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Abstract Minkowski space is shown to be globally stable as a solution to the Einstein–
Vlasov system in the case when all particles have zero mass. The proof proceeds by
showing that the matter must be supported in the “wave zone”, and then proving a
small data semi-global existence result for the characteristic initial value problem for
the massless Einstein–Vlasov system in this region. This relies on weighted estimates
for the solution which, for the Vlasov part, are obtained by introducing the Sasaki
metric on the mass shell and estimating Jacobi fields with respect to this metric by
geometric quantities on the spacetime. The stability of Minkowski space result for the
vacuum Einstein equations is then appealed to for the remaining regions.
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1 Introduction

It is of wide interest to understand the global dynamics of isolated self-gravitating
systems in general relativity. Without symmetry assumptions, problems of this form
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present a great challenge even for systems arising from small data. In the vacuum,
where no matter is present, the global properties of small data solutions were first
understood in the monumental work of Christodoulou–Klainerman [10]. They show
that Minkowski space is globally stable to small perturbations of initial data, i.e. the
maximal development of an asymptotically flat initial data set for the vacuum Ein-
stein equations which is sufficiently close to that of Minkowski space is geodesically
complete, possesses a complete future null infinity and asymptotically approaches
Minkowski space in every direction (see also Lindblad–Rodnianski [26], Bieri [2],
and also Section 1.15 where these results, along with other related works, are dis-
cussed in more detail).

In the presence of matter, progress has been confined to models described by wave
equations.1 Here collisionless matter, described by the Einstein–Vlasov system, is
considered. This is a model which has been widely studied in both the physics and
mathematics communities; see the review paper of Andréasson [1] for a summary of
mathematical work on the system. New mathematical difficulties are present since
the governing equations for the matter are now transport equations, though in the
case considered here, where the particles have zero mass and hence travel through
spacetime along null curves, the decay properties of the function describing the matter
are compatible in a nice way with those of the spacetime metric.

The Einstein–Vlasov system takes the form

Ricμν − 1

2
Rgμν = Tμν, Tμν(x) =

∫
Px

f pμ pν, (1)

X ( f ) = 0. (2)

The unknown is a Lorentzian manifold (M, g) together with a particle density function
f : P → [0,∞), defined on a subset P ⊂ TM of the tangent bundle of M called the
mass shell. The function f (x, p) describes the density of the matter at x ∈ M with
velocity p ∈ Px ⊂ TxM. Here (xμ, pμ) denote coordinates on the tangent bundle
TM with pμ conjugate to xμ, so that (x, p) denotes the point pμ∂xμ |x in TM. The
Ricci curvature and scalar curvature of (M, g) are denoted Ric, R respectively. The
integral in (1) is taken with respect to a natural volume form, defined later in Section 2.2.
The vector field X ∈ �(T TM) is the geodesic spray, i.e. the generator of the geodesic
flow, of (M, g). The Vlasov equation (2) therefore says that, given (x, p) ∈ TM, if
γx,p denotes the unique geodesic in M such that γx,p(0) = x, γ̇x,p(0) = p, then f is
constant along (γx,p(s), γ̇x,p(s)), i.e. f is preserved by the geodesic flow of (M, g).
Equation (2) is therefore equivalent to

f (x, p) = f (exps(x, p)), (3)

for all s ∈ R such that the above expression is defined, where exps : TM → TM is
the exponential map defined by exps(x, p) = (γx,p(s), γ̇x,p(s)).

1 See Section 1.15 for a discussion of the relevant works.

123



9 Page 4 of 177 M. Taylor

In the case considered here, where the collisionless matter has zero mass, f is
supported on the mass shell

P := {(x, p) ∈ TM | p is null and future directed},

a hypersurface in TM. In this case one sees, by taking the trace of (1), that the scalar
curvature R must vanish for any solution of (1)–(2) and the Einstein equations reduce to

Ricμν = Tμν. (4)

The main result is the following.

Theorem 1.1 Given a smooth asymptotically flat initial data set for the massless
Einstein–Vlasov system suitably close to that of Minkowski Space such that the ini-
tial particle density function is compactly supported on the mass shell, the resulting
maximal development is geodesically complete and possesses a complete future null
infinity. Moreover the support of the matter is confined to the region between two
outgoing null hypersurfaces, and each of the Ricci coefficients, curvature components
and components of the energy momentum tensor with respect to a double null frame
decay towards null infinity with quantitative rates.

The proof of Theorem 1.1, after appealing to the corresponding result for the vac-
uum Einstein equations, quickly reduces to a semi-global problem. This reduction is
outlined below and the semi-global problem treated here is stated in Theorem 1.2.

Theorem 1.1 extends a result of Dafermos [12] which establishes the above under
the additional restricted assumption of spherical symmetry. Note also the result of
Rein–Rendall [29] which treats the massive case in spherical symmetry, where all of
the particles have massm > 0 (i.e. f is supported on the set of future pointing timelike
vectors p in TM such that g(p, p) = −m2). The main idea in [12] was to show, using
a bootstrap argument, that, for sufficiently late times, the matter is supported away
from the centre of spherical symmetry. By Birkhoff’s Theorem the centre is therefore
locally isometric to Minkowski space at these late times and the extension principle
of Dafermos–Rendall [14] (see also [15]) then guarantees that the spacetime will be
geodesically complete.

In these broad terms, a similar strategy is adopted here. The absence of good quan-
tities satisfying monotonicity properties which are available in spherical symmetry,
however, makes the process of controlling the support of the matter, and proving the
semi-global existence result for the region where it is supported, considerably more
involved. The use of Birkhoff’s Theorem and the Dafermos–Rendall extension prin-
ciple also have to be replaced by the much deeper result of the stability of Minkowski
space for the vacuum Einstein equations. The use of the vacuum stability result, which
is in fact appealed to in two separate places, is outlined below.

1.1 The Uncoupled Problem

It is useful to first recall what happens in the uncoupled problem of the Vlasov equation
on a fixed Minkowski background. Let v = 1

2 (t+r), u = 1
2 (t−r) denote standard null
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Fig. 1 The projection of the support of f in the uncoupled problem

coordinates on Minkowski space R
3+1 (these form a well defined coordinate system

on the quotient manifold R
3+1/SO(3) away from the centre of spherical symmetry

{r = 0}) and suppose f is a solution of the Vlasov equation (2) with respect to this
fixed background arising from initial data with compact support in space. From the
geometry of null geodesics in Minkowski space it is clear that the projection of the
support of f to the spacetime is related to the projection of the initial support of f as
depicted in the Penrose diagram in Figure 1.

In particular, for sufficiently late advanced time v0 the matter will be supported
away from the centre {r = 0}, and there exists a point q ∈ R

3+1/SO(3), lifting to a
(round) 2-sphere S ⊂ R

3+1, with r(q) > 0 such that

π(supp( f )) ∩ {v ≤ v0} ⊂ J−(S),

where J−(S) denotes the causal past of S and π : P → M denotes the natural
projection.

1.2 Initial Data and First Appeal to the Vacuum Result

Recall that initial data for the Einstein–Vlasov system (1)–(2) consists of a 3-manifold
� with a Riemannian metric g0, a symmetric (0, 2) tensor K and an initial particle
density function f0 satisfying the constraint equations,

div0K j − (dtr0K ) j = T0 j , R0 + (tr0K )2 − |K |2g0
= 2T00, (5)

for j = 1, 2, 3, where div0, tr0, R0 denote the divergence, trace and scalar curvature of
g0 respectively, and T00, T0 j denote (what will become) the 00 and 0 j components of
the energy momentum tensor. See [30] for a discussion of initial data for the Einstein–
Vlasov system. The topology of � will here be assumed to be that of R

3. The issue
of constructing solutions to the constraint equations (5) will not be treated here. A
theorem of Choquet-Bruhat [4] guarantees that, given such an initial data set, a solution
to (1)–(2) will exist locally in time.

The initial density function f0 is assumed to have compact support. It will moreover
be assumed that f0 and a finite number of its derivatives will be small initially. The
precise condition is given in Section 5. Note the assumption of compact support for
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9 Page 6 of 177 M. Taylor

f0 is in both the spatial variable x , and in the momentum variable p. As will become
evident, the compact support in space is used in a crucial way. The assumption of
compact support in momentum is made for simplicity and can likely be weakened.2

Let B ⊂ � be a simply connected compact set such that π(supp( f |P� )) ⊂ B,
where P� denotes the mass shell over �. By the domain of dependence property of the
Einstein–Vlasov system the development of the complement of B in �, D+(� � B),
will solve the vacuum Einstein equations,

Ricμν = 0. (6)

The stability of Minkowski space theorem for the vacuum Einstein equations then
guarantees the stability of this region. See Klainerman–Nicolò [21] where exactly
this situation is treated. In particular, provided g0, K satisfy a smallness condition3 in
� � B (i.e. they are suitably close to the g0, K of Minkowski space), there exists a
future complete, outgoing null hypersurface N in this region which can be foliated by
a family of 2-spheres, {Su0,v} parameterised by v, approaching the round 2-sphere as
v → ∞. Moreover the Ricci coefficients and curvature components of the spacetime
will decay to their corresponding Minkowski values and, by taking g0, K suitably
small, certain weighted quantities involving them can be made arbitrarily small onN . It
will be assumed that g0, K are sufficiently small so that the precise conditions stated in
Theorem 5.1 are satisfied onN . A second appeal to a form of the stability of Minkowski
space result in the vacuum (which can be shown to also follow from the Christodoulou–
Klainerman Theorem [10] using upcoming work) will be made in Section 1.4 below.

1.3 Cauchy Stability

By Cauchy stability for the Einstein–Vlasov system (see Choquet-Bruhat [4] or
Ringström [30]), Cauchy stability for the geodesic equations and the considerations of
Section 1.1, provided the initial data on � are taken sufficiently small, there exists a 2-
sphere S ⊂ M and an incoming null hypersurface N such that S ⊂ N , Area(S) > 0,
π(supp( f )) ∩ S = ∅, and

π(supp( f )) ∩ J−(N ) ⊂ J−(S).

In other words, the existence of the point q in the Penrose diagram of Figure 1 is
stable. It can moreover be assumed that the N above and N intersect in one of the
2-spheres of the foliation of N ,

N ∩ N = Su0,v0 ,

where v0 can be chosen arbitrarily large. The induced data on N can be taken to be
arbitrarily small, provided they are sufficiently small on �.

2 It is used in an important way in Section 8.6 but this can in fact easily be avoided.
3 The precise condition will not be discussed here. See [21].
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Fig. 2 The matter is supported in the shaded region and hence the spacetime will solve the vacuum Einstein
equations in the unshaded regions

1.4 A Second Version of the Main Theorem and Second Appeal to the Vacuum
Result

A more precise version of the main result can now be stated. A final version, Theorem
5.1, is stated in Section 5.

Theorem 1.2 Given characteristic initial data for the massless Einstein–Vlasov sys-
tem (1)–(2) on an outgoing null hypersurface N and an incoming null hypersurface
N as above4, intersecting in a 2-sphere Su0,v0 of the foliation of N , then, if v0 is
sufficiently large and the characteristic initial data are sufficiently small5, then there
exists a unique spacetime (M, g) endowed with a double null foliation (u, v) solv-
ing the characteristic initial value problem for (1)–(2) in the region v0 ≤ v < ∞,
u0 ≤ u ≤ u f , where N = {u = u0}, N = {v = v0}, and u f can be chosen large
so that f = 0 on the mass shell over any point x ∈ M such that u(x) ≥ u f − 1, i.e.
π(supp( f )) ⊂ J−({u = u f − 1}). Moreover each of the Ricci coefficients, curvature
components and components of the energy momentum tensor (with respect to a double
null frame) decay towards null infinity with quantitative rates.

This is depicted in Figure 2.
Theorem 1.1 follows from Theorem 1.2 by the considerations of Section 1.2, Section

1.3, and by another application of the vacuum stability of Minkowski space result
with the induced data on a hyperboloid contained between the null hypersurfaces
{u = u f } and {u = u f − 1}. The problem of stability of Minkowski space for the
vacuum Einstein equations (6) with hyperboloidal initial data was treated by Friedrich
[17], though his result requires the initial data to be asymptotically simple. This is,

4 So that, in particular, the particle density function f = 0 on the mass shell over N , and there exists a
2-sphere S ⊂ N such that supp( f ) in the mass shell over N is contained in the causal past, J−(S), of S.
5 i.e. certain weighted integrals of derivatives of metric components, Ricci coefficients and curvature
components, along with pointwise bounds on certain derivatives of f are small. The precise smallness
assumptions are given later in Section 5.
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Fig. 3 The bootstrap region

in general, inconsistent with the induced data arising from Theorem 1.2.6 Whilst a
proof of the hyperboloidal stability of Minkowski space problem with initial data
compatible with Theorem 1.2 can most likely be distilled from the work [10], there is
currently no precise statement to appeal to. In future work it will be shown how one
can alternatively appeal directly to [10] by extending the induced scattering data at
null infinity and solving backwards, in the style of [13].

A precise formulation of Theorem 1.1, including an explicit statement of the norms
used in the first appeal to the vacuum result in Section 1.2 and the Cauchy stability
argument of Section 1.3, will not be made here. The assumptions made in Theorem
5.1, the final version of Theorem 1.2, will be given some justification at various places
in the introduction however. The remainder of the paper will concern Theorem 1.2,
and in the remainder of the introduction its proof will be outlined. The greatest new
difficulty is in obtaining a priori control over derivatives of f . The approach taken
involves introducing the induced Sasaki metric on the mass shell P and estimating
certain Jacobi fields on P in terms of geometric quantities on the spacetime (M, g).
This approach is outlined in Section 1.14 below.

Note that the analogue of Theorem 1.2 for the vacuum Einstein equations (6) follows
from a recent result of Li–Zhu [25].

1.5 The Bootstrap Argument

The main step in the proof of Theorem 1.2 is in obtaining global a priori estimates for all
of the relevant quantities. Once they have been established there is a standard procedure
for obtaining global existence, which is outlined in Section 12. The remainder of the
discussion is therefore focused on obtaining the estimates.

Moreover, using a bootstrap argument, it suffices to show that if the estimates
already hold in a given bootstrap region of the form {u0 ≤ u ≤ u′} ∩ {v0 ≤ v ≤ v′},
depicted in Figure 3, then they can be recovered in this region with better constants

6 One could impose faster decay of the data on {u = u0} in Theorem 1.2 and hope to propagate this decay
so that the induced data on the hyperboloid is indeed sufficient for [17] to apply directly. We have chosen
not to do so here in view of [8], where Christodoulou shows that generic physically interesting spacetimes
are never asymptotically simple.

123



Stability of Minkowski Space for Massless Einstein... Page 9 of 177 9

independently of u′, v′. This is extremely useful given the strongly coupled nature of
the equations.

The better constants in the bootstrap argument arise from either estimating the
quantities by the initial data on {v = v0} and {u = u0} or by 1

v0
, and using the smallness

of the initial data and the largeness of v0. Recall that, in the setting of Theorem 1.1,
both the largeness of v0 and the smallness of the induced data on N = {u = u0}, N =
{v = v0} arise by taking the asymptotically flat Cauchy data on � to be suitably small.

1.6 The Double Null Gauge

The content of the Einstein equations is captured here through the structure equations
and the null Bianchi equations associated to the double null foliation (u, v). The
constant u and constant v hypersurfaces are outgoing and incoming null hypersurfaces
respectively, and intersect in spacelike 2-spheres which are denoted Su,v . This choice
of gauge is made due to its success in problems which require some form of the null
condition7 to be satisfied.8 See, for example, [7,9,13,21,27].

The foliation defines a double null frame (see Section 2.1) in which one can decom-
pose the Ricci coefficients, which satisfy so called null structure equations, the Weyl
(or conformal) curvature tensor, whose null decomposed components satisfy the null
Bianchi equations, and the energy momentum tensor (which, by the Einstein equations
(4), is equal to the Ricci curvature tensor).

It is the null structure and Bianchi equations which will be used, together with the
Vlasov equation (2), to estimate the solution. Following the notation of [13,27], the
null decomposed Ricci coefficients will be schematically denoted �. Two examples are
the outgoing shear χ̂ , which is a (0, 2) tensor on the spheres Su,v , and the renormalised
outgoing expansion trχ − 2

r , which is a function on the spacetime, renormalised using
the function r so that the corresponding quantity in Minkowski space will vanish.

The null decomposed components of the Weyl curvature tensor will be schemati-
cally denoted ψ and the null decomposed components of the energy momentum tensor
will be schematically denoted T . This schematic notation, together with the p-index
notation described in Section 1.8 below, will be used to convey structural properties
of the equations which are heavily exploited later.

1.7 The Schematic Form of the Equations

The null structure equations for the Ricci coefficients �, which are stated in Section
2.5, take the following schematic form,

7 See Section 1.8.
8 It is well known that the Einstein equations in the harmonic gauge do not satisfy the classical null condition
of [20]. Despite this fact, it has been shown by Lindblad–Rodnianski [26] that one can still prove stability
of Minkowski space for the vacuum Einstein equations in this gauge. One could therefore imagine adopting
a similar strategy to approach the current problem in the harmonic gauge. Note the recent work of Fajman–
Joudioux–Smulevici [16] on the development of a vector field method for relativistic transport equations,
which could play an important role in such an approach.
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/∇3� = 1

r
� + � · � + ψ + T , /∇4� = 1

r
� + � · � + ψ + T . (7)

Here /∇3 and /∇4 denote the projections of the covariant derivatives in the incoming
and outgoing null directions respectively to the spheres Su,v . The 1

r � terms appear
in the equations for the outgoing and incoming expansions trχ − 2

r , trχ + 2
r , which

are renormalised using the function r . Each � satisfies exactly one of the two form

of equations (7) and hence are further decomposed as
(3)

� or
(4)

� depending on whether
they satisfy an equation in the /∇3 or /∇4 direction respectively. It should be noted that
there are further null structure equations satisfied by the Ricci coefficients which take
different forms to (7), some of which will make an appearance later.

The Weyl curvature components ψ can be further decomposed into Bianchi pairs,
defined in Section 3.1, which are denoted (ψ,ψ′) (examples are (ψ,ψ′) = (α, β)

or (β, (ρ, σ ))). This notation is used to emphasise a special structure in the Bianchi
equations, which take the form,

/∇3ψ = /Dψψ′ + 1

r
� + � · ψ + � · T + ∇T , (8)

/∇4ψ
′ = /Dψ′ψ + 1

r
� + � · ψ + � · T + ∇T .

Here /D denote certain angular derivative operators on the spheres of intersection of
the double null foliation, and ∇T schematically denote projected covariant derivatives
of T in either the 3, 4 or angular directions.

The Ricci coefficients can be estimated using transport estimates for the null struc-
ture equations (7) since derivatives of � do not appear explicitly on the right hand
sides of the equations. The transport estimates are outlined below in Section 1.11 and
carried out in detail in Section 10. Note that using such estimates does, however, come
with a loss, namely the expected fact that angular derivatives of � live at the same level
of differentiability as curvature is not recovered. This fact can be recovered through
a well known elliptic procedure, which is outlined below in Section 1.12 and treated
in detail in Section 11. One cannot do the same for the curvature components and the
Bianchi equations (8) due to the presence of the /Dψ terms on the right hand sides. In
order to obtain “good” estimates for the Bianchi equations one must exploit the special
structure which, if S denotes one of the spheres of intersection of the null foliation,
takes the following form,

∫
S

/Dψψ′ · ψ = −
∫
S
ψ′ · /Dψ′ψ,

i.e. the adjoint of the operator /Dψ is − /Dψ′ . Using this structure, if one contracts
the /∇3ψ equation with ψ and adds the /∇4ψ

′ equation contracted with ψ′, the terms
involving the angular derivatives will cancel upon integration and an integration by
parts yields energy estimates for the Weyl curvature components. It is through this
procedure that the hyperbolicity of the Einstein equations manifests itself in the double
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null gauge. These energy estimates form the content of Section 9 and, again, are
outlined below in Section 1.10.

We are therefore forced (at least at the highest order) to estimate the curvature
components in L2. All of the estimates for the Ricci coefficients here will also be
L2 based. In order to deal with the nonlinearities in the error terms of the equations,
the same L2 estimates are obtained for higher order derivatives of the quantities and
Sobolev inequalities are used to obtain pointwise control over lower order terms. 9 To
do this, a set of differential operators D is introduced which satisfy the commutation
principle of [13]. This says that the “null condition” satisfied by the equations (which
is outlined below and crucial for the estimates) and the structure discussed above are
preserved when the equations are commuted by D, i.e. D� and Dψ satisfy similar
equations to � and ψ . The set of operators D is introduced in Section 3.3.

As they appear on the right hand side of the equations for ψ,�, the energy momen-
tum tensor components T are also, at the highest order, estimated in L2. These
estimates are obtained by first estimating f using the Vlasov equation. It is important
that the components of the energy momentum tensor, and hence also f , are estimated
at one degree of differentiability greater than the Weyl curvature components ψ . The
main difficulty in this work is in obtaining such estimates for the derivatives of f . See
Section 1.14 for an outline of the argument and Section 8 for the details.

1.8 The p-Index Notation and the Null Condition

The discussion in the previous section outlines how one can hope to close the estimates
for � and ψ from the point of view of regularity. Since global estimates are required, it
is also crucial that all of the error terms in the equations decay sufficiently fast in v (or
equivalently, since everything takes place in the “wave zone” where r := v − u + r0
is comparable to v, sufficiently fast in r ) so that, when they appear in the estimates,
they are globally integrable. For quasilinear wave equations there is an algebraic
condition on the nonlinearity, known as the null condition, which guarantees this [20].
By analogy, we say the null structure and Bianchi equations “satisfy the null condition”
to mean that, on the right hand sides of the equations, certain “bad” combinations of
the terms do not appear. There is an excellent discussion of this in the introduction of
[13]. As they are highly relevant, the main points are recalled here.

Following [13], the correct hierarchy of asymptotics in r for �, ψ and T is first
guessed. This guess is encoded in the p-index notation. Each �,ψ, T is labelled with a
subscript p to reflect the fact that r p|�p|, r p|ψp|, r p|Tp| are expected to be uniformly
bounded.10 Here | · | denotes the norm with respect to the induced metric on the 2-
spheres /g. The weighted L2 quantities which will be shown to be uniformly bounded
will imply, via Sobolev inequalities, that this will be the case at lower orders.

9 One could actually be sharper and, with slightly more effort, close the estimates with fewer derivatives
than are taken here.
10 It in fact may be the case that r p |�p | etc. can converge to 0 as r → ∞. The weights may therefore be
weaker than the actual decay rates in the solutions which are finally constructed.
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In Theorem 5.1, the precise formulation of Theorem 1.2, it is asymptotics consis-
tent with the p-index notation which will be assumed to hold on the initial outgoing
hypersurface N = {u = u0}. In the context of Theorem 1.1, recall the use of the
Klainerman–Nicolò [21] result in Section 1.2. The result of Klainerman–Nicolò guar-
antees that, provided the asymptotically flat Cauchy data on � has sufficient decay,
there indeed exists an outgoing null hypersurface in the development of the data on
which asymptotics consistent with the p-index notation hold.

1.9 Geometry of Null Geodesics and the Support of f

If the Ricci coefficients are assumed to have the asymptotics described in the previous
section then it is straightforward to show that u f can be chosen to have the desired prop-
erty that f = 0 on the mass shell over any point x ∈ M with u(x) ≥ u f − 1. In fact,
it can also be seen that the size of the support of f in Px , the mass shell over the point
x ∈ M, will decay as v(x) → ∞. This decay is important as it is used to obtain the
decay of the components of the energy momentum tensor. The argument for obtaining
the decay properties of supp( f ) is outlined here and presented in detail in Section 7.

The decay of the size of the support of f in Px can be seen by considering the
decay of components of certain null geodesics. Suppose first that γ is a future directed
null geodesic in Minkowski space emanating from a compact set in the hypersurface
{t = 0} such that the initial tangent vector γ̇ (0) is contained in a compact set in the
mass shell over {t = 0}. One can show that, if

γ̇ (s) = p4(s)e4 + p3(s)e3 + pA(s)eA,

where e1 = ∂θ1 , e2 = ∂θ2 , e3 = ∂u, e4 = ∂v is the standard double null frame in
Minkowski space, then the bounds,

p4 ≤ C, r2 p3 ≤ Cp4, r2|pA| ≤ Cp4, for A = 1, 2, (9)

hold uniformly along γ for some constant C .11

The bounds (9) will be assumed to hold in supp( f ) in the mass shell over the initial
hypersurface {v = v0} in Theorem 5.1, the precise formulation of Theorem 1.2. In
the setting of Theorem 1.1, the bounds (9) can be taken to hold on the hypersurface
N = {v = v0} in view of the Cauchy stability argument of Section 1.3 and the fact

11 One sees these are the correct asymptotics for p1(s), p2(s) by using the three angular momentum Killing
vector fields of Minkowski space �1, �2, �3 and the fact that, if K is a Killing vector, g(γ̇ , K ) is constant
along γ , to see that the angular momentum of the geodesic,

r2
/gAB pA pB =

3∑
i=1

(g(γ̇ , �i ))
2 ,

is conserved along γ . This fact together with the mass shell relation 4p3 p4 = /gAB pA pB and the fact that

p4 does not decay along a null geodesic (which can be seen in Minkowski space by looking at the geodesic
equations and noting that ṗ4(s) ≥ 0) gives the required asymptotics for p3.
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that they hold globally in supp( f ) for the uncoupled problem of the Vlasov equation
on a fixed Minkowski background.

The idea is now to propagate the bounds (9) from the initial hypersurface {v = v0}
into the rest of the spacetime. If e1, . . . , e4 now denotes the double null frame of
(M, g) (defined in Section 2.1), one then uses the geodesic equations,

ṗμ(s) + pα(s)pβ(s)�μ
αβ(s) = 0,

for a null geodesic γ with γ̇ (s) = pμ(s)eμ|γ (s), a bootstrap argument and the point-
wise bounds r p|�p| ≤ C to see that

ṗ4(s) = O
(
p4(0)2

r(s)2

)
,

d

ds

(
r(s)2 p3(s)

)
= O

(
p4(0)2

r(s)2

)
,

d

ds

(
r(s)2 pA(s)

)
= O

(
p4(0)2

r(s)2

)
, for A = 1, 2.

The estimates (9) follow by integrating along γ since dr
ds ∼ p4(0).

Finally, to show the retarded time u f can be chosen as desired, let u(s) denote the
u coordinate of the geodesic γ at time s. Then

|u̇(s)| ∼ p3(s) ∼ p4(0)

r(s)2 ,

and hence |u(s) − u(0)| ≤ C for all s ∈ [0,∞), for some constant C .

1.10 Global Energy Estimates for the Curvature Components

The global energy estimates for the Weyl curvature components can now be outlined.
They are carried out in detail in Section 9. The Bianchi equations take the schematic
form,

/∇3ψp = /Dψpψ
′
p′ + Ep, /∇4ψ

′
p′ = /Dψ′

p′
ψp + ctrχψ′

p′ + Ep′+ 3
2
, (10)

where c is a constant (which is different for the different ψ′
p′ ) and Ep is an error which

will decay, according to the p notation, like 1
r p . Similarly, Ep′+ 3

2
is an error which

will decay like 1

r p
′+ 3

2
. Recall from equation (8) that the errors Ep and Ep′+ 3

2
contain

linear terms involving �, nonlinear terms of the form � · ψ and � · T , and projected
covariant derivatives of components of the energy momentum tensor ∇T . Using (10)

to compute Div
(
rw|ψp|2e3

)
, Div

(
rw|ψ′

p′ |2e4

)
, after summing a cancellation will

occur in the terms involving angular derivatives, as discussed in Section 1.7, and they
can be rewritten as a spherical divergence. If the weight w is chosen correctly, a can-
cellation12 also occurs in the ctrχψ′

p′ term (which, since trχ looks like 2
r to leading

order, cannot be included in the error Ep′+ 3
2
) and one is then left with,

12 This cancellation is exploited for each Bianchi pair except (ψ, ψ′) = (α, β), for which a slightly weaker
weight is chosen. See Remark 9.2.
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∫
B
Div

(
rw|ψp|2e3

)
+ Div

(
rw|ψ′

p′ |2e4

)
=
∫
B
rw
(
ψp · Ep + ψ′

p′ · Ep′+ 3
2

)
,

(11)
where Div denotes the spacetime divergence and B denotes a spacetime “bulk” region
bounded to the past by the initial characteristic hypersurfaces, and to the future by
constant v and constant u hypersurfaces. See Figure 3. Note that this procedure will
generate additional error terms but they can be treated similarly to those arising from
the errors in (10) and hence are omitted here. See Section 9 for the details.

If the curvature fluxes are defined as,

F1
v0,v′(u′) =

∑
ψp

∫
{u=u′}∩{v0≤v≤v′}

r
w(ψp,ψ

′
p′ )|ψp|2,

F2
u0,u′(v′) =

∑
ψ′

p′

∫
{v=v′}∩{u0≤u≤u′}

r
w(ψp,ψ

′
p′ )|ψ′

p′ |2,

then by the divergence theorem, when the above identity (11) is summed over all
Bianchi pairs (ψp,ψ

′
p′), the left hand side becomes

F1
v0,v

(u) + F2
u0,u(v) − F1

v0,v
(u0) − F2

u0,u(v0).

Due to the relation between the weights w(ψp,ψ
′
p′) and p, p′, and the bounds assumed

for � and T through the bootstrap argument, the right hand side of (11) can be
controlled by,

∫ u

u0

F1
v0,v

(u′)du′ + C

v0
,

for some constant C (which, of course, arises from inserting the bootstrap assump-
tions). It is this step where one sees the manifestation of the null condition in the
Bianchi equations. Dropping the F2

u0,u(v) term on the left yields,

F1
v0,v

(u) ≤ F1
v0,v

(u0) + F2
u0,u(v0) +

∫ u

u0

F1
v0,v

(u′)du′ + C

v0
,

and hence, by the Grönwall inequality, F1
v0,v

(u) can be controlled by initial data and

the term C
v0

. Returning to the inequality,

F1
v0,v

(u) + F2
u0,u(v) ≤ F1

v0,v
(u0) + F2

u0,u(v0) +
∫ u

u0

F1
v0,v

(u′)du′ + C

v0
,

and inserting the above bounds for F1
v0,v

(u), F2
u0,u(v) can now also be similarly con-

trolled.
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1.11 Global Transport Estimates for the Ricci Coefficients

Turning now to the global estimates for the Ricci coefficients, which are treated in
detail in Section 10, in the p-index notation the null structure equations take the form,

/∇3
(3)

� p = Ep, /∇4
(4)

� p = − p

2
trχ

(4)

� p + Ep+2,

where again Ep is an error which decays, according to the p-index notation, like 1
r p

and Ep+2 decays like 1
r p+2 . Recall from equation (7) that Ep and Ep+2 contain linear

terms involving �,ψ, T , and quadratic terms of the form � · �. The /∇4
(4)

� p equations
can be rewritten as

/∇4

(
r p

(4)

� p

)
= r pEp+2.

To estimate the
(4)

� one then uses the identity, for a function h on M,

∂v

∫
Su,v

hdμS =
∫
Su,v

/∇4h + trχhdμS,

where the trχh term comes from the derivative of the volume form on Su,v , with

h = r2p−2|(4)

� p|2. The r−2 factor serves to cancel the trχ term (which, recall, behaves
like 2

r and so is not globally integrable in v). Hence,

∂v

∫
Su,v

r2p−2|(4)

� p|2dμS =
∫
Su,v

r2p−2
(4)

� p · Ep+2dμS

= O
(

1

r2

)
,

since the volume form is of order r2. Integrating in v from the initial hypersurface
{v = v0} then gives,

r2p−2
∫
Su,v

|(4)

� p|2dμS ≤ C

(
r2p−2

∫
Su,v

|(4)

� p|2dμS

) ∣∣∣∣
v=v0

+ C

v0
. (12)

Note that the error Ep+2 is integrated over a u = constant hypersurface. These are
exactly the regions on which the integrals of the Weyl curvature components were
controlled in Section 1.10, and it is for this reason the curvature terms in the error
Ep+2 can be controlled in (12).

Since the volume form is of order r2, the bound (12) is consistent with
(4)

� p decaying

like 1
r p and, after repeating the above with appropriate derivatives of

(4)

� p, this pointwise
decay can be obtained using Sobolev inequalities on the spheres.
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It is not a coincidence that the p
2 coefficient of trχ

(4)

� p in the /∇4
(4)

� p equation is

exactly that which is required to obtain 1
r p decay for

(4)

� p. In fact some of the
(4)

� p will
decay faster than this but the other null structure equations are required, along with
elliptic estimates, to obtain this. It is therefore the p

2 coefficient which determines

the p index given here to the
(4)

� as it restricts the decay which can be shown to hold

using only the /∇4
(4)

� equations. Note the difference with [13] where the authors are not
constrained by this coefficient as they there integrate “backwards” from future null
infinity.

Turning now to the equations in the 3 direction, the
(3)

� p quantities are estimated
using the identity,

∂u

∫
Su,v

hdμS =
∫
Su,v

/∇3h + trχhdμS,

with h = r2p−2|(3)

� p|2. It does not now matter that trχ only decays like 1
r since the

integration in u will only be up to the finite value u f .

Suppose first that
(3)

� p satisfies

/∇3
(3)

� p = Ep+1 + E0
p, (13)

where Ep+1 decays like 1
r p+1 and E0

p decays like 1
r p but only contains Weyl curvature,

energy momentum tensor and
(4)

� terms which have already been estimated (the energy
momentum tensor estimates are outlined below as they present the greatest difficulty
but in the logic of the proof are estimated first). Then,

∣∣∣∣∣∂u
∫
Su,v

r2p−2|(3)

� p|2dμS

∣∣∣∣∣ ≤
∫
Su,v

r2p−2
(

|(3)

� p|2 + |Ep+1|2 + |E0
p|2
)
dμS .

Integrating from u0 to u and inserting the bootstrap assumptions and the previously
obtained bounds for E0

p, the Grönwall inequality then gives,

∫
Su,v

r2p−2|(3)

� p|2dμS ≤
(∫

Su,v

r2p−2|(3)

� p|2dμS

) ∣∣∣∣
u=u0

+ C

v0
+ C

∫ u f

u0

r2p|E0
p|2du′

≤ C

(
ε0 + 1

v0

)
,

where ε0 controls the size of the initial data. Note that it was important that the only
error terms which have not already been estimated are of the form Ep+1, and not Ep, in
order to gain the 1

v0
smallness factor. It turns out that there is a reductive structure in the
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null structure equations so that, provided they are estimated in the correct order, each
(3)

� satisfies an equation of the form (13) where E0
p now also contains

(3)

� terms which

have been estimated previously. Hence all of the
(3)

� can be estimated with smallness
factors.

1.12 Elliptic Estimates and Ricci Coefficients at the Top Order

The procedure in Section 1.11 is used to estimate the Ricci coefficients, along with
their derivatives at all but the top order, in L2 of the spheres of intersection of constant
u and constant v hypersurfaces. The derivatives of Ricci coefficients at the top order
are estimated only in L2 on null hypersurfaces. These estimates are obtained using
elliptic equations on the spheres for some of the Ricci coefficients, coupled to transport
equations for certain auxilliary quantities. This procedure is familiar from many other
works (e.g. [9,10]) and forms the content of Section 11. It should be noted that these
estimates are only required here for estimating the components of the energy momen-
tum tensor. If one were to restrict the semi-global problem of Theorem 1.2 to the case
of the vacuum Einstein equations (6) then the estimates for the Ricci coefficients and
curvature components could be closed with a loss (i.e. without knowing that angular
derivatives of Ricci coefficients lie at the same degree of differentiability as the Weyl
curvature components) as only the null structure equations of the form (7) would be
used, and these elliptic estimates would not be required. See Section 1.7.

1.13 Global Estimates for the Energy Momentum Tensor Components

At the zeroth order the estimates for the energy momentum tensor components follow
directly from the bounds (9), which show that the size of the region supp( f |Px ) ⊂ Px
on which the integral in (1) is taken is decaying as r(x) → ∞, and the fact that f
is conserved along trajectories of the geodesic flow. For example, using the volume
form for Px defined in Section 2.2, if sup{v=v0} | f | ≤ ε0,

T33(x) = 4T 44(x) ≤ 4ε0

∫ C

0

∫
|p1|,|p2|≤ C

r2

p4
√

det /g(x)dp1dp2dp4 ≤ Cε0

r2 ,

since
√

det /g ≤ Cr2. In fact, provided the derivatives of f can be estimated, the
estimates for the derivatives of T are obtained in exactly the same way.

1.14 Global Estimates for Derivatives of f

A fundamental new aspect of this work arises in obtaining estimates for the derivatives
of f . Recall from Section 1.7 that, in order to close the bootstrap argument, it is
crucial that the energy momentum tensor components T , and hence f , are estimated
at one degree of differentiability greater than the Weyl curvature components, i.e.

123



9 Page 18 of 177 M. Taylor

k derivatives of f must be estimated using only k − 1 derivatives of ψ . Written in
components with respect to the frame13 e1, e2, e3, e4, ∂p1 , ∂p2 , ∂p4 for P , the Vlasov
equation (2) takes the form,

X ( f ) = pμeμ( f ) − pν pλ�
μ
νλ∂pμ f = 0,

where �
μ
νλ denote the Ricci coefficients of M. See (24)–(28) below. One way to

estimate derivatives of f is to commute this equation with suitable vector fields and
integrate along trajectories of the geodesic flow. If V denotes such a vector field,
commuting will give,

X (V f ) = E,

where E is an error involving terms of the form V (�
μ
νλ). At first glance this seems

promising as derivatives of the Ricci coefficients should live at the same level of
differentiability as the Weyl curvature components ψ . This is not the case for all of
the �

μ
νλ however, for example if V involves an angular derivative then V (�B

4A), for
A, B = 1, 2, will contain two angular derivatives of the vector field b. See (17) below
for the definition of b and (26) for �B

4A. The vector field b is estimated through an
equation of the form,

/∇3b = � + � · b,

and hence, commuting twice with angular derivatives and using the elliptic estimates
described in Section 1.12 will only give estimates for two angular derivatives of b by
first order derivatives of ψ and T . The angular derivatives of the spherical Christoffel
symbols /�, see (22) below, which also appear when commuting the Vlasov equation
give rise to similar issues.

Whilst it may still be the case that E as a whole (rather than each of its individual
terms) can be estimated just at the level of ψ , a different approach is taken here in
order to see more directly that derivatives of f can be estimated at the level of ψ . This
approach, which is treated in detail in Section 8, is outlined now.

Consider again a vector V ∈ T(x,p)P . Recall the form of the Vlasov equation (3).
Using this expression for f and the chain rule,

V f (x, p) = d f |(x,p)V = d f |exps (x,p) · d exps |(x,p)V,

for any s, and hence, if J (s) := d exps |(x,p)V ,

V f (x, p) = J (s) f (exps(x, p)). (14)

13 Recall e1, e2, e3, e4 is the double null frame for M, defined in Section 2.1 using the (u, v, θ1, θ2)

coordinate system on M. Note the slight abuse of notation here as e1, e2, e3, e4 act only on functions on
M, whilst f is a function on P . As e1 = ∂θ1 in the (u, v, θ1, θ2) coordinate system, e1 f is used to denote

∂θ1 f in the (u, v, θ1, θ2, p1, p2, p4) coordinate system for P . Similarly for e2 f, e3 f, e4 f .
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If s < 0 is taken so that π(exps(x, p)) ∈ {v = v0} then the expression (14) relates a
derivative of f at (x, p) to a derivative of f on the initial hypersurface. It therefore
remains to estimate the components of J (s), with respect to a suitable frame for P ,
uniformly in s and independently of the point (x, p).

The metric g on the spacetime M can be used to define a metric on the tangent
bundle TM, known as the Sasaki metric [33], which by restriction defines a metric ĝ
on the mass shell P . See Section 4 where this metric is introduced. With respect to this
metric trajectories of the geodesic flow s → exps(x, p) are geodesics in P and, for
any vector V ∈ T(x,p)P , J (s) := d exps |(x,p)V is a Jacobi field along this geodesic
(see Section 4). Therefore J (s) satisfies the Jacobi equation,

∇̂X ∇̂X J = R̂(X, J )X, (15)

where ∇̂ denotes the induced connection on P , and R̂ denotes the curvature tensor
of (P, ĝ). Equation (15) is used, as a transport equation along the trajectories of
the geodesic flow, to estimate the components of J . The curvature tensor R̂ can be
expressed in terms of (vertical and horizontal lifts of) the curvature tensor R of (M, g)
along with its first order covariant derivatives ∇R. See equation (90). At first glance
the presence of ∇R again appears to be bad. On closer inspection, however, the terms
involving covariant derivatives of R are always derivatives in the “correct” direction
so that they can be recovered by the transport estimates, and the components of J , and
hence V f , can be estimated at the level of ψ .

The above observations of course only explain how one can hope to close the
estimates for T from the point of view of regularity. In order to obtain global estimates
for the components of J one has to use the crucial fact that, according to the p-index
notation, the right hand side of the Jacobi equation R̂(X, J )X , when written in terms of
ψ, T , p1, p2, p3, p4, decays sufficiently fast as to be twice globally integrable along
s → exps(x, p). This can be viewed as a null condition for the Jacobi equation and is
brought to light through further schematic notation introduced in Section 8.2.

The fact that the right hand side of (15) has sufficient decay in r is perhaps not
surprising. Consider for example the term

Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
, (16)

in R̂(X, J )X . Here γ is a geodesic in M such that exps(x, p) = (γ (s), γ̇ (s)) and Jh

is a vector field along γ on M such that, together with another vector field J v along
γ ,

J(γ,γ̇ ) = Hor(γ,γ̇ )(J
h) + Ver(γ,γ̇ )(J

v),

with Hor(γ,γ̇ ) and Ver(γ,γ̇ ) denoting horizontal and vertical lifts at (γ, γ̇ ) (defined in
Section 4). The slowest decaying ψ and T are those which contain the most e3 vectors.
Whenever such ψ and T arise in (16) however, they will typically be accompanied by
p3(s), the e3 component of γ̇ (s), which (recall from Section 1.9) has fast 1

r(s)2 decay.

Similarly the non-decaying p4(s), the e4 component of γ̇ (s), can only appear in (16)
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accompanied by the ψ and T which contain e4 vectors and hence have fast decay in
r . In particular, potentially slowly decaying terms involving p4(s) multiplying the ψ

and T which contain no e4 vectors do not arise in (16).
Finally, since J f now itself is also conserved along s → exps(x, p), second order

derivatives of f can be obtained by repeating the above. If J1, J2 denote Jacobi fields
corresponding to vectors V1, V2 at (x, p) respectively, then,

V2V1 f (x, p) = J2(s)J1(s) f (exps(x, p)).

In order to control V2V1 f (x, p) it is therefore necessary to estimate the J2 derivatives
of the components of J1 along s → exps(x, p). This is done by commuting the Jacobi
equation (15) and showing that the important structure described above is preserved.
The Jacobi fields which are used, and hence the vectors V used to take derivatives of
f , have to be carefully chosen. They are defined in Section 8.3.

Note that this procedure can be repeated to obtain higher order derivatives of f .
Whilst the pointwise bounds on ψ at lower orders mean that lower order derivatives
of f can be estimated pointwise, at higher orders this procedure will generate terms
involving higher order derivatives of ψ and hence higher order derivatives of T must
be estimated in L2 on null hypersurfaces. In fact, at the very top order, T is estimated
in the spacetime L2 norm.

1.15 Related Previous Stability Results in General Relativity

There are several related previous works on the stability of Minkowski space for
the Einstein equations coupled to various matter models. Without simplifying sym-
metry assumptions, the first such work was that of Christodoulou–Klainerman [10].
They show that, given an initial data set for the vacuum Einstein equations, satisfy-
ing an appropriate asymptotic flatness condition, which is sufficiently close to that of
Minkowski space, the resulting maximal development is geodesically complete, pos-
sesses a complete future null infinity, and asymptotically approaches Minkowski space
with quantitative rates. The result, more fundamentally, provided the first examples of
smooth, geodesically complete, asymptotically flat solutions to the vacuum Einstein
equations, other than Minkowski space itself. The existence of such spacetimes if far
from trivial. The proof relies on foliating the spacetimes they construct by the level sets
of a so called maximal time function, along with another, null, foliation by the level
sets an optical function. Detailed behaviour of the solutions are obtained, along with
various applications including a rigorous derivation of the Bondi mass loss formula.

The proof of Christodoulou–Klainerman was generalised by Zipser [36], who
showed that the analogue of their theorem holds for electromagnetic matter described
by the Maxwell equations. The proof of this generalisation again relies on foliating
the spacetimes by the level hypersurfaces of a maximal time and optical function.

The Christodoulou–Klainerman proof was later revisited by Klainerman–Nicolò
[21] who showed the stability of the domain of dependence of the complement of a ball
in a standard spacelike hypersurface in Minkowski space. Their smallness condition on
initial data is similar to that of Christodoulou–Klainerman, however the Klainerman–
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Nicolò proof is based on a double null foliation, defined as the level hypersurfaces of
two, outgoing and incoming, optical functions. The proof of Theorem 1.2 in this work
is based on a similar approach and moreover, since the Klainerman–Nicolò result is
appealed to in its proof, the smallness condition required in Theorem 1.1 is similar to
that of [21]. See Section 1.2.

A new proof of the stability of Minkowski space for the vacuum Einstein equa-
tions using the harmonic gauge, the gauge originally used by Choquet-Bruhat [3] to
prove local existence for the vacuum Einstein equations, was developed by Lindblad–
Rodnianski [26]. Their proof essentially reduces to a small data global existence proof
for a system of quasilinear wave equations and, despite the equations failing to satisfy
the classical null condition of Klainerman [20], is relatively technically simple. The
proof moreover requires a weaker asymptotic flatness condition on the data, compared
to [10], and also allows for coupling to matter described by a massless scalar field.
The asymptotic behaviour obtained for the solutions is less precise, however, than in
[10].

The Christodoulou–Klainerman proof was returned to again by Bieri [2], who
imposes a weaker asymptotic flatness condition on the initial data, in terms of decay,
and is able to close the proof using fewer derivatives of the solution than [10]. The
proof again, as in [10], is based on a maximal–null foliation of the spacetimes.

The stability of Minkowski space problem for the Einstein–Maxwell system, as
studied by Zipser, was returned to by Loizelet [24], this time using the harmonic
gauge approach of Lindblad–Rodnianski. The harmonic gauge approach was also
used by Speck [34], who considers the Einstein equations coupled to a large class
of electromagnetic equations, which are derivable from a Lagrangian and reduce to
the Maxwell equations in an appropriate limit. A recent result of LeFloch–Ma [23]
on the problem for the Einstein–Klein–Gordon system also uses the harmonic gauge
approach (see also [35]).

Finally, there are more global stability results for the Einstein equations with a
positive cosmological constant, for example the works of Friedrich [17], Ringström
[30] and Rodnianski–Speck [31]. A more comprehensive list can be found in the
introduction to the work of Hadz̆ić–Speck [19].

1.16 Outline of the Paper

In the next section coordinates are defined on the spacetime to be constructed, and
on the mass shell P . The Ricci coefficients and curvature components are introduced
along with their governing equations. In Section 3 the schematic form of the quantities
and equations are given. Three derivative operators are then introduced which are
shown to preserve the schematic form of the equations under commutation. Some
facts about the Sasaki metric are recalled in Section 4 and are used to describe certain
geometric properties of the mass shell. A precise statement of Theorem 1.2 is given in
Section 5, along with the statement of a bootstrap theorem. The proof of the bootstrap
theorem is given in the following sections. The main estimates are obtained for the
energy momentum tensor components, Weyl curvature components and lower order
derivatives of Ricci coefficients in Sections 8, 9 and 10 respectively. The estimates for
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the Ricci coefficients at the top order are obtained in Section 11. The results of these
sections rely on the Sobolev inequalities of Section 6, and the decay estimates for the
size of supp( f |Px ) ⊂ Px as x approaches null infinity from Section 7. The fact that
the retarded time u f can be chosen to have the desired property, stated in Theorem
1.2, is also established in Section 7. Finally, the completion of the proof of Theorem
1.2, through a last slice argument, is outlined in Section 12.

2 Basic Setup

Throughout this section consider a smooth spacetime (M, g) where M = [u0, u′] ×
[v0, v

′) × S2, for some u0 < u′ ≤ u f , v0 < v′ ≤ ∞, is a manifold with corners and
g is a smooth Lorentzian metric on M such that (M, g), together with a continuous
function f : P → [0,∞), smooth on P�Z , where Z denotes the zero section, satisfy
the Einstein–Vlasov system (1)–(2).

2.1 Coordinates and Frames

A point in M will be denoted (u, v, θ1, θ2). It is implicitly understood that two
coordinate charts are required on S2. The charts will be defined below using two
coordinate charts on Su0,v0 = {u = u0} ∩ {v = v0}. Assume u and v satisfy the
Eikonal equation

gμν∂μu∂νu = 0, gμν∂μv∂νv = 0.

Following [9,21], define null vector fields

Lμ := −2gμν∂νu, Lμ := −2gμν∂νv,

and the function � by

2�−2 = −g(L , L).

Let (θ1, θ2) be a coordinate system in some open set U1 on the initial sphere Su0,v0 .
These functions can be extended to define a coordinate system (u, v, θ1, θ2) on an
open subset of the spacetime as follows. Define θ1, θ2 on {u = u0} by solving

L(θ A) = 0, for A = 1, 2.

Then extend to u > u0 by solving

L(θ A) = 0, for A = 1, 2.

This defines coordinates (u, v, θ1, θ2) on the region D(U1) defined to be the image
of U1 under the diffeomorphisms generated by L on {u = u0}, then by the diffeo-
morphisms generated by L . Coordinates can be defined on another open subset of the
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spacetime by considering coordinates in another region U2 ⊂ Su0,v0 and repeating the
procedure. These two coordinate charts will cover the entire region of the spacetime in
question provided the chartsU1,U2 cover Su0,v0 . The choice of coordinates onU1,U2
is otherwise arbitrary.

The spheres of constant u and v will be denoted Su,v and the restriction of g to
these spheres will be denoted /g. A vector field V on M will be called an Su,v vector
field if Vx ∈ Tx Su(x),v(x) for all x ∈ M. Similarly for (r, 0) tensors. A one form ξ

is called an Su,v one form if ξ(L) = ξ(L) = 0. Similarly for (0, s), and for general
(r, s) tensors.

In these coordinates the metric takes the form

g = −2�2(du ⊗ dv + dv ⊗ du) + /gAB(dθ A − bAdv) ⊗ (dθ B − bBdv), (17)

where b is a vector field tangent to the spheres Su,v , which vanishes on the initial
hypersurface {u = u0}. Note that, due to the remaining gauge freedom, � can be
specified on {u = u0} and {v = v0}. Since, in Theorem 5.1, it is assumed that∣∣∣ 1
�2 − 1

∣∣∣ and r3| /∇4 log �| are small on {u = u0}, it is convenient to set � = 1 on

{u = u0} so that they both vanish.
Integration of a function φ on Su,v is defined as∫

Su,v

φdμSu,v =
∑
i=1,2

∫
θ1

∫
θ2

φτi
√

det /gdθ2dθ1,

where τ1, τ2 is a partition of unity subordinate to DU1 , DU2 at u, v.
Define the double null frame

eA = ∂θ A , for A = 1, 2, e3 = 1

�2 ∂u, e4 = ∂v + bA∂θ A , (18)

and let (pμ;μ = 1, 2, 3, 4), denote coordinates on each tangent space toM conjugate
to this frame, so that the coordinates (xμ, pμ) denote the point

pμeμ|x ∈ TxM,

where x = (xμ). This then gives a frame, {eμ, ∂pμ | μ = 1, 2, 3, 4}, on TM. The
Vlasov equation (2) written with respect to this frame takes the form

pμeμ( f ) − �
μ
νλ p

ν pλ∂pμ f = 0,

where �
μ
νλ are the Ricci coefficients of g with respect to the null frame (18). For f as

a function on the mass shell P , this reduces to,

pμeμ( f ) − �
μ̂
νλ p

ν pλ∂pμ̂ f = 0,

where μ̂ now runs over 1, 2, 4, and p1, p2, p4 denote the restriction of the coordinates
p1, p2, p4 to P , and ∂pμ̂ denote the partial derivatives with respect to this restricted
coordinate system. Using the mass shell relation (21) below one can easily check,
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∂p1 = ∂p1 + /g1A p
A

2p4 ∂p3 , ∂p2 = ∂p2 + /g2A p
A

2p4 ∂p3 , ∂p4 = ∂p1 − p3

p4 ∂p3 .

(19)

Note that Greek indices, μ, ν, λ, etc. will always be used to sum over the values
1, 2, 3, 4, whilst capital Latin indices, A, B,C , etc. will be used to denote sums over
only the spherical directions 1, 2. In Section 8 lower case latin indices i, j, k, etc. will
be used to denote summations over the values 1, . . . , 7.

Remark 2.1 A seemingly more natural null frame to use on M would be

eA = ∂θ A , for A = 1, 2, e3 = 1

�
∂u, e4 = 1

�

(
∂v + bA∂θ A

)
. (20)

Dafermos–Holzegel–Rodnianski [13] use the same “unnatural” frame for regularity
issues on the event horizon. The reason for the choice here is slightly different and is
related to the fact that ω, defined below, is zero in this frame.

2.2 Null Geodesics and the Mass Shell

Recall that the mass shell P ⊂ TM is defined to be the set of future pointing null
vectors. Using the definition of the coordinates pμ and the form of the metric given in
the previous section one sees that, since all of the particles have zero mass, i.e. since
f is supported on P , the relation

−4p3 p4 + /gAB p
A pB = 0, (21)

is true in the support of f . The identity (21) is known as the mass shell relation.
The mass shell P is a 7 dimensional hypersurface in TM and can be parameterised

by coordinates (u, v, θ1, θ2, p1, p2, p4), with p3 defined by (21).
To make sense of the integral in the definition of the energy momentum tensor (1)

one needs to define a suitable volume form on the mass shell, Px , over each point
x ∈ M ∩ {u ≤ u f }. Since Px is a null hypersurface it is not immediately clear how
to do this. Given such an x , the metric on M defines a metric on TxM,

−4dp3dp4 + /gAB(x)dpAdpB ,

which in turn defines a volume form on TxM,

2
√

det /gdp3 ∧ dp4 ∧ dp1 ∧ dp2.

A canonical one-form normal to Px can be defined as the differential of the function
�X : TxM → R which measures the length of X ∈ TxM,

�x (X) := g(X, X).
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Taking the normal − 1
2d�x to Px , the volume form (in the (u, v, θ1, θ2, p1, p2, p4)

coordinate system) can be defined as√
det /g

p4 dp4 ∧ dp1 ∧ dp2.

This is the unique volume form on Px compatiblewith the normal − 1
2d�x in the sense

that

−1

2
d�x ∧

(√
det /g

p4 dp4 ∧ dp1 ∧ dp2

)
= 2

√
det /gdp3 ∧ dp4 ∧ dp1 ∧ dp2,

and if ξ is another 3-form on Px such that

−1

2
d�x ∧ ξ = 2

√
det /gdp3 ∧ dp4 ∧ dp1 ∧ dp2,

then

ξ =
√

det /g

p4 dp4 ∧ dp1 ∧ dp2 on Px .

See Section 5.6 of [32].
The energy momentum tensor at x ∈ M therefore takes the form

Tμν(x) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
f pμ pν

1

p4

√
det /gdp4dp1dp2.

2.3 Ricci Coefficients and Curvature Components

Following the notation of [9] (see also [10,21]), define the Ricci coefficients

χAB = g(∇eAe4, eB), χ
AB

= g(∇eAe3, eB),

ηA = − 1
2g(∇e3eA, e4), η

A
= − 1

2g(∇e4eA, e3),

ω = 1
2g(∇e4e3, e4).

The null second fundamental forms χ, χ are decomposed into their trace and trace
free parts

trχ = /gABχAB, χ̂AB = χAB − 1

2
trχ/gAB,

trχ = /gABχ
AB

, χ̂
AB

= χ
AB

− 1

2
trχ/gAB .

Note that due to the choice of frame, since e3 is an affine geodesic vector field,
ω := 1

2g(∇e3e4, e3) = 0. Also note that in this frame ζA := 1
2g(∇eAe4, e3) = −η

A
.

The Christoffel symbols of (Su,v, /g) with respect to the frame e1, e2 are denoted /�
C
AB ,
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/∇eAeB = /�
C
ABeC . (22)

Define also the null Weyl curvature components

αAB = W (eA, e4, eB, e4), αAB = W (eA, e3, eB , e3),

βA = 1
2W (eA, e4, e3, e4), β

A
= 1

2W (eA, e3, e3, e4),

ρ = 1
4W (e4, e3, e4, e3), σ = 1

4
∗W (e4, e3, e4, e3).

Here14

Wαβγ δ = Rαβγ δ − 1

2
(gαγ Ricβδ + gβδRicαγ − gβγ Ricαδ − gαδRicβγ ), (23)

is the Weyl, or conformal, curvature tensor of (M, g) and ∗W denotes the hodge dual
of W ,

∗Wαβγ δ = 1

2
εαβμνW

μν
γ δ,

where ε is the spacetime volume form of (M, g).
Define the Su,v (0,2)-tensor /T to be the restriction of the energy momentum tensor

defined in equation (1) to vector fields tangent to the spheres Su,v:

/T (Y, Z) := Y AZ B
∫
Px

f pA pB, for Y = Y AeA, Z = Z AeA.

Similarly let /T 3, /T 4 denote the Su,v 1-forms defined by restricting the 1-forms
T (e3, ·), T (e4, ·) to vector fields tangent to the spheres Su,v:

/T 3(Y ) = Y A
∫
Px

f p3 pA, /T 4(Y ) = Y A
∫
Px

f p4 pA.

Finally, let /T 33, /T 44, /T 34 denote the functions

/T 33 =
∫
Px

f p3 p3, /T 44 =
∫
Px

f p4 p4, /T 34 =
∫
Px

f p3 p4.

2.4 The Minkowski Values

For the purpose of renormalising the null structure and Bianchi equations, define the
followingMinkowski values of the metric quantities using the function r := v−u+r0,
with r0 > 0 a constant chosen to make sure r ≥ infu Area(Su,v0),

14 Recall that the scalar curvature R vanishes for solutions of the massless Einstein–Vlasov system.
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�2◦ = 1, /g◦ = r2γ, b◦ = 0,

where γ is the round metric on the unit sphere. Similarly, define

trχ◦ = 2

r
, trχ◦ = −2

r
,

and let /�
◦C
AB denote the spherical Christoffel symbols of the metric /g◦ = r2γ , so that,

/∇◦
eAeB = /�

◦C
ABeC ,

where /∇◦ is the Levi-Civita connection of /g◦. These are the only non-identically
vanishing Ricci coefficients in Minkowski space. All curvature components vanish,
as do all components of the energy momentum tensor.

Note that the function r in general does not have the geometric interpretation as the
area radius of the spheres Su,v . Note also that

1

C
v ≤ r ≤ Cv,

in the region u0 ≤ u ≤ u f , v0 ≤ v < ∞, for some constant C > 0.

2.5 The Renormalised Null Structure and Bianchi Equations

The Bianchi equations,

∇μWμνλρ = 1

2

(∇λTνρ − ∇δTβγ

)
,

written out in full using the table of Ricci coefficients,

∇eAeB = /�
C
ABeC + 1

2
χABe3 + 1

2
χ

AB
e4, (24)

∇eAe3 = χ
A
BeB − η

A
e3, ∇eAe4 = χA

BeB + η
A
e4, (25)

∇e3eA = χ
A
BeB + ηAe3, ∇e4eA =

[
χA

B − eA(bB)
]
eB + η

A
e4, (26)

∇e3e4 = 2ηAeA, ∇e4e3 = −ωe3 + 2ηBeB, (27)

∇e3e3 = 0, ∇e4e4 = ωe4, (28)

take the form15

15 See [9] for a detailed derivation in the vacuum case. Recall that ζ = −η and ω = 0 in the frame used
here, and that the scalar curvature R vanishes for solutions of the massless Einstein–Vlasov system.
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/∇3α + 1

2
trχα = /∇⊗̂β − 3(χ̂ρ + ∗χ̂σ ) + (4η − η)⊗̂β + /̃∇ /T 4 − /∇4 /T

− 1

2
χ /T 34 − 1

2
χ /T 44 − /T × χ + η ⊗ /T 4

− 1

4

(
/∇3 /T 44 − 4η · /T 4 − /∇4 /T 34 + 2η · /T 4 + ω/T 34

)
/g

+ 1

2

(
/ε /∇ /T 4 − /ε · (χ × /T ) − /ε · (η ⊗ /T 4)

)
/ε,

(29)

/∇4β + 2trχβ = /divα + ωβ + (η# − 2η#) · α

− 1

2

(
/∇ /T 44 − /∇4 /T 4 − 2χ · /T 4 + ω/T 4 − /T 44η

)
,

(30)

/∇3β + trχβ = /∇ρ + ∗ /∇σ + 2χ̂# · β + 3(ηρ + ∗ησ)

+1

2

(
/∇ /T 34 − /∇4 /T 3 − χ · /T 4 − χ · /T 3 − /T 34η − ω/T 3 + 2η · /T

)
,

(31)

/∇4ρ + 3

2
trχρ = /divβ − 1

2
χ̂

# · α + (η, β)

−1

4

(
/∇3 /T 44 − /∇4 /T 34 − 2η · /T 4 + ω/T 34

)
, (32)

/∇4σ + 3

2
trχσ = − /curlβ − η ∧ β + 1

2
χ̂ ∧ α

−1

2

(
/ε · /∇ /T 4 − /ε · (χ × /T ) − /ε · (η ⊗ /T 4)

)
, (33)

/∇3ρ + 3

2
trχρ = − /divβ − 1

2
χ̂# · α − (2η + η, β)

− 1

4

(
/∇4 /T 33 − /∇3 /T 34 + 2ω/T 33 − 4η · /T 3 + 2η · /T 3

)
,

(34)

/∇3σ + 3

2
trχσ = − /curlβ − (2η + η) ∧ β − 1

2
χ̂ ∧ α

+1

2

(
/ε · /∇ /T 3 − /ε · (χ × /T ) + /ε · (η ⊗ /T 3)

)
, (35)

/∇4β + trχβ = − /∇ρ + ∗ /∇σ − ωβ + 2χ̂
# · β − 3(ηρ − ∗ησ)

−1

2

(
/∇ /T 34 − /∇3 /T 4 − χ · /T 4 − χ · /T 3 + /T 34η + 2η · /T

)
, (36)

/∇3β + 2trχβ = − /divα − (η# + 2η#) · α

+1

2

(
/∇ /T 33 − /∇3 /T 3 − 2χ · /T 3 + 2/T 33η + /T 33η

)
, (37)
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/∇4α + 1

2
trχα = − /∇⊗̂β − 2ωα − 3(χ̂ρ − ∗χ̂σ ) − 5η⊗̂β + /̃∇ /T 3 − /∇3 /T

− /T × χ + /T 3 ⊗ η − 1

2
/T 33χ − 1

2
/T 34χ + η ⊗ /T 3 + /T 3 ⊗ η

− 1

4

(
/∇4 /T 33 − /∇3 /T 34 + 2ω/T 33 − 4η · /T 3 + 2η · /T 3

)
/g

+ 1

2

(
/ε · /∇ /T 3 − /ε · (χ × /T ) + /ε · (η ⊗ /T 3)

)
/ε. (38)

Here for an Su,v 1-form ξ , /̃∇ξ denotes the transpose of the derivative of ξ ,

( /̃∇ξ)AB := ( /∇Bξ)A.

The left Hodge-dual ∗ is defined on Su,v one forms and (0, 2) Su,v tensors by

∗ξA = /εAB /gBCξC and ∗ξAB = /εAC /gCDξDB,

respectively. Here /ε denotes the volume form associated with the metric /g and, for a
(0, 2) Su,v tensor ξ ,

/ε · ξ = /εABξAB .

The symmetric traceless product of two Su,v one forms is defined by

(ξ⊗̂ξ ′)AB = ξAξ ′
B + ξBξ ′

A − /gAB

(
/gCDξCξ ′

D

)
,

and the anti-symmetric products are defined by

ξ ∧ ξ ′ = /εABξAξ ′
B and ξ ∧ ξ ′ = /εAB

/gCDξACξ ′
BD,

for two Su,v one forms and Su,v (0, 2) tensors respectively. Also,

(ξ × ξ ′)AB = /gCDξACξ ′
BD,

for Su,v (0, 2) tensors ξ, ξ ′. The symmetric trace free derivative of an Su,v 1-form is
defined as

( /∇⊗̂ξ)AB = /∇ AξB + /∇BξA − ( /divξ)/gAB .

Finally define the /g inner product of two (0, n) Su,v tensors

(ξ, ξ ′) = /gA1B1 · · · /gAn BnξA1,...,An ξ
′
B1,...,Bn ,

and the norm of a (0, n) Su,v tensor

|ξ |2 = /gA1B1 · · · /gAn BnξA1,...,AnξB1,...,Bn .
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The notation | · | will also later be used when applied to components of Su,v tensors to
denote the standard absolute value on R. See Section 6. It will always be clear from
the context which is meant, for example if ξ is an Su,v 1-form then |ξ | denotes the /g
norm as above, whilst |ξA| denotes the absolute value of ξ(eA).

The null structure equations for the Ricci coefficients and the metric quantities in
the 3 direction, suitably renormalised using the Minkowski values, take the form

/∇3ω = 2(η, η) − |η|2 − ρ − 1

2
/T 34, (39)

/∇3η = −1

2
(trχ − trχ◦)(η − η) + 1

r
(η − η) − χ̂ · (η − η) + β − 1

2
/T 3, (40)

/∇3(trχ − trχ◦) = −1

2
(trχ − trχ◦)

2 + 2

r
(trχ − trχ◦) − 2

r2

(
1 − 1

�2

)

− |χ̂ |2 − /T 33,

(41)

/∇3χ̂ = −(trχ − trχ◦)χ̂ + 2

r
χ̂ − α, (42)

/∇3b = 2(η − η) + χ̂ · b + 1

2
(trχ − trχ◦)b − 1

r
b, (43)

(
/∇3(/g − /g◦)

)
AB =

(
1 − 1

�2

)
trχ◦/g

◦
AB +

(
trχ − trχ◦

)
/g◦
AB

+ 2χ̂
AB

− χ̂
C
A

(
/gBC − /g◦

BC

)− χ̂
C
B

(
/gAC − /g◦

AC

)
,

(44)

and in the 4 direction

/∇4η + 1

2
trχη = 1

2
(trχ − trχ◦)η + 1

r
η − χ̂ · (η − η) − β − 1

2
/T 4, (45)

/∇4(trχ − trχ◦) + trχ(trχ − trχ◦) = 1

2
(trχ − trχ◦)2 + ω(trχ − trχ◦) + 2

r
ω

− |χ̂ |2 − /T 44,

(46)

/∇4χ̂ + trχχ̂ = ωχ̂ − α, (47)

/∇4

(
1 − 1

�2

)
= ω − ω

(
1 − 1

�2

)
. (48)

Through most of the text, when referring to the null structure equations it is the above
equations which are meant. The following null structure equations on the spheres will
also be used in Section 11,

K = 1

2
χ̂ · χ̂ − 1

4
trχ trχ − ρ + 1

2
/T 34 (49)
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/divχ̂ = 1

2
/∇
(

trχ − 2

r

)
− 1

2

(
trχ − 2

r

)
η + 1

r
η + χ̂ · η − β + 1

2
/T 4, (50)

/divχ̂ = 1

2
/∇
(

trχ + 2

r

)
+ 1

2

(
trχ + 2

r

)
η − 1

r
η − χ̂ · η − β + 1

2
/T 3, (51)

/curlη = σ − 1

2
χ̂ ∧ χ̂ , /curlη = 1

2
χ̂ ∧ χ̂ − σ,

where K denotes the Gauss curvature of the spheres (Su,v, /g).
The additional propagation equations for χ̂ , χ̂ ,

/∇4χ̂ + 1

2
trχχ̂ = /∇⊗̂η − ωχ̂ − 1

2
trχχ̂ + η⊗̂η + /̂T , (52)

/∇3χ̂ + 1

2
trχχ̂ = /∇⊗̂η − 1

2
trχχ̂ + η⊗̂η + /̂T , (53)

will also be used in Section 11 to derive propagation equations for the mass aspect
function μ,μ defined later. Here /̂T = /T − /T 34/g is the trace free part of /T .

The following first variational formulas for the induced metric on the spheres will
also be used,

Le3 /g = 2χ, (54)

Le4 /g = 2χ, (55)

where L denotes the Lie derivative.
There are additional null structure equations but, since they will not be used here,

are omitted.

3 The Schematic Form of the Equations and Commutation

In this section schematic notation is introduced for the Ricci coefficients, curvature
components and components of the energy momentum tensor, which is used to isolate
the structure in the equations that is important for the proof of Theorem 1.2. A collec-
tion of differential operators is introduced and it is shown that this structure remains
present after commuting the equations by any of the operators in the collection. This
section closely follows Section 3 of [13] where this notation was introduced.

3.1 Schematic Notation

Consider the collection of Ricci coefficients16 which are schematically denoted �,

� = 1

�2 − 1, b, /g − /g◦, trχ − trχ◦, trχ − trχ◦, χ̂ , χ̂ , η, η, ω.

16 The quantities 1
�2 − 1, b and /g − /g◦ are, of course, metric quantities. They are however, in Section 10,

estimated systematically along with the Ricci coefficients. Any discussion of the “Ricci coefficients” from
now on will hence implicitly refer also to these metric quantities.
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Note that the � are normalised so that each of the corresponding quantities in
Minkowski space is equal to zero. In the proof of the main result it will be shown
that each � converges to zero as r → ∞ in the spacetimes considered. Each � will
converge with a different rate in r and so, to describe these rates, each � is given an
index, p, to encode the fact that, as will be shown in the proof of the main result,
r p|�p| will be uniformly bounded. The p-indices are given as follows,

�0 = 1
�2 − 1, �1 = χ̂ , /g − /g◦, b, η,

�2 = η, trχ − trχ◦, trχ − trχ◦, χ̂ , �3 = ω,

so that �1 schematically denotes any of the quantities χ̂ , /g−/g◦, b, η, etc. It may be the
case, for a particular �p, that limr→∞ r p|�p| is always zero in each of the spacetimes
which are constructed here. This means that some of the Ricci coefficients will decay
with faster rates than those propagated in the proof of Theorem 1.2. Some of these
faster rates can be recovered a posteriori.

The notation
(3)

� will be used to schematically denote any � for which the corre-
sponding null structure equation of (39)–(48) it satisfies is in the /∇3 direction,

(3)

� = χ̂ , /g − /g◦, b, η, trχ − trχ◦, ω.

Similarly,
(4)

� will schematically denote any � for which the corresponding null struc-
ture equation of (39)–(48) is in the /∇4 direction,

(4)

� =
(

1

�2 − 1

)
, η, trχ − trχ◦, χ̂ .

Finally,
(3)

� p will schematically denote any �p which has also been denoted
(3)

� . So,

for example, χ̂ may be schematically denoted
(3)

� 1. Similarly,
(4)

� p will schematically

denote any �p which has also been denoted
(4)

� .
Consider now the collection of Weyl curvature components, which are schemati-

cally denoted ψ ,

ψ = α, β, ρ, σ, β, α.

Each ψ is similarly given a p-index,

ψ1 = α, ψ2 = β, ψ3 = ρ, σ, ψ 7
2

= β, ψ4 = α. (56)

to encode the fact that, as again will be shown, r p|ψp| is uniformly bounded in each
of the spacetimes which are constructed.

When deriving energy estimates for the Bianchi equations in Section 9, a special
divergence structure present in the terms involving angular derivatives is exploited. For
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example, the /∇3α equation is contracted with α (multiplied by a suitable weight) and
integrated by parts over spacetime. The /∇4β equation is similarly contracted with β

and integrated by parts. When the two resulting identities are summed, a cancellation
occurs in the terms involving angular derivatives leaving only a spherical divergence
which vanishes due to the integration on the spheres. The /∇3α equation is thus paired
with the /∇4β equation. To highlight this structure, consider the ordered pairs,

(α, β), (β, (ρ, σ )), ((ρ, σ ), β), (β, α).

Each of these ordered pairs will be schematically denoted (ψp,ψ
′
p′), with the sub-

scripts p and p′ as in (56), and referred to as a Bianchi pair.
The components of the energy momentum tensor are schematically denoted T ,

T = /T , /T 3, /T 4, /T 33, /T 44, /T 34,

and each T is similarly given a p-index,

T2 = /T 33, T3 = /T 3, T4 = /T , /T 34, T5 = /T 4, T6 = /T 44,

to encode the fact that r p|Tp| will be shown to be uniformly bounded.
Finally, for a given p ∈ R, let h p denote any smooth function h p : M → R,

depending only on r , which behaves like 1
r p to infinite order, i.e. any function such

that, for any k ∈ N0, there is a constant Ck such that rk+p|(∂v)
kh p| ≤ Ck , where the

derivative is taken in the (u, v, θ1, θ2) coordinate system. In addition, the tensor field
h p/g◦ may also be denoted h p. Note that rk+p|(∂v)

k(h p/g◦
AB)|/g◦ ≤ Ck . For example,

trχ◦ = h1, trχ◦/g
◦ = h1.

3.2 The Schematic Form of the Equations

Using the notation of the previous section, the null structure and Bianchi equations
can be rewritten in schematic form. For example the null structure equation (40) can
be rewritten,

/∇3
(3)

� 2 = �2 · (�2 + �1) + h1(�2 + �1) + �1 · (�2 + �1) + ψ2 + T2.

Here and in the following, �p1 · �p2 denotes (a constant multiple of) an arbitrary
contraction between a �p1 and a �p2 . In the estimates later, the Cauchy–Schwarz
inequality |�p1 · �p2 | ≤ C |�p1 ||�p2 | will always be used and so the precise form of
the contraction will be irrelevant. Similarly for h p1�p2 .

Rewriting the equations in this way allows one to immediately read off the rate of

decay in r of the right hand side. In the above example one sees that /∇3
(3)

� 2 is equal
to a combination of terms whose overall decay is, according to the p-index notation,
like 1

r2 , consistent with the fact that applying /∇3 to a Ricci coefficient does not alter
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its r decay (see Section 3.3). Each of the null structure equations can be expressed in
this way.

Proposition 3.1 (cf. Proposition 3.1 of [13]). The null structure equations (39)–(48)
can be written in the following schematic form

/∇3
(3)

� p = E3[
(3)

� p] (57)

/∇4
(4)

� p + p

2
trχ

(4)

� p = E4[
(4)

� p] (58)

where17

E3[
(3)

� p] =
∑

p1+p2≥p

h p1 · �p2 +
∑

p1+p2≥p

�p1 · �p2 + ψp + Tp

E4[
(4)

� p] =
∑

p1+p2≥p+2

h p1 · �p2 +
∑

p1+p2≥p+2

�p1 · �p2 + ψp+2 + Tp+2.

This proposition allows us to see that the right hand sides of the /∇3
(3)

� p equations

behave like 1
r p , whilst the right hand sides of the /∇4

(4)

� p equations behave like 1
r p+2 .

This structure will be heavily exploited and should be seen as a manifestation of the
null condition present in the Einstein equations.

Remark 3.2 The term p
2 trχ

(4)

� p on the left hand side of equation (58) is not contained
in the error since trχ behaves like 1

r and so this term only behaves like 1
r p+1 . This would

thus destroy the structure of the error. It is not a problem that this term appears however
since, when doing the estimates, the following renormalised form of the equation will
always be used:

/∇4

(
r p

(4)

� p

)
= r pE4[

(4)

� p].

This can be derived by differentiating the left hand side using the product rule, substi-

tuting equation (58) and using the fact that (trχ◦ − trχ)
(4)

� p can be absorbed into the
error.

It is not a coincidence that the coefficient of this term is always p
2 , it is the value of

this coefficient which decides the rate of decay to be propagated for each
(4)

� p. This will
be elaborated on further in Section 10. This was not the case in [13]; they have more

17 Stricly speaking, the terms listed in the error can be “worse” than the terms which actually appear in the

equation in question. For example, in E3[(3)
� p], ψp may actually refer to some ψq where q > p. In fact, in

some of the null structure equations no curvature term actually appears.
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freedom since they are integrating backwards from null infinity, rather than towards

null infinity, and so can propagate stronger decay rates for some of the
(4)

� p. These
stronger rates could be recovered here using the ideas in Section 11, however it is
perhaps interesting to note that the estimates can be closed with these weaker rates.

The Bianchi equations can also be rewritten in this way.

Proposition 3.3 (cf. Proposition 3.3 of [13]). For each Bianchi pair (ψp,ψ
′
p′), the

Bianchi equations (29)–(38) can be written in the following schematic form

/∇3ψp = /Dψ′
p′ + E3[ψp],

/∇4ψ
′
p′ + γ [ψ′

p′ ] trχ ψ′
p′ = /Dψp + E4[ψ′

p′ ],

where /D denotes the angular operator appearing in equation for the particular cur-
vature component under consideration18 and γ [ψ′

p′ ] = p′
2 for ψ′

p′ �= β, γ [β] = 2.
The error terms take the form

E3[ψp] = h1ψp +
∑

p1+p2≥p

�p1 · ψp2 +
∑

p1+p2≥p

h p1DTp2 +
∑

p1+p2≥p

�p1 · Tp2 ,

E4[ψ′
p′ ] =

∑
p1+p2≥p′+ 3

2

�p1 · ψp2 +
∑

p1+p2≥p+2

h p1DTp2 +
∑

p1+p2≥p+2

�p1 · Tp2 ,

whereD is used to denote certain derivative operators which are introduced in Section
3.3.

When applied to Tp, the operators D should not alter the rate of decay so again this
schematic form allows one to easily read off the r decay rates of the errors. This
structure of the errors will again be heavily exploited. The first summation in E4[ψ′

p′ ]
can in fact actually always begin at p′ + 2 except for in E4[β] where the term η# · α

appears. Also the terms,

∑
p1+p2≥p

h p1DTp2 +
∑

p1+p2≥p

�p1 · Tp2 ,

in E3[ψp] can be upgraded to,

∑
p1+p2≥p+ 1

2

h p1DTp2 +
∑

p1+p2≥p+ 1
2

�p1 · Tp2 ,

in E3[α] and E3[β]. These points are important and will be returned to in Section 9.

18 So, for example, /Dψ′
p′ = /∇⊗̂β in the /∇3α equation, and /Dψp = − /∇ρ + ∗ /∇σ in the /∇4β equation,

etc.
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3.3 The Commuted Equations

As discussed in the introduction, the Ricci coefficients and curvature components will
be estimated in L2 using the null structure and Bianchi equations respectively19. In
order to deal with the nonlinearities some of the error terms are estimated in L∞ on the
spheres. These L∞ bounds are obtained from L2 estimates for higher order derivatives
via Sobolev inequalities. These higher order L2 estimates are obtained through com-
muting the null structure and Bianchi equations with suitable differential operators,
showing that the structure of the equations are preserved, and then proceeding as for
the zero-th order case. It is shown in this section that the structure of the equations are
preserved under commutation.

It is also necessary to obtain higher order estimates for components of the energy
momentum tensor in order to close the estimates for the Bianchi and Null structure
equations. Rather than commuting the Vlasov equation, which leads to certain diffi-
culties, these estimates are obtained by estimating components of certain Jacobi fields
on the mass shell. See Section 8.

Define the set of differential operators { /∇3, r /∇4, r /∇} acting on covariant Su,v ten-
sors of any order20, and let D denote an arbitrary element of this set. These operators
are introduced because of the Commutation Principle of [13]:

Commutation Principle: Applying any of the operators D to any of the �,ψ, T
should not alter its rate of decay.

This will be shown to hold in L2, though until then it serves as a useful guide to
interpret the structure of the commuted equations.

If ξ is an Su,v tensor field, Dkξ will be schematically used to denote any fixed
k-tuple DkDk−1 . . .D1ξ of operators applied to ξ , where each Di ∈ { /∇3, r /∇4,

r /∇}.
In order to derive expressions for the commuted Bianchi equations in this schematic

notation, the following commutation lemma will be used. Recall first the following
lemma which relates projected covariant derivatives of a covariant Su,v tensor to deriva-
tives of its components.

Lemma 3.4 Let ξ be a (0, k) Su,v tensor. Then,

( /∇3ξ)A1...Ak = e3(ξA1...Ak ) −
k∑

i=1

χ
Ai

BξA1...Ai−1BAi+1...Ak ,

( /∇4ξ)A1...Ak = e4(ξA1...Ak ) −
k∑

i=1

(
χAi

B − /∇ Ab
B + bC /�

B
AC

)
ξA1...Ai−1BAi+1...Ak ,

19 The former in L2 on the spheres, the latter in L2 on null hypersurfaces.
20 Note that /∇3 and r /∇4 preserve the rank of a tensor, whilst r /∇ takes tensors of rank (0, n) to tensors of
rank (0, n + 1).
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and

( /∇Bξ)A1...Ak = eB(ξA1...Ak ) −
k∑

i=1

/�
C
BAi

ξA1...Ai−1CAi+1...Ak .

The commutation lemma then takes the following form.

Lemma 3.5 (cf. Lemma 7.3.3 of [10] or Lemma 3.1 of [13]). If ξ is a (0, k) Su,v

tensor then,

[ /∇4, /∇B]ξA1...Ak = −χB
C /∇CξA1...Ak

+
k∑

i=1

(
χAi BηC − η

Ai
χB

C + ∗βB/εAi
C + 1

2
/gB

C /T 4Ai − 1

2
/gAi B

/T 4
C
)

× ξA1...Ai−1CAi+1...Ak ,

[ /∇3, /∇B]ξA1...Ak =
(
ηB + η

B

)
/∇3ξA1...Ak − χ

B
C /∇CξA1...Ak

+
k∑

i=1

(
χ

Ai B
ηC − ηAi χ B

C − ∗β
B
/εAi

C + 1

2
/gB

C /T 3Ai − 1

2
/gAi B

/T 3
C
)

× ξA1...Ai−1CAi+1...Ak ,

[ /∇3, /∇4]ξA1...Ak = 2
(
ηC − ηC

)
/∇CξA1...Ak + ω /∇3ξA1...Ak

+ 2
k∑

i=1

(
η
Ai

ηC − ηAi η
C − σ/εAi

C
)

ξA1...Ai−1CAi+1...Ak ,

and

[ /∇B, /∇C ]ξA1...Ak = K
k∑

i=1

/gBAi
ξA1...Ai−1CAi+1...Ak − /gCAi

ξA1...Ai−1BAi+1...Ak ,

where K is the Gauss curvature of (Su,v, /g).

Proof The proof of the first identity follows by writing

/∇4 /∇BξA1...Ak = ∇4∇BξA1...Ak + η
B

/∇4ξA1...Ak −
k∑

i=1

η
Ai

χB
CξA1...Ai−1CAi+1...Ak ,

/∇B /∇4ξA1...Ak = ∇B∇4ξA1...Ak + η
B

/∇4ξA1...Ak

+ χB
C /∇CξA1...Ak −

k∑
i=1

η
Ai

χB
CξA1...Ai−1CAi+1...Ak ,
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and using

[∇4,∇B] =
k∑

i=1

R4BAi
CξA1...Ai−1CAi+1...Ak

=
k∑

i=1

(
∗βB/εAi

C + 1

2
/gB

C /T 4Ai − 1

2
/gAi B

/T 4
C
)

ξA1...Ai−1CAi+1...Ak ,

where the last line follows by using equation (23) to write,

R4BAi
C = W4BAi

C + 1

2

(
/gB

C /T 4Ai − /gAi B
/T 4

C
)

.

Similarly for the second one uses

/∇3 /∇BξA1...Ak = ∇3∇BξA1...Ak + ηB /∇3ξA1...Ak −
k∑

i=1

ηAi χ B
CξA1...Ai−1CAi+1...Ak ,

/∇B /∇3ξA1...Ak = ∇B∇3ξA1...Ak − η
B

/∇3ξA1...Ak

+ χ
B
C /∇CξA1...Ak −

k∑
i=1

χ
Ai B

ηCξA1...Ai−1CAi+1...Ak ,

and for the third,

/∇3 /∇4ξA1...Ak = ∇3∇4ξA1...Ak + 2ηC∇CξA1...Ak − 2
k∑

i=1

ηAi η
CξA1...Ai−1CAi+1...Ak ,

/∇4 /∇3ξA1...Ak = ∇4∇3ξA1...Ak − ω /∇3ξA1...Ak + 2ηC /∇CξA1...Ak

− 2
k∑

i=1

η
Ai

ηCξA1...Ai−1CAi+1...Ak .

If /R denotes the curvature tensor of (Su,v, /g), the last follows from writing,

[ /∇B, /∇C ]ξA1...Ak =
k∑

i=1

/RBCAi
D
ξA1...Ai−1DAi+1...Ak ,

and the fact that,

/RBCAi D = K
(
/gBAi

/gCD − /gBD/gCAi

)
.

��
The above Lemma implies that the terms arising from commutation take the following
schematic form,
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[ /∇4, /∇]ξ = −1

r
/∇ξ +

∑
p1≥2

�p1 · /∇ξ +
∑

p1+p2≥3

(h p1 + �p1)

· (�p2 + ψp2 + Tp2) · ξ,

[ /∇3, /∇]ξ =
∑
p1≥1

�p1 · /∇3ξ +
∑

p1+p2≥1

h p1 · (h p2 + �p2) · r /∇ξ

+
∑

p1+p2≥2

(h p1 + �p1) · (�p2 + ψp2 + Tp2) · ξ,

[ /∇3, /∇4]ξ =
∑

p1+p2≥2

h p1 · �p2 · r /∇ξ +
∑
p1≥3

�p1 · /∇3ξ

+
∑

p1+p2≥3

(h p1 + �p1) · (�p2 + ψp2) · ξ.

(59)

The commuted Bianchi equations can then be written as follows.

Proposition 3.6 (cf. Proposition 3.4 of [13]). For any integer k ≥ 1 the commuted
Bianchi equations, for each Bianchi pair (ψp,ψ

′
p′), take the form21

/∇3(D
kψp) = /D(Dkψ′

p′) + E3[Dkψp],
(60)

/∇4(D
kψ′

p′) + γ [ψ′
p′ ] trχ Dkψ′

p′ = /D(Dkψp) + E4[Dkψ′
p′ ], (61)

where

E3[Dkψp] = D(E3[Dk−1ψp]) + �1 · (Dkψp + Dkψ′
p′) + �1

· (Dk−1ψp + Dk−1ψ′
p′), (62)

E4[Dkψ′
p′ ] = D(E4[Dk−1ψ′

p′ ]) + E4[Dk−1ψ′
p′ ] + �1 · Dkψp + �2 · Dkψ′

p′

+ �1 · Dk−1ψp + �′
2 · Dk−1ψ′

p′ , (63)

and, for p = 1, 2, �p denotes some fixed sum of contractions of h, �, ψ and T such
that �p decays, according to the p-index notation, like 1

r p . Explicitly

�1 =
∑

p1+p2+p3≥1

h p1(h p2 + �p2) · (h p3 + �p3 + ψp3 + Tp3),

�2 =
∑

p1+p2≥2

h p1(h p2 + �p2),

�′
2 =

∑
p1+p2+p3≥2

h p1(h p2 + �p2) · (h p3 + �p3 + D�p3 + ψp3 + Tp3).

Note the presence of the first order derivative of � in �′
2, whilst �1 and �2 contain

only zeroth order terms.

21 Note that /div, /curl when applied to a (0, n) tensor are always defined with respect to the last index etc.
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Remark 3.7 By the commutation principle and induction, it is clear that the first two
terms in the error (63) preserve the structure highlighted in Proposition 3.3. In the
remaining terms, it is essential that Dkψ′

p′ and Dk−1ψ′
p′ appear contracted with �2

and �′
2, rather than �1. It will be clear in the proof below that it is the special form

of the operators that cause this to occur. Since, for each Bianchi pair (ψp,ψ
′
p′), it is

the case that p ≥ p′ + 1
2 , the �1 · Dkψp and �1 · Dk−1ψp terms in E4[Dkψ′

p′ ] still
preserve the form of the error.

Similarly looking at the error (62), it is clear that the expected r decay will be
preserved from Proposition 3.3.

It will also be important later that �1 and �2 do not contain any derivatives of ψ

or �, whilst �′
2 only contains first order derivatives.

Proof of Proposition 3.6 The proof proceeds exactly as in Proposition 3.4 of [13],
though one does need to be careful since some of the quantities decay slightly weaker
here. We consider only the k = 1 case. A simple induction argument completes the
proof for k > 1.

Consider first the /∇4ψ
′
p′ equations. Using the schematic form of the commutation

formulae (59),

/∇4r /∇4ψ
′
p′ = /∇4ψ

′
p′ + r /∇4 /∇4ψ

′
p′ ,

γ trχr /∇4ψ
′
p′ = r /∇4

(
γ trχψ′

p′
)

− γψ′
p′r /∇4trχ,

/Dr /∇4ψp = r /∇4
(
/Dψp

)+
∑
p1≥1

(h p1 + �p1) · r /∇ψp

+
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (�p2 + ψp2 + Tp) · ψp.

Now the Raychaudhuri equation22,

/∇4trχ = −1

2
(trχ)2 − |χ̂ |2 + ωtrχ − /T 44,

and the Bianchi equation for /∇4ψ
′
p′ imply that,

/∇4ψ
′
p′ − γψ′

p′r /∇4trχ = γ trχψ′
p′
( r

2
trχ − 1

)
+ /Dψp + E4[ψ′

p′ ]

+ γ
(
|χ̂ |2 − ωtrχ + /T 44

)
ψ′

p′

=
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (�p3 + Tp3) · ψ′
p′

+ 1

r
Dψp + E4[ψ′

p′ ].

22 This is the unrenormalised null structure equation for trχ and can be derived from the /∇4 (trχ − trχ◦)

equation in Section 2.5.
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Note the cancellation. Hence

/∇4(r /∇4ψ
′
p′) + γ [ψ′

p′ ]trχ r /∇4ψ
′
p′ = /D(r /∇4ψp) + E4[r /∇4ψ

′
p′ ],

where

E4[r /∇4ψ
′
p′ ] = r /∇4E4[ψ′

p′ ] + E4[ψ′
p′ ] +

∑
p1≥1

(h p1 + �p1) · Dψp

+
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (�p3 + Tp3) · ψ′
p′

+
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (�p3 + ψp3 + Tp3) · ψp.

Similarly, using again the schematic expressions (59),

/∇4 /∇3ψ
′
p′ = /∇3 /∇4ψ

′
p′ +

∑
p1≥3

�p1 · /∇3ψ
′
p′ +

∑
p1+p2≥2

h p1 · �p2 · r /∇ψ′
p′

+
∑

p1+p2+p3≥3

(h p1 + �p1) · (�p2 + ψp2) · ψ′
p′ ,

γ trχ /∇3ψ
′
p′ = /∇3

(
γ trχψ′

p′
)

+
∑
p1≥2

(h p1 + D�p2) · ψ′
p′

/D /∇3ψp = /∇3 /Dψp +
∑
p1≥1

�p1 · /∇3ψp +
∑

p1+p2≥1

h p1(h p2 + �p2) · r /∇ψp

+
∑

p1+p2≥2

(h p1 + �p1) · (�p2 + ψp2 + Tp2) · ψp,

and hence,

/∇4( /∇3ψ
′
p′) + γ [ψ′

p′ ]trχ /∇3ψ
′
p′ = /D( /∇3ψp) + E4[ /∇3ψ

′
p′ ],

where

E4[ /∇3ψ
′
p′ ] = /∇3E4[ψ′

p′ ] +
∑

p1+p2≥2

h p1 · �p2 · Dψ′
p′

+
∑

p1+p2≥1

h p1(h p2 + �p2) · Dψp

+
∑

p1+p2+p3≥3

(h p1 + �p1) · (h p2 + �p2 + D�p2 + ψp2) · ψ′
p′

+
∑

p1+p2≥2

(h p1 + �p1) · (�p2 + ψp2 + Tp2) · ψp.
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Finally,

/∇4r /∇ψ′
p′ = /∇ψ′

p′ + r /∇4 /∇ψ′
p′

=
∑
p1≥2

�p1 · r /∇ψ′
p′ + r

∑
p1+p2≥3

(h p1 + �p1) · (�p2 + ψp2 + Tp2) · ψ′
p′ ,

γ trχr /∇ψ′
p′ = r /∇

(
γ trχψ′

p′
)

+ D�2 · ψ′
p′ ,

/Dr /∇ψp = r /∇ /Dψp + r
∑

p1+p2≥3

(h p1 + �p1) · (h p2 + �p2 + ψp2 + Tp2) · ψp,

where the Gauss equation (49) has been used for the third equality. Note also the
cancellation which occurs in the first equality. Hence,

/∇4(r /∇ψ′
p′) + γ [ψ′

p′ ]trχ r /∇ψ′
p′ = /D(r /∇ψp) + E4[r /∇ψ′

p′ ],

where

E4[r /∇ψ′
p′ ] = r /∇E4[ψ′

p′ ] +
∑
p1≥2

�p1 · Dψ′
p′

+
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (�p3 + D�p3 + ψp3 + Tp3) · ψ′
p′

+
∑

p1+p2+p3≥2

h p1(h p2 + �p2) · (h p3 + �p3 + ψp3 + Tp3) · ψp.

The schematic expressions for the /∇3ψp equations follow similarly. ��
Similarly, the commuted null structure equations can be schematically written as

follows.

Proposition 3.8 (cf. Proposition 3.5 of [13]). For any integer k ≥ 1 the commuted
null structure equations take the form,

/∇3(D
k
(3)

� p) = E3[Dk
(3)

� p],
/∇4(D

k
(4)

� p) + p

2
trχ Dk

(4)

� p = E4[Dk
(4)

� p],

where,

E3[Dk
(3)

� p] = D(E3[Dk−1
(3)

� p]) + �1 · (Dk
(3)

� p + Dk−1
(3)

� p) (64)

E4[Dk
(4)

� p] = D(E4[Dk−1
(4)

� p]) + E4[Dk−1
(4)

� p] + �2 · Dk
(4)

� p + �′
2 · Dk−1

(4)

� p,

(65)
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and again,

�1 =
∑

p1+p2+p3≥1

h p1(h p2 + �p2) · (h p3 + �p3 + ψp3 + Tp3),

�2 =
∑

p1+p2≥2

h p1(h p2 + �p2),

�′
2 =

∑
p1+p2+p3≥2

h p1(h p2 + �p2) · (h p3 + �p3 + D�p3 + ψp3 + Tp3).

Proof The proof is similar to that of Proposition 3.6, though slightly simpler as there
are no terms involving /D. ��

Remark 3.9 Note that again in (65),Dk
(4)

�p andDk−1
(4)

�p only appear multiplying terms
which decay like 1

r2 . Note also that again �1,�2 contain no derivative terms, whilst
�′

2 contains only first order derivatives.

4 The Sasaki Metric

The Lorentizian metric g on M induces a metric, g, on TM, known as the Sasaki
metric, which in turn induces a metric on P by restriction. The metric on TMwas first
introduced in the context of Riemannian geometry by Sasaki [33]. Certain properties
of this metric will be used when estimating derivatives of f later. The goal of this
section is to define the metric and compute certain components of its curvature tensor
in terms of the curvature of (M, g). It is then shown that trajectories of the null
geodesic flow of (M, g) are geodesics in P (or more generally that trajectories of the
full geodesic flow are geodesics in TM) with respect to this metric and derivatives of
the exponential map are Jacobi fields along these geodesics. This fact will be used in
Section 8 to estimate derivatives of f . Most of this section is standard and is recalled
here for convenience.

4.1 Vertical and Horizontal Lifts

Given (x, p) ∈ TM, g(x,p) is defined by splitting T(x,p)TM into its so-called vertical
and horizontal parts. This is done using the connection of g on M.

Given v ∈ TxM, its vertical lift at p ∈ TxM, denoted Ver(x,p)(v) is defined to be
the vector tangent to the curve c(x,p),V : (−ε, ε) → TM defined by,

c(x,p),V (s) = (x, p + sv)

at s = 0,

Ver(x,p)(v) = c(x,p),V
′(0).

To define the horizontal lift of v at (x, p), first let c : (−ε, ε) → M denote a curve
in M such that c(0) = x , c′(0) = v. Extend p to a vector field along c by parallel
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transport using the Levi-Civita connection of g on M,

∇c′ p = 0.

The horizontal lift of v at (x, p), denoted Hor(x,p)(v), is then defined to be the tangent
vector to the curve c(x,p),H : (−ε, ε) → TM defined by

c(x,p),H (s) = (c(s), p),

at s = 0,

Hor(x,p)(v) = c(x,p),H
′(0).

It is straightforward to check this is independent of the particular curve c, as long as
c(0) = x, c′(0) = v.

Given the coordinates p1, . . . , p4 on TxM conjugate to e1, . . . , e4, the double null
frame on M, one has a frame for TM given by e1, . . . , e4, ∂p1 , . . . , ∂p4 . If v ∈ TxM
is written with respect to the double null frame as v = vμeμ, then

Ver(x,p)(v) = vμ∂pμ,

and

Hor(x,p)(v) = vμeμ − vμ pν�λ
μν∂pλ ,

where �λ
μν are the Ricci coefficients of the frame e1, . . . , e4.

Example 4.1 The generator of the geodesic flow, X , at (x, p) ∈ TM is given by

X = pμeμ − pμ pν�λ
μν∂pλ = Hor(x,p)(p).

The vertical and horizontal subspaces of T(x,p)TM are defined as,

V(x,p) : = Ver(x,p)(TxM) = {Ver(x,p)(v) | v ∈ TxM},
H(x,p) : = Hor(x,p)(TxM) = {Hor(x,p)(v) | v ∈ TxM},

respectively. Note that V(x,p) is just T(x,p)TxM, the tangent space to the fibre of TM.
One clearly has the following.

Proposition 4.2 The tangent space to TM at (x, p) can be written as the direct sum

T(x,p)TM = V(x,p) ⊕ H(x,p).

Since each vector in T(x,p)TM can be uniquely decomposed into its horizontal and
vertical components, the following defines g on all pairs of vectors in T(x,p)TM.
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Definition 4.3 The Sasaki metric, g on TM is defined as follows. For (x, p) ∈ TM
and X,Y ∈ TxM,

g(x,p)(Hor(x,p)(X), Hor(x,p)(Y )) = gx (X,Y )

g(x,p)(Hor(x,p)(X), Ver(x,p)(Y )) = 0

g(x,p)(Ver(x,p)(X), Ver(x,p)(Y )) = gx (X,Y ).

4.2 The Connection and Curvature of the Sasaki Metric

Since the Sasaki metric g is defined in terms of the metric g on M, the connection
and curvature of g can be computed in terms of the connection and curvature of g.
The computations are exactly the same as in Riemannian geometry. See [22].

Proposition 4.4 Let∇ denote the Levi-Civita connection of the Sasakimetric g.Given
(x, p) ∈ TM and vector fields X,Y ∈ �(TM) on M,

(1) ∇Hor(x,p)(X)Hor(x,p)(Y ) = Hor(x,p)(∇XY ) − 1
2 Ver(x,p)(Rx (X,Y )p),

(2) ∇Hor(x,p)(X)Ver(x,p)(Y ) = Ver(x,p)(∇XY ) + 1
2 Hor(x,p)(Rx (p,Y )X),

(3) ∇Ver(x,p)(X)Hor(x,p)(Y ) = 1
2 Hor(x,p)(Rx (p, X)Y ),

(4) ∇Ver(x,p)(X)Ver(x,p)(Y ) = 0,

where ∇ is the connection and R is the curvature tensor of (M, g).

Proposition 4.5 Given (x, p) ∈ TM and vectors X,Y, Z ∈ TxM, then

R(x,p)(Hor(x,p)(X), Hor(x,p)(Y ))Hor(x,p)(Z) = 1

2
Ver(x,p)

(
(∇Z R)(X,Y )p

)

+ Hor(x,p)

(
R(X,Y )Z + 1

4
R(p, R(Z ,Y )p)X + 1

4
R(p, R(X, Z)p)Y

+ 1

2
R(p, R(X,Y )p)Z

)
,

and

R(x,p)(Hor(x,p)(X), Ver(x,p)(Y ))Hor(x,p)(Z)

= Ver(x,p)

(
1

2
R(X, Z)Y + 1

4
R(R(p,Y )Z , X)p

)
+ 1

2
Hor(x,p)

(
(∇X R)(p,Y )Z

)
,

where R denotes the curvature tensor of g, and R the curvature tensor of g.

The proofs of Proposition 4.4 and Proposition 4.5 follow by direct computation.
See [22] and also [18]. The remaining components of R can be computed similarly
but are not used here.

One important property of the Sasaki metric is the following.
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Proposition 4.6 When equipped with the Sasaki metric, trajectories of the geodesic
flow, s → exps(x, p), are geodesics in TM.

Proof The tangent vector to a trajectory of the geodesic flow is given by the generator
X . As noted above, this is given at (x, p) ∈ TM by

X(x,p) = pμHor(x,p)(eμ).

A trajectory of the geodesic flow takes the form (γ (s), γ̇ (s)) where γ is a geodesic in
M. Hence, by Proposition 4.4,

∇X X = X (γ̇ μ)Hor(γ,γ̇ )(eμ) + γ̇ μγ̇ ν∇Hor(γ,γ̇ )(eν )Hor(γ,γ̇ )(eμ)

= −γ̇ ν γ̇ λ�
μ
νλHor(γ,γ̇ )(eμ) + γ̇ μγ̇ νHor(γ,γ̇ )(∇eν eμ) − 1

2
Ver(γ,γ̇ )(R(γ̇ , γ̇ )γ̇ )

= 0.

��

4.3 Curvature of the Mass Shell

Proposition 4.7 If R̂ denotes the curvature of the mass shell P then, if (x, p) ∈ TM
and X,Y, Z ∈ TxM, the following formula for certain components of R̂ are true.

R̂(x,p)(Hor(x,p)(X), Hor(x,p)(Y ))Hor(x,p)(Z)

= 1

2
Ver(x,p)

(
(∇Z R)(X,Y )p

)
+ Hor(x,p)

(
R(X,Y )Z + 1

4
R(p, R(Z ,Y )p)X

+ 1

4
R(p, R(X, Z)p)Y + 1

2
R(p, R(X,Y )p)Z

)
,

and

R̂(x,p)(Hor(x,p)(X), Ver(x,p)(Y ))Hor(x,p)(Z)

= Ver(x,p)

(
1

2
R(X, Z)Y + 1

4
R(R(p,Y )Z , X)p

)

+ 1

2
Hor(x,p)

(
(∇X R)(p,Y )Z

)
+ 1

4p4 g(R(X, Z)Y, p)V,

where V = ∂p3 is transverse to the mass shell P.

Proof Throughout N = ∂p4 + p3

p4 ∂p3 + pA

p4 ∂pA will denote the normal to the mass
shell, P , such that g(N , V ) = −2.

Each identity can be shown by first writing the curvature of P in terms of the
curvature of TM, N and V . If A, B,C ∈ �(T TM) denote vector fields on TM
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then, since,

∇̂AB = ∇ AB + 1

2
g(∇ AB, N )V,

where ∇̂ is the induced connection on P , one easily deduces,

R̂(A, B)C = R(A, B)C + 1

2
g(R(A, B)C, N )V

+ 1

2
g(∇BC, N )

(
∇ AV + 1

2
g(∇ AV, N )V

)

− 1

2
g(∇ AC, N )

(
∇BV + 1

2
g(∇BV, N )V

)
.

To obtain the first identity note that, by Proposition 4.4,

∇Hor(x,p)(Y )Hor(x,p)(Z) = Hor(x,p) (∇Y Z) − 1

2
Ver(x,p) (R(Y, Z)p) ,

and so

g(∇Hor(x,p)(Y )Hor(x,p)(Z), N ) = −1

2
g
(
Ver(x,p) (R(Y, Z)p) , N

)

= − 1

2p4 g (R(Y, Z)p, p)

= 0.

Similarly

g(∇Hor(x,p)(X)Hor(x,p)(Z), N ) = 0.

Finally, by Proposition 4.5,

g
(
R(Hor(x,p)(X), Hor(x,p)(Y ))Hor(x,p)(Z), N

) = 1

2p4 g((∇Z R)(X,Y )p, p) = 0.

Hence

R̂(Hor(x,p)(X), Hor(x,p)(Y ))Hor(x,p)(Z)

= R(Hor(x,p)(X), Hor(x,p)(Y ))Hor(x,p)(Z),

and the formula follows from Proposition 4.5.
For the second identity note that, as above,

g(∇Hor(x,p)(X)Hor(x,p)(Z), N ) = 0,
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and that

g(∇Ver(x,p)(Y )Hor(x,p)(Z), N ) = 0,

since, by Proposition 4.4, ∇Ver(x,p)(Y )Hor(x,p)(Z) is horizontal. The result follows
from Proposition 4.5. ��

4.4 Derivatives of the Exponential Map

Recall the definition of the exponential map (or geodesic flow) for (x, p) ∈ TM,

exps(x, p) = (γx,p(s), γ̇x,p(s)),

where γx,p is the unique geodesic in M such that γx,p(0) = x , γ̇x,p(0) = p.
Derivatives of the particle density function f are estimated using the fact that

derivatives of the exponential map are Jacobi fields as follows. Consider (x, p) ∈ TM
and V ∈ T(x,p)TM. Using the Vlasov equation,

f (x, p) = f (exps(x, p)),

and the chain rule one obtains,

V ( f )(x, p) = d f |(x,p) (V ) = d f |exps (x,p) ·d exps |(x,p) (V ) = J ( f )(exps(x, p)).

By Proposition 4.6, s → exps(x, p) is a geodesic in P (or in TM). Below it will be
shown that J := d exps |(x,p) (V ) is a Jacobi field along this geodesic, and moreover
J (0) and (∇̂X J )(0) are computed. By taking s < 0 so that exps(x, p) lies on the initial
hypersurface {u = u0}, this then gives an expression for V ( f ) in terms of initial data
which can be estimated using the Jacobi equation. In practice it is convenient to split
V into its horizontal and vertical parts.

Proposition 4.8 If v ∈ TxM and H = Hor(x,p)(v) ∈ H(x,p) ⊂ T(x,p)TM is the
horizontal lift of v, then d exps |(x,p) (H) is a Jacobi field, JH , along exps(x, p) such
that

JH |s=0= H, and ∇̂X JH |s=0= 1

2
Ver(x,p)(R(p, v)p).

If V1 = Ver(x,p)(v) ∈ V(x,p) ⊂ T(x,p)TM is the vertical lift of v, then d exps |(x,p)
(V1) is a Jacobi field, JV1 , along exps(x, p) such that

JV1 |s=0= V1, and ∇̂X JV1 |s=0= Hor(x,p)(v) + 1

2
Hor(x,p)(R(p, v)p).

Here X, the generator of the geodesic flow, is tangent to the curve s → exps(x, p).
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Proof Let cH : (−ε, ε) → TM be a curve in TM such that cH (0) = (x, p),
c′
H (0) = H . Then, by Proposition 4.6, (s, s1) → exps(cH (s1)) defines a variation of

geodesics. Hence

d exps

∣∣∣∣
(x,p)

(H) = d

ds1

(
exps(cH (s1))

) ∣∣∣∣
s1=0

,

is a Jacobi field along exps(x, p).
Since exp0(x, p) = (x, p) is the identity map,

JH |s=0= d exp0 |(x,p) (H) = H.

Now,

∇̂X JH |s=0 = ∇̂
ds

∂

∂s1

(
exps(cH (s1))

) ∣∣∣
s=0,s1=0

= ∇̂
ds1

∂

∂s

(
exps(cH (s1))

) ∣∣∣
s=0,s1=0

= ∇̂H X

= H(pμ)Hor(x,p)(eμ) + pμ∇̂HHor(x,p)(eμ)

= −vμ pν�λ
μνHor(x,p)(eμ)

+ pμ

(
∇HHor(x,p)(eμ) + 1

2
g(∇HHor(x,p)(eμ), N )V

)

= −vμ pν�λ
μνHor(x,p)(eμ) + pμHor(x,p)(∇veμ)

− 1

2
pμVer(x,p)(R(v, eμ)p) − pμ

4p4 g(R(v, eμ)p, p)

= 1

2
Ver(x,p)(R(p, v)p),

by Proposition 4.4.
Similarly, if cV1 : (−ε, ε) → TM is a curve such that cV1(0) = (x, p), c′

V1
(0) =

V1 (for example cV1(s1) = (x, p + s1v)), then (s, s1) → exps(cV1(s1)) is again a
variation of geodesics. Therefore

d exps |(x,p) (V1) = d

ds1

(
exps(cV1(s1))

) ∣∣∣∣
s1=0

,

is again a Jacobi field. Clearly, as above,

JV1 |s=0= d exp0 |(x,p) (V1) = V1.
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The first derivative can again be computed, using Proposition 4.4, as follows.

∇̂X JV1 |s=0 = ∇̂
ds

∂

∂s1

(
exps(cV1(s1))

) ∣∣∣
s=0,s1=0

= ∇̂
ds1

∂

∂s

(
exps(cV1(s1))

) ∣∣∣
s=0,s1=0

= ∇̂V1 X

= V1(p
μ)Hor(x,p)(eμ) + pμ∇̂V1 Hor(x,p)(eμ)

= Hor(x,p)(v) + pμ

(
∇V1 Hor(x,p)(eμ) + 1

2
g(∇V1 Hor(x,p)(eμ), N )V

)

= Hor(x,p)(v) + 1

2
Hor(x,p)(R(p, v)p).

��

5 The Main Theorem and Bootstrap Assumptions

5.1 Characteristic Initial Data

In Theorem 5.1 below, characteristic initial data, prescribed on the hypersurfaces {v =
v0}, {u = u0}, satisfying a certain smallness condition is considered. Of course, in the
setting of Theorem 1.1, such data arises as induced data on two transversely intersecting
null hypersurfaces, whose existence is guaranteed by a Cauchy stability argument and
an application of a result of Klainerman–Nicolò [21] on the vacuum equations (6). See
Section 1.2 and Section 1.3 where this argument is discussed. Characteristic initial data
for Theorem 5.1 can, however, be prescribed independently of the setting of Theorem
1.1. Suppose “free data”, consisting of a “seed” Su,v–tensor density of weight −1, /̂g

v0 ,
on [u0, u f ]×S2, a “seed” Su,v–tensor density of weight −1, /̂g

u0 , on [v0,∞)×S2, and
a compactly supported function f0 : P|{v=v0} → [0,∞), along with certain quantities
on the sphere of intersection Su0,v0 , are given. Here P|{v=v0} denotes the mass shell
over the initial hypersurfaces {v = v0}. The characteristic constraint equations for the
system (1)–(2) take the form of ordinary differential equations and can be integrated to
give all of the geometric quantities �,ψ, T , along with their derivatives, on {v = v0}
and {u = u0} once the above “free data” is prescribed. These geometric quantities,
on {v = v0} and {u = u0}, are what is referred to as the “characteristic initial data”
in the statement of Theorem 5.1. Appropriate smallness conditions can be made for
the “free data” (and their derivatives), along with appropriate decay conditions for the
seed /̂g

u0 , in order to ensure the conditions of Theorem 5.1 are met.
The prescription of such characteristic “free data”, and the determining of the

geometric quantities from them, will not be discussed further here. The interested
reader is directed to [9], where this is discussed in great detail in a related setting. See
also [13].
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5.2 The Main Existence Theorem

Define the norms

F1
v0,v

(u) :=
3∑

k=0

∑
Dk

∫ v

v0

∫
Su,v′

r5|Dkα|2 + r4|Dkβ|2 + r2(|Dkρ|2 + |Dkσ |2)

+ |Dkβ|2dμSu,v′ dv′,

F2
u0,u(v) :=

3∑
k=0

∑
Dk

∫ u

u0

∫
Su′,v

r5|Dkβ|2 + r4(|Dkρ|2

+ |Dkσ |2) + r2|Dkβ|2 + |α|2dμSu′,v�
2du′,

where the second summation is taken over Dk ∈ { /∇3, r /∇4, r /∇}k and dμSu,v denotes
the volume measure on Su,v .

The main theorem can now be stated more precisely as follows.

Theorem 5.1 There exists a v0 large and an ε0 small such that the following holds.
Given smooth characteristic initial data for the massless Einstein–Vlasov system

(1)–(2) on the characteristic initial hypersurfaces {v = v0}, {u = u0}, suppose the
data on {v = v0} satisfy

F2
u0,u f

(v0) +
∑
k≤3

∫ u f

u0

∫
Su′,v0

r6|Dkα|2dμSu′,v0
du′

+
∑
k≤1

sup
u0≤u≤u f

‖r 7
2 Dkα‖L4(Su,v0 ) < ε0,

∑
(4)

� p

∑
k≤3

sup
u0≤u≤u f

r(u, v0)
2p−2

∫
Su,v0

|Dk
(4)

� p|2dμSu,v0
< ε0,

sup
{v=v0}

4∑
k=0

7∑
i1,...,ik=1

|Ẽi1 . . . Ẽik f | < ε0,

∑
k≤2

∑
(4)

� p

sup
u0≤u≤u f

r(u, v0)
2p−2

∫
Su,v0

|Dk
(4)

� p|2dμSu,v0

+
∑
(4)

� p

∫ u f

u0

∫
Su′,v0

r2p−2|D3
(4)

� p|2dμSu′,v0
du′ < ε0,

∫ u f

u0

∫
Su′,v0

∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2 dμSu′,v0

du′ < ε0,
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and the data on {u = u0} satisfy,

F1
v0,∞(u0) +

∑
k≤3

∫ ∞

v0

∫
Su0,v′

r−2|Dkα|2dμSu0,v′dv′ < ε0,

∑
k≤1

∑
ψp �=α

sup
v0≤v<∞

‖r p− 1
2 Dkψp‖L4(Su,v0 ) < ε0,

∑
(3)

� p

∑
k≤3

sup
v0≤v<∞

r(u0, v)2p−2
∫
Su0,v

|Dk
(3)

� p|2dμSu0,v < ε0,

f |π−1({u=u0}) = 0,

∑
k≤2

∑
(3)

� p

sup
v0≤v<∞

r(u0, v)2p−2
∫
Su0,v

|Dk
(3)

� p|2dμSu0,v

+
∑
k≤1

sup
v0≤v<∞

r(u0, v)6
∫
Su0,v

|Dkκ|2 + |Dkr /∇κ|2dμSu0,v

+
∫ ∞

v0

∫
Su0,v′

∑
(3)

� p �=κ

r2p−2|D3
(3)

� p|2 + r4|D2r /∇κ|2dμSu′,v0
du′ < ε0,

∑
k≤2

sup
v0≤v<∞

∫
Su0,v

∣∣∣Dk (/� − /�
◦)∣∣∣2 dμSu0,v

+
∫ v

v0

∫
Su0,v′

r−2
∣∣∣D3r /∇b

∣∣∣2 dμSu0,v′ < ε0,

Here κ and the � variables are defined as certain combinations of Ricci coefficients
andWeyl curvature components in Section 11, and Ẽ1, . . . , Ẽ7 is a frame for P defined
by,

Ẽi = Ei for i = 1, . . . , 4, Ẽi = p4Ei for i = 5, 6, 7,

where E1, . . . , E7 is a frame for P defined in Section 8.5. Suppose also that,

0 ≤ p4 ≤ Cp4 , 0 ≤ r2 p3 ≤ Cp3 p4, |r2 pA| ≤ CpA p
4 for A = 1, 2,

in supp f |P|{v=v0} , for some fixed constants Cp1 , . . . ,Cp4 independent of v0, and that,
in each of the two spherical coordinate charts, the components of the metric satisfy,

∣∣/gAB − /g◦
AB

∣∣ ≤ Cr,
∣∣∣/gAB − /gAB

◦
∣∣∣ ≤ C

r3 ,

for some constant C uniformly on the initial hypersurfaces {u = u0}, {v = v0}.
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Then there exists a unique solution of the Einstein–Vlasov system (1)–(2) onM =
[u0, u f ] × [v0,∞) × S2, attaining the data on {u = u0}, {v = v0}, such that

sup
u,v

(
F1

v0,v
(u) + F2

u0,u(v) +
∑
k≤3

∑
�p

r(u, v)2p−2
∫
Su,v

|Dk�p|2dμSu,v

+
∑
k≤2

∑
Tp

r(u, v)p|DkTp| +
∑
k≤3

∑
Tp

(∫ u

u0

∫
Su′,v

r(u′, v)2p−2|DkTp|2dμSu′,vdu
′

+
∫ v

v0

∫
Su,v′

r(u, v′)2p−4|DkTp|2dμSu,v′ dv′
)

+
∑
k≤4

∑
Tp

∫ u

u0

∫ v

v0

∫
Su′,v′

r(u′, v′)2p−4|DkTp|2dμSu′,v′dv′du′
)

≤ C,

where C is a constant which can be made arbitrarily small provided ε0 and 1
v0

are
taken sufficiently small. Moreover one also has explicit decay rates for the size of
supp f |Px ⊂ Px as v(x) → ∞ and explicit bounds on weighted L2 norms of the
� variables. See Section 7 and Section 11 respectively. Finally, if u f was chosen
sufficiently large, f = 0 on the mass shell over any point x ∈ M such that u(x) ≥
u f − 1.

The L4 norms of the Weyl curvature components are required for the Sobolev
inequalities on the null hypersurfaces. See Section 6.

5.3 Bootstrap Assumptions

The proof of Theorem 5.1 is obtained through a bootstrap argument, so consider the
following bootstrap assumptions for Ricci coefficients

r2p−2
∫
Su,v

|Dk�p|2dμSu,v ≤ C, (66)

for k = 0, 1, 2, the spherical Christoffel symbols,

∫
Su,v

|Dk (/� − /�
◦) |2dμSu,v +

∫
Su,v

|Dk /∇3
(
/� − /�

◦) |2dμSu,v

+
∫
Su,v

|Dkr /∇4
(
/� − /�

◦) |2dμSu,v ≤ C,

(67)

for k = 0, 1, 2, for Weyl curvature components

F1
v0,v

(u) ≤ C, F2
u0,u(v) ≤ C, (68)
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and for the energy momentum tensor components,

∑
k≤2

r p|DTp| +
∑
k≤3

(∫ u

u0

∫
Su′,v

r(u′, v)2p−2|DkTp|2dμSu′,vdu
′

+
∫ v

v0

∫
Su,v′

r(u, v′)2p−4|DkTp|2dμSu,v′ dv′
)

+
∑
k≤4

∑
Tp

∫ u

u0

∫ v

v0

∫
Su′,v′

r(u′, v′)2p−4|DkTp|2dμSu′,v′ dv′du′ ≤ C,

(69)

where C is some small constant23. Moreover, since a derivative of b appears in the
expression for /∇4eA, consider also the bootstrap assumption for an additional deriva-
tive of b, ∫ v

v0

∫
Su,v′

r−2|D3(r /∇)b|2dμSu,v′ dv′ ≤ C, (70)

and also for /� − /�
◦ at the top order,∫ u

u0

∫
Su′,v

∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2 dμSu′,vdu

′ ≤ C . (71)

Recall that /� − /�
◦ is a geometric object, an Su,v (1, 2) tensor, and so its covariant

derivatives are well defined.
Note that, since the volume form of Su,v grows like r2, (66) is consistent with

the expectation that �p behaves like 1
r p . Moreover, (67), (71) is consistent with the

expectation that |/�− /�
◦| decays like 1

r , or equivalently (by Proposition 6.3 below) that

the components /�
C
AB − /�

◦C
AB behave like 1 with respect to r . Since the /�

◦C
AB behave

like 1, this implies the components /�
C
AB also behave like 1 and hence that r |/�| ≤ C

where,

|/�|2 = /gAA′
/gBB

′
/gCC ′ /�

C
AB /�

C ′
A′B′ .

These pointwise bounds for lower order derivatives are derived from the bootstrap
assumptions (67), (71) via Sobolev inequalities in Section 6. The covariant derivatives
of /� are defined in each coordinate system as,

/∇3 /�
C
AB = e3

(
/�
C
AB

)
− χ

A
D /�

C
DB − χ

B
D /�

C
AD + χ

D
C /�

D
AB,

/∇4 /�
C
AB = e4

(
/�
C
AB

)
−
(
χA

D − /∇ Ab
D + bE /�

D
AE

)
/�
C
DB

−
(
χB

D − /∇Bb
D + bE /�

D
BE

)
/�
C
AD +

(
χD

C − /∇Db
C + bE /�

C
DE

)
/�
D
AB,

/∇D /�
C
AB = eD

(
/�
C
AB

)
− /�

E
DA /�

C
EB − /�

E
DB /�

C
AE + /�

C
DE /�

E
AB,

23 In Sections 6 and 8 smallness conditions on C will be made, but it is otherwise arbitrary.

123



Stability of Minkowski Space for Massless Einstein... Page 55 of 177 9

Finally, note also that (70) is consistent with b = �1. Since b is only estimated on
an outgoing null hypersurface at the top order though, the Sobolev Inequalities of the
next section only allow us to conclude

r
1
2 |Dr /∇b| ≤ C,

unlike at lower orders where the Sobolev inequalities will give,

r |b|, r |Db| ≤ C.

Here and throughout the remainder of the paper C will denote a numerical constant
which can change from line to line.

5.4 The Bootstrap Theorem

Theorem 5.1 will follow from the following bootstrap theorem, Theorem 5.2, via a
last slice argument.

Theorem 5.2 There exist ε0, C small and v0 large such that the following is true.Given
initial data satisfying the restrictions of Theorem 5.1, let A denote a characteristic
rectangle of the form A = [u0, u′] × [v0, v

′] × S2 ⊂ M, with u0 < u′ ≤ u f ,
v0 < v′ < ∞, such that a solution to the Einstein–Vlasov system (1)–(2), attaining
the given data, exists in A and, for any x ∈ A, the bootstrap assumptions (66)–(71)
hold for (u, v) = (u(x), v(x)).

If x ∈ A, then the bounds (66)–(71) in fact hold at x with the constant C replaced

by C
2 .

Sections 6–11 are devoted to the proof of Theorem 5.2, which follows from Propo-
sitions 8.1, 9.3, 10.1, 10.2, 10.4, 11.10. The proof of Theorem 5.1, using a last slice
argument, is outlined in Section 12.

6 Sobolev Inequalities

The Sobolev inequalities shown in this section will allow one to obtain L∞ estimates
on the spheres for quantities through the L2 bootstrap estimates (66)–(71). They are
shown to hold in the setting of Theorem 5.2, i. e. for x ∈ A, and are derived from the
isoperimetric inequality for each sphere Su,v: if f is a function which is integrable on
Su,v with integrable derivative, then f is square integrable and

∫
Su,v

(
f − f

)2
dμSu,v ≤ I (Su,v)

(∫
Su,v

| /∇ f |dμSu,v

)2

, (72)

where

f := 1

Area(Su,v)

∫
Su,v

f dμSu,v ,
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denotes the average of f on Su,v , and I (Su,v) denotes the isoperimetric constant of
Su,v:

I (Su,v) := sup
U

min{Area(U ), Area(Uc)}
(Perimeter(∂U ))2 ,

where the supremum is taken over all domains U ⊂ Su,v with C1 boundary ∂U in
Su,v .

The following Sobolev inequalities are standard, see e.g. Chapter 5.2 of [9].

Lemma 6.1 Given a compact Riemannian manifold (S, /g), let ξ be a tensor field on
S which is square integrable with square integrable first covariant derivative. Then
ξ ∈ L4(S) and

1

(Area(S))1/4

(∫
S
|ξ |4dμS

)1/4

≤ C
√
I ′(S)

(∫
S
| /∇ξ |2 + 1

Area(S)
|ξ |2dμS

)1/2

,

where I ′(S) := max{I (S), 1}, and C is a numerical constant independent of (S, /g).

Lemma 6.2 If ξ is a tensor field on S such that ξ, /∇ξ ∈ L4(S), then

sup
S

|ξ | ≤ C
√
I ′(S)(Area(S))1/4

(∫
S
| /∇ξ |4 + 1

(Area(S))2 |ξ |4dμS

)1/4

,

where again C is independent of (S, /g).

Under the assumption that the components of /g satisfy,

∣∣/gAB − /g◦
AB

∣∣ ≤ Cr,

for some constant C > 0. It follows that

|Area(Su,v, /g) − 4πr2| = |Area(Su,v, /g) − Area(Su,v, /g◦)| < Cr

and hence there exist constants c,C > 0 such that

cr(u, v) ≤ √
Area(Su,v) ≤ Cr(u, v). (73)

Using this fact, Lemma 6.1 and Lemma 6.2 can be combined to give

r‖ξ‖L∞(Su,v) ≤ C I ′(Su,v)(‖r /∇r /∇ξ‖L2(Su,v)
+ ‖r /∇ξ‖L2(Su,v)

+ ‖ξ‖L2(Su,v)). (74)

Thus, in order to gain global pointwise control over the Ricci coefficients, curvature
components and energy momentum tensor components, it remains to gain control over
the isoperimetric constants I (Su,v). We first show the above bounds on the components
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of /g hold under the following bootstrap assumptions. Let A′ ⊂ A be the set of points
x ∈ A such that,

� ≤ C0, (75)∣∣∣∣trχ + 2

r

∣∣∣∣ ≤ C0

r2 , (76)

∣∣∣χ̂
∣∣∣ ≤ C0

r
, (77)

for some constant C0, for all points y ∈ A such that u(y) ≤ u(x), v(y) ≤ v(x).

Proposition 6.3 If x ∈ A′ then, in each of the two spherical charts defined in Section
2.1,

∣∣/gAB − /g◦
AB

∣∣ ≤ Cr, and
∣∣∣/gAB − /gAB

◦
∣∣∣ ≤ C

r3 ,

at x. In particular,

∣∣/gAB

∣∣ ≤ Cr2, and
∣∣∣/gAB

∣∣∣ ≤ C

r2 .

Proof Recall the first variation formula (54) which implies that,

∂u

(
r−2

/gAB

)
= 2

r3 /gAB + 2�

r2 χ
AB

,

and hence,

∂u

(
log det

/g

r2

)
= r2

/gAB∂u

(
r−2

/gAB

)
= 2�

(
trχ + 2

r

)
+ 4

r
(1 − �) .

This gives,

e
− ∫ uu0

∣∣∣2�
(

trχ+ 2
r

)
+ 4

r (1−�)

∣∣∣du′ ≤ det /g
r2 (u)

det /g
r2 (u0)

≤ e
∫ u
u0

∣∣∣2�
(

trχ+ 2
r

)
+ 4

r (1−�)

∣∣∣du′
,

and hence, using the assumption that

c det γ ≤ det
/g

r2 (u0) ≤ C det γ,

for some constants C, c > 0, where γ is the round metric, and the bootstrap assump-
tions (75)–(77),

c det γ ≤ det
/g

r2 (u) ≤ C det γ.
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Let λ and � denote the eigenvalues of /gAB
r2 such that 0 < λ ≤ �. There exists

v = (v1, v2) such that max{|v1|, |v2|} and,

/g

r2 v = �v,

i.e.,

�v1 = /g11

r2 v1 + /g12

r2 v2 and �v2 = /g21

r2 v1 + /g22

r2 v2.

Hence,

� ≤ 2
∑
A,B

|/gAB |
r2 ,

and

∣∣∣r2
/gAB

∣∣∣ =
∣∣∣∣∣
r−2

/gA′B′
det r−2/g

∣∣∣∣∣ =
∣∣r−2

/gA′B′
∣∣

λ�
≥ 1

λ
≥ 1

�
,

i.e.

1 ≤ �

∣∣∣r2
/gAB

∣∣∣ .
This implies that,

∑
A,B

|χ
AB

|2 ≤
∑

A,B,C,D

|χ
AB

||χ
CD

| ≤ �2r4
/gAC

/gBDχ
AB

χ
CD

≤ 2|χ |2
∑
A,B

|/gAB |2.

Returning now to the first variational formula (54),

∣∣/gAB(u) − /gAB(u0)
∣∣ ≤

∫ u

u0

∣∣∂u/gAB

∣∣ du′ ≤
∫ u

u0

2
∣∣∣�χ

AB

∣∣∣ du′,

summing over A, B and using the above bounds for the components of χ this gives,

∑
A,B

∣∣/gAB(u) − /gAB(u0)
∣∣ ≤

∫ u

u0

4�|χ |
∑
A,B

|/gAB |du′

≤
∫ u

u0

4�|χ |
∑
A,B

|/gAB(u′) − /gAB(u0)|du′ +
∫ u

u0

4�|χ |du′∑
A,B

|/gAB(u0)|.

Using again the bootstrap assumptions (75)–(77) and the fact that,

∑
A,B

∣∣/gAB(u0)
∣∣ ≤ Cr(u0)

2,
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the Grönwall inequality implies,

∑
A,B

∣∣/gAB(u) − /gAB(u0)
∣∣ ≤ Cr.

The first result then follows from the fact that,

∑
A,B

∣∣/gAB(u0) − /g◦
AB

∣∣ ≤ Cr.

The result for /gAB follows from this and the bounds on det /g above. ��
If ξ is a (0, k) Su,v tensor such that |ξ | ≤ C

r p , then this proposition implies that the
components of ξ satisfy

|ξA1...Ak | ≤ C

r p−k
.

This fact will be used in Section 8, together with the bootstrap assumptions and Sobolev
inequalities, to give bounds on the components of the Ricci coefficients, Weyl curvature
components and energy momentum tensor components.

Lemma 6.4 If x ∈ A′ then, for u = u(x), v = v(x),

I (Su,v) ≤ 1

π
,

so that the constant I ′(Su,v) in Lemma 6.1 and Lemma 6.2 is equal to 1.

Proof The proof proceeds as in Chapter 5 of [9]. ��
Combining the equation (74) with the bootstrap assumptions (66) then gives

sup
u,v

(
r p‖Dk�p‖L∞(Su,v)

)
≤ CC, (78)

for k = 0, 1. In particular, by taking C to be sufficiently small, the bootstrap assump-
tions (75)–(77) can be recovered with better constants. Hence A′ ⊂ A is open, closed,
connected and non-empty, and therefore A′ = A.

Note that, provided C is taken to be sufficiently small, this implies that

1

2
≤ �2 ≤ 2.

This fact will be used throughout.
Finally, to obtain pointwise bounds for curvature on the spheres from bounds on

F1
v0,v

(u), F2
u0,u(v), an additional Sobolev inequality is required.
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Lemma 6.5 If ξ is an Su,v tensor then, for any weight q,

sup
v0≤v′≤v

‖rqξ‖L4(Su,v′ ) ≤ C

(
‖rqξ‖L4(Su,v0 )

+
(∫ v

v0

r2q−2
∫
Su,v′

|r /∇4ξ |2 + |r /∇ξ |2 + |ξ |2dμSu,v′ dv′
)1/2)

,

and

sup
u0≤u′≤u

‖rqξ‖L4(Su′,v) ≤ C

(
‖rqξ‖L4(Su0,v)

+
(∫ u

u0

r2q−1
∫
Su′,v

| /∇3ξ |2 + |r /∇ξ |2 + |ξ |2dμSu′,vdu
′
)1/2)

.

Lemma 6.5 together with Lemma 6.2, equation (73) and the bound on the isoperi-
metric constant combine to give the inequalities,

sup
v0≤v′≤v

‖r w+3
2 ξ‖L∞(Su,v′ ) ≤ C

(
‖r w+2

2 ξ‖L4(Su,v0 ) + ‖r w+2
2 r /∇ξ‖L4(Su,v0 )

+
(∫ v

v0

rw

∫
Su,v′

|r /∇4r /∇ξ |2 + |(r /∇)2ξ |2 + |r /∇4ξ |2

+|r /∇ξ |2 + |ξ |2dμSu,v′ dv′) 1
2
)

,

and

sup
u0≤u′≤u

‖r w+2
2 ξ‖L∞(Su′,v) ≤ C

(
‖r w+1

2 ξ‖L4(Su0,v)
+ ‖r w+1

2 r /∇ξ‖L4(Su0,v)

+
(∫ u

u0

rw

∫
Su′,v

| /∇3r /∇ξ |2 + |(r /∇)2ξ |2 + | /∇3ξ |2

+|r /∇ξ |2 + |ξ |2dμSu′,vdu
′) 1

2
)

,

for any weight w. The bootstrap assumptions (68) then give the following pointwise
bounds on curvature,

sup
u,v

(
r p‖Dkψp‖L∞(Su,v)

)
≤ C, (79)

for k = 0, 1.
Finally, note also that, whilst (78) give the pointwise bounds

r |Dkb| ≤ C,
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for k = 0, 1, the bootstrap assumption (70) together with Lemma 6.5 give the addi-
tional pointwise bounds,

r
1
2 |Dr /∇b| ≤ C,

and (67), (71) give,

r |Dk /�| ≤ C,

for k = 0, 1, as discussed at the end of Section 5.

7 Geometry of Null Geodesics and the Support of f

The decay of the components of the energy momentum tensor come from the decay of
the size of the support of f in Px as r(x) → ∞. The estimates on the size of the support
of f form the content of this section. It will also be shown that, provided u f is chosen
suitably large, the matter is supported to the past of the hypersurface {u = u f − 1}.
Recall that the results of this section are shown in the setting of Theorem 5.2, so that
they hold for points x ∈ A.

Throughout this section γ will denote a null geodesic emanating from {v = v0} (so
that v(γ (0)) = v0) such that (γ (0), γ̇ (0)) ∈ supp( f ). The tangent vector to γ at time
s can be written with respect to the double null frame as

γ̇ (s) = pA(s)eA + p3(s)e3 + p4(s)e4.

Note that in the next section notation will change slightly (γ (0) there will be a point
in {v > v0} ∩ π(supp( f )) and the parameter s will always be negative).

Recall that, by assumption, (γ (0), γ̇ (0)) ∈ supp( f ) implies that,

0 ≤ p4(0) ≤ Cp4 , 0 ≤ r(0)2 p3(0) ≤ Cp3 p4(0),

|r(0)2 pA(0)| ≤ CpA p
4(0) for A = 1, 2,

for some fixed constants Cp1 , . . . ,Cp4 independent of v0.
The main result of this section is the following.

Proposition 7.1 For such a geodesic γ ,

1

2
p4(0) ≤ p4(s) ≤ 3

2
p4(0), 0 ≤ r(s)2 p3(s) ≤ 2Cp3 p4(0),

|r(s)2 pA(s)| ≤ 2CpA p
4(0) for A = 1, 2,

for all s ≥ 0 such that γ (s) ∈ A, provided v0 is taken suitably large.
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The proof of Proposition 7.1 is obtained through a bootstrap argument, so suppose
s1 ∈ (0,∞) is such that,

1

4
p4(0) ≤ p4(s) ≤ 2p4(0) (80)

r(s)2 p3(s) ≤ 2Cp3 p4(0) (81)

|r(s)2 pA(s)| ≤ 2Cp3 p4(0) for A = 1, 2, (82)

for all 0 ≤ s ≤ s1. Clearly the set of all such s1 is a non-empty, closed, connected
subset of (0,∞). The goal is to show it is also open, and hence equal to (0,∞), by
improving the constants.

The following fact, proved assuming the above bootstrap assumptions hold, is used
for integrating the geodesic equations in the proof of Proposition 7.1.

Lemma 7.2 Along such a geodesic γ ,

p4(s)

ṙ(s)
≤ 2,

where r(s) = r(γ (s)) and ṙ(s) = dr
ds (s), provided v0 is taken sufficiently large and

γ (s) ∈ A.

Proof Recall that ∣∣∣∣ 1

�2 − 1

∣∣∣∣ ≤ 1

2
,

providedC is sufficiently small, and so �2 > 1
2 . Since u̇(s) = p3(s)

�2 and v̇(s) = p4(s),
this and the bootstrap assumptions (80), (81) then imply that,

∣∣∣∣ p
4(s)

ṙ(s)

∣∣∣∣ =
∣∣∣∣∣∣

p4(s)

p4(s) − p3(s)
�2

∣∣∣∣∣∣ ≤ 1

1 − 2Cp3 p4(0) 1
r(s)2

1
2

1
4 p

4(0)

= 1

1 − 16Cp3

r(s)2

≤ 2,

provided v0, and hence r(0) is taken sufficiently large. ��
Proof of Proposition 7.1 The geodesic equation for p4,

ṗ4(s) + �4
μν(s)p

μ(s)pν(s) = 0,

written using the notation for the Ricci coefficients introduced in Section 2.3 takes the
form

ṗ4(s) = 1

2r
/gAB p

A(s)pB(s) − 1

4

(
trχ + 2

r

)
/gAB p

A(s)pB(s)

− 1

2
χ̂

AB
pA(s)pB(s) − 2η

A
pA(s)p4(s) − ω(p4(s))2.
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Using the fact that the pointwise bounds for � give,

∣∣/gAB

∣∣ ≤ Cr2,

∣∣∣∣trχ + 2

r

∣∣∣∣ ≤ C

r2 ,

∣∣∣χ̂ AB

∣∣∣ ≤ Cr,
∣∣∣ηA

∣∣∣ ≤ C

r
, |ω| ≤ C

r3 ,

the bootstrap assumptions (80)–(82) then imply that,

∣∣∣ ṗ4(s)
∣∣∣ ≤ C

(
p4(0)

)2
r(s)3 .

Hence, for any s ∈ [0, s1],
∣∣∣p4(s) − p4(0)

∣∣∣ ≤ Cp4(0)

r(0)2

by Lemma 7.2, and,

(
1 − C

r(0)2

)
p4(0) ≤ p4(s) ≤

(
1 + C

r(0)2

)
p4(0).

Taking v0, and hence r(0), sufficiently large then gives,

1

2
p4(0) ≤ p4(s) ≤ 3

2
p4(0),

improving the bootstrap assumption (80).
Consider now the geodesic equation for p3(s),

ṗ3(s) = − 1

2r
/gAB p

A(s)pB(s) − 1

2
χ̂AB p

A(s)pB(s) − 1

4

(
trχ − 2

r

)

× /gAB p
A(s)pB(s) −

(
ηA − η

A

)
pA(s)p3(s) + ωp3(s)p4(s).

Recalling that,

ṙ(s) = p4(s) − p3(s)

�2 ,

this then gives,

dr(s)2 p3(s)

ds
= 2r

(
p4(s) − p3(s)

�2

)
p3(s) − r

2
/gAB p

A(s)pB(s)

− r2

2
χ̂AB p

A(s)pB(s) − r2

4

(
trχ − 2

r

)
/gAB p

A(s)pB(s)

− r2
(
ηA − η

A

)
pA(s)p3(s) + r2ωp3(s)p4(s)
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= −2r
p3(s)

�2 p3(s) − r2

2
χ̂AB p

A(s)pB(s) − r2

4

(
trχ

2

r

)

× /gAB p
A(s)pB(s) − r2

(
ηA − η

A

)
pA(s)p3(s) + r2ωp3(s)p4(s),

where the mass shell relation (21) has been used to obtain the cancellation. Inserting the
pointwise bounds for the components of � and the bootstrap assumptions (80)–(82),
this gives,

∣∣∣∣dr(s)
2 p3(s)

ds

∣∣∣∣ ≤ C
(
p4(0)

)2
r(s)2 .

Again, integrating from s = 0 gives,

∣∣∣r(s)2 p3(s) − r(0)2 p3(0)

∣∣∣ ≤ Cp4(0)

r(0)
,

and using the assumption on p3(0),

r(0)2 p3(0) − Cp4(0)

r(0)
≤ r(s)2 p3(s) ≤ Cp3

(
1 + C

r(0)

)
p4(0).

If v0, and hence r(0) is sufficiently large this gives,

0 ≤ r(s)2 p3(s) ≤ 3

2
Cp3 p

4(0),

hence improving the bootstrap assumption (81).
Finally, consider the geodesic equation for pA(s), for A = 1, 2,

ṗA = −2ṙ

r
pA − /�

A
BC pB pC +

(
1 − 1

�2

)
2

r
pA p3

−
(

trχ + 2

r

)
pA p3 −

(
trχ − 2

r

)
pA p4 − 2χ̂

A
B
pB p3

− 2χ̂ A
B pB p4 + (

/∇eB b
)A

pB p4 − bC /�
A
BC pB p4 − 2p3 p4(ηA + ηA),

which similarly gives,

dr(s)2 pA(s)

ds
= −r2 /�

A
BC pB pC +

(
1 − 1

�2

)
2rpA p3 − r2

(
trχ + 2

r

)
pA p3

− r2
(

trχ − 2

r

)
pA p4 − 2r2χ̂

A
B
pB p3 − 2r2χ̂ A

B pB p4

+ r2 ( /∇eB b
)A

pB p4 − r2bC /�
A
BC pB p4 − 2r2 p3 p4(ηA + ηA),
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and using the bootstrap assumptions (80)–(82),

∣∣∣∣dr(s)
2 pA(s)

ds

∣∣∣∣ ≤ C
(
p4(0)

)2
r(s)2 .

Integrating and again taking v0 large similarly gives,

∣∣∣r(s)2 pA(s)
∣∣∣ ≤ 3

2
CpA p

4(0),

improving the bootstrap assumption (82).
The set of all s1 such that (80)–(82) hold for all 0 ≤ s ≤ s1 is therefore a non-empty,

open, closed, connected subset of (0,∞), and hence equal to (0,∞). ��
Finally we can show that π(supp( f )) is contained in {u ≤ u f − 1} for some u f

large.

Proposition 7.3 For a geodesic γ as above,

u(s) ≤ u f − 1,

for all s ≥ 0 provided u f is chosen sufficiently large and γ (s) ∈ A.

Proof Recall that u̇(s) = p3(s)
�2 . Since �2 ≥ 1

2 , Proposition 7.1 implies that

|u̇(s)| ≤ 4Cp3
p4(0)

r(s)2 ,

and so

u(s) ≤ u(0) + 4Cp3

∫ s

0

p4(0)

r(s′)2 ds
′ ≤ u(0) + 64Cp3

∫ r(s)

r(0)

1

r2 dr ≤ u(0) + 32Cp3

r(0)
.

The result then holds if

u f > sup
{v=v0}

(
u + 32Cp3

r

)
+ 1.

��

8 Estimates for the Energy Momentum Tensor

Recall the notation from Section 3, and the set A from Theorem 5.2. The main result
of this section is the following.
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Proposition 8.1 If x ∈ A then, for u = u(x), v = v(x), 0 ≤ k ≤ 2,

(
r p|DkTp|

)
(u, v) ≤ Cε0,

for k ≤ 3, ∫ u

u0

∫
Su′,v

r(u′, v)2p−2|DkTp|2dμSu′,vdu
′ ≤ Cε0, (83)

and, ∫ v

v0

∫
Su,v′

r(u, v′)2p−4|DkTp|2dμSu,v′ dv′ ≤ Cε0, (84)

and for k ≤ 4,

∫ u

u0

∫ v

v0

∫
Su′,v′

r(u′, v′)2p−4|DkTp|2dμSu′,v′ dv′du′ ≤ Cε0, (85)

for some constant C.

Recall from Section 5 that ε0 describes the size of the data.
The main difficulty in the proof of Proposition 8.1, and in fact the main new difficulty

in this work, is estimating derivatives of f . In Section 8.1, Proposition 8.1 is reduced to
Proposition 8.2, a statement about derivatives of f . In particular, in Section 8.1 it is seen
how the zeroth order bounds, r p|Tp| ≤ C , are obtained using the results of Section 4. A
collection of operators D̃, which act on functions h : P → R, akin to the collection D
introduced in Section 3.3, is defined and used in the formulation of Proposition 8.2. In
Section 8.2 additional schematic notation is introduced. This notation is used through-
out the remainder of Section 8. In Section 8.3 seven more operators, V(0), . . . , V(6), are
introduced and Proposition 8.2 is further reduced to Proposition 8.6, which involves
bounds on combinations of the six operators V(1), . . . , V(6) applied to f . The main
observation is that the Vlasov equation can be used to replaceV(0) f := rHor(x,p)(e4) f
with a combination of operators from V(1), . . . , V(6) (such that the coefficients have
desirable weights) applied to f . The operators V(1), . . . , V(6), in Section 8.4, are then
used to define corresponding Jacobi fields (with respect to the Sasaki metric, defined
in Section 4) J(1), . . . , J(6). In Section 8.5 two frames for the mass shell, {Ei } and
{Fi }, are defined. In Sections 8.6 and 8.7 bounds for the components, with respect
to the frame {Ei }, of the Jacobi fields, along with their derivatives, are obtained. It
is transport estimates for the Jacobi equation which are used to obtain these bounds.
For such estimates it is convenient to use the parallel frame {Fi }, and it is therefore
also important to control the change of frame matrix �, also defined in Section 8.5. In
Section 8.8 it is shown how Proposition 8.6 follows from the bounds on derivatives of
the components of the Jacobi fields obtained in Sections 8.6 and 8.7, thus completing
the proof of Proposition 8.1.
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For a function h : P → R, define Tp[h] by replacing f with h in the definition of
Tp. So for example,

/T 44[h] =
∫
Px

h p4 p4dμPx , and /T [h]AB =
∫
Px

h pA pBdμPx .

In particular

Tp[ f ] = Tp.

This notation will be used throughout this section. Finally, it is assumed throughout
this section that x ∈ A.

8.1 Estimates for T Assuming Estimates for f

Consider the set of operators {e3, re4, re1, re2}. The notation D̃ will be used to
schematically denote an arbitrary operator in this set. These operators act on func-
tions h : P → R on the mass shell where, for example,

e3(h) = 1

�2 ∂uh, e4(h) = ∂vh + bA∂θ Ah,

in the coordinate system (u, v, θ1, θ2, p1, p2, p4) on P (as usual it is assumed we are
working in one of the two fixed spherical coordinate charts).

Given a collection of derivative operators from the set {r /∇, /∇3, r /∇4}, say Dk , this
will act on (0,m) Su,v tensors and give a (0, l + m) Su,v tensor, where l ≤ k is the
number of times r /∇ appears in Dk . Let D̃k

C1,...,Cl
denote the corresponding collection

of derivative operators in D̃ where, in Dk(eC1 , . . . , eCl ), each r /∇4 is replaced by re4,
each /∇3 is replaced by e3, and each r /∇Ci is replaced by reCi . So for example if k = 4
and

D4 = (r /∇4)(r /∇) /∇3(r /∇),

then

D̃4
C1,C2

= re4(reC1(e3(reC2(·)))).

Using the results of Section 7, the proof of the k = 0 case of Proposition 8.1 can
immediately be given. First, however, Proposition 8.2, a result about D̃ derivatives of
f , is stated. The full proof of Proposition 8.1, assuming Proposition 8.2, is then given
after Proposition 8.3, Proposition 8.4 and Lemma 8.5, which relate D derivatives of
T to D̃ derivatives of f .

Proposition 8.2 If x ∈ A then, for u = u(x), v = v(x), k = 1, 2,

(
r p
∣∣∣Tp

[
D̃k f

]∣∣∣
)

(u, v) ≤ Cε0,
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for 1 ≤ k ≤ 3,

∫ u

u0

∫
Su′,v

r(u′, v)2p−2
∣∣∣Tp

[
D̃k f

]∣∣∣2 dμSu′,vdu
′ ≤ Cε0,

and for 1 ≤ k ≤ 4,

∫ u

u0

∫ v

v0

∫
Su′,v′

r(u′, v′)2p−4
∣∣∣Tp

[
D̃k f

]∣∣∣2 dμSu′,v′ dv′du′ ≤ Cε0.

In the above,

∣∣∣Tp[D̃k f ]
∣∣∣2 = /gC1D1 . . . /gCl DlTp[D̃k

C1,...,Cl
f ] · Tp[D̃k

D1,...,Dl
f ].

The proof of Proposition 8.2 is given in Sections 8.3–8.8.

Proposition 8.3 Given h : P → R,

/∇3Tp[h] = Tp[e3(h)] + (�2 + �1 + h1) · Tp[h] + Tp[e3(log p3)h]
r /∇4Tp[h] = Tp[re4(h)] + (r�2 + r /∇b + r /� · �1 + 1) · Tp[h] + Tp[re4(log p3)h]
r /∇CTp[h] = Tp[reC (h)] + (

r /� · Tp[h]) (eC ) + Tp[reC (log p3)h],

where the last line is true for C = 1, 2.

Proof This follows by directly computing the derivatives of each Tp. For example,

/∇4 /T 34[h](x) = e4

(∫
Px

hp3 p4

√
det /g

p4 dp1dp2dp4

)

= 4e4

(∫
Px

hp3√det /gdp1dp2dp4
)

= 4
∫
Px

(e4(h) + htrχ) p3√det /gdp1dp2dp4

+ 4
∫
Px

he4(p
3)
√

det /gdp1dp2dp4

= /T 34[e4(h)] + trχ /T 34[h] + /T 34[e4(log p3)h],

and

(
/∇4 /T 4[h])A = 2e4

(∫
Px

hp3 pA

√
det /g

p4 dp1dp2dp4

)
+ �A

4B /T 3
B

= (
/T 4[e4(h)])A+trχ /T 4[h]A+

(
[χB

A − /∇Bb
A− /�

B
AC · bC ] · /T 4[h]B

)
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+ 2
∫
Px

he4(p
3)pA

√
det /g

p4 dp1dp2dp4

= (
/T 4[e4(h)])A + trχ /T 4[h]A + ([χ − /∇b − /� · b] · /T 4[h])A

+ /T 4[e4(log p3)]A.

The other derivatives are similar. ��
Proposition 8.4 For any k ≥ 1,

DkTp[ f ](eC1 , . . . , eCl ) = Tp[D̃k
C1,...,Cl

f ] + E
[
DkTp

]
(eC1 , . . . , eCl )

where

E
[
DkTp

]
(eC1 , . . . , eCl ) =

(
DE

[
Dk−1Tp

])
(eC1 , . . . , eCl )

+ Tp

[(
D̃ log p3

)
D̃k−1 f

]
(eC1 , . . . , eCl )

+
⎛
⎝ ∑

p1+p2≥0

h p1 · �p2 + r /∇b + r /� · (�1 + 1)

⎞
⎠ · Tp[D̃k−1 f ](eC1 , . . . , eCl ),

and

E
[
Tp
] = 0.

Here l ≤ k is the number of times r /∇ appears in Dk .

Proof The proof follows by induction by writing

DkTp = D(Dk−1Tp) = D
(
Tp

[
D̃k−1 f

]
+ E

[
Dk−1Tp

])

and using the previous proposition. ��
Lemma 8.5 For 1 ≤ k ≤ 4,

|D̃k log p3| ≤ C
∑

k′≤k−1

⎛
⎝r |Dk′

/�| + |Dk′
r /∇b| +

∑
p1+p2≥0

h p1

(
|Dk′

�p2 | + h p2

)⎞⎠ ,

in supp( f ).

Proof Recall that

p3 = /gAB p
A pB

4p4 .
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Using the first variation formula (54),

e3(p
3) = χ

AB
pA pB

2p4 ,

and hence,

|e3(log p3)| =
∣∣∣∣e3(p3)

p3

∣∣∣∣ =
∣∣∣∣∣
2χ̂

AB
pA pB + trχ/gAB p

A pB

/gCD pC pD

∣∣∣∣∣ ≤
(

2|χ̂ | + |trχ |
)

,

by the Cauchy–Schwarz inequality. Similarly, using (55),

e4(p
3) =

(
χAB + /gBCeA(bC ) + /gACeB(bC )

)
pA pB

2p4 ,

and hence,

|re4(log p3)| ≤ r
(|χ̂ | + |trχ | + | /∇b| + |b||/�|) .

Finally,

eC (p3) = eC (/gAB)pA pB

4p4 =
(
/gDB

/�
D
CA + /gAD

/�
D
CB

)
pA pB

4p4 ,

hence similarly,

|reC (log p3)| ≤ 2r |/�|.

The higher order derivatives follow similarly. ��
Proof of Proposition 8.1 For k = 0 the result follows using the bounds on
p1, p2, p3, p4 in supp( f ),

|p1|, |p2|, |p3| ≤ Cp4

r2 , |p4| ≤ C,

from Proposition 7.1.
Note that

sup
P|{v=v0}

| f | ≤ ε0,

and hence, since f is preserved by the geodesic flow,

sup
P

| f | ≤ ε0.
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This fact and the above bounds imply

∣∣∣∣
∫
Px

f p4dμPx

∣∣∣∣ =
∣∣∣∣∣
∫ C

0

∫
|p1|,|p2|≤ C

r2

f p4

√
det /g(x)

p4 dp1dp2dp4

∣∣∣∣∣ ≤ Cε0

r(x)2 ,

as
∣∣√det /g(x)

∣∣ ≤ Cr(x)2. One then easily sees,

|/T 33| ≤ 4

∣∣∣∣
∫
Px

f p4 p4dμPx

∣∣∣∣ ≤ Cε0

r2 ,

|/T 34| ≤ 4

∣∣∣∣
∫
Px

f p3 p4dμPx

∣∣∣∣ ≤ Cε0

r4 ,

and

|/T 44| ≤ 4

∣∣∣∣
∫
Px

f p3 p3dμPx

∣∣∣∣ ≤ C

r4

∣∣∣∣
∫
Px

f p4 p4dμPx

∣∣∣∣ ≤ Cε0

r6 .

Moreover,

|/T 3A| ≤ 2

∣∣∣∣/gAA′

∫
Px

f pA′
p4dμPx

∣∣∣∣ ≤ C

∣∣∣∣
∫
Px

f p4 p4dμPx

∣∣∣∣ ≤ Cε0

r2 ,

|/T 4A| ≤ 2

∣∣∣∣/gAA′

∫
Px

f pA′
p3dμPx

∣∣∣∣ ≤ C

r2

∣∣∣∣
∫
Px

f p4 p4dμPx

∣∣∣∣ ≤ Cε0

r4 ,

and

|/T AB | ≤
∣∣∣∣/gAA′ /gBB′

∫
Px

f pA′
pB

′
dμPx

∣∣∣∣ ≤ C

∣∣∣∣
∫
Px

f p4 p4dμPx

∣∣∣∣ ≤ Cε0

r2 ,

so that,

|/T 3| =
√∣∣/gAB /T 3A /T 3B

∣∣ ≤ C

√
1

r2

1

r2

1

r2 = Cε0

r3 ,

|/T 4| =
√∣∣/gAB /T 4A /T 4B

∣∣ ≤ Cε0

r5
,

and

|/T | =
√∣∣/gAC /gBD /T AB /TCD

∣∣ ≤ Cε0

r4 .

For first order derivatives of Tp, Proposition 8.4 and the pointwise bounds on
�, /�, r /∇b imply that,

|DTp| ≤ C
(∣∣∣Tp

[
D̃ f

]∣∣∣+ |Tp| +
∣∣∣Tp

[
D̃ log p3 · f

]∣∣∣
)

,
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and hence Proposition 8.2 and Lemma 8.5 imply,

|DTp| ≤ Cε0

r p
.

Similarly for the second order derivatives, the pointwise estimates on �, /�, r /∇b,D�,

D/�,Dr /∇b imply that,

|D2Tp| ≤ C

(∑
k′≤2

∣∣∣Tp

[
D̃k′

f
]∣∣∣+ |DTp| +

∣∣∣DTp

[
D̃ log p3 · f

]∣∣∣

+
∣∣∣Tp

[
D̃ log p3 · D̃ f

]∣∣∣
)

,

and hence, by Proposition 8.3,

|D2Tp| ≤ C

(∑
k′≤2

∣∣∣Tp

[
D̃k′

f
]∣∣∣+ |DTp| +

∣∣∣Tp

[
D̃2 log p3 · f

]∣∣∣+
∣∣∣Tp

[
D̃ log p3 · f

]∣∣∣

+
∣∣∣Tp

[
D̃ log p3 · D̃ f

]∣∣∣+
∣∣∣Tp

[
D̃ log p3 · D̃ log p3 · D̃ f

]∣∣∣
)

.

Proposition 8.2, Lemma 8.5 and the above bounds for |DTp| therefore give,

|D2Tp| ≤ Cε0

r p
.

For the third and fourth order derivatives, Proposition 8.2, Lemma 8.5, Proposition
8.3, the pointwise estimates for �, /�, r /∇b,D�,D/�,Dr /∇b and the pointwise bounds
on T ,DT ,D2T obtained above similarly give

|D3T | ≤ C
∑
k′≤3

∣∣∣Tp

[
D̃k′

f
]∣∣∣

+ Cε0

r p

( ∑
p1+p2≥0

|h p1D
2�p2 | + |D2r /∇b| + |rD2 /�| + 1

)
,

and

|D4T | ≤ C

⎛
⎝∑

k′≤4

∣∣∣Tp

[
D̃k′

f
]∣∣∣+ |D3T |

⎞
⎠

+ Cε0

r p
∑

k′=2,3

( ∑
p1+p2≥0

|h p1D
k′
�p2 | + |Dk′

r /∇b| + |rDk′
/�| + 1

)
.

The estimates (83) and (85) now follow using Proposition 8.2 and the bootstrap
assumptions for derivatives of �, r /∇b and /�.
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To obtain (84) first compute,

∂u

(∫ v

v0

∫
Su,v′

r(u, v′)2p−4|D3Tp|2dμSu,v′ dv′
)

≤ C
∫ v

v0

∫
Su,v′

/∇3

(
r(u, v′)2p−4|D3Tp|2

)
+ trχr(u, v′)2p−4|D3Tp|2dμSu,v′ dv′

≤ C
∫ v

v0

∫
Su,v′

r(u, v′)2p−4
(
|D3Tp|2 + |D4Tp|2

)
dμSu,v′ dv′.

The result then follows by integrating from u0 to u and using (85). ��

8.2 Schematic Notation

To deal with some of the expressions which arise in the remainder of this section
it is convenient to introduce further schematic notation. Like the previous schematic
notation introduced in Section 3.1, this notation will make it easy to read off the overall
r decay of complicated expressions.

Throughout most of this section we will consider a point (x, p) ∈ P ∩ supp( f ) and
the trajectory of the geodesic flow s → exps(x, p) through this point. The trajectory
will be followed backwards to the initial hypersurface, so s will be negative. Note that

exps(x, p) = (γ (s), γ̇ (s)),

where γ is the unique geodesic in M such that γ (0) = x , γ̇ (0) = p. The expressions
exps(x, p) and (γ (s), γ̇ (s)) will be used interchangeably. Also γ̇ μ(s) and pμ(s) will
both be used to denote the μ component of γ̇ (s) with respect to the frame e1, e2, e3, e4.
Note the slight change in notation from Section 7 where γ (0) lay on the initial hyper-
surface {v = v0} and s was positive.

Recall from Section 7 that, for such a geodesic, γ̇ 4(s) will remain bounded in s
(and in fact will be comparable to γ̇ 4(0)), whilst γ̇ 1(s), γ̇ 2(s), γ̇ 3(s) will all decay
like 1

r(s)2 . The notation γ̇0 will be used to schematically denote γ̇ 4(s) and γ̇2 to

schematically denote any of γ̇ 1(s), γ̇ 2(s), γ̇ 3(s),

γ̇0 = γ̇ 4, γ̇2 = γ̇ 1, γ̇ 2, γ̇ 3,

so that,

r p|γ̇p| ≤ Cp4(0).

Certain vector fields, K , along γ will be considered later. If K 1, . . . , K 4 denote
the components of K with respect to the frame24 1

r e1,
1
r e2, e3, e4, so that,

24 Not the frame e1, . . . , e4. The reason for this will be explained later.
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K = K 1 1

r
e1 + K 2 1

r
e2 + K 3e3 + K 4e4,

then it will be shown that, for all such K considered, K 3 will always be bounded
along γ , and K 1, K 2, K 4 can grow at most like r(s). Therefore K0 will be used to
schematically denote K 3 and K−1 will schematically denote K 1, K 2, K 4,

K0 = K 3, K−1 = K 1, K 2, K 4,

so it is always true that,

r p|Kp| ≤ C.

Finally, let /e, /e−1 schematically denote the following quantities,

/e = e1, e2, /e−1 = e�
1, e

�
2,

where e�
A denotes the Su,v one-form /g(eA, ·), for A = 1, 2. This notation will be used

for schematic expressions involving the components of Weyl curvature components,
Ricci coefficients and energy momentum tensor components. If ξ is a (0, k) Su,v tensor,
write,

ξ/ek,

to schematically denote any of the components,

ξA1...Ak = ξ(eA1 , . . . , eAk ).

Note that, if r p|ξ |/g ≤ C , then the bounds, |/gAB | ≤ C
r2 imply that,

|ξ(eA1, . . . , eAk )| ≤ Crk−p,

where | · | here denotes the usual absolute value on R. For example, the sum of the
components αAB + /T AB decays like 1

r2 and is schematically written,

αAB + /T AB = ψ4/e
2 + T4/e

2 =
∑

p1+p2≥2

(ψp1 + Tp1)/e
−p2 ,

where in the summation p1 = 4, p2 = −2 for each of the two terms. Looking at
the summation on the right hand side, it is straightforward to read off that each term
should decay like 1

r2 .
Similarly, if ξ is a (k, 0) Su,v tensor, write,

ξe−k,
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to denote any of the components

ξ A1...Ak = ξ(e�
A1

, . . . , e�
Ak

).

Since |/gAB | ≤ Cr2, if r p|ξ |/g ≤ C then,

|ξ A1...Ak | ≤ Cr−p−k .

For example, allowing ψ to also denote ψ�, T to also denote T � etc.,

αAB + /T AB = ψ4/e
−2 + T4/e

−2 =
∑

p1+p2≥6

(ψp1 + Tp1)/e
−p2 ,

where in the summation now p1 = 4, p2 = 2 for each of the two terms. Again, the
subscript of the summation on the right hand side allows us to immediately read off
that the components αAB, /T AB decay like 1

r6 .
Finally, if ξ is a (k1, k2) Su,v tensor, write,

ξ/ek2−k1 ,

to schematically denote any of the components,

ξ A1...Ak1 B1...Bk2
.

For example,

αA
B + /T A

B =
∑

p1+p2≥4

(ψp1 + Tp2)/e
−p2 ,

and it can immediately be read off from the subscript of the summation that the
components αA

B, /T A
B decay like 1

r4 . Note that, in this notation, it is clearly not

necessarily the case that no e1, e2, e
�
1, e

�
2 appear in the expression

ξ/e0.

8.3 Vector Fields on the Mass Shell

Consider the vectors V(1), . . . , V(6) ∈ T(x,p)P defined by,

V(A) = Hor(x,p)(eA) + p4

r
∂pA , V(3) = Hor(x,p)(e3),

V(4) = rHor(x,p)(e4) + p4∂p4 , V(4+A) = p4

r2 ∂pA ,

for A = 1, 2. The proof of Proposition 8.2 reduces to the following.
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Proposition 8.6 At any point x ∈ A, if u = u(x), v = v(x) then, for i1, i2, i3, i4 =
1, . . . , 6,

(
r p
∣∣Tp

[
V(i1) f

]∣∣) (u, v) ≤ Cε0,
(
r p
∣∣Tp

[
V(i2)V(i1) f

]∣∣) (u, v) ≤ Cε0,∫ u

u0

∫
Su′,v

r(u′, v)2p−2
∣∣Tp

[
V(i3)V(i2)V(i1) f

]∣∣2 dμSu′,vdu
′ ≤ Cε0,

and
∫ u

u0

∫ v

v0

∫
Su′,v′

r(u′, v′)2p−4
∣∣Tp

[
V(i4)V(i3)V(i2)V(i1) f

]∣∣2 dμSu′,v′dv′du′ ≤ Cε0.

The vectors V(1), . . . , V(6), together with V(0) given by,

V(0) = rHor(x,p)(e4),

form a basis for T(x,p)P . They are preferred to the operators D̃ introduced in Section
8.1 as, in view of Proposition 4.8, it is much more natural to work with vectors divided
into their horizontal and vertical parts. It will be shown below that |V(i) f | is uniformly
bounded for i = 0, . . . , 6.

Remark 8.7 It is not the case that |Hor(x,p)(eA) f | is uniformly bounded, for A = 1, 2.
In fact, |Hor(x,p)(eA) f | grows at the rate r(x) as r(x) → ∞. It is for this reason the

term p4

r ∂pA also appears in V(A). A cancellation will later be seen to occur in these
two terms, so that |V(A) f | is uniformly bounded.

In Section 8.4, the vector fields V(1), . . . , V(6) are used to define corresponding
Jacobi fields, J(1), . . . , J(6), along exps(x, p). The boundedness of |V(i) f | will follow
from bounds on the components of J(i) for i = 1, . . . , 6. Whilst it is true that |V(0) f |
is uniformly bounded, the appropriate bounds for the components of the Jacobi field
corresponding to V(0) do not hold. This is the reason V(0) derivatives of f are treated
separately in the proof of Proposition 8.2 below, and do not appear in Proposition 8.6.
See also the discussion in Remark 8.8.

Similarly, the components of the Jacobi field corresponding to p4∂p4 do not satisfy
the appropriate bounds. The rHor(x,p)(e4) term in V(4) appears for this reason. The
bound on |p4∂p4 f | can easily be recovered from the bound on |V(4) f | using the below
observation that the Vlasov equation can be used to re-express rHor(x,p)(e4) f in terms
of other derivatives of f .

Below is a sketch of how Proposition 8.2 follows from Proposition 8.6.

Proof of Proposition 8.2 Recall the point (x, p) ∈ supp( f ) is fixed. The goal is to
estimate D̃k

C1,...,Cl
f where D̃ ∈ {re1, re2, e3, re4}, k ≤ 4, and l ≤ k is the number of

times re1 or re2 appears in D̃k . Since V(0), . . . , V(6) span T(x,p)P , clearly D̃k
C1,...,Cl

f
can be written as a combination of terms of the form V(i1) . . . V(ik′ ) f , where k′ ≤ k
and i1, . . . , ik′ = 0, . . . , 6. It remains to check that the V(0) can be eliminated and
then that the coefficients in the resulting expressions behave well. This is done in the
following steps.
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(1) First rewrite D̃k
C1,...,Cl

f as

D̃k
C1,...,Cl

f = rlD̂k
C1,...,Cl

f +
l∑

k′=1

Ck′r pk′ D̂k−k′
C1,...,Cl

f,

where D̂ ∈ {e1, e2, e3, re4}, the Ck′ are constants and pk′ are powers such that
pk′ ≤ l. The terms in the sum are lower order and so, by induction, can be viewed
as having already been estimated “at the previous step”, so they are ignored from
now on. The rl factor in the first term will vanish when the norm is taken with the
metric /g and so is also ignored.

(2) Rewrite each D̂ in terms of the vectors V(0), . . . , V(6) defined above,

eA = V(A) + r2
(
pB

p4
/�
C
AB + p3

p4 χ
A
C + χA

C
)
V(4+C) +

(
pB

2p4 χ
AB

+ η
A

)
V(4)

−
(

pB

2p4 χ
AB

+ η
A

)
V(0),

e3 = V(3) + r2
(
pA

p4 χ
A
B + 2ηB

)
V(4+A),

re4 =
(

1 − rpA

p4 η
A

− rω

)
V(0) + r3

(
pA

p4 χA
B − pA

p4 eA(bB) + 2p3

p4 ηB
)
V(4+B)

+ r

(
pA

p4 η
A

+ ω

)
V(4).

(3) In the resulting expression bring all of the coefficients of the vectors V(0), . . . , V(6)

out to the front to get

D̂k
C1,...,Cl

f =
∑

1≤k′≤k

∑
i1,...,ik′

di1...ik′ V(i1) . . . V(ik′ ) f,

where the di1...ik′ are combinations of h p terms and derivatives of components of
�, /� and b. Clearly di1...ik′ involves at most k − k′ derivatives of the components
of � and /�, and k − k′ + 1 derivatives of components of b. Moreover, using
the bootstrap assumptions from Section 5 they are bounded with respect to r .
Hence |di1...ik′ | ≤ C for k′ = 3, 4,

∫
Su,v

r−2|di1...ik′ |2dμSu,v ≤ C for k′ = 2 and∫ v

v0

∫
Su,v′ r

−4|di1...ik′ |2dμSu,v′ dv′ ≤ C for k′ = 1.

(4) For each V(i1) . . . V(ik′ ) f in the above expression containing at least one V(0),
commute to bring the innermost to the inside. Relabelling if necessary, this gives

V(i1) . . . V(ik′ ) f = di1...ik′−10V(i1) . . . V(ik′−1)
V(0) f

+
∑

1≤k′′≤k′−1

∑
j1,..., jk′′

d j1... jk′′ V( j1) . . . V( jk′′ ) f,

for some (new) d j1... jk′′ as above.
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(5) Use the Vlasov equation pμHor(x,p)(eμ) f = 0 (see Example 4.1) to rewrite

V(0) f = −rp3

p4 Hor(x,p)(e3) f − rpA

p4 Hor(x,p)(eA) f.

Rewrite this right hand side in terms of V(1), . . . , V(6) and repeat Step (3) to bring
the coefficients to the outside of the expression.

(6) Repeat steps (4) and (5) to eliminate all of the V(0) terms to leave

D̂k
C1,...,Cl

f =
∑

1≤k′≤k

6∑
i1,...,ik′=1

di1...ik′ V(i1) . . . V(ik′ ) f,

where the di1...ik′ have the correct form as above.

The result now clearly follows from Proposition 8.6. ��
Remark 8.8 The vector V(0) = rHor(x,p)(e4) should be compared to the vector

S := vHor(x,p)(e4) + uHor(x,p)(e3).

In the context of Theorem 5.1, where u0 ≤ u ≤ u f in supp( f ), the uHor(x,p)(e3)

term is not the dominant one in S. Recall also that v here is comparable to r .
Given any vector V ∈ T(x,p)P , in the sections to follow it is shown that there exists

a vector field J on P such that J f satisfies the Vlasov equation and J coincides with
V at the point (x, p) ∈ P . For V(1), . . . , V(6) it will be shown that the corresponding J
are all of size 1 (independent of the point x) at the initial hypersurface {v = v0}. Whilst
this is not the case for the vector field J corresponding to S, a form of the following
observation was used in the proof of Proposition 8.2. The vector field J corresponding
to S has a large component, but this component points in the X direction and hence
vanishes when applied to f . A manifestation of this fact is brought to light through
the fact that [XM , S] = XM , where XM denotes the generator of the null Minkowski
geodesic flow and, with a slight abuse of notation, S now denotes the vector field
S = vHor(x,p)(e4) + uHor(x,p)(e3) on the mass shell over Minkowski space.

Note that this observation is not specific to the massless case, i.e. the identity
[XM , S] = XM is still true if XM now denotes the Minkowski geodesic flow restricted
to the hypersurface Pm = {(x, p) ∈ TM | p future directed, gMink(p, p) = −m2}
for m > 0. A form of this observation is used in the work [16].

8.4 The Jacobi Fields

Define vector fields J(1), . . . , J(6) along the trajectory of the geodesic flow s →
exps(x, p) by

J(i)(s) = d exps |(x,p)V(i),

for i = 1, . . . , 6.
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Since

f (x, p) = f (exps(x, p)),

by the chain rule,

V(i) f (x, p) = d f |(x,p)V(i) = d f |exps (x,p) · d exps |(x,p)V(i) = J(i)(s) f.

Taking s < 0 so that exps(x, p) lies on the mass shell over the initial hypersurface
{v = v0}, this relates V(i) f (x, p) to intial data. By Proposition 4.8, J(i) is in fact a
Jacobi field and hence J(i)(s) can be controlled using the Jacobi equation.

Note that so far the Jacobi fields are only defined along the trajectory s →
exps(x, p). Since higher order derivatives of f will be taken it is necessary to define
them in a neighbourhood of the geodesic s → exps(x, p) in P . They are in general
defined differently depending on what the higher order derivatives to be taken are.
When considering the quantity

V(ik ) . . . V(i1) f,

for 2 ≤ k ≤ 4 the Jacobi fields are extended so that

J(ik ) . . . J(i1)|s=0 = V(ik ) . . . V(i1),

as follows.
If k = 2 then define a curve c1 : (−ε, ε) → P , for some small ε > 0, such that

c1(0) = (x, p), c′
1(s1) = V(i2),

i.e. c1 is the integral curve of V(i2) through (x, p). Set J(i1) = V(i1) along c1 and
let J(i1)(s, s1) = d exps |c1(s1)V(i1). Now the expression J(i2) J(i1) f is defined along
exps(x, p) and has the desired property that J(i2) J(i1)|s=0 = V(i2)V(i1).

Similarly, if k = 3 define a variation of curves c2 : (−ε, ε)2 → P so that

c2(0, 0) = (x, p),
∂c2

∂s1
(s1, 0) = V(i3),

∂c2

∂s2
(s1, s2) = V(i2).

So the curve s1 → c2(s1, 0) is the integral curve of V(i3) through (x, p), and, for fixed
s1, the curve s2 → c2(s1, s2) is the integral curve of V(i2) through c2(s1, 0). Set

J(i1)(s, s1, s2) = d exps |c2(s1,s2)V(i1),

for s1, s2 ∈ (−ε, ε), s < 0, and,

J(i2)(s, s1, 0) = d exps |c2(s1,0)V(i2),

for s1 ∈ (−ε, ε), s < 0. Now the expression J(i3) J(i2) J(i1) f is defined along exps(x, p)
and moreover,

J(i3) J(i2) J(i1)|s=0 = V(i3)V(i2)V(i1).
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Finally, if k = 4, similarly define c3 : (−ε, ε)3 → P so that

c3(0, 0, 0) = (x, p),
∂c3

∂s1
(s1, 0, 0) = V(i4),

∂c3

∂s2
(s1, s2, 0) = V(i3)

∂c3

∂s3
(s1, s2, s3) = V(i2),

and similarly set

J(i1)(s, s1, s2, s3) = d exps |c3(s1,s2,s3)V(i1),

J(i2)(s, s1, s2, 0) = d exps |c2(s1,s2,0)V(i2),

J(i3)(s, s1, 0, 0) = d exps |c2(s1,0,0)V(i3),

for s1, s2, s3 ∈ (−ε, ε), s < 0.

8.5 Two Frames for P and Components of Jacobi Fields

Let s∗ ≥ 0 be the time such that π(exp−s∗(x, p)) ∈ {v = v0}, where π : P → M is
the natural projection. The definition of the Jacobi fields of Section 8.4 imply that, for
1 ≤ k ≤ 4,

V(ik ) . . . V(i1) f (x, p) = J(ik ) . . . J(i1) f |s=−s∗ ,

and so Proposition 8.6 will follow from appropriate estimates for J(ik ) . . . J(i1) f |s=−s∗ .
Recall from Section 2 that p1, p2, p4 denote the restrictions of p1, p2, p3 to P

and ∂p1 , ∂p2 , ∂p4 denote the corresponding partial derivatives with respect to the

(u, v, θ1, θ2, p1, p2, p4) coordinate system for P . For every (x, p) ∈ P define the
frame E1, . . . , E7 of horizontal and vertical vectors for P by

E1 = Hor(x,p)

(
1

r
e1

)
, E2 = Hor(x,p)

(
1

r
e2

)
, E3 = Hor(x,p) (e3) ,

E4 = Hor(x,p) (e4) , E5 = 1

r(x, p)
∂p1 , E6 = 1

r(x, p)
∂p2 , E7 = ∂p4 .

Recall the expressions (19), which imply,

E5 = 1

r(x, p)
Ver(x,p)

(
e1 + /g1A p

A

2p4 e3

)
,

E6 = 1

r(x, p)
Ver(x,p)

(
e2 + /g2A p

A

2p4 e3

)
,

E7 = Ver(x,p)

(
e4 − p3

p4 e3

)
.
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The vectors 1
r eA, for A = 1, 2, are used rather than the vectors eA which grow like r .

For J ∈ {J(1), . . . , J(6)} let J j denote the components of J with respect to this frame.
So

J = J j E j .

Define also the frame F1, . . . , F7 for P along s → exps(x, p) by

Fi = Par(γ,γ̇ ) (Ei )

for i = 1, . . . , 7. Here γ (s) = π(exps(x, p)) denotes the geodesic in M, so that
exps(x, p) = (γ (s), γ̇ (s)), and Par(γ,γ̇ ) denotes parallel transport along (γ (s), γ̇ (s)).

Let � denote the change of basis matrix from {Fi } to {Ei }, so that

Ei = �i
j Fj . (86)

Note that, at s = 0,

�i
j |s=0 = δi

j .

Remark 8.9 In the following, when tensor fields on P are written in components, these
will always be components with respect to the frame {Ei }. So if J is a Jacobi field
then J i denote the components such that

J = J i Ei .

When writing components with respect to the parallelly transported frame {Fi }, the
matrix � will always be used. So,

J = J i�i
j Fj .

Latin indices i, j will always run from 1, . . . , 7.

It will be necessary in the following sections to estimate the components of � and
�−1, and certain derivatives, along (γ (s), γ̇ (s)). It is therefore necessary to derive
equations satisfied by the components of � and �−1.

Proposition 8.10 The components of the matrices � and �−1 satisfy the equations,

d�i
j

ds
(s) =

(
∇̂X Ei

)k
�k

j (s), (87)

and
d�−1

i
j

ds
(s) = −�−1

i
k
(
∇̂X Ek

) j
(s), (88)

respectively, for i, j = 1, . . . , 7. Here
(
∇̂X Ei

)k
denote the components of ∇̂X Ei with

respect to E1, . . . , E7.

123



9 Page 82 of 177 M. Taylor

Proof Using the fact that,

∇̂X Fj = 0,

for all j , equation (86) gives,

∇̂X Ei = X
(
�i

j
)
Fj .

This can be written as the system of equations (87).

Similarly, writing Fj = �−1
i
j
E j gives,

0 = ∇̂X Fi =
[
X (�−1

i
j
) + �−1

i
k
(
∇̂X Ek

) j
]
E j .

This yields the system (88). ��
Now,

J(i2) J(i1) f = J(i2)
(
J(i1)

j1
)
E j1 f + J(i2)

j2 J(i1)
j1 E j2 E j1 f,

so estimates for J(i2) J(i1) f |s=−s∗ follow from estimates for the components J(i2)
j2

J(i1)
j1 and derivatives J(i2)

(
J(i1)

j1
)

at s = −s∗ since E j1 f |s=−s∗ and E j2 E j1 f |s=−s∗
are assumed to be bounded pointwise by assumption. See Theorem 5.1. Higher order
derivatives can similarly be expressed in terms of derivatives of components of Jacobi
fields. This is discussed further in Section 8.8. It is hence sufficient to just estimate
the derivatives of components,

J(ik ) . . . J(i2)
(
J(i1)

j
)

,

for k = 1, . . . , 4, j = 1, . . . , 7. These estimates are obtained in the next two subsec-
tions in Propositions 8.17, 8.22, 8.26, 8.27. In Section 8.8 they are then used to prove
Proposition 8.6.

8.6 Pointwise Estimates for Components of Jacobi Fields at Lower Orders

For the fixed point (x, p) ∈ P ∩ supp( f ), recall that s∗ = s∗(x, p) denotes the
parameter time s such that π(exp−s∗(x, p)) ∈ {v = v0}. The goal of this section is to
show that the components of the Jacobi fields J(1), . . . , J(6), with respect to the frame
E1, . . . , E7, are bounded, independently of (x, p), at the parameter time s = −s∗,
and then similarly for the first order derivatives J(i2)(J(i1)

j ), for i1, i2 = 1, . . . , 6,
j = 1, . . . , 7. Second and third order derivatives of the Jacobi fields are estimated in
Section 8.7.

The estimates for the components of J = J(1), . . . , J(6) are obtained using the
Jacobi equation
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∇̂X ∇̂X J = R̂(X, J )X,

which in components takes the form,

d2 J k�k
j

ds2 =
(
R̂(X, J )X

)k
�k

j . (89)

There are two important structural properties of the right hand side of equation (89),
essential for obtaining good global estimates for the Jacobi fields. The first involves
the issue of regularity. Given that derivatives of components of the energy momen-
tum tensor appear in the Bianchi equations as error terms, it is important to estimate
derivatives of T , and hence the components of J(1), . . . , J(6), at one degree of differ-
entiability greater than the Weyl curvature components ψ . It is therefore important
that the right hand side of equation (89) has the correct structure to allow the com-
ponents of the Jacobi fields to be estimated at this level of regularity.25 The second
important property concerns the issue of decay. Since equation (89) is used to estimate
the Jacobi fields globally, it is important that the right hand side is twice globally inte-
grable. Recall that R̂ denotes the curvature tensor of the induced Sasaki metic on P
and, by Proposition 4.7, R̂(X, J )X can be expressed in terms of the curvature tensor
R of (M, g). In order to check that the right hand side of (89) indeed has the two
above properties, R̂ is expressed in terms of R, which is then expanded in terms of ψ ,
T . It is then written using the schematic notation of Section 8.2, which allows one to
easily read off the decay and regularity properties.

First, by Proposition 4.7,

R̂(X, J )X = Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇ + 3

4
R(γ̇ , R(γ̇ , Jh)γ̇ )γ̇ + 1

2
(∇γ̇ R)(γ̇ , J v)γ̇

)

+ 1

2
T Ver(γ,γ̇ )

(
(∇γ̇ R)(γ̇ , Jh)γ̇ + 1

2
R(γ̇ , R(γ̇ , J v)γ̇ )γ̇

)
.

(90)

Here Jh and J v are defined by

Jh = J A 1

r
eA + J 3e3 + J 4e4,

J v = J 4+A 1

r
eA +

(
J 4+A

/gAB p
B

2rp4 − J 7 p3

p4

)
e3 + J 7e4,

so that

J |(γ,γ̇ ) = Hor(γ,γ̇ )(J
h |(γ,γ̇ )) + T Ver(γ,γ̇ )(J

v|(γ,γ̇ )).

25 This structure is crucial even for proving local existence for the Einstein–Vlasov system in the double
null gauge.
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For a vector Y ∈ TγM, T Ver(γ,γ̇ )(Y ) denotes the projection of Ver(γ,γ̇ )(Y ) to P . So,
for each (y, q) ∈ P on the trajectory of the geodesic flow through (x, p),

Jh |(y,q), J
v|(y,q) ∈ TyM.

It is tempting to view Jh, J v as vector fields on M, though this is not strictly the
case as the value of Jh |(y,q), J v|(y,q) depends not only on y but also on q. Some care
therefore needs to be taken here.

In view of the above discussion regarding the regularity of the right hand side
of (89), the presence of the derivatives of R in the expression (90) seem, at first
glance, to be bad. On closer inspection however, one sees that such terms are always
horizontal or vertical lifts of derivatives of R in the γ̇ direction. Since the components
of J(1), . . . , J(6) are estimated by integrating the Jacobi equation (89) twice in s, the
fact that the potentially problematic terms, when integrated in s, in fact lie at the same
level of differentiability as R can be taken advantage of. In other words, the derivatives
of R appearing on the right hand side of the Jacobi equation (89) always point in exactly
the correct direction so that transport estimates for the Jacobi equation (89) recover
this loss. In order to exploit this fact, it is convenient to rewrite the expression (90),
using Proposition 4.4, as,

R̂(X, J )X = Hor(γ,γ̇ )

[
R(γ̇ , Jh)γ̇ + 1

2
R(γ̇ , R(γ̇ , Jh)γ̇ )γ̇ − 1

2
X ((J v)μ)R(γ̇ , eμ)γ̇

− 1

2
(J v)μR(γ̇ ,∇γ̇ eμ)γ̇ − 1

2
X (γ̇ α)

(
R(eα, J v)γ̇ + R(γ̇ , J v)eα

)

− 1

2
γ̇ α
(
R(∇γ̇ eα, J v)γ̇ + R(γ̇ , J v)∇γ̇ eα

) ]

+ 1

2
T Ver(γ,γ̇ )

[
R(γ̇ , R(γ̇ , J v)γ̇ )γ̇ − X ((Jh)μ)R(γ̇ , eμ)γ̇

− X (γ̇ α)
(
R(eα, Jh)γ̇ + R(γ̇ , Jh)eα

)

− γ̇ α
(
R(∇γ̇ eα, Jh)γ̇ + R(γ̇ , Jh)∇γ̇ eα

)
− (Jh)μR(γ̇ ,∇γ̇ eμ)γ̇

]

+ 1

2
∇̂XHor(γ,γ̇ )

(
R(γ̇ , J v)γ̇

)+ 1

2
∇̂X

T Ver(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
. (91)

The above observations explain how (89) can be used to give good estimates for
J(1), . . . , J(6) from the point of view of regularity. In order to obtain global estimates
however, it is also important to see that (91) has the correct behaviour in r so as to
be twice globally integrable. This can be seen by rewriting (91) in terms of ψ , T
and using the bootstrap assumptions (68), (69), along with the the asymptotics for
p1, p2, p3, p4 obtained in Section 7, being sure to allow certain components of J to
grow like r . Consider, for example, just the first term Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
in (91).

Recall the identity,
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Rαβγ δ = Wαβγ δ + 1

2
(gαγ Tβδ + gβδTαγ − gβγ Tαδ − gαδTβγ ).

For a vector field K along γ in M, let Kμ denote the components of K with respect
to 1

r e1,
1
r e2, e3, e4,

K = 1

r
K AeA + K 3e3 + K 4e4.

Using the form of the metric in the double null frame,

R(γ̇ , K )γ̇ = gμνR(γ̇ , K , γ̇ , eμ)eν

= −1

2
R(γ̇ , K , γ̇ , e3)e4 − 1

2
R(γ̇ , K , γ̇ , e4)e3 + /gAB R(γ̇ , K , γ̇ , eA)eB .

Hence,

R(γ̇ , K )γ̇

= −1

2

{
K 4
[
γ̇ 3γ̇ 3(4ρ + 2/T 34) + 2γ̇ 3γ̇ A(βA + /T 4A) + γ̇ Aγ̇ B(αAB + 1

2
/gAB

/T 44)
]

+ K 3
[

− 2γ̇ 3γ̇ 4(2ρ + /T 34) + γ̇ 3γ̇ A(2β
A

− /T 3A) − γ̇ 4γ̇ A(2βA + /T 4A)

− γ̇ Aγ̇ B(ρ/gAB + σ/εAB − 1

2
/gAB

/T 34 + /T AB)
]

+ 1

r
KC
[

− γ̇ 3γ̇ 4(2βC + /T 4C ) + γ̇ 3γ̇ 3(−2β
C

+ /T 3C )

+ γ̇ 3γ̇ A(ρ/gAC + 3σ/εAC + /T AC − 1

2
/gAC

/T 34) − γ̇ 4γ̇ A(αAC + 1

2
/gAC

/T 44)

+ γ̇ Aγ̇ B(−/gABβC + /gACβB + 1

2
/gAB

/T 4C − 1

2
/gAC

/T 4B)
]}

e3

− 1

2

{
K 4
[

− 2γ̇ 3γ̇ 4(2ρ + /T 34) + γ̇ 3γ̇ A(2β
A

− /T 3A) − γ̇ 4γ̇ A(2βA + /T 4A)

− γ̇ Aγ̇ B(ρ/gAB + σ/εAB − 1

2
/gAB

/T 34 + /T AB)
]

+ K 3
[
γ̇ 4γ̇ 4(4ρ + 2/T 34) − 2γ̇ 4γ̇ A(2β

A
− /T 3A) + γ̇ Aγ̇ B(αAB + 1

2
/gAB

/T 33)
]

+ 1

r
KC
[
γ̇ 3γ̇ 4(2β

C
− /T 3C ) + γ̇ 4γ̇ 4(2βC + /T 4C )

− γ̇ 3γ̇ A(αAC + 1

2
/gAC

/T 33) + γ̇ 4γ̇ A(ρ/gAC + 3σ/εAC + /T AC − 1

2
/gAC

/T 34)

+ γ̇ Aγ̇ B(/gABβ
C

− /gACβ
B

+ 1

2
/gAB

/T 3C − 1

2
/gAC

/T 3B)
]}

e4
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+
{
K 4
[

− γ̇ 3γ̇ 4(2βD + /T 4
D
) + γ̇ 3γ̇ 3(−2βD + /T 3

D
)

+ γ̇ 3γ̇ A(ρδDA + 3σ/εA
D + /T A

D − 1

2
δDA /T 34) − γ̇ 4γ̇ A(αA

D + 1

2
δDA /T 44)

+ γ̇ Aγ̇ B(−/gABβD + δDA βB + 1

2
/gAB

/T 4
D − 1

2
δDA /T 4B)

]

+ K 3
[
γ̇ 3γ̇ 4(2βD − /T 3

D
) + γ̇ 4γ̇ 4(2βD + /T 4

D
) − γ̇ 3γ̇ A(αA

D + 1

2
δDA /T 33)

+ γ̇ 4γ̇ A(ρδDA + 3σ/εA
D + /T A

D − 1

2
δDA /T 34)

+ γ̇ Aγ̇ B(/gABβD − δDA β
B

+ 1

2
/T 3

D − 1

2
δDA /T 3B)

]

+ 1

r
KC
[
γ̇ 4γ̇ 4(αC

D + 1

2
δDC /T 44) + γ̇ 3γ̇ 3(αC

D + 1

2
δDC /T 33)

+ γ̇ 3γ̇ 4(−2ρδDC − 2TC
D + δDC /T 34) + γ̇ Aγ̇ B(− ρ(/gABδDC − δDA /gBC )

+ γ̇ 4γ̇ A(/gACβD + δDA βC − 2δDC βA + δDC /T 4A − 1

2
/gAC

/T 4
D − 1

2
δDA /T 4C )

+ γ̇ 3γ̇ A(−/gACβD − δDA β
C

+ 2δDC β
A

+ δDC /T 3A − 1

2
/gAC

/T 3
D − 1

2
δDA /T 3C )

+ 1

2
(/gAB

/TC
D + δDA /T AB − /gBC /T A

D − δDA /T BC )
)]}

eD. (92)

This can schematically be written as

R(γ̇ , K )γ̇ =
∑

p1+...+p6≥ 5
2

h p1Kp2 γ̇p3 γ̇p4(/g + 1)(ψp5 + Tp5)/e
−p6

(
e3 + e4 + 1

r
/e

)
,

(93)

which, as the schematic notation now makes clear, decays like r− 5
2 and hence is

twice globally integrable. Note that the summation on the right hand side of (93) can
actually always begin at 3, except for terms involving β. This fact is important when
estimating higher order derivatives of Jacobi fields in Section 8.7 and will be returned
to then.

Recall, from Section 8.2, that K−1 is used to schematically denote K 1, K 2, or K 4.
It is important to denote K 1, K 2, K 4 as such since the E1, E2 and E4 components of
some of J(1), . . . , J(6) will be allowed to grow at rate r .

Clearly, in order to use the Jacobi equation (89) to estimate the components of
J(1), . . . , J(6), several additional points need to first be addressed. First, it is obviously
important to understand how the matrix �, along with its inverse �−1, behaves along

(γ, γ̇ ). Moreover, since the terms in
(
R̂(X, J )X

)i
involving derivatives of R have

to be integrated by parts, it is also important to understand how the derivative of �,
d�
ds , behaves along (γ, γ̇ ). An understanding of the behaviour of these matrices is
obtained in Proposition 8.14 below using the equations (87), (88). Since the compo-
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nents of ∇̂X Ei appear in equations (87), (88), they are written in schematic notation
in Proposition 8.12.

Secondly, it is necessary to understand the initial conditions,

(
J i�i

j
)

(0) = J j (0),

(
d J i�i

j

ds

)
(0) =

(
∇̂X J

)
(0)

for the Jacobi equation (89). These initial conditions are computed in Proposition 8.15.
The reader is encouraged on first reading to first set R̂(X, J )X equal to zero (i.e. to
consider the Jacobi fields on a fixed Minkowski background) in order to first understand
the argument in this simpler setting. The Jacobi equation (89) can, in this case, be
explicitly integrated and explicit expressions for the F1, . . . , F7 components of the
Jacobi fields, (J i�i

j )(s), can be obtained. It is clear that, even in this simplified setting,
in order to obtain the appropriate boundedness statements, certain cancellations must
occur in certain terms arising from J j (0) and certain terms arising from (∇̂X J ) j (0)

for some of the Jacobi fields. Lemma 8.11 below is used to exploit these cancellations
in the general setting.

Finally, it is convenient to write some remaining quantities appearing in the expres-
sion (91) in schematic notation. This is done in Proposition 8.13.

The zeroth order estimates for the components of J(1), . . . , J(6) are then obtained
in Proposition 8.17, with Lemma 8.16 being used to make the presentation more
systematic.

To obtain estimates for first order derivatives of the components of J(i1), for i1 =
1, . . . , 6, the Jacobi equation (89) is commuted with J(i2), for i2 = 1, . . . , 6. The
fact that J(i2) is a Jacobi field along s → exps(x, p) = (γ (s), γ̇ (s)), a curve in P
whose tangent vector is X , guarantees that [X, J(i2)] = 0, i.e. J(i2) commutes with d

ds .
It is now crucial to ensure that the schematic form of the error terms is preserved on
applying J(i2), e.g. J(i2)

(
(R(X, J )X) j

)
must have the same, globally twice integrable,

behaviour in r as (R(X, J )X) j , for j = 1, . . . , 7. Moreover, in obtaining the zeroth
order estimates, it was important that the bound∣∣∣(R(X, J(i1))X

) j ∣∣∣ ≤ C(p4(s))2,

was true in order that the right hand side of the Jacobi equation (89) could be twice
integrated in s. It is therefore also important to also ensure that,∣∣∣J(i2)

((
R(X, J(i1))X

) j)∣∣∣ ≤ C(p4(s))2.

Note that this property is completely independent of the behaviour in r . Proposition
8.18 is motivated by showing these properties of the error terms are preserved. In order
for this to be so, it quickly becomes apparent that, at the zeroth order, it is necessary
to show that |J(i1) j | ≤ Cp4 for j = 5, 6, 7. Also, on inspection of Proposition 8.18,
one sees that J (γ̇ A) contains terms of the form,

1

r

(
J 4+A − γ̇ 4

r
J A
)

,
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for A = 1, 2. The presence of such terms means that, in order to see that J(i2)(γ̇
A) has

the correct 1
r2 behaviour, it is necessary to ensure that, for each J = J(1), . . . , J(6),

either J 4+A is not merely bounded at s = −s∗, but behaves like 1
r along (γ, γ̇ ), or

that an appropriate cancellation occurs between the J 4+A and J A terms. It is hence
necessary, at the zeroth order, to not just show boundedness of the components at
s = −s∗, but to understand their behaviour along (γ, γ̇ ) in more detail. To gain this
understanding it also becomes necessary to understand properties of the change of
frame matrices, � and �−1, in more detail. See Proposition 8.14 and Proposition
8.17. In order to further commute the Jacobi equation (89), to estimate second and
third order derivatives of the components of the Jacobi fields, it is also necessary to
understand more detailed properties of first order derivatives of the components of the
Jacobi fields.

As preliminaries to the estimates for the first order derivatives of the components
of the Jacobi fields, which are treated in Proposition 8.17, relevant properties of first
order derivatives of � and �−1 are understood in Proposition 8.20, along with relevant
properties of first order derivatives of the initial conditions for the Jacobi equation in
Proposition 8.21.

The following Lemma, recall, will be used to exploit certain cancellations in terms
arising from the initial conditions for the Jacobi equation (89).

Lemma 8.11 For s ∈ [−s∗, 0],
∣∣∣r(0) + p4(0)s − r(s)

∣∣∣ ≤ C

r(s)
.

where C is a constant independent of (x, p).

Proof Note that

ṙ(s) = X (r)(s) = p4(s) − 1

�2 p
3(s),

and so

r(0) = r(s) +
∫ 0

−s∗
ṙ(s)ds

= r(s) +
∫ 0

−s∗
p4(s)ds −

∫ 0

−s∗

1

�2 p
3(s)ds.

Recall that | 1
�2 p

3(s)| ≤ C
r2 p

4(s), and the geodesic equation for p4,

ṗ4(s) = 1

2r
/gAB p

A(s)pB(s) − 1

4

(
trχ + 2

r

)
/gAB p

A(s)pB(s)

− 1

2
χ̂

AB
pA(s)pB(s) − 2η

A
pA(s)p4(s) − ω(p4(s))2,
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which implies that,

|p4(s) − p4(0)| ≤
∫ 0

s
| ṗ4(s′)|ds′ ≤

∫ 0

s

C(p4(s′))2

r(s′)3 ds′ ≤ Cp4(s)

r(s)2 .

Hence,

|r(0) + sp4(0) − r(s)| =
∣∣∣∣
∫ 0

s
p4(s′) − p4(0) − 1

�2 p
3(s′)ds′

∣∣∣∣ ≤ C

r(s)
.

��
Note that Lemma 8.11 in particular implies that

∣∣∣r(0) − p4(0)s∗
∣∣∣ ≤ C,

and also,

∣∣∣∣ sp
4(0)

r(0)

∣∣∣∣ ≤ C,

for s ∈ [−s∗, 0].
In the following two propositions, terms arising in the equations (87), (88) for � and

�−1, and in the expression (91) for R̂(X, J )X are respectively written in schematic
form.

Proposition 8.12 In schematic notation, if i, j = 1, . . . , 7, then

(
∇̂X Ei

) j =
∑

p1+...+p4≥2

γ̇p1h p2(/g + 1)

[
h p3 + �p3 + h p3

(
r /� + r /∇b + r /� · b)

+
∑

q1+q2≥p3+ 1
2

γ̇q1(ψq2 + Tq2)

]
/e−p4 ,

and moreover, if i = 1, . . . , 4, j = 5, 6, 7 or vice versa,

(
∇̂X Ei

) j =
∑

p1+...+p4≥2

γ̇p1h p2(/g + 1)

[ ∑
q1+q2≥p3+ 1

2

γ̇q1(ψq2 + Tq2)

]
/e−p4 ,

Also,

(
∇̂X EA

)4+B =
∑

p1+...+p4≥3

γ̇p1h p2(/g + 1)

[ ∑
q1+q2≥p3+ 1

2

γ̇q1(ψq2 + Tq2)

]
/e−p4 ,

for A, B = 1, 2.
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Note that the second summation in each line guarantees that terms involving Weyl
curvature components and energy momentum tensor components decay slightly better
than the others. This fact is important and will be returned to in Proposition 8.23. Note
also that, if r /∇b is just regarded as D�1, the terms involving r /∇b above also decay
slightly better. This extra decay is important at higher orders because of the weaker
bounds we have for D3r /∇b.

Proof Using Proposition 4.4 and the table of Ricci coefficients (24)–(28), one derives,

∇̂X EA =
[
γ̇ C /�

B
AC + γ̇ 3χ̂

B
A

+ γ̇ 4χ̂ B
A − γ̇ 4eA(bB)

]
EB

+
[
γ̇ 3

r

(
1

�2 − 1

)
+ γ̇ 3

2

(
trχ + 2

r

)
+ γ̇ 4

2

(
trχ − 2

r

)]
EA

+
[

γ̇ B

2r
χ̂AB + /gAB γ̇ B

4r

(
trχ − 2

r

)
+ /gAB γ̇ B

2r2 + γ̇ 3

r
ηA

]
E3

+
[

γ̇ B

2r
χ̂

AB
+ /gAB γ̇ B

4r

(
trχ + 2

r

)
− /gAB γ̇ B

2r2 + γ̇ 3

r
η
A

]
E4

− 1

2r
T Ver(γ,γ̇ ) (R(γ̇ , eA)γ̇ ) ,

∇̂X E3 =
[
r γ̇ Aχ̂

B
A

+ γ̇ B
(
r

2

(
trχ + 2

r

)
− 1

)
+ 2γ̇ 4rηB

]
EB

−
[
γ̇ Aη

A
+ γ̇ 4ω

]
E3 − 1

2
T Ver(γ,γ̇ ) (R(γ̇ , e3)γ̇ ) ,

∇̂X E4 =
[
r γ̇ Aχ̂ B

A + γ̇ B
(
r

2

(
trχ − 2

r

)
+ 1

)
+ 2r γ̇ 3ηB

]
EB

+
[
γ̇ Aη

A
+ γ̇ 4ω

]
E4 − 1

2
T Ver(γ,γ̇ ) (R(γ̇ , e4)γ̇ ) ,

∇̂X E4+A = 1

2r
Hor(γ,γ̇ ) (R(γ̇ , eA)γ̇ ) + /gAB γ̇ B

4r γ̇ 4 Hor(γ,γ̇ ) (R(γ̇ , e3)γ̇ )

+
[
γ̇ C /�

B
AC + γ̇ 3χ̂

B
A

+ γ̇ 4χ̂ B
A − γ̇ 4eA(bB)

]
E4+B

+
[
γ̇ 3

r

(
1

�2 − 1

)
+ γ̇ 3

2

(
trχ + 2

r

)
+ γ̇ 4

2

(
trχ − 2

r

)]
E4+A

+
[

γ̇ B

2r
χ̂

AB
+ /gAB γ̇ B

4r

(
trχ + 2

r

)
− /gAB γ̇ B

2r2 + γ̇ 3

r
η
A

]
E7,

∇̂X E7 = 1

2
Hor(γ,γ̇ ) (R(γ̇ , e4)γ̇ ) − γ̇ 3

2γ̇ 4 Hor(γ,γ̇ ) (R(γ̇ , e3)γ̇ )

+
[
r γ̇ Aχ̂ B

A + γ̇ B
(
r

2

(
trχ − 2

r

)
+ 1

)
+ 2r γ̇ 3ηB

]
E4+B

+
[
γ̇ Aη

A
+ γ̇ 4ω

]
E7,
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where, for a vector Y on M, T Ver(γ,γ̇ )(Y ) denotes the projection of Ver(γ,γ̇ )(Y ) to P .
The terms involving the curvature R of M can be found explicitly in terms of ψ, T by
setting K = eA, e3 or e4 in the expression (92). For example, in the above expression
for ∇̂X E4+A,

Hor(γ,γ̇ ) (R(γ̇ , eA)γ̇ )

= r
[
γ̇ 4γ̇ 4(αA

D + 1

2
δDA /T 44) + γ̇ 3γ̇ 3(αA

D + 1

2
δDA /T 33)

+ γ̇ 3γ̇ 4(−2ρδDA − 2TA
D + δDA /T 34) + γ̇ C γ̇ B(− ρ(/gBCδDA − δDC /gAB)

+ γ̇ 4γ̇ C (/gACβD + δDC βA − 2δDA βC + δDA /T 4C − 1

2
/gAC

/T 4
D − 1

2
δDC /T 4A)

+ γ̇ 3γ̇ C (−/gACβD − δDC β
A

+ 2δDA β
C

+ δDA /T 3C − 1

2
/gAC

/T 3
D − 1

2
δDC /T 3A)

+ 1

2
(/gBC /T A

D + δDC /T BC − /gAB
/TC

D − δDC /T AB)
)]
ED

− 1

2

[
− γ̇ 3γ̇ 4(2βC + /T 4C ) + γ̇ 3γ̇ 3(−2β

C
+ /T 3C )

+ γ̇ 3γ̇ C (ρ/gAC − 3σ/εAC + /T AC − 1

2
/gAC

/T 34) − γ̇ 4γ̇ C (αAC + 1

2
/gAC

/T 44)

+ γ̇ B γ̇ C (−/gBCβA + /gACβB + 1

2
/gBC /T 4A − 1

2
/gAC

/T 4B)
]
E3

− 1

2

[
γ̇ 3γ̇ 4(2β

A
− /T 3A) + γ̇ 4γ̇ 4(2βA + /T 4A)

− γ̇ 3γ̇ C (αAC + 1

2
/gAC

/T 33) + γ̇ 4γ̇ C (ρ/gAC − 3σ/εAC + /T AC − 1

2
/gAC

/T 34)

+ γ̇ B γ̇ C (/gBCβ
A

− /gACβ
B

+ 1

2
/gBC /T 3A − 1

2
/gAC

/T 3B)
]
E4.

The result follows by inspecting each of the terms and writing in schematic notation.
��

Using the bootstrap assumptions for the pointwise bounds on /�, /∇b, �,ψ, T and
the fact that r p|γ̇p| ≤ p4, Proposition 8.12 in particular gives,

∣∣∣∣
(
∇̂X Ei

) j
(s)

∣∣∣∣ ≤ Cp4

r(s)2 ,

for i, j = 1, . . . , 7,

∣∣∣∣
(
∇̂X Ei

) j
(s)

∣∣∣∣ ≤ C(p4)2

r(s)2 ,

for all i = 1, . . . , 4, j = 5, 6, 7 or vice versa, and

∣∣∣∣
(
∇̂X EA

)4+B
(s)

∣∣∣∣ ≤ C(p4)2

r(s)3 ,
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for A, B = 1, 2. These facts are crucial for showing the schematic form of the error
term in the Jacobi equation (see Proposition 8.18 below) is preserved after taking
derivatives. Recall, by Proposition 7.1,

cp4(s) ≤ p4(0) ≤ Cp4(s),

for all s ∈ [−s∗(x, p), 0], for some constants c,C which are independent of the point
(x, p) ∈ P ∩ supp( f ). So p4 in the above expressions can either be taken to be
evaluated at time s or time 0.

Proposition 8.13 In schematic notation,

∇γ̇

(
1

r
/e

)
,∇γ̇ e3,∇γ̇ e4

=
∑

p1+...+p4≥1

h p1 γ̇p2(/g + 1)
(
h p3 + �p3 + h p3

(
r /� + r /∇b + r /� · b))

/e−p4

(
e3 + e4 + 1

r
/e

)
.

Proof Using the table of Ricci coefficients (24)–(28) one can compute,

∇γ̇

(
1

r
eA

)
=
[
γ̇ C /�

B
AC + γ̇ 3χ̂

B
A

+ γ̇ 4χ̂ B
A − γ̇ 4eA(bB)

] 1

r
eB

+
[
γ̇ 3

r

(
1

�2 − 1

)
+ γ̇ 3

2

(
trχ + 2

r

)
+ γ̇ 4

2

(
trχ − 2

r

)]
1

r
eA

+
[

γ̇ B

2r
χ̂AB + /gAB γ̇ B

4r

(
trχ − 2

r

)
+ /gAB γ̇ B

2r2 + γ̇ 3

r
ηA

]
e3

+
[

γ̇ B

2r
χ̂

AB
+ /gAB γ̇ B

4r

(
trχ + 2

r

)
− /gAB γ̇ B

2r2 + γ̇ 3

r
η
A

]
e4,

∇γ̇ e3 =
[
r γ̇ Aχ̂

B
A

+ γ̇ B
(
r

2

(
trχ + 2

r

)
− 1

)
+ 2γ̇ 4rηB

]
1

r
eB

−
[
γ̇ Aη

A
+ γ̇ 4ω

]
e3,

∇γ̇ e4 =
[
r γ̇ Aχ̂ B

A + γ̇ B
(
r

2

(
trχ − 2

r

)
+ 1

)
+ 2r γ̇ 3ηB

]
1

r
eB

+
[
γ̇ Aη

A
+ γ̇ 4ω

]
e4.

��
In the next proposition, estimates for the components of the matrices �, �−1 are

obtained.
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Proposition 8.14 If v0 is sufficiently large then the matrix � satisfies,

∣∣∣�i
j (s) − δi

j
∣∣∣ ≤ C

r(s)
,

∣∣∣∣d�i
j

ds
(s)

∣∣∣∣ ≤ Cp4

r(s)2 ,

for all i, j = 1, . . . , 7. Moreover, if i = 1, . . . , 4, j = 5, 6, 7 or vice versa,

∣∣∣�i
j (s)

∣∣∣ ≤ Cp4

r(s)
,

∣∣∣∣d�i
j

ds
(s)

∣∣∣∣ ≤ C(p4)2

r(s)2

and

∣∣∣�A
4+B(s)

∣∣∣ ≤ Cp4

r(s)2 ,

∣∣∣∣d�A
4+B

ds
(s)

∣∣∣∣ ≤ C(p4)2

r(s)3 ,

for A, B = 1, 2. Similarly, for �−1,

∣∣∣�−1
i
j
(s) − δi

j
∣∣∣ ≤ C

r(s)
,

∣∣∣∣∣
d�−1

i
j

ds
(s)

∣∣∣∣∣ ≤ Cp4

r(s)2 ,

for all i, j = 1, . . . , 7. Moreover, if i = 1, . . . , 4, j = 5, 6, 7 or vice versa,

∣∣∣�−1
i
j
(s)
∣∣∣ ≤ Cp4

r(s)
,

∣∣∣∣∣
d�−1

i
j

ds
(s)

∣∣∣∣∣ ≤ C(p4)2

r(s)2

and

∣∣∣�−1
A

4+B
(s)
∣∣∣ ≤ Cp4

r(s)2 ,

∣∣∣∣∣
d�−1

A
4+B

ds
(s)

∣∣∣∣∣ ≤ C(p4)2

r(s)3 ,

for A, B = 1, 2. Here C is a constant independent of (x, p).

Proof The proof proceeds by a bootstrap argument. Assume, for some s ∈ [−s∗, 0],
that ∣∣∣�i

j (s′) − δi
j
∣∣∣ ≤ C1

r(s′)
, (94)

for i, j = 1, . . . , 7 and that ∣∣∣�i
j (s′)

∣∣∣ ≤ C1 p4

r(s′)
, (95)

for i = 1, . . . , 4, j = 5, 6, 7 or vice versa, for all s′ ∈ [s, 0], where C1 > 4 is a
constant which will be chosen later. These inequalities are clearly true for s = 0. For
any i, j = 1, . . . , 7, equation (87) and Proposition 8.12 imply that,

∣∣∣∣d�i
j (s′)

ds

∣∣∣∣ ≤ Cp4(s′)
r(s′)2 + CC1 p4(s′)

r(s′)3 ,
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for all s′ ∈ [s, 0]. Hence,

∣∣∣�i
j (s) − δi

j
∣∣∣ ≤

∫ 0

s

∣∣∣∣d�i
j (s′)

ds

∣∣∣∣ ds′

≤
∫ 0

s

Cp4(s′)
r(s′)2 + CC1 p4(s′)

r(s′)3 ds′

≤
∫ r(0)

r(s)

C

r2 + CC1

r3 dr

≤ C

r(s)
+ CC1

r(s)2

≤ C

r(s)

(
1 + C1

v0

)
.

Choose C1 > 4 large so that C1 > 4C , and v0 large so that 1 + C1
v0

< 2, i.e. v0 > C1.
Then,

∣∣∣�i
j (s) − δi

j
∣∣∣ ≤ C1

4

2

r(s)
= C1

2

1

r(s)
.

The set of s ∈ [−s∗, 0] such that the bootstrap assumptions (94) hold is therefore
non-empty, open, closed and connected, and hence equal to [−s∗, 0].

Suppose now i = 1, . . . , 4, j = 5, 6, 7 or vice versa. Equation (87) and Proposition
8.12 then imply,

∣∣∣∣d�i
j (s′)

ds

∣∣∣∣ ≤ C
(
p4(s′)

)2
r(s′)2 + CC1

(
p4(s′)

)2
r(s′)3 ,

using now the second bootstrap assumptions (95). Proceeding as before, this implies
that

∣∣∣�i
j (s)

∣∣∣ ≤ C1

2

p4(s)

r(s)
,

if C1, v0 are sufficiently large, where we use the fact that cp4(0) ≤ p4(s) ≤ Cp4(0).
Hence (95) also holds for all s ∈ [−s∗, 0].

Returning now to equation (87) and setting i = A, j = 4 + B, for A, B = 1, 2,
the final part of Proposition 8.12 gives

∣∣∣∣d�A
4+B

ds
(s)

∣∣∣∣ ≤ C(p4(s))2

r(s)3 ,

for all s ∈ [−s∗, 0]. Integrating then gives the final part of the proposition for �. The
result for �−1 follows identically, using equation (88). ��
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In the next proposition the initial conditions for the Jacobi equation (89) are com-
puted.

Proposition 8.15 The Jacobi fields J(1), . . . , J(6), along with their first order deriva-
tives in the X direction, take the following initial values.

J(A)(0) = r EA + p4E4+A,

∇̂X J(A)(0) = p4EA + 1

2r
/gAB p

B E3

+ 1

2r
Hor(x,p)

(
R

(
p, p4eA + 1

2
/gAB p

Be3

)
p

)

+ 1

2
T Ver(x,p)(R(p, eA)p),

for A = 1, 2,

J(3)(0) = E3, ∇̂X J(3)(0) = 1

2
T Ver(x,p)(R(p, e3)p),

J(4)(0) = r E4 + p4E7,

∇̂X J(4)(0) = −p3E3 + p4E4 + 1

2
Hor(x,p)

(
R(p, p4e4 − p3e3)p

)

+ r

2
T Ver(x,p)(R(p, e4)p),

J(4+A)(0) = p4

r
E4+A,

∇̂X J(4+A)(0) = p4

r
EA + 1

2r2 /gAB p
B E3

+ 1

2r2 Hor(x,p)

(
R

(
p, p4eA + 1

2
/gAB p

Be3

)
p

)
,

for A = 1, 2, and

J(7)(0) = p4

r
E7,

∇̂X J(7)(0) = − p3

r
E3 + p4

r
E4 + 1

2r
Hor(x,p)

(
R(p, p4e4 − p3e3)p

)
.

The expressions involving the curvature tensor R of (M, g) can be written explicitly
in terms of ψ and T using the expression (92).

Proof The proof follows directly from Proposition 4.8. ��
The components of the Jacobi fields J(1), . . . , J(6) can now be estimated along

(γ (s), γ̇ (s)). Recall that it is important, in order to show the schematic form of the
Jacobi equation is preserved after commuting with Jacobi fields, to identify the leading
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order terms of some of the components. The leading order term of J(3)
3 is also identified

in order to carry out a change of variables in the proof of Proposition 8.6. See Section
8.8.

The following lemma will be used.

Lemma 8.16 If J 1(s), . . . , J 7(s) are functions along exps(x, p) for s ∈ [−s∗, 0]
then∣∣∣∣J j (s) −

(
J j (0) + s

d J k�k
j

ds
(0)

)∣∣∣∣ ≤ C

r(s)

7∑
i=1

∣∣∣∣J i (0) + s
d J k�k

i

ds
(0)

∣∣∣∣

+ C
7∑

i=1

∫ 0

s

∣∣∣∣d J
k�k

i

ds
(s′) − d Jk�k

i

ds
(0)

∣∣∣∣ ds′,

for j = 1, . . . , 4,∣∣∣∣J 4+A(s) −
(
J 4+A(0) + s

d J k�k
4+A

ds
(0)

)∣∣∣∣

≤ Cp4

r(s)2

2∑
B=1

∣∣∣∣J B(0) + s
d J k�k

B

ds
(0)

∣∣∣∣+ Cp4

r(s)

4∑
i=3

∣∣∣∣J i (0) + s
d J k�k

i

ds
(0)

∣∣∣∣

+ C

r(s)

7∑
i=5

∣∣∣∣J i (0) + s
d J k�k

i

ds
(0)

∣∣∣∣

+ C
∫ 0

s

∣∣∣∣d J
k�k

4+A

ds
(s′) − d Jk�k

4+A

ds
(0)

∣∣∣∣ ds′

+ C

r(s)

7∑
i=1

∫ 0

s

∣∣∣∣d J
k�k

i

ds
(s′) − d Jk�k

i

ds
(0)

∣∣∣∣ ds′,

for A = 1, 2, and

∣∣∣J 7(s)
∣∣∣ ≤ Cp4

r(s)

4∑
i=1

∣∣∣∣J i (0) + s
d J k�k

i

ds
(0)

∣∣∣∣

+ C
7∑

i=5

∣∣∣∣J i (0) + s
d J k�k

i

ds
(0)

∣∣∣∣

+ C
7∑

i=1

∫ 0

s

∣∣∣∣d J
k�k

i

ds
(s′) − d Jk�k

i

ds
(0)

∣∣∣∣ ds′.

Proof The proof follows by using the fundamental theorem of calculus to write,

J k(s)�k
j (s) = J j (0) + s

d J k�k
i

ds
(0) −

∫ 0

s

d J k�k
i

ds
(s′) − d Jk�k

i

ds
(0)ds′,

and using the estimates for the components of �−1 from Proposition 8.14. ��
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Proposition 8.17 If C is sufficiently small, s ∈ [−s∗, 0], then

|J(A)
B(s) − δA

Br(s)| ≤ C, |J(4)
4(s) − r(s)| ≤ C,

for A, B = 1, 2,

|J(3)
3(s) − 1| ≤ C

r(s)
,

and

|J(i) j (s)| ≤ C,

for i = 1, . . . , 6, j = 1, . . . , 4 otherwise,

|J(A)
4+B(s) − δA

B p4(s)| ≤ Cp4(s)

r(s)
, |J(i)4+A(s)| ≤ Cp4(s)

r(s)
,

for all A, B = 1, 2, i �= A, and

|J(i)7(s)| ≤ Cp4(s),

for all i = 1, . . . , 7. Here C = C(C) is independent of the point (x, p) and of s.

Proof The result is shown using a bootstrap argument. For each J ∈ {J(1), . . . , J(7)},
assume that, for some constant C1 > 1 which will be chosen later, s ∈ [−s∗, 0] is
such that ∣∣∣∣d J

k�k
j

ds
(s′) − d Jk�k

j

ds
(0)

∣∣∣∣ ≤ C1 p4(s′)
r(s′) 3

2

, (96)

for j = 1, . . . , 4,

∣∣∣∣d J
k�k

4+A

ds
(s′) − d Jk�k

4+A

ds
(0)

∣∣∣∣ ≤ C1
(
p4(s′)

)2
r(s′)2 , (97)

for A = 1, 2, and

∣∣∣∣d J
k�k

7

ds
(s′) − d Jk�k

7

ds
(0)

∣∣∣∣ ≤ C1
(
p4(s′)

)2
r(s′) 3

2

, (98)

for all s′ ∈ [s, 0].
Suppose first that i �= 1, 2, 4. By Proposition 8.15 and the fact that,

∣∣∣∣ sp
4(0)

r(0)

∣∣∣∣ ≤ C,
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it follows that,

∣∣∣∣J(i) j (0) + s
(
∇̂X J(i)

) j
(0)

∣∣∣∣ ≤ C,

for j = 1, . . . , 4, and

∣∣∣∣J(i) j (0) + s
(
∇̂X J(i)

) j
(0)

∣∣∣∣ ≤ Cp4(0),

for j = 5, 6, 7. Using the fact that,

(
∇̂X J(i)

) j
(0) = d J(i)k�k

j

ds
(0),

∫ 0

s

p4(s′)
r(s′) 3

2

ds′ ≤ C
∫ r(0)

r(s)

1

r
3
2

dr ≤ C

r(s)
1
2

,

∫ 0

s

(
p4(s′)

)2
r(s′) 3

2

ds′ ≤ Cp4(s)

r(s)
1
2

,

∫ 0

s

(
p4(s′)

)2
r(s′)2 ds′ ≤ Cp4(s)

r(s)
,

and

cp4(0) ≤ p4(s) ≤ Cp4(0),

for all s ∈ [−s∗, 0], Lemma 8.16 immediately gives

|J(i) j (s)| ≤ C(1 + C1),

for j = 1, . . . , 4, and

|J(i)4+A(s)| ≤ C(1 + C1)
p4(s)

r(s)
,

for A = 1, 2, and

|J(i)7(s)| ≤ C(1 + C1)p
4(s).

Note also that,

J(3)
3(0) + s

(
∇̂X J(3)

)3
(0) = 1,
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and hence Lemma 8.16 moreover gives,

|J(3)
3(s) − 1| ≤ C(1 + C1)

r(s)
.

If i = 1, 2 then, using the fact that

|p4(s) − p4(0)| ≤ Cp4(0)

r(s)2 ,

(see the proof of Lemma 8.11), Lemma 8.11 and Proposition 8.15 imply that∣∣∣∣J(A)
A(0) + s

(
∇̂X J(A)

)A
(0) − r(s)

∣∣∣∣
≤
∣∣∣
(
r(0) + sp4(0)

)
− r(s)

∣∣∣+
∣∣∣∣s
(
p4(0) −

(
∇̂X J(A)

)A
(0)

)∣∣∣∣
≤ C,

for A = 1, 2, and that, ∣∣∣∣J(A)
j (0) + s

(
∇̂X J(A)

) j
(0)

∣∣∣∣ ≤ C,

for j = 1, . . . , 4, j �= A, and∣∣∣∣J(A)
4+A(0) + s

(
∇̂X J(A)

)4+A
(0) − p4(0)

∣∣∣∣ =
∣∣∣s J(A)

4+A(0)

∣∣∣ ≤ Cp4(0)

r(0)
,

∣∣∣∣J(A)
j (0) + s

(
∇̂X J(A)

) j
(0)

∣∣∣∣ ≤ Cp4(0)

r(0)
,

for j = 5, 6, 7, j �= 4 + A. Lemma 8.16 then gives,

∣∣∣J(A)
B(s) − δA

Br(s)
∣∣∣ ≤ C(1 + C1),

for B = 1, 2,

∣∣∣J(A)
i (s)

∣∣∣ ≤ C(1 + C1),

for i = 3, 4,

∣∣∣J(A)
4+B(s) − δA

B p4(s)
∣∣∣ ≤ C(1 + C1)p4(s)

r(s)
,

for B = 1, 2, and

∣∣∣J(A)
7(s)

∣∣∣ ≤ C(1 + C1)p
4(s).
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Similarly, using the fact that,
∣∣∣∣J(4)

4(0) + s
(
∇̂X J(4)

)4
(0) − r(s)

∣∣∣∣
=
∣∣∣
(
r(0) + sp4(0)

)
− r(s)

∣∣∣+
∣∣∣∣s
(
p4(0) −

(
∇̂X J(4)

)4
(0)

)∣∣∣∣
≤ C,

etc., the bounds for J(4),
∣∣∣J(4)

4(s) − r(s)
∣∣∣ ≤ C(1 + C1),

and,
∣∣∣J(4)

i (s)
∣∣∣ ≤ C(1 + C1),

for i = 1, 2, 3,

∣∣∣J(4)
4+A(s)

∣∣∣ ≤ C(1 + C1)p4(s)

r(s)
,

for A = 1, 2, and

∣∣∣J(4)
7(s)

∣∣∣ ≤ C(1 + C1)p
4(s),

can be obtained.
It remains to recover the bootstrap assumptions (96)–(98) with better constants. It

will be shown that, for each J = J(1), . . . , J(6),

∫ 0

s
|(R̂(X, J )X)i�i

j (s′)|ds′ ≤ CC(C1)p4(s)

r(s)
3
2

, (99)

for j = 1, . . . , 4,

∫ 0

s
|(R̂(X, J )X)i�i

4+A(s′)|ds′ ≤ CC(C1)(p4(s))2

r(s)2 , (100)

for A = 1, 2, and

∫ 0

s
|(R̂(X, J )X)i�i

7(s′)|ds′ ≤ CC(C1)(p4(s))2

r(s)
3
2

, (101)

where C(C1) is a constant depending on C1. By integrating the Jacobi equation (89)
and taking C small depending on C(C1), the bootstrap assumptions (96)–(98) can
then be recovered with better constants. This implies that the set of s ∈ [−s∗, 0] such
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that (96)–(98) hold for all s′ ∈ [s, 0] is non-empty, open and closed, and hence that
(96)–(98) hold for all s ∈ [−s∗, 0].

Consider first the first term in the expression (91) for R̂(X, J )X ,

Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
.

The components of this term with respect to E1, . . . , E4 are exactly the components
of R(γ̇ , Jh)γ̇ with respect to the frame 1

r e1,
1
r e2, e3, e4 for M. From the schematic

expression (93), the pointwise bounds on the components26 of ψ, T and the fact that
r p|γ̇p(s)| ≤ Cp4(s), one immediately sees that,

∣∣∣∣
(

Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

))i ∣∣∣∣ ≤ CC(p4(s))2

r(s)
5
2

,

and hence, by Proposition 8.14,

∫ 0

s

∣∣∣∣
(

Hor(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

))i
�i

j
∣∣∣∣ ds′ ≤ CCp4(s)

r(s)
3
2

,

for j = 1, 2, 3, 4. Other than those in the bottom line, the remaining horizontal
components in the expression (91) can be treated similarly using also Proposition
8.13 and the pointwise bounds on the components of �, /�, /∇b. For the term

∇̂XHor(γ,γ̇ )

(
R(γ̇ , J v)γ̇

)
,

in the bottom line of (91), write

∇̂XHor(γ,γ̇ )

(
R(γ̇ , J v)γ̇

) = X
(
(R(γ̇ , J v)γ̇ )μ

)
Eμ + (R(γ̇ , J v)γ̇ )μ∇̂X Eμ, (102)

where μ runs from 1 to 4 in the summations. The horizontal components of the second
term of (102) can be estimated exactly as the others using Proposition 8.12. For the
components of the first term, write,

∫ 0

s
X
(
(R(γ̇ , J v)γ̇ )μ�μ

j
)

(s′)ds′ = (R(γ̇ , J v)γ̇ )μ�μ
j (0)

−(R(γ̇ , J v)γ̇ )μ�μ
j (s),

for j = 1, . . . , 7. Then using again the schematic expression (93), the pointwise
bounds on ψ , T and Proposition 8.14, the terms in the Jacobi equation (89) which the
first term of (102) give rise to can be estimated,

26 The pointwise bounds on the components of ψ and T follow from the pointwise bounds on |ψ |, |T |
and the fact that 1

r2 |/gAB |, r2|/gAB | ≤ C in each of the spherical coordinate charts.
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∣∣∣∣
∫ 0

s
X
(
(R(γ̇ , J v)γ̇ )μ

)
�μ

j (s′)ds′
∣∣∣∣ ≤

∣∣∣∣
∫ 0

s
X
(
(R(γ̇ , J v)γ̇ )μ�μ

j
)

(s′)ds′
∣∣∣∣

+
∣∣∣∣
∫ 0

s
(R(γ̇ , J v)γ̇ )μX

(
�μ

j
)

(s′)ds′
∣∣∣∣

≤ CC(p4(s))2

r(s)
5
2

.

The vertical terms in (91) are similarly estimated as follows. Notice now that,
ignoring the term

∇̂X
T Ver(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
,

in the bottom line of (91) for now, each term contains at least three γ̇ factors and
moreover that, since Proposition 8.13 guarantees that the terms involving ∇γ̇ eα gain
an extra power of decay. Similarly, since ∇γ̇ γ̇ = 0, one can check,

X (γ̇ A) = −γ̇ Aγ̇ B /�
A
BC − 2γ̇ 3γ̇ Bχ

B
A

− γ̇ 4γ̇ B
(

2χB
A − eB(bA) − 2γ̇ 3γ̇ 4(ηA + ηA)

)
,

X (γ̇ 3) = −1

2
γ̇ Aγ̇ BχAB + γ̇ 3γ̇ A(η

A
− ηA) + γ̇ 3γ̇ 4ω,

X (γ̇ 4) = −1

2
γ̇ Aγ̇ Bχ

AB
− 2γ̇ 4γ̇ Aη

A
− γ̇ 4γ̇ 4ω,

and hence the terms involving X (γ̇ α) also gain an extra power of r decay. Similarly
for the vertical terms arising from the second term in (102), by Proposition 8.12. Since

T Ver(γ,γ̇ )

(
R(γ̇ , R(γ̇ , J v)γ̇ )γ̇

)
,

is quadratic in R this term also decays better. Hence, using also Proposition 8.14, one
sees all the vertical terms in (91), still ignoring the final term in the bottom line, can
be controlled by27

CC(p4(s))3

r(s)3 .

For the final term, write

∇̂X
T Ver(γ,γ̇ )

(
R(γ̇ , Jh)γ̇

)
= X

(
(R(γ̇ , Jh)γ̇ )λ

)
Eλ̃(λ) + (R(γ̇ , Jh)γ̇ )λ∇̂X Eλ̃(λ),

where λ runs over 1,2,4 and λ̃(1) = 5, λ̃(2) = 6, λ̃(4) = 7. The components of the
second term can be estimated as before (with the additional r decay) by Proposition
8.12. The components of the first term can again be estimated after integrating,

27 They will actually decay like 1

r
7
2

, but 1
r3 is sufficient.
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∣∣∣∣
∫ 0

s
X
(
(R(γ̇ , Jh)γ̇ )λ�λ̃(λ)

j
)

(s′)ds′
∣∣∣∣

=
∣∣∣(R(γ̇ , Jh)γ̇ )λ�λ̃(λ)

j (0) − (R(γ̇ , Jh)γ̇ )λ�λ̃(λ)
j (s)

∣∣∣
≤ CC(p4(s))2

r(s)
5
2

,

and hence

∣∣∣∣
∫ 0

s
X
(
(R(γ̇ , Jh)γ̇ )λ

)
�λ̃(λ)

j (s′)ds′
∣∣∣∣ ≤ CC(p4(s))2

r(s)
5
2

.

The bounds (99)–(101) are thus obtained. ��

Suppose now i1, i2 = 1, . . . , 6. Since J(i2) is a Jacobi field along (γ, γ̇ ), a curve
with tangent vector field X , it is true that [X, J(i2)] = 0 and the Jacobi equation for
the components of J(i1) can be commuted with J(i2) to give,

d2 J(i2)(J(i1)
k�k

j )

ds2 = J(i2)
(
(R̂(X, J(i1))X)k�k

j
)

.

The goal now is to repeat the proof of Proposition 8.17 to get pointwise estimates
for J(i2)(J(i1)

j ) along (γ, γ̇ ). It is first necessary to show that the schematic form of
R̂(X, J(i1))X is preserved after differentiating the components with respect to J(i2).

As with the K notation introduced in Section 8.2, for J = J(1), . . . , J(6), let the
components be schematically denoted as follows,

J0 = J 3, J−1 = J 1, J 2, J 4, J 5, J 6, J 7.

By Proposition 8.17, it is always true that

r p|Jp| ≤ C,

for some constant C .28

Proposition 8.18 For J = J(1), . . . , J(6),

J (h p) =
∑

p1+p2≥p

h p1Jp2 ,

28 In fact, all of the J5, J6, J7 components are uniformly bounded along (γ, γ̇ ), though it is easier to treat
them systematically if they are included in J−1.
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for any h p appearing in the schematic expressions of this section,

J (γ̇p) =
∑

p1+...+p5≥p

h p1Jp2 γ̇p3(/g + 1)(h p4 + �p4)(1 + r /� + r /∇b + r /� · b)/e−p5

+ J 7h p +
∑
A=1,2

1

r

(
J 4+A − p4

r
J A
)

+ 1

2r
/gAB p

B

p4

(
J 4+A − p4

r
J A
)

,

(103)

and

J

⎛
⎝ ∑

p1+p2≥p

(/g + 1)(�p1 + ψp1 + Tp1)(1 + r /� + r /∇b + r /� · b)/e−p2

⎞
⎠

=
∑

p1+p2≥p

(1 + /g + D/g)(�p1 + D�p1 + ψp1 + Dψp1 + Tp1 + DTp1)

× (1 + r /� + rD/� + r /∇b + Dr /∇b)/e−p2 .

Proof In the schematic expressions of this section, h p always denotes (a constant
multiple of) 1

r p . One easily checks,

J

(
1

r p

)
= J 4e4

(
1

r p

)
+ J 3e3

(
1

r p

)
= 1

pr p−1 (J 3 − J 4) =
∑

p1+p2≥p

h p1Jp2 .

For the second part, writing Hor(γ,γ̇ )(eμ) = eμ−pν�λ
μν∂pλ , by direct computation,

J (γ̇ 4) = − 1

2r
J Aγ̇ B

(
χ̂

AB
+ 1

2
/gAB

(
trχ + 2

r

)
− /gAB

r

)

− J 4γ̇ 4ω − 1

r
γ̇ 4 J Aη

A
+ J 7,

J (γ̇ A) = −1

r
J B γ̇ C /�

A
BC − 1

r
J B γ̇ 3

(
χ̂
B
A

+ 1

2
δA

B
(

trχ + 2

r

)
− δA

B 1

r

)

− 1

r
J B γ̇ 4

(
χ̂ B
A + 1

2
δA

B
(

trχ − 2

r

))

− J 3γ̇ B
(

χ̂
B
A

+ 1

2
δA

B
(

trχ + 2

r

)
− δA

B 1

r

)

− J 4γ̇ B
(

χ̂ B
A + 1

2
δA

B
(

trχ − 2

r

)
+ δA

B 1

r
− ( /∇Bb)

A + /�
A
BCb

C
)

− 2J 3γ̇ 4ηA − 2J 4γ̇ 3ηA + 1

r

(
J 4+A − γ̇ 4

r
J A
)

.
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One easily sees these two expressions have the desired schematic form. For J (γ̇ 3),
recall,

γ̇ 3 = /gAB γ̇ Aγ̇ B

4γ̇ 4 ,

so that

J (γ̇ 3) = J (/gAB)γ̇ Aγ̇ B

4γ̇ 4 + /gAB J (γ̇ A)γ̇ B

2γ̇ 4 − /gAB γ̇ Aγ̇ B

4(γ̇ 4)2 J (γ̇ 4)

=
(
JC

r
eC (/gAB) + J 3e3(/gAB) + J 4e4(/gAB)

)
+ /gAB J (γ̇ A)γ̇ B

2γ̇ 4 − γ̇ 3

γ̇ 4 J (γ̇ 4).

The result follows by expanding eC (/gAB), e3(/gAB), e4(/gAB) and using the previous
two expressions.

The last point is immediate from Lemma 3.4. ��
Note that it is the terms in the last line of (103) which make it necessary to keep

track of the leading order terms in some of the Jacobi fields.

Remark 8.19 One easily sees that the last point from Proposition 8.18 is true at higher
orders, i.e.,

J

⎛
⎝ ∑

p1+p2≥p

(1 + Dk
/g)(Dk�p1 + Dkψp1 + DkTp1)(1 + rDk /� + Dkr /∇b)/e−p2

⎞
⎠

=
∑

p1+p2≥p

(1 + Dk
/g + Dk+1

/g)(Dk�p1 + Dk+1�p1 + Dkψp1

+ Dk+1ψp1 + DkTp1 + Dk+1Tp1)(1 + rDk /� + rDk+1 /� + Dkr /∇b

+ Dk+1r /∇b)/e−p2 ,

for k ≥ 1. This fact will be used later when estimating higher order derivatives of the
Jacobi fields.

Using the bounds on the components of J(1), . . . , J(6) from Proposition 8.17, Propo-
sition 8.18 in particular guarantees that

∣∣J (γ̇p)(s)
∣∣ ≤ Cp4

r(s)p
,

for J = J(1), . . . , J(6).
In order to mimic the strategy used to obtain the zeroth order estimates of the compo-

nents of the Jacobi fields, estimates for J(i2)(�k
j ) along (γ, γ̇ ) are first obtained, then

the initial conditions for J(i2)(J(i1)
j ) are computed in Proposition 8.20 and Proposition

8.21 respectively.
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Proposition 8.20 If v0 is sufficiently large, for J = J(1), . . . , J(6) the matrix � satis-
fies,

∣∣∣J (�k
j )(s)

∣∣∣ ≤ C

r(s)
,

∣∣∣∣d J (�k
j )

ds
(s)

∣∣∣∣ ≤ Cp4(s)

r(s)2 ,

for k, j = 1, . . . , 7. Moreover, if k = 1, . . . , 4, j = 5, 6, 7 or vice versa,

∣∣∣J (�k
j )(s)

∣∣∣ ≤ Cp4(s)

r(s)
,

∣∣∣∣d J (�k
j )

ds
(s)

∣∣∣∣ ≤ C(p4(s))2

r(s)2 .

Similarly for �−1,

∣∣∣J (�−1
k
j
)(s)

∣∣∣ ≤ Cp4(s)

r(s)
,

∣∣∣∣∣
d J (�−1

k
j
)

ds
(s)

∣∣∣∣∣ ≤ C(p4(s))2

r(s)2 .

for k, j = 1, . . . , 7. Moreover, if k = 1, . . . , 4, j = 5, 6, 7 or vice versa,

∣∣∣J (�−1
k
j
)(s)

∣∣∣ ≤ Cp4(s)

r(s)
,

∣∣∣∣∣
d J (�−1

k
j
)

ds
(s)

∣∣∣∣∣ ≤ C(p4(s))2

r(s)2 .

Proof The proof follows that of Proposition 8.14 by first, for s ∈ [−s∗, 0], making
the bootstrap assumptions,

∣∣∣J (�k
j )(s′)

∣∣∣ ≤ C1

r(s′)
,

for k, j = 1, . . . , 7,

∣∣∣J (�k
j )(s′)

∣∣∣ ≤ C1 p4(s′)
r(s′)

,

for k = 1, . . . , 4, j = 5, 6, 7 or vice versa, for all s′ ∈ [s, 0]. Note that at time s = 0,

J (�k
j )|s=0 = 0,

for all J, k, j . Using the schematic expressions for the components of ∇̂X Ek from
Proposition 8.12 and the fact that this schematic structure is pressured by Proposition
8.18, the commuted equation for �,

d J (�k
j )

ds
(s) = J

(
(∇̂X Ek)

l�l
j (s)

)

can be estimated exactly as in Proposition 8.14. Similarly for �−1. ��
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The next proposition gives pointwise estimates for the initial conditions for the
commuted Jacobi equation. As was the case for the uncommuted equation, the leading
order terms of some of the components have to be subtracted first.

Proposition 8.21 At time s = 0,

∣∣∣J(4)(J(A)
B)
∣∣
s=0 − δA

Br
∣∣∣ ≤ C,

∣∣∣J(4)((∇̂X J(A))
B)
∣∣
s=0 − δA

B p4
∣∣∣ ≤ Cp4

r
,

for A, B = 1, 2,

∣∣∣J(4)(J(4)
4)
∣∣
s=0 − r

∣∣∣ ≤ C,

∣∣∣J(4)((∇̂X J(4))
4)
∣∣
s=0 − p4

∣∣∣ ≤ Cp4

r
,

and

∣∣∣J(i2)(J(i1) j )
∣∣
s=0

∣∣∣ ≤ C,

∣∣∣J(i2)((∇̂X J(i1))
j )
∣∣
s=0

∣∣∣ ≤ Cp4

r
,

for i1, i2 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

∣∣∣J(4)(J(A)
4+B)

∣∣
s=0 − δA

B p4
∣∣∣ ≤ Cp4

r
,

for A, B = 1, 2,

∣∣∣J(i2)(J(i1)4+A)
∣∣
s=0

∣∣∣ ≤ Cp4

r
,

for i1, i2 = 1, . . . , 6 otherwise,

∣∣∣J(i2)((∇̂X J(i1))
4+A)

∣∣
s=0

∣∣∣ ≤ Cp4

r2 ,

for all i1, i2 = 1, . . . , 6, and

∣∣∣J(i2)(J(i1)7)
∣∣
s=0

∣∣∣ ≤ Cp4,

∣∣∣J(i2)((∇̂X J(i1))
7)
∣∣
s=0

∣∣∣ ≤ Cp4

r
,

for all i1, i2 = 1, . . . , 6.

Proof Consider the expressions for J(i1)(0), ∇̂X J(i1)(0) before Proposition 8.17. The
proof follows by applying V(i2) to the components, noting that,

V(4)(r) = r, V(4)(p
4) = p4,

|V(i)(r)| ≤ C, |V(i)(p
4)| ≤ Cp4

r
,
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for i �= 4, and that, by Proposition 8.18, one has the same pointwise bounds for V(i2)

applied to the terms involving curvature as one does for the terms involving curvature
alone. ��
Proposition 8.22 For s ∈ [−s∗, 0], if C is sufficiently small then,

|J(4)

(
J(A)

B
)

(s) − δA
Br(s)| ≤ C, |J(4)

(
J(4)

4
)

(s) − r(s)| ≤ C,

for A, B = 1, 2,

|J(i2)
(
J(i1)

j
)

(s)| ≤ C,

for i1, i2 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

|J(4)

(
J(A)

4+B
)

(s) − δA
B p4(s)| ≤ Cp4(s)

r(s)
, |J(i2)

(
J(i1)

4+A
)

(s)| ≤ Cp4(s)

r(s)
,

for all A, B = 1, 2, i1, i2 = 1, . . . , 6 such that (i2, i1) �= (4, A), and

|J(i2)
(
J(i1)

7
)

(s)| ≤ Cp4(s),

for all i1, i2 = 1, . . . , 7. Here C = C(C) is independent of the point (x, p) and of s.

Proof The proof follows that of Proposition 8.17. The commuted Jacobi equation
takes the form

d2 J(i2)
(
J(i1)

k�k
j
)

ds2 = J(i2)
(
(R̂(X, J(i1))X)k�k

j
)

,

since [X, J(i2)] = 0. Assume that s ∈ [−s∗, 0] is such that

∣∣∣∣∣
d2 J(i2)

(
J(i1)

k�k
j
)

ds2 (s′) − d2 J(i2)
(
J(i1)

k�k
j
)

ds2 (0)

∣∣∣∣∣ ≤ C1 p4(s′)
r(s′) 3

2

,

for j = 1, . . . , 4,

∣∣∣∣∣
d2 J(i2)

(
J(i1)

k�k
4+A

)
ds2 (s′) − d2 J(i2)

(
J(i1)

k�k
4+A

)
ds2 (0)

∣∣∣∣∣ ≤ C1(p4(s′))2

r(s′)2 ,

for A = 1, 2, and

∣∣∣∣∣
d2 J(i2)

(
J(i1)

k�k
7
)

ds2 (s′) − d2 J(i2)
(
J(i1)

k�k
7
)

ds2 (0)

∣∣∣∣∣ ≤ C1(p4(s′))2

r(s′) 3
2

,
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for all s′ ∈ [s, 0], for all i1, i2 = 1, . . . , 6, where C1 is a large constant which will be
chosen later. For j = 1, . . . , 4 this immediately gives

∣∣∣∣∣J(i2)
(
J(i1)

k�k
j
)

(s) −
(
J(i2)

(
J(i1)

k�k
j
)

(0) + s
d2 J(i2)

(
J(i1)

k�k
j
)

ds2 (0)

)∣∣∣∣∣
≤ CC1√

r(s)
.

By Proposition 8.20, and Proposition 8.17,

∣∣∣J(i1)k J(i2)
(
�k

j
)

(s)
∣∣∣ ≤ C,

and hence, by Proposition 8.21 and the fact that,

J(i2)
(
J(i1)

k�k
j
)

(0) = J(i2)

(
J(i1)

j
)

(0),

d J(i2)
(
J(i1)

k�k
j
)

ds
(0) = J(i2)

(
(∇̂X J(i1))

j
)

(0),

this implies,

∣∣∣J(4)

(
J(A)

B
)

(s′) − δA
Br(s′)

∣∣∣ ≤ C(1 + C1),

for A, B = 1, 2,

∣∣∣J(4)

(
J(4)

4
)

(s′) − r(s′)
∣∣∣ ≤ C(1 + C1),

and

∣∣∣J(i2)
(
J(i1)

j
)

(s′)
∣∣∣ ≤ C(1 + C1),

for i1, i2 = 1, . . . , 6, j = 1, . . . , 4 otherwise, for all s′ ∈ [s, 0], where Proposition
8.14 has also been used. Similarly,

∣∣∣J(4)

(
J(A)

4+B
)

(s′) − δA
B p4(0)

∣∣∣ ≤ C(1 + C1)p4(s′)
r(s′)

,

for A, B = 1, 2,

∣∣∣J(i2)
(
J(i1)

4+A
)

(s′)
∣∣∣ ≤ C(1 + C1)p4(s′)

r(s′)
,
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for A = 1, 2, i1, i2 = 1, . . . , 6 otherwise, and

∣∣∣J(i2)

(
J(i1)

7
)

(s′)
∣∣∣ ≤ C(1 + C1)p

4(s′),

for all i1, i2 = 1, . . . , 6, for all s′ ∈ [s, 0].
The remainder of the proof proceeds exactly as that of Proposition 8.17, recalling

that [X, J(i2)] = 0. By Proposition 8.18 and Proposition 8.20 one has the same bounds
for,

J(i2)
(
(R̂(X, J(i1))X)k�k

j
)

,

the right hand side of the commuted Jacobi equation, as for the uncommitted equa-
tion since the bootstrap assumptions of Section 5 and the Sobolev inequalities give
pointwise bounds for Dψ,DT ,D�,D/�,Dr /∇b. ��

8.7 L2 Estimates for Components of Jacobi Fields at Higher Orders

To estimate J(i3) J(i2)(J
j

(i1)
) and J(i4) J(i3) J(i2)(J

j
(i1)

), the Jacobi equation needs to com-
muted three and four times respectively. This will generate terms involving two and
three derivatives of Ricci coefficients, Weyl curvature components and energy momen-
tum tensor components. The higher order derivatives of the components of the Jacobi
fields must therefore be estimated in L2. They will additionally only be estimated after
integrating in momentum space, i.e. after integrating over Px .

Given (x, p) ∈ supp( f ) ∩ {(x, p) ∈ P | v(x) > v0} and v0 ≤ v′ ≤ v(x),
define sv′(x, p) to be the parameter time such that π(expsv′ (x, p)) ∈ {v = v′}, where
π : P → M is the natural projection map. In this notation,

−s∗(x, p) = sv0(x, p),

where s∗(x, p) is defined in Section 8.5.
The goal of this section is to show that, for all i1, i2, i3, i4 = 1, . . . , 6, j = 1, . . . , 7,

the quantities

T
[
J(i3) J(i2)(J

j
(i1)

)(sv′)
]
, T

[
J(i4) J(i3) J(i2)(J

j
(i1)

)(sv′)
]
, (104)

for each T = /T 44, /T 4, /T , /T 34, /T 3, /T 33, can be controlled, for all v′ ∈ [v0, v(x)], by
up to two and three derivatives of Ricci coefficients, curvature components and energy
momentum tensor components respectively. It will then be possible to estimate the
quantities (104) after taking appropriate weighted square integrals.

The case where two derivatives of the components of the Jacobi fields are taken
will first be considered. Mimicking again the proof of the zeroth order estimates,
second order derivatives of the matrices � and �−1 are first estimated, followed by
estimates for second order derivatives of the initial conditions for the Jacobi equation in
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Proposition 8.23 and Proposition 8.25 respectively. The following Proposition should
therefore be compared to Proposition 8.14 and Proposition 8.20.

Proposition 8.23 If v0 is sufficiently large, J(i2), J(i3) = J(1), . . . , J(6), then, for all
Tp,

∣∣∣Tp

[
J(i3) J(i2)(�k

j )(sv′)
]∣∣∣ ≤ C

(
1

r(x)pv′ + H�,2(v
′)
)

,

for j, k = 1, . . . , 7, and

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)(�k

j )(sv′)
]∣∣∣ ≤ C

(
1

r(x)pv′ + H�,2(v
′)
)

,

for j = 1, . . . , 4, k = 5, 6, 7 or vice versa, for all v0 ≤ v′ ≤ v(x). Similarly for �−1,

∣∣∣Tp

[
J(i3) J(i2)(�

−1
k
j
)(sv′)

]∣∣∣ ≤ C

(
1

r(x)pv′ + H�,2(v
′)
)

,

for j, k = 1, . . . , 7, and

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)(�

−1
k
j
)(sv′)

]∣∣∣ ≤ C

(
1

r(x)pv′ + H�,2(v
′)
)

,

for j = 1, . . . , 4, k = 5, 6, 7 or vice versa. Here C is a constant which is independent
of the point (x, p) (but depends on C) and

H�,2(v
′) = 1√

v′
∑
�q

Tp

⎡
⎣
(∫ v(x)

v′
r(sv′′)2q−2|D2�q(sv′′)|2dv′′

) 1
2
⎤
⎦

+ 1√
v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2 /�(sv′′)|2dv′′

) 1
2
⎤
⎦

+ 1

v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2r /∇b(sv′′)|2dv′′

) 1
2
⎤
⎦

+ 1

v′ Tp

⎡
⎣
⎛
⎝
∫ v(x)

v′

∑
ψq

r(sv′′)2q−2|D2ψq(sv′′)|2

+
∑
Tq

r(sv′′)2q−2|D2Tq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦ ,
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Remark 8.24 It should be noted that the L2 norm on incoming null hypersurfaces of
the quantities

r(x)p
√

v′∑
�q

Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

2q−2|D2�q(sṽ)|2d ṽ

) 1
2
⎤
⎦ ,

r(x)p
√

v′Tp

⎡
⎣
(∫ v(x)

v′
|D2 /�(sṽ)|2d ṽ

) 1
2
⎤
⎦ ,

will be shown to be uniformly bounded. Direct comparison with the 1
r(s) behaviour of

�k
j (s) − δk

j and J(i2)(�k
j )(s) from Proposition 8.14 and Proposition 8.20 respec-

tively can therefore be made. The terms involving curvature components, energy
momentum tensor components and b can similarly be controlled after taking their
weighted L2 norms on incoming null hypersurfaces. See Section 8.8 below.

Proof of Proposition 8.23 The proof proceeds by a bootstrap argument. Suppose v′ ∈
[v0, v(x)] is such that, for each Tp, for j, k = 1, . . . , 7,

∣∣∣Tp

[
J(i3) J(i2)(�k

j )(sṽ)
]∣∣∣ ≤ C1

(
1

r(x)p ṽ
+ H�,2(v

′)
)

, (105)

for all v′ ≤ ṽ ≤ v(x), where C1 is a large constant which will be chosen later. Note
that

J(i3) J(i2)(�k
j )
∣∣
sv′=0 = 0,

so this is clearly true for sv′ = 0.
Now,

d

dv′
(
Tp

[
J(i3) J(i2)(�k

j )(sv′)
])

= Tp

[
1

p4 J(i3) J(i2)
(
(∇̂X El)

j�k
l
)

(sv′)

]

= Tp

[
1

p4

(
�k

l J(i3) J(i2)
(
(∇̂X El)

j
)

+ (∇̂X El)
j J(i3) J(i2)

(
�k

l
)

+ J(i2)
(
�k

l
)
J(i3)

(
(∇̂X El)

j
)

+ J(i3)
(
�k

l
)
J(i2)

(
(∇̂X El)

j
))

(sv′)

]
,

(106)

since d
dv′ = ds

dv′ d
ds , dv′

ds = X (v′) = p4, and

[
d

ds
, J

]
= [X, J ] = 0,

for J = J(i2), J(i3).
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By Proposition 8.18, Proposition 8.17 and Proposition 8.12,
∣∣∣∣J(i2)

((
∇̂X El

) j
)

(sṽ)

∣∣∣∣ ≤ Cp4

r(sṽ)2 ,

for all j, l = 1, . . . , 7. Also, by Proposition 8.20,
∣∣∣J(i3)

(
�k

l
)

(sṽ)
∣∣∣ ≤ C

r(sṽ)
,

for all k, l = 1, . . . , 7. Hence,∣∣∣∣Tp

[
1

p4 J(i3)
(
�k

l
)
J(i2)

(
(∇̂X El)

j
)

(sṽ)

]∣∣∣∣ ≤
∣∣∣∣Tp

[
Cp4

r(sṽ)3

]∣∣∣∣ ≤ C

r(x)p ṽ3 ,

recalling from the proof of Proposition 8.1 that,
∣∣∣Tp

[
p41supp( f )

]∣∣∣ ≤ C

r(x)p
.

Similarly, ∣∣∣∣Tp

[
1

p4 J(i2)
(
�k

l
)
J(i3)

(
(∇̂X El)

j
)

(sṽ)

]∣∣∣∣ ≤ C

r(x)p ṽ3 .

Using the bootstrap assumptions (105) and the pointwise bounds,
∣∣∣∣
(
∇̂X El

) j
(sṽ)

∣∣∣∣ ≤ Cp4

r(sṽ)2 ≤ Cp4

ṽ2 ,

from Proposition 8.12, clearly have,

∣∣∣∣Tp

[
1

p4 (∇̂X El)
j J(i3) J(i2)

(
�k

l
)

(sṽ)

]∣∣∣∣ ≤ CC1

ṽ2

(
1

r(x)p ṽ
+ H�,2(v

′)
)

.

Now, using the schematic form of (∇̂X El)
j from Proposition 8.12, recalling the better

decay for the terms involving Weyl curvature and energy momentum tensor compo-
nents, the bounds for � j

k from Proposition 8.14, Proposition 8.18 and Propositions
8.17, 8.22,

∣∣∣∣Tp

[
1

p4 �k
l J(i3) J(i2)

(
(∇̂X El)

j
)

(sṽ)

]∣∣∣∣
≤ CTp

[
1

r(sṽ)2 +
∑
�q

r(sṽ)
q−2|D2�q(sṽ)| + r(sṽ)

−2|D2r /∇b(sṽ)|

+ r(sṽ)
−1|D2 /�(sṽ)| +

∑
ψq

r(sṽ)
q− 5

2 |D2ψq(sṽ)| +
∑
Tq

r(sṽ)
q− 5

2 |D2Tq(sṽ)|
]
.
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Note that,

∫ v(x)

v′
CC1

ṽ2

1√
ṽ

∑
�q

Tp

⎡
⎣
(∫ v(x)

ṽ

r(sv′′)2q−2|D2�q(sv′′)|2dv′′
) 1

2
⎤
⎦ d ṽ

≤ CC1

∑
�q

Tp

⎡
⎣
(∫ v(x)

v′
r(sv′′)2q−2|D2�q(sv′′)|2dv′′

) 1
2
⎤
⎦
∫ v(x)

v′
1

ṽ
5
2

d ṽ

≤ CC1

v′
1√
v′
∑
�q

Tp

⎡
⎣
(∫ v(x)

v′
r(sv′′)2q−2|D2�q(sv′′)|2dv′′

) 1
2
⎤
⎦ ,

and similarly,

∫ v(x)

v′
CC1

ṽ2

(
1√
ṽ
Tp

⎡
⎣
(∫ v(x)

ṽ

|D2 /�(sv′′)|2dv′′
) 1

2
⎤
⎦

+ 1

ṽ
Tp

⎡
⎣
(∫ v(x)

ṽ

|D2r /∇b(sv′′)|2dv′′
) 1

2
⎤
⎦

+ 1

ṽ
Tp

⎡
⎣
⎛
⎝
∫ v(x)

ṽ

∑
ψq

r(sv′′)2q−2|D2ψq(sv′′)|2

+
∑
Tq

r(sv′′)2q−2|D2Tq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦
)
d ṽ

≤ CC1

v′

(
1√
v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2 /�(sv′′)|2dv′′

) 1
2
⎤
⎦

+ 1

v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2r /∇b(sv′′)|2dv′′

) 1
2
⎤
⎦

+ 1

v′ Tp

⎡
⎣
⎛
⎝
∫ v(x)

v′

∑
ψq

r(sv′′)2q−2|D2ψq(sv′′)|2

+
∑
Tq

r(sv′′)2q−2|D2Tq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦
)

.
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Also,

∫ v(x)

v′
Tp

[
r(sṽ)

q−2|D2�q(sṽ)|
]
d ṽ

≤ Tp

⎡
⎣
(∫ v(x)

v′
1

r(sṽ)2 d ṽ

) 1
2
(∫ v(x)

v′
r(sṽ)

2q−2|D2�q(sṽ)|2d ṽ

) 1
2
⎤
⎦

≤ C√
v′ Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

2q−2|D2�q(sṽ)|2d ṽ

) 1
2
⎤
⎦ ,

and similarly,

∫ v(x)

v′
Tp

[
r(sṽ)

−1|D2 /�(sṽ)|
]
d ṽ ≤ 1√

v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2 /�(sṽ)|2d ṽ

) 1
2
⎤
⎦ ,

∫ v(x)

v′
Tp

[
r(sṽ)

−2|D2r /∇b(sṽ)|
]
d ṽ ≤ 1

v′ Tp

⎡
⎣
(∫ v(x)

v′
|D2r /∇b(sṽ)|2d ṽ

) 1
2
⎤
⎦ ,

and

∫ v(x)

v′
Tp

[
r(sṽ)

q− 5
2

(
|D2ψq(sṽ)| + |D2Tq(sṽ)|

)]
d ṽ

≤ 1

v′ Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

2q−2
(
|D2ψq(sṽ)|2 + |D2Tq(sṽ)|2

)
d ṽ

) 1
2
⎤
⎦ .

Hence, integrating equation (106) from v′ to v(x) and using the fact that,

J(i3) J(i2)
(
�k

j
) ∣∣

s=0 = 0,

it follows that

∣∣∣Tp

[
J(i3) J(i2)(�k

j )(sv′)
]∣∣∣ ≤ C

(
1 + C1

v′

)(
1

r(x)pv′ + H�,2(v
′)
)

.

Now choose C1 large so that C1 > 4C , where C is the constant appearing in the above
inequality, and v0 large so that C1

v′ ≤ 1. Then,

C

(
1 + C1

v′

)
≤ C1

4
· 2 = C1

2
,
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and the bootstrap assumption (105) has been recovered with a better constant. Hence
the set of v′ ∈ [v0, v(x)] such that the bootstrap assumption (105) holds for all
v′ ≤ ṽ ≤ v(x) is non-empty, open and closed and hence equal to [v0, v(x)].

The proof of the second part follows by making the bootstrap assumption,

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)(�k

j )(sṽ)
]∣∣∣ ≤ C1

(
1

r(x)p ṽ
+ H�,2(v

′)
)

, (107)

for all v′ ≤ ṽ ≤ v(x), for j = 1, . . . , 4, k = 5, 6, 7 or vice versa. The proof proceeds
as before, now using the fact that

∣∣∣∣
(
∇̂X El

) j
(sṽ)

∣∣∣∣ ≤ C(p4)2

r(sṽ)2 ,

∣∣∣∣J(i2)
((

∇̂X El

) j
)

(sṽ)

∣∣∣∣ ≤ C(p4)2

r(sṽ)2 ,

∣∣∣�l
j (sṽ)

∣∣∣ ≤ Cp4

r(sṽ)
,

∣∣∣J(i2)
(
�l

j
)

(sṽ)
∣∣∣ ≤ Cp4

r(sṽ)
,

and

∣∣∣Tp

[
(p4)−2 J(i3) J(i2)

(
(∇̂X El)

j
)

(sṽ)
]∣∣∣

≤ CTp

[
1

r(sṽ)2 +
∑
�q

r(sṽ)
q−2|D2�q(sṽ)| + r(sṽ)

−2|D2r /∇b(sṽ)|

+ r(sṽ)
−1|D2 /�(sṽ)| +

∑
ψq

r(sṽ)
q− 5

2 |D2ψq(sṽ)| +
∑
Tq

r(sṽ)
q− 5

2 |D2Tq(sṽ)|
]
,

for l = 1, . . . , 4, j = 5, 6, 7 or vice versa.
The proof for �−1

k
j

is identical. ��
The next proposition gives estimates for the initial conditions for the commuted

Jacobi equation. Again, the leading order terms of some of the components have to be
subtracted first.

Proposition 8.25 At time sv′ = 0,∣∣∣∣J(4) J(4)

(
J(A)

B
) ∣∣∣

sv′=0
− δA

Br

∣∣∣∣

≤ C

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,
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∣∣∣∣J(4) J(4)

(
(∇̂X J(A))

B
) ∣∣∣

sv′=0
− δA

B p4
∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

for A, B = 1, 2,

∣∣∣∣J(4) J(4)

(
J(4)

4
) ∣∣∣

sv′=0
− r

∣∣∣∣

≤ C

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

∣∣∣∣J(4) J(4)

(
(∇̂X J(4))

4
) ∣∣∣

sv′=0
− p4

∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

and,

∣∣∣∣J(i3) J(i2)
(
J(i1)

j
) ∣∣∣

sv′=0

∣∣∣∣

≤ C

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

∣∣∣∣J(i3) J(i2)
(
(∇̂X J(i1))

j
) ∣∣∣

sv′=0

∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

for i1, i2, i3 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

∣∣∣∣J(4) J(4)

(
J(A)

4+B
) ∣∣∣

sv′=0
− δA

B p4
∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,
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for A, B = 1, 2,∣∣∣∣J(i3) J(i2)
(
J(i1)

A
) ∣∣∣

sv′=0

∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

for i1, i2, i3 = 1, . . . , 6 otherwise,∣∣∣∣J(i3) J(i2)
(
(∇̂X J(i1))

4+A
) ∣∣∣

sv′=0

∣∣∣∣

≤ Cp4

r2

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

for all i1, i2, i3 = 1, . . . , 6, and

∣∣∣∣J(i3) J(i2)
(
J(i1)

7
) ∣∣∣

sv′=0

∣∣∣∣

≤ Cp4

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

∣∣∣∣J(i3) J(i2)
(
(∇̂X J(i1))

7
) ∣∣∣

sv′=0

∣∣∣∣

≤ Cp4

r

⎛
⎝1 +

∑
�q

rq |D2�q | +
∑
ψq

rq |D2ψq | +
∑
Tq

rq |D2Tq |
⎞
⎠ ,

for all i1, i2, i3 = 1, . . . , 6.

Proof Again follows from considering expressions for V(i1), ∇̂XV(i1), differentiating
the components and using the fact that,

V(4)(r) = r, V(4)(p
4) = p4,

|V(i)(r)| ≤ C, |V(i)(p
4)| ≤ Cp4

r
,

for i �= 4, as in Proposition 8.21. ��
Proposition 8.26 If v0 is sufficiently large, v′ ∈ [v0, v(x)], then, for each Tp,

∣∣∣Tp

[
J(4) J(4)

(
J(A)

B
)

(sv′) − r(sv′)δA
B
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,2(v

′)
)

,
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for A, B = 1, 2,

∣∣∣Tp

[
J(4) J(4)

(
J(4)

4
)

(sv′) − r(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,2(v

′)
)

,

and

∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

j
)

(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,2(v

′)
)

,

for i1, i2, i3 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

∣∣∣Tp

[
(p4)−1 J(4) J(4)

(
J(A)

4+B
)

(sv′) − δA
B
]∣∣∣ ≤ C

v′

(
1

r(x)p
+ HTp,2(v

′)
)

,

for A, B = 1, 2,

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

4+A
)

(sv′)
]∣∣∣ ≤ C

v′

(
1

r(x)p
+ HTp,2(v

′)
)

,

for i1, i2, i3 = 1, . . . , 6, A = 1, 2 otherwise, and,

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

7
)

(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,2(v

′)
)

,

where,

HTp,2(v
′) = Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

6|D2β|2(sṽ)d ṽ

) 1
2
⎤
⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
ψq �=β

r(sṽ)
2q−2|D2ψq |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
Tq

r(sṽ)
2q−2|D2Tq |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
�q

r(sṽ)
2q− 3

2 |D2�q |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

1
2 |D2 /�|2(sṽ)d ṽ

) 1
2
⎤
⎦
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+ Tp

⎡
⎣
(∫ v(x)

v′
|D2r /∇b|2(sṽ)d ṽ

) 1
2
⎤
⎦

+ 1

r(x)p

(∑
ψq

r(x)q |D2ψq |(x) +
∑
Tq

r(x)q |D2Tq |(x)

+
∑
�q

r(x)q |D2�q |(x) + |D2r /∇b|(x) + r(x)|D2 /�|(x)
)

.

Proof Suppose v′ ∈ [v0, v(x)] is such that the following bootstrap assumptions hold
for all ṽ ∈ [v′, v(x)],

∣∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

k�k
j
)

(sṽ)
]

− Tp

[
J(i3) J(i2)

(
J(i1)

j
) ∣∣∣

sv′=0

]

+ (v(x) − ṽ) Tp

[
1

p4

d J(i3) J(i2)
(
J(i1)

k�k
j
)

ds

∣∣∣∣
sv′=0

] ∣∣∣∣
≤ C1

r(x)p
(
1 + HTp,2(ṽ)

)
,

for all i1, i2, i3 = 1, . . . , 6, j = 1, . . . , 4,

∣∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

k�k
4+A

)
(sṽ)

]
− Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

4+A
) ∣∣∣

sv′=0

]

+ (v(x) − ṽ) Tp

[
1

(p4)2

d J(i3) J(i2)
(
J(i1)

k�k
4+A

)
ds

∣∣∣∣
sv′=0

] ∣∣∣∣
≤ C1

r(x)pr(sṽ)

(
1 + HTp,2(ṽ)

)
,

for A = 1, 2, and

∣∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

k�k
7
)

(sṽ)
]

− Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

7
) ∣∣∣

sv′=0

]

+ (v(x) − ṽ) Tp

[
1

(p4)2

d J(i3) J(i2)
(
J(i1)

k�k
7
)

ds

∣∣∣∣
sv′=0

] ∣∣∣∣
≤ C1

r(x)p
(
1 + HTp,2(ṽ)

)
.

Here C1 is a large constant which will be chosen later.
Note that, for each p ∈ Px ,

∣∣∣(v(x) − ṽ) + sṽ p
4(0)

∣∣∣ ≤ C

r(sṽ)
≤ C

ṽ
.
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The proof of this fact is identical to that of Lemma 8.11, using the fact that X (ṽ) =
p4(sṽ). Using this fact along with Proposition 8.25 and Lemma 8.11, the bootstrap
assumptions immediately give,

∣∣∣Tp

[
J(4) J(4)

(
J(A)

B
)

(sv′) − r(sv′)δA
B
]∣∣∣ ≤ C(1 + C1)

r(x)p
(
1 + HTp,2(v

′)
)
,

for A, B = 1, 2,

∣∣∣Tp

[
J(4) J(4)

(
J(4)

4
)

(sv′) − r(sv′)
]∣∣∣ ≤ C(1 + C1)

r(x)p
(
1 + HTp,2(v

′)
)
,

and

∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

j
)

(sv′)
]∣∣∣ ≤ C(1 + C1)

r(x)p
(
1 + HTp,2(v

′)
)
,

for i1, i2, i3 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

∣∣∣Tp

[
(p4)−1 J(4) J(4)

(
J(A)

4+B
)

(sv′) − δA
B
]∣∣∣ ≤ C(1 + C1)

r(x)pv′
(
1 + HTp,2(v

′)
)
,

for A, B = 1, 2,

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

4+A
)

(sv′)
]∣∣∣ ≤ C(1 + C1)

r(x)pv′
(
1 + HTp,2(v

′)
)
,

for i1, i2, i3 = 1, . . . , 6, A = 1, 2 otherwise, and,

∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
J(i1)

7
)

(sv′)
]∣∣∣ ≤ C(1 + C1)

r(x)p
(
1 + HTp,2(v

′)
)
.

It remains to recover the bootstrap assumptions with better constants. This again
uses the twice commuted Jacobi equation in components, which takes the form,

d2 J(i3) J(i2)
(
J(i1)

k�k
j
)

ds2 = J(i3) J(i2)
(
(R̂(X, J(i1))X)k�k

j
)

,

By Propositions 8.17, 8.22, 8.20, 8.23, 8.14, 8.18, the expression (91) for R̂, the
schematic expression (93)29, the fact that30

∇̂XHor(γ,γ̇ )

(
R(γ̇ , J v

(i1))γ̇
)

= X
((

R(γ̇ , J v
(i1))γ̇

)μ)
Eμ +

(
R(γ̇ , J v

(i1))γ̇
)μ ∇̂X Eμ,

∇̂X
T Ver(γ,γ̇ )

(
R(γ̇ , J h(i1))γ̇

)
= X

((
R(γ̇ , J h(i1))γ̇

)λ
)
Eλ̃(λ) +

(
R(γ̇ , J h(i1))γ̇

)λ ∇̂X Eλ̃(λ),

29 recall that the summation can begin at 3 except for terms involving β.
30 recall λ runs over 1, 2, 4 and λ̃(1) = 5, λ̃(2) = 6, λ̃(4) = 7.
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Proposition 8.12, and the fact that [X, J(i3)] = [X, J(i2)] = 0, the above bounds on,

Tp

[
J(i3) J(i2)

(
J(i1)

j
)]

,

imply, for j = 1, . . . , 4,

Tp

[
1

(p4)2

d2 J(i3) J(i2)
(
J(i1)

k�k
j
)

ds2 (sṽ)

]

≤ CTp

[
1

(p4)2 X

(
J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j
)]

+ C(1 + C1)

r(x)pṽ
5
2

(
1 + HTp,2(ṽ)

)+ C

(
Tp

[
r(sṽ)|D2β|(sṽ)

]

+
∑

ψq �=β

Tp

[
r(sṽ)

q−3|D2ψq |(sṽ)
]

+
∑
Tq

Tp

[
r(sṽ)

q−3|D2Tq |(sṽ)
]

+
∑
�q

Tp

[
r(sṽ)

q− 5
2 |D2�q |(sṽ)

]
+ Tp

[
r(sṽ)

− 5
2 |D2r /∇b|(sṽ)

]

+ Tp

[
r(sṽ)

− 3
2 |D2 /�|(sṽ)

])
,

(108)

where the fact that,

∣∣∣Tp

[
p41supp( f )

]∣∣∣ ≤ C

r(x)p
,

has also been used. Now,

d

dv′ Tp

[
J(i3) J(i2)

(
d J(i1)

k�k
j

ds

)
(sṽ)

]
= Tp

[
1

p4 J(i3) J(i2)

(
d2 J(i1)

k�k
j

ds2

)
(sṽ)

]
,

so Tp

[
J(i3) J(i2)

(
d J(i1)

k�k
j

ds

)
(sṽ)

]
is estimated by integrating (108) from ṽ to v(x).

Consider the first term on the right hand side of (108),

Tp

[
1

p4 X

(
J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j
)

(sv′′)

]

= Tp

⎡
⎢⎣ 1

p4

d J(i3) J(i2)
(
R(γ̇ , J v

(i1)
)γ̇
)k

�k
j

ds
(sv′′)

⎤
⎥⎦

= d

dv′ Tp

[
J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j (sv′′)

]
,
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so, ∫ v(x)

ṽ

Tp

[
1

(p4)2 X

(
J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j
)

(sv′′)

]
dv′′

≤
∣∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j (0)

]∣∣∣∣
+
∣∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
R(γ̇ , J v

(i1))γ̇
)k

�k
j (sṽ)

]∣∣∣∣
≤ C(1 + C1)

r(x)pṽ
5
2

(
1 + HTp,2(ṽ)

)+ C

(
Tp

[
r(sṽ)|D2β|(sṽ)

]

+
∑

ψq �=β

Tp

[
r(sṽ)

q−3|D2ψq |(sṽ)
]

+
∑
Tq

Tp

[
r(sṽ)

q−3|D2Tq |(sṽ)
]

+
∑
�q

Tp

[
r(sṽ)

q− 5
2 |D2�q |(sṽ)

]
+ Tp

[
r(sṽ)

− 5
2 |D2r /∇b|(sṽ)

]

+ Tp

[
r(sṽ)

− 3
2 |D2 /�|(sṽ)

])
,

where the terms arising from Tp

[
(p4)−1 J(i3) J(i2)

(
R(γ̇ , J v

(i1)
)γ̇
)k

�k
j (0)

]
are con-

tained in
C(1 + C1)

r(x)p ṽ
5
2

(
1 + HTp,2(v

′)
)
.

For the second term on the right hand side of (108),∫ v(x)

ṽ

C(1 + C1)

r(x)pv′′ 5
2

(
1 + HTp,2(v

′′)
)
dv′′

≤ C(1 + C1)

r(x)p
(
1 + HTp,2(ṽ)

) ∫ v(x)

ṽ

1

v′′ 5
2

dv′′

≤ C(1 + C1)

r(x)p ṽ
3
2

(
1 + HTp,2(ṽ)

)
.

For the final terms,

∫ v(x)

ṽ

Tp

[
r(sv′′)|D2β(sv′′)|dv′′]

≤ Tp

⎡
⎣
(∫ v(x)

ṽ

1

r(sv′′)4 dv′′
) 1

2
(∫ v(x)

ṽ

r(sv′′)6|D2β(sv′′)|2dv′′
) 1

2
⎤
⎦

≤ C

ṽ
3
2

Tp

⎡
⎣
(∫ v(x)

ṽ

r(sv′′)6|D2β(sv′′)|2dv′′
) 1

2
⎤
⎦ ,
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and similarly,

∫ v(x)

ṽ

∑
ψq �=β

Tp

[
r(sv′′)q−3|D2ψq(sv′′)|

]
dv′′

≤ C

ṽ
3
2

Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
ψq �=β

r(sv′′)2q−2|D2ψq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦ ,

∫ v(x)

ṽ

∑
Tq

Tp

[
r(sv′′)q−3|D2Tq(sv′′)

]
|dv′′

≤ C

ṽ
3
2

Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
Tq

r(sv′′)2q−2|D2Tq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦ ,

∫ v(x)

ṽ

∑
�q

Tp

[
r(sv′′)q− 5

2 |D2�q(sv′′)|
]
dv′′

≤ C

ṽ
5
4

Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
�q

r(sv′′)2q− 3
2 |D2�q(sv′′)|2dv′′

⎞
⎠

1
2
⎤
⎥⎦ ,

∫ v(x)

ṽ

Tp

[
r(sv′′)−

5
2 |D2r /∇b(sv′′)|

]
dv′′

≤ C

ṽ2 Tp

⎡
⎣
(∫ v(x)

ṽ

|D2r /∇b(sv′′)|2dv′′
) 1

2
⎤
⎦ ,

and

∫ v(x)

ṽ

Tp

[
r(sv′′)−

3
2 |D2 /�(sv′′)|

]
dv′′

≤ C

ṽ
5
4

Tp

⎡
⎣
(∫ v(x)

ṽ

r(sv′′)
1
2 |D2 /�(sv′′)|2dv′′

) 1
2
⎤
⎦ .

Hence,

∣∣∣∣∣Tp

[
(p4)−1 J(i3) J(i2)

(
d J(i1)

k�k
j

ds

)
(sṽ)

]
(109)

−Tp

[
(p4)−1 J(i3) J(i2)

(
d J(i1)

k�k
j

ds

) ∣∣∣∣
sv′=0

]∣∣∣∣∣

123



Stability of Minkowski Space for Massless Einstein... Page 125 of 177 9

≤ C(1 + C1)

r(x)pṽ
5
2

(
1 + HTp,2(ṽ)

)+ C

(
Tp

[
r(sṽ)|D2β|(sṽ)

]

+
∑

ψq �=β

Tp

[
r(sṽ)

q−3|D2ψq |(sṽ)
]

+
∑
Tq

Tp

[
r(sṽ)

q−3|D2Tq |(sṽ)
]

+
∑
�q

r(sṽ)
q− 5

2 Tp

[
|D2�q |(sṽ)

]
+ Tp

[
r(sṽ)

− 5
2 |D2r /∇b|(sṽ)

]

+ Tp

[
r(sṽ)

− 3
2 |D2 /�|(sṽ)

])

+ C

ṽ
5
4

(
Tp

⎡
⎣
(∫ v(x)

ṽ

r(sv′′)6|D2β(sv′′)|2dv′′
) 1

2
⎤
⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
ψq �=β

r(sv′′)2q−2|D2ψq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
Tq

r(sv′′)2q−2|D2Tq(sv′′)|2dv′′
⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎣
(∫ v(x)

ṽ

|D2r /∇b(sv′′)|2dv′′
) 1

2
⎤
⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

ṽ

∑
�q

r(sv′′)2q− 3
2 |D2�q(sv′′)|2dv′′

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎣
(∫ v(x)

ṽ

r(sv′′)
1
2 |D2 /�(sv′′)|2dv′′

) 1
2
⎤
⎦
)

.

Now,

d

dv′ Tp

[
J(i3) J(i2)

(
J(i1)

k�k
j
)

(sṽ)
]

= Tp

[
1

p4 J(i3) J(i2)
d J(i1)

k�k
j

ds
(sṽ)

]
,

and hence,

∣∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

k�k
j
)

(sṽ)
]

− Tp

[
J(i3) J(i2)

(
J(i1)

j
) ∣∣∣

sv′=0

]

+ (v(x) − ṽ) Tp

[
1

p4

d J(i3) J(i2)
(
J(i1)

k�k
j
)

ds

∣∣∣∣
sv′=0

] ∣∣∣∣
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≤
∫ v(x)

v′

∣∣∣∣Tp

[
1

p4 J(i3) J(i2)

(
d J(i1)

k�k
j

ds

)
(sṽ)

]

− Tp

[
1

p4 J(i3) J(i2)

(
d J(i1)

k�k
j

ds

) ∣∣∣∣
sv′=0

] ∣∣∣∣d ṽ.

Integrating each term on the right hand side of (109) then gives,

∣∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

k�k
j
)

(sṽ)
]

− Tp

[
J(i3) J(i2)

(
J(i1)

j
) ∣∣∣

sv′=0

]

+ (v(x) − ṽ) Tp

[
1

p4

d J(i3) J(i2)
(
J(i1)

k�k
j
)

ds

∣∣∣∣
sv′=0

] ∣∣∣∣
≤ C(1 + C1)

r(x)pv′ 1
4

(
1 + HTp,2(v

′)
)
.

Taking v0 large so that C(1+C1)
v0

≤ C1
2 , this then recovers the first bootstrap assumption

with a better constant. The other bootstrap assumptions can be recovered similarly.
Hence the set of v′ ∈ [v0, v(x)] where they hold is non-empty, open and closed and
hence equal to [v0, v(x)]. ��

Finally, at the very top order, we have the following.

Proposition 8.27 If v0 is sufficiently large, v′ ∈ [v0, v(x)], then, for each Tp,

∣∣∣Tp

[
J(4) J(4) J(4)

(
J(A)

B
)

(sv′) − r(sv′)δA
B
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,3(v

′)
)

,

for A, B = 1, 2,

∣∣∣Tp

[
J(4) J(4) J(4)

(
J(4)

4
)

(sv′) − r(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,3(v

′)
)

,

and

∣∣∣Tp

[
J(i4) J(i3) J(i2)

(
J(i1)

j
)

(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,3(v

′)
)

,

for i1, i2, i3, i4 = 1, . . . , 6, j = 1, . . . , 4 otherwise,

∣∣∣Tp

[
(p4)−1 J(4) J(4) J(4)

(
J(A)

4+B
)

(sv′) − δA
B
]∣∣∣ ≤ C

v′

(
1

r(x)p
+ HTp,3(v

′)
)

,

for A, B = 1, 2,

∣∣∣Tp

[
(p4)−1 J(i4) J(i3) J(i2)

(
J(i1)

4+A
)

(sv′)
]∣∣∣ ≤ C

v′

(
1

r(x)p
+ HTp,3(v

′)
)

,
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for i1, i2, i3, i4 = 1, . . . , 6, A = 1, 2 otherwise, and,

∣∣∣Tp

[
(p4)−1 J(i4) J(i3) J(i2)

(
J(i1)

7
)

(sv′)
]∣∣∣ ≤ C

(
1

r(x)p
+ HTp,3(v

′)
)

,

where,

HTp,3(v
′) =

∑
k=2,3

(
Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

6|Dkβ|2(sṽ)d ṽ

) 1
2
⎤
⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
ψq �=β

r(sṽ)
2q−2|Dkψq |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
Tq

r(sṽ)
2q−2|DkTq |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎢⎣
⎛
⎝
∫ v(x)

v′

∑
�q

r(sṽ)
2q− 3

2 |Dk�q |2(sṽ)d ṽ

⎞
⎠

1
2
⎤
⎥⎦

+ Tp

⎡
⎣
(∫ v(x)

v′
r(sṽ)

1
2 |Dk /�|2(sṽ)d ṽ

) 1
2
⎤
⎦

+ Tp

⎡
⎣
(∫ v(x)

v′
|Dkr /∇b|2(sṽ)d ṽ

) 1
2
⎤
⎦

+ 1

r(x)p

(∑
ψq

r(x)q |Dkψq |(x) +
∑
Tq

r(x)q |DkTq |(x)

+
∑
�q

r(x)q |Dk�q |(x) + |Dkr /∇b|(x) + r(x)|Dk /�|(x)
))

.

Proof The proof is identical to that of Proposition 8.26, using appropriate versions of
Propositions 8.23 and 8.25. ��

8.8 Proof of Proposition 8.6

The proof of Proposition 8.6 follows from Propositions 8.17, 8.22, 8.26, 8.27.

Proof of Proposition 8.6 Recall the frame Ẽ1, . . . , Ẽ7 from Section 5 defined by,

Ẽi = Ei for i = 1, 2, 3, 4, Ẽi = p4Ei for i = 5, 6, 7.
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Recall also from Section 8.5 that,

V(i1) f |(x,p) = J(i1) f |exp−s∗ (x,p) = J(i1)
j E j f |exp−s∗ (x,p),

for i1 = 1, . . . , 6. By assumption,

7∑
j=1

sup
P|{v=v0}

|Ẽ j f | < ε0,

and so Proposition 8.17, which gives,

|J(i1) j (−s∗)| ≤ C for j = 1, 2, 3, 4, |J(i1) j (−s∗)| ≤ Cp4 for j = 5, 6, 7,

implies that,

∣∣V(i1) f |(x,p)
∣∣ ≤ Cε0.

Hence,

|Tp[V(i1) f ]| ≤ Cε0|Tp[1supp( f |Px )]| ≤ Cε0

r p
.

Similarly,

V(i2)V(i1) f |(x,p) = J(i2) J(i1) f |exp−s∗ (x,p)

= J(i2)
(
J(i1)

j1
)
E j1 f |exp−s∗ (x,p)

+ J(i2)
j2 J(i1)

j1 E j2 E j1 f |exp−s∗ (x,p).

Again, by assumption,

7∑
j1 j2=1

sup
P|{v=v0}

|Ẽ j2 Ẽ j1 f | < ε0,

hence Proposition 8.17 and Proposition 8.22, which in particular gives,

∣∣∣J(i2)
(
J(i1)

j
)

(−s∗)
∣∣∣ ≤ C for j = 1, 2, 3, 4,∣∣∣J(i2)

(
J(i1)

j
)

(−s∗)
∣∣∣ ≤ Cp4 for j = 5, 6, 7,

imply that,

∣∣V(i2)V(i1) f |(x,p)
∣∣ ≤ Cε0,
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and hence,

|Tp[V(i2)V(i1) f ]| ≤ Cε0|Tp[1supp( f |Px )]| ≤ Cε0

r p
.

For the third order derivatives recall that,

V(i3)V(i2)V(i1) f = J(i3) J(i2)
(
J(i1)

j1
)
E j1 f |exp−s∗ (x,p)

+
[
J(i2)

(
J(i1)

j1
)
J(i3)

j2 + J(i3)
(
J(i1)

j1
)
J(i2)

j2

+ J(i3)
(
J(i2)

j2
)
J(i1)

j1

]
E j2 E j1 f |exp−s∗ (x,p)

+ J(i3)
j3 J(i2)

j2 J(i1)
j1 E j3 E j2 E j1 f |exp−s∗ (x,p).

(110)

The second terms can be estimated pointwise as before, as can the final terms using
the assumption,

7∑
j1, j2, j3=1

sup
P|{v=v0}

|Ẽ j3 Ẽ j2 Ẽ j1 f | < ε0.

Consider the estimate for Tp
[
V(i3)V(i2)V(i1) f

]
on the incoming, v = constant, hyper-

surface. The above pointwise bounds clearly give,

∫ u

u0

∫
Su′,v

r2p−2
∣∣∣∣Tp

[(
J(i2)

(
J(i1)

j1
)
J(i3)

j2 + J(i3)
(
J(i1)

j1
)
J(i2)

j2

+ J(i3)
(
J(i2)

j2
)
J(i1)

j1

)
E j2 E j1 f |exp−s∗ (x,p)

+ J(i3)
j3 J(i2)

j2 J(i1)
j1 E j3 E j2 E j1 f |exp−s∗ (x,p)

]∣∣∣∣
2

dμSu′,vdu
′ ≤ Cε2

0,

so it remains to estimate the first term in (110). Proposition 8.26 gives,

∣∣∣∣Tp

[
J(i3) J(i2)

(
J(i1)

j
)

|exp−s∗ (x,p)

]∣∣∣∣ ≤ C

(
1

r p
+ HTp,2(v0)

)
,

for j = 1, 2, 3, 4, and,

∣∣∣∣Tp

[
1

p4 J(i3) J(i2)
(
J(i1)

j
)

|exp−s∗ (x,p)

]∣∣∣∣ ≤ C

(
1

r p
+ HTp,2(v0)

)
,
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for j = 5, 6, 7, where HTp,2 is defined in Proposition 8.26. Consider first the final
terms in HTp,2. Clearly,

∫ u

u0

∫
Su′,v

r2p−2 1

r2p

( ∑
ψq �=α

r2p|D2ψq |2 +
∑
Tq

r2p|D2Tq |2 +
∑
�q

r2p|D2�q |2

+|D2r /∇b|2 + r2|D2 /�|2
)
dμSu′,vdv′ ≤ C,

by the bootstrap assumptions of Section 5. For ψq = α, 2q − 2 = 6 and,

∂v

∫ u

u0

∫
Su′,v

r6|D2α|2dμSu′,vdu
′ =

∫ u

u0

∫
Su′,v

r5|D2α|2 + 2r6D2α · /∇4D
2α

+ trχr6|D2α|2dμSu′,vdu
′,

and hence,

∫ u

u0

∫
Su′,v

r6|D2α|2dμSu′,vdu
′ −

∫ u

u0

∫
Su′,v0

r6|D2α|2dμSu′,v0
du′

≤ C
∫ v

v0

∫ u

u0

∫
Su′,v′

r5|D2α|2 + r5|D2α||D3α|dμSu′,v′du
′

≤ C
∫ v

v0

∫ u

u0

∫
Su′,v′

r5|D2α|2 + r5|D3α|2dμSu′,v′du
′

≤ C
∫ u

u0

F1
v0,v

(u′)du′

≤ C,

by the bootstrap assumptions for the weighted L2 integral ofD2α,D3α on the outgoing
null hypersurfaces. This, together with the assumption on the initial data gives,

∫ u

u0

∫
Su′,v

r6|D2α|2dμSu′,vdu
′ ≤ C.

Consider now the first term involving β in HTp,2(v0). By the Cauchy–Schwarz inequal-
ity,

∣∣∣∣∣Tp

[
1supp( f )

(∫ v

v0

r(sṽ)
6|D2β(sṽ)|2d ṽ

) 1
2
]∣∣∣∣∣

2

≤ ∣∣Tp
[
1supp( f )

]∣∣
∣∣∣∣Tp

[∫ v

v0

r(sṽ)
6|D2β(sṽ)|2d ṽ

]∣∣∣∣
≤ C

r p

∣∣∣∣Tp

[∫ v

v0

r(sṽ)
6|D2β(sṽ)|2d ṽ

]∣∣∣∣ .
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Hence, using the fact that c ≤
√

det /g

r2 ≤ C and that c ≤ v
r ≤ C ,

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣Tp

[
1supp( f )

(∫ v

v0

r(sṽ)
6|D2β(sṽ)|2d ṽ

) 1
2
]∣∣∣∣∣

2

dμSu′,vdu
′

≤ C
∫ u

u0

r p−2
∫
Su′,v

r4−p
∫ C

0

∫
|p1|,|p2|≤ C

r2

∫ v

v0

r(sṽ)
6

|D2β(sṽ)|2d ṽdp1dp2dp4dμSu′,vdu
′

≤ C
∑
U1,U2

∫ u

u0

r4
∫ C

0

∫
|p1|,|p2|≤ C

r2

∫ v

v0

∫
θ1,θ2

r(sṽ)
6

|D2β(sṽ)|2dθ1dθ2d ṽdp1dp2dp4du′

≤ C
∑
U1,U2

∫ C

0

∫
|p1|,|p2|≤ C

v2

v4
∫ v

v0

∫ u

u0

∫
θ1,θ2

r(sṽ)
4

|D2β(sṽ)|2
√

det /g(sṽ)dθ1dθ2du′d ṽdp1dp2dp4,

whereU1,U2 are the two spherical charts. We now perform the change of coordinates,

(u′, ṽ, θ1, θ2, p1, p2, p4) → (û, ṽ, θ̂1, θ̂2, p1, p2, p4),

where

û := u(expsṽ (x, p)), θ̂ A := θ A(expsṽ (x, p)) for A = 1, 2,

with (x, p) = (u′, v, θ1, θ2, p1, p2, p4). The determinant of the Jacobian of this
transformation is equal to the determinant of,

⎛
⎜⎜⎜⎝

∂θ̂1

∂θ1
∂θ̂1

∂θ2
∂θ̂1

∂u

∂θ̂2

∂θ1
∂θ̂2

∂θ2
∂θ̂2

∂u

∂ û
∂θ1

∂ û
∂θ2

∂ û
∂u

⎞
⎟⎟⎟⎠ .

Note that,

∂θ A = Hor(x,p)(eA) + p4

r
∂pA +

[
p4

2

(
trχ − 2

r

)
− p3

r
+ p3

2

(
trχ + 2

r

)]
∂pA

+
[
p4χ̂ B

A + p3χ̂
B
A

+ pC /�
B
AC

]
∂pB

+
[
pB χ̂

AB
+ pB

4

(
trχ + 2

r

)
/gAB − pB

2r
/gAB + p4η

A

]
∂p4
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= V(A) + r2
[

1

2

(
trχ − 2

r

)
− p3

rp4 + p3

2p4

(
trχ + 2

r

)]
V(4+A)

+ r2
[
χ̂ B
A + p3

p4 χ̂
B
A

+ pC

p4
/�
B
AC

]
V(4+B)

+
[
pB

p4 χ̂
AB

+ pB

4p4

(
trχ + 2

r

)
/gAB − pB

2rp4 /gAB + η
A

]
p4∂p4 ,

and

∂u = �2
(

Hor(x,p)(e3) + (pB χ̂
A
B

+ trχ pA + 2p4ηA)∂pA

)

= �2
(
V(3) + r2

(
pB

p4 χ̂
A
B

+ pA

p4 trχ + 2ηA
)
V(4+A)

)
.

Hence,

∂θ̂ B

∂θ A
= d θ̂ B |(x,p)∂θ A

= dθ B |expsṽ (x,p) · d expsṽ |(x,p)∂θA

= J(A)
B(sṽ)

r(sṽ)
+ r(x)2

[
1

2

(
trχ − 2

r

)
− p3

rp4 + p3

2p4

(
trχ + 2

r

)]
J(4+A)

B(sṽ)

r(sṽ)

+ r(x)2
[
χ̂D
A + p3

p4 χ̂
D
A

+ pC

p4
/�
D
AC

]
J(4+D)

B(sṽ)

r(sṽ)

+
[
pC

p4 χ̂
AC

+ pC

4p4

(
trχ + 2

r

)
/gAC − pC

2rp4 /gAC + η
A

]

1

r(sṽ)

(
d expsṽ p4∂p4

)B
,

Proposition 8.17 and the bootstrap assumptions for the Ricci coefficients therefore
imply that31

∣∣∣∣∣
∂θ̂ B

∂θ A
(sṽ) − δA

B

∣∣∣∣∣ ≤ C

r(sṽ)
.

Similarly,

∣∣∣∣∂ û∂u (sṽ) − 1

∣∣∣∣ ≤ C

r(sṽ)
,

31 The proof of Proposition 8.17 can easily be adapted to show that
∣∣∣∣
(
d expsṽ p4∂p4

) j − r(x)δ4
j
∣∣∣∣ ≤ C,

for v0 ≤ ṽ ≤ v.
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and ∣∣∣∣∣
∂θ̂1

∂u
(sṽ)

∣∣∣∣∣ ,
∣∣∣∣∣
∂θ̂2

∂u
(sṽ)

∣∣∣∣∣
≤ C

r(sṽ)
,

∣∣∣∣ ∂ û

∂θ1 (sṽ)

∣∣∣∣ ,
∣∣∣∣ ∂ û

∂θ2 (sṽ)

∣∣∣∣ ≤ C.

Hence, if v0 is taken suitably large,

c ≤ det

⎛
⎜⎜⎜⎝

∂θ̂1

∂θ1
∂θ̂1

∂θ2
∂θ̂1

∂u

∂θ̂2

∂θ1
∂θ̂2

∂θ2
∂θ̂2

∂u

∂ û
∂θ1

∂ û
∂θ2

∂ û
∂u

⎞
⎟⎟⎟⎠ ≤ C,

for some constants C, c > 0 independent of (x, p). The determinant of the Jacobian
of the transformation is therefore controlled from above and below independent of r ,
hence,

∑
U1,U2

∫ v

v0

∫ u

u0

∫
θ1,θ2

r(u(expsṽ (x, p)), ṽ)4|D2β(sṽ)|2
√

det /g(sṽ)dθ1dθ2du′d ṽ

≤ C
∫ v

v0

∫ û(u)

û(u0)

∫
Sû,ṽ

r(û, ṽ)4|D2β|2dμSû,ṽ
dûd ṽ

≤ C
∫ û(u)

û(u0)

F1
v0,v

(û)dû

≤ C,

and

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣Tp

[(∫ v

v0

r(sṽ)
6|D2β(sṽ)|2d ṽ

) 1
2
]∣∣∣∣∣

2

dμSu′,vdu
′

≤ C
∫ C

0

∫
|p1|,|p2|≤ C

v2

v4dp1dp2dp4 ≤ C.

Similarly, for the remaining terms in HTp,2(v0),

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣∣∣
Tp

⎡
⎢⎣
⎛
⎝
∫ v

v0

∑
ψq �=β

r(sṽ)
2q−2|D2ψq(sṽ)|2d ṽ

⎞
⎠

1
2
⎤
⎥⎦
∣∣∣∣∣∣∣

2

dμSu′,vdu
′ ≤ C,

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣∣∣
Tp

⎡
⎢⎣
⎛
⎝
∫ v

v0

∑
Tq

r(sṽ)
2q−2|D2Tq(sṽ)|2d ṽ

⎞
⎠

1
2
⎤
⎥⎦
∣∣∣∣∣∣∣

2

dμSu′,vdu
′ ≤ C,
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∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣∣∣
Tp

⎡
⎢⎣
⎛
⎝
∫ v

v0

∑
�q

r(sṽ)
2q− 3

2 |D2�q(sṽ)|2d ṽ

⎞
⎠

1
2
⎤
⎥⎦
∣∣∣∣∣∣∣

2

dμSu′,vdu
′ ≤ C,

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣Tp

[(∫ v

v0

r(sṽ)
1
2 |D2 /�(sṽ)|2d ṽ

) 1
2
]∣∣∣∣∣

2

dμSu′,vdu
′ ≤ C,

∫ u

u0

r2p−2
∫
Su′,v

∣∣∣∣∣Tp

[(∫ v

v0

|D2r /∇b(sṽ)|2d ṽ

) 1
2
]∣∣∣∣∣

2

dμSu′,vdu
′ ≤ C.

Hence,

∫ u

u0

r2p−2
∫
Su′,v

∣∣Tp
[
V(i3)V(i2)V(i1) f

]∣∣2 dμSu′,vdu
′ ≤ Cε2

0 .

Consider now the fourth order derivatives of f . For i1, i2, i3, i4 = 1, . . . , 6,

V(i4)V(i3)V(i2)V(i1) f |(x,p),

can be written as a sum of,

J(i4) J(i3) J(i2)

(
J(i1)

j
)
E j f |exp−s∗ (x,p)

+J(i4)
j4 J(i3)

j3 J(i2)
j2 J(i1)

j1 E j4 E j3 E j2 E j1 f |exp−s∗ (x,p),

and terms which involve lower order derivatives and can be treated as before. Clearly
the second term can also be treated as before using Proposition 8.17 and the assump-
tion,

7∑
j1, j2, j3, j4=1

sup
P|{v=v0}

∣∣∣Ẽ j4 Ẽ j3 Ẽ j2 Ẽ j1 f
∣∣∣ ≤ ε0,

so consider just the first term. By Proposition 8.27,

∣∣∣Tp

[
J(i4) J(i3) J(i2)

(
J(i1)

j
)

|exp−s∗ (x,p)

]∣∣∣ ≤ C

(
1

r p
+ HTp,3(v0)

)
,

where HTp,3 is defined in Proposition 8.27. Using the same argument as for HTp,2

(except for the r4−p(|D3α| + |D2α|) terms32),

32 It is because of these terms D4Tp is only estimated in spacetime, rather than on null hypersurfaces.
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∫ v

v0

∫ u

u0

r2p−4
∫
Su,v

|HTp,3(v0)|2dμSu′,v′du
′dv′

≤ C

(∫ v

v0

1

v′2 dv′ +
∫ v

v0

∫ u

u0

∫
Su,v

r4(|D3α| + |D2α|)dμSu′,v′du
′dv′

)

≤ C

(
1 +

∫ u

u0

F1
v0,v

(u′)du′
)

≤ C.

Hence,

∫ v

v0

∫ u

u0

r2p−4
∫
Su,v

∣∣Tp
[
V(i4)V(i3)V(i2)V(i1) f

]∣∣2 dμSu′,v′ du
′dv′ ≤ Cε2

0 .

The proof then follows from the considerations of Section 8.3. ��

9 Estimates for Weyl Curvature Components

The Weyl curvature components ψ are estimated in L2 on null hypersurfaces through
weighted energy estimates for the Bianchi equations. The main proposition of this
section, Proposition 9.3, will show that, at any point x ∈ A (see Theorem 5.2), the
bootstrap assumptions for curvature (68) can be retrieved with better constants.

Each Bianchi pair is assigned a weight q,

q(α, β) = 5, q(β, (ρ, σ )) = 4, q((ρ, σ ), β) = 2, q(β, α) = 0. (111)

The energy estimates will be derived by integrating the following identities over a
spacetime region.

Lemma 9.1 The following identities hold for any k,

Div
(
r5|Dkα|2e3

)
+ 2Div

(
r5|Dkβ|2e4

)
− 4

1

�2
/div
(
�2r5Dkα · Dkβ

)

= r5(h1|Dkα|2 + h1|Dkβ|2 − 4(η + η) · Dkα · Dkβ

+ 2Dkα · E3[Dkα] + 4Dkβ · E4[Dkβ]),
(112)

Div
(
r4|Dkβ|2e3

)
+ Div

(
r4|Dkρ|2e4

)
+ Div

(
r4|Dkσ |2e4

)

− 2
1

�2
/div
(
�2r4Dkβ · (Dkρ/g − Dkσ/ε)

)

= r4(h1|Dkβ|2 − 2(η + η) · Dkβ · (Dkρ/g − Dkσ/ε)

+ 2Dkβ · E3[Dkβ] + 2Dkρ · E4[Dkρ] + 2Dkσ · E4[Dkσ ]),

(113)
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Div
(
r2|Dkρ|2e3

)
+ Div

(
r2|Dkσ |2e3

)
+ Div

(
r2|Dkβ|2e4

)

+ 2
1

�2
/div
(
�2r2Dkβ · (Dkρ/g − Dkσ/ε)

)

= r2(h1|Dkρ|2 + h1|Dkσ |2 + 2(η + η) · Dkβ · (Dkρ/g − Dkσ/ε)

+ 2Dkρ · E3[Dkρ] + 2Dkσ · E3[Dkσ ] + 2Dkβ · E4[Dkβ]),
(114)

2Div
(
|Dkβ|2e3

)
+ Div

(
|Dkα|2e4

)
+ 4

1

�2
/div
(
�2Dkα · Dkβ

)
(115)

= h1|Dkβ|2 + 4(η + η) · Dkβ · Dkα + 4Dkβ · E3[Dkβ] + 2Dkα · E4[Dkα],

where Div denotes the spacetime divergence.

Proof The proof follows by applying the product rule to each term on the left hand
side of each identity. For the first terms each Bianchi equation contracted with its
corresponding weighted curvature component is used, i.e. equation (60) contracted

with r
q(ψp,ψ

′
p′ )ψp, and equation (61) contracted with r

q(ψp,ψ
′
p′ )ψ′

p′ . Then use the
fact that

Div(e3) = trχ, Div(e4) = trχ + ω,

and

e3(r
n) = −n

r
rn

1

�2 , e4(r
n) = n

2
rn trχ◦.

For the final term on the left hand side of each identity, use the fact that

/∇�

�
= /∇(log �) = 1

2

(
η + η

)
.

The proof of (114) is presented to illustrate a cancellation which occurs in (113),
(114), (115). Suppose, to reduce notation, that k = 0. Clearly,

Div
(
r2|ρ|2e3

)
= − 2

�
r |ρ|2 + 2ρ · /∇3ρ + |ρ|2trχ

= − 2

�2 r |ρ|2 − 2r2|ρ|2trχ − 2r2ρ /divβ + 2r2ρ · E3[ρ]

Div
(
r2|σ |2e3

)
= − 2

�2 r |σ |2 − 2r2|σ |2trχ − 2r2σ /curlβ + 2r2σ · E3[σ ]
Div

(
r2|β|2e4

)
= 2r |β|2 + 2r2β · /∇4β + r2|β|2 (trχ + ω)

= r2
(
− (trχ − trχ◦) |β|2 + ω|β|2 + 2β · (− /∇ρ + ∗ /∇σ

)

+2β · E4[β]
)

.
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Note that in the expression for Div
(
r2|β|2e4

)
the term generated by /∇4 acting on r2

exactly cancels the trχ |β|2 term to leave r2 (trχ − trχ◦) |β|2. This cancellation occurs
precisely because the weight q = 2 was chosen for the Bianchi pair ((ρ, σ ), β). This
resulting term, and most of the others, have the same form as the error terms and so
can be absorbed to give,

Div
(
r2|ρ|2e3

)
= −2r2ρ /divβ + 2r2ρ · E3[ρ]

Div
(
r2|σ |2e3

)
= −2r2σ /curlβ + 2r2σ · E3[σ ]

Div
(
r2|β|2e4

)
= r2

(
2β · (− /∇ρ + ∗ /∇σ

)+ 2β · E4[β]
)

.

Terms of the form rqh1|β|2, which would appear if any weight other than q =
2 had been chosen, would not have the correct form to be absorbed by the

error term in the expression for Div
(
r2|β|2e4

)
. The proof follows by computing

1
�2 /div

(
�2r2β · (ρ/g − σ/ε)

)
. ��

Remark 9.2 The weights (111) were chosen carefully so that a cancellation would
occur in the above identities, as illustrated in the proof. This cancellation does not
occur in the identity for the Bianchi pair (α, β). It would if the weight q(α, β) = 6
had been chosen. This would however lead one to impose a faster rate of decay for
α, β along {u = u0}, consistent with the decay required for a the spacetime to admit a
conformal compactification. The estimates will close without imposing this stronger
decay.

Proposition 9.3 If x ∈ A and u = u(x), v = v(x), then

F1
v0,v

(u) + F2
u0,u(v) ≤ C

(
ε0 + 1

v0

)
,

for some constant C.

Proof Integrating the identity (112) over the spacetime characteristic rectangle u0 ≤
u′ ≤ u, v0 ≤ v′ ≤ v for a fixed 0 ≤ k ≤ 3 gives33

∫ v

v0

∫
Su,v′

r5|Dkα|2dμSu,v′ dv′ +
∫ u

u0

∫
Su′,v

r5|Dkβ|2dμSu′,vdu
′

=
∫ v

v0

∫
Su0,v′

r5|Dkα|2dμSu0,v′dv′ +
∫ u

u0

∫
Su′,v0

r5|Dkβ|2dμSu′,v0
du′

33 Note that the final term on the left hand side of (112) is a spherical divergence and hence vanished when
integrated over the spheres.
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+
∫ u

u0

∫ v

v0

∫
Su′,v′

r5(h1|Dkα|2 + h1|Dkβ|2 − 4(η + η) · Dkα · Dkβ

+ 2Dkα · E3[Dkα] + 4Dkβ · E4[Dkβ])dμSu′,v′ �
2dv′du′.

Clearly

∫ u

u0

∫ v

v0

∫
Su′,v′

r5
(
h1|Dkα|2 + h1|Dkβ|2

)
dμSu′,v′dv′du′ ≤

∫ u

u0

F1
v0,v

(u′)du′,

and

∫ u

u0

∫ v

v0

∫
Su′,v′

r5(η + η) · Dkα · Dkβ dμSu′,v′ �
2dv′du′

≤ C
∫ u

u0

∫ v

v0

∫
Su′,v′

r4|Dkα||Dkβ| dμSu′,v′dv′du′

≤ C
∫ u

u0

∫ v

v0

∫
Su′,v′

r4|Dkα|2 + r4|Dkβ|2 dμSu′,v′dv′du′

≤ C
∫ u

u0

F1
v0,v

(u′)du′,

using the bootstrap assumptions for η, η and the upper bound for �. In Lemma 9.4
below it will be shown that

∫ u

u0

∫ v

v0

∫
Su′,v′

r
q(ψp,ψ

′
p′ )
(
Dkψp · E3[Dkψp] + Dkψ′

p′ · E4[Dkψ′
p′ ])dμSu′,v′ �

2dv′du′

≤ C

(∫ u

u0

F1
v0,v(u

′)du′ + 1

v0
+ ε0

)
,

for each Bianchi pair (ψp,ψ
′
p′). Hence

∫ v

v0

∫
Su,v′

r5|Dkα|2dμSu,v′ dv′ +
∫ u

u0

∫
Su′,v

r5|Dkβ|2dμSu′,vdu
′

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ F1

v0,v
(u0) + F2

u0,u(v0) + ε0

)
.

Repeating this for each of the identities (113),(114),(115) for k = 0, 1, . . . , s and
summing then gives

F1
v0,v

(u) ≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ F1

v0,v
(u0) + F2

u0,u(v0) + ε0

)
, (116)
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and

F2
u0,u(v) ≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ F1

v0,v
(u0) + F2

u0,u(v0) + ε0

)
. (117)

Note that α doesn’t appear in F1
v0,v

(u0) so that the term involving (η + η) · β · α from
the identity (115) is estimated slightly differently:∫ u

u0

∫ v

v0

∫
Su′,v′

(η + η) · β · α dμSu′,v′ �
2dv′du′

≤ C
∫ u

u0

∫ v

v0

∫
Su′,v′

1

r
|β||α|dμSu′,v′ �

2dv′du′

≤ C
∫ u

u0

∫ v

v0

∫
Su′,v′

|β|2 + |α|2
r2 dμSu′,v′ �

2dv′du′

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0

)
,

where the last line follows from the inequality
∫ u

u0

∫ v

v0

∫
Su′,v′

|α|2
r2 dμSu′,v′ �

2dv′du′ ≤
∫ v

v0

1

r2 F
2
u0,u(v

′)dv′

≤ C
∫ v

v0

1

v2 dv′

≤ C

v0
,

using the bootstrap assumption for F2
u0,u(v

′) and the fact that r ∼ v in the “wave
zone”. Similarly for the terms involving (η + η) · Dkβ · Dkα.

Applying the Grönwall inequality to equation (116) and using the fact that u ≤ u f

gives

F1
v0,v

(u) ≤ C

(
1

v0
+ ε0 + F1

v0,v
(u0) + F2

u0,u(v0)

)
.

Inserting this in equation (117) gives

F2
u0,u(v) ≤ C

(
1

v0
+ ε0 + F1

v0,v
(u0) + F2

u0,u(v0)

)
.

��
It remains to prove the following lemma which provides control over the error

terms.

Lemma 9.4 Under the assumptions of Proposition 9.3, for each Bianchi pair
(ψp,ψ

′
p′),
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∫ u

u0

∫ v

v0

∫
Su′,v′

r
q(ψp,ψ

′
p′ )
(
Dkψp · E3[Dkψp]

+Dkψ′
p′ · E4[Dkψ′

p′ ])dμSu′,v′ �
2dv′du′

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ ε0

)
,

Proof For the sake of brevity, unless specified otherwise
∫

will denote the integral
∫ u

u0

∫ v

v0

∫
Su′,v′

dμSu′,v′dv′du′.

Consider first the errors in the /∇3 Bianchi equations. Recall from Proposition 3.3
and Proposition 3.6 that

E3[Dkψp] = D(E3[Dk−1ψp]) + �1(D
kψp + Dkψ′

p′)

+�1(D
k−1ψp + Dk−1ψ′

p′),

for 1 ≤ k ≤ 3, and

E3[ψp] = h1ψp +
∑

p1+p2≥p

�p1 · ψp2 +
∑

p1+p2≥p

h p1DTp2 +
∑

p1+p2≥p

�p1 · Tp2 .

(118)

The first term in E3[ψp] will contribute terms of the form h1D
k′
ψp to the error

where 0 ≤ k′ ≤ k (recall that Dh1 = h1) and these can be dealt with easily∫ u

u0

∫ v

v0

∫
Su′,v′

r
q(ψp,ψ

′
p′ )h1D

kψp · Dk′
ψpdμSu′,v′dv′du′

≤ C
∫ u

u0

∫ v

v0

∫
Su′,v′

r
q(ψp,ψ

′
p′ )
(
|Dkψp|2 + |Dk′

ψp|2
)
dμSu′,v′dv′du′

≤ C
∫ u

u0

F1
v0,v

(u′)du′

The second term in E3[ψp] will contribute terms of the form Dk1�p1 · Dk2ψp2

where p1 + p2 ≥ p and 0 ≤ k1, k2 ≤ k. Note also that, since k1 + k2 = k, at most
one of k1 or k2 can be greater than 1. Assume first that k1 ≤ 1.

Suppose ψp �= α, β, then q(ψp,ψ
′
p′) = 2p − 4 and

∫
rqDk1�p1 · Dk2ψp2 · Dkψp ≤ sup

u′,v′

(
r p1‖Dk1�p1‖L∞

) ∫
rq+p2−p|Dk2ψp2 ||Dkψp|

≤ C
∫ (

r2p2−4|Dk2ψp2 |2 + r2q+4−2p|Dkψp|2
)

≤ C

(∫ u

u0

F1
v0,v(u

′)du′ + 1

v0

)
,
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where the first line follows from the Sobolev inequality (78) (and the fact that k1 ≤ 1)
and uses p1 + p2 ≥ p. The third line uses the fact that q = 2p − 4 (and recall that∫ |α|

r2 ≤ C
v0

).
If ψp = α or β then q(ψp,ψ

′
p′) = 2p − 3 and the second term in the second line

above would be
∫
rq+1|Dkψp|2 which can’t be controlled by the last line. The sum

in the error (118), however, begins at p + 1
2 for α and β, and so in the first line in the

above would have p1 + p2 ≥ p + 1
2 . Using this fact these terms can be controlled.

If k1 > 1 then it must be the case that k2 ≤ 1. The above steps can then be repeated
but using the Sobolev inequality (79) for Dk2ψp2 . For ψp �= α, β then get

∫
rqDk1�p1 · Dk2ψp2 · Dkψp ≤ C

∫
rq+p1−p|Dk1�p1 ||Dkψp|

≤ C
∫ (

r2p1−4|Dk1�p1 |2 + r2q+4−2p|Dkψp|2
)

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0

)
,

where the last line now uses the fact that

∫
r2p1−4|Dk1�p1 |2 ≤ C(u f − u0)

∫ v

v0

1

r2 dv′ ≤ C

v0
, (119)

by the bootstrap assumption (66) and the fact that v ∼ r in the “wave zone”. Similarly
for ψp = α, β.

The third term in E3[ψp] will contribute terms of the form h p1D
k′Tp2 to E3[Dkψp]

where 1 ≤ k′ ≤ k + 1 and p1 + p2 ≥ p. Recall that, if ψp = α or β then actually
p1 + p2 ≥ p + 1

2 . If ψp �= α, β then q = 2p − 4 and,

∫
rqh p1D

k′Tp2 · Dkψp ≤ C
∫

r p+p2−4Dk′Tp2 · Dkψp

≤ C
∫

r2p2−4|Dk′Tp2 |2 + r2p−4|Dkψp|2

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ ε0

)
,

by Proposition 8.1. Similarly, if ψp = α or β, then q = 2p− 3 and p1 ≥ p− p2 + 1
2 ,

so rq ≤ r p+p2− 7
2 and,

∫
rqh p1D

k′Tp2 · Dkψp ≤ C
∫

r2p2−4|Dk′Tp2 |2 + r2p−3|Dkψp|2

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ ε0

)
.
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The final term in E3[ψp] contributes terms of the form Dk1�p1 · Dk2Tp2 with 0 ≤
k1, k2 ≤ k, k1 + k2 = k and p1 + p2 ≥ p, or p1 + p2 ≥ p+ 1

2 if ψp = α or β. These
terms can be dealt with as before using the fact that either k1 ≤ 1 or k2 ≤ 1, and the
pointwise bounds for Tp,DTp,D

2Tp from Proposition 8.1.
The final terms in E3[Dkψp], i.e. the terms of the form Dk1�1 ·Dk2ψp etc. can be

dealt with similarly (since all of the terms in �1 are zeroth order and the numerology
for the Sobolev inequalities still work out).

The errors in the /∇4 Bianchi equations can be dealt with in a similar manner. First
recall that

E4[Dkψ′
p′ ] = D(E4[Dk−1ψ′

p′ ]) + h0E4[ψ′
p′ ] + �1D

kψp + �2D
kψ′

p′

+ �1D
k−1ψp + �′

2D
k−1ψ′

p′ ,

and

E4[ψ′
p′ ] =

∑
p1+p2≥p′+ 3

2

�p1 ·ψp2 +
∑

p1+p2≥p+2

h p1DTp2 +
∑

p1+p2≥p+2

�p1 ·Tp2 . (120)

Recall also that the first summation in the error (120) always begins at p′ + 2, except
for the term η# · α appearing in E4[β].

Assume first then that ψ′
p′ �= β. Terms in the first sum (120) will then contribute

terms of the form Dk1�p1 ·Dk2ψp2 to the error E4[Dkψ′
p′ ], where p1 + p2 ≥ p′ + 2,

0 ≤ k1, k2 ≤ k and at most one of k1, k2 is bigger than 1. Again, suppose first that
k1 ≤ 1. If ψ′

p′ �= β then 2q(ψp,ψ
′
p′) − 2p′ = q ′(ψ′

p′)34 and so
∫

rqDk1�p1 · Dk2ψp2 · Dkψ′
p′

≤ sup
u′,v′

(
r p1‖Dk1�p1‖L∞

) ∫
rq+p2−p′−2|Dk2ψp2 ||Dkψ′

p′ |

≤ C
∫ (

r2p2−4|Dk2ψp2 |2 + r2q−2p′ |Dkψ′
p′ |2
)

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0

)
.

If ψ′
p′ = β then will have terms of the form Dk1�p1 ·Dk2ψp2 with p1 + p2 ≥ p′ + 3

2 ,
however 2q(α, β) − 2p′ = 3 = q ′(β) − 1. Hence∫

rqDk1�p1 · Dk2ψp2 · Dkψ′
p′

≤ sup
u′,v′

(
r p1‖Dk1�p1‖L∞

) ∫
rq+p2−p′− 3

2 |Dk2ψp2 ||Dkψ′
p′ |

34 Here q ′(ψ′
p′ ) denotes the power of r multiplying |ψ′

p′ |2 in F1
v0,v(u′). So, for example, q ′(β) = 0,

whilst q((ρ, σ ), β) = 2. Set q ′(α) = −2.
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≤ C
∫ (

r2p2−4|Dk2ψp2 |2 + r2q−2p′+1|Dkψ′
p′ |2
)

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0

)
.

The second summation in E4[ψ′
p′ ], (120), will contribute terms of the form

h p1D
k′Tp2 to E4[Dkψ′

p′ ], where 1 ≤ k′ ≤ k + 1 and p1 + p2 ≥ p + 2. Since
2q(ψp,ψ

′
p′) − 2p′ ≤ q ′(ψ′

p′),

∫
rqh p1D

k′Tp2 · Dkψ′
p′ ≤ C

∫
rq−p+p2−2|Dk′Tp2 ||Dkψ′

p′ |

≤ C
∫

r2p2−4|Dk′Tp2 |2 + rq
′ |Dkψ′

p′ |2

≤ C

(∫ u

u0

F1
v0,v

(u′)du′ + 1

v0
+ ε0

)
.

The final summation in (120) contributes terms of the form Dk1�p1 · Dk2Tp2 to
E4[Dkψ′

p′ ], where 0 ≤ k1, k2 ≤ k, k1 + k2 = k and p1 + p2 ≥ p′ + 2. These
terms can be treated similarly using the fact that either k1 ≤ 1 or k2 ≤ 1, and the
pointwise bounds for Tp2 ,DTp2 from Proposition 8.1.

The remaining terms in E4[Dkψ′
p′ ] can again be dealt with similarly. It is important

to note that �1 and �2 both contain zero-th order derivatives only of � and ψ . Whilst
�′

2 does contain first order derivatives of the formD�, they only appears in E4[Dk′
ψ′

p′ ]
multiplying Dk′−1ψp. Hence, when these terms (for k′ ≤ k) appear in E4[Dkψ′

p′ ], it
will always be possible to control one of the terms in the product pointwise via the
Sobolev inequality. ��

10 Transport Estimates for Ricci Coefficients

In this section the Ricci coefficients are estimated in L2 on each of the spheres Su,v

through transport estimates for the null structure equations. This is done by using the
identities, which hold for any scalar function h,

∂v

(∫
Su,v

hdμSu,v

)
=
∫
Su,v

/∇4h + htrχdμSu,v , (121)

and

∂u

(∫
Su,v

hdμSu,v

)
=
∫
Su,v

(
/∇3h + htrχ

)
�2dμSu,v , (122)

with h = r2p−2|Dk�p|2.
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The quantities
(3)

� p and
(4)

� p are treated separately. Recall the set A from Theorem
5.2.

10.1 Null Structure Equations in the Outgoing Direction

Consider first the
(4)

� p quantities, which satisfy null structure equations in the outgoing
direction.

Proposition 10.1 If x ∈ A and u = u(x), v = v(x) then, for each
(4)

� p and each
k = 0, 1, 2, 3,

r2p−2
∫
Su,v

|Dk
(4)

� p|2dμSu,v ≤ C

(
ε0 + 1

v0

)
,

for some constant C.

Proof Recall from Proposition 3.8 that the null structure equations in the 4 direction
take the form

/∇4(D
k

(4)

�p) + p

2
trχ Dk

(4)

�p = E4[Dk
(4)

�p].

Using the renormalisation of Remark 3.2 and the fact that e4(r−2) = −r−2trχ◦, the
identity (121) with h = r2p−2|Dk�p|2 implies that

∂v

(
r2p−2

∫
Su,v

|Dk
(4)

� p|2dμSu,v

)

=
∫
Su,v

2r p−2
(4)

� p · /∇4(r
pDk

(4)

� p) + r2p|Dk
(4)

� p|2e4(r
−2)

+ r2p−2|Dk
(4)

� p|2trχ dμSu,v

=
∫
Su,v

2r p−2Dk
(4)

� p ·
(
r pE4[Dk

(4)

�p]
)

+ r2p−2|Dk
(4)

� p|2 (trχ − trχ◦) dμSu,v

= 2r2p−2
∫
Su,v

Dk
(4)

� p · E4[Dk
(4)

� p] dμSu,v ,

where in the last line the term |Dk
(4)

� p|2 (trχ − trχ◦) = Dk
(4)

� p · Dk�p · �2 has been

absorbed into the error Dk
(4)

� p · E4[Dk
(4)

�p].
Note that a precise cancellation occurs here. If one were to apply (121) with h =

rq |Dk�p|2 for any q �= 2p − 2, there would be an additional term of the form
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h1|Dk
(4)

� p|2 in the integral in the last line above. It would not be possible to deal with

this term as the terms in Dk
(4)

� p · E4[Dk
(4)

�p] are dealt with below.
Integrating gives

r2p−2
∫
Su,v

|Dk
(4)

� p|2dμSu,v ≤ r(u, v0)
2p−2

∫
Su,v0

|Dk
(4)

� p|2dμSu,v0

+ 2
∫ v

v0

r2p−2
∫
Su,v′

Dk
(4)

� p · E4[Dk
(4)

� p] dμSu,v′ dv′,

so that it remains to bound the error terms.
Recall that

E4[Dk
(4)

� p] = D(E4[Dk−1
(4)

� p]) + �2 · Dk
(4)

� p + �′
2 · Dk−1

(4)

� p,

for k = 1, 2, 3 and

E4[
(4)

� p] = ψp+2 +
∑

p1+p2≥p+2

h p1 · �p2 +
∑

p1+p2≥p+2

�p1 · �p2 + Tp+2. (123)

The first term in (123) will contribute a term of the form Dkψp+2 to the error

E4[Dk
(4)

� p]. This term can be easily dealt with as follows. Here
∫

will be used to
denote the integral

∫ v

v0

∫
Su,v′

dμSu,v′ dv′,

(instead of the full spacetime integral in Section 9). By the Cauchy–Schwarz inequal-
ity,

∫
r2p−2Dk

(4)

� p · Dkψp+2 ≤
∫

r2p−4|Dk
(4)

� p|2 +
∫

r2p|Dkψp+2|2.

The first term is clearly bounded by C
v0

as in (119). Using the fact that the only curvature

components appearing in the /∇4
(4)

� p equations are α, β (so that ψp+2 ∈ {α, β}), one
can explicitly check that the second term can be controlled by 1

v0
F1

v0,v
(u) and hence,

by the bootstrap assumption (68),

∫
r2p−2Dk

(4)

� p · Dkψp+2 ≤ C

v0
.
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Consider now the terms in E4[Dk
(4)

� p] arising from the first sum in (123). These
will all be of the form h p1D

k′
�p2 where 0 ≤ k′ ≤ k and p1 + p2 ≤ p + 2 and so

∫
r2p−2h p1D

k′
�p2 · Dk

(4)

� p ≤ C
∫

r p+p2−4|Dk′
�p2 ||Dk

(4)

� p|

≤ C

(∫
r2p2−4|Dk′

�p2 |2 +
∫

r2p−4|Dk
(4)

� p|2
)

≤ C

v0
.

The terms arising from the second sum will have the form Dk1�p1 ·Dk2�p2 where
p1 + p2 ≥ p + 2, k1 + k2 = k and, since k ≤ 3, interchanging k1 and k2 if necessary,
k1 ≤ 1. These terms can be dealt with exactly as the previous terms by using the
Sobolev inequality (78) on Dk1�p1 .

Similarly, for the DkTp+2 term in E4[Dk
(4)

� p],
∫

r2p−2Dk
(4)

� p · DkTp+2 ≤
∫

r2p−4|Dk
(4)

� p|2 + r2p|DkTp+2|2.

Setting q = p + 2, the second term is of the form,

∫ v

v0

∫
Su,v′

r2q−4|DkTq |2dμSu,v′ dv′,

and hence, since k ≤ 3, Proposition 8.1 implies that,

∫
r2p−2Dk

(4)

� p · DkTp+2 ≤ C

(
1

v0
+ ε0

)
.

The remaining terms in E4[Dk
(4)

� p] can be dealt with in exactly the same way using
the fact that �2 contains only zeroth-order derivatives, and �′

2 contains only first order
derivatives of Ricci coefficients (see the end of the proof of Lemma 9.4). ��

10.2 Null Structure Equations in the Incoming Direction

The
(3)

� p quantities are estimated in roughly the same way as the
(4)

� p quantities. Since
the u coordinate is bounded above by u f however, the term

C
∫ u

u0

r2p−2
∫
Su′,v

|(3)

� p|2dμSu′,vdu
′
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can appear on the right hand side of the estimates and be dealt with by the Grönwall
inequality. The estimates will also rely on the results of Proposition 9.3 and Proposition
10.1. It is also worth noting that we do not rely on any cancellation occurring when

applying the identity (122), as was the case for the
(4)

� p quantities.

Proposition 10.2 If x ∈ A and u = u(x), v = v(x) then, for each
(3)

� p and each
k = 0, 1, . . . , 3,

r2p−2
∫
Su,v

|Dk
(3)

� p|2dμSu,v ≤ C

(
ε0 + 1

v0

)
.

for some constant C.

Proof Recall the upper bound on �.

For fixed 0 ≤ k ≤ 3, setting h = r2p−2|Dk
(3)

� p|2 in the identity (122) and using
the commuted equations,

/∇3(D
k
(3)

� p) = E3[Dk
(3)

� p],

one obtains

∂u

(
r2p−2

∫
Su,v

|Dk
(3)

� p|2dμSu,v

)

≤ C
∫
Su,v

r2p−2Dk
(3)

� p · /∇3(D
k
(3)

� p)

+
∣∣∣e3(r

2p−2) + r2p−2trχ
∣∣∣ |Dk

(3)

� p|2dμSu,v

≤ C
∫
Su,v

r2p−2Dk
(3)

� p · E3[Dk
(3)

� p] + h1r
2p−2|Dk

(3)

� p|2dμSu,v .

The last line is obtained by recalling that e3(r2p−2) = −1
�2

(2p−2)
r r2p−2, using the

lower bound for �, rewriting trχ = (trχ − trχ◦) + trχ◦ and absorbing the term

|Dk
(3)

� p|2(trχ − trχ◦) into the error Dk
(3)

� p · E3[Dk
(3)

� p].
Integrating from u0 gives

r2p−2
∫
Su,v

|Dk
(3)

� p|2dμSu,v
≤ C

∫ u

u0

∫
Su′,v

r2p−2Dk
(3)

� p · E3[Dk
(3)

� p]

+ h1r
2p−2|Dk

(3)

� p|2dμSu′,vdu
′.

The final term will be dealt with by the Grönwall inequality, so it remains to bound
the integrals of the error terms. Here

∫
will denote the integral
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∫ u

u0

∫
Su′,v

dμSu′,vdu
′.

Recall that

E3[Dk
(3)

� p] = D(E3[Dk−1
(3)

� p]) + �1(D
k
(3)

� p + Dk−1
(3)

� p)

for k = 1, . . . , 3, and

E3[
(3)

� p] = ψp +
∑

p1+p2≥p

h p1 · �p2 +
∑

p1+p2≥p

�p1 · �p2 + Tp. (124)

The curvature term in (124) will contribute a term of the form Dkψp to E3[Dk
(3)

� p],
and

∫
r2p−2Dk

(3)

� p · Dkψp ≤
∫

r2p−2|Dk
(3)

� p|2 +
∫

r2p−2|Dkψp|2.

The Grönwall inequality will be used on the first term. For the second term note that,
for ψp �= α, the r weight of Dkψp which appears in F2

u0,u(v) is r2p−2. Hence, since α

doesn’t appear in any /∇3
(3)

� p equations, the second term can be controlled by F2
u0,u(v)

and, by Proposition 9.3,

∫
r2p−2|Dkψp|2 ≤ C

(
F1

v0,v
(u0) + F2

u0,u(v0) + 1

v0

)
.

Similarly the energy momentum tensor term in (124) will contribute a term of the

form DkTp to E3[Dk
(3)

� p] and,

∫
r2p−2Dk

(3)

� p · DkTp ≤
∫

r2p−2|Dk
(3)

� p|2 + r2p−2|DkTp|2

≤
∫

r2p−2|Dk
(3)

� p|2 + C

(
1

v0
+ ε0

)
,

by Proposition 8.1.
Consider now the terms in (124) of the form35

∑
p1+p2≥p+1

h p1 · �p2 +
∑

p1+p2≥p+1

�p1 · �p2 .

35 The “borderline terms” in (124), i.e. the terms h p1 · �p2 and �p1 · �p2 for which p1 + p2 = p are
slightly more problematic and will be dealt with separately.
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The first sum contributes terms of the form h p1D
k′
�p2 to the error E3[Dk

(3)

� p] where
0 ≤ k′ ≤ k and p1 + p2 ≥ p + 1, so that
∫

r2p−2h p1D
k
(3)

� p · Dk′
�p2 ≤ C

∫
r p−1r p2−2|Dk

(3)

� p||Dk′
�p2 |

≤ C

(∫
r2p−2|Dk

(3)

� p|2 +
∫

r2p2−4|Dk′
�p2 |2

)

≤ C

(∫
r2p−2|Dk

(3)

� p|2 + 1

v0

)
,

where the last inequality follows from the fact that

∫
r2p2−4|Dk′

�p2 |2 ≤ C
∫ u

u0

1

r(u′, v)2 du
′ ≤ C(u f − u0)

1

v0
,

since r ∼ v in the “wave zone” and v0 is large.
The terms arising from the second summation are dealt with similarly using the

Sobolev inequality, as are the terms �1(D
k
(3)

� p + Dk−1
(3)

� p) and the similar terms
arising from lower order errors.

Note that E3[χ̂] contains no “borderline terms”36 and so in the above it has been
shown, for k = 0, 1, . . . , 3,

r2p−2
∫
Su,v

|Dk χ̂ |2dμSu,v ≤ C
( ∫ u

u0

∫
Su′,v

r2p−2|Dk χ̂ |2dμSu′,vdu
′ + F1

v0,v(u0)

+ F2
u0,u(v0) + r(u0, v)2p−2

∫
Su0,v

|Dk χ̂ |2dμSu0,v + 1

v0

)
,

and hence, by the Grönwall inequality

r2p−2
∫
Su,v

|Dk χ̂ |2dμSu,v ≤ C
(
r(u0, v)2p−2

∫
Su0,v

|Dk χ̂ |2dμSu0,v

+ F1
v0,v

(u0) + F2
u0,u(v0) + 1

v0

)
.

This proves the proposition for χ̂ .
The error E3[η] contains two borderline terms h1η and χ̂ · η. The idea is that these

terms can be dealt with since the proposition has already been proved for χ̂ and η was
controlled in Proposition 10.1. Consider first the term χ̂ ·η. This will contribute terms

of the form Dk1 χ̂ · Dk2η to E3[Dkη], where k1 + k2 = k. Assume k1 ≤ 1, then
∫

r2Dk1 χ̂ · Dk2η · Dkη ≤ C
∫

r |Dk2η||Dkη| ≤ C

(∫
|Dk2η|2 +

∫
r2|Dkη|2

)
,

36 Terms of the form h p1 · �p2 or �p1 · �p2 for which p1 + p2 = p
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and similarly if k1 > 1 then it must be the case that k2 ≤ 1 and so

∫
r2Dk1 χ̂ · Dk2η · Dkη ≤ C

(∫
|Dk2 χ̂ |2 +

∫
r2|Dkη|2

)
.

Repeating this for the terms arising from h1η, using the bounds already obtained for∫ |Dk2 χ̂ |2, Proposition 10.1 and the Grönwall inequality this gives,

r2
∫
Su,v

|Dkη|2dμSu,v ≤ C

( k∑
k′=0

∑
(3)

� p

r(u0, v)2p−2
∫
Su0,v

|Dk′ (3)

� p|2dμSu0,v

+
k∑

k′=0

∑
(4)

� p

r(u, v0)
2p−2

∫
Su,v0

|Dk′ (4)

� p|2dμSu,v0

+ F1
v0,v

(u0) + F2
u0,u(v0) + 1

v0

)
.

The only borderline term in E3[trχ − trχ◦] is (η, η), the only borderline term in

E3[ω] is (η, η), the only borderline terms in E3[/g − /g◦] are
(

1
�2 − 1

)
h1 and χ̂ , and

the only borderline term in E3[b] is η. Since either the proposition has already been
proved for each of these terms, or they were controlled in Proposition 10.1, they can
be dealt with exactly as before. ��

10.3 Estimates for /�

In order to estimate /� − /�
◦, it is first necessary to derive equations which they satisfy.

Proposition 10.3 The spherical Christoffel symbols satisfy the following propagation
equations,

/∇4
(
/� − /�

◦)C
AB = /∇ AχB

C + /∇BχA
C − /∇C

χBA (125)

−
(
χA

D − /∇ Ab
D + bE /�

D
AE

) (
/� − /�

◦)C
DB

−
(
χB

D − /∇Bb
D + bE /�

D
BE

) (
/� − /�

◦)C
AD

+
(
χD

C − /∇Db
C + bE /�

C
DE

) (
/� − /�

◦)D
AB ,

/∇3
(
/� − /�

◦)C
AB = /∇ Aχ

B
C + /∇Bχ

A
C − /∇C

χ
BA

− χ
A
D (/� − /�

◦)C
DB (126)

− χ
B
D (/� − /�

◦)C
AD + χ

D
C (/� − /�

◦)D
AB .
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Proof Recall

/∇3
(
/� − /�

◦)C
AB = e3

(
/�
C
AB − /�

◦C
AB

)
− χ

A
D (/� − /�

◦)C
DB

− χ
B
D (/� − /�

◦)C
AD + χ

D
C (/� − /�

◦)D
AB .

The equation in the e3 direction follows from the fact that,

e3

(
/�

◦C
AB

)
= 0,

and,

e3

(
/�
C
AB

)
= /∇ Aχ

B
C + /∇Bχ

A
C − /∇C

χ
BA

.

See Lemma 4.1 of [9].
The equation in the e4 direction can similarly be derived using the fact that,

e4

(
/�
C
AB

)
= /∇ AχB

C + /∇BχA
C − /∇C

χBA.

��
Proposition 10.4 If x ∈ A and u = u(x), v = v(x) then, for k = 0, 1, 2, 3, if Dk

contains D = r /∇ at most 2 times, then∫
Su,v

∣∣∣Dk (/� − /�
◦)∣∣∣2 dμSu,v ≤ C

(
ε0 + 1

v0

)
.

Proof Equation (126) takes the schematic form,

/∇3
(
/� − /�

◦) =
∑

p1+p2≥2

h p1 · D�p2 · (1 + /g
)

+
∑

p1+p2≥2

h p1 · (h p2 + �p2) · r (/� − /�
◦)

.

The estimates for Dk
(
/� − /�

◦) with k ≤ 2 then follow exactly as in Proposition 10.2
(in fact these are even easier since there are no borderline terms). The estimates for
D2 /∇3

(
/� − /�

◦) follow from applying D2 to equation (126), and the estimates for
D2r /∇4

(
/� − /�

◦) follow from multiplying equation (125) by r and applying D2. ��
This recovers the bootstrap assumptions (67) and the (71) for when D3 �= (r /∇)3.

This remaining case will be recovered in the next section.

11 Ricci Coefficients at the Top Order

The goal of this section is to estimate D3r /∇b and (r /∇)3
(
/� − /�

◦). This will recover
all of the bootstrap assumptions of Section 5. In order to do this, D3r /∇�p must be
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estimated for most of the other Ricci coefficients �p. Recall the set A from Theorem
5.2.

11.1 Propagation Equations for Auxiliary � Variables

Propagation equations are first derived for certain auxiliary quantities.

Proposition 11.1 The angular derivatives of the null expansions satisfy the following
propagation equations.

/∇3r /∇
(

trχ + 2

r

)
= −3

2

(
trχ + 2

r

)
r /∇
(

trχ + 2

r

)
+ 2

r
r /∇
(

trχ + 2

r

)

− 2χ̂ · (r /∇)χ̂ − χ̂ · (r /∇)

(
trχ + 2

r

)
− 2

r
(η + η)

− r

2
(η + η)

(
trχ + 2

r

)2

+ 2(η + η)

(
trχ + 2

r

)

− r(η + η)|χ̂ |2 − r /∇ /T 33 − r(η + η)/T 33,

and

/∇4r /∇
(

trχ − 2

r

)
+ trχr /∇

(
trχ − 2

r

)

= −1

2

(
trχ − 2

r

)
r /∇
(

trχ − 2

r

)
− χ̂ · r /∇

(
trχ − 2

r

)
+ ωr /∇

(
trχ − 2

r

)

+
(

trχ − 2

r

)
r /∇ω + 2

r
r /∇ω − 2χ̂ · (r /∇)χ̂ − r /∇ /T 44.

Proof The proof follows by using Lemma 3.5 to commute the propagation equations

for trχ + 2
r and trχ − 2

r . When computing r /∇
(

1 − 1
�2

)
, which arises in the expression

for r /∇ /∇3

(
trχ + 2

r

)
, the fact that 2 /∇ log � = (η + η), and hence

/∇
(

1 − 1

�2

)
= 2

/∇�

�3 = (η + η) −
(

1 − 1

�2

)
(η + η),

is used. This means that
(

1 − 1
�2

)
doesn’t appear in the propagation equations as a

principal term. ��

Define the mass aspect functions,

μ = 1

2
χ̂ · χ̂ − ρ − /divη, μ = 1

2
χ̂ · χ̂ − ρ − /divη,
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and the Su,v 1-form,

κ = /∇ω + ∗ /∇ω† + β.

Here ω† is defined to be the solution to

/∇3ω
† = −ρ,

with zero initial data on {u = u0}.
Proposition 11.2 The mass aspect functions and κ satisfy the following propagation
equations,

/∇4μ = −trχμ + 1

2
μ + (η − η) · /∇trχ + 2χ̂ · /∇η − 1

2
trχχ̂ · χ̂

+ trχρ − trχη · η − 1

4
trχ |χ̂ |2 + 2χ̂ · (η ⊗ η) − 2β · η + 1

2
trχ |η|2

+ 1

2
/T 4 · η − 1

2
/T 4 · η + 1

2
χ̂ · /T + 1

4
ω/T 34 + 1

2
/div/T 4 + 1

4
/∇3 /T 44 − 1

4
/∇4 /T 34,

/∇3μ = −trχμ + 1

2
trχμ + (η − η) · /∇trχ + 2χ̂ · /∇η + 2η · β + trχρ

− trχχ̂ · χ̂ + trχ(|η|2 − 1

2
|η|2 − η · η) + 2χ̂ · (η ⊗ η) − 1

4
trχχ̂ · χ̂

+ 1

2
χ̂ · /T + 1

2
ω/T 33 + 1

2
η · /T 3 + 1

2
η · /T 3 + 1

4
/∇4 /T 33 − 1

4
/∇3 /T 34 + 1

2
/div/T 3,

/∇3κ = 2 /∇(η · η) − /∇(|η|2) − 1

2
trχκ − χ̂ · /∇ω − ∗χ̂ · /∇ω† + 1

2
trχβ

+ (2η · η − |η|2)(η + η) + 2χ̂ · β − ρη + 2ρη − ∗ησ + 2σ ∗η − 1

2
χ̂ · /T 4

− 1

4
trχ /T 4 − 1

2
χ̂ · /T 3 − 1

4
trχ /T 3 − 1

2
/T 34η

− /T 34η − 1

2
ω/T 3 + η · /T − 1

2
/∇4 /T 3.

Proof From the definition of μ,

/∇4μ = 1

2

(
/∇4χ̂

) · χ̂ + 1

2
χ̂ ·
(

/∇4χ̂
)

− /div /∇4η − [ /∇4, /div]η − /∇4ρ.

The equation is obtained by substituting on the right hand side the null structure
equations for /∇4χ̂ and /∇4η, equation (52), the Bianchi equation for /∇4ρ and using
Lemma 3.5 to compute the commutator term. The Codazzi equation (50) is also used
to replace the /divχ̂ term arising from /div /∇4η.

The equation for /∇3μ is obtained similarly using the null structure equations for
/∇3χ̂ and /∇3η, equation (53), the Bianchi equation for /∇3ρ and the Codazzi equation
(51).
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Finally,

/∇3κ = /∇ /∇3ω + [ /∇3, /∇]ω + ∗ /∇ /∇3ω
† + ∗ ([ /∇3, /∇]ω†

)
+ /∇3β,

and the equation for κ can be computed similarly. ��
Proposition 11.3 If x ∈ A and u = u(x), v = v(x) then, for k = 0, . . . , 4, ω†

satisfies,

r4
∫
Su,v

|Dkω†|2dμSu,v ≤ C

(
ε0 + 1

v0

)
.

Proof Since ω† satisfies an equation of the form

/∇3ω
† = ψ3,

with zero initial data, this can be proved in exactly the same way as the estimates for

Dk
(3)

� p in Proposition 10.2. ��
Let � schematically denote the following quantities,

� = r /∇
(

trχ − 2

r

)
, r /∇

(
trχ + 2

r

)
, μ, μ, κ,

and further decompose as

(3)

�2 = r /∇
(

trχ + 2
r

)
,

(4)

�2 = r /∇ (trχ − 2
r

)
, μ,

(3)

�3 = μ,
(3)

�4 = κ.

As with the �p, ψp, Tp, the subscript p indicates that �p should decay like 1
r p .

Similarly, the (3) indicates that
(3)

� satisfies an equation in the 3 direction, and the (4)

indicates that
(4)

� satisfies an equation in the 4 direction.

The propagation equations for the
(4)

� variables take the following schematic form,

/∇4
(4)

� p + p

2
trχ

(4)

� p = E4

[
(4)

� p

]

and the for the
(3)

� variables take the form,

/∇3
(3)

� p = E3

[
(3)

� p

]
,
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where,

E4

[
r /∇
(

trχ − 2

r

)]

= 2

r
r /∇ω +

(
trχ − 2

r

)
r /∇ω +

∑
p1+p2≥4

�p1 · r /∇�p2 +
∑
p1≥6

DTp1,

E4[μ] = 1

r
μ + 1

2

(
trχ − 2

r

)
μ +

∑
p1+p2+p3≥4

h p1 · �p2 · r /∇�p3

+
∑

p1+p2+p3≥4

(h p1 + �p1) · �p2 · �p3 +
∑

p1+p2≥4

(h p1 + �p1) · ψp2

+
∑

p1+p2≥6

�p1 · Tp2 +
∑

p1+p2≥5

h p1 · DTp2 ,

and

E3

[
r /∇
(

trχ + 2

r

)]
= 2

r
r /∇
(

trχ + 2

r

)
+

∑
p1+p2≥2

�p1 · r /∇�p2 +
∑

p1+p2≥2

h p1 · �p2

+
∑

p1+p2+p3+p4≥2

h p1 · �p2 · �p3 · �p4

+
∑

p1+p2+p3≥2

h p1 · �p2 · (�p3 + Tp3

)+
∑
p1≥2

DTp1 ,

E3[μ] = 2

r
μ − 1

r
μ −

(
trχ + 2

r

)
μ + 1

2

(
trχ − 2

r

)
μ

+
∑

p1+p2+p3≥4

(h p1 + �p1) · �p2 · �p3

+
∑

p1+p2≥4

(h p1 + �p1) · ψp2

+
∑

p1+p2≥4

�p1 · Tp2 +
∑

p1+p2≥3

h p1 · DTp2 ,

E3[κ] = 1

r
κ − 1

2

(
trχ + 2

r

)
κ − χ̂ · /∇ω − ∗χ̂ · /∇ω†

+
∑

p1+p2+p3≥4

h p1 · �p2 · r /∇�p3

+
∑

p1+p2+p3≥4

�p1 · �p2 · �p3

+
∑

p1+p2≥4

(h p1 + �p1) · (ψp2 + Tp2) +
∑

p1+p2≥4

h p1 · DTp2 .

All of the � appearing in the r /∇� terms in the errors, unless explicitly stated, are
χ̂ , χ̂ , η, η, trχ − 2

r , trχ + 2
r and hence the bootstrap assumptions of Section 5 give
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an estimate for D2r /∇� in L2 on the spheres. It is the linear principal terms which
will require the most care below. When such terms appear, they have been written
first in the errors above. Linear here means linear in �,ψ, T ,�, so one example of
a linear term is 2

r r /∇ω appearing in E4
[
r /∇ (trχ − 2

r

)]
. Principal means of the form

r /∇� or �, since the � variables live at one degree of differentiability greater than
�. The principal energy momentum tensor terms, DT , will not be problematic as
they have all already been estimated at the top order. Note that there are no principal
curvature terms, i.e. terms of the form Dψ , appearing in the errors. Finally, notice that
the propagation equations have the same structure as the propagation equations for the

Ricci coefficients highlighted in Section 3, i.e. the error terms E3

[
(3)

� p

]
should decay

like 1
r p and the error terms E4

[
(4)

� p

]
should decay like 1

r p+2 . The next proposition,

akin to Proposition 3.8, says this structure is preserved under commutation by D.
Unlike Proposition 3.8, we here keep track of the principal terms.

Proposition 11.4 The commuted propagation equations for the � variables, for k =
1, 2, . . ., take the form,

/∇3D
k
(3)

� p = E3

[
Dk

(3)

� p

]
,

and

/∇4D
k
(4)

� p + p

2
trχDk

(4)

� p = E4

[
Dk

(4)

� p

]
,

where

E3

[
Dk

(3)

� p

]
= DE3

[
Dk−1

(3)

� p

]
+
⎛
⎝h1 +

∑
p1+p2≥1

h p1 · �p2

⎞
⎠ · Dk

(3)

� p

+ �1 · Dk−1
(3)

� p,

and

E4

[
Dk

(4)

� p

]
= DE4

[
Dk−1

(4)

� p

]
+
⎛
⎝ ∑

p1+p2≥2

h p1 · �p2

⎞
⎠ · Dk

(4)

� p + �′
2 · Dk−1

(4)

� p.

Moreover,

E3

[
Dk−1r /∇(3)

� p

]
= DE3

[
Dk−2r /∇(3)

� p

]
+
⎛
⎝h1 +

∑
p1+p2≥1

h p1 · �p2

⎞
⎠

· Dk−1r /∇(3)

� p + �1 · Dk−2r /∇(3)

� p,
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and

E4

[
Dk−1r /∇(4)

� p

]
= DE4

[
Dk−2r /∇(4)

� p

]
+
⎛
⎝ ∑

p1+p2≥2

h p1 · �p2

⎞
⎠ · Dk−1r /∇(4)

� p

+ �′
2 · Dk−2r /∇(4)

� p.

Recall that �1,�
′
2 from Proposition 3.8, where the ′ stresses that �′

2 contains terms
of the form D�, involving one derivative of �.

Proof The proof is identical to that of Proposition 3.8, except we keep track of the
principal terms. ��

Note that the “moreover” part of the Proposition says that commuting the propaga-
tion equations with r /∇ only produces principal error terms involving an r /∇ derivative,
unlike commuting with /∇3 and r /∇4 which can produce principal error terms involv-
ing /∇3, r /∇4 and r /∇ derivatives. This is important when estimating κ since we only
estimate D2r /∇κ rather than D3κ .

11.2 Additional Bootstrap Assumptions

The results of this section will be shown using an additional bootstrap argument.
Let A′′ ⊂ A denote the set of x ∈ A such that the following additional bootstrap
assumptions hold for all y ∈ A with u(y) ≤ u(x), v(y) ≤ v(x),

∫ u

u0

∫
Su′,v

r2
∣∣∣∣Dkr /∇

(
trχ − 2

r

)∣∣∣∣
2

dμSu′,vdu
′ ≤ C, (127)

∫ v

v0

∫
Su,v′

∣∣∣∣Dkr /∇
(

trχ + 2

r

)∣∣∣∣
2

dμSu,v′ dv′ ≤ C, (128)

∫ u

u0

∫
Su′,v

r2
∣∣∣Dkμ

∣∣∣2 dμSu′,vdu
′ ≤ C, (129)

∫ v

v0

∫
Su,v′

r2
∣∣∣Dkμ

∣∣∣2 dμSu,v′ dv′ ≤ C, (130)

∫ u

u0

∫
Su′,v

r2
∣∣∣Dkr /∇χ̂

∣∣∣2 dμSu′,vdu
′ ≤ C, (131)

∫ v

v0

∫
Su,v′

r−2
∣∣∣Dkr /∇χ̂

∣∣∣2 dμSu,v′ dv′ ≤ C, (132)

∫ u

u0

∫
Su′,v

∣∣∣Dkr /∇η

∣∣∣2 dμSu′,vdu
′ ≤ C, (133)

∫ v

v0

∫
Su,v′

∣∣∣Dkr /∇η

∣∣∣2 dμSu,v′ dv′ ≤ C, (134)
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for k = 0, 1, 2, 3, and,

∫ v

v0

∫
Su,v′

r4
∣∣∣Dkr /∇κ

∣∣∣2 dμSu,v′ dv′ ≤ C, (135)

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk(r /∇)2ω

∣∣∣2 dμSu,v′ dv′ ≤ C, (136)

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk /∇3r /∇ω

∣∣∣2 dμSu,v′ dv′ ≤ C, (137)

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk(r /∇)2ω†

∣∣∣2 dμSu,v′ dv′ ≤ C, (138)

for k = 0, 1, 2, where u = u(y), v = v(y).

11.3 Estimates for Auxiliary � Variables

The bootstrap assumptions (127)–(138) can now be used to obtain estimates for the
� variables.

Proposition 11.5 For any x ∈ A′′, if u = u(x), v = v(y) then, for k = 0, 1, 2, 3, for

all
(4)

� and
(3)

� �= κ ,

∫ v

v0

∫
Su,v′

r2p−4|Dk
(3)

� p|2dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
, (139)

∫ u

u0

∫
Su′,v

r2p−2|Dk
(4)

� p|2dμSu′,vdu
′ ≤ C

(
ε0 + 1√

v0

)
, (140)

and, for k = 0, 1, 2,

∫ v

v0

∫
Su,v′

r4|Dkr /∇κ|2dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
. (141)

Proof For k ≤ 2, bounds for

∫
Su,v

r2p−2
∣∣∣∣
(3)

� p

∣∣∣∣
2

dμSu,v , and
∫
Su,v

r2p−2
∣∣∣∣
(4)

� p

∣∣∣∣
2

dμSu,v ,

can be obtained exactly as in Propositions 10.2 and 10.1, then integrated to give (139)
and (140). For k ≤ 1, (141) can be obtained similarly.

The new difficulties are at the top order, so assume now k = 3 and consider
(3)

� �= κ .
Note that the bootstrap assumptions (127)–(138) together with the Sobolev inequalities
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of Section 6 give the pointwise bounds37

r p|�p|, r p− 1
2 |D�p| ≤ C,

for �p �= κ , and

r4|κ|, r 7
2 |r /∇κ| ≤ C.

Equation (122) with h = r2p−4
(3)

� p gives,

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu,v′ =
∫
Su0,v′

r(u0, v
′)2p−4

∣∣∣∣D3
(3)

� p

∣∣∣∣
2

dμSu0,v′

+
∫ u

u0

∫
Su′,v′

r2p−4D3
(3)

� p · E3

[
D3

(3)

� p

]
dμSu′,v′ du

′,

where trχD3
(3)

� p = (�2 + h1) ·D3
(3)

� p has been absorbed into the error E3

[
D3

(3)

� p

]
.

Integrating in v′, this gives,

∫ v

v0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu,v′ dv′

=
∫ v

v0

∫
Su0,v′

r(u0, v
′)2p−4

∣∣∣∣D3
(3)

� p

∣∣∣∣
2

dμSu0,v′dv′

+
∫ v

v0

∫ u

u0

∫
Su′,v′

r2p−4D3
(3)

� p · E3

[
D3

(3)

� p

]
dμSu′,v′du

′dv′.

Recall,

∫ v

v0

∫
Su0,v′

r(u0, v
′)2p−4

∣∣∣∣D3
(3)

� p

∣∣∣∣
2

dμSu0,v′dv′ ≤ ε0.

It remains to estimate the error terms. Consider first the quadratic terms

∑
p1+p2≥p

�p1 · r /∇�p2 ,

37 For �p = r /∇
(

trχ − 2
r

)
, μ, actually have the pointwise bounds r p |D�p | ≤ C . There is a loss of r

1
2

for the other variables since the Sobolev inequality on the outgoing null hypersurfaces have to be used.
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in E3

[
(3)

� p

]
. They will give rise to terms in E3

[
D3

(3)

� p

]
of the form38

Dk1�p1 · Dk2r /∇�p2 ,

where p1 + p2 ≥ p and k1 + k2 = 3. It must be the case that either k1 ≤ 1 or
k2 ≤ 1. Assume first that k1 ≤ 1. Then, by Propositions 10.1 and 10.2 and the
Sobolev inequalities of Section 6,

r2p−4
∣∣∣Dk1�p1 · Dk2r /∇�p2

∣∣∣2 ≤ Cr2p−4r−2p1

(
ε0 + 1

v0

) ∣∣∣Dk2r /∇�p2

∣∣∣2

≤ C

(
ε0 + 1

v0

)
r2p2−4

∣∣∣Dk2r /∇�p2

∣∣∣2 ,

since p1 + p2 ≥ p. Recall that such terms only occur for �p2 = trχ − 2
r , trχ +

2
r , χ̂ , χ̂ , η, η. If �p2 = trχ + 2

r , χ̂ , η then, using the bootstrap assumptions (127)–
(138),

∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4D3
(3)

� p · Dk1�p1 · Dk2r /∇�p2dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4

(∣∣∣∣D3
(3)

� p

∣∣∣∣
2

+
∣∣∣Dk1�p1 · Dk2r /∇�p2

∣∣∣2
)
dμSu′,v′du

′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′

+ C

(
ε0 + 1

v0

)∫ v

v0

∫ u

u0

∫
Su,v′

r2p2−4
∣∣∣Dk2r /∇�p2

∣∣∣2 dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)∫ u

u0

du′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)
.

Similarly, if �p2 = trχ − 2
r , χ̂ , η, then

∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4D3
(3)

� p · Dk1�p1 · Dk2r /∇�p2dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′

38 There will also be cubic and higher order terms but, since they have the same r decay and there will
always be at most one factor which is not lower order and hence cannot be estimated in L∞, they are treated
in exactly the same manner as the quadratic terms.

123



Stability of Minkowski Space for Massless Einstein... Page 161 of 177 9

+ C

(
ε0 + 1

v0

)∫ v

v0

∫ u

u0

∫
Su,v′

r2p2−4
∣∣∣Dk2r /∇�p2

∣∣∣2 dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)∫ v

v0

1

(v′)2 dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)
.

Suppose now that k1 ≥ 2. Then k2 ≤ 1 and so, since �p2 = trχ− 2
r , trχ+ 2

r , χ̂ , χ̂ , η, η,
the bootstrap assumptions (127)–(138) and the Sobolev inequality imply that39

r p2− 1
2

∣∣∣Dk2r /∇�p2

∣∣∣ ≤ C.

Hence,

∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4D3
(3)

� p · Dk1�p1 · Dk2r /∇�p2dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4

(∣∣∣∣D3
(3)

� p

∣∣∣∣
2

+
∣∣∣Dk1�p1 · Dk2r /∇�p2

∣∣∣2
)
dμSu′,v′du

′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′

+ C
∫ v

v0

∫ u

u0

∫
Su,v′

r2p1− 7
2

∣∣∣Dk1�p1

∣∣∣2 dμSu′,v′ du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′

+ C

(
ε0 + 1

v0

)∫ v

v0

∫ u

u0

1

r
3
2

du′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)
,

by Propositions 10.1, 10.2, since k1 ≤ 3.

The quadratic terms arising from
(

trχ + 2
r

)
μ = �2�3 and

(
trχ − 2

r

)
μ = �2�2

in E3[μ] can be estimated similarly.

39 Similarly to the � variables, for �p2 = χ̂ , trχ + 2
r , η actually get r p2

∣∣∣Dk2r /∇�p2

∣∣∣ ≤ C but for

χ̂ , trχ − 2
r , η, have to use the Sobolev inequality on the outgoing null hypersurfaces and hence lose the

power of r
1
2 .
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The terms
∑

p1+p2≥p

�p1 · ψp2 ,

in E3

[
(3)

� p

]
give rise to quadratic terms of the form

Dk1�p1 · Dk2ψp2 ,

with p1 + p2 ≥ p and k1 + k2 ≤ 3. These terms can be treated similarly since

∫ v

v0

∫ u

u0

∫
Su,v′

r2p2−4
∣∣∣Dk2ψp2

∣∣∣2 dμSu′,v′du
′dv′ ≤ C

(
ε0 + 1

v0

)
,

by Proposition 9.3.
The quadratic terms arising from

∑
p1+p2≥p

�p1 · Tp2 ,

are also similar using Proposition 8.1.
The terms

∑
p1+p2≥p

h p1 · DTp2 ,

in E3

[
(3)

� p

]
give rise to terms of the form

h p1 · Dk′Tp2 ,

in E3

[
D3

(3)

� p

]
with p1 + p2 ≥ p, k′ ≤ 4. For these,

∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4D3
(3)

� p · h p1 · Dk′Tp2dμSu′,v′ du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4

(∣∣∣∣D3
(3)

� p

∣∣∣∣
2

+
∣∣∣h p1 · Dk′Tp2

∣∣∣2
)
dμSu′,v′ du

′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′

123



Stability of Minkowski Space for Massless Einstein... Page 163 of 177 9

+ C
∫ v

v0

∫ u

u0

∫
Su,v′

r2p2−4
∣∣∣Dk′Tp2

∣∣∣2 dμSu′,v′du
′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + C

(
ε0 + 1

v0

)
,

by Proposition 8.1.

Consider now the linear term 1
rD

3μ appearing in E3

[
D3μ

]
. Recall that μ = �3

so r2p−4 = r2 and,

∫ v

v0

∫ u

u0

∫
Su,v′

r2D3μ · 1

r
D3μdμSu′,v′du

′dv′

≤
∫ v

v0

∫ u

u0

∫
Su,v′

r2|D3μ|2 + |D3μ|2dμSu′,v′du
′dv′.

Now,

∫ v

v0

∫ u

u0

∫
Su,v′

|D3μ|2dμSu′,v′du
′dv′

≤
∫ v

v0

1

(v′)2

∫ u

u0

∫
Su,v′

r2|D3μ|2dμSu′,v′du
′dv′

≤ C
∫ v

v0

1

(v′)2 dv′

≤ C

v0
.

The other linear principal terms in E3

[
D3

(3)

� p

]
arising from the other linear term in

E3

[
μ
]
, the linear term in E3

[
r /∇
(

trχ + 2
r

)]
and the linear terms arising from the

commutation can be treated similarly. These are actually even easier as they appear
with an additional factor of 1

r . Hence,

∫ v

v0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu,v′ dv′

≤ C

(∫ v

v0

∫ u

u0

∫
Su′,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu′,v′du
′dv′ + ε0 + 1

v0

)
.

This is true for all u0 ≤ u′ ≤ u hence, by the Grönwall inequality,

∫ v

v0

∫
Su,v′

r2p−4
∣∣∣∣D3

(3)

� p

∣∣∣∣
2

dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
.
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The estimate,∫ v

v0

∫
Su,v′

r4
∣∣∣D2(r /∇)2κ

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,

is obtained in exactly the same way. Note that the r /∇ω, r /∇ω† terms which appear in
E3[κ] will only give rise to terms involvingD2(r /∇)2ω andD2(r /∇)2ω† in E3[D2r /∇κ]
which can be controlled by the bootstrap assumptions (127)–(138). At the principal
order, ω and ω† do not appear otherwise.

Consider now the
(4)

� variables. Recall the renormalisation of Remark 3.2,

/∇4

(
r pD3

(4)

� p

)
= r pE4

[
D3

(4)

� p

]
,

and hence that

/∇4

(
r2p−2

∣∣∣∣D3
(4)

� p

∣∣∣∣
2
)

= 2r2p−2D3
(4)

� p · E4

[
D3

(4)

� p

]
− 2

r
r2p−2

∣∣∣∣D3
(4)

� p

∣∣∣∣
2

.

By equation (121) with h = r2p−2

∣∣∣∣D3
(4)

� p

∣∣∣∣
2

then get

∫
Su′,v

r2p−2
∣∣∣∣D3

(4)

� p

∣∣∣∣
2

dμSu′,v =
∫
Su′,v0

r2p−2
∣∣∣∣D3

(4)

� p

∣∣∣∣
2

dμSu′,v0

+
∫ v

v0

∫
Su′,v′

2r2p−2D3
(4)

� p · E4

[
D3

(4)

� p

]
dμSu′,v′dv′,

where
(
trχ − 2

r

) · D3
(4)

� p = �2 · �p has been absorbed into the error. Integrating in
u′ gives,

∫ u

u0

∫
Su′,v

r2p−2
∣∣∣∣D3

(4)

� p

∣∣∣∣
2

dμSu′,vdu
′

≤ C

(
ε0 +

∫ u

u0

∫ v

v0

∫
Su′,v′

2r2p−2D3
(4)

� p · E4

[
D3

(4)

� p

]
dμSu′,v′dv′du′

)
.

Since E4

[
D3

(4)

� p

]
is schematically like 1

r p+2 , most of the error terms are estimated

in exactly the same way as before (when the weight was r2p−4) by

C

(∫ u

u0

∫ v

v0

∫
Su′,v′

r2p−4
∣∣∣∣D3

(4)

� p

∣∣∣∣
2

dμSu′,v′dv′du′ + ε0 + 1

v0

)
.

Some care, however, needs to be taken with the pricipal linear terms and especially
with the 1

r r /∇ω term in E4
[
r /∇ (trχ − 2

r

)]
.
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Consider first the 1
r μ term in E4[μ]. Since μ = �2 this will give the following

error term, ∫ u

u0

∫ v

v0

∫
Su′,v

r2D3μ · 1

r
D3μdμSu′,vdv′du′

≤
∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2 |D3μ|2 + r

3
2 |D3μ|2dμSu′,vdv′du′

≤
∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2 |D3μ|2dμSu′,vdv′du′

+ 1√
v0

∫ u

u0

∫ v

v0

∫
Su′,v

r2|D3μ|2dμSu′,vdv′du′

≤
∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2 |D3μ|2dμSu′,vdv′du′ + C√

v0
.

Hence∫ u

u0

∫
Su′,v

r2|D3μ|2dμSu′,vdu
′

≤ C

(∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2 |D3μ|2dμSu′,vdv′du′ + ε0 + 1√

v0

)

≤ C

(∫ v

v0

1

(v′) 3
2

∫ u

u0

∫
Su′,v

r2|D3μ|2dμSu′,vdv′du′ + ε0 + 1√
v0

)
,

and so the Grönwall inequality implies,∫ u

u0

∫
Su′,v

r2|D3μ|2dμSu′,vdu
′

≤ C exp

(∫ v

v0

1

(v′) 3
2

dv′
)(

ε0 + 1√
v0

)

≤ C

(
ε0 + 1√

v0

)
.

Consider now the 2
r r /∇ω term in E4

[
r /∇ (trχ − 2

r

)]
. If D3 = D2r /∇ or D2 /∇3 then

similarly get∫ u

u0

∫ v

v0

∫
Su′,v

r2D3r /∇
(

trχ − 2

r

)
· 2

r
D3r /∇ωdμSu′,vdv′du′

≤
∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2

∣∣∣∣D3r /∇
(

trχ − 2

r

)∣∣∣∣
2

+ r
3
2 |D3r /∇ω|2dμSu′,vdv′du′

≤
∫ u

u0

∫ v

v0

∫
Su′,v

r
1
2

∣∣∣∣D3r /∇
(

trχ − 2

r

)∣∣∣∣
2

dμSu′,vdv′du′ + C√
v0

,
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using the bootstrap assumptions (127)–(138) for D2(r /∇)2ω and D2 /∇3r /∇ω. Using
the Grönwall inequality then again gives,

∫ u

u0

∫
Su′,v

r2
∣∣∣∣D3r /∇

(
trχ − 2

r

)∣∣∣∣
2

dμSu′,vdu
′ ≤ C

(
ε0 + 1√

v0

)
.

Suppose now that D3 = D2r /∇4. This derivative of r /∇ (trχ − 2
r

)
is estimated from

the propagation equation directly,

D2r /∇4r /∇
(

trχ − 2

r

)
= D2

(
−
(

trχ − 2

r

)
r /∇
(

trχ − 2

r

)
− 2

r

(
trχ − 2

r

)

+E4

[
r /∇
(

trχ − 2

r

)])
.

Note that there are no principal terms on the right hand side (all involve at most 3
derivatives) and, since they all decay like 1

r3 , by Propositions 10.1, 10.2 and 8.1,

∫ u

u0

∫
Su′,v

r2
∣∣∣∣D2r /∇4r /∇

(
trχ − 2

r

)∣∣∣∣
2

dμSu′,vdu
′ ≤ C

(
ε0 + 1√

v0

)
.

��

11.4 Top Order Estimates for Ricci Coefficients

In order to estimate the remaining Ricci coefficients at the top order, the following
estimates for the Gauss curvature of the spheres is required.

Proposition 11.6 For any x ∈ A, if u = u(x), v = v(x) then, for k = 0, 1, 2, the
Gauss curvature of the sphere Su,v satisfies,

r4
∫
Su,v

∣∣∣∣Dk
(
K − 1

r2

)∣∣∣∣
2

dμSu,v ≤ C.

Proof Recall the Gauss equation (49), which can be rewritten,

K − 1

r2 = 1

2
χ̂ · χ̂ − 1

4

(
trχ − 2

r

)(
trχ + 2

r

)
(142)

+ 1

2r

(
trχ − 2

r

)
− 1

2r

(
trχ + 2

r

)
− ρ + 1

2
/T 34.

If k ≤ 1 then, since /T 34 = T4, Proposition 8.1 implies that

|Dk /T 34| ≤ C

r4 ,
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hence

r4
∫
Su,v

|Dk /T 34|2dμSu,v ≤ C

r4

∫
Su,v

dμSu,v ≤ C.

For k = 2, first recall that Proposition 8.1 implies that∫
v=v′

r6|D2 /T 34|2dμv=v′ +
∫

v=v′
r6|D3 /T 34|2dμv=v′ ≤ C,

for all v0 ≤ v′ ≤ ∞. Hence∣∣∣∣∣
∫
Su,v′

r6|D2 /T 34|2dμSu,v′ −
∫
Su0,v′

r6|D2 /T 34|2dμSu0,v′

∣∣∣∣∣

=
∣∣∣∣∣∂u
∫ u

u0

∫
Su′,v′

r6|D2 /T 34|2dμSu′,v′

∣∣∣∣∣
≤ C

(∫
v=v′

r6|D2 /T 34|2 + r6|D3 /T 34|2dμv=v′
)

≤ C.

Similarly, since ∫
v=v′

r4|Dkρ|2dμSu,v ≤ C,

for k = 0, 1, 2, 3, one obtains,
∫
Su,v′

r4|Dkρ|2dμSu,v′ ≤ C,

for k = 0, 1, 2.
Similarly for the Ricci coefficient terms on the right hand side of (142), one can

easily check that each has the correct decay to be controlled after being multiplied
by r4 and integrated on the spheres. Moreover, once 3 derivatives have been taken, in
the nonlinear terms there will be at most one factor involving 3 derivatives and so the
other terms can be estimated in L∞ as in Sections 9 and 10. Hence

r4
∫
Su,v

∣∣∣∣Dk
(
K − 1

r2

)∣∣∣∣
2

dμSu,v ≤ C.

��
Proposition 11.7 Let ξ be a totally symmetric (0, j + 1) Su,v tensor such that

/divξ = a, /curlξ = b, trξ = c,

and assume that the bounds on the Gauss curvature of Proposition 11.6 hold. Then,
for 1 ≤ k ≤ 4,
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‖(r /∇)kξ‖L2(Su,v)
≤ C

[ k−1∑
i=1

(
‖r(r /∇)i a‖L2(Su,v)

+ ‖r(r /∇)i b‖L2(Su,v)

+‖(r /∇)i c‖L2(Su,v)

)
+ ‖ξ‖L2(Su,v)

]
,

where, if j = 0, then trξ is defined to be 0.

Proof The following identity is satisfied by ξ, a, b, c,

∫
Su,v

| /∇ξ |2 + ( j + 1)K |ξ |2dμSu,v =
∫
Su,v

|a|2 + |b|2 + j K |c|2dμSu,v , (143)

where K is the Gauss curvature of Su,v . See Chapter 7 of [9].
By Proposition 11.6 and the Sobolev inequality,

|K | ≤ C

r2 ,

uniformly. This immediately gives the estimate for k = 1 after multiplying the identity
(143) by r2.

For k = 2, note that the symmetrised angular derivative of ξ ,

( /∇ξ)sBA1...A j+1
= 1

j + 2

⎛
⎝ /∇BξA1...A j+1 +

j+1∑
i=1

/∇ Ai ξA1...Ai−1Ai+1...A j+1

⎞
⎠ ,

satisfies

/div( /∇ξ)s = ( /∇a)s − 1

j + 2
(∗ /∇b)s + ( j + 1)K ξ − 2K

j + 1
(g ⊗s c)

/curl( /∇ξ)s = j + 1

j + 2
( /∇b)s + ( j + 1)K (∗ξ)s

tr( /∇ξ)s = 2

j + 2
a + j

j + 2
( /∇c)s,

where,

(∗ /∇b)sA1...A j+1
= 1

j + 1

j+1∑
i=1

/εAi
B /∇BbA1...Ai−1Ai+1...A j+1 ,

and

(g ⊗s c)A1...A j+1 =
∑

i<l=2,..., j+1

/gAi Al
cA1...Ai−1Ai+1...Al−1Al+1...A j+1 .
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Again see Chapter 7 of [9].
The identity (143) then gives,

‖ /∇2
ξ‖2

L2(Su,v)
≤ C

[
‖K (| /∇ξ |2 + |a|2 + | /∇c|2)‖L1(Su,v)

+ ‖ /∇a‖2
L2(Su,v)

+ ‖ /∇b‖2
L2(Su,v)

+ ‖K ξ‖2
L2(Su,v)

+ ‖Kc‖2
L2(Su,v)

]

≤ C

[
1

r2

(
‖ /∇ξ‖2

L2(Su,v)
+ ‖a‖2

L2(Su,v)
+ ‖ /∇c‖2

L2(Su,v)

)
+ ‖ /∇a‖2

L2(Su,v)

+ ‖ /∇b‖2
L2(Su,v)

+ 1

r4

(
‖ξ‖2

L2(Su,v)
+ ‖c‖2

L2(Su,v)

) ]
,

again using |K | ≤ C
r2 . Multiplying by r4 and using the k = 1 estimate then gives the

estimate for k = 2.
For k = 3 can similarly compute ( /∇( /∇ξ)s)s to get

‖ /∇3
ξ‖2

L2(Su,v)
≤ C

( 2∑
i=0

[
1

r4−2i

(
‖ /∇ i a‖2

L2(Su,v)
+ ‖ /∇ i b‖2

L2(Su,v)

)

+ 1

r6−2i

(
‖ /∇ i c‖2

L2(Su,v)
+ ‖ /∇ i

ξ‖2
L2(Su,v)

) ]

+ ‖( /∇K )ξ‖2
L2(Su,v)

+ ‖( /∇K )c‖2
L2(Su,v)

)
.

By the Sobolev inequality,

‖( /∇K )ξ‖2
L2(Su,v)

≤ ‖ξ‖2
L∞(Su,v)

‖ /∇K‖2
L2(Su,v)

≤ C

r2 ‖ /∇K‖2
L2(Su,v)

2∑
i=0

‖(r /∇)iξ‖2
L2(Su,v)

≤ C

r4 ‖r /∇K‖2
L2(Su,v)

2∑
i=0

‖(r /∇)iξ‖2
L2(Su,v)

≤ C

r8

2∑
i=0

‖(r /∇)iξ‖2
L2(Su,v)

.

Similarly,

‖( /∇K )c‖2
L2(Su,v)

≤ C

r8

2∑
i=0

‖(r /∇)i c‖2
L2(Su,v)

.

Inserting this into the above inequality and multiplying by r6 gives the result for k = 3.
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Finally, for k = 4, one similarly gets,

‖ /∇4
ξ‖2

L2(Su,v)
≤ C

( 3∑
i=1

[
1

r6−2i

(
‖ /∇ i a‖2

L2(Su,v)
+ /∇ i b‖2

L2(Su,v)

)

+ 1

r8−2i

(
‖ /∇ i a‖2

L2(Su,v)
+ /∇ i b‖2

L2(Su,v)

)]

+ ‖ /∇K /∇ξ‖2
L2(Su,v)

+ ‖ξ /∇2K‖2
L2(Su,v)

+ 1

r2 ‖ξ /∇K‖2
L2(Su,v)

+ ‖ /∇K /∇c‖2
L2(Su,v)

+ ‖c /∇2K‖2
L2(Su,v)

+ 1

r2 ‖c /∇K‖2
L2(Su,v)

+ ‖a /∇K‖2
L2(Su,v)

)
.

Using the Sobolev inequality as above get,

‖ξ /∇2K‖2
L2(Su,v)

+ 1

r2 ‖ξ /∇K‖2
L2(Su,v)

≤ ‖ξ‖2
L∞(Su,v)

(
‖ /∇2K‖2

L2(Su,v)
+ 1

r2 ‖ /∇K‖2
L2(Su,v)

)

≤ C

r2

2∑
i=0

‖(r /∇)iξ‖2
L2(Su,v)

(
1

r4 ‖(r /∇)2K‖2
L2(Su,v)

+ 1

r4 ‖r /∇K‖2
L2(Su,v)

)

≤ C

r10

2∑
i=0

‖(r /∇)iξ‖2
L2(Su,v)

,

by Proposition 11.6. Similarly,

‖c /∇2K‖2
L2(Su,v)

+ 1

r2 ‖c /∇K‖2
L2(Su,v)

≤ C

r10

2∑
i=0

‖(r /∇)i a‖2
L2(Su,v)

,

and,

‖a /∇K‖2
L2(Su,v)

≤ C

r2

2∑
i=0

‖(r /∇)i a‖2
L2(Su,v)

‖ /∇K‖2
L2(Su,v)

≤ C

r4

2∑
i=0

‖(r /∇)i a‖2
L2(Su,v)

‖r /∇K‖2
L2(Su,v)

≤ C

r8

2∑
i=0

‖(r /∇)i a‖2
L2(Su,v)

.
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For the remaining terms,

‖ /∇K /∇ξ‖2
L2(Su,v)

≤ 1

r4 ‖r /∇ξ‖2
L∞(Su,v)

‖r /∇K‖2
L2(Su,v)

≤ C

r10

3∑
i=1

‖(r /∇)iξ‖2
L2(Su,v)

,

and

‖ /∇K /∇c‖2
L2(Su,v)

≤ C

r10

3∑
i=1

‖(r /∇)i c‖2
L2(Su,v)

.

Inserting into the above estimate and multiplying by r8 gives the result for k = 4. ��
If ξ is a symmetric trace free (0, 2) Su,v tensor then it suffices to know only its

divergence.

Proposition 11.8 Let ξ be a symmetric trace free (0, 2) Su,v tensor such that

/divξ = a,

and assume that the bounds on the Gauss curvature of Proposition 11.6 hold. Then,
for 1 ≤ k ≤ 4,

‖(r /∇)kξ‖L2(Su,v)
≤ C

[ k−1∑
i=1

‖r(r /∇)i a‖L2(Su,v)
+ ‖ξ‖L2(Su,v)

]
.

Proof This follows from the previous proposition since,

/curlξ = ∗a,

which follows from the fact that ξ is a symmetric trace free (0, 2) Su,v tensor. ��
These elliptic estimates can be used to recover the remainder of the bootstrap

assumptions (127)–(138) for Ricci coefficients at the top order.

Proposition 11.9 For any x ∈ A′′, if u = u(x), v = v(x) then, for k = 0, 1, 2, 3,∫ u

u0

∫
Su′,v

r2
∣∣∣Dkr /∇χ̂

∣∣∣2 dμSu′,vdu
′ ≤ C

(
ε0 + 1

v0

)
,

∫ v

v0

∫
Su,v′

r−2
∣∣∣Dkr /∇χ̂

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,

∫ u

u0

∫
Su′,v

∣∣∣Dkr /∇η

∣∣∣2 dμSu′,vdu
′ ≤ C

(
ε0 + 1

v0

)
,

∫ v

v0

∫
Su,v′

∣∣∣Dkr /∇η

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,
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and for k = 0, 1, 2,

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk(r /∇)2ω

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk /∇3r /∇ω

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,

∫ v

v0

∫
Su,v′

r2
∣∣∣Dk(r /∇)2ω†

∣∣∣2 dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
.

Proof Consider first χ̂ . Recall the Codazzi equation (50), which can be schematically
written,

/divχ̂ = 1

2r
r /∇
(

trχ − 2

r

)
+

∑
p1+p2≥3

(h p1 + �p1) · �p2 +
∑
p1≥ 7

2

(ψp1 + Tp1).

Hence, if Dk = (r /∇)k , Proposition 11.8 immediately gives the result by Propositions
10.1, 10.2, 9.3, 8.1, and 11.5.

If Dk = (r /∇)k−1 /∇3 one has to commute the equation by /∇3. By Lemma 3.5 this
will only generate terms (with good r weights) which have already been estimated in
Propositions 10.1, 10.2, 9.3, 8.1. Since /∇3χ̂ is still a symmetric trace free (0, 2) Su,v

tensor, can again apply Proposition 11.6 to get,

∫ u

u0

∫
Su′,v

r2
∣∣∣(r /∇)k /∇3χ̂

∣∣∣2 dμSu′,vdu
′ ≤ C

(
ε0 + 1

v0

)

One of the r /∇ can be commuted with /∇3. Again this will only generate error terms
which ahve already been estimated.

The same procedure works for generalDk as commuting the Codazzi equation with
r /∇ will also only produce terms which have already been estimated.

Consider now χ̂ . This is estimated in exactly the same way using the other Codazzi
equation (51),

/divχ̂ = 1

2r
r /∇
(

trχ + 2

r

)
+

∑
p1+p2≥3

(h p1 + �p1) · �p2 +
∑
p1≥2

(ψp1 + ψp2),

Propositions 10.1, 10.2, 9.3, 8.1, and the estimate forD3r /∇
(

trχ + 2
r

)
on the outgoing

null hypersurfaces from Proposition 11.5.
Consider now η, η. They satisfy the following /div, /curl systems,

/divη = 1

2
χ̂ · χ̂ − ρ − μ, /curlη = σ − 1

2
χ̂ ∧ χ̂ ,

/divη = 1

2
χ̂ · χ̂ − ρ − μ, /curlη = 1

2
χ̂ ∧ χ̂ − σ,
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and so can be estimated exactly as χ̂ , χ̂ , now using Proposition 11.7. Recall that we
set trξ = 0 if ξ is an Su,v one form.

Finally, since

κ = /∇ω + ∗ /∇ω† + β,

by definition, /∇ω and /∇ω† satisfy the /div, /curl systems,

/div /∇ω = /divκ − /divβ, /curl /∇ω = 0,

/div /∇ω† = /curlκ − /curlβ, /curl /∇ω† = 0,

and so D2(r /∇)2ω and D2(r /∇)2ω† can be estimated similarly.
Finally, for D2 /∇3r /∇ω, recall that ω satisfies the propagation equation,

/∇3ω = 2η · η − |η|2 − ρ − 1

2
/T 34.

Commuting with r /∇ this gives, by Proposition 3.5,

/∇3r /∇ω = 2(r /∇η) · η + 2η · (r /∇η) − 2η · (r /∇η) − r /∇ρ − 1

2
r /∇ /T 34

+ r

(
2η · η − |η|2 − ρ − 1

2
/T 34

)
(η + η) − χ̂ · r /∇ω

− 1

2

(
trχ + 2

r

)
r /∇ω.

The estimate forD2 /∇3r /∇ω follows by applyingD2 to the right hand side, multiplying
by r2, integrating over the constant u hypersurfaces and applying Propositions 10.1,
10.2, 9.3, 8.1. ��

Now the bootstrap assumptions (127)–(138) have been recovered with better con-
stants and hence, provided ε0, v0 are taken suitably small thenA′′ ⊂ A is open, closed,
connected, non-empty, and hence A′′ = A. The remaining bootstrap assumptions of
Section 5, (70), (71) can now be recovered.

Proposition 11.10 If x ∈ A, and if u = u(x), v = v(x), then,

∫ v

v0

∫
Su,v′

r−2|D3r /∇b|2dμSu,v′ dv′ ≤ C

(
ε0 + 1

v0

)
,

and

∫ u

u0

∫
Su′,v

∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2 dμSu′,vdu

′ ≤ C

(
ε0 + 1

v0

)
.
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Proof The proof of the first estimate is identical to that of Proposition 11.5 using the
propagation equation,

/∇3b = 2(η# − η#) + χ̂
# · b + 1

2

(
trχ + 2

r

)
b − 1

r
b.

For /� − /�
◦, the propagation equation in the outgoing direction (125) is used. The

commuted equation will take the form,

/∇4(r /∇)3 (/� − /�
◦)+ 1

2
trχ(r /∇)3 (/� − /�

◦) = E4

[
(r /∇)3 (/� − /�

◦)]
,

where, by Propositions 10.1, 10.2, 9.3, 8.1, 11.5 and 11.9, an argument identical to
that in the proof of Proposition 11.5 can be used to show that,

∫ u

u0

∫ v

v0

∫
Su′,v′

(r /∇)3 (/� − /�
◦) · E4

[
(r /∇)3 (/� − /�

◦)] dμSu′,v′dv′du′ ≤ C

(
ε0 + 1

v0

)
.

It follows that,

/∇4

(∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2

)
= (r /∇)3 (/� − /�

◦) ·
(
−trχ(r /∇)3 (/� − /�

◦)

+2E4

[
(r /∇)3 (/� − /�

◦)])
,

and hence, using the identity (121),

∫ v

v0

∫
Su,v

∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2 dμSu,v ≤

∫
Su,v0

∣∣∣(r /∇)3 (/� − /�
◦)∣∣∣2 dμSu,v0

+
∫ v

v0

∫
Su,v′

(r /∇)3 (/� − /�
◦) · E4

[
(r /∇)3 (/� − /�

◦)] dμSu,v′ dv′.

The result follows by integrating in u. ��

12 The Last Slice Argument and the End of the Proof

The proof of Theorem 5.1 follows from Theorem 5.2 together with the following
two local existence theorems, whose proofs are not discussed here, via a last slice
argument. The structure of the last slice argument is outlined below.

Theorem 12.1 (Local existence for the Cauchy problem for the massless Einstein–
Vlasov system [4,6,30]).Given a smooth initial data set (�, g0, k, f0) for themassless
Einstein–Vlasov system (satisfying constraint equations) there exists a unique smooth
maximal Cauchy development satisfying the massless Einstein–Vlasov system such
that � is a Cauchy hypersurface with induced first and second fundamental form
g0, k respectively and f |P|� = f0.
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Fig. 4 The solution to the mixed Cauchy, characteristic initial value problem when t∗ < u f + v0

Theorem 12.2 (Local existence for the characteristic initial value problem for the
massless Einstein–Vlasov system). Given smooth characteristic initial data for the
massless Einstein–Vlasov system (satisfying constraint equations) on (what will
become) null hypersurfaces N1, N2 intersecting transversely at a spacelike surface
S = N1 ∩ N2, there exists a non-empty maximal development of the data, bounded in
the past by a neighbourhood of S in N1 ∩ N2.

The analogue of Theorem 12.2 for the vacuum Einstein equations is a result of
Rendall [28]. For the Einstein–Vlasov system see also [5,11].

Suppose that ε0, 1
v0

and the bootstrap constant C satisfy the smallness assumption
of Theorem 5.2. Define the function t := v + u, and the hypersurfaces �t ′ := {t =
t ′} ∩ {u0 ≤ u ≤ u f , v0 ≤ v < ∞}. Whenever the bootstrap assumptions on b and
1 − 1

�2 hold (see Section 5), clearly dt is timelike and hence the surfaces �t are
spacelike. For a given time t , define the region,

Mt := {u0 ≤ u ≤ u f } ∩ {v0 ≤ v < ∞} ∩
⋃

t0≤t ′<t

�t ′,

where t0 = v0 + u0. Let t∗ denote the supremum over all times t such that a smooth
solution to the massless Einstein–Vlasov system (1)–(2) exists in the region Mt∗
attaining the given data on ({u = u0} ∪ {v = v0}) ∩ ⋃t0≤t<t∗ �t and, for any u′, v′
with u′ + v′ ≤ t∗, the bootstrap assumptions (66)–(71) hold for all u, v with u0 ≤
u ≤ u′, v0 ≤ v ≤ v′. Such a time clearly exists by Theorem 12.2, provided ε0 is
sufficiently small.40

The aim is to show that t∗ = ∞, so suppose for contradiction that t∗ < ∞. From
the bounds (66)–(71), which hold in for u, v in the regions u0 ≤ u ≤ u′, v0 ≤ v ≤ v′
uniformly for all u′, v′ such that u′+v′ < t∗, higher regularity bounds can be obtained
from the equations via commutation, the equations being essentially linear at this stage
(this is carried out in detail in a related setting in Chapter 16.2 of [9]). Hence the solution
extends smoothly to �t∗ , providing Cauchy data for the Einstein equations on �t∗ .
Using this Cauchy data together with the characteristic data on {u = u0} (and possibly

40 The transformation from harmonic coordinates to double null coordinates is carried out in detail in a
related setting in Chapter 16.3 of [9].
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9 Page 176 of 177 M. Taylor

the characteristic data on {v = v0} if t∗ < u f + v0), Theorem 12.1 and Theorem 12.2
imply that a smooth solution to the mixed Cauchy, characteristic initial value problem
exists in the region Mt∗+ε for some small ε > 0. This is depicted in Figure 4.

Since the bootstrap assumptions (66)–(71) hold in u0 ≤ u ≤ u′, v0 ≤ v ≤ v′ for
all u′, v′ such that u′ + v′ ≤ t∗, Theorem 5.2 implies they in fact hold with the better

constant C
2 . Then, taking ε smaller if necessary, by compactness of �t∗ and continuity

they will hold for all u′, v′ with u′ + v′ ≤ t∗ + ε (with constant C). This contradicts
the maximality of t∗ and hence the solution exists in the entire region.
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