T2)∩ L∞(T2) does not guarantee that u is Lipschitz.
This failure of Lipschitz regularity is at the heart of the possibility of rapid growth of
vorticity gradient. It is explicit in the Bahouri-Chemin example [1]: Take ω(x) = 1
on [0, 1]2 and extend it to [−1, 1]2 as an odd function in both variables. This defines
a stationary solution of 2D Euler in the sense of equations (2)–(4), and the flow near
the origin is “hyperbolic” in the following specific sense: for 0 < x1 < x2 small, it
can be computed that for some absolute constant c > 0 (see Denissov [5])

u(x1, x2) = c

(
−x1

(
ln

1

x2
+ r1(x1, x2)

)
, x2

(
ln

1

x2
+ r2(x1, x2)

))
(5)

with some smooth functions r1, r2.
Certain perturbations of this stationary solution were utilized in the works of

Denissov [5], Kiselev and Šverák [7], and Zlatoš [9] (in chronological order) to
obtain growth of vorticity gradient in the maximum norm L∞. The growth rates
of ‖∇ω‖L∞(T2) obtained in [5,9] were double exponential for arbitary long but finite
time and exponential for all time, respectively. The groundbreaking work [7] settled
the possibility of double exponential growth of ‖∇ω‖L∞(D) for all time, when the
domain is a disc. The “Key Lemma” of Kiselev and Šverák (which was also utilized
in [9]) is an essential tool in our arguments as well (see below Lemma 1).

While our basic strategy to obtain growth of ω in H1(T2) is similar to that of the
aforementioned works, there are a number of notable differences in our setting.

First, while the idea of “linearizing” around the Bahouri-Chemin stationary solution
makes sense when considering only bounded vorticities, this solution does not belong
to H1(T2). Hence, we needed to consider a different type of “background” vorticity,
and our choice was to take a suitably localized version of the following function:

ω0(x1, x2) = �
(
x1x2 |ln |x ||α)

with 0 < α < 1/2. The advantage of this initial vorticity is that it belongs to H1 ∩ L∞
and the corresponding velocity u0 satisfies ∇u0 /∈ L∞.

Second, since we want localized solutions, it is not clear if the specific hyperbolic
picture of the type (5) near the origin will be sustained, even for a very short periodic
of time. In view of this, our strategy is to take an initial vorticity which extends over
two different length scales N−1 and N−1/2, and to show that vorticity outside the
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O(N−1)-region, in the special time scale of ln ln N/ ln N , is sufficient to generate a
hyperbolic flow which stretches the vorticity gradient on the O(N−1)-region.

Here, a caveat is that we could not exclude the possibility of our initial vortic-
ity chunk getting “squeezed” in the angular direction even earlier than the scale
ln ln N/ ln N , in which case we do not have a good lower bound on |∇u|. Hence
our actual proof is based on a contradiction argument. This difficulty vanishes when
the domain has a boundary: see Remark 1.

Closing the introduction, let us mention that similar ill-posedness statements were
recently established for the integer based Ck spaces with k ≥ 1 of the velocity field
u, independently in the works of Elgindi and Masmoudi [6] and Bourgain and Li [4].
We refer the interested readers to the works [3,4,6] for an extensive list of references
on the problem of well-posedness of the Euler equations.

Notation Let us use the notation | f |p = ‖ f ‖L p(T2) for p ∈ [1,∞] for simplicity.
We use letters C,C1, c, · · · to denote various absolute positive constants, and their
values may change from line to line. When a constant depends on some parame-
ters, we explicitly indicate dependence as subscripts. We use superscripts to refer to
components of a vector: for example, u = (u1, u2) and � = (�1,�2).

2 Proof of Theorem 1

Our initial vorticity ω0 will be odd both in the variables x1 and x2. Since this symmetry
persists for all time, we may view ω(t, ·) as defined just on [0, 1]2. Pick a large integer
N , and let us define the initial vorticity on [0, 1]2 as follows:

ω0(r, θ) := χ(r)ψ(θ), (6)

where χ and ψ are smooth bump functions. More specifically, they satisfy

χ(r) :=
⎧
⎨

⎩
1 for r ∈

[
N−1, N−1/2

]

0 for r /∈
[
N−1/2, 2N−1/2

]
,

and ψ(θ) :=
{

1 for θ ∈ [π/4, π/3]

0 for θ /∈ [π/6, 5π/12] .

Since

|∇ω0|22 =
∫ ∫

r |∂rω0|2drdθ +
∫ ∫

1

r
|∂θω0|2drdθ,

the main contribution of |∇ω0|2 comes from the angular variation: |∇ω0|2 ≈
c(ln N )1/2 as N → ∞.

As mentioned in the introduction, we need to work with a special time scale. Given
τ ∗ > 0 and N , we set t∗(τ, N ) = τ ∗ ln ln N/ ln N and we shall track the evolution of
initial data (6) on the time interval [0, t∗]. To get an idea of how this scale appears, recall
that the main idea is to stretch vorticity in the O(N−1) region using the chunk of vor-
ticity “behind”. Since initially |∇ω0|L2(O(N−1)) = O(1) while |∇ω0|2 ≈ c(ln N )1/2,
we need to stretch the H1-norm in the local region by a factor of (ln N )1/2+ε to obtain
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norm inflation. In view of |∇u0|∞ ≈ c ln N , we achieve this goal once we sustain this
lower bound on the velocity gradient during an interval of time [0, t∗]. It is important
that in this time scale, fluid particles can move only up to a factor of ln N , see (9) and
(12) below.

Our main technical tool is the following expression for the velocity due to Kiselev
and Šverák [7]; we use a version by Zlatoš [9, Lemma 2.1] which works in the case
of the torus T2 = [−1, 1)2.

Lemma 1 (Key Lemma) Let ω(t, ·) be odd in x1 and x2. Then for x ∈ [0, 1/2)2, we
have

ui (t, x)

xi
= (−1)i

4

π

∫

[2x1,1)×[2x2,1)

y1y2

|y|4 ω(t, y)dy + Bi (t, x) (7)

with |Bi | ≤ C |ω|∞ (1 + ln(1 + x3−i/xi )) for i ∈ {1, 2}.
There are several striking features of this lemma, which we would like to emphasize.

First, the expression (7) essentially gives a pointwise control over the velocity gradient,
just under the assumption that ω(t, ·) ∈ L∞. It is surprising that such a control is
available, especially because the formula is applicable even in situations where ∇u is
unbounded. Next, the integral in (7) is monotone in ω(t, ·), so that for the purpose of
obtaining a lower bound on the velocity gradient, it suffices to find a region in space
where vorticity is uniformly bounded from below. On the other hand, one should note
that Lemma 1 is applicable only when the integral term in (7) dominates the remainder
term Bi .

The following estimates are standard (cf. [2,8]) and will play a complementary rôle
of the previous lemma.

Lemma 2 Let (ω, u,�) to be the solution triple for the 2D Euler equations in T
2

with initial data ω0. The velocity is log-Lipschitz

|u(t, x) − u(t, y)| ≤ C |ω0|∞|x − y| (1 + ln(4/|x − y|)) , (8)

and the flow maps�(t, ·) : T2 → T
2 for 0 ≤ t ≤ (C |ω0|∞)−1 satisfy quasi-Lipschitz

estimates of the form

c|x − y|exp(ct |ω|∞) ≤ |�(t, x) − �(t, y)| ≤ C |x − y|exp(−Ct |ω|∞). (9)

Note that the argument of the logarithm in (8) is always greater than 1 since |x−y| ≤√
2 in our torus [−1, 1)2.

Proof Although these estimates are well-known, we provide a proof of (9) (assuming
the bound in (8)), as it appears throughout the arguments given below.

For simplicity, we set d(t) := |�(t, x) − �(t, y)|, and from the definition of flow
we have

d

dt
(�(t, x) − �(t, y)) = u(t,�(t, x)) − u(t,�(t, y)),
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and applying the estimate (8) gives a bound

∣∣∣∣
d

dt
d(t)

∣∣∣∣ ≤ C |ω0|∞d(t)

(
1 + ln

4

d(t)

)
,

which implies

∣∣∣∣
d

dt
ln

4

d(t)

∣∣∣∣ ≤ C |ω0|∞
(

1 + ln
4

d(t)

)
.

Denoting f (t) and g(t) as the unique solution of the respective ODE system

d

dt
ln

4

f (t)
= C |ω0|∞

(
1 + ln

4

f (t)

)
,

d

dt
ln

4

g(t)
= −C |ω0|∞

(
1 + ln

4

g(t)

)

on the time interval [0, (C |ω0|∞)−1] with initial data f (0) = g(0) = d(0) = |x − y|,
we obtain the desired estimates as g(t) ≤ d(t) ≤ f (t). ��

Given lemmas above, we present the proof of Theorem 1.

Proof of Theorem 1 We will instead show the following statement:
Claim. For any M > 0, there exists some N0, τ

∗ > 0 depending only on M such
that for all N ≥ N0, the solution associated with the initial data as in (6) satisfies, with
an absolute constant C ,

|∇ω(tN , ·)|2
|∇ω0|2 ≥ CM1/2 for some 0 < tN ≤ τ ∗ ln ln N

ln N
. (10)

Once it is established, we simply use the scaling symmetry of the Euler equation:
given a solution ω(t, x) and λ > 0, ωλ(t, x) := λω(λt, x) is another solution with
initial data λω0, and we can pick λ = (ln N )−1/2M−1/4 to achieve the statements of
the theorem.

Given M > 0, we fix τ ∗ = αM , where αM > 0 is a constant depending only on
M to be defined below. In several places of the following argument, it is implicitly
assumed that N is sufficiently large with respect to M and some absolute constants
appearing in the proof.

Consider the annulus A = {r : N−5/6 ≤ r ≤ N−4/6}. During the time interval
[0, t∗], particles starting from the arc {(r, θ) : r = N−1, π/4 ≤ θ ≤ π/3} remain in
the region {r < N−5/6} under the flow �(t, ·). Similarly, particles from {(r, θ) : r =
N−1/2, π/4 ≤ θ ≤ π/3} cannot escape {r > N−4/6}. Both statements follow from
(9) applied with y = 0 and |x | = N−m (where 1/2 ≤ m ≤ 1): we have

c|x |exp(ct |ω|∞) ≤ |�(t, x)| ≤ C |x |exp(−Ct |ω|∞), (11)

and since t = τ ln ln N/ ln N for some 0 ≤ τ ≤ τ ∗, we obtain

c(ln N )cτ ≤ |�(t, x)|
|x | ≤ C(ln N )Cτ (12)
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N−1 N−1/2

1

1/2
V

N−5/6 N−4/6

1/2
Φ(t, V )

R(t)

1

Fig. 1 The figure on the left describes the initial data ω
(N )
0 , where the two rectangles represent the region

where ω
(N )
0 ≡ 1 (inner) and V (outer). The right figure shows possible evolution of the set V under the

flow. The shaded region represents R(t)

with constants c,C > 0 uniform over 1/2 ≤ m ≤ 1. In particular, it implies that any
line segment {(r, θ0) : N−1 ≤ r ≤ N−1/2} should evolve in a way that it intersects
each circle {r = r0} for N−5/6 ≤ r0 ≤ N−4/6.

Take the domain V := {(r, θ) : ω0(r, θ) ≥ 1/2} and consider the region

R(t) := �(t, V ) ∩ A

which is a curvilinear rectangle whose two opposite edges are bounded by A (see
Fig. 1). Note that ω(t, ·) ≥ 1/2 on R(t). For each r0 ∈ [N−5/6, N−4/6], consider the
closed set

I (t, r0) := {0 ≤ θ ≤ π/2 : (r0, θ) ∈ R(t)},

and let us denote its Lebesgue measure by |I (t, r0)|. To show that the H1-norm grows,
we are led to consider two different scenarios.

Case I. Assume that there exists a time moment 0 < tcr ≤ t∗ such that for more
than half (with respect to the Haar measure r−1dr ) of r0 ∈ [N−5/6, N−4/6], we have
|I (tcr , r0)| ≤ M−1.

If r0 ∈ [N−5/6, N−4/6] is such that |I (tcr , r0)| ≤ M−1, then we can definitely pick
some θ0 = θ0(r0) such that the points (r0, θ0) and (r0, θ0 + δ) with 0 < δ ≤ M−1

satisfy ω(tcr , r0, θ0) = 1 and ω(tcr , r0, θ0 + δ) = 1/2. This implies a lower bound

M−1/2
(∫

I (tcr ,r0)

|∂θω(tcr , r0, θ)|2dθ

)1/2

≥
∫ θ0+δ

θ0

∂θω(tcr , r0, θ)dθ = 1/2
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which in turn gives that

|∇ω(tcr , ·)|22 ≥
∫ N−4/6

N−5/6

∫

I (tcr ,r)
|∂θω(tcr , r, θ)|2dθ

dr

r
≥ CM ln N ,

with some absolute constant C > 0. We have established the Claim in this case,
recalling that |∇ω0|22 ≤ C(ln N ).

Case II. For all t ∈ [0, t∗], for at least half (again with respect to the measure
r−1dr ) of r0 ∈ [N−5/6, N−4/6], we have |I (t, r0)| ≥ M−1.

In this scenario, we will track the evolution of the following segment

S = {(h, h) : N−1 ≤ h ≤ (ln N )K τ∗
N−1}

for the time interval [0, t∗], where K > 0 is an absolute constant to be determined
below. Since ω(t,�(t, S)) ≡ 1 for all t ≥ 0, to show growth of the H1-norm of ω, it
is enough to demonstrate that �(t∗, S) is close enough to the vertical segment (where
ω vanishes). In the remaining part of the proof, we will always assume that x ∈ S and
t ∈ [0, t∗].

As a first step, we collect simple bounds on the trajectory of x = (h, h) ∈ S, which
will in particular guarantee the applicability of Lemma 1. To begin with, applying (9)
with y = (0, 0) gives

�2(t, x) ≤ |�(t, x)| ≤ h(ln N )Cτ∗

(recall that t∗ and τ ∗ are related by t∗ = τ ∗ ln ln N/ ln N ). Next, to obtain a lower
bound on �1(t, x), we use the log-Lipschitz estimate:

|u1(t,�(t, x))| = |u1(t, �(t, x)) − u1(t, 0,�2(t, x))| ≤ C�1(t, x)

(
1 + ln

4

�1(t, x)

)

and since

d

dt
�1(t, x) = u1(t,�(t, x)),

proceeding exactly as in the proof of the estimate (9) of Lemma 2 gives that

�1(t, x) ≥ h

(ln N )Cτ∗ .

Hence, for x ∈ S, we have

�2(t, x)

�1(t, x)
≤ C(ln N )2Cτ∗

for 0 < t < t∗.
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On the other hand, with our assumption on |I (t, r)|, we estimate the integral appear-
ing in Lemma 1 at the point x̂ = (N−7/8, N−7/8):

Q(t, x̂) :=
∫

[2N−7/8,1)2

y1y2

|y|4 ω(t, y)dy ≥ 1

2

∫ N−4/6

N−5/6

∫

I (t,r)

sin θ cos θ

r
dθdr

and upon setting

cM := min|I |=1/2M
I⊂[0,π/2]

∫

I
sin θ cos θdθ,

we obtain

Q(t, x̂) ≥ c1cM ln N (13)

for some c1 > 0, whenever 0 ≤ t ≤ t∗. Therefore, we conclude that the Bi (t, x)-term
can be neglected in Lemma 1 (by possibly adjusting the value of c1 in (13)) as long
as we apply it to the trajectory of S. That is,

−u1(t,�(t, x))

�1(t, x)
≥ CQ(t, x̂) ≥ CM ln N ,

for x ∈ S and 0 ≤ t ≤ t∗ for some constant CM > 0 depending only on M . Similarly,
we deduce that u2(t,�(t, x)) ≥ 0 on the same time interval for x ∈ S. From these
bounds, it follows that the curve Ŝ := �(t∗, S) is contained in the region

{(y1, y2) : y2/y1 ≥ (ln N )CM τ∗}.

The flow estimate (12) further gives that Ŝ intersects the circles {r = (ln N )Cτ∗
/N } and

{r = (ln N )(K−c)τ∗
/N }. We could have taken K so that K−c > C (where c,C are con-

stants from the estimate (12)). Then, for each (ln N )Cτ∗
/N ≤ r ≤ (ln N )(K−c)τ∗

/N ,
we may find a point (in polar coordinates) of the form (r, θ∗(r)) on Ŝ such that
π/2 − θ∗(r) ≤ C(ln N )−CM τ∗

. Therefore, we deduce that

1

C
(ln N )CM τ∗ ≤

∫

0≤θ≤π/2
|∂θω(t∗, r, θ)|2dθ

and integrating over (ln N )Cτ∗
/N ≤ r ≤ (ln N )(K−c)τ∗

/N against r−1dr with the
choice τ ∗ := 1/CM gives

1

C
(ln N ) ln

(
K − c − C

CM
ln N

)
≤

∫ ∫
1

r
|∂θω(t∗, r, θ)|2dθdr ≤ |∇ω(t∗)|22

which gives the desired lower bound in (10). ��
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Remark 1 This construction carries over to the setting of the whole domain and a
bounded open set, with minor modifications.

In the case when the fluid domain is a disc (or more generally, a bounded open set
with an axis of symmetry), we can utilize the boundary to achieve Theorem 1 without
relying on a contradiction argument. To be more specific, assume for simplicity that
our domain is the upper half-plane {(r, θ) : 0 ≤ θ ≤ π}. Take ω0 which is odd in
x1 and equals a smoothed out version of the indicator function on the polar rectangle
[N−1, N−1/2] × [0, π/4] in the positive quadrant. Then it can be shown that for the
time interval that we consider, we do not run out of angles; i.e.Case I does not happen.
The same can be said for the proof of Theorem 2, and actually one can even show
continuous-in-time loss of regularity of the solution. We expand on this point in our
forthcoming work.

Remark 2 Inspecting the proof, one can check that CM = CM−2 works, and so that
we may choose N ≥ CM exp(CM2) as M → ∞. In other words, the initial data in
(6) grows at least by a multiple of (ln N )1/2−ε (in both scenarios). Again, when we
have a boundary available, it is not necessary to introduce M and we obtain growth
by a factor of (ln N )K for any K > 0 as long as N is sufficiently large.

3 Proof of Theorem 2

This time, we consider an odd initial vorticity defined on [0, 1)2 by

ω0(r, θ) =
(

ln
1

r

)−α

ψ(θ)ξ(r), (14)

where ψ(·) is the same angular bump function as in (6) and ξ(r) is a smooth bump
function which identically equals 1 for 0 ≤ r ≤ ε/2 and vanishes for r ≥ 2ε/3.
Clearly, ω0 is a bounded continuous function and by choosing ε > 0 small enough,
we may assume that |ω0|∞, |∇ω0|2 ≤ 1. Given s and p satisfying sp = 2 and
1 ≤ s < 6/5, we can find a value of 1/2 < α < 3/5 so that ‖ω0‖Ws,p < +∞: note
that

|∇|sω0(r, θ) ≈ 1

rs

(
ln

1

r

)−α

ψ ′(θ)ξ(r), r � 1,

so that given sp = 2,

ω0 ∈ Ws,p(T2) if and only if αp > 1.

It can be shown that the solution associated with the initial data (14) remains C∞-
smooth away from the origin for all time (see Proposition 1 below). Hence, if we
denote the solution by ω(t, ·), its H1-norm can be unambiguously defined by

lim
δ→0+

∫

|y|>δ

|∇ω(t, y)|2dy,
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which can take the value +∞. We will show that there exists a sequence of positive time
moments {tM }M≥1 and a sequence of radii {rM }M≥1, such that tM → 0+, rM → 0+,
and for a fixed absolute constant c > 0,

∫

|y|>rM
|∇ω(tM , y)|2dy > cM1/2.

For each fixed r > 0, the function
∫
|y|>r |∇ω(t, y)|2dy is continuous in time and pro-

vides a lower bound for |∇ω(t, ·)|22. Therefore, the existence of sequences satisfying
above gives the statement in Theorem 2.

The proof we present is strictly analogous to that of Theorem 1, as ω0 in (14) can be
viewed as a “continuum” version of data from our previous proof. To be more specific,
pick some large number N and radially truncate the function (14) at length scales N−1

and N−1/2. Then this is essentially a scalar multiple of the smooth initial data ω
(N )
0

from the previous section, and recalling the scaling symmetry of the Euler equation,
it follows that this truncated initial data grows in H1 by a factor which diverges with
N at some time moment 0 < t (N ) which converges to 0 as N → +∞. Therefore it is
intuitively clear that the data (14) would escape H1 immediately.

Proof of Theorem 2 Given M > 0, we consider the time moment

t∗ = τ ∗ ln ln N

(ln N )1−5α/3

where τ ∗ = τ ∗(M) is to be determined later. It will be implicitly assumed that N
is sufficiently large with respect to M and a few absolute constants. In particular, as
1 − 5α/3 > 0, it guarantees that t∗ � 1. Throughout the proof, it will be always
assumed that the variable t take values in the interval [0, t∗].

The outline of the argument is as follows: we identify a “bulk” region which initially
extends over length scales N−1/2 and O(1), and a “local” region near N−1. In the
special time interval that we consider, if there is too much angular squeezing of the
bulk, then we are done. Otherwise, the bulk region has enough mass which stretches
vorticity in the local region. We note in advance that, compared to the situation of
Theorem 1, we have less precise information on the local particle trajectories, so we
should apply Lemma 1 in a very careful manner.

To begin with, using the basic estimate (11) (recall that |ω|∞ ≤ 1), we take 0 <

a0 < ε/2 such that the fluid particles starting from |x | > a0 at t = 0 cannot cross
the circle |x | = a0/2 within [0, t∗], as t∗ can be taken to be much smaller than a few
absolute constants. Similarly using the same estimate, we can ensure that the particles
starting on the circle |x | = N−5/10 cannot escape the annulus

{N−6/10 < |x | < N−4/10}

in the same time interval. Indeed, taking the logarithms of (11) (assuming |x |, |�(t, x)|
small enough),
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ect ln
1

|x | − c1 ≥ ln
1

|�(t, x)| ≥ e−Ct ln
1

|x | − C1

so that in the time interval that we consider, ln(1/|�(t, x)|) is equivalent to ln(1/|x |)
up to absolute constants which can be assumed arbitrarily close to 1, uniformly in t
and |x |.

Given these bounds, take the polar rectangle

V := {(r, θ) : N−1/2 ≤ r ≤ a0, π/4 ≤ θ ≤ 3π/8}

and consider intersections of the form

R(t) := �(t, V ) ∩ {(r, θ) : N−4/10 ≤ r ≤ a0/2}.

Note that on the “angular” sides of V , ω0 takes the values (ln r−1)−α and β(ln r−1)−α

respectively, for some 0 < β < 1. For each t ∈ [0, t∗] and r ∈ [N−1/4, a0/2], we
consider the (non-empty) set of angles

I (t, r) := {0 ≤ θ ≤ π/2 : (r, θ) ∈ R(t)}.

We again consider two cases; introducing the set of radii with “enough” angles

A(t) := {r ∈ [N−1/4, a0/2] : |I (t, r)| ≥ M−1
(

ln
1

r

)−α/3

}

(note the power −α/3) and first, assume that there exists some 0 < tcr < t∗ such that

∫

r∈A(tcr )

(
ln

1

r

)−5α/3 dr

r
≤ 1

2

∫

r∈[N−1/4,a0/2]

(
ln

1

r

)−5α/3 dr

r
≤ C (ln N )1−5α/3 .

In this case, we argue exactly as Case I of the previous proof: whenever r /∈ A(tcr ),
we integrate over angle to get

∫ π/2

0
|∂θω(tcr , r, θ)|2dθ ≥ CM

(
ln

1

r

)−5α/3

,

where we have used that when r = |�(t, y)|, ω(t,�(t, y)) = ω0(y) = (ln |y|−1)−α

for y having the form (r, π/4) in polar coordinates and similarly ω(t,�(t, y)) =
β(ln |y|−1)−α when y = (r, 3π/8), and that ln(1/|y|) and ln(1/|�(t, y)|) are equiv-
alent up to some absolute constants arbitrarily close to 1 (relative to the difference
between 1 and β). Integrating the above lower bound over r /∈ A(tcr ) gives the desired
estimate

∫

|y|≥N−4/10
|∇ω(tcr , y)|2dy ≥ CM

∫

[N−4/10,a0/2]\A(tcr )

(
ln

1

r

)−5α/3 dr

r

≥ cM(ln N )1−5α/3.
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Fig. 2 Evolution of the local
diagonal segment

N− 10
10 N− 7

10

y2 = (lnN)y1

S
Φ(t∗, S)

N− 8
10N− 9

10

Therefore, we may assume that for all t ∈ [0, t∗], we have a lower bound

∫

r∈A(t)

(
ln

1

r

)−5α/3 dr

r
≥ c(ln N )1−5α/3.

Under this hypothesis, we shall track the evolution of the diagonal segment in the
“local” region:

S := {(h, h) : N−1 ≤ h ≤ N−7/10}.

We may assume that the trajectories of the two endpoints of S are trapped in the annuli
{N−11/10 < r < N−9/10} and {N−8/10 < r < N−6/10}, respectively. Assume for a
moment that we have

�(t∗, S) ⊂ {(y1, y2) : y2 ≥ (ln N )y1}, (15)

see Fig. 2. On the set �(t∗, S), ω(t∗, ·) ≥ C(ln N )−α , and on the vertical line,
ω(t∗, ·) ≡ 0. Therefore, for each N−9/10 < r < N−8/10, we have a lower bound

∣∣∣
π

2
− θ∗(r)

∣∣∣
1/2

(∫
|∂θω(t∗, r, θ)|2dθ

)1/2

≥
∫ π/2

θ∗(r)
|∂θω(t∗, r, θ)|dθ ≥ C(ln N )−α,

where (r, θ∗(r)) is a point on �(t∗, S). This gives

∫ π/2

0
|∂θω(t∗, r, θ)|2dθ ≥ C(ln N )1−2α,
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and integrating over N−9/10 < r < N−8/10 against r−1dr ,

∫

|y|≥N−1
|∇ω(t∗, y)|2dy ≥

∫ N−8/10

N−9/10

∫ π/2

0
|∂θω(t∗, r, θ)|2dθ

dr

r
≥ C(ln N )2(1−α).

Since α < 1, we obtain the desired lower bound. Hence our goal now consists of
establishing the containment in (15).

Let us begin by obtaining a lower bound on the integral term appearing in Lemma 1.
We fix a reference point x̂ = (N−6/10, N−6/10). Then,

Q(t, x̂) :=
∫

[2N−6/10,1)2

y1y2

|y|4 ω(t, y)dy ≥ C
∫ a0/2

N−1/4

∫

I (t,r)
sin θ cos θdθ

(
ln

1

r

)−α dr

r
,

where we have again used the observation that ln |�(t, x)|−1 and ln |x |−1 are compa-
rable. Now recalling that

|I (t, r)| ≥ M−1
(

ln
1

r

)−α/3

, r ∈ A(t),

for r ∈ A(t) we have an estimate

∫

I (t,r)
sin θ cos θdθ ≥ cM−2

(
ln

1

r

)−2α/3

which gives (under our hypothesis on the size of A(t))

Q(t, x̂) ≥ CM

∫

A(t)

(
ln

1

r

)−5α/3 dr

r
≥ CM (ln N )1−5α/3.

We may now apply Lemma 1. From now on, we reserve the letter x for points in the
diagonal segment S. To begin with, on the diagonal, the error terms B1, B2 in Lemma 1
are bounded by an absolute constant, and since Q(t, x̂) � 1, we can ensure that the
trajectory of x stays in the region {(y1, y2) : y2 ≥ y1}. Then in turn, this information
guarantees that u2(t,�(t, x)) is positive, as |B2| is bounded by an absolute constant
whenever {(y1, y2) : y2 ≥ y1}, which gives in particular �2(t, x) ≥ x2.

Fix some x ∈ S, and assume for the sake of contradiction that �(t, x) is not
contained in the region {(y1, y2) : y2 ≥ (ln N )y1}, for all 0 ≤ t ≤ t∗. It guarantees
that

|B1(t,�(t, x))| ≤ C

(
1 + ln

(
1 + �2(t, x)

�1(t, x)

))
≤ C ln ln N
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and in particular the B1 term is dominated by Q(t, x̂). Hence,

−u1(t,�(t, x))

�1(t, x)
≥ CQ(t, x̂) ≥ CM (ln N )1−5α/3,

and therefore integrating in time over [0, t∗] with the choice τ ∗ = c/CM (for some
absolute constant c > 0), we deduce �1(t∗, x) ≤ x1(ln N )−1. Combined with
�2(t∗, x) ≥ x2 = x1,

�2(t∗, x)
�1(t∗, x)

≥ ln N .

This is a contradiction, so there must exist 0 ≤ t ′ ≤ t∗ for which

�2(t ′, x)
�1(t ′, x)

≥ ln N .

However, observe that for any point on the line y2 = (ln N )y1, we have |B1| ≤ ln ln N ,
so that the trajectory of x for t ≥ t ′ cannot escape the region {y2 ≥ (ln N )y1} unless
|�(t, x)| becomes larger than |x̂ |, which is impossible during the time interval [0, t∗].
This finishes the proof. ��
Remark 3 One does not face the restriction α < 3/5 in the presence of a boundary.

For the convenience of the reader, we give a proof that ω(t, ·) in the case of Theo-
rem 2 actually stays C∞ away from the origin.

Proposition 1 Consider ω0 ∈ L∞(T2) which is C∞ away from a closed set A ∈ T
2.

Then, the unique solution ω(t, ·) ∈ L∞(T2) of the 2D Euler equation stays C∞ away
from �(t, A) for all t > 0.

Proof We may assume that ‖ω0‖L∞ = 1. Once we show that ω(t, ·) is smooth away
from �(t, A) for t ∈ [0, T ] with some absolute constant T > 0 then we may iterate
the argument to extend the statement to any finite time moment.

Take an open set O which is separated from A. It suffices to show that for t ∈ [0, T ],
there exists some α > 0 that ω(t, ·) is uniformly Ck,α in �(t,Uk), for any integer
k ≥ 0 and some open set Uk ⊃ O . We deduce this by inducting on k.

For the base case of k = 0, take some open set U0 ⊃ cl(O) which is still separated
away from A. Then we simply write

‖ω(t, ·)‖Cα(�(t,U0)) = sup
x,x ′∈U0

|ω(t,�(t, x)) − ω(t,�(t, x ′))|
|�(t, x) − �(t, x ′)|α

≤ ‖ω0‖C1(U0)
sup

x,x ′∈U0

|x − x ′|
|�(t, x) − �(t, x ′)|α

which is bounded by an absolute constant via the Hölder estimate (9) once we choose
α ≤ e−cT where c is the constant from (9).
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Now we assume that ω(t, ·) isCk,α in �(t,Uk) with some k ≥ 0, whereUk ⊃ cl(O)

and d(Uk, A) > 0. We first pick some open set Uk+1 which satisfies

Uk+1 ⊃ cl(O), Uk ⊃ cl(Uk+1).

In particular, Uk+1 is separated away from A. For each 0 ≤ t ≤ T , take a smooth
cutoff function 0 ≤ χt ≤ 1 which equals 1 on �(t,Uk+1) and vanishes outside of
�(t,Uk). Then, for x ∈ �(t,Uk+1), with the Biot-Savart kernel K , we write

u(t, x) = (K ∗ ωt )(x) = K ∗ (χtωt )(x) + K ∗ ((1 − χt )ωt )(x).

Regarding the first term, a classical singular integral estimate gives

‖K ∗ (χtωt )‖Ck+1,α(T2) ≤ C‖∇k(χtωt )‖Cα(�(t,Uk )).

The second term is indeed C∞ in �(t,Uk+1) simply because K (·) is C∞ away from
the origin. Hence we deduce that u(t, ·) is uniformly Ck+1,α in �(t,Uk+1). At this
point we may extend u(t, ·) to be Ck+1,α on the entire domain T

2 to obtain ũ(t, ·).
Then solving

d

dt
�̃(t, x) = ũ(t, �̃(t, x)),

gives that �̃(t, x) is a Ck+1,α flow, which coincides with �(t, x) whenever x ∈
�(t,Uk+1) and 0 ≤ t ≤ T . This can be done by obtaining an a priori estimate for
‖�̃(t, ·)‖Ck+1,α and then argue along a (smooth) sequence of approximate solutions.
Note that

|∇�̃(t, x)| ≥ exp(−
∫ t

0
‖∇ũ(τ, ·)‖L∞dτ)

so �̃(t, ·) is invertible and the inverse function theorem gives that �̃−1
t (·) is also a

Ck+1,α diffeomorphism of the domain. From

ω(t, z) = ω0(�
−1
t (z)) = ω0(�̃

−1
t (z)), z ∈ �(t,Uk+1),

differentiating both sides k + 1 times, on the right hand side we obtain terms which
contains up to the k + 1th derivatives of ω0 (composed with �−1

t ) multiplied with
some factors of �−1

t also up to the k + 1th derivatives. Since each such factor is Cα ,
we conclude that ω(t, ·) is Ck+1,α . This finishes the proof. ��

4 Open Problems

In this section we discuss a few interesting open problems.
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4.1 Problem 1: Further Degeneration of Weak Solutions

We have shown that there are Yudovich solutions of the 2D Euler equations on T
2

which are initially in the class H1 but which do not belong to the class L∞([0, δ); H1)

for any δ > 0. One could ask whether even worse behavior is possible. In fact, the
existing estimates do not rule out the existence of Yudovich solutions with H1 data
which leave W 1,p for every p > 1 in finite time. We just give a sketch of the losing
estimate.

Lemma 3 Let ω0 ∈ H1(T2) ∩ L∞(T2) be mean-zero. Then, the unique Yudovich
solution satisfies the following estimate:

|ω(t)|W 1,p ≤ |ω0|H1

for every p ≤ q(t), with q(t) solving the ODE:

d

dt
q(t) = −Cq(t)2|ω0|∞, q(0) = 2

for some large universal constant C.

Proof By the John-Nirenberg lemma,

∫

T2
ec|∇u|dx ≤ C |ω|∞ ≤ C |ω0|∞

for some small universal constant c. By a generalized Young’s inequality,

‖ |∇u||∇ω|r ‖1 ≤ Cr‖e|∇u|‖1 · ‖ |∇ω|r ln |∇ω| ‖1.

Now, by passing to the Lagrangian formulation (and suppressing the composition with
the flow maps) we see:

∂t∇ω = −∇u∇ω.

Hence,

∂t (|∇ω|p(t)) = p′(t)|∇ω|p(t) ln |∇ω| + p(t)∂t∇ω · ∇ω|∇ω|p(t)−2

= p′(t)|∇ω|p(t) ln |∇ω| − p(t)∇u∇ω · ∇ω|∇ω|p−2.

Now upon integrating and using our inequality for
∥∥|∇u||∇ω|r∥∥1, we have:

d

dt
|∇ω|p(t)p(t) ≤ p′(t)

∫
|∇ω|p(t) ln |∇ω|dx + C |ω0|∞ p(t)2

∫
|∇ω|p(t) ln |∇ω|dx .

Finally, choosing

p′(t) = −C |ω0|L∞ p(t)2, p(0) = 2,
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we get

d

dt

(
|∇ω|p(t)p(t)

)
≤ 0.

��

Conjecture 1 The bound in Lemma 3 is sharp, in the sense that there exist Yudovich
solutions which continuously lose regularity.

It seems that proving the conjecture is true (for a short time) is much more difficult
on T

2 than on a domain with a boundary.

4.2 Problem 2: Ill-posedness in W2,1?

Though there have recently been numerous results on ill-posedness for the Euler
equations in critical spaces, it seems as though the case of W 2,1 vorticity (or W 3,1

velocity) is still open.

4.3 Problem 3: Vanishing Viscosity

Consider the 2D Euler equations with partial viscosity on T × [0, 1]:

∂tω + u · ∇ω = ν∂x1x1ω.

Notice that we have put viscosity only in the horizontal variable and, hence, we only
need the no-slip boundary condition: u2 = 0 on x2 = 0 and x2 = 1.

When ν = 0, we see that H1 data can leave H1 initially using a modification of
the proof of Theorem 2. In fact, it can be shown that |∂x1ω|2 becomes infinite. When
ν > 0 this is no longer possible due to the energy equality:

d

dt
|ω|22 = −2ν

∫
|∂x1ω|2dx .

There a few regimes where one could study the behavior of the solutions of the
partially viscous problem as ν → 0. The first regime is when ν, t → 0. Depending
upon the relative sizes of ν and t , different behaviours can be observed. In particular,
one would expect that if ν � t that we could see H1 growth immediately. On the other
hand, if t � ν we shouldn’t see any growth. Determining the exact dynamics in this
regime seems interesting. By the same token, one could consider the inhomogenous
problem and study the limit t → ∞ and ν → 0.
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