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Abstract We consider the critical dissipative SQG equation in bounded domains,
with the square root of the Dirichlet Laplacian dissipation. We prove global a priori
interior Cα and Lipschitz bounds for large data.
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1 Introduction

The Surface Quasigeostrophic equation (SQG) of geophysical origin [18] was pro-
posed as a two dimensional model for the study of inviscid incompressible formation
of singularities [5,9]. While the global regularity of all solutions of SQG whose initial
data are smooth is still unknown, the original blow-up scenario of [9] has been ruled
out analytically [13] and numerically [11], and nontrivial examples of global smooth
solutions have been constructed [4]. Solutions of SQG and related equations without
dissipation and with non-smooth (piece-wise constant) initial data give rise to interface
dynamics [3,17] with potential finite time blow up [15].

The addition of fractional Laplacian dissipation produces globally regular solutions
if the power of the Laplacian is larger or equal than one half. When the linear dissipa-
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tive operator is precisely the square root of the Laplacian, the equation is commonly
referred to as the “critical dissipative SQG”, or “critical SQG”. This active scalar equa-
tion [5] has been the object of intensive study in the past decade. The solutions are
transported by divergence-free velocities they create, and are smoothed out and decay
due to nonlocal diffusion. Transport and diffusion do not add size to a solution: the
solution remains bounded, if it starts so [22]. The space L∞(R2) is not a natural phase
space for the nonlinear evolution: the nonlinearity involves Riesz transforms and these
are not well behaved in L∞. Unfortunately, for the purposes of studies of global in
time behavior of solutions, L∞ is unavoidable: it quantifies the most important infor-
mation freely available. The equation is quasilinear and L∞-critical, and there is no “
wiggle room”, nor a known better (smaller) space which is invariant for the evolution.
One must work in order to obtain better information. A pleasant aspect of criticality
is that solutions with small initial L∞ norm are smooth [10]. The global regularity of
large solutions was obtained independently in [2] and [20] by very different methods:
using harmonic extension and the De Georgi methodology of zooming in, and passing
from L2 to L∞ and from L∞ to Cα in [2], and constructing a family of time-invariant
moduli of continuity in [20]. Several subsequent proofs were obtained (please see [12]
and references therein). All the proofs are dimension-independent, but are in either
R

d or on the torus Td . The proofs of [7] and [12] were based on an extension of the
Córdoba–Córdoba inequality [14]. This inequality states that

�′( f )� f − ��( f ) ≥ 0 (1)

pointwise. Here � = √−� is the square root of the Laplacian in the whole space
R

d , � is a real valued convex function of one variable, normalized so that �(0) = 0
and f is a smooth function. The fractional Laplacian in the whole space has a (very)
singular integral representation, and this can be used to obtain (1). In [7] specific
nonlinear maximum principle lower bounds were obtained and used to prove the
global regularity. A typical example is

D( f ) = f � f − 1

2
�
(

f 2
)

≥ c (‖θ‖L∞)−1 f 3 (2)

pointwise, for f = ∂iθ a component of the gradient of a bounded function θ . This
is a useful cubic lower bound for a quadratic expression, when ‖θ‖L∞ ≤ ‖θ0‖L∞ is
known to be bounded above. The critical SQG equation in R

2 is

∂tθ + u · ∇θ + �θ = 0 (3)

where
u = ∇⊥�−1θ = R⊥θ (4)

and ∇⊥ = (−∂2, ∂1) is the gradient rotated by π
2 . Because of the conservative nature

of transport and the good dissipative properties of � following from (1), all L p norms
of θ are nonincreasing in time. Moreover, because of properties of Riesz transforms,
u is essentially of the same order of magnitude as θ . Differentiating the equation we
obtain the stretching equation
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(∂t + u · ∇ + �)∇⊥θ = (∇u)∇⊥θ. (5)

(In the absence of � this is the same as the stretching equation for three dimensional
vorticity in incompressible Euler equations, one of the main reasons SQG was con-
sidered in [5], [9] in the first place.) Taking the scalar product with ∇⊥θ we obtain

1

2
(∂t + u · ∇ + �)q2 + D(q) = Q (6)

for q2 = |∇⊥θ |2, with

Q = (∇u)∇⊥θ · ∇⊥θ ≤ |∇u|q2.

The operator ∂t + u · ∇ + � is an operator of advection and fractional diffusion: it
does not add size. Using the pointwise bound (2) we already see that the dissipative
lower bound is potentially capable of dominating the cubic term Q, but there are two
obstacles. The first obstacle is that constants matter: the two expressions are cubic,
but the useful dissipative cubic lower bound D(q) ≥ K |q|3 has perhaps too small a
prefactor K if the L∞ norm of θ0 is too large. The second obstacle is that although

∇u = R⊥(∇θ)

has the same size as ∇⊥θ (modulo constants) in all L p spaces 1 < p < ∞, it fails to
be bounded in L∞ by the L∞ norm of ∇⊥θ . In order to overcome these obstacles, in
[7] and [12], instead of estimating directly gradients, the proof proceeds by estimating
finite differences, with the aim of obtaining bounds for Cα norms first. In fact, in critical
SQG, once the solution is bounded in any Cα with α > 0, it follows that it is C∞. More
generally, if the equation has a dissipation of order s, i.e., � is replaced by �s with
0 < s ≤ 1 then if θ is bounded in Cα with α > 1 − s, then the solution is smooth [8].
(This condition is sharp, if one considers general linear advection diffusion equations,
[23]. In [12] the smallness of α is used to show that the term corresponding to Q in
the finite difference version of the argument is dominated by the term corresponding
to D(q).

In this paper we consider the critical SQG equation in bounded domains. We take
a bounded open domain 	 ⊂ R

d with smooth (at least C2,α) boundary and denote
by � the Laplacian operator with homogeneous Dirichlet boundary conditions and by
�D its square root defined in terms of eigenfunction expansions. Because no explicit
kernel for the fractional Laplacian is available in general, our approach, initiated in
[6] is based on bounds on the heat kernel.

The critical SQG equation is

∂tθ + u · ∇θ + �Dθ = 0 (7)

with
u = ∇⊥�−1

D θ = R⊥
Dθ (8)
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and smooth initial data. We obtain global regularity results, in the spirit of the ones in
the whole space. There are quite significant differences between the two cases. First of
all, the fact that no explicit formulas are available for kernels requires a new approach;
this yields as a byproduct new proofs even in the whole space. The main difference
and additional difficulty in the bounded domain case is due to the lack of translation
invariance. The fractional Laplacian is not translation invariant, and from the very
start, differentiating the equation (or taking finite differences) requires understanding
the respective commutators. For the same reason, the Riesz transforms RD are not
spectral operators, i.e., they do not commute with functions of the Laplacian, and so
velocity bounds need a different treatment. In [6] we proved using the heat kernel
approach the existence of global weak solutions of (7) in L2(	). A proof of local
existence of smooth solutions is provided in the present paper in d = 2. The local
existence is obtained in Sobolev spaces based on L2 and uses Sobolev embeddings.
Because of this, the proof is dimension dependent. A proof in higher dimensions is
also possible but we do not pursue this here. We note that for regular enough solutions
(e.g. θ ∈ H1

0 (	)) the normal component of the velocity vanishes at the boundary(
R⊥

Dθ · N
)
| ∂	

= 0 because the stream function ψ = �−1
D θ vanishes at the boundary

and its gradient is normal to the boundary. Let us remark here that even in the case
of a half-space and θ ∈ C∞

0 (	), the tangential component of the velocity need not
vanish: there is tangential slip.

In order to state our main results, let

d(x) = dist (x, ∂	) (9)

denote the distance from x to the boundary of 	. We introduce the Cα(	) space for
interior estimates:

Definition 1 Let 	 be a bounded domain and let 0 < α < 1 be fixed. We say that
θ ∈ Cα(	) if θ ∈ L∞(	) and

[ f ]α = sup
x∈	

(d(x))α

(
sup

h �=0,|h|<d(x)

| f (x + h) − f (x)|
|h|α

)
< ∞. (10)

The norm in Cα(	) is
‖ f ‖Cα = ‖ f ‖L∞(	) + [ f ]α. (11)

Our main results are the following:

Theorem 1 Let θ(x, t) be a smooth solution of (7) on a time interval [0, T ), with
T ≤ ∞, with initial data θ(x, 0) = θ0(x). Then the solution is uniformly bounded,

sup
0≤t<T

‖θ(t)‖L∞(	) ≤ ‖θ0‖L∞(	). (12)

There exists α depending only on ‖θ0‖L∞(	) and 	, and a constant � depending only
on the domain 	 (and in particular, independent of T ) such that
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sup
0≤t<T

‖θ(t)‖Cα(	) ≤ �‖θ0‖Cα(	) (13)

holds.

The second theorem is about global interior gradient bounds:

Theorem 2 Let θ(x, t) be a smooth solution of (7) on a time interval [0, T ), with
T ≤ ∞, with initial data θ(x, 0) = θ0(x). There exists a constant �1 depending only
on 	 such that

sup
x∈	,0≤t<T

d(x)|∇xθ(x, t)| ≤ �1

[
sup
x∈	

d(x)|∇xθ0(x)| + (1 + ‖θ0‖L∞(	)

)4] (14)

holds.

Remark 1 Higher interior regularity can be proved also. In fact, once global interior
Cα bounds are obtained for any α > 0, the interior regularity problem becomes
subcritical, meaning that “there is room to spare”. This is already the case for Theorem
2 and justifies thinking that the equation is L∞ interior-critical. However, we were
not able to obtain global uniform Cα(	̄) bounds. Moreover, we do not know the
implication Cα(	̄) ⇒ C∞(	̄) uniformly, and thus the equation is not L∞ critical up
to the boundary. This is due to the fact that the commutator between normal derivatives
and the fractional Dirichlet Laplacian is not controlled uniformly up to the boundary.
The example of half-space is instructive because explicit kernels and calculations are
available. In this example odd reflection across the boundary permits the construction
of global smooth solutions, if the initial data are smooth and compactly supported
away from the boundary. The support of the solution remains compact and cannot
reach the boundary in finite time, but the gradient of the solution might grow in time
at an exponential rate.

The proofs of our main results use the following elements. First, the inequality (1)
which has been proved in [6] for the Dirichlet �D is shown to have a lower bound

D( f )(x) =
(

f �D f − 1

2
�D

(
f 2
))

(x) ≥ c
f 2(x)

d(x)
(15)

with c > 0 depending only on 	. Note that in R
d , d(x) = ∞, which is consistent with

(1). This lower bound (valid for general � convex, with c independent of �, see (46))
provides a strong damping boundary repulsive term, which is essential to overcome
boundary effects coming from the lack of translation invariance.

The second element of proofs consists of nonlinear lower bounds in the spirit of
[7]. A version for derivatives in bounded domains, proved in [6] is modified for finite
differences. In order to make sense of finite differences near the boundary in a manner
suitable for transport, we introduce a family of good cutoff functions depending on a
scale � in Lemma 3. The finite difference nonlinear lower bound is

D( f )(x) ≥ c
(|h|‖θ‖L∞(	)

)−1 | f (x)|3 + c
| f (x)|2

d(x)
(16)
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when f = χδhθ is large (see (48)), where χ belongs to the family of good cutoff
functions.

Once global interior Cα(	) bounds are obtained, in order to obtain global interior
bounds for the gradient, we use a different nonlinear lower bound,

D( f ) =
(

f �D f − 1

2
(�D f 2)

)
(x) ≥ c

| f (x)|3+ α
1−α

‖θ‖
1

1−α

Cα(	)

(d(x))
α

1−α + c
f 2(x)

d(x)
(17)

for large f = χ∇θ (see (61)). This is a super-cubic bound, and makes the gradient
equation look subcritical. Similar bounds were obtained in the whole space in [7].
Proving the bounds (16) and (17) requires a different approach and new ideas because
of the absence of explicit formulas and lack of translation invariance.

The third element of proofs are bounds for R⊥
Dθ based only on global a priori

information on ‖θ‖L∞ and the nonlinear lower bounds on D( f ) for appropriate f .
Such an approach was initiated in [7] and [12]. In the bounded domain case, again,
the method of proof is different because the kernels are not explicit, and reference is
made to the heat kernels. The boundaries introduce additional error terms. The bound
for finite differences is

|δh R⊥
Dθ(x)| ≤ C

(√
ρD( f )(x) + ‖θ‖L∞

( |h|
d(x)

+ |h|
ρ

)
+ |δhθ(x)|

)
(18)

for ρ ≤ cd(x), with f = χδhθ and with C a constant depending on 	 (see 90). The
bound for gradient is

|∇ R⊥
Dθ(x)| ≤ C

(√
ρD( f )(x) + ‖θ‖L∞(	)

(
1

d(x)
+ 1

ρ

)
+ |∇θ(x)|

)
(19)

for ρ ≤ cd(x) with f = χ∇θ with a constant C depending on 	 (see (107)). These
are remarkable pointwise bounds (clearly not valid for the case of the Laplacian even
in the whole space, where D( f )(x) = |∇ f (x)|2).

The fourth element of the proof are bounds for commutators. These bounds

|[χδh,�D] θ(x)| ≤ C
|h|

d(x)2 ‖θ‖L∞(	), (20)

for � ≤ d(x), (see (112)), and

|[χ∇,�D] θ(x)| ≤ C

d(x)2 ‖θ‖L∞(	), (21)

for � ≤ d(x), (see (115)), reflect the difficulties due to the boundaries. They are
remarkable though in that the only price to pay for a second order commutator in
L∞ is d(x)−2. Note that in the whole space this commutator vanishes (χ = 1). This
nontrivial situation in bounded domains is due to cancellations and bounds on the heat
kernel representing translation invariance effects away from boundaries (see (37, 38)).
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Although the heat kernel in bounded domains has been extensively studied, and the
proofs of (37) and (38) are elementary, we have included them in the paper because we
have not found them readily available in the literature and for the sake of completeness.

The paper is organized as follows: after preliminary background, we prove the
nonlinear lower bounds. We have separate sections for bounds for the Riesz transforms
and the commutators. The proof of the main results are then provided, using nonlinear
maximum principles. We give some of the explicit calculations in the example of a
half-space and conclude the paper by proving the translation invariance bounds for
the heat kernel (37), (38), and a local well-posedness result in two appendices.

2 Preliminaries

The L2(	) - normalized eigenfunctions of −� are denoted w j , and its eigenvalues
counted with their multiplicities are denoted λ j :

− �w j = λ jw j . (22)

It is well known that 0 < λ1 ≤ · · · ≤ λ j → ∞ and that −� is a positive selfadjoint
operator in L2(	) with domain D (−�) = H2(	) ∩ H1

0 (	). The ground state w1 is
positive and

c0d(x) ≤ w1(x) ≤ C0d(x) (23)

holds for all x ∈ 	, where c0, C0 are positive constants depending on 	. Functional
calculus can be defined using the eigenfunction expansion. In particular

(−�)β f =
∞∑
j=1

λ
β
j f jw j (24)

with

f j =
∫

	

f (y)w j (y)dy

for f ∈ D ((−�)β
) = { f | (λ

β
j f j ) ∈ �2(N)}. We will denote by

�s
D = (−�)

s
2 , (25)

the fractional powers of the Dirichlet Laplacian, with 0 ≤ s ≤ 2 and with ‖ f ‖s,D the
norm in D (�s

D

)
:

‖ f ‖2
s,D =

∞∑
j=1

λs
j f 2

j . (26)

It is well-known and easy to show that

D (�D) = H1
0 (	).
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Indeed, for f ∈ D (−�) we have

‖∇ f ‖2
L2(	)

=
∫

	

f (−�) f dx = ‖�D f ‖2
L2(	)

= ‖ f ‖2
1,D. (27)

We recall that the Poincaré inequality implies that the Dirichlet integral on the left-
hand side above is equivalent to the norm in H1

0 (	) and therefore the identity map
from the dense subset D (−�) of H1

0 (	) to D (�D) is an isometry, and thus H1
0 (	) ⊂

D (�D). But D (−�) is dense in D (�D) as well, because finite linear combinations
of eigenfunctions are dense in D (�D). Thus the opposite inclusion is also true, by
the same isometry argument. Note that in view of the identity

λ
s
2 = cs

∫ ∞

0
(1 − e−tλ)t−1− s

2 dt, (28)

with

1 = cs

∫ ∞

0
(1 − e−τ )τ−1− s

2 dτ,

valid for 0 ≤ s < 2, we have the representation

(
(�D)s f

)
(x) = cs

∫ ∞

0

[
f (x) − et� f (x)

]
t−1− s

2 dt (29)

for f ∈ D ((−�D)s). We use precise upper and lower bounds for the kernel
HD(t, x, y) of the heat operator,

(et� f )(x) =
∫

	

HD(t, x, y) f (y)dy. (30)

These are as follows [16,24,25]. There exists a time T > 0 depending on the domain
	 and constants c, C , k, K , depending on T and 	 such that

c min

(
w1(x)

|x − y| , 1

)
min

(
w1(y)

|x − y| , 1

)
t−

d
2 e− |x−y|2

kt

≤ HD(t, x, y) ≤ C min

(
w1(x)

|x − y| , 1

)
min

(
w1(y)

|x − y| , 1

)
t−

d
2 e− |x−y|2

K t (31)

holds for all 0 ≤ t ≤ T . Moreover

|∇x HD(t, x, y)|
HD(t, x, y)

≤ C

⎧⎨
⎩

1
d(x)

, if
√

t ≥ d(x),

1√
t

(
1 + |x−y|√

t

)
, if

√
t ≤ d(x)

(32)
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holds for all 0 ≤ t ≤ T . Note that, in view of

HD(t, x, y) =
∞∑
j=1

e−tλ j w j (x)w j (y), (33)

elliptic regularity estimates and Sobolev embedding which imply uniform absolute
convergence of the series (if ∂	 is smooth enough), we have that

∂
β
1 HD(t, y, x) = ∂

β
2 HD(t, x, y) =

∞∑
j=1

e−tλ j ∂β
y w j (y)w j (x) (34)

for positive t , where we denoted by ∂
β
1 and ∂

β
2 derivatives with respect to the first

spatial variables and the second spatial variables, respectively.
Therefore, the gradient bounds (32) result in

∣∣∇y HD(t, x, y)
∣∣

HD(t, x, y)
≤ C

⎧
⎨
⎩

1
d(y)

, if
√

t ≥ d(y),

1√
t

(
1 + |x−y|√

t

)
, if

√
t ≤ d(y).

(35)

We also use a bound

∇x∇x HD(x, y, t) ≤ Ct−1− d
2 e− |x−y|2

K̃ t (36)

valid for t ≤ cd(x)2 and 0 < t ≤ T , which follows from the upper bounds (31), (32).
Important additional bounds we need are

∫

	

∣∣(∇x + ∇y)HD(x, y, t)
∣∣ dy ≤ Ct−

1
2 e− d(x)2

K̃ t (37)

and ∫

	

∣∣∇x (∇x + ∇y)HD(x, y, t)
∣∣ dy ≤ Ct−1e− d(x)2

K̃ t (38)

valid for t ≤ cd(x)2 and 0 < t ≤ T . These bounds reflect the fact that translation
invariance is remembered in the solution of the heat equation with Dirichlet boundary
data for short time, away from the boundary. We sketch the proofs of (36), (37) and
(38) in Appendix 1.

3 Nonlinear Lower Bounds

We prove bounds in the spirit of [7]. The proofs below are based on the method of [6],
but they concern different objects (finite differences, properly localized) or different
assumptions (Cα). Nonlinear lower bounds are an essential ingredient in proofs of
global regularity for drift-diffusion equations with nonlocal dissipation.
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We start with a couple lemmas. In what follows we denote by c and C generic
positive constants that depend on 	. When the logic demands it, we temporarily
manipulate them and number them to show that the arguments are not circular. There
is no attempt to optimize constants, and their numbering is local in the proof, meaning
that, if for instance C2 appears in two proofs, it need not be the same constant. However,
when emphasis is necessary we single out constants, but then we avoid the letters c, C
with or without subscripts.

Lemma 1 The solution of the heat equation with initial datum equal to 1 and zero
boundary conditions,

�(x, t) =
∫

	

HD(x, y, t)dy (39)

obeys 0 ≤ �(x, t) ≤ 1, because of the maximum principle. There exist constants
T, c, C depending only on 	 such that the following inequalities hold:

�(x, t) ≥ c min

{
1,

(
d(x)√

t

)d
}

(40)

for all 0 ≤ t ≤ T , and

�(x, t) ≤ C
d(x)√

t
(41)

for all 0 ≤ t ≤ T . Let 0 < s < 2. There exists a constant c depending on 	 and s
such that ∫ ∞

0
t−1− s

2 (1 − �(x, t))dt ≥ cd(x)−s (42)

holds.

Remark 2 �s
D1 is defined by duality by the left hand side of (42) and belongs to

H−1(	).

Proof Indeed,

�(x, t) =
∫

	

HD(t, x, y)dy ≥
∫

|x−y|≤ d(x)
2

HD(t, x, y)dy

because HD is positive. Using the lower bound in (23) we have that |x − y| ≤ d(x)
2

implies

w1(x)

|x − y| ≥ 2c0,
w1(y)

|x − y| ≥ c0,

and then, using the lower bound in (31) we obtain

HD(t, x, y) ≥ 2cc2
0t−

d
2 e− |x−y|2

kt .
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Integrating it follows that

�(x, t) ≥ 2cc2
0ωd−1k

d
2

∫ d(x)

2
√

kt

0
ρd−1e−ρ2

dρ.

If d(x)

2
√

kt
≥ 1 then the integral is bounded below by

∫ 1
0 ρd−1e−ρ2

dρ. If d(x)

2
√

kt
≤ 1 then

ρ ≤ 1 implies that the exponential is bounded below by e−1 and so (40) holds. ��
Now (41) holds immediately from (23) and the upper bound in (31) because the

integral
∫

Rd
|ξ |−1e− |ξ |2

K dξ < ∞

if d ≥ 2.
Regarding (42) we use

∫ ∞

0
t−1− s

2 (1 − �(x, t))dt ≥
∫ T

τ

t−1− s
2 (1 − �(x, t))dt

and choose appropriately τ . In view of (41), if

d(x)√
τ

≤ 1

2C

then, when τ ≤ t ≤ T we have

1 − �(x, t) ≥ 1

2
,

and therefore

∫ T

τ

t−1− s
2 (1 − �(x, t)) dt ≥ 1

s
τ− s

2

(
1 −

( τ

T

) s
2
)

holds. The choice

d(x)√
τ

= 1

2C

implies (42) provided 2τ ≤ T which is the same as d(x) ≤
√

T
2C

√
2

. On the other hand,
� is exponentially small if t is large enough, so the contribution to the integral in (42)
is bounded below by a nonzero constant. This ends the proof of the lemma.

Lemma 2 Let 0 ≤ α < 1. There exists constant C depending on 	 and α such that

∫

	

|∇y HD(t, x, y)||x − y|αdy ≤ Ct−
1−α

2 (43)

holds for 0 ≤ t ≤ T .
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Indeed, the upper bounds (31) and (35) yield

∫
d(y)≥√

t |∇y HD(t, x, y)||x − y|αdy

≤ C2t− 1
2
∫
Rd

(
1 + |x−y|√

t

)
t− d

2 e− |x−y|2
K t |x − y|αdy

= C3t− 1−α
2

and, in view of the upper bound in (23), 1
d(y)

w1(y) ≤ C0 and the upper bound in (31),
we have

∫
d(y)≤√

t |∇y HD(t, x, y)||x − y|αdy

≤ C4
∫
Rd

1
|x−y| t

− d
2 e− |x−y|2

K t |x − y|αdy = C5t− 1−α
2 .

This proves (43). We introduce now a good family of cutoff functions χ depending
on a length scale �.

Lemma 3 Let 	 be a bounded domain with C2 boundary. For � > 0 small enough
(depending on 	) there exist cutoff functions χ with the properties: 0 ≤ χ ≤ 1,
χ(y) = 0 if d(y) ≤ �

4 , χ(y) = 1 for d(y) ≥ �
2 , |∇kχ | ≤ C�−k with C independent

of � and ∫

	

(1 − χ(y))

|x − y|d+ j
dy ≤ C

1

d(x) j
(44)

and ∫

	

|∇χ(y)| 1

|x − y|d−α
≤ Cd(x)−(1−α) (45)

hold for j > −d, α < d and d(x) ≥ �. We will refer to such χ as a “good cutoff”.

Proof There exists a length �0 such that if P is a point of the boundary ∂	, and
if |P − y| ≤ 2�0, then y ∈ 	 if and only if (after a rotation and a translation)
yd > F(y′), where y′ = (y1, . . . , yd−1) and F is a C2 function with F(0) = 0,
∇F(0) = 0, |∇F | ≤ 1

10 . We took thus without loss of generality coordinates such that
P = (0, 0) and the normal to ∂	 at P is (0, . . . , 0, 1). Now if � < �0 and d(x) ≥ �

and |y − P| ≤ �0
2 satisfies d(y) ≤ �

2 , then there exists a point Q ∈ B(P, �0) such that

|x − y|2 ≥ 1

16
(|y − Q|2 + d(x)2) ≥ 1

16
(|y′ − Q′|2 + d(x)2)

Indeed, if |x − P| ≥ �0 we take Q = P because then |x − y| = |x − P + P −
y| ≥ �0 − �0

2 , so |x − y| ≥ |y−Q|
2 . But also |x − y| ≥ d(x)

2 because there exists
a point P1 = (p, F(p)) ∈ ∂	 such that |y − P1| = d(y) ≤ �

2 while obviously
|x − P1| ≥ d(x) ≥ �. If, on the other hand |x − P| < �0, then x is in the neighborhood
of P and we take Q = x . Because y − P1 = (y′ − p, yd − F(p)) we have

d(y) ≤ |yd − F(y′)| ≤ 11

10
d(y)
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for y ∈ B(P, �0). We take a partition of unity of the form 1 = ψ0 +∑N
j=1 ψ j with

ψk ∈ C∞
0 (Rd), subordinated to the cover of the boundary with neighborhoods as

above, and with ψ0 supported in d(x) ≥ �0
4 , identically 1 for d(x) ≥ �0

2 , ψ j supported
near the boundary ∂	 in balls of size 2�0 and identically 1 on balls of radius �0. ��

The cutoff will be taken of the form χ = α0 +∑N
j=1 χ j (

yd−F(y′)
�

)α j (y), where of
course the meaning of y changes in each neighborhood. The smooth functions χ j (z),
are identically zero for |z| ≤ 11

40 and identically 1 for |z| ≥ 10
22 . The integrals in (44)

and (45) reduce to integrals of the type

∫
yd>F(y′),|y′|≤�0

(
1−χ1

(
yd −F(y′)

�

))

|x−y|d+ j dy

≤ C
(∫∞

0

(
1 − χ1

( u
�

))
du
) (∫

Rd−1
dy′

(|y′−Q′|2+d(x)2)
d+ j

2

)

≤ C�d(x)−1− j ≤ Cd(x)− j

and

∫
yd>F(y′),|y′|≤�0

∣∣∣∣∇yχ1

(
yd −F(y′)

�

)∣∣∣∣
|x−y|d−α dy

≤ C
(∫∞

−∞ |∇χ1(z)|dz
)
(∫

Rd−1
dy′

(|y′−Q′|2+d(x)2)
d−α

2

)

≤ Cd(x)−(1−α).

This completes the proof.
We recall from [6] that the Córdoba-Córdoba inequality [14] holds in bounded

domains. In fact, more is true: there is a lower bound that provides a strong boundary
repulsive term:

Proposition 1 Let 	 be a bounded domain with smooth boundary. Let 0 ≤ s < 2.
There exists a constant c > 0 depending only on the domain 	 and on s, such that, for
any �, a C2 convex function satisfying �(0) = 0, and any f ∈ C∞

0 (	), the inequality

�′( f )�s
D f − �s

D(�( f )) ≥ c

d(x)s

(
f �′( f ) − �( f )

)
(46)

holds pointwise in 	.

The proof follows in a straightforward manner from the proof of [6] using convexity,
approximation, and the lower bound (42). We prove below two nonlinear lower bounds

for the case �( f ) = f 2

2 , one when f is a localized finite difference, and one when
f is a localized first derivative. The proof of Proposition 1 can be left as an exercise,
following the same pattern as below.
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8 Page 14 of 42 P. Constantin, M. Ignatova

Theorem 3 Let f ∈ L∞(	) be smooth enough (C2, e.g.) and vanish at the boundary,
f ∈ D(�s

D) with 0 ≤ s < 2. Then

D( f ) = f �s
D f − 1

2�s
D f 2

= γ0 ∫∞
0 t−1− s

2 dt ∫	 HD(x, y, t)( f (x) − f (y))2dy
+ γ0 f 2(x) ∫∞

0 t−1− s
2
[
1 − et�1

]
(x)dt

= γ0 ∫∞
0 t−1− s

2 dt ∫	 HD(x, y, t)( f (x) − f (y))2dy
+ f 2(x) 1

2�s
D1.

(47)

holds for all x ∈ 	. Here γ0 = cs
2 with cs of (29). Let � > 0 be a small number and

let χ ∈ C∞
0 (	), 0 ≤ χ ≤ 1 be a good cutoff function, with χ(y) = 1 for d(y) ≥ �

2 ,
χ(y) = 0 for d(y) ≤ �

4 and with |∇χ(y)| ≤ C
�

. There exist constants γ1 > 0 and
M > 0 depending on 	 such that, if q(x) is a smooth function in L∞(	) then if

f (x) = χ(x)(δhq(x)) = χ(x)(q(x + h) − q(x))

then

D( f ) = ( f �s
D f )(x) − 1

2
(�s

D f 2)(x) ≥ γ1|h|−s | fd(x)|2+s

‖q‖s
L∞

+ γ1
f 2(x)

d(x)s
(48)

holds pointwise in 	 when |h| ≤ �
16 , and d(x) ≥ � with

| fd(x)| =
⎧⎨
⎩

| f (x)|, if | f (x)| ≥ M‖q‖L∞(	)
|h|

d(x)
,

0, if | f (x)| ≤ M‖q‖L∞(	)
|h|

d(x)
.

(49)

Proof We start by proving (47):

f (x)�s
D f (x) − 1

2�s
D f 2(x)

= cs
∫∞

0 t−1− s
2
∫
	

{[
1

|	| f (x)2 − f (x)HD(t, x, y) f (y)
]

− 1
2|	| f 2(x) + 1

2 HD(t, x, y) f 2(y)
}

dy

= cs
∫∞

0 t−1− s
2 dt

∫
	

{ 1
2

[
HD(t, x, y)( f (x) − f (y))2

]

+ 1
2 f 2(x)

[
1

|	| − HD(t, x, y)
]}

dy

= cs
∫∞

0 t−1− s
2 dt

∫
	

{ 1
2

[
HD(t, x, y)( f (x)− f (y))2

]
dy+ 1

2 f 2(x)
[
1 − et�1

]
(x)
}

= cs
∫∞

0 t−1− s
2 dt

∫
	

1
2

[
HD(t, x, y)( f (x) − f (y))2

]
dy + 1

2 f 2(x)�s
D1.

It follows that
(

f �s
D f − 1

2
�s

D f 2
)

(x) ≥ 1

2
cs

∞∫
0

ψ

(
t

τ

)
t−1− s

2 dt ∫
	

HD(t, x, y)( f (x)

− f (y))2dy + 1

2
f 2(x)�s

D1 (50)
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Critical SQG in Bounded Domains Page 15 of 42 8

where τ > 0 is arbitrary and 0 ≤ ψ(s) ≤ 1 is a smooth function, vanishing identically
for 0 ≤ s ≤ 1 and equal identically to 1 for s ≥ 2. We restrict to t ≤ T ,

(
f �s

D f − 1
2�s

D f 2
)
(x)

≥ 1
2 cs ∫T

0 ψ
( t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y) ( f (x) − f (y))2 dy + 1
2 f 2(x)�s

D1
(51)

��
and open brackets in (51):

(
f �s

D f − 1
2�s

D f 2
)
(x) ≥ 1

2 f 2(x)cs
∫ T

0 ψ
( t

τ

)
t−1− s

2 dt
∫
	

HD(t, x, y)dy

− f (x)cs
∫ T

0 ψ
( t

τ

)
t−1− s

2 dt
∫
	

HD(t, x, y) f (y)dy + 1
2 f 2(x)�s

D1

≥ | f (x)| [ 1
2 | f (x)|I (x) − J (x)

]+ 1
2 f 2(x)�s

D1

(52)

with

I (x) = cs

∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt
∫

	

HD(t, x, y)dy, (53)

and

J (x) = cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y) f (y)dy

∣∣∣∣

= cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y)χ(y)δhq(y)dy

∣∣∣∣ . (54)

We proceed with a lower bound on I and an upper bound on J . For the lower bound
on I we note that, in view of (40) and the fact that

I (x) = cs

∫ T

0
ψ

(
t

τ

)
t−1− s

2 �(x, t)dt

we have

I (x) ≥ c1

∫ min(T,d2(x))

0
ψ

(
t

τ

)
t−1− s

2 dt

= c1τ
− s

2

∫ τ−1(min(T,d2(x)))

1
ψ(u)u−1− s

2 du.

Therefore we have that
I (x) ≥ c2τ

− s
2 (55)

with c2 = c1
∫ 2

1 ψ(u)u−1− s
2 du, a positive constant depending only on 	 and s,

provided τ is small enough,

τ ≤ 1

2
min(T, d2(x)). (56)
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In order to bound J from above we use (43) with α = 0. Now

J ≤ cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 δ−h HD(t, x, y)χ(y)q(y)dy

∣∣∣∣

+ cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y − h)(δ−hχ(y))q(y)dy

∣∣∣∣

We have that

J2 = cs

∣∣∣∣
∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt
∫

	

HD(t, x, y − h)(δ−hχ(y))q(y)dy

∣∣∣∣

≤ C6
|h|

d(x)
‖q‖L∞τ− s

2 .

Indeed,

t−
d
2 e− |x−y|2

K t ≤ CK |x − y|−d

so the bound follows from (31) and (45). On the other hand,

J1 = cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 δ−h HD(t, x, y)χ(y)q(y)dy

∣∣∣∣

≤ ‖q‖L∞(	)|h| ∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 |∇y HD(t, x, y)|dy

and therefore, in view of (43)

J1 ≤ C1|h|‖q‖L∞(	)

∫ T

0
ψ

(
t

τ

)
t−

3
2 − s

2 dt

and therefore
J1 ≤ C7|h|‖q‖L∞(	)τ

− 1
2 − s

2 (57)

with

C7 = C1

∫ ∞

1
ψ(u)u− 3

2 − s
2 du

a constant depending only on 	 and s. In conclusion

|J | ≤ C8τ
− s

2 |h|(τ− 1
2 + d(x)−1)‖q‖L∞ . (58)

Now, because of the lower bound (52), if we can choose τ so that

J (x) ≤ 1

4
| f (x)|I (x)
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then it follows that

[
f �s

D f − 1

2
�s

D f 2
]

(x) ≥ 1

4
f 2(x)I (x) + 1

2
f 2(x)�s

D1. (59)

Because of the bounds (55), (58), if

| f (x)| ≥ 8C8

c2

|h|
d(x)

‖q‖L∞ ,

then a choice
τ(x)−

1
2 = C9‖q‖−1

L∞| f (x)||h|−1 (60)

with C9 = c2(8C8)
−1 achieves the desired bound. This concludes the proof.

We are providing now a lower bound for D( f ) for a different situation.

Theorem 4 Let � > 0 be a small number and let χ ∈ C∞
0 (	), 0 ≤ χ ≤ 1 be a

good cutoff function, with χ(y) = 1 for d(y) ≥ �
2 , χ(y) = 0 for d(y) ≤ �

4 and with
|∇χ(y)| ≤ C

�
. There exist constants γ2 > 0 and M > 0 depending on 	 such that, if

q(x) is a smooth function in Cα(	) with 0 < α < 1 and

f (x) = χ(x)∇q(x),

then

D( f ) = ( f �s
D f )(x)− 1

2
(�s

D f 2)(x) ≥ γ2
| fd(x)|2+ s

1−α

‖q‖
s

1−α

Cα(	)

(d(x))
sα

1−α +γ1
f 2(x)

d(x)s
(61)

holds pointwise in 	 when d(x) ≥ �, with

| fd(x)| =
{ | f (x)|, if | f (x)| ≥ M‖q‖L∞(	)(d(x))−1,

0, if | f (x)| ≤ M‖q‖L∞(	)(d(x))−1.
(62)

Proof We follow exactly the proof of Theorem 3 up to, and including the definition
of I (x) given in (53). In particular, the lower bound (55) is still valid, provided τ is
small enough (56). The term J starts out the same, but is treated slightly differently,

J (x) = cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y) f (y)dy

∣∣∣∣

= cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y)χ(y)∇y(q(y) − q(x))dy

∣∣∣∣ . (63)
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In order to bound J we use (45) and (43).

|J (x)| ≤ cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 ∂y HD(t, x, y)χ(y)(q(y) − q(x))dy

∣∣∣∣

+ cs

∣∣∣∣∫T
0 ψ

(
t

τ

)
t−1− s

2 dt ∫	 HD(t, x, y)(∇χ(y))(q(y) − q(x))dy

∣∣∣∣
= J1(x) + J2(x)

We have from (31) and (45), as before,

J2(x) = cs

∣∣∣∣
∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt
∫

	

HD(t, x, y)(∇χ(y))(q(y) − q(x))dy

∣∣∣∣
≤ Cd(x)−1‖q‖L∞τ− s

2 .

On the other hand,

J1(x) = cs

∣∣∣∣
∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt
∫

	

∇y HD(t, x, y)χ(y)(q(y) − q(x))dy

∣∣∣∣

≤ cs(d(x))−α‖q‖Cα(	)

∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt

×
∫

	∩|x−y|≤d(x)

|∇y HD(t, x, y)||x − y|αdy

+ cs‖q‖L∞
∫ T

0
ψ

(
t

τ

)
t−1− s

2 dt
∫

	∩|x−y|≥d(x)

|∇y HD(t, x, y)|dy

= J11(x) + J12(x).

In view of (43)

J11(x) ≤ C1d(x)−α‖q‖Cα(	)

∫ T

0
ψ

(
t

τ

)
t−

3−α
2 − s

2 dt

and so
J11(x) ≤ C2(d(x))−α‖q‖Cα(	)τ

− 1−α
2 − s

2 (64)

with

C2 = C1

∫ ∞

1
ψ(z)z− 3−α

2 − s
2 dz

a constant depending only on 	 and s. Regarding J12(x) we have in view of (35)

J12(x) ≤ C‖q‖L∞(	)

∫ T

0
ψ

(
t

τ

)
t−1− s

2

(
1√
t

+ 1

d(x)

)
e− d(x)2

2K t dt

≤ C3τ
− s

2 d(x)−1‖q‖L∞(	)

123



Critical SQG in Bounded Domains Page 19 of 42 8

because, in view of (23)

w1(y)

|x − y| ≤ C0
d(y)

|x − y| ≤ C0
d(y)

d(x)

on the domain of integration. ��
In conclusion

|J (x)| ≤ C3τ
− s

2

[
τ− 1−α

2 (d(x))−α‖q‖Cα(	) + d(x)−1‖q‖L∞(	)

]
. (65)

The rest is the same as in the proof of Theorem 3: If | f (x)| ≥ Md(x)−1‖q‖L∞(	) for
suitable M , (M = 8C3c−1

2 ) then we choose τ such that

| f (x)|
‖q‖Cα(	)

= Mτ− 1−α
2 (d(x))−α,

and this yields | f (x)|I ≥ 4|J (x)|, and consequently, in view of (59) which is then
valid, the result (61) is proved.

We specialize from now on to s = 1.

4 Bounds for Riesz Transforms

We consider u given in (8),

u = ∇⊥�−1
D θ.

We are interested in estimates of u in terms of θ , and in particular estimates of finite
differences and the gradient. We fix a length scale � and take a good cutoff function
χ ∈ C∞

0 (	) which satisfies χ(x) = 1 if d(x) ≥ �
2 , χ(x) = 0 if d(x) ≤ �

4 , |∇χ(x)| ≤
C�−1, (44) and (45). We take |h| ≤ �

14 . In view of the representation

�−1
D = c

∫ ∞

0
t−

1
2 et�dt (66)

we have on the support of χ

δhu(x) = c
∫ ∞

0
t−

1
2 dt

∫

	

δx
h ∇⊥

x HD(x, y, t)θ(y)dy. (67)

We split
δhu = δhuin + δhuout (68)

with

δhu(x)in = c
∫ ρ2

0
t−

1
2 dt

∫

	

δx
h ∇⊥

x HD(x, y, t)θ(y)dy (69)
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and ρ = ρ(x, h) > 0 a length scale to be chosen later but it will be smaller than the
distance from x to the boundary of 	:

ρ ≤ cd(x). (70)

We represent
δhuin(x) = uh(x) + vh(x) (71)

where

uh(x) = c
∫ ρ2

0
t−

1
2 dt

∫

	

∇⊥
x H(x, y, t)(χ(y)δhθ(y) − χ(x)δhθ(x))dy (72)

and where
vh(x) = e1(x) + e2(x) + e3(x) + χ(x)δhθ(x)e4(x) (73)

with

e1(x) = c
∫ ρ2

0
t−

1
2 dt

∫

	

∇⊥
x (HD(x + h, y, t) − HD(x, y, t))(1 − χ(y))θ(y)dy,

(74)

e2(x) = c
∫ ρ2

0
t−

1
2 dt

∫

	

∇⊥
x (HD(x + h, y, t) − HD(x, y − h, t))χ(y)θ(y)dy,

(75)

e3(x) = c
∫ ρ2

0
t−

1
2 dt

∫

	

∇⊥
x HD(x, y, t)(χ(y + h) − χ(y))θ(y + h)dy, (76)

and

e4(x) = c
∫ ρ2

0
t−

1
2 dt

∫

	

∇⊥
x HD(x, y, t)dy. (77)

We used here the fact that (χθ)(·) and (χθ)(· + h) are compactly supported in 	 and
hence
∫

	

∇⊥
x HD(x, y − h, t)χ(y)θ(y)dy =

∫

	

∇⊥
x HD(x, y, t)χ(y + h)θ(y + h)dy.

The following elementary lemma will be used in several instances:

Lemma 4 Let ρ > 0, p > 0. Then

∫ ρ2

0
t−1− m

2

(
p√
t

) j

e− p2

K t dt ≤ CK ,m, j p−m (78)

if m ≥ 0, j ≥ 0, m + j > 0, and

∫ ρ2

0
t−1e− p2

K t dt ≤ CK

(
1 + 2 log+

(√
Kρ

p

))
(79)
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if m = 0 and j = 0, with constants CK ,m, j and CK independent of ρ and p. Note that
when m + j > 0, ρ = ∞ is allowed.

We start estimating the terms in (73). For e1 we use the inequality (36), and it then
follows from Lemma 4 with m = d + 1 that

|e1(x)| ≤ C |h|‖θ‖L∞
∫ 1

0
dλ

∫

	

1

|x + λh − y|d+1 (1 − χ(y))dy

and therefore we have from (44) that

|e1(x)| ≤ C‖θ‖L∞
|h|

d(x)
(80)

holds for d(x) ≥ �. Concerning e3 we use Lemma (4) with m = d and j = 0, 1 in
conjunction with (32) and obtain

|e3(x)| ≤ C |h|‖θ‖L∞
∫

	

|∇χ(y)| 1

|x − y|d dy

and therefore we obtain from (45)

|e3(x)| ≤ C‖θ‖L∞
|h|

d(x)
(81)

holds for d(x) ≥ �. Regarding e4 we can split it into

e4(x) = e5(x) + e6(x)

with

e5(x) =
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x HD(x, y, t)χ(y)dy

and

e6(x) =
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x HD(x, y, t)(1 − χ(y))dy.

Now e6 is bounded using the Lemma (4) with m = d and j = 0, 1 in conjunction
with (32) and (44) and obtain

|e6(x)| ≤ C
∫

	

(1 − χ(y))

|x − y|d dy ≤ C (82)

for d(x) ≥ �, with a constant independent of �. For e5 we use the fact that χ is a fixed
smooth function which vanishes at the boundary.
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In order to bound the terms e2 and e5 we need to use additional information, namely
the inequalities (37) and (38). For e5 we write

e5(x) = ∫ρ2

0 t−
1
2 dt ∫	

(
∇⊥

x HD(x, y, t) + ∇⊥
y HD(x, y, t)

)
χ(y)dy

+ ∫ρ2

0 t−
1
2 dt ∫	 HD(x, y, t)∇⊥

y χ(y)dy,

and using (37) and Lemma 4 with m = 0, j = 0 and (45) we obtain the bound

|e5(x)| ≤ C

(
1 + log+

(
ρ

d(x)

))
+ Cρ

∫

	

|∇χ(y)|
|x − y|d dy

and therefore, in view of (45) and ρ ≤ d(x) we have

|e5(x)| ≤ C (83)

for d(x) ≥ �, with C depending on 	 but not on �. Consequently, we have

|e4(x)| ≤ C (84)

for d(x) ≤ �, with a constant C depending on 	 only. In order to estimate e2 we write

HD(x +h, y, t)− HD(x, y −h, t) = h ·
∫ 1

0
(∇x +∇y)HD(x +λh, y + (λ−1)h, t)dλ

(85)
and use (38) and Lemma 4 with m = 1, j = 0 to obtain

|e2(x)| ≤ |h|‖θ‖L∞ ∫1
0 dλ ∫ρ2

0 t−
1
2 dt ∫	 |∇⊥

x (∇x + ∇y)HD

×(x + λh, y + (λ − 1)h)||χ(y)|dy

≤ C |h|‖θ‖L∞ ∫1
0 dλ ∫ρ2

0 t−
3
2 e− d(x)2

4K t dt

and thus

|e2(x)| ≤ C‖θ‖L∞
|h|

d(x)
(86)

holds for d(x) ≥ �. Summarizing, we have that

|vh(x)| ≤ C‖θ‖L∞
|h|

d(x)
+ C |δhθ(x)| (87)

for d(x) ≥ �. We now estimate uh using (32) and a Schwartz inequality

|uh(x)| ≤ c ∫ρ2

0 t−1 ∫	

(
1 + |x − y|√

t

)
HD(x, y, t)(χ(δhθ)(y) − χδhθ(x))dy

≤ √
ρ
{
∫ρ2

0 t−
3
2 dt ∫	 HD(x, y, t)(χ(δhθ)(y) − χδhθ)2dy

} 1
2
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We have therefore
|uh(x)| ≤ C

√
ρD( f )(x). (88)

where f = χδhθ and D( f ) is given in Theorem 3. Regarding δhuout we have

|δhuout (x)| ≤ C‖θ‖L∞
|h|
ρ

(89)

in view of (36). Putting together the estimates (87), (88) and (89) we have

Proposition 2 Let χ be a good cutoff, and let u be defined by (8). Then

|δhu(x)| ≤ C

(√
ρD( f )(x) + ‖θ‖L∞

( |h|
d(x)

+ |h|
ρ

)
+ |δhθ(x)|

)
(90)

holds for d(x) ≥ �, ρ ≤ cd(x), f = χδhθ and with C a constant depending on 	.

Now we will obtain similar estimates for ∇u. We start with the representation

∇u(x) = ∇uin(x) + ∇uout (x) (91)

where

∇uin(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇x∇⊥
x HD(x, y, t)θ(y)dy (92)

and ρ = ρ(x) ≤ cd(x). In view of (36) we have

|∇uout (x)| ≤ C

ρ
‖θ‖L∞(	) (93)

We split now

∇uin(x) = g(x) + g1(x) + g2(x) + g3(x) + g4(x) f (x) (94)

where
f (x) = χ(x)∇θ(x) (95)

and with

g(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x HD(x, y, t)( f (y) − f (x))dy, (96)

and

g1(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇x∇⊥
x (HD(x, y, t)(1 − χ(y))θ(y)dy, (97)

g2(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x (∇x + ∇y)HD(x, y, t)χ(y)θ(y)dy, (98)

g3(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x HD(x, y, t)(∇yχ(y))θ(y)dy, (99)
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and

g4(x) = c
∫ ρ2

0
t−

1
2

∫

	

∇⊥
x HD(x, y, t)dy. (100)

Now

|g1(x)| ≤ C

d(x)
‖θ‖L∞(	) (101)

holds for d(x) ≥ � because of (36), time integration using Lemma 4 and then use of
(44). For g2(x) we use (38) and then Lemma 4 to obtain

|g2(x)| ≤ C

d(x)
‖θ‖L∞(	) (102)

for d(x) ≥ �. Now

|g3(x)| ≤ C

d(x)
‖θ‖L∞(	) (103)

holds because of (32), Lemma 4 and then use of (45). Regarding g4, in view of

∫

	

∇⊥
y HD(x, y, t)dy = 0 (104)

we have

g4(x) = c
∫ ρ2

0
t−

1
2

∫

	

(
∇⊥

x + ∇⊥
y

)
HD(x, y, t)dy

and, we thus obtain from (37) and from Lemma 4 with m = j = 0

|g4(x)| ≤ C (105)

because ρ ≤ cd(x).
Finally we have using a Schwartz inequality like for (88)

|g(x)| ≤ C
√

ρD( f ). (106)

Gathering the bounds we have proved

Proposition 3 Let χ be a good cutoff with scale � and let u be given by (8). Then

|∇u(x)| ≤ C

(√
ρD( f ) + ‖θ‖L∞(	)

(
1

d(x)
+ 1

ρ

)
+ |∇θ(x)|

)
(107)

holds for d(x) ≥ �, ρ ≤ cd(x) and f = χ∇θ with a constant C depending on 	.
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5 Commutators

We consider the finite difference

(δh�Dθ)(x) = �Dθ(x + h) − �Dθ(x) (108)

with d(x) ≥ � and |h| ≤ �
16 . We use a good cutoff χ again and denote

f (x) = χ(x)δhθ(x). (109)

We start by computing

(δh�Dθ)(x) = (�D f )(x) + c
∫ ∞

0
t−

3
2 dt

∫

	

(HD(x, y, t)

− HD(x + h, y, t))(1 − χ(y))θ(y)dy

− C
∫ ∞

0
t−

3
2 dt

∫

	

(HD(x + h, y, t) − HD(x, y − h, t))χ(y)θ(y)dy

− c
∫ ∞

0
t−

3
2 dt

∫

	

HD(x, y, t)(δhχ)(y)θ(y + h)dy

= (�D f )(x) + E1(x) + E2(x) + E3(x). (110)

Lemma 5 There exists a constant �0 such that the commutator

Ch(θ) = δh�Dθ − �D(χδhθ) (111)

obeys

|Ch(θ)(x)| ≤ �0
|h|

d(x)2 ‖θ‖L∞(	) (112)

for d(x) ≥ �, |h| ≤ �
16 , f = χδhθ and θ ∈ H1

0 (	) ∩ L∞(	).

Proof We use (110). For E1(x) we use a similar argument as for e1 leading to (80),
namely the inequality (31) and Lemma 4 with m = d + 2, j = 0, and (44) to obtain

|E1(x)| ≤ C
|h|

d(x)2 ‖θ‖L∞ .

For E2 we proceed in a manner analogous to the one leading to the bound (86), by
using (85), (37), Lemma 4 with m = d + 2, j = 0, and (45) to obtain

|E2(x)| ≤ C
|h|

d(x)2 ‖θ‖L∞ .

For E3 we use

|E3(x)| ≤ |h|‖θ‖L∞
∫ ∞

0
t−

3
2 dt

∫

	

HD(x, y, t)|∇(χ)(y)|dy

123



8 Page 26 of 42 P. Constantin, M. Ignatova

and using Lemma 4 with m = d + 1, j = 0 and (45) we obtain

|E3(x)| ≤ C
|h|

d(x)2 ‖θ‖L∞ ,

concluding the proof. ��
We consider now the commutator [∇,�D].

Lemma 6 There exists a constant �3 depending on 	 such that for any smooth func-
tion f vanishing at ∂	 and any x ∈ 	 we have

|[∇,�D] f (x)| ≤ �3

d(x)2 ‖ f ‖L∞(	). (113)

If χ is a good cutoff with scale � and if θ is a smooth bounded function in D (�D),
then

Cχ (θ) = ∇�Dθ − �Dχ∇θ (114)

obeys

|Cχ (θ)(x)| = |(∇�Dθ − �D(χ∇θ))(x)| ≤ �3

d(x)2 ‖θ‖L∞(	) (115)

for d(x) ≥ �, with a constant �3 independent of �.

Proof We note that

[∇,�D] f (x) = −c1

∫ ∞

0
t−

3
2

∫

	

(∇x HD(x, y, t) f (y) − HD(x, y, t)∇y f (y)
)

dy

(116)
and therefore

[∇,�D] f (x) = −c1

∫ ∞

0
t−

3
2

∫

	

(∇x + ∇y
)

HD(x, y, t) f (y)dy. (117)

The inequality (113) follows from (37) and Lemma 4. For the inequality (115) we
need also to estimate

C(x) = cs

∣∣∣∣
∫ ∞

0
t−

3
2

∫

	

HD(x, y, t)(∇χ(y))θ(y)dy

∣∣∣∣

by the right hand side of (115), and this follows from (45) in view of (31). ��

6 SQG: Hölder Bounds

We consider the equation (7) with u given by (8) and with smooth initial data θ0
compactly supported in 	. We note that by the Córdoba-Córdoba inequality we have

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ . (118)

We prove the following uniform interior Hölder bound:
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Theorem 5 Let θ(x, t) be a smooth solution of (7) in the smooth bounded domain
	. There exists a constant 0 < α < 1 depending only on ‖θ0‖L∞(	), and a constant
� > 0 depending on the domain 	 such that, for any � > 0 sufficiently small

sup
d(x)≥�, |h|≤ �

16 , t≥0

|θ(x + h, t) − θ(x, t)|
|h|α ≤ ‖θ0‖Cα + ��−α‖θ0‖L∞(	) (119)

holds.

Proof We take a good cutoff χ used above, |h| ≤ �
16 and observe that, from the SQG

equation we obtain the equation

(∂t + u · ∇ + (δhu) · ∇h)(δhθ) + �D(χδhθ) + Ch(θ) = 0 (120)

where Ch(θ) is the commutator given above in (111). Denoting (as before in (109))
f = χδhθ we have after multiplying by δhθ and using the fact that χ(x) = 1 for
d(x) ≥ �,

1

2
Lχ (δhθ)2 + D( f ) + (δhθ)Ch(θ) = 0 (121)

where
Lχ g = ∂t g + u · ∇x g + δhu · ∇h g + �D(χ2g) (122)

and D( f ) is given in Theorem 3. ��

Multiplying by |h|−2α where α > 0 will be chosen small to be small enough we obtain

1

2
Lχ

(
δhθ(x)2

|h|2α

)
+ |h|−2α D( f ) ≤ 2α

|δhu|
|h|

(
δhθ(x)2

|h|2α

)
+ |Ch(θ)||δhθ ||h|−2α.

(123)
The factor 2α comes from the differentiation δhu · ∇h(|h|−2α) and its smallness will
be crucial below. Let us record here the inequality (47) in the present case:

D( f ) ≥ γ1|h|−1‖θ‖−1
L∞|(δhθ)d |3 + γ1(d(x))−1|δhθ |2, (124)

valid pointwise, when |h| ≤ �
16 and d(x) ≥ �, where

|(δhθ)d | = |δhθ |, if |δhθ(x)| ≥ M‖θ‖L∞
|h|

d(x)
,

and |(δhθ)d | = 0 otherwise.
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We use now the estimates (90), (112) and a Young inequality for the term involving√
ρD( f ) to obtain

1

2
Lχ

(
δhθ(x)2

|h|2α

)
+ 1

2
|h|−2α D( f ) ≤ C1α

2|h|−2−2αρ|δhθ |4

+ C1α‖θ‖L∞
(

1

d(x)
+ 1

ρ

)
|h|−2α|δhθ |2 + C1α|δhθ ||h|−1−2α|δhθ |2

+�0
|h|

d(x)2 ‖θ‖L∞|δhθ ||h|−2α (125)

for d(x) ≥ �, |h| ≤ �
16 . Let us choose ρ now. We set

ρ =
⎧
⎨
⎩

|δhθ(x)|−1|h|‖θ‖L∞ , if |δhθ(x)| ≥ M1‖θ‖L∞ |h|
d(x)

,

d(x), if |δhθ(x)| ≤ M1‖θ‖L∞ |h|
d(x)

,
(126)

where we put

M1 = M +
√

8�0

γ1
+ 1, (127)

where M is the constant from Theorem 3, �0 is the constant from (112) and γ1 is
the constant from (124). This choice was made in order to use the lower bound on
D( f ) to estimate the contribution due to the inner piece uh (see (72)) of δhu and the
contribution from the commutator Ch(θ). We distinguish two cases. The first case is
when |δhθ(x)| ≥ M1‖θ‖L∞ |h|

d(x)
. Then we have

1

2
Lχ

(
δhθ(x)2

|h|2α

)
+ 1

2
|h|−2α D( f )

≤ C1

[
(α‖θ‖L∞)2 + (2 + 1

M1
)α‖θ‖L∞

]
|δhθ |3|h|−1−2α‖θ‖−1

L∞

+�0
|h|

d(x)2 ‖θ‖L∞|δhθ ||h|−2α. (128)

The choice of M1 was such that, in this case

�0
|h|

d(x)2 ‖θ‖L∞|δhθ(x)||h|−2α ≤ γ1

8
|δhθ(x)|3|h|−1−2α‖θ‖−1

L∞ .

We choose now α by requiring
ε = α‖θ‖L∞ (129)

to satisfy

C1 M2
1 (ε2 + (2 + M−1

1 )ε) ≤ γ1

8
(130)
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and obtain from (128)

1

2
Lχ

( |δhθ(x)|2
|h|2α

)
+ 1

4
|h|−2α D( f ) ≤ 0 (131)

for d(x) ≥ �, |h| ≤ �
16 , in the case | f | ≥ M1‖θ‖L∞ |h|

d(x)
.

The second case is when the opposite inequality holds, i.e, when |δhθ(x)| ≤
M1‖θ‖L∞ |h|

d(x)
. Then, using ρ = d(x) we obtain from (125)

1

2
Lχ

(
δhθ(x)2

|h|2α

)
+ 1

2
|h|−2α D( f ) ≤ C1(M2

1 ε2 + (M1 + 2)ε)
1

d(x)
(δhθ(x))2|h|−2α

+ �0d(x)−2‖θ‖L∞|δhθ ||h|1−2α

≤ γ1

8d(x)

(
δhθ(x)2

|h|2α

)
+ 2�0 M1‖θ‖2

L∞d(x)−3|h|2−2α.

(132)

Summarizing, in view of the inequalities (131) and (132), the damping term
γ1

d(x)
|δhθ(x)|2 in (124) and the choice of small ε in (130), we have that

Lχ

(
δhθ(x)2

|h|2α

)
+ γ1

4d(x)

(
δhθ(x)2

|h|2α

)
≤ B (133)

holds for d(x) ≥ � and |h| ≤ �
16 where

B = 2(16)−2+2α�0 M1‖θ‖2
L∞d(x)−1−2α = �1

γ1

4
‖θ‖2

L∞d(x)−1−2α (134)

with �1 depending on 	. Without loss of generality we may take �1 > 4(16)2α so
that

|δhθ |2
|h|2α

< �1�
−2α‖θ0‖2

L∞

when |h| ≥ �
16 . We note that

Lχ

(
δhθ(x)2

|h|2α

)
+ γ1

4d(x)

(
δhθ(x)2

|h|2α
− �1�

−2α‖θ‖2
L∞

)
≤ 0 (135)

holds for any t , x ∈ 	 with d(x) ≥ � and |h| ≤ �
16 .

We take δ > 0, T > 0. We claim that, for any δ > 0 and any T > 0

sup
d(x)≥�,|h|≤ �

16 ,0≤t≤T

|δhθ(x)|2
|h|2α

≤ (1 + δ)
[
‖θ0‖2

Cα + �1�
−2α‖θ0‖2

L∞
]

holds.
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The rest of the proof is done by contradiction. Indeed, assume by contradiction that
there exists t̃ ≤ T , x̃ and h̃ with d(x̃) ≥ � and |h̃| ≤ �

16 such that

|θ(x̃ + h̃, t̃) − θ(x̃, t̃)|2
|h|2α

> (1 + δ)
[
‖θ0‖2

Cα + �1�
−2α‖θ0‖2

L∞
]

= R

holds. Because the solution is smooth, we have

|δhθ(x, t)|2
|h|2α

≤ (1 + δ)‖θ0‖2
Cα

for a short time 0 ≤ t ≤ t1. (Note that this is not a statement about well-posedness in
this norm: t1 may depend on higher norms.) Also, because the solution is smooth, it
is bounded in C1, and

sup
d(x)≥�,|h|≤ �

16

|δhθ(x)|2
|h|2 ≤ C

on the time interval [0, T ]. It follows that there exists δ1 > 0 such that

sup
d(x)≥�,|h|≤δ1

|δhθ(x)|2
|h|2α

≤ Cδ2−2α
1 ≤ R

2
.

In view of these considerations, we must have t̃ > t1, |h̃| ≥ δ1. Moreover, the supre-
mum is attained: there exists x̄ ∈ 	 with d(x̄) ≥ � and h̄ �= 0 such that δ1 ≤ |h̄| ≤ �

16
such that

|θ(x̄ + h̄, t̃) − θ(x̄, t̃)|2
|h̄|2α

= s(t̃) = sup
d(x)≥�,|h|≤ �

16

|δhθ(t̃)|2
|h|2α

> R.

Because of (135) we have that

d

dt

|θ(x̄ + h̄, t) − θ(x̄, t)|2
|h̄|2α | t=t̃

< 0

and therefore there exists t ′ < t̃ such that s(t ′) > s(t̃). This implies that inf{t >

t1 | s(t) > R} = t1 which is absurd because we made sure that s(t1) < R. Now δ and
T are arbitrary, so we have proved

sup
d(x)≥�,|h|≤ �

16 ,t≥0

|δhθ(x)|2
|h|2α

≤
[
‖θ0‖2

Cα + �1�
−2α‖θ0‖2

L∞
]

(136)

which finishes the proof of the theorem.
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Proof of Theorem 1 The proof follows from (136) because �1 does not depend on �.
For any fixed x ∈ 	 we may take � such that � ≤ d(x) ≤ 2�. Then (136) implies

d(x)2α |δhθ(x, t)|2
|h|2α

≤
[
‖θ0‖2

Cα + �122α‖θ0‖2
L∞
]
. (137)

7 Gradient Bounds

We take the gradient of (7). We obtain

(∂t + u · ∇)∇θ + (∇u)∗∇θ + ∇�Dθ = 0

where (∇u)∗ is the transposed matrix. Let us take a good cutoff χ . Then g = ∇θ

obeys everywhere

∂t g + u · ∇g + �D(χg) + Cχ (θ) + (∇u)∗g = 0 (138)

with Cχ given in (114). We multiply by g and, using the fact that χ(x) = 1 when
d(x) ≥ � we obtain

1

2
Lχ g2 + D( f ) + gCχ (θ) + g(∇u)∗g = 0 (139)

when d(x) ≥ �, where Lχ is similar to the one defined in (122):

Lχ (φ) = ∂tφ + u · ∇φ + �D(χ2φ) (140)

and f = χg. Recall that D( f ) = f �D f − �D

(
f 2

2

)
. Then, using (115) and (107)

we deduce

1

2
Lχ g2+D( f )≤ �3

d(x)2 |g|‖θ‖L∞(	)+C

(√
ρD( f )+‖θ‖L∞(	)

(
1

d(x)
+ 1

ρ

)
+|∇θ(x)|

)
g2

(141)

for d(x) ≥ �. Using a Young inequality we deduce

Lχ g2+D( f )≤ 2�3

d(x)2 ‖θ‖L∞(	)|g|+C4ρg4+C4‖θ‖L∞(	)

(
1

d(x)
+ 1

ρ

)
g2+C4|g|3

(142)

for d(x) ≥ �. Now |g| = | f | when d(x) ≥ �. If |g(x)| ≥ M‖θ‖L∞(	)d(x)−1 then, in
view of (61)

D( f ) ≥ γ2‖θ‖− 1
1−α

Cα(	)|g|3+ α
1−α (d(x))

α
1−α + γ1

d(x)
g2 (143)
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which is a super-cubic lower bound. We choose in this case

ρ−1 = C5|g(x)|, (144)

and the right hand side of (142) becomes at most cubic in g:

Lχ g2+D( f )≤|g|3
[

2�3

M2‖θ‖L∞(	)

+C4

(
1

C5
+ 1

M
+C5‖θ‖L∞(	)+1

)]
= K |g|3.

(145)

In view of (143) we see that

Lχ g2 + |g|3
(

γ2

(
‖θ‖− 1

α

Cα(	)|g(x)|d(x)

) α
1−α − K

)
≤ 0 (146)

holds for d(x) ≥ �, if |g| ≥ M‖θ‖L∞d(x)−1. In the opposite case, |g(x)| ≤
M‖θ‖L∞d(x)−1 we choose

ρ(x) = d(x) (147)

and obtain from (142)

Lχ g2 + D( f )

≤ 1
d(x)3

[
C4 M4‖θ‖4

L∞(	) + C4 M3‖θ‖3
L∞(	)

+2C4 M2‖θ‖3
L∞(	) + 2M�3‖θ‖2

L∞(	)

]
= K1

d(x)3

(148)

and using the convex damping inequality (61)

D( f ) ≥ γ1
g2

d(x)

we obtain in this case

Lχ g2 + 1

d(x)

(
γ1g2(x) − K1

d(x)2

)
≤ 0. (149)

Putting together (146) and (149) and 119 we obtain

Theorem 6 Let θ be a smooth solution of (7). Then

sup
d(x)≥�

|∇θ(x, t)| ≤ C

[
‖∇θ0‖L∞(	) + P(‖θ‖L∞(	))

�

]
(150)

where P(‖θ‖L∞(	)) is a polynome of degree four.

Proof of Theorem 2 The proof follows by choosing � depending on x , because the
constants in (150) do not depend on �.
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8 Example: Half Space

The case of the half space is interesting because global smooth solutions of (7) are
easily obtained by reflection: If the initial data θ0 is smooth and compactly supported
in 	 = R

d+ and if we consider its odd reflection

θ̃0(x) =
{

θ0(x1, . . . xd), if xd > 0,

−θ0(x1, . . . ,−xd) if xd < 0
(151)

then the solution of the critical SQG equation in the whole space, with intitial data θ̃0
is globally smooth and its restriction to 	 solves (7) there. This follows because of
reflection properties of the heat kernel and of the Dirichlet Laplacian.

The heat kernel with Dirichlet boundary conditions in 	 = R
d+ is

H(x, y, t) = ct−
d
2

(
e− |x−y|2

4t − e− |x−ỹ|2
4t

)

where ỹ = (y1, . . . , yd−1,−yd). More precisely,

H(x, y, t) = G(d−1)
t (x ′ − y′) [Gt (xd − yd) − Gt (xd + yd)] (152)

with x ′ = (x1, . . . , xd−1),

G(d−1)
t (x ′) =

(
1

4π t

) d−1
2

e− |x ′ |2
4t (153)

and

Gt (ξ) =
(

1

4π t

) 1
2

e− ξ2

4t (154)

Let us note that

∇x H = H

⎛
⎝ − x ′−y′

2t

− xd−yd
2t + yd

t
e− xd yd

t

1−e− xd yd
t

⎞
⎠ (155)

We check that (32) is obeyed. Indeed, because 1 − e−p ≥ p
2 when 0 ≤ p ≤ 1 it

follows that

yd

t
e− xd yd

t (1 − e− xd yd
t )−1 ≤ yd

t

2t

xd yd

if xd yd
t ≤ 1, and if p = xd yd

t ≥ 1 then

yd

t
e− xd yd

t (1 − e− xd yd
t )−1 ≤ e

e − 1

yd

t
e− xd yd

t .
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In this case, if xd√
t

≥ 1 then yd
t ≤ t− 1

2 p and pe−p is bounded; if xd√
t

≤ 1 we write
yd
t = t− 1

2 (
yd−xd√

t
+ xd√

t
) and thus we obtain:

|∇x H | ≤ C H

[
1√
t
(1 + |x − y|√

t
) + 1

xd

]
(156)

We check (37): First we have

(∇x + ∇y)H =
(

0
xd+yd

t Gt (xd + yd)G(d−1)
t (x ′ − y′)

)
(157)

and then ∫

	

∣∣(∇x + ∇y)H(x, y, t)
∣∣ dy ≤ Ct−

1
2 e− x2

d
4t . (158)

Indeed, the only nonzero component occurs when the differentiation is with respect
to the normal direction, and then

∣∣(∂xd + ∂yd )H(x, y, t)
∣∣ = ct−

d
2 e− |x ′−y′|2

4t

(
xd + yd

t

)
e− (xd +yd )2

4t (159)

Therefore

∫	

∣∣(∇x + ∇y)H(x, y, t)
∣∣ dy ≤ Ct−

1
2 ∫∞

0

(
xd + yd

t

)
e− (xd +yd )2

4t dyd

= Ct−
1
2 ∫∞

xd√
t

ξe− ξ2

4 dξ

= Ct−
1
2 e− x2

d
4t . (160)

We check (38): first

∂x ′(∇x + ∇y)H = − xd + yd

t
Gt (xd + yd)

(x ′ − y′)
2t

G(d−1)
t (x ′ − y′)

∂xd (∇x + ∇y)H =
(

1

t
− (xd + yd)2

2t2

)
Gt (xd + yd)G(d−1)

t (x ′ − y′) (161)

Consequently

|∇x (∇x+∇y)H(x, y, t)|≤Ct−
d
2 −1

(
1+ |x ′ − y′|√

t

)(
1+ (xd +yd)2

t

)
e− |x ′−y′ |2

4t e− (xd +yd )2

4t

(162)
and (38) follows:

∫

	

|∇x (∇x + ∇y)H(x, y, t)|dy ≤ Ct−1
∫ ∞

xd√
2t

(1 + z2)e− z2
2 dz.

123



Critical SQG in Bounded Domains Page 35 of 42 8

We compute � and �D1:

�(x, t) = (et�1)(x) =
∫

	

H(x, y, t)dy = 1√
2π

∫ xd√
2t

− xd√
2t

e− ξ2

2 dξ (163)

and therefore
∫ ∞

0
t−

3
2 (1 − et�1)dt = 2√

2π

∫ ∞

0
t−

3
2 dt

∫
xd√

2t

e− ξ2

2 dξ = 4

xd
√

π
.

Remark 3 We note here that �s
D1 = Cs y−s

d is calculated by duality:

(
�s

D1, φ
) = (

1,�s
Dφ
)

= cs ∫	 dx ∫∞
0 t−1− s

2 dt
[
φ(x) − ∫	 H(x, y, t)φ(y)dy

]

= cs ∫∞
0 t−1− s

2 dt
[∫	 φ(x)dx − ∫	 �(yd , t)φ(y)dy

]

= cs ∫∞
0 t−1− s

2 dt ∫	 (1 − �(yd , t)) φ(y)dy

= 2cs√
2π

∫	 φ(y) ∫∞
0 t−1− s

2 dt ∫∞
yd√

2t

e− ξ2

2 dξ

= Cs ∫	 y−s
d φ(y)dy

where we used the symmetry of the kernel H and (163).

We observe that if we consider horizontal finite differences, i.e. hd = 0 then Ch(θ)

vanishes, and we deduce that

sup
x,h′,t

|h′|−α|θ(x ′ + h′, xd , t) − θ(x ′, xd , t)| ≤ C1,α (164)

with C1,α the partial Cα norm of the initial data. This inequality can be used to prove
that u2 is bounded when d = 2. Indeed

u2(x, t) = c
∫

	

(
1

|x − y|3 − 1

|x − ỹ|3
)

(x1 − y1)θ(y, t)dy (165)

and the bound is obtained using the partial Hölder bound on θ (164) and the uniform
bounds ‖θ‖L p for p = 1,∞. The outline of the proof is as follows: we split the integral

u2 = uin
2 + uout

2 (166)

with

uin
2 (x) = c

∫

|x1−y1|≤δ,|x2−y2|≤δ

(
1

|x − y|3 − 1

|x − ỹ|3
)

(x1 − y1) (θ(y1, y2, t)

− θ(x1, y2, t)) dy (167)
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and

uout
2 (x) = c

∫

max{|x1−y1|,|x2−y2|}≥δ

(
1

|x − y|3 − 1

|x − ỹ|3
)

(x1 − y1)θ(y1, y2, t)dy

(168)
where in (167) we used the fact that the kernel is odd in the first variable. Then, for
uin we use the bound (164) to derive

|uin
2 (x)| ≤ C1,αC

∫ √
2δ

0
ρ−1+αdρ = CC1,αδα (169)

and for uout , if we have no other information on θ we just bound

|uout
2 (x)| ≤ C log

(
L

δ

)
‖θ0‖L∞ + C L−2‖θ0‖L1 (170)

with some L ≥ δ. Both δ and L are arbitrary.
Finally, let us note that even if θ ∈ C∞

0 (	), the tangential component of the velocity
need not vanish at the boundary because it is given by the integral

u1(x1, 0, t) = −c
∫

R
2+

2y2
(
(x1 − y1)2 + y2

2

) 3
2

θ(y, t)dy.
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Appendix 1

We sketch here the proofs of (36) (37) and (38). We take a point x̄ ∈ 	, a point y ∈ 	

and distinguish between two cases, if d(x̄) <
|x̄−y|

4 and if d(x̄) ≥ |x̄−y|
4 . In the first

case we take a ball B of radius δ = d(x̄)
8 centered at x̄ and in the second case we take

also a ball B centered at x̄ but with radius δ = d(x̄)
2 . We note that in both cases the

radius δ is proportional to d(x̄). We take x ∈ B(x̄, δ
2 ), we fix y ∈ 	, take the function

h(z, t) = HD(z, y, t), and apply Green’s identity in the domain U = B × (0, t). We
obtain

0 = ∫U
[
(∂s − �z)h(z, s)Gt−s(x − z) + h(z, s)(∂s + �z)Gt−s(x − z)

]
dzds

= h(x, t) − Gt (x − y) + ∫t
0 ∫∂ B

[
∂Gt−s(x − z)

∂n
h(z, s) − ∂h(z, s)

∂n
Gt−s(x − z)

]

and thus

HD(x, y, t) = Gt (x − y)−
∫ t

0

∫

∂ B

[
∂Gt−s(x − z)

∂n
h(z, s) − ∂h(z, s)

∂n
Gt−s(x − z)

]
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We note that the x dependence is only via G, and x − z is bounded away from zero.
We differentiate twice under the integral sign, and use the upper bounds (31), (32).
We have

|∇x∇x HD(x, y, t) − ∇x∇x Gt (x − y)|
≤ C

∫ t

0

∫

∂ B
(t − s)−

d+3
2 p3(

|x − z|√
t − s

)e− |x−z|2
4(t−s) s− d

2 e− |y−z|2
K s dzds

+
∫ min{t;d2(y)}

0

∫

∂ B
(t−s)−

d+2
2 p2(

|x−z|√
t − s

)e− |x−y|2
4(t−s) s− d+1

2 p1(
|y−z|√

s
)e− |y−z|2

K s dzds

+
∫ t

min{t;d2(y)}

∫

∂ B
(t − s)−

d+2
2 p2(

|x − z|√
t − s

)e− |x−y|2
4(t−s) s− d

2
1

d(y)

w1(y)

|y − z|e− |y−z|2
K s dzds

where pk(ξ) are polynomials of degree k. The integrals are not singular. In both cases

|x − z| ≥ δ
2 , and any negative power (t − s)− k

2 can be absorbed by e− |x−z|2
8(t−s) at the

price |x − z|−k ≤ Cδ−k , still leaving e− |x−z|2
8(t−s) available. Similarly, in the first case

|y − z| ≥ |x̄ − y|− δ ≥ δ and in the second case |y − z| ≥ |x̄ − z|− |x̄ − y| ≥ δ
2 . Any

power s− k
2 can be absorbed by e− |y−z|2

2K s at the price |y − z|−k ≤ Cδ−k still leaving

e− |y−z|2
2K s available. We note that if d(y) < d(x) so that d(y)2 < t is possible, then, in

view of (23) we have w1(y)
|y−z|d(y)

≤ Cδ−1. We also note that view of the fact that

|x − y|2t−1 ≤ 2

(
t − s

t

( |x − z|2
t − s

)
+ s

t

( |y − z|2
s

))

we have a bound

e− |x−z|2
8(t−s) − |y−z|2

2K s ≤ e− |x−y|2
K̃ t

with K̃ = 16 + 4K . Pulling this exponential out and estimating all the rest in terms
of δ we obtain, in both cases, all the integrals bounded by Ctδ−d−4 and therefore we
have, in both cases,

|∇x∇x HD(x, y, t) − ∇x∇x Gt (x − y)| ≤ Ce− |x−y|2
K̃ t tδ−d−4 ≤ Ct−1− d

2 e− |x−y|2
K̃ t

because t ≤ cδ2. This proves (36).
For (37) and (38) we start by noticing that it is enough to prove the estimates

∫

B(x,
d(x)
14 )

|(∇x + ∇y)HD(x, y, t)|dy ≤ Ct−
1
2 e− d(x)2

K t (171)
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and
∫

B(x,
d(x)
14 )

|∇x (∇x + ∇y)HD(x, y, t)|dy ≤ Ct−1e− d(x)2
K t (172)

for t < cd2(x). Indeed, if |x − y| ≥ d(x)
14 , individual Gaussian upper bounds for up

to two derivatives of HD suffice (there is no need for cancellations). In order to prove
(171) and (172) we use a good cutoff χ with a scale � = d(x)

100 . We take y ∈ B(x,
d(x)
14 ).

Both x and y are fixed for now. We note that the function

z �→ h(z) = χ(z)Gt (z − y)

solves

(∂t − �)h(z, t) = − [(�χ(z))Gt (z − y) + 2(∇χ(z)) · ∇Gt (z − y)] = F(z, y, t),

vanishes for z ∈ ∂	, and has initial datum h0 = χ(z)δ(z − y), so, by Duhamel

h(z, t) = et�h0 +
∫ t

0
e(t−s)�F(s)ds,

which, in view of (et� f )(z) = ∫
	

HD(z, w, t) f (w)dw yields

χ(z)Gt (z − y) = χ(y)HD(z, y, t) +
∫ t

0

∫

	

HD(z, w, t − s)F(w, s)dwds

for all z, and recalling that χ(x) = χ(y) = 1, and reading at z = x we have

HD(x, y, t) = Gt (x − y) +
∫ t

0

∫

	

HD(x, w, t − s) [�χ(w)Gs(w − y)

+ 2∇χ(w) · ∇Gs(w − y)] dwds. (173)

The right hand side integral is not singular and can be differentiated because the support
of ∇χ is far from the ball B(x,

d(x)
14 ). Differentiation ∇x + ∇y cancels the Gaussian

Gt (x − y). The estimates of the right hand side

∣∣∣∣(∇x + ∇y)

∫ t

0

∫

	

HD(x, w, t − s)F(w, y, s)dwds

∣∣∣∣ ≤ Ct−
d+1

2 e− d(x)2
K t

and
∣∣∣∣∇x (∇x + ∇y)

∫ t

0

∫

	

HD(x, w, t − s)F(w, y, s)dwds

∣∣∣∣ ≤ Ct−
d+2

2 e− d(x)2
K t

for t < cd2(x) follow from Gaussian upper bounds. Integration dy on the ball B(
d(x)
14 )

picks up the volume of the ball, and thus (171) and (172) are verified.
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Appendix 2

We sketch here the proof of local wellposedness of the equation (7). We start by
defining a Galerkin approximation. We consider the projectors Pn

Pn f =
n∑

j=1

f jw j (174)

with f j = ∫
	

f (x)w j (x)dx . We consider for fixed n the approximate system

∂tθn + Pn (un · ∇θn) + �Dθn = 0 (175)

where

un = ∇⊥�−1
D θn = R⊥

Dθn (176)

with

(Pnθn)(x, t) = θn(x, t) =
n∑

j=1

θn, j (t)w j (x) (177)

and with initial data θn(0) = Pnθ0 where θ0 is a fixed smooth function belonging to
H1

0 (	) ∩ H2(	). Although it was written as a PDE, the system (175) is a system
of ODEs for the coefficients θn, j (t) = ∫

	
θnw j dx . Let us note that Pn does not

commute with ∇ but does commute with −� and functions of it. The function un is
divergence-free and it is a finite sum of divergence-free functions,

un(x) =
n∑

j=1

λ
− 1

2
j θn, j (t)∇⊥w j (x). (178)

Note however that un /∈ Pn L2(	). The normal component of un vanishes at the
boundary because ∇⊥w j · ν|	 = 0. Moreover, because

∫

	

Pn(un · ∇θn)θndx =
∫

	

(un · ∇θn)θndx = 0

it follows that ‖θn(t)‖L2(	) is bounded in time and therefore the solution exists for
all time. The following upper bound for higher norms is uniform only for short time,
and it is the bound that is used for local existence of smooth solutions. We apply
�2

D = −� to (175) and use the fact that it is a local operator, it commutes with Pn

and with derivatives:

∂t�
2
Dθn + Pn

(
un · ∇�2

Dθn − 2∇un∇∇θn + (�2
Dun) · ∇θn

)
+ �3

Dθn = 0 (179)
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We take the scalar product with �2
Dθn . Because this is finite linear combinations of

eigenfunctions, it vansihes at ∂	 and integration by parts is allowed. We obtain

d

2dt
‖�2

Dθn‖2
L2(	)

+ ‖�
5
2
Dθn‖2

L2(	)
≤ ‖�2

Dun‖2
L2(	)

‖�2
Dθn‖L2(	)‖∇θn‖L∞(	)

+ 2‖∇un‖L∞(	)‖∇∇θ‖L2(	)‖�2
Dθ‖L2(	)

(180)

We note now that

�2
Dun =

n∑
j=1

θn, j (−�)λ
− 1

2
j ∇⊥w j = ∇⊥�−1

D (�2
Dθn) = R⊥

D(�2
Dθn). (181)

Now RD is bounded in L2(	) (It is in fact an isometry on components; this follows
from (27)), therefore

‖�2
Dun‖L2(	) ≤ ‖�2

Dθn‖L2(	). (182)

The fact that RD is bounded in L4(	) is also true [19]. Then

‖�2
Dun‖L4(	) ≤ ‖�2

Dθn‖L4(	). (183)

Moreover, it is known (see for instance [1]) that in d = 2 we have

‖ f ‖L4(	) ≤ C‖�
1
2
D f ‖L2(	)

and therefore

‖�θn‖L4(	) ≤ ‖�
5
2
Dθn‖L2(	). (184)

and

‖�un‖L4(	) ≤ C‖�
5
2
Dθn‖L2(	). (185)

Now we use the Sobolev embedding

‖∇φ‖L∞(	) ≤ C
(‖�φ‖L4(	) + ‖φ‖L2(	)

)
(186)

and deduce, using also a Poincaré inequality

d

dt
‖�2

Dθn‖2
L2(	)

+ ‖�
5
2
Dθn‖2

L2(	)
≤ C‖�2

Dθn‖2
L2(	)

‖�
5
2
Dθ‖L2(	). (187)
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Thus, after a Young inequality we deduce that

sup
t≤T

‖�2
Dθn‖2

L2(	)
+
∫ T

0
‖�

5
2
Dθn‖2

L2(	)
dt ≤ C‖�2

Dθ0‖2
L2(	)

(188)

holds for T depending only on ‖�2
Dθ0‖L2(	), with a constant independent of n. The

following result can now be obtained by assing to the limit in a subsequence and using
a Aubin-Lions lemma [21]:

Proposition 4 Let θ0 ∈ H1
0 (	) ∩ H2(	) in d = 2. There exists T > 0 a unique

solution of (7) with initial datum θ0 satisfying

θ ∈ L∞(0, T ; H1
0 (	) ∩ H2(	)) ∩ L2

(
0, T ;D

(
�2.5

D

))
. (189)

Higher regularity can be obtained as well. Because the proof uses L2- based Sobolev
spaces and Sobolev embedding, it is dimension dependent. A proof in higher dimen-
sions is also possible, but it requires using higher powers of �, and will not be pursued
here.

References

1. Cabre, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian.
Adv. Math. 224(5), 2052–2093 (2010)

2. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-
geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

3. Castro, A., Córdoba, D., Gomez-Serrano, J., Martin, A.: Remarks on geometric properties of the SQG
sharp front and the alpha-patches. Discret. Contin. Dyn. Syst. 34(12), 5045–5059 (2014)

4. Castro, A., Córdoba, D., Gomez-Serrano, J.: Global smooth solutions for the inviscid SQG equation.
Preprint (2016). arxiv:1603.03325

5. Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36(1), 73–98 (1994)
6. Constantin, P., Ignatova, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions

and applications. Int. Math. Res. Not. (2016). doi:10.1093/imrn/rnw098
7. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and

applications. GAFA 22, 1289–1321 (2012)
8. Constantin, P., Wu, J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic

equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1103–1110 (2008)
9. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2-D quasigeostrophic thermal

active scalar. Nonlinearity 7(6), 1495–1533 (1994)
10. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana

Univ. Math. J. 50(Special Issue), 97–107 (2001)
11. Constantin, P., Lai, M.-C., Sharma, R., Tseng, Y.-H., Wu, J.: New numerical results for the surface

quasi-geostrophic equation. J. Sci. Comput. 50(1), 1–28 (2012)
12. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math.

Phys. 335(1), 93–141 (2015)
13. Córdoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann.

Math. (2) 148(3), 1135–1152 (1998)
14. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun.

Math. Phys. 249, 511–528 (2004)
15. Córdoba, D., Fontelos, M.A., Mancho, A.M., Rodrigo, J.L.: Evidence of singularities for a family of

contour dynamics equations. Proc. Natl Acad. Sci. U.S.A. 102(17), 5949–5952 (2005)

123

http://arxiv.org/abs/1603.03325
http://dx.doi.org/10.1093/imrn/rnw098


8 Page 42 of 42 P. Constantin, M. Ignatova

16. Davies, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333
(1987)

17. Fefferman, C., Rodrigo, J.L.: Analytic sharp fronts for the surface quasi-geostrophic equation. Com-
mun. Math. Phys. 303(1), 261–288 (2011)

18. Held, I.M., Pierrehumbert, R.T., Garner, S.T., Swanson, K.L.: Surface quasi-geostrophic dynamics. J.
Fluid Mech. 282, 1–20 (1995)

19. Jerison, D., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal.
130, 161–212 (1995)

20. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-
geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

21. Lions, J.L.: Quelque methodes de résolution des problèmes aux limites non linéaires. Dunod, Paris
(1969)

22. Resnick, S.G.: Dynamical problems in non-linear advective partial differential equations, ProQuest
LLC, Ann Arbor. PhD Thesis, The University of Chicago (1995)

23. Silvestre, L., Vicol, V., Zlatoš, A.: On the loss of continuity for super-critical drift-diffusion equations.
Arch. Ration. Mech. Anal. 207(3), 845–877 (2013)

24. Zhang, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182,
416–430 (2002)

25. Zhang, Q.S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman.
IMRN article ID92314, 1–39 (2006)

123


	Critical SQG in Bounded Domains
	Abstract
	1 Introduction
	2 Preliminaries
	3 Nonlinear Lower Bounds
	4 Bounds for Riesz Transforms
	5 Commutators
	6 SQG: Hölder Bounds
	7 Gradient Bounds
	8 Example: Half Space
	Acknowledgements
	Appendix 1
	Appendix 2
	References




