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Abstract The general problem of shock formation in three space dimensions was
solved by D. Christodoulou in [2]. In this work also a complete description of the
maximal development of the initial data is provided. This description sets up the
problem of continuing the solution beyond the point where the solution ceases to
be regular. This problem is called the shock development problem. It belongs to the
category of free boundary problems but in addition has singular initial data because
of the behavior of the solution at the blowup surface. The present work delivers the
solution to this problem in the case of spherical symmetry for a barotropic fluid. A
complete description of the singularities associated to the development of shocks in
terms of smooth functions is given.
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1 Introduction
1.1 Overview

The Euler equations are a set of nonlinear hyperbolic partial differential equations.
Physically they represent the conservation of energy, momentum and mass. It is well
known that, given smooth initial data, solutions of equations of this type can blow up
in finite time. In the case of the Euler equations the gradients of the solution become
infinite. The mechanism of the blowup is called formation of a shock and has first
been studied in one space dimension by Riemann in 1858 [6]. The general problem
of shock formation in three space dimensions for a fluid with an arbitrary equation of
state was solved by Christodoulou in the monograph [2]. In this work also a complete
description of the maximal development of the initial data is provided. This description
properly sets up the problem of continuing the solution beyond the point where the
solution ceases to be regular. This problem is called the shock development problem
and is stated in the epilogue of [2]. It belongs to the category of free boundary problems
but possesses the additional difficulty of having singular data due to the behavior of
the solution at the blowup surface. The present work gives the solution to this problem
in the physically important case of spherical symmetry for a fluid with barotropic
equation of state. The result is a step in understanding the development of shocks in
fluids. It provides the basis on which the continuation, interaction and breakdown of
shocks in spherical symmetry can be studied. Furthermore, the mathematical tools
invented to deal with the problem will be of importance in studying solutions to
nonlinear hyperbolic equations beyond shock formation.
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1.2 Shock Development

The general problem of shock formation in a relativistic fluid has been studied in the
monograph [2] by Christodoulou. This work is in the framework of special relativity.
The theorems in this monograph give a detailed picture of shock formation in 3-
dimensional fluids. In particular a detailed description is given of the geometry of the
boundary of the maximal development of the initial data and of the behavior of the
solution at this boundary. The notion of maximal development in this context is not
that relative to the background Minkowski metric 7,,,, but rather the one relative to the
acoustical metric g,,,,. This is a Lorentzian metric, the null cones of which are the sound
cones. In the monograph it is shown that the boundary of the maximal development
in the ’acoustical’ sense (relative to g) consists of a regular part and a singular part.
Each component of the regular part C is an incoming characteristic (relative to g)
hypersurface which has a singular past boundary. The singular part of the boundary is
the locus of points where the density of foliations by outgoing characteristic (relative
to g) hypersurfaces blows up. It is the union d_B U B, where each component of 9_ 5
is a smooth embedded surface in Minkowski spacetime, the tangent plane to which at
each pointis contained in the exterior of the sound cone at that point. On the other hand,
each component of 5 is a smooth embedded hypersurface in Minkowski spacetime,
the tangent hyperplane to which at each point is contained in the exterior of the sound
cone at that point, with the exception of a single generator of the sound cone, which lies
on the hyperplane itself. The past boundary of a component of B is the corresponding
component of d_B. The latter is at the same time the past boundary of a component of
C. This is the surface where a shock begins to form. The maximal development in the
case of spherical symmetry is shown in figure 1. In spherical symmetry a component
of d_B corresponds to a sphere and therefore to a point in the 7-r-plane, the cusp point,
which we denote by O.

Now the maximal development in the acoustical sense, or 'maximal classical solu-
tion’, is the physical solution of the problem up to C U d_13, but not up to B. In the last

t

r

Fig. 1 The maximal development in a neighborhood of a blowup point in spherical symmetry. C denotes
the regular part of the boundary of the maximal development. C is incoming characteristic and originates
at the cusp point O. The cusp point O corresponds to d—/3. I3 denotes the singular part of the boundary
of the maximal development. The family of outgoing characteristic curves is drawn as straight lines for
simplification
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Fig. 2 The state behind in dark t
shade and the state ahead in light :
shade, separated by C and the B ,'
shock C where outgoing I
characteristics meet. The family
of outgoing characteristic curves
is drawn as straight lines for
simplification

part of the monograph the problem of the physical continuation of the solution is set
up as the shock development problem. This is a free boundary problem associated to
each component of d_ 5. In this problem one is required to construct a hypersurface of
discontinuity /C, the shock, lying in the past of the corresponding component of B but
having the same past boundary as the latter, namely the given component of d_13, the
tangent hyperplanes to X and B coinciding along d_B. Moreover, one is required to
construct a solution of the differential conservation laws in the domain in Minkowski
spacetime bounded in the past by C U I, agreeing with the maximal classical solution
on C U d_B, while having jumps across K relative to the data induced on /C by the
maximal classical solution. For reasons which will be made clear below we call this
solution state behind while the solution in the maximal development we call state
ahead. The jumps across K have to satisfy the jump conditions which follow from the
integral form of the conservation laws (the relativistic form of the Rankine-Hugoniot
jump conditions). Finally, K is required to be spacelike relative to the acoustical metric
g induced by the maximal classical solution, which holds in the past of &, and time-
like relative to the new solution, which holds in the future of /C (the last condition is
equivalent to the condition that the jump in entropy is positive). The maximal classical
solution thus provides the boundary conditions on C U 9_ 1, as well as a barrier at 3.
The situation in spherical symmetry is shown in figure 2.

In the present work the shock development problem is solved in the case of spherical
symmetry and under the assumption that the fluid is described by a barotropic equation
of state. The presence of spherical symmetry represents an important physical case,
also from the point of view of applications, and reduces the problem to one on the
t-r-plane, where ¢ denotes Minkowski time and r denotes the radial coordinate. The
assumption of a barotropic equation of state is appropriate for liquids and also for
a radiation gas. For a radiation gas we have p = (1/3)p where p is the pressure
and p is the energy density in the rest frame of the fluid. This model applies in
particular to the early, radiation dominated, phase of the history of the universe. The
fluid being barotropic the energy-momentum conservation law decouples from the
particle conservation law. The system of partial differential equations reduces to an
inhomogeneous system with two unknowns. One of the key concepts used to deal
with the system of equations are the Riemann Invariants «, B of the principal part
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of the system of equations. The equations are reformulated in terms of characteristic
coordinates (u, v). These coordinates are defined by the outgoing and incoming null
rays with respect to the acoustical metric g, # being constant along outgoing null
rays and v being constant along incoming null rays. In addition the coordinates are
set up such that the shock K is given by u = v. The system of equations for the
time and radial coordinates (¢, r) in terms of (u, v) is the Hodograph system. The
Hodograph system together with the system of equations for the Riemann Invariants
is a non-linear four by four system. This system is then solved using a double iteration
consisting of an inner and an outer iteration. In the outer iteration the position of the
free boundary in the ¢-r-plane is iterated, providing, through the jump conditions,
in each step the boundary conditions for a fixed boundary problem. The equations
being non-linear, this fixed boundary problem is then solved using again an iteration,
the inner iteration. The solution of the fixed boundary problem then allows to set the
position of the free boundary in the #-r-plane for the next iterate. This is accomplished
as follows. The solution of the fixed boundary problem provides the values of r and
t in terms of the characteristic coordinates along the shock IC, i.e. r (v, v), (v, v). In
the formation problem the solution in the maximal development (denoted by (-)*) is
given in terms of the acoustical coordinates (¢, w), where w is a function which is
constant along outgoing characteristic hypersurfaces. Now r (v, v) is set equal to the
radial coordinate given by the acoustical coordinates, i.e. r*(¢, w), when t = 1 (v, v)
is substituted, i.e. r (v, v) = r*(¢(v, v), w). This equation is called the identification
equation since it identifies the radial coordinates of events in spacetime, with respect
to the solution of the fixed boundary problem and with respect to the solution in the
maximal development, along the shock /C. It plays a very important role, and the study
of it is at the heart of the solution to the problem. The identification equation has to
be solved for w in terms of v in order to be able to apply the jump conditions and
in order to compute the boundary data for the next iterate in the outer iteration. This
is not possible offhandedly. Only after correctly guessing the asymptotic form of the
solution as we approach the sphere d_ B, can the identification equation be reduced to
an equation which is solvable for w in terms of v. The iteration then yields the local
existence of a continuously differentiable solution to the shock development problem.
Also uniqueness of this solution is proven. Finally it is proven that the solution is,
away from the shock K, smooth.

The problem is solved in the framework of special relativity. Nevertheless, no
special care is needed to extract information on the non-relativistic limit. This is due
to the fact that the non-relativistic limit is a regular limit, obtained by letting the speed
of light in conventional units tend to infinity, while keeping the sound speed fixed.

1.3 Relation to Other Work
We first remark that the methods of the present work trivially apply to the case of
one-dimensional isentropic flow. The equations in this case can be written in the form

of a non-linear hyperbolic conservation law

oru + A(u)oyu = 0. (1)
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There exists a quite complete theory for studying equations of this form. In the fol-
lowing we are going to put the present work in relation to that theory.

The fundamental building block of that theory is the solution of the Riemann prob-
lem [4] which is the problem of studying the above equation for data which is piecewise
constant with a single jump at the origin. The solution of this problem is self simi-
lar and consists of several constant states connecting the piecewise solution on both
sides of the jump. Approximate solutions for more general data are then constructed
by patching together several solutions of Riemann problems. This is done using the
Glimm scheme [3] whose deterministic version has been established by Liu [5]. In
that approach, the initial data is approximated by a piecewise constant function and the
algorithm produces a sequence of approximate solutions whose convergence relies on
a compactness argument based on uniform bounds on the total variation. Therefore,
these methods establish the existence of solutions in the space of functions of bounded
variation.

We should keep in mind that the objective is to determine solutions which arise by
evolving given smooth initial data according to the physical laws, not only existence,
uniqueness and continuous dependence on the data but also the description of the main
qualitative features of the solution, chief among which is the precise description of
the singularities which arise. The aim being of course to derive results that can be
compared with experiment.

From given smooth initial data singularities develop naturally. But from a solution in
the space of functions of bounded variation no regularity information can be extracted,
not even on what is the set of points at which the solution fails to be continuous.

This is in contrast to the present work where we obtain complete knowledge of the
solution in terms of smooth functions. That is, we obtain a complete resolution of the
singularity. In comparison with the theory of elliptic problems, what we develop is the
analogue of a complete regularity theory rather than only the analogue of an existence
theory in the class of functions admissible in the variational problem.

Furthermore, the approach using the space of functions of bounded variation is
unsuitable to address the physical three dimensional problem, being in principle con-
fined to one spatial dimension.

1.4 Overview of the Article

We give an overview of the content of each section. We also state the places where
important theorems can be found.

Section 2

In 2.1 we present the model of a perfect fluid in special relativity. Based on the
conservation laws for energy-momentum and particle number (see (6) and (7)) we
derive the equations of motion (the Eulerian system given by (6), (10) and (11)). We
analyze the characteristics of this system and introduce the sound speed 1 as well as the
acoustical metric g,,, which describes the sound cone (see (23) together with (24)). In
2.2 we derive the jump conditions across a hypersurface of discontinuity, (see (40) and
(41)). They follow from the integral form of the conservation laws which we derive
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on the basis of the conservation laws for energy-momentum and particle number. In
2.3 we define which hypersurfaces of discontinuity are shocks. Then we present the
determinism condition and the entropy condition. These are both conditions on the
solution of the equations of motion across a shock. The determinism condition is the
condition that the shock is supersonic relative to the state ahead and subsonic relative
to the state behind the shock. The determinism condition is illustrated in figure 4.
The entropy condition is the condition that the jump in entropy per particle is positive
across a shock. In 2.3 we also show that for suitably small jumps, the determinism
condition and the entropy condition are equivalent. In 2.4 we restrict our analysis to
the case where the fluid is barotropic, i.e. where p = f(p) where p is the pressure and
p is the mass-energy density. Due to this assumption we get a decoupling of one of the
equations of motion (see the system (107), (108), (109) in contrast to the system (36),
(37), (38)). Furthermore, we then restrict to the irrotational case which implies that
one of the remaining equations is identically satisfied (the one dealing with vorticity),
thus reducing the equations of motion to a single equation for the potential ¢ (see
(116)). This equation takes the form of a nonlinear wave equation when rewriting it
using the acoustical metric (see (119)).

Most of the material in this section can be found in the first chapter and the epilogue
of [2] and in the first section of [1].

Section 3

We restrict to the spherically symmetric case. In 3.1 we look at the radial null vectors
L+ (null with respect to the acoustical metric), introduce the normalization L! =
1 and rewrite the nonlinear wave equation using these null vectors (see (128)). In
3.2 we keep only the principal part of the nonlinear wave equation and derive the
Riemann invariants «, B corresponding to it. These Riemann invariants correspond to
the Riemann invariants of the solution under the assumption of plain symmetry, i.e. the
purely one dimensional problem. In 3.3 we rewrite the nonlinear wave equation for
spherically symmetric solutions using «, B (see (154)). Then we introduce double
null coordinates (with respect to the acoustical metric). The equations of motion then
become the equations for the derivatives of the Riemann invariants together with the
system satisfied by the space-time coordinates ¢, r (the Hodograph system). We refer to
this set of equations as the characteristic system. In 3.4 we rewrite the jump conditions
as an equation for the shock speed V and an equation in terms of jumps (see (170),
(171)). Then we derive the relation [8] = [oz]3 G([a]), where [f] = f4+ — f-— and
G is a smooth function of its arguments with G(0) a constant. In 3.5 we describe
the boundary of the maximal development of the initial data. Here we make use of
the result [2] where one can find a detailed description of this boundary in chapter
15. While in [2] no assumption on the symmetry of the problem was made, here we
restrict the result to spherical symmetry. We then derive the behavior of the Riemann
invariants «, § at the cusp point, which is the first point of blowup. This behavior is
given in (266), (267). We then describe the incoming characteristic originating at the
cusp point by giving ¢ in terms of the acoustical coordinate w along this characteristic.
In 3.6 we state the shock development problem in all its details and outline the strategy
for its solution. See in particular (325).
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Section 4

As described in the outline of the strategy in the end of section 3, in each step of the
iteration, which is used to solve the shock development problem, we need to solve
the characteristic system with given initial data for « and 7, boundary data for g and
a given shock speed V which enters the free boundary condition (see (301)). The
characteristic system being nonlinear we use again an iteration. In 4.1 we set up the
iteration scheme. We also prove (see proposition 4.1) a preliminary result concerning
the equation for 7. This second order partial differential equation follows once r has
been eliminated from the Hodograph system (see equation (336)). In 4.1 we also
establish the inductive step of the iteration. This is the content of lemma 4.1. In the
second subsection we show convergence. This result is the content of lemma 4.2. The
section concludes with the existence result for the fixed boundary problem given by
proposition 4.2.

Section 5

As described in the outline of the strategy in the end of section 3 we solve the shock
development problem using an iteration. In 5.1 we specify the form of the boundary
functions to be iterated and the corresponding function spaces. Then we establish the
inductive step of the iteration. This is the content of proposition 5.1. In subsection 5.2
we show convergence. We first show three lemmas, each of them corresponding to a
particular step in the induction process. Lemma 5.1 gives estimates for the solution
to the fixed boundary problem. Lemma 5.2 gives estimates for the solution of the
identification equation (see equation (298) in the description of the strategy). Lemma
5.3 gives estimates for the quantities related by the jump conditions. These three
lemmas are then used to close the convergence argument in the proof of proposition
5.2. The above then leads to the existence of a continuously differentiable solution to
the free boundary problem. This is the content of theorem 5.1.

Section 6

The proof of uniqueness of the solution is done in two steps. In 6.1 we first prove that
any solution of the characteristic system which satisfies the smoothness conditions
from the existence theorem (theorem 5.1) possesses the same leading order behavior
as the solution given by the existence theorem. This is the content of proposition
6.1. In 6.2 we prove uniqueness of the solution of the shock development problem,
assuming the solution has the given leading order behavior. The result is the content of
theorem 6.1. In 6.3 we prove that L« and L B are continuous across the incoming
characteristic originating at the cusp point.

Section 7

Up to this point we established a solution to the shock development problem in the
class of continuously differentiable functions. Now we prove that this solution is
smooth (see theorem 7.1). This is accomplished by induction with respect to the order
of differentiation. The inductive hypothesis is stated in 7.1 and the base case of the
induction is shown in 7.2. In 7.3 we show the inductive step. In 7.4 we show that the
derivatives of the Riemann invariants (and therefore the derivatives of the physical
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quantities) with respect to L of order greater than the first blow up as we approach
the incoming characteristic originating at the cusp point from the state behind the
shock.

2 Relativistic Fluids
2.1 Relativistic Perfect Fluids

The motion of a perfect fluid in special relativity is described by a future-directed unit
time-like vector field u# and two positive functions n and s, the number of particles
per unit volume (in the local rest frame of the fluid) and the entropy per particle,
respectively. Let us denote the Minkowski metric by 7. The conditions on the velocity
u are then

n(u,u) =—1, u® > 0. 2)

The mechanical properties of the fluid are specified once we give the equation of state,
which expresses the mass-energy density p as a function of n and s

p = p(n,s). (3)

Let e = p/n be the energy per particle. According to the first law of thermodynamics
we have

de = —pdv + 0ds, 4

where p is the pressure, v = 1/n the volume per particle and 6 the temperature. We
have

ap 1dp
= n— — 5 62—— 5
p n8n P nas ®)

The functions p, p, 6 are assumed to be positive. The equations of motion for a
perfect fluid are given by the particle conservation law and the energy-momentum
conservation law, i.e.

V" =0, (©6)
vV, TH =0, (7

where T and [ are the energy-momentum-stress tensor and the particle current, respec-
tively, given by

T = (p + putu’ + po~H", I =nut. (8)
The component of (7) along u is the energy equation

ubVup+ (o + p)V,ut =0. 9)
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Using (6) in (9) together with (5) we deduce
utVv,s =0, (10)

i.e. modulo the particle conservation law, the energy equation is equivalent to the
entropy being constant along the flow lines. Nevertheless the equivalence of the energy
and entropy conservation only holds for C! solutions. Let T} := 8} 4+ u*u, denote
the projection onto the local simultaneous space of the fluid. The projection of (7) is
the momentum conservation law

(o + pu’Vyu" + 1"V, p = 0. (11)

The symbol oz of the Eulerian system (6), (10), (11) at a given covector & is the
linear operator on the space of variations (7, §, i) whose components are

ul&,n + ng b, (12)
utg,s, (13)
(o + pu’&yu” +TIHYE, p. (14)
We note that
. Op. Op.
= = —3. 15
p Bnn + ass (15

The characteristic subset of 7, M, that is the set of covectors & such that the null space
of o¢ is nontrivial, consists of the hyperplane P;':

Hp:=u"§, =0 (16)
and the cone C;:
1
He =3 (607 -’18, ) = 0. (a7)
where 7 is the sound speed
ad
= (—p) . (18)
o/,

We assume that the equation of state satisfies the basic requirement
0 < n’. (19)

The characteristic subset of T, M corresponding to P, i.e., the set of vectors x € Ty M
of the form

_ 0Hp

i =ut, &ePr (20)

3,
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is simply the vector u(x), while the characteristic subset of T, M corresponding to C%,
i.e., the set of vectors x € T M of the form

aH,
it = 28 et — PIMVE,, £ e CF Q1)
€,
is the sound cone C,:
(Pupu, — T ) iH5" = 0. (22)

We define the acoustical metric g, by
guv = v + (1= 0Dy, (23)
C, is then given by
guvXtx¥ =0. (24)
We assume that the equation of state satisfies the basic requirement
n° <1, (25)

which is equivalent to the condition that the sound cone is contained within the light
cone. For & € P the null space of o¢ consists of the variations satisfying

p=0, Eu'=0 (26)

(the isobaric vorticity waves). For & € C} the null space of o¢ consists of the variations
satisfying

178, p

s =0, ="
(p + p)uvé,

27)
(the adiabatic sound waves). We note that the inverse acoustical metric is given by
—1\puv —1\puv 1 v
We define the one form g by
Bu = — huy, 29)

where £ is the enthalpy per particle given by

p+p
—

h:=e+ pv=

(30)
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We deduce

(Eu,B);L = _uvvv(huu)

h h
= mvup—i-uﬂuv (mvvp—vvh), (31)

where for the first equality we used the definition of the Lie derivative together with
the first of (2) while for the second equality we used (11). By (30) in conjunction with
(4) the expression in the last parenthesis is equal to —0V,,s. Therefore, by (10), the
last term vanishes and we have
Ly, =dh —6ds. (32)
We define the vorticity two form by
w = dp. (33)
Let us denote by ix contraction from the left by X. From (29) we deduce

iuB = h. (34)

Since for any exterior differential form ¢ it holds that Lx©¥ = ixd?® + dix?, we
obtain from (32)

iyw = —0ds. (35)

We conclude that the equations of motion (6), (7) are equivalent to the system

V" =0, (36)
utv,s =0, (37)
iyw = —0ds. (38)

In fact (37) follows from (38).

2.2 Jump Conditions

It is well known that the solution of the equations (6), (7), in general, develop discon-
tinuities. Let K be a hypersurface of discontinuity, i.e. a C! hypersurface XC with a
neighborhood U/ such that 7" and I** are continuous in the closure of each connected
component of the complement of K in I/ but are not continuous across K. Let N, be
a covector at x € /C, the null space of which is the tangent space of /C at x

T.K = (X" € T.M : N, X" = 0. (39)
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Then, denoting by [-] the jump across /C at x, we have the jump conditions

[T*] N, =0, (40)
[1*] Ny =0. (41)

These follow from the integral form of the conservation laws (6), (7). Consider the

3-form Ig:ﬂy dual to 7#, that is,

g, = 1"euapy. 42)

where €4, is the volume 4-form of the Minkowski metric 1. In terms of /* equation
(6) becomes

dI* =0. (43)

Also, given any vector field X, we can define the vector field

PF = negXOTPI, (44)
By virtue of (7), P satisfies
V,P" = %n,wT/“, (45)
where
v = LxNpo- (46)

In terms of the 3-form P* dual to P
(07

Py, = P euapy. (47)

equation (45) reads
. 1
dP* = E(n -T)e. (48)

Consider now an arbitrary point x € K and let ¢ be a neighborhood of x in
Minkowski spacetime. We denote VW = K NU. Let Y be a vector field without critical
points in some larger neighborhood Uy D U and transversal to K. Let L5(y) denote
the segment of the integral curve of Y through y € W corresponding to the parameter
interval (—§, §)

Ls(y):={Fs(y) : s € (=6, 9)}, (49)
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where Fj is the flow generated by Y. We then define the neighborhood Vs of x in
Minkowski spacetime by

Vsi=|J Ls(y). (50)
yew

Integrating equations (43), (48) in Vs and applying Stokes’ theorem we obtain

/ I =0, 51)
Vs

/ P*:/ L e (52)
Vs Vs 2

Now the boundary of Vs consists of the hypersurfaces
Ws={Fs(y):y e W}  W_s:={F_s(y):y e W}, (53)

together with the lateral hypersurface

U s (54)
yeaw

Since this lateral component and Vs are bounded in measure by a constant multiple of
8, we take the limit § — 0 in (51), (52) to obtain

/W [1*] =0, (55)
/W [P*] =0. (56)

That these are valid for any neighborhood W of x in K implies that the corresponding
3-forms induced on /C from the two sides coincide at x, or, equivalently, that

[1*]N,=0, [P*]N,=0. (57)

The first of these equations coincides with (41), while the second, for four vector fields
X constituting at x a basis for Ty M, implies (40).

2.3 Determinism and Entropy Condition
By virtue of (25) only time-like hypersurfaces of discontinuity can arise. Since 7, }C
is time-like, the normal vector N* = (n~')*V N, is space-like and we can normalize

it to have unit magnitude

N NN = 1. (58)
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Fig. 3 Four fluid flow lines t .
crossing the shock /C from the behind
state ahead to the state behind

ahead

We must still determine the orientation of C. Let N* point from one side of T, /C,
which we label + and which we say is behind T, IC, to the other side of 7 /C, which
we label — and which we say is ahead of T, K. Then for any quantity ¢ we have
[q] = g+ — g—. If we define
uj == —n(u, N), (59
then the jump condition (41) reads
nyu i+ =n_u_ =: f, (60)
where the quantity f is called particle flux. If f # 0, the discontinuity is called a
shock. In this case we choose the orientation of N such that f>0, that is, the fluid
particles cross the hypersurface of discontinuity K from the state ahead to the state
behind (see figure 3). If f = O the discontinuity is called a contact discontinuity and

in this case the orientation of N* is merely conventional.
In terms of v, the volume per particle, we have

ui— = fo—, w1t = fot. (61)
The jump condition (40) reads
(p+ + puquiy — p+N = (p—+ p_Ju—ui— — p_N. (62)
Substituting (61) into (62) the latter reduces to
fhyuy —pyN = fh_u_—p_N, (63)

where we used (30). According to (63) the vectors u4, u_ and N all lie in the same
timelike plane. Taking the n-inner product of (63) with N we obtain

fhywis +pe = fh_ui_+p_. (64)
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Substituting from (61) this becomes
P+ = p— == [ (hyvs —hovo). (65)
On the other, taking the n-inner product of each side of (63) with itself we obtain
P2 —p2 = fAhL —h% = 2hyvipy +2h_v_p_). (66)

Equations (65) and (66) together imply whenever f # 0, as is the case for a shock,
the following relation

Wy = h2 = (ps = p-)(hive +hovo). (67)

This is the relativistic Hugoniot relation, first derived by A. Taub [7]. We note that in
the case of a contact discontinuity (f = 0) (63) reduces to p+ = p_.

The only shock discontinuities which arise naturally are those which are supersonic

relative to the state ahead and subsonic relative to the state behind. We call this the

determinism condition. The condition that /C is supersonic relative to the state ahead
means that, for each x € K, N, is a time-like covector relative to g:], ie.

(eZH" NN, <0, (68)

while the condition that K is subsonic relative to the state behind means that, for each
x € K, N, is a space-like covector relative to gfrl, 1.e.

(g NN, > 0. (69)

In view of (28), conditions (68) and (69) are

uj_ > n;, uj < 77—+. (70)
J1-n J1-n3
Substituting from (61), these become
f > ﬂ’ f< M (71)
J1-n% J1-n%
We conclude that the determinism condition reduces to
n-/v- N4 /v 72)

\/l—nz_ <\/1—17.2+.

The determinism condition is illustrated in figure 4.
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Fig. 4 Illustration of the
determinism condition: Sound behind
cones at a point on /C. Dotted:
Backward sound cone with
respect to the state ahead.
Dashed: Forward sound cone
with respect to the state behind.
Thin solid line: fluid flow line

ahead
x
We now look at the entropy condition which is
[s]=s+ —s_>0. (73)

In the following we will show the equivalence of the entropy condition to the deter-
minism condition. Since (recall (4), (30))

dh =de+d(pv)
= vdp + 0ds, (74)

the expansion of [k] = hy — h_ in powers of [p] and [s] is

e () e () :
[A]l = v-[pl+ > (ap)_[l?] + ¢ (apz)_[p] +6_[s]+ O(s]9)

+O(pI" + O pl [s)). (75)

Hence

h2 —h? =2h_v_[p]+ [h_ (g—;) + v2] [p]*

5 G) e () Jor
3 \op2) T \op) |

+2h_6_ [s]+ O(s1») + O(pI*") + O pl [s]). (76)

Also [v] = v+ — v_ is expanded as

d 1 (d?
[v] = (8—”) [p]+ 5 (—Z) [Pl + OpP) + O(s)). (77)
rJ 2\op~)_
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Hence

av 2 2
(hyvy +h_v)(py — p-) =2h_v_[p]+ yh- i +vZ ¢ [pl

+ h; (32_1)) + 3& (%) [ ]3
2 \op2) T2 \op) |
+O(pI" + O pl [sD). (78)

Comparing (76) and (78) with the Hugoniot relation (67) we conclude

B 1 8%v v 3 4
(5] = o [h (W) +3u_ (5) ][p] +O(plh. (19

Consider next the condition (72). Defining the quantity

1 2
q:= (—2—1)v , (80)
n

the condition (72) is seen to be equivalent to

[q] <O. (81)
From (5), (18) we have

dp _(ptp)on _ (p+p)ov

1
= = . 82
n?  ap n dp v dp (82)
Hence, in view of (30) and v = 1/n, ¢ is given by
0
g=—-h 2 (83)
ap
We then obtain
aq 3% av
— =—h—75 —3v—. (84)
p dp* p

In view of the fact that by (79) [s] = (’)([p]3), we obtain

3% v 2
] = [h_ (8—2) 30 (—) } [P+ OpP). (85)
p° ) _ ap ) _

Therefore, the condition (81) is equivalent for suitably small [p] to

9% ov
[h (W)_ + 3v_ (5)_] [p] >0, (86)
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provided that the quantity in the curly bracket is non-zero. This together with (79) is
equivalent to (73). We have therefore established, for suitably small [p], the equiva-
lence of the determinism condition (72) to the entropy condition (73).

Remark 1 We will impose the determinism condition in the shock development prob-
lem and we will see that this condition is necessary for the solution to be uniquely
determined by the data (see the formulation of the shock development problem together
with the description of the boundary of the maximal development below).

Remark 2 By (86), the sign of the coefficient of [ p] in (86) is the same as the sign of
[p]. Let now X be defined by

1 —n’T =’ (87)

The coefficient of [p] in (86) can be related to (dX/dh)_ if the state ahead of the
shock is isentropic, as will be the case under consideration. From (30) we have

(dE) _ dX/dp)s 1 (dE) (88)
dh ), (dh/dp)s v\dp),’
where we use the subscript s to indicate isentropy. Hence
dx dn? 2
w2 (E2) = —(22) —Z2a - ). (89)
dh ) dp ), h
By (30) we have
dh hn?
=) =—L, 90
(dn)s n ©0)
which implies
1 h (dv) o)
n2 v \dp),
Substituting (91) and its derivative with respect to p at constant s in (89) we obtain
372 2
vh* (dX dv d-v
—\—) =3v{— hl—) . 92
(G ) ! (dp)s " (dzﬂ)s 02
Therefore, if the state ahead is isentropic, the quantity in the curly bracket in (86) is
32 3 3h? (dx
(V) 430 () === (42) 93)
ap* ) _ ap)_ nt \dh)_

We conclude that the jump in pressure [ p] behind the shock is >0 or < 0 according
as to whether (dX/dh)_ is < 0 or >0, at least for suitably small [ p].
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2.4 Barotropic Fluids

In the barotropic case p = f(p) is an increasing function of p. Therefore,

0
n—'O =p+p (94)
on

is a function of p, which implies that for a barotropic perfect fluid, p, and hence also
P, is a function of the product o :=nm, where m is a function of s alone. In fact

o =nm(s) = exp d—p (95)
p+ f(p)

and it satisfies
dp
p+p=0o—. (96)
do

The positivity of 6 implies that m is a strictly increasing function. Therefore, we can
eliminate s in favor of m. (37) becomes

utv,m = 0. o7
We define
Y= — huy, (98)

where

_ ok d
p=l_PtP_2p (99)
m o do

Comparing (98) with (29) we see that

B =miy. (100)
Defining now
Q:=dy, (101)
we obtain
w=mQL+dm AY. (102)
From the second of (5) we have
0ds = hdm. (103)
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Therefore
iyw=mi, Q2 — (Y -u)ydm = mi, 2 — 0ds, (104)
which implies through (38)
i,2=0. (105)
From the particle conservation (36) and the adiabatic condition (97) we deduce
Vu(ou*) =mV,(nu") + nu*V,m =0, (106)
which, through (96), is equivalent to the energy equation (9). Therefore, imposing
the energy equation (106) as well as the adiabatic condition (97) the conservation

of particle number follows. We conclude that in the barotropic case the system of
equations reduces to the system

V,(out) =0, (107)
utv,m =0, (108)
i,Q=0. (109)

The unknowns are u, m and o. Equation (108) is decoupled from the other two. We
may thus ignore it and consider only the system consisting of (107), (109).

The irrotational barotropic case is characterized by the existence of a function ¢
such that

v =de¢, (110)

which implies

Q=0. (111)

Therefore, (109) is identically satisfied. By (98),

V-X=—hnu,X)>0 (112)
whenever X is a future-directed timelike vector. Therefore ¢ is a time function. By
(98), (110),

H:=h*=—("H"0,00,6. (113)

From (99)

dH dHdh 2hd 2Hn?
ar_drman _ e 2An (114)
do dh do o do o

which implies that o can be expressed as a smooth, strictly increasing function of H,
i.e. 0 = o (H). Defining
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Gy = ) (115)
= ﬁ ’
equation (107) becomes
VH(G(H)d,.¢9) =0, (116)

where H is given by (113). Taking into account that (see (28), (98), (114))

(gH™ =~ H"™ — Foked'e, (117)
where
2 dG
Fi=———, 118
GdH (118)
(116) becomes
()" V0,9 = 0. (119)
We note that
2_ | (120)
T TIYHF

We also note that in terms of H and F, the acoustical metric is given by

F
Suv = Ny + maufﬁaufﬁ- (121)

Since (107) and therefore in the irrotational case (119) is equivalent to the energy
equation (9), in the barotropic case we only need to consider the energy-momentum
jump conditions (40).

3 Setting the Scene
3.1 Nonlinear Wave Equation in Spherical Symmetry

We choose spherical coordinates (t, r, 9, ¢). Then n = diag(—1, 1, r2, r2 sin? %) and
spherically symmetric solutions ¢ = ¢ (¢, r) of equation (119) satisfy

—1\pv 2
(g7 )Mo, 0vp = ¢, mv=rit (122)
The radial null vectors L with respect to the acoustical metric satisfy

guwliL} =0, L,V =r,t. (123)
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Using the normalization condition L’ = 1, we obtain

+
=1, (124)
1+vn

L:t:at+

where 7 is the sound speed (see (18)) and v is the fluid spatial velocity given by

b

V= — = —— —

u' Uz 1z '

(125)

where we recall ¥, = 9,,¢. Using the null vectors the inverse acoustical metric can
be written as
( ' 1 )l t

(gH™ = S (LY LELY). (126)

From (117) we have
(e H"=—1-F?). (127)

From (120) in conjunction with (113) we see that the assumption n? < lis expressed
by the condition that F>0. The nonlinear wave equation can be written as

2

M rv _
BHL=0uth® = SR o)

0r. (128)

3.2 Riemann Invariants of the Principal Part
Keeping only the principal part of (128) we are left with

LYLY 3,9, = 0. (129)
The Riemann invariants are defined to be the functions o (Y, ), B(¥¢, ¥,) such that

da B

Lugy- =0 lugy,— =0 (130)
w W

where /1, are the basis 1-forms dual to the basis vector fields Li. From (130) we
deduce

a a
Y T B _ ALY (131)
Y e
for some functions &, A. Using (129) we obtain
n p 0o Wy
Lo, =L+Wa#% =&¢LLLY0,v, =0, (132)
v
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9
L9, =1L" P

= oy = )\L’fLial“pv =0, (133)
Yy

which shows that (129) is equivalent to the system
Lia=0, L_p=0. (134)

We now proceed to determine « and S. The basis 1-forms dual to the basis vector
fields L} satisfy

Lyul=1, 1LY =0 1,L"=0 I, L"=1 (135)

Therefore

Iy [(1 + on)(n ¥ v)dt + (1 — v2r;2)dr] . (136)

" (1 —1?)

Defining the operators

0
Vy= Iy, —, (137)
2.3y,

(130) becomes
Via =0, V_g=0. (138)

We introduce the functions A, ¢ as coordinates in the positive open cone in the ;-
plane by

Y, =hcosh¢, W, = hsinhe. (139)
(For h see (99), (113)). Note that by (125),
v = —tanh¢. (140)

We obtain from (136), (139)

h inh ~ 0 d
Vi = W(nhfi—). (141)
2nh oh 93¢
Defining then the operators
~ 0 0
Uy =nh— £ —, (142)
T TIET:
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(138) becomes
Uia =0, U_Bg=0. (143)
Let us now define the thermodynamic potential p by

dh
o= | —. 144
o o (144)

p is defined up to an additional constant. We may fix p by setting it equal to zero in
the surrounding constant state. Since (142) takes in terms of p the form

0 0
+

Uy = — + —
T 95 ot

, (145)

the solutions of (143) are
up to composition on the left with an arbitrary increasing function. Using

/3 u” 1 14+v
¢ = arctanh { — ) = —arctanh { — ) = — arctanh (v) = — < log
I/ u’ 2 1—v

(147)

we see that our expressions «, 8 agree with (5.16) of [7] where ¢ is in the role of p
and u is in the role of v. « and B are the relativistic version of the Riemann invariants
introduced in [6].

3.3 Characteristic System

In analogy to the equivalence of (129) and (134) it follows from (131) that (128) is
equivalent to the system

28 21

:—8, s L_B= ar . 148
r(1+ F(y)?) ¢ ¢ r(1+ F(1)?) ¢ (4o

L+Ol

We now proceed to d~etermine &, A for the choice (146) of Riemann invariants of the
principal part. From /2 = wtz - WE we have

ah
Oh _ ¥ (149)
Y h
From (147) we obtain
0 r
%8 _ I (150)
vy h?
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Using (149), (150) together with (144) we obtain

oy dh 0Y: oY, H

a8 dp oh  oc 1 (¥
— = — = =—(ZL -y ). 152
oYy dh Y, * oY, H ( n v ) (152

do _dp 0h B¢ 1(w, )

Yy, (151)
n

Using (131) in the case u = t and recalling (124) we deduce from (151), (152)

gzl(ﬁ+¢r), Azl(ﬁ_wr)_ (153)
H \ n n

The system of equations (148) becomes

b= (Ray), LamBe(hoy). s

where
H:=(+ F(y)*)H. (155)

Now we introduce characteristic coordinates u, v such that u = const. represents
the outgoing and v = const. the incoming characteristic curves. Furthermore, as the
characteristic speeds we set c+ := L. It follows that the space-time coordinates ¢, r
satisty

ar Jat or ot
— —cy— =0, — —c_—=0. (156)
ov ov ou ou

The system (154) becomes!

1 We use
ar
9 ara ara oafo Lo at (9 a\  or
222,72 _ 2L )2 (2 —)=—Ly4. 157
a0 avar T avar 8v(8t+g£8r) BU(BI+C+3r) vt (157)
Similarly
d ot
— = —L_. 158
du ou ( )
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0 ot ot 2 0 ot ot 2
ox _ e = Vr Wt v, ), _/3 ~ 2 g= Yr % .
ov v v rH ou ou qu rH

Defining

Aa. . 1) —2‘/;’ (‘/” +1/f,), Bl p.r)=20 (ﬁ —wr), (160)

the characteristic system (156), (159) becomes

0 O iwpr L= g, (161)
ov Jdv ou ou
or ot or ot
P %CJF(O!, B), Pl EC_(O[’ B)- (162)

We note that (162) is the Hodograph system.

Remark 3 The characteristic system is invariant under the conformal map
ut— f(u), v g(v), (163)

where f and g are increasing functions.

Remark 4 Inview of (113), (120), (125), (155) we can express A, B in terms of r, the
sound speed 7 and the spatial fluid velocity v as

~ 2un 2un

A=——"" B=-——"—_, (164)
r(1+vn) r(l —wn)
3.4 Jump Conditions
Let N be the unit vector normal to /C
1
N=——"ocm(Vo +0), (165)

V1-Vv2

where V = V(z, r) is the shock speed. We define
N :=+v1-V2N (166)
and reformulate (40) as

[T*] N, =o. (167)
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In components these are the two jump conditions

[y + (1] -

07
_ [Trt] \% + [Trr] — 07

which are equivalent to

[7"]
T
0= [ [~ [1"] =/
Since
u 1 r_ v

we obtain from (8)

_p+p _(p+pw o (p+ p)v?

BRI 1 -2’ 1 —?

Tll
Using (see (96), (99), (113), (115), (125))
p+p=0ch=GH=GW] —y]) =Gy}l —v)

the components of the energy-momentum-stress tensor become

T" =Gyt —p, T"=Gylv, T =Gyr*+p.

Let
y:=logh—p
(139) become
Y Y
V=T e Y= e - e,
Using (see (144))
dy 1dh
—— === 1=n—- 1,
dp  hdp
we get
W Y W Y oY Vi
_—— _—— _ = —_-—— l y
e = 2 (n+v), T > (n —v), ™ > (1+wn)
a
1z ﬁ(l o)
a8 2
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Now (see (118), (120), (144), (146))

G
da

And similarly

G

p

From (114), (144), (146) we have

ap _
Jo

1
= EGI/Itzn(l —v?).

And similarly

ap
B

dG dH 3,0
T dH d,o da

1
=-GFH
B n

G
=—(1-7n>.
277( n°)

_Sa-mp

dp dH 3j

dH dp da

R )

2

From (125) together with (179) we obtain

ov
o

1
5 =50 =),

v
ap

_ Loy
_—2(1 Vo).

(180)

(181)

(182)

(183)

(184)

Using (179), (180), (181), (182), (183), (184) to compute the partial derivatives of the
components of T, given by (175), we arrive at

aT! _G 8T”
1”’ (1 + vn), 1’” (v + (1 +vn),
o o
AT Gy? , AT Gy}
= 1— s = t — 1_ ,
op 2n( vn) op 2 (v —n)(1 —wvn)

Let us denote ¢4 :=

aTlr

" (see (124)). From (185) we have

aTtt

1 9T

Ba_

_C+

da ¢y da

aTrr
o

aTrr
op

_Gvi

=W,

(185)

(—n?.
(186)

2n

(187)
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while from (186) we have

Let us define

We note that with ¥ defined by

we have

T T 1 a7
= C_ = — .
ap ap c_ 0B
dn 5
=—4+1-7n"
“w dp + n
1 — i’y =n?,

where ¥ is given by (87). So

and

We have the following proposition:

Proposition 3.1

2
Sy a- By po) = (Gu(1 =) [ ] [B1+

2

19272

(188)
(189)

(190)

(191)

(192)

(193)

(ter* +181°)

+0 (1 181) + O (1a1181) + O ([aF’) + O (167 ]

(194)

where the coefficients on the right are evaluated at (a—, ).

Proof We prove the Proposition by showing the following statements:

(i) J is symmetric under the interchange of  and B.

(ii)
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33
8 3 (a_’a_’ﬂ /3 )

=0. (195)

(iii) 927
day 9By

(—, o, B, B-) = (GY2(1 — vH) (e, B-). (196)

@iv)

84.] (Gw2)2
M(a—,a-,ﬁ-,ﬂ—)=( 8 (1—v2)2u2) (a—, B-). (197)

To check (i) we note that p and p, like all thermodynamic variables, are functions
of p = %(a + B), therefore symmetric under the interchange of o and . On the other
handv = =, /Yy = —tanh ¢ and ¢ = %(ﬂ — ), therefore v is antisymmetric under
the interchange of « and 8. It follows from (171) (173) that J is symmetric under the
interchange of « and .

Since J is quadratic in the differences of components of 7', the first two of (ii) are
satisfied. Let

_omam (it 59

8a+ 80{+ 8(1_;,_

(Where the notation 07" /day. = (0T /dar) (e, B+) is used). Now, (185) implies

A =0. (199)
Therefore
32 82Ttt 82Trr 32Ttr
— + [Trr] [Ttl] ;’ _ 2 [Ttr] (200)
30{+ 8a+ day 80{+
which implies
82
32("“ ca_, o, ) =0. (201)
From (200) we get
P37 T 3TIr a3T r A
— [Trr] ;‘ + [Ttr] —_— (202)
8a+ Boe+ day Ba doy
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which, in conjunction with (199), implies

33J
_(a—v o, ﬁ—’ ﬁ—) =0.

3
day

Now we turn to (iii). We have

(203)

327 AT AT™ 3T dT™ AT dT"
(afa a—, /377 ﬂ7)= + -2 ((X*» ﬂ*)
04 0B+ da 0B 08 da da 0B
(204)
Using (185), (186) we deduce
3J ) 5\ 2
- (@ o, fo, ) = (th 1-v )) (@, Bo). (205)
o0y
Now we turn to (iv). From (202) we obtain
4 3 3 4
A ]+ FPTIIT AT 3T L[] T
8051 80{1 80{_3|r a0+ a0+ 80{3_ 8051
84Ttr 83Ttr aTtr
—2—F (] -2—F—=+. (206)
dary day doy
From
%A
0=—>
day
2
_ PTY ATy 9Ty FTy ATy Ty P Ty (9PTY
aai o0+ 004 aai doy 8041 80{3_ 80(_%_ Bai '
(207)
we deduce
3t
_4(a—7a—7 ﬂ—a ﬂ—) = _2Ea (208)
day
where
2
0Ty Ty (97T
Ei=— - 5 . (209)
day day day
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To proceed we need expressions for the second derivatives of the components of T'.
Using

an _ ldn

_ -9 210
da  2dp 210

together with (180), the first of (184) and the first of (179), it follows from (185) by
a straightforward computation

2\ 2
E=- (%) P — 022, @211
4n

with u given by (189). Therefore,

84.] (Gwz)Z
—la o B p)= ( o (1= vz)%) (a—, Bo). (212)
da n

This concludes the proof of the proposition. O

We will use the following proposition.

Proposition 3.2 Any smooth function f(x, y) can be written as

fx,y)=fx, 0+ f0,y) — f(0,0) + xyg(x, y), (213)
where
_
g:= 330y (214)

and g(x, y) is the mean value of g in the rectangle R(x,y):={(x",y) e R?: 0 <
¥ <x,0<y <y}

Proof Integrating (214) on the rectangle R(x, y) yields the result. O

We now consider J (a4, a—, B+, B—) as a function of [«], [B] with given a_, B_. We
denote this function again by J. Using propositions 3.1, 3.2 we can write

2
J (@l 1) = (Gu7 1 =) [ [l [B1M (], [BD

2

022

(te* L () + [B1* N (1D) ] 215)

where the coefficients are evaluated at (o—, B_). Here M, L and N are smooth func-
tions of their arguments and M (0,0) = L(0) = N(0) = 1.
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Proposition 3.3 Let f(x, y) be a smooth function on R? of the form
fy) = xym@, y) + x40 + y*n(), (216)
withm(0, 0) = 1, where m, I, n are smooth functions. For small enough x, the equation
fx,y)=0 (217)
has a unique solution for y, given by
y =xg(), (218)
where g(x) is a smooth function and g(0) = —I(0).
Proof Setting y = x3z, (217) becomes
h(x,z) =0, (219)
where
h(x,z):=zm(x,x°2) + 1(x) + x3z*n(x37). (220)

Since m (0, 0) = 1, the pair (xo, zo) := (0, —1(0)) satisfies (219). Now, since
oh
a—Z(XO, z0) =m(0,0) =1, (221)

we can apply the implicit function theorem to deduce that there exists a smooth function
g(x) such that for small enough x — x¢ we have z = g(x) with g(0) = zg. It follows
that for small enough x, f(x, y) = 0 has a solution

y=x’z=xg(x), with g(0) = —1(0). (222)

Applying this proposition to J ([«], [8]) = 0 and taking into account (215) it follows
that there is a smooth function G ([«]) such that

2

W K ; — _
(Bl =la]” G ([a]), with G(0) = 922"

(223)

We recall that above we considered J (o4, @—, B+, f—) as a function of [«], [8] with
given a—, B_. In the following we will make use of (223) in the form (with a different
function G)

(8] =[]’ G(at, a_, Bo). (224)
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3.5 Boundary of the Maximal Development

Let initial data be given on a spacelike hypersurface which coincides with the initial
data of a constant state outside a bounded domain. According to [2] the boundary
of the domain of the maximal solution consists of a regular part C and a singular
part d_B U B. Each component of d_1 is a smooth, space-like (w.r.t. the acoustical
metric), 2-dimensional submanifold, while the corresponding component of B is a
smooth embedded 3-dimensional submanifold ruled by curves of vanishing arc length
(w.r.t. the acoustical metric), having past end points on the component of d_B. The
corresponding component of C is the incoming null (w.r.t. the acoustical metric) hyper-
surface associated to the component of d_ 5. It is ruled by incoming null geodesics of
the acoustical metric with past end points on the component of d_ 3. The result of [2]
holds for a general equation of state.

In the following we will restrict ourselves to the barotropic case. We also assume
the initial data to be spherically symmetric. Therefore, also the solution is spherically
symmetric and it suffices to study the problem in the #-r-plane, where ¢, r are part of
the standard spherical coordinates (z, r, ¥, ¢).

In the ¢-r-plane the boundary of the maximal development corresponds to a curve
consisting of a regular part C and a singular part d_5 U B. Each component of B
corresponds to a smooth curve of vanishing arc length with respect to the induced
acoustical metric, having as its past end point the point corresponding to d_5. The
corresponding component of C corresponds in the ¢-r-plane to an incoming null geo-
desic with respect to the induced acoustical metric with past end point being the point
corresponding to d_B. We denote this point by O. See figure 5 on the right.

In the following we will use (¢, w) as the acoustical coordinates (in contrast to [2],
where (¢, u) are playing the corresponding roles). We recall that the level sets of w are
the outgoing characteristic hypersurfaces with respect to the acoustical metric. The
solution in the maximal development is a smooth solution with respect to the acoustical
coordinates. In terms of these coordinates the solution also extends smoothly to the
boundary. We recall the function © which plays a central role in [2], given by

w =0

I
=

'
|
|
|
|
|
|
|
|
|
1
|
|
|
1

r

Fig. 5 Left: Part of the maximal development in acoustical coordinates. Right: Part of the maximal devel-
opment as a subset of spacetime. C denotes the incoming characteristic originating at the cusp point O while
BB denotes the singular part of the boundary of the maximal development. Both figures show the maximal
development just in a neighborhood of a cusp point
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1
== i, (225)

(See (2.13) of [2]). i vanishes on the singular part of the boundary. On the other hand,
W is positive on the regular part C and the solution extends smoothly to this part also
in the (¢, r) coordinates.

We now show that

or
w=—n—. (226)
ow

We use the vector field 7, given in acoustical coordinates by (cf. (2.31) of [2])

0
T:=—. (227)
Jw
We have
0 at
Tr="" 1i=2L_y. (228)
Jw ow
Therefore
ar 0
T = ——. (229)
Jw or

Now we use the function « as defined by (2.24) of [2]

k:=g(T,T) = g(T")?* > 0. (230)
So
or K
A= <0. (231)
dw err

The minus sign appears due to the initial condition
r(0,w) = —w+k, (232)

where k is a positive constant (see page 39 of [2]). We now recall the function « (see
(2.41) of [2])

1 _
== —(g" )M 9,10yt (233)
and the relation (see (2.48) of [2])

n = oK. (234)
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Since (see (117))

2 1 _ 1
ST T T T Fa? .

and (see (120), (121))
grr =1+ Fn*(0,¢)°, (236)
we obtain
o2gr = 1. (237)

Together with (234) we arrive at

2 2 2
K
=—=5, (238)
8rr a“grr n

which, in conjunction with (231), implies (226).

Remark 5 The acoustical metric h, as introduced in [2] coincides with g, but
quantities such as ¢, B, F used in [2] do not coincide with the quantities denoted in
the same way which were introduced in the present work. Making a distinction by
putting a tilde on the quantities from [2] we have for example

By =mpBy, (239)

where 8 is introduced in (1.44) of [2], while f is the one form defined in (29). For
m see (95). Therefore, despite the fact that the wave equations of the present work
and [2] have the same form, the physical meaning of the wave function is different.
Nevertheless, functions such as «, «, u and relations thereof such as (234) are related
only to the Lorentzian geometry given by the acoustical metric and can therefore be
used in the present context as well.

In the following we restrict ourselves to one component of d_ 8 U BB and the corre-
sponding component of C with past end point d_ 5 which we denote by O. Now, the
function p vanishes on O U B. From (226) together with >0, it follows that dr /0w

vanishes on O U . In particular
ar
— ) =0, (240)
ow 0

where the index 0 denotes evaluation at the cusp point O. Let the singular part of the
boundary of the maximal solution be given by r = #,(w) and letus set wg = 0,7y = 0,
i.e. the cusp point O is the origin of the acoustical coordinate system. In spherical
symmetry, the results at the end of Chapter 15 of [2] translate into

1
ty(w) =19+ anz + OW?), (241)

@ Springer



3 Page 38 of 246 D. Christodoulou, A. Lisibach

32/ ow?
= — M > 0. (242)
/ot J
Using (226) and (240) we obtain
ou
— ) = —nok, 243
( o1 )0 nok (243)
where we defined
2
= (21 (244)
dwat /
From Chapter 15 of [2] we have
0
(—“) <0. (245)
at

It follows that ¥ >0. Since u(t.(w), w) = 0, we obtain

di) _ () (de) L (2m) _
(@)0 B (3t )0 (dw)o * (3w)o =0 (240)

which, using (241), implies

0
(_“) —o. (247)
ow /
Taking the partial derivative of (226) with respect to w and evaluating at the cusp point
yields
3°r
— ) =0, (248)
w?/,

where we used (240). Taking the second partial derivative of (226) with respect to w
and evaluating at the cusp point we obtain

92 A
IHY =Mt (249)
w?), «
where we defined
A o (250)
=—kx|{—) .
8w3 0
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From Chapter 15 of [2] we have

2
(3_“) -0 (251)
0

dw?

which implies that A>0. From (241), (242), (243), (249) we deduce that B3, i.e. the
singular part of the boundary of the maximal development, is given in a neighborhood
of the cusp point by

A

53 w? + Ow?). (252)

te(w) =t +

In the following we will also make use of the definition

fmr (21 (253)
=k|l—) .
0 u)4 0
We summarize the behavior of the radial coordinate at the cusp point.
3 9? 9’ 9?
(—r) = (—rz) =0, (—2) <0, ( ’ ) >0, (254
ow /, w=/, ow> / owar /
We made the definitions

9%r 33r
K= , A= —k|{—=) . (255)
dwar / w3/,

The boundary of the domain of the maximal solution close to a cusp point is shown
in Figure 5.

3.5.1 Behavior of a and B at the Cusp Point

In [2] the null vector fields L, L are used. In the ¢-r-plane they are given in terms of
acoustical coordinates by (see page 933 of [2])

ad 0 ad
r=2, =K., % (256)
ot a? ot dw
Therefore,
9 o? 9 2% 9
Li=L=—, L. =-—L=—+4"— . (257)
ot 7 at n ow

Now, since the solution is smooth with respect to the acoustical coordinates (¢, w) and
the Riemann invariants are given smooth functions of ¥, we have

(Lya)y < 00, (L+B)y < oo. (258)
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Remark 6 We note that in (256), (257) (and also in (262) and in the second line of
(265) below) « refers to the quantity given by (233) as in [2]. However in (258)
and everywhere else in the present work « denotes the Riemann invariant defined by
the first of (146). Also in (260), (261), (265) below « denotes, as in [2], the inverse
spatial density of the outgoing characteristic hypersurfaces, defined in (230) while
everywhere else in the present work it denotes the quantity defined in (244).

Now we look at the partial derivative of & and 8 with respect to w. From the second
of (131)

B _ g By e
3w = T8 = 3y TV =LATV. (259)

Let us now use the vector field f", collinear and in the same sense as 7 and of unit
magnitude with respect to the acoustical metric (see (2.57) of [2])

T=«"'T. (260)
Using now X*Y v, = Y* X, (recall that v, = 9,¢), we deduce from (259)

B _

= k. (261)

where f is a smooth function of (¢, w). Therefore, in conjunction with (234),

ap ap
L_B=—+2af—, 262
P=% T2 5 (262)
which implies
(L_B)y < oo. (263)
Now,
0 rg= 2%y e Ty (264)
—_— = o = — = .
dw vy, -
where we used the first of (131). Using again the vector field T we get
oo g fML w
— =&k _
ow ’
N B d
Y TP AN (265)
at qw

where we used (234). Substituting this in L _« we see that (L_a), blows up.

@ Springer



Shock Development in Spherical Symmetry Page 41 of 246 3

We note that from (261) together with (247) and the relation (234) we have

d 92
(_/3) _ (_’z) — 0, (266)
3w 0 aw 0
while from (265) we have
d
(—“) < . (267)
ow /

3.5.2 Incoming Characteristic Originating at the Cusp Point

Let in acoustical coordinates C be given by w = w(¢). Setting r () = r(t, w(t)), we
obtain

d
—r(t) = c-(t, w()). (268)
dt
Since
dr  or n ar dw (269)
C. = — = — —_—
dt ot  dw dt
we have
dw c- —cy
I o (270)
ow
Therefore, the inverse function z(w) satisfies
dt -
s w (271)
dw ¢y —c_
Using (254) we deduce
dt
(—‘) =0. (272)
dw ],
Taking the derivative of (271) with respect to w we obtain from (254), in view of
(272), that
1 =0 (273)
dw2 0 o
Taking a second derivative of (271) and using (254), (255) yields
d’t A
— ) =—. (274)
dw3 ), «(cto—c_o)
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Taking the third derivative of (271) and evaluating the result at the cusp point yields,
in conjunction with the above results

4 —
(a’ 5) . A4k —31) & 275)
0

dw* K(cro —c-0)*>  Kk(cyo—c—o)

where we used the definition (253) and we defined

de_

We conclude from (272), (273), (274) and (275) that

3 _ 4
) =t (DS ) o (w).

Kk(cro—c—0) 6 \«(cyo—c—0)?  k(cro—c—o)) 24
277)
The function « along C is given by
a(w) = a(t(w), w). (278)
Taking into account (272), (273) we obtain
d ad
(_Q) - (_a) , (279)
dw /g ow /g

d*a . 82a) (280)
(@), = (5%),

. oo . 0% 281)
a={—) , a={—) .
0 Bw 0 0 awz 0

Defining

we have
. L. 2 3
a(w) = ap + cow + anw + O(w?). (282)
For the function g along C given by
B(w) = B(t(w), w), (283)
we find, taking into account (266),

Bw) = Bo + Ow?). (284)
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Now, since

d
i lew), Bw) = S-(w). w), (285)

applying d/dw to this, evaluating at w = 0 and using (244), (266), (272) and (279)
we obtain

(%+)d0=K (286)
0

Ba

3.6 Shock Development Problem

The notion of maximal development of the initial data is reasonable from the mathe-
matical point of view and also the correct notion from the physical point of view up to
C U 0_B. However, it is not the correct notion from the physical point of view up to
B. Let us consider a given component of 3 which we again denote by B. Its past end
point we denote by O (this corresponds to d_13). We also consider the corresponding
component of C, i.e. the incoming null curve originating at O which we again denote
by C (see figure 5 on the right).

The shock development problem is the following:

Find a timelike curve X in the ¢-r plane, lying in the past of B and originating at
O, together with a solution of the equations of motion in the domain in Minkowski
spacetime bounded in the past by X and C, such that the data induced by this solution
on C coincides with the data induced by the prior maximal solution, while across /C
the new solution displays jumps relative to the prior maximal solution, jumps which
satisfy the jump conditions. The past of /C, where the prior maximal solution holds, is
called the state ahead, and the future of /C, where the new solution holds, is called the
state behind (see 2.3). K is to be space-like relative to the acoustical metric induced
by the maximal solution and time-like relative to the new solution which holds in the
future of XC. The requirement in the last sentence is the determinism condition.

Let T, be the subset bounded by C, X and the outgoing characteristic originating
at the point on C with acoustical coordinate w = &>0. In T, we use characteristic
coordinates. We first shift the origin of the (¢, w) coordinate plane so that the cusp
point O has coordinates (0, 0). We then assign to a point in 7 the coordinates (u, v)
if it lies on the outgoing characteristic which intersects C at the point w = u and
on the incoming characteristic which intersects /C at the point where the outgoing
characteristic through the point w = v on C intersects /C. It follows that (see figure 6)

ng{(u,v)eRZ:OSUSLtfe}. (287)

Remark 7 We note that to set up the characteristic coordinates in this way we have to
a priori assume that the solution is smooth in these coordinates. This is shown to be
true below.
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Fig. 6 The domain T K:u=v

In the following we will denote «, 8 and r corresponding to the solution in the maximal
development by o*, 8* and r* to distinguish them from «, 8, r which we use in referring
to the solution in 7. The quantities corresponding to the prior maximal solution are
expressed in (¢, w) coordinates. The solution in T, has to satisfy the characteristic
system (see (161), (162))

do _ 0 gy BB g0 (288)
v v « B.r), du  du @ B.r),
ar Jat ar at
% = %C-F(Ot’ /3)$ 5 = EC—(av ﬂ)v (289)
together with initial data (for ¢ see (277))
t(u,0) =h(u):=t)), (290)
a(u,0) =a*(h(u), u) =: a; (1) (291)
and
r(0,0) = r*(0,0) =: ro, (292)
B(0,0) = B*(0,0) =: po. (293)

The system consisting of the second of (288) and the second of (289) together with
(292), (293) constitutes, at v = 0, a system of ordinary differential equations for g
and r. Hence the above conditions on 8 and » at O imply that the data for 8 and r
along C coincide with the data induced by the prior maximal solution.

Let

f)y=t,v), g):=r,v)—ro. (294)
Condition (171) is
J(a—(v), ay(v), B-(v), f+(v)) =0, (295)
where
ar(v) =a,v),  Br(v) =B, v), (296)
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the right hand sides given by the solution in 7, and
a-(v) =" (f(v),z(v),  B-(v) = B*(f(v), 2(v)), (297)

the right hand sides given by the solution in the maximal development, where z(v) is
the solution of the identification equation

g) +ro=r*(f(v), z(v)), (298)

identifying the radial coordinate of points on K coming from the solution in the
maximal development and from the solution in 7,. Condition (170) is

)
f(v) and g(v) have to satisty
U v - %
%(v)V(v) =7 (). (300)

We restate the free boundary problem as follows.

For small enough ¢ find in T, a solution of (288), (289) which attains along C the
given data and along K satisfies (295), (300), where V (v) is given by (299) and z(v)
is given by (298).

We solve the problem using an iteration whose strategy is the following. We start
with approximate solutions z,, (v), B+.m(v), Vi (v). Then we solve the character-
istic system (288), (289) with (oty+1, Bm+1s tm+1, Fm+1) in the role of (a, B, ¢, r)
with initial data #,,41(u,0) = h(u), op+1(u,0) = «; () (on C), boundary data
Bm+1 (W, v) = B4 (v) (on K) and (0, 0) = rp together with the requirement that

ey v = S ), (301)

where

Jo+1(0) =110, v), g1 (V) :==rmt1(v, v) — 1o, (302)

We then substitute fy,+1(v), gm+1(v) for f(v), g(v), respectively, in the identification
equation (298) and solve for z in terms of v. The solution we define to be z,,4+1(v).
Using now z,4+1(v), fin+1(v) we obtain through (297) o— 41 (v), B— m+1(v). We
then use these together with o ;,41(v) to solve (295) for f4(v) which we define to
be B4 m+1(v). Note that By 41(v, v) = B4 (V) but o1 (v, V) = @ 41 (v). We
then define V;,,+1(v) by (299) where the jumps on the right hand side correspond to
o+ m+1(V), B+.m+1(v). We summarize the strategy as follows

1 2
Zms Btoms Ve = Qg1 Bt It 1 Tm1 = 1> 8m+15 O mt 1

3 4
= Zm4+1 —> Bromtts Ving1- (303)

@ Springer



3 Page 46 of 246 D. Christodoulou, A. Lisibach

In the following we shall call the triplet (z,,, B+.m, Vin), which are functions on the
boundary /C, boundary functions corresponding to the m’th iterate.
We make the following crucial observation. Let

F(v,2):=gW) +ro —r*(f(v), 2). (304)

(E) :_(8r*) ~0 (305)
aZ 0 ow 0

it is not possible to use the standard implicit function theorem to directly solve the
identification equation (298) for z in our iteration scheme. We will use leading order
expansions of g(v), f(v), z(v) in the identification equation to arrive, through a cancel-
lation, at a reduced identification equation which can then be solved for the remainder
function of z(v).

Since (see (240))

4 Solution of the Fixed Boundary Problem
4.1 Setup of Iteration Scheme and Inductive Step

The goal is to find a solution of the system of equations

o ot ~ 2B ot ~

9 _ S ke por). L= i o, 306
v ppl @B G =g Bl b (306)
ar ot @ B) or Jat @ p) (307)
—=_—cy(@p), —=_—c(ap),

av ov + ou Buc *

together with initial data «(u#, 0) = «; (u) (on C), boundary data (v, v) = B4 (v) (on
KC), initial data # (4, 0) = h(u) (on C) and r (0, 0) = ro, together with the requirement
that for a given function V (v) the equation

df _dg
E(U)V(v) = E(U)’ (308)
is to be satisfied, where
f):=t(,v), g):=r(v,v) —ro, (309)

and the requirement that ¢ is a time function, i.e.

Jat ot
—,— >0 for u,v>0. (310)
ou ov

Since we set fp = 0 we obtain from (309) f(0) = g(0) = 0. For the initial data of ¢
along C we assume (see (277))
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A

1, 0) = k() =wh),  heCl0e)  hO) = g,

(311)
For the initial data of « along C we assume (see (282))

1
a@u,0) = ;(u) = ag + dou +u*d; (u), & € C'10,e],  &(0) = 5620.

(312)
Furthermore, we assume B4 (v) € Cl0,6], V(v) € CY[0, ¢] and
d K
%(v) =0@W), V@ =cto+ 5(1 + y)v + OW?), (313)
where y € C![0, ] is a given function with
v(0) = —1. (314)
We define
dy
Y:=sup|—|. 315)
[0,e] dv
The solution is to be found in a domain 7, for small enough &, where
Ts::{(u,v)ERz:Ofvfuge}. (316)

Taking the derivative of the first of (307) with respect to u and of the second of (307)
with respect to v and subtracting yields

9%t dcp 9t dc_ ot
. g A _ 2=y, 317
C+ =g T 3u 90 Bv ou (317)

Defining

1 9 1 dc-
= ik e (318)
cy —c— du cy —c_ 0v

equation (317) becomes

9%t ot ot

— —v— =0. 319
ugv T o0 Vou (319
Using (307) equation (308) becomes
1
a(v) = —b(v), (320)
Y (v)
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where we use the definitions

a(v) = g—i(v, V)., b)) = g—;(v, 0. =W VO

T V@) —c_(v)
where
Cx(v) == cx (o4 (v), B+ (v)). (322)

Let us recall that in acoustical coordinates (¢, w), the boundary of the singular part
of the maximal development B is given by #,(w) (see (252)). We have

dt,
— ] =0. 323
(d w)o G2
Since we are looking for a solution in which the shock K lies in the past of B we
should have
d
(—f> =0, (324)
dv 0

where f(v) = t(v, v) describes the shock curve C. By this assumption together
with (311) we get

Jt
—(0,0) =0. (325)
v

From the first of (313) together with the second of (306) in conjunction with (311)
we obtain

%(0, 0)=0. (326)
v

Taking the derivative of the second of (306) with respect to v we find

B Jv B av | ar av

92 32t - ot (9B dr - 3B aB ot
p = B4+ — —A 9B 9 —ci— ). (327)
oudv Judv Ju

where we also used the first of (306) together with the first of (307). Using the first of
(306) we obtain

dc—  dc_ Ot i dc_ 3B

—_— = _— 328
v da dv + aB dv (328)

Using this in (317) we get

8%t 1 dcy 0t Ot (dc_ 3t ~  dc_ D
_ ey o1 01 (Do ot g D= 9P| (329)
dudv c+ —c_ | du dv  QJu \ du dv aB adv
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Using this for the first term in (327) we get

92p 1 dcy 0t Ot [dc_ 9t - dc_ B\ ] =
=— < — —(——A+—2)tB
dudv c+ —c— | du dv  QJu \ du dv aB adv
ot (0B or - 9BIp OB ot
———A+ ="+ —c,—). 330
+8u(8o{8v 98 8v+8rc+8v) (330)

Along C (329), (330) build a system of the form

d (ap/avY _ (an an aB/dv B
L)) ) wome o

Together with the initial conditions given by (325), (326), we arrive at

ﬁ(u, 0) =0, %(u, 0) =0. (332)
ov ov
Hence, we expect
z(u, v) = O(v), %(u, v) = O(v). (333)
ov ov

Therefore, we base our iteration scheme with this expectation in mind.

We construct a solution of the fixed boundary problem as the limit of a sequence
of functions ((ay, Bn, tw, n);n = 0,1,2,...). Given (o, B,) we find (41, Bn+1)
in the following way. We set

1 0 1 dc_
My = ———— S Uy i=——— = (334)
Cin —C—p OU Cin —C—p OV
where
Cin =cx(ay, Bn)- (335)

Let t,, be the solution of the linear equation

8%t, at, a1,

2,2 =0, 336
oudv Hon av b ou (336)

together with the initial data on C (cf. (311)) and the boundary condition on

an(v) = by (v). (337)

1
Yn(v)
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We then find r,, by integrating (307), i.e.

v at,
ru(u, v) = ry(u, 0)+/ (C-l-,n_n) (u, v/)dv/
0 av

“ aty, , , v oty o
=ro+ c—pn— ) W', 0)du" + Crn— ) (uw,v)dv. (338)
0 ou 0 av

We then define o, 41 and §,,41 by

u

an+1(u,v):=ai(u)+/ Ap(u, v)dv', ﬂn+1(u,v):=ﬂ+(v)+/ B,(u', v)du',
0

v

(339)
where
at, ~ oty ~
An = _A(a}'h ,Bn’rn)’ Bn :Z_B(al’h ﬂn’rn)- (340)
dv ou

We have thus found (o041, Bu+1)-

To initiate the sequence we set
ao(u, v) =ai(u),  Polu,v) =B (v). (341)

to(u, v) is given by the solution of (336) (with 0 in the role of n) with 1, vy given by
(334) (with O in the role of n). ro(u, v) is then given by (338).

The way we set things up we see that to each pair (o, B,;) there corresponds a
unique pair (,, r,) given by (336), (338). It therefore suffices to show that the iteration
mapping maps the respective spaces to itself (by induction) and the convergence only
for the sequence ((«,, Bn);n = 0,1,2,...). Let us denote by («, 8) the limit of
((otn, Br);n = 0,1,2,...). The convergence of («,, B,) to («, ) will imply the
convergence of (t,,, r,) to (¢, ), where ¢ is the solution of (336) with the coefficients
W, v given by c+ («, f) and r is given by (338) such that when ¢, r are substituted into
the right hand sides of (352) below, the left hand sides of (352) are «, B respectively.
Therefore this will imply the existence to a solution of the fixed boundary problem.

The first of (313) is equivalent to

d
‘ﬁ(v) < Cv. (342)
dv
We now define
Ce?
bo :=|Bol + - (343)

where the constant C is the constant from (342). Therefore,

sup [B4+(v)| = bo. (344)
vel0,e]
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Fig. 7 The rectangle R; 8
(5 + bO Rt5
«
0+ ag
Let now
ap:= sup |o;(v)l. (345)
vel0,e]
Let §>0 and let Rs be the rectangle given by (see figure 7)
Rs:={(a, f) € R* : |a| < 8 +ap, |B] < 5+ bo). (346)
We define
N := max { sup|A(a, B, )|, sup |B(a, B, 7)| } , (347)
Qs Qs
where we defined
Qs:=Rs x [5r0. 370] - (348)
Let
Co:= 2 (349)
0-= 3[(2 .
We now choose a constant Ny such that
No > CoN. (350)
Defining
o (u,v) = (u,v) — (),  Byu,v) = Bu(u, v) — B4 (v), (351
we have
v u
ap g (u,v) = /0 Ap(u,v)dv', By (u,v) = / B, (', v)du'. (352)
v
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Let X be the closed subspace of C! (T, R?) consisting of those functions F = (F, F»)
which satisfy

O F0=0, FEuv=0 (353)

. 1 0F) 10F, 10F 10F

(i) ||Fllx:=max{sup|———|,sup|———|,sup|———|,sup|———|¢ < No.
7., |u ou v v u ou v dv

(354)

As a preliminary result concerning the linear equation (336) we have the following
proposition.

Proposition 4.1 Let

1, v) = — (1 +t(u, v)), where T(u,v) = O), (355)
C+0 —C-0
v(u, v) = O(v), (356)
L _ 07004 b)), where p(v) = po(v) + Ow).  with
y(v) v
1
@+ 1)
=2 357
i = 2 (357)
A u? 4
hu)= —2> % L owh). (358)

Kk(cto—c—0) 6

Then, provided we choose € small enough, depending on Y, the solution of the equation

8%t ot at
— —v— =0, 359
ausv  Mov " Vou (359)
with initial condition
t(u,0) = h(u) (360)
and boundary condition
1 Jt at
a(v) = —>b(), wherea(v):=—(w,v), bw):=—(,v), (361)
v (v) av u
is in CY(T,) and satisfies
ot A ot AGBu? —v?) ;
— (W, v) — =—v| < C(Y)uv, —Wwv) - ————— | < C(Y)u
v 3k2 au 6K (cy0 —c—0)

(362)
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for (u, v) € T,, where C(Y) are non-negative, non-decreasing, continuous functions
of Y. Furthermore, let f(v) :=t(v, v), then

df A A 1 Vopdy o, 2
%(v)—?vzm[h)(y(v)+l)+ﬁ/o v £(U )dU +O(U ),
(363)
forv € [0, ¢].
Proof Integrating (359) with respect to v from v = 0 yields
ot v / ot
—(u,v) = e K& p' () —/ K@y — ) (u, v)dv' |, (364)
au 0 v
while integrating (359) with respect to u from u = v yields
at " / ot
—(u,v) = e FV Jaw) + / L (v— ) ', vyau' (365)
av v au
where we used the definitions
v u
K(u,v):= / (=), v)dv', Lu,v):= / w(', v)du'. (366)
0 v
From the first of (366) together with (356) we obtain
K(u,v) = O@?). (367)
Evaluating (364) at u = v yields
—K(v,v) / ! K(,v) ot / /
b(v) =e ik (v) — e ua— (v, v)dv' ¢ . (368)
0 v
Defining (see (355) for the definition of 7 (u, v))
" K@) K@) "\ 9t Ny
I(v):= {e W) ] KO r(v,v)}a—(v,v)dv, (369)
0 v

we have

b(v) = e KOV [hm - +CO (f () = h() + 1<v)>} . (370)

€+0

where we used

/v %(Uy V)dv' =1t(v,v) —t(v,0) = f(v) — h(v). (371)
0
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From (320), (321) we have

af = ! 1)b 372
%(U)—(m*' ) (v), (372)

which implies, using (357), (370),

o (1) = oK (1 o)+ ) £ )
dv C+0 —C—0

+e_K(”’”)(1+,0(v)+ = )(C+°;C°h’(v)+h<v>—1<v>).

C+0 — C-0
(373)
Using the definitions
- p(v) K 1 _
A(v) = KO + — = (1= emKOm), (374)
v C4+0 — C—Q v
—K(v,v) _
Bv):=— (1 + () + —— ) (C*O oW )+ h(v) - I(v)) :
v C4+0 — C—0 K
(375)
equation (373) becomes
d
w + A()vf (v) = V2 B). (376)
v
Since (cf. (311))
/ A 2 3
W)= —— 24+ 0w, (377)
2k (c40 — c-0)
we can write
A N
B(v) = — + B(v), (378)
2k2
where
Ao A —K(v.v) kv —K(v.v)
Bw) =55 He PO+ (1 p )
1
n _ze—K(v,v) (1 4 o)+ KV )
v C+0 — C—0
—c_ A
x (Mh’(u) — v +h(v) — I(v)) . (379)
K 2K
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Integrating (376) from v = 0 yields
v
vf (v) =/ e~ Jy A 2 By gy (380)
0

Substituting this back into (376) gives

af

1 v v " "
%(v) = vB(v) — ﬁ(l + vA(v))/O e~ [y A 2 By gy (381)

Using now (378) we find

df Y

— ()= =M 2
T (v) 72 (v) + N(v), (382)

where N (v) is linear in é(v), while M (v) is independent of é(v), ie.

M(v) = Mo(v) + M1 (v) + M2(v),  N(v) = No(v) + Ni(v), (383)
with
L[, 2
My(v) :=v — —2/ Vedy = S, (384)
v 0 3
1 v v " "
M (v) = —2/ (1 — e~ Jy ARy ) v2dv', (385)
v Jo
A v v v "
Mr(v) = — (U)/ e [y A@W"dv v/ZdU/’ (386)
v Jo
and

A 1 v v " 7" A
Ni(v):=vB;(v) — — (1 + vA®W)) [ e WA W23 ' i =0,1,
1)2 0
(387)

where we split B(v)intoa part depending on / (v) and a part independent of 7 (v), i.e.

~ A
By(v) := 32 [e_K("’”) (p(v) + L) _ (1 _ e—K(v,v))]
i C+0 — €0

1 KV
+ e K (1 +p() + —)
v C+0 —C—0

x wh’(v) - va +h) ], (388)
P 2k2

. I
Bi(v):= — e K&V (1 +p(v) + L) 1(v). (389)
v C+0 — €0
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In view of (357) we have

p(V) + ———— = po(v) + O(v). (390)

C+0 —€—0

In the arguments to follow ¢ >0 will denote a number which we can make as small
as we wish by choosing ¢ suitably small. From y(0) = —1 we have

ly() + 1] =vY <gq. (391

Now, since we can make 1 — %UY as close to 1 as we wish by choosing ¢ suitably
small depending on Y (in the following we will not state this dependence explicitly
anymore) and since (cf. (391))

1= 3ly@+1]=1—3vY, (392)

we obtain

1

_ , (393)
TSN

for p>1 but as close to 1 as we wish by choosing ¢ suitably small. Hence

1o(v)] < —|y<v) +1l< E“Y < geY <q. (394)

where ¢ >0 as small as we wish by restricting € (and therefore €Y') suitably (cf. (391)).
Therefore,

o) =g+ Cuv, (395)

We now look at By. From (311) it follows that the asymptotic form of the second
bracket on the second line of (388) is O(v3). Taking into account (367), (390), as well
as (395), we obtain

A
Bo(v) = ) ~—po(v) + O(v). (396)
(374) together with (394) yields
v[A@W)| = |po()| + O(v) < ¢’ (397)

From (374) we obtain

/ A" dv” /U 'p(’(” IO, ”+/ OoMydv" < 4", (398)
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where for the first integral we use (cf. (394))

lpo(v)| < EUY (399)

and we again choose ¢ sufficiently small. ¢’, ¢” are like ¢, positive and as small as we
wish by restricting ¢ suitably. From the two bounds in (397) and (398) it follows that
the contribution of the O(v) term in éo (cf. (396)) to Ny (cf. (387) with i = 0) has
the asymptotic form O(v?).

We now look at the contribution of the first term in (396) to Ny (cf. (387)). This
contribution is

v
A 1 2] / 1
53 (v ) = — [ o2 po(v)d
0
)\. 1 v v " "
#a [ ) (1= B ) e miay

A v v " "
_40) / e~ Jy AW v’zpo(v’)du’]. (400)
v 0

Since the function (1 — ¢*)/x is bounded for x € [—1, 1], it follows from (398) that
the first term in the second curly bracket in (400) is bounded by

( / / |A<v”>|dv”) 021 po (). 401)

Now, since

1" " v |,00( 8l 1
|A(v )|dv + O)dv” < CY + v, (402)
v
where we used (399), we obtain

v v C v
2/, ( / |A<v”>|dv”) v’2|po(v’>|dv’s; /0 (Y + D% pov)|dv’
v/

<CY + Y, (403)

where we again used (399). Choosing ¢ sufficiently small such that Y2¢ < 1, it follows
that C(Y +1)Y v < Cv?, i.e. the first term in the second curly bracket of (400) is
bounded in absolute value by Cv?.

Now we look at the second term in the second curly bracket in (400). We will use

Pl < C¥Y,  |AW)| = "’0( N Lomy=cw+. (404)
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Those are consequences of (397) and (399). Using these and (398), we have

A v v " " C Y 1 Y v
’ (U)/ e~ Jy AW 2 5| < cr+hy / V3dv < Cv?,  (405)
v 0 0

v

where in the last step we again use the assumption that Y2¢ < 1. We conclude that the

second term in the second curly bracket of (400) is bounded in absolute value by Cv?.

Therefore, the second curly bracket in (400) is bounded in absolute value by Cv2.
We rewrite the first curly bracket in (400) as

1 v U/Z ,
i+ 1) - ﬁ/o S0+ Dy + o] - 160 + D}
1 v
-5 [ 0w o)+ nla. (406)
For the curly brackets we use the estimate

Tow +1)?

AT T | < Cv?Y?, (407)
1 - -(y(v) +1)

lpo() — () + 1| =

where we used (391). We deduce that the second line in (406) is bounded in absolute
value by Cv? where we again make use of the assumption that Y2¢ < 1. We conclude
that

s 1 v
No(v) = Iv(y(v) +1)— —/ V2 (y(v) + l)dv’] + O0®W?). (408)
0
Integrating by parts yields

No(v) = {2v(y<v)+1)+ ! / CEA (v)dv]+0<v2>. (409)
0

A
1242
We now turn to Np. For this we have to estimate I§1. In view of (389) we have

I C
[B1(v)| < ﬁll(v)l- (410)
Now we look at I (v). From (367), (355) we have
1K) 1 < cv?, |r(u, V)] < Co. (411)

These imply

— (v, V)| dv, (412)

v ot
I (v)| = Cv
0 av
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which yields
ot

~ C v
Biw)| < —/ 9w, v av'.
v Jo |0v

Now,

—/ V2B ()]dv' < l/ V'|By(v)|dv’

< —/ {/ dv”]dv’
< —/ [ (v v dv’ ]dv”
< —/ (v — V)T (v, vV")dv"

v Jo

v
< C/ T (v, v")dv”,
0

(413)

(414)

where to go from the second to the third line we changed the order of integration and

in the fourth line we used the definition

at
— @, v)|.

T(u,v):= sup 3
v

u'€v,u]

Using (413) and (414) in (387) with i = 1 we obtain

v
M) < € / T (v, v)dv'.
0

We postpone the estimation of 7" until the estimates for M are completed.

We now look at M (cf. (385)). We rewrite M; as

1 v v
M (v) = E/ {/ A(v”)dv”} v2dv’
0 v

v v " " v
+ s (1 — o Jy AGNY _/ A(v”)dv”) vdv'.
0 v’

V2
Since

A(v) =

po(v)
v

we can rewrite the term on the first line as

v 1 /
[awwtan = 55 [T+ o) v

302

v
=32 po(WHV2dv + OW?).
0

(415)

(416)

(417)

(418)

(419)
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We now rewrite

l v
3—2/ oo (V)2 dv’
v 0

= % [/ 3y + l)v/zdv/+/ (o) — (") + 1) ,/Zd,/]
3v 0 0

1 L)
182[v(y(v)+1) /0 3 (v)dv]—l—@(vz),

(420)

where for the first term we used integration by parts while for the second term we
used (407) together with the assumption that ¥ < 1. This implies that the term in

the first line of (417) is equal to

1 / dy
182[1} Y@ +1) - /0 3 (U)dv]+(’)(v2).

421)

Using the fact that the function (1 —e™ — x)/)c2 is bounded for x € [—1, 1], implies

that the term on the second line in (417) is bounded by

v v 2
(/ |A(v”)|dv”) v2dv'.
U/

Now, since
v v
/ [AQ")|dv” 5/ [AQW)|dv < Cu(Y + 1),
v 0

where we used (404), we obtain

C [V v 2
—2/ (/ |A(v”)|dv”) v2dv < Co(Y + 1) < Cv?,
v=Jo v’

where we used the assumption ¥ < 1. This together with (421) implies

1
M (v) = 82 Hv Y +1) - /0 v’ y(v )ydv' ] +0@W?).

We now look at M, (cf. (386)). We rewrite M, as

v ) " "
My(v) = _gvz N M/ (1 o Awhd )U,zdv/'
v Jo
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For the first term we have

_& 2 _ pO(U) 2
3 Y = v+ O@W?)
=200+ -3 (30@ + 1D - pw) + 0w
= —2(0) + D+ 00D, 27)

where we used (407) together with the assumption eY? < 1. Taking into account that
the function (1 — e™)/x is bounded for x € [—1, 1] and integrating by parts we find
that the second term in (426) can be estimated in absolute value by

v
ClA®W)| / AW)dV | v (428)
0
Using the second of (404) we get
C|A(v)|‘/ AQ@Hdv' | v <C(Y+1)2v <Cv (429)

where we again used the assumption ¢Y 2 < 1. From (427), (429) we obtain
v
Mp(v) = == (@ + D + O®?). (430)

We shall now turn to the estimate of 7 (u, v) and prove that 7'(u, v) < Cv. To
accomplish this we will use the ode (382) but we will use less delicate estimates for
M; and N; than derived above. We derive these rough estimates from the delicate
estimates (409), (425), (430) by using the two estimates (cf. (391))

ly(w) + 11 = C, =C. (431)

dy
v%(v)

Using the resulting (rough) estimates together with (384), (416) in (382) we arrive at

‘—(v)

<c [ / . v’)dv’] . (432)
0

Using the asymptotic form of w(u, v) as given by (355) it follows from the second
of (366) that | L (u, v)| < Ce. We deduce from (365) together with the asymptotic form
of v given by (356), very roughly,

5C[|a(v)|+v/vu 5

2(L/, V) du/] . (433)
u

8t( )
—(u, v
ov
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From (364) we deduce, very roughly,

v
§C|u2+/
0

Substituting in the integral in (433) the bound (434) yields

r

dv’].

O (. v) O )
—(u,v —(u,v
u dv

ot v
— @, v)|du’ < C(u—v) [u2 +/ T (u, v’)dv/] .
ou 0

Now,

d
d—i(v) =a() +b) = (1 +y@)a(v),

which implies

af

(v)‘ = ‘%(v)

where for the first inequality we used

0<yWw) <Cu,

v
<C [U+/ T (v, v/)dv/],
0

(434)

(435)

(436)

(437)

(438)

which follows from (357), and for the second inequality in (437) we used (432).

Substituting (435) and (437) into (433) yields

5C[v+/vT(u,v/)dv/}.
0

Since T (u, v) is non-decreasing in its first argument (cf. (415)) we have

Bt( )
—(u,v
v

ar(/ )
— ', v
ov

v
<C [v +/ T, v’)dv’] for u’ € [v, ul.
0
Taking the supremum over all u’ € [v, u] we find

T(u,v) <C [v +/v T (u, v’)dv/] .
0

Defining

> (v) = /U T (u,v)dv,
0
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equation (441) becomes

(443)
Since X, (0) = 0, we get
v /
u(v) < / SOV dy < C. (444)
0
Therefore,
T(u,v) < Cv. (445)
Plugging this estimate into the estimate for N1, i.e. into (416), we obtain
IN1(v)] < Cv?. (446)

Using now the delicate estimates for Mg, No, M1, M> as given by (384), (409), (425),
(430) in the ode (382), we arrive at

d_f( ) — 2 v= 2 e + D+ ! / 3 y(v )d' ] +OWY). (447
k2 18k 0
This is (363).
Using now
I
ly(w)+ 1] < Y, —| <Y, (448)
dv
in (447) we obtain
‘ﬁ( ) — %v < C(Y)’. (449)
Since
_ 4y by = Yy Y 4f
a(v) = E(v) b(v) = 70 (v) g dv( v), (450)
we obtain from (438),
a(v) = d—f(v) + 0. (451)
dv
Together with (449) we conclude
A 2
a(v) — T3V = C(Y)v-. (452)
3k
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Recalling the definition (415) and using (445) we get

Jila
o |0

t v
—(u, V)| dv < / T(u, v')dv' < Cv>. (453)
v 0

Substituting this into (434) yields

ot
‘a(u, v)| < Cu®. (454)

We now revisit (365), in particular the term

/u e_(L(u,v)—L(u”v)) (l)ﬁ) (u/’ U)du/. (455)
v ou

From (355) we derive

u
|L(u,v) — L@, v)| = / w”, v)ydu'| < Cu. (456)
u/
Using now (356) and (454) we have
! —(L(u,v)—L(u',v)) ot / / 3
e ’ ’ v— ) (u,v)du'| < Cu’v. 457)
v du
We now look at the first term in (365) and rewrite it as
—L(u,v) —L(u,v) A —L(u,v) A
e Yaw) =e Y —v+te Y lalw) — —v]). (458)
32 3k2

The second term can be estimated using (452), while for the first term we use (355)
to estimate

_ u
Liu, vy — <=V | _ C/ W'du' < Cu®. (459)
C+0 — €0 v
Now,
_ _ku—v) —
e I LI Cul) NPT (460)
Cy0 —C—0
which, together with (459), implies
—L(u,v) K(u—v) 2
el = 20 4 0. (461)
C+0 —C—0
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Using the estimates (452), (461) in (458) and the resulting estimate together with (457)
in (365) yields

at

a(u, V) — mv < C(Y)uv. (462)
This is the first of (362).
We now revisit (364), in particular the term
v K (u,v") ot / /
et u— ) (u, v)dv'. (463)
0 v

We rewrite it as

" kw01 o A Y k) INot g
e u— ) (u,v)dv = — e w(u, v)vdv
0 av 3/(2 0
v / at A
+/0 eK(u,v )M(U, U/) (a(u’ v/) _ Wv/) dv'.
(464)

Using (355), the first term on the right of (464) possesses the following asymptotic
form

Aoy : e
— [ K@ Wdy = ————1? + Owv?).  (465)
3k2 Jo 6k (c+0 — c—0)

By (355) and (462), the second integral in (464) can be bounded in absolute value by
C(Y)uv?. Together with (311) we obtain from (364),

dt A(Bu? —v?
Iy = 2O T byl (466)
ou 6K (c+0 — c—0)

This is the second of (362). This completes the proof of the proposition. O

Lemma 4.1 For ¢ sufficiently small depending, on Ny, Y, the sequence (), B},); n =
0,1,2,...) is contained in X.

Proof From (341), (351) we have
ap(u,v) =0,  Bi(u,v) =0. (467)
Therefore

(g, By) € X. (468)
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We now show the inductive step. In the following the generic constants will depend
on Ny but we shall not specify this dependence. It suffices for us that this constants are
non-negative non-decreasing continuous functions of Ny. The inductive hypothesis is

Ity B Ix < No. (469)

We start with

lot) | (u, v) = < Noe?, (470)

ov

v 8 /
o (u, 0) + / O, v )dv'
0

where we used o, (u, 0) = 0.

1Bl (u, v) = < Noge?, 471)

u 8 /
Bl (v, v) + / W ', vy
v ou

where we used 8, (v, v) = 0. Choosing ¢ small enough we deduce
(a, + i, B, + B1) = (@, Bn) € Rs. (472)

Therefore, the functions c+ , and derivatives thereof are bounded, i.e.

0 0
Sup |, sup (ﬁ) ,sup (ﬁ) <cC. (473)
T, r, INda J,1 7. IN9B /,
(also for higher order derivatives). From (351) we have
g0 _ o doi - day B @74)
ou ou du ov v
0B _ 0B B, _ 0Py Py W)

du  du’ v v dv '

We now derive bounds on p,, v,. From the first of (318) we have

1 0 1 B d d d
1y = Cin _ der) Oom  (Oe) Wl 4g6
C4n —C—p OU Cin — Cp oa J, ou B ), ou

For the second term we have

! (8C+> Bn _ o). 477)

Ctn — C—p % n ou

where we used the first of (475) together with the inductive hypothesis (469). Defining
the functions
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1 1 8C+ 8C+
f] = - ’ f2 = - - N ’
C+0—C—Q Cqn—C—p da J da J,

do oo
(), (), i

the first term in (476) becomes

1 der\ Py L der\ do)
Cn — C—n (306)” u (C+0 —c0 fl) (( dor )o fz) ((3“)0 f3)'

(479)
For f12 we note that f1 7 € C'0, ] with Jf1.2(0,0) = 0, which implies
J12@u, v) = O(u). (480)
For f3 we have
Ao =do— (52) v =0 - S - P s

where we used the first of (474). The inductive hypothesis together with (312) yields

fa(u, v) = O(u). (482)
From (480), (482) together with
1 0 )
(&) (_“) _ (483)
cio—c—o \ da Jo\Ou/)y, cyo—c—o
where we recalled (dc4/da)oco = « (see (286)), we obtain
1 0 0
e (ﬁ) I Lo (484)
Cin—C_p \ O J, Ou Cy0 —C—Q

Together with (477) we conclude
K
Mn(, v) = ——— + Ou). (485)
€+0

—c_g

We now look at
1 dc_ 0 dc_ ad
Cin — Cp da J, v B ), dv
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For the first term we use the second of (474) which together with the inductive hypoth-
esis (469) implies

e (80_) %% _ o). (487)

Cin — C—p \ 00 ov

For the second term in (486) we use the second of (475) together with the inductive
hypothesis (469) and the property of the boundary data given by the first of (313). We

get
Therefore
v, (u, v) = O(v). (489)
We now look at y, (v). Since
Cn(v) = cy(aqn(v), By (v)), (490)
we have
ds:n () = %(aﬂ(v), ﬂ.ﬂv))%(v) + %(a+n(v), ﬂ+(v))%(v). (491)
Now,
on (V) = o, (v, v) + i (v). (492)

From o’ (u, 0) = 0 together with the inductive hypothesis (469) we obtain

1
o) (v, V)| < ENouz. (493)
Hence
ayn(v) = ag + dov + OW?). (494)
From (342) we have
B+ (v) = Bo + O@). (495)

From

dogy day,  day, du;

== 4L Zn , —(v), 496
W) (au + 50 ) o)+ ) (496)
together with the inductive hypothesis we have

dOl+n
dv

(v) =ap+ O®). (497)
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Expanding now (dc4/da) (e, B), (3c+/3B) (e, B) and making use of (494), (495)
we obtain

2
8ac—+<a+n(v>,ﬂ+(v)> = (ac—+) + (8 C*) Gov + O,  (498)
o 0 0

o a2
8C+ _ 8c+ 826+ . )
W(aw(v), B+ () = (W)o + (8,8805)0 dov + O(v). (499)

Using these together with (342), (497) in (491) and recalling (dc/da)g o = k we
find

ACin ) — k + O). (500)
dv
Hence
Cin(v) = cpo+ kv + OW?). (501)

Therefore, using the second of (313),
Ea(0) = V() = kv = S+ 3 @) + O, (502)

From the fact that ¢_, (v) = c_ (a4, (v), B4 (v)) is in C'[0, &] we obtain, in conjunc-
tion with the second of (313),

V) —c_n(v) = cyo—c—o + Ov). (503)
Now, using (502) and (503) in the third of (321) we find

I cypo
Yn (V)

— 01+ paw)), (504)
KV

where

T+ 1)

LA — (505)
1- 30+ 1)

pn(v) = po(v) + O(v), with po(v) =

Remark 8 There is no index missing on Sy in (490). This is because B4 originates
from the boundary data which is not subjected to the iteration while o, is part of the
solution of the fixed boundary problem, therefore subjected to the iteration.

In view of (311), (485), (489), (504), (505) we are in the position to apply proposi-
tion 4.1 with (wy, Ty, Vi, ¥n, Pu, ty) in the role of (i, 7, v, y, p, t). From proposition
4.1 we have (recalling the constant Cy given in (349))

ot
‘—n < Cov, (5006)
du

ot,
< Cou?, ‘_8 !
v
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provided that ¢ is sufficiently small. Using (506) in (338) together with (473) we get
Tro <y < 30, (507)

provided that ¢ is sufficiently small. It follows from (472), (507) and the definitions
(346), (347)

sup | A(ctn, Bus 1), SUp |B(atn, Ba, )| < N. (508)
T. T,

Taking the derivative of the first of (352) with respect to v and of the second of (352)
with respect to u we obtain from (506) together with (508) that

/
Ban_H

ov

oty ~

i B
av

ou

< CpuN, ‘

Now we establish bounds for da,, , /du, 3f,, | /dv. (472), (507) imply
dA dB
ok dk

n n

From the first of (352),
da’ VoA
ﬂ(u,v):/ % (u, v)dv'
du o Oou

B / oty f 0A Ban+8tn dA\ 0B,
“Jo lav\oa ) ou v \9B) ou
n n

at, [(0A a1, - 0%
+ = ( ) cp— 4+ A 1 ](u, vdY, (511)
n

sup <C, k € {a, B,r}. (510)

T,

, sup

&

v\ ar ou "udv

where for the third term we used the second of (307). From (336), (355), (356), (506)
we obtain

821,
oudv

< Cv. (512)

Now we bound (511). For the first three terms we use the second of (506), (510)
and the inductive hypothesis (469) in conjunction with (351) (and the fact that we
have bounds on the derivative of the initial data «;). For the fourth term in (511) we
use (512). We conclude

l
aOln+l

< Cu’. (513)
Ju
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From the second of (351),

ov v
_/" ity (OB 0y Oty IB\ 9B,
/| ou da ) v du\0p ) dv

oty dB oty ~ 82tn / ’
+ Cin——+ By——(w,v)du" — B,(v,v), (514)
n

B! “3B
P (u,v) = / "', v)du' — B, (v, v)
v

E B_r ov "udv

We can bound the integral in the same way as we did for (511) (and using the first of
(313)). For the term B, (v, v) we use

|Bu(v,v)| = ‘aa—tb’[’w,v)én(v, v)| < CovN, (515)
where we used the second of (509). Therefore,
‘% < Cuv + CouN. (516)
From (509), (513), (516) we have
I doty g , 1 daty 7 I Bt 7 1 B < Cu+ CoN. 517)
u| ou v| dv u| ou v| dv

Replacing u by ', taking the supremum over u’ € [v, u] and choosing ¢ sufficiently
small we find

(15 BreDllx < No- (518)

This completes the inductive step and therefore the proof of the lemma. O

4.2 Convergence

Lemma 4.2 For ¢ sufficiently small depending on Ny, Y, the sequence ((a),, B),); n =
0,1,2,...) converges in X.

Proof We use the notation
ApYi=VYn — Yn—1. (519)
From the first of (352) we have

I Ansr S At dtpoy -
o1& N A= 4, 22nt | Ol \ 7 (520)
ov ov ov
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Therefore
3An+1a’ 8An[
Rl +o(1Anal + 1.8+ 1Aur) . (52D)
av av
From the first of (351) we have
VOAQ
Ao = Ayal :/ ", )dv, (522)
0 dv
which implies
1 0A,
|Apa| < v2sup |- 222 ‘ (523)
7. |[v dv
Similarly we get
10A,8
|AnBl < u? sup ——”ﬂ‘. (524)
7, |u du
For an estimate of |A,r(u, v)| we use (338), which gives
" 0A,t  Oty—
Anrz/ {c_,n L2 lAnc_](u/,O)du/
0 ou ou
v At Oty—
+/ Icﬂ, noy on lAnc+] (u, v')dv. (525)
0 av av

We first look at the terms A, c4.

Ay’

ov

10
|Ance| < C{|Ana] + A B} < Cu? {sup
T

o laAa"ﬂ ” (526)

T. ‘M u

where for the second inequality we use (523), (524). To find an estimate for the
differences of partial derivatives of ¢t we subtract (319) with #,_ in the role of ¢ from
(319) with ¢, in the role of ¢ (analogously for the roles of © and v). We arrive at

9ZA,t AT ALt
- = E,, 527
auov P e TV " (527)
where
Aty Aty
By = LAy — A (528)
ou v
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The initial conditions for (527) are At (u, 0) = 0. Furthermore we have the boundary
condition

At 1 0A,t  Ot,— 1
nn_ 202 Tl (2, foru=w. (529)
av Vo OU ou y

Integrating (527) with respect to v from v = 0 yields

IA,t v , IA,t
(u, v) = e Knlwv) / eKnlwv) (: —un—") (u, v))dv, (530)
ou 0 av

where we used the first of (366). Evaluating (530) at u = v gives

Anb(v) = e~ Kr) [Pn(w (A Anl(v))] SRCEN

C+0 —

where we used the definitions

v / , dAt
AT ()= / {eK”(”’”) — 14 &g (o, v’)} e (v, v)dV, (532)
0 v

v
P,(v) = /O K g (y v)dv'. (533)

For the definition of t,(v) see (355).
We now estimate the differences A,u, A,v. From the first equality in (476) we
obtain

1 aC+,n

(C+,n - C—,n)(c+,n—l - C—,n—l) ou
1 BA,,C+

Cyn—1—Cop—1 Ou

App = — Aplcy —co)

+

(534)

The first term can be bounded using the estimates (526). For the second term we use

dctn = 8& dorn + 8& 8'3", (535)
au oa J, ou B ), ou

which implies

dAncy (8c_+) YA . 0ct,—1 A (8c_+)
- n
n

ou da ou ou Ja
der\ 0AuB | Pn—1 dey
— Al — ). 536
+(3l3)n u o ”(aﬂ (430
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For the first and third difference we use

dAne 0N BN DAP

_ 3o (537)
ou ou ou ou
For the difference of derivatives of ¢, + we use
d 10A,¢ 10A,8
an (25)| < ctianal + 18081 < Cu? L sup |2 2222 | 4 sup| L2228 L
Jo T. v T. u u
(538)

where we used (523), (524). The same result holds with g in the role of «. Using (537),
(538) in (536) and the resulting estimate together with (535) in (534), we obtain

Ao AN, B 190A,0 10A,8
IApul < C n® T nB +u2 sup | - n® 1 nB )
au du 7, |V 7. |u Ou
(539)
From (486) we get
A 1 dc—_p A, ( )
V=— Cy —C—
" (Com—Cm)(Com1—Cpy) dv T
1 A,
n nt (540)
Cyn—1—Cop-1 OV

The first term can be bounded using the estimate (526) and taking into account that

B dc_ day, n dc_ B,
[\ da J, dv ap ], dv
where we used the inductive hypothesis (469). For the second term in (540) we use the

expression for dA,c_/dv analogous to (536) and take into account the expressions
analogous to (537). We arrive at

ac_ ,
Jav

< Cv, (541)

AL OALB Apa 1oA,8
Ay <C nt + nb +u?v| sup |- nt sup | — nP .
av av T, 7. |lu du
(542)
Defining (see (354))
A= (A, A X, (543)
we deduce from (539), (542),

[Apu] < Cul, |[Apv] < CuA. (544)

@ Springer



Shock Development in Spherical Symmetry Page 75 of 246 3

Recalling (506) we deduce from (544) that

|E,] < CuvA. (545)
Therefore,
|P,(v)| < Cv3A. (546)
Since
di’jf = Aa+ Ayb, (547)

the boundary condition (529) gives

dA 1
d2nf _ (— + 1) Anb + ky, (548)
dv ¥
where we use the definition
0ty — 1
kn(0) = 2L, A, (— ). (549)
ou y(v)

Using (505) we obtain

dA —c_ —c_
pd8nS (C+° 0 Lot Mpn(v)) Apb + vky.  (550)
dv K K

Substituting (531) we get

dWA, f)

T AAf) = v A, B, (551)
v

where A, (v) is given by (374) and

e Kn(.v) KV ci0 —C—0
AnB(v) = ——— (1 + pn(v) + ) ( - Py(v) — Anl(v))
v C+0 — C—0 K
k
IO} (552)
v
Integrating (551) from v = 0 to v yields
v v " 4
VA, f (V) = / e~ Jy AV 2N By (553)
0
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Substituting this back into (551) gives

dA 1 v v " 4
sz_(v) = vAuB) = — (1 + vA, ) / e AR A B
0
(554)
We decompose A, B according to
0 1
AyB =A,B+ AyB, (555)

1
where A, B contains the terms of A, B which are linear in A, 1. The right hand side
of (554) being linear in A, B, we decompose analogous to the decomposition (555),
i.e.

dA 0 1
# — Ry + Ry, (556)
v

1
R, being linear in A, 1. Recalling the third of (321) together with the second of (313)
we deduce

1
‘An (_) (U)
14
where we used (523) (notice that in the third of (321) we have y;, in the role of y

and ¢4+, (v) = cx (o4, (v), B+ (v)) in the role of c+ (v) but B (v) as well as V (v) are
given by the boundary data). From the first of (506) we then get

1aA
Csup |—
T. |V

IAna(zv, v)| <

<C < CA, (557)

lka ()] < CV?A. (558)
Using (546) and (558) we find

0

|A,B(v)| < CvA. (559)
From (397) we have

lvA,(v)| = C. (560)

Therefore, through (554),

[Ru()] = Co?A. (561)

We now estimate A, /. From (367) we get

K@) ] < €02, (562)
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while from (355) we have
[T (v, V)| < Cu.

Using (562) and (563) in (532) we obtain

VIdA,t ,
[Anl (V)| < Cv 70 (v, v)
0

Therefore,

0A,t

1 C cC [V
A BW)| = 1A (W)] < —/
v v Jo

which implies

—/ 1/2|A B)|dv' < l/ v |A B)|dv'

([ Pt

§C/ AT (v, v")HdV”,
0

where

ApT(u,v):= sup

u'e€lv,u]

dv

Since, from (565)

1 v
v|A,B()| < C/ AT (v, v")dV”,
0

dv'.

i
™ (v,v)

t
"', v)|.

dv’,

(563)

(564)

(565)

dv”)dv’

(566)

(567)

(568)

we conclude, together with (566), that the part of the right hand side of (554) which

1
is linear in A, 1 (which we denote by R;) satisfies the estimate

1 v
IRu(w)| < C / AT (0. 0")do".
0

From (561), (569) we conclude

dAy, f(v)
dv

v
< Cv’A + C/ AT (v, 0)dv'.
0

(569)

(570)
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Integrating (527) with respect to u from u = v yields

At . v)
v
= ¢ Ln(w) [Ana(v) + /u eLn(@'v) (En(u’, v) + (vn 88A:t) W, v)) du’} )
” (571)
From (355), (356) we have
[ (u, v)| < Cv,  |ua(u,v)| < C. (572)
The second of these implies, through the second of (366), that
|Ly(u, v)| < Cu. (573)
Using the first of (572) as well as (573) and (545) we obtain
‘aaAvnt(u, nl<c [|Ana(v)| +ulvA +v/vu M:t(u’, v)‘du/]. (574)
Now, from (530) in conjunction with (545) and the second of (572) we get
‘BA:t(u, | < C{uva—l—/Ov g:t(u, V) dv’]. (575)

Using this for the integral of the right hand side of (574) we estimate

u u v
/ du' < Cuv*(u — v)A +/ (/ dv’) du’
v v 0

<C [uvz(u — A+ (u— v)/v AT (u, u’)du/] . (576)
0

A, t

u

IA,t

W', v) W', v)

Substituting this into (574) we obtain

(u, v)

At
ov

<C [|Ana(v)| + u?vA + v(u — v) /v AT (u, v/)dv/] . (577
0

From (547), (548),

_ L (A )
Apa(v) = TS ( do +J/n(v)kn(v))- (578)
Using (558), (570) we obtain
|Ana(v)| < C [UZA + / AT (v, v’)dv’] . (579)
0
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Using this estimate in (577) we find

(u, v)

At
ov

v
<C [uvA +/ AT (u, v’)dv’] )
0
Taking the supremum over « in [v, u] we deduce

v
AT (u,v) <C [uvA +/ AT (u, v/)dv/} )
0

Setting
v
AT, (V)= / AT (u, v)dv',
0

(581) becomes

d

EA,LEM(U) < CuvA + CA,Z,(v).
Integrating yields

AnZ,(v) < CuvA.
Using this in (581), we find
|ALT (u, v)| < CuvA.

The above imply, through (580),

(u, v)

dA,t
< CuvA.

av

Using this in (575) we conclude

At
‘ 1 < Cuv?A.

(u, v)
u

Using these estimates together with (506) and (526) in (525) we deduce
[Anr(u, v)| < CulA.
It then follows from (521) together with (523), (524), (586), (588) that

0A !
'Lla < CuvA.

dv

(580)

(581)

(582)

(583)

(584)

(585)

(586)

(587)

(588)

(589)
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From the second of (352) we deduce

dA ! ~ QA,t  Ot,— ~
Bnt1B _ N p_ 98 "L A, B. (590)
Ju ou Ju

Therefore (cf. (521)),

aAnJrlﬂ/ <C At
du - du

+u(|Ana|+|Anﬂ|+|Anr|)]. (591)

Using now (523), (524), (587) (588) we arrive at

‘ aAn—Hﬁ/

< Cu’A. (592)
ou

(u, v)

Now, from the first of (352) we deduce

JIA ! v 0A\ 0A 0wy, — A JdA\ 0A
n+1¢ (. v) :/ [ (_) n® n (o47] lAn (_) + (_) nB
du 0 Jo " u ou Jo ap n u

9B — JdA d0A IA,t
+ ﬁn lAn ZY+ (22 . n
ou p ar J, ou

n ot,—1 (0A Avc + 0ty—1 A 0A
ou ar J, " au "\ ar

- ZAt 0%,
+An n n—1
dudv dudv

A,,A} (u, v)dv'. (593)

For the second term on the right of (593) we use

A 0A

"\
where for the last inequality we used (523), (524), (586), (588). The fourth term on
the right of (593) we treat analogous to the second. For the fifth term we use (587) and
for the sixth we use (526). The seventh and the last term in (593) can be bounded in

the same way as the second and the fourth. This leaves us with the eighth term. From
(527) in conjunction with (545), (586), (587) we get

dA,t
= CylApa| +1AnBl + |Anr| + P

] < Cu’A, (594)

%At
ouov

(u,v)| < CuvA. (595)

Putting things together we deduce from (593)

< Cu’A. (596)

A, 1o
‘—"Ha (u, v)

ou
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Using the second of (352) we see that for the difference

8An+1ﬁ/

5 (597)

we get an analogous equation as we got in (593) with the exception of the additional
term

—A,B(v,v). (598)
For the terms analogous to the ones showing up in (593) we use the analogous estimates

while for the term (598) we use the first equality in (590) with u = v and the estimate
(592). Therefore,

FYNIRY 4
’L“B(u, v)| < CuvA. (599)
v
Using (589), (592), (596), (599), it follows
[(Apt1e!, A1 B lIx < Cul = Cull(Apad, AyB)llx. (600)

It follows that for ¢ small enough we have convergence of the sequence in the space
X. This concludes the proof of the lemma. O

The two lemmas above show that the sequence (o), ;) converges to (¢’, 8') € X
uniformly in 7. Therefore we also have uniform convergence of («;, 8,) to (a, B) €
CU(T,) (see (351)). Now, (586), (587) show the convergence of the derivatives of
t,. Therefore, the pair of integral equations (364), (365) are satisfied in the limit. We
denote by 7 the limit of (,,). It then follows that the mixed derivative 3% /dudv satisfies
(359). In view of the Hodograph system (307) the partial derivatives of r, converge
and the limit satisfies the Hodograph system. Let us denote by r the limit of (7).
We have thus found a solution of the fixed boundary problem. Since every member
of the sequence (#,) satisfies the expressions for the asymptotic form as given in the
statement of proposition 4.1 these expressions (i.e. (362), (363)) also hold for the limit
t. We have therefore proven the following proposition.

Proposition 4.2 Let h(u) and o; (1) be given by

A

h(w) = uhw), hecC'0,e], h0)=—""— (601)
6K (cro —c-0)
o (u) = ag + dov +v%a;(v), & € C'0,¢], &) = %ao (602)
Furthermore, let B4 (V) € clo, ¢, V() e 10, €] satisfy
d;%(v) =0w), V@ =cuo+ g(l +y()v + 0@, (603)
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where y is a given function such that

yeC0,e], y(0) =—1. (604)
Let
dy
Y := sup (605)
[0,e] dU

Let ro>0 and let No be given as in (350). Then there exists a solution («, B,t,1) €
c(T,) of the characteristic system (3006), (307) such that a(u, 0) = «; (u), B(v,v) =
B+ (), t(u,0) = h(u), r(0,0) =rg and

o1 1 , @, v), B () — V()
O] )a O i YO = Gy 9
(e — i, B— B+)llx = No, (607)
_f( )= [2v(y(v)+ D+ — / 3 y(v )dv' ] +O@Y), (608)
327 18k 0
ot A ot 2(3u? — v?) 3
a(lzt, U) — 3/{—21) < C(Y)MU, 'E(M, U) — m < C(Y)M s (609)

provided ¢ is sufficiently small depending on Ny, Y

5 Construction
5.1 Inductive Step

We recall briefly the strategy of the iteration. We start with the boundary functions
corresponding to the m’th iterate (zm,, B+ m, Vin). We then solve the corresponding
fixed boundary problem using the result from the previous chapter. The solution of the
fixed boundary problem provides us with the functions o y+1, fin+1, &m+1. Using
Jfm+1, @n+1 we solve the identification equation, the solution of which we denote by
Zm+1. Using then o4 41, Zm+1 in the jump conditions we obtain B4 41, Vint1. We
have thus obtained the boundary functions corresponding to the (m + 1)’th iterate
(Zm+1> B+.m+1> Vim+1). This concludes the iteration.

The input for the construction problem are the following assumptions for the bound-
ary functions z,,, B+.m, Vin:

2 () = vy (V) with y,, (0) = —1, (610)
) o A (0B
By.m(v) = Bo+v ﬂ+,m(v) with ﬂ+,m(0) = ﬁ ( s (611)
K 8[ 0
Vi () =c+o+§<1 F Y @)V + 02V (v), 612)
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with yy,, /§+,m e CHo, ¢], Vm € 0, ]. A, k and (0B* /1) are given by the solution
in the maximal development. We recall (see (244), (250))

82}”* 331‘*
- o= (Z) (613)

We choose closed balls in the function spaces as follows

By=[f€C1[0,8]:f(0)=— - EY], (614)

A [0BF df
c'io 0)=—|— , 615
= rectoa o= 2 (L) |4 <s]. @
= {feCO[O,e] LIS 582}, (616)

where Y, 81, 67 are to be chosen appropriately.
We initiate the sequence by

. L [0p* .
= —1, =—— , Vo :=0. 617
Y0 B+.0 62 ( a7 )0 0 (617)

Proposition 5.1 Choosing the constants Y, 81, 8 appropriately, the sequence
((ym,ﬂ+m, V );m = 0,1,2,...) is contained in By X Bs, X Bs,, provided we
choose ¢ suitably small.

Proof We see that
(30, B+.0. Vo) € By x By, x B, (618)

The inductive hypothesis is

Ym € By, Bim€Bs. Vi€ B, (619)
Therefore,
Ym
sup |[—| <Y. (620)
vel0,e] v

In the arguments to follow ¢ >0 will denote a number which we can make as small
as we wish by choosing ¢ suitably small. From y,,(0) = —1 we obtain

[ym() + 1] < vY <gq. (621)
In the following we use the notation g(v) = O4(v") to denote
lg()| < C@)", (622)

where the constant C is a non-negative, non-decreasing, continuous function of d.
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From (611) and (612) we get

ﬂ+ —= ) =0@), Vu(w)=cyo+ g(l + ym )V + O5,(0%), (623)

provided that ¢ is sufficiently small. This can be seen as follows. The statements (623)
are equivalent, respectively, to

dBi m
‘ﬂ+ )

< Cw, \vm(v) — o — g(l + ym(v»v( <C@E2. (624

From the inductive hypothesis (619) we have

. A [0B*
,3+,m(U) - @ (W)O

1Brm) <C (626)

< véy, (625)

which implies

for a fixed numerical constant C if we choose ¢ sufficiently small. Using this in (see
(611))

1dB. "
LdBem ) —2p, wiv) + v2Prm ﬁ* (v) (627)
v dv
we obtain
1dBs m
YaBem ) < ¢ o8y < (628)
v dv

if we choose ¢ sufficiently small. This is equivalent to the first of (624). The second
of (624) follows directly from the inductive hypothesis.

Recalling the definition of N in the fixed boundary problem (see (342),...,(350)),
we note that since the constant in the first of (624) is a fixed numerical constant, also
Ny is a fixed numerical constant.

We now apply proposition 4.2 with (¥, B+ m, Vin) in the role of (y, B+, V). The
resulting solution we denote by (& +1, Bm+1, tm+1, 'm+1). We also denote

Jm+1(V) =11 (v, v), (629)
8m+1 (v):zrm+1(v» 'U) — 1o, (630)
ay mt1(V) =1 (v, V). (631)

From the solution of the fixed boundary problem we have

dfm+1

[2v(ym(v)+1)+ /v’3dﬂ(v’)dv’]+052(v2).
0 dv
(632)

W) .
K2 182

@ Springer



Shock Development in Spherical Symmetry Page 85 of 246 3

Defining the function me by

Fns1(0) = 0 frug1 (), (633)
we deduce
d fnir L (s,
d—:('”:vz( —w )——fm+1(v))

A 1 v /dem ’ / 2

+ Os, (1), (634)

where

v vl v’ dy
Ay = / 2v/(ym(v/) + l)dv/, By = / — / "3 m( //)d "
0 o Vv 0

(635)

and we used (632). Integrating by parts we obtain

vod 1 [V .d
A, = v2(ym(v)+1)—/ 22" WNdY', By = __/ 3 y’” = @)dv
0 dv v Jo

v
d
+ /O V2 (636)
This implies
df, A [V ad
%(v)z 6K2v4/0 vG%(v/)dv/—}—(’)gz(l). (637)
Hence
d
' f’”“( )‘ <333 S (638)

Defining the function §,, (v) by

O (V) :=gm (V) — c10 fin(V), (639)
we obtain

ds,, m
d“( v) = (Vi () — c10) f“
v

). (640)
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Remark 9 The appearance of the indices m and m 41 originates from the basic strategy
(see (303)) in which the solution of the fixed boundary problem carrying the index
m + 1 satisfies

f m+1 dgm+1

—— W)Vn(v) =

). (641)

This confusion did not appear up to now since we dropped the index m from the outer
iteration during the solution process of the fixed boundary problem. An analogous
situation appears when evaluating the function B,,41 on the boundary u = v. There
we have

Bmt1(v,v) = By m(v), (642)

since B4, is the boundary value for the fixed boundary problem whose solution carries
the index m + 1. The function B4 ;,4+1 is determined later on by making use of the
jump conditions. The appearance of the indices m and m 4 1 in (632) are explained
in the same way.

We define the function ¢ (v) by

Gmy1(v) = W) = 350 (643)

We split up the function §,,41(v) according to

Sm+1(v) = do(v) + 81(v), (644)

where the functions §p(v) and §;(v) are given by 50(0) = 0, §;(0) = 0 and

dé
—°< ) = —(1 + Yy ()02,

d51 A
“o ) = (V) = 0 = S0+ 3 @)0) 550+ Vi 0) = 001 (v).

(645)

(We make use of V,,,(v) = c40 + %(1 4+ ym(V))v + (’),;2(1)2)). Defining the functions
§i(v),i =0, 1by 8 (v) = v38;(v) we get

dSo) ld&)() 35()
G0y = — 20y — 2 sow
dv v3 dv 40
A1 3 v
= = M——/ (1 + y W)V d’
6K v v /o
A voady,
= /0 3 ’"( Ndv', (646)

where we integrated by parts.
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From V,,(v) — c49 = %(1 + ym(V))v + (’)52(112) we have (see (621))
V(@) = ciol = S0Y +C0™. (647)
Together with (see the right hand side of (632))
pm1 (V)| < CYV? + C(82)0%, (648)
we obtain
[Vin(0) = collpms1 ()| < CY20* + C(82) Y™, (649)

Therefore, for ¢ sufficiently small,

‘—(v) < C()v°, 181 (v)] < C(S)v*. (650)
Using this in
iy o Ldh 35w (651)
— W) =—5—0W)— =8
dv v3 dv 4
we deduce
'—(U) < C(62). (652)
Using (646), (652) we arrive at
dbmi A /v ,3dym
= dv’' + Os,(1). 653
7o () 6ot o ——@"dv' + O, (1) (653)
Hence
ds ALY
‘ ()| < -+ C. (654)

In view of (632), (640), (647) we have

)| < C, 8)v°. (655)

d5m+l
dv

Therefore, in conjunction with 6,,+41(0) = g,,+1(0) — c40 fin+1(0) = 0, we have

8wt 1 ()] < C(Y, 82)v°, (656)
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which implies
Sm41(0) = 0. (657)
Now we look at the identification equation, i.e. at
gm+1(V) + 10 = 1" (fin+1(V), Vym+1)- (658)
Here the function on the right hand side is the solution r* (¢, w) given in the maximal
development (recall that we set fop = wy = 0), while the left hand side is given by the

solution of the fixed boundary problem (The identification equation is an equation for
Ym+1 as a function of v given the functions g;,,41(v), fin+1(v)). We have

Ent1(V) = 8 1(V) + 10 fnp1 (V) = V381 (V) + cov? fup1 (). (659)

In the following discussion of the identification equation we will omit the index m + 1.
We define the function

* ar* e\ 12 32
h(t,w):=r*(t,w) —rg — t——) — — fw
at /) otz ), 2 ardw /

e\ wt 93r* rw? 3\ w? (660)
dw* J, 24 argw?J, 2 w3/, 6

Thus
(1. w) n or* . 92r* t2+ 92r* ,
r*(t, w) =r -— 7 ) 5
"\ ), o2 ), 2 " \orow ), "
N atre\ wt n 93+ rw? N 3\ w? G w). (661)
— ) — ) — — ,W).
dw* J, 24 ardw? J, 2 w3 J, 6

Remark 10 The function A (¢, w) is introduced in qrder to represent the terms Ok
for k > 5 in the expansion of r*(¢, w), when v? f(v) for ¢ and vy for w are being

substituted. We use
or* 82 *
( r ) - (_rz) =0. (662)
aw 0 aw 0

F(v,y):=g) +ro—r*(f(v), vy). (663)

Let now

The identification equation becomes

F(v,y) =0. (664)
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Using now

or* 82 * 83 * A
(i) = cyo, ( a ) =k, ( Z) =2 (665

and expressing (¢, w) in terms of v and y according tot = f(v) = vzf(v), w = vy
and making use of (659) the function F (v, y) becomes

A ~ ~
F(v,y) = 6—v3y3 — 10} f(w)y +v38(v)

K
32}"* 4 (2 2 841"* y4v4
_ ( atz )Ov (f(v)) - (m)o 7
2’ \ ¥t ) -
- (3t8w2)0 5~ hW f@)vy). (666)
We note that
h@W? f(v), vy) = v H(f(v), y), (667)

where H is a smooth function of its two arguments.
Defining the function F' by the relation

F(v,y) =vF(v,y), (668)
(666) is equivalent to
~ A 3 ~ ~
F(v,y) = e —kf)y+8w) +vR(v,y), (669)

where the remainder R is given by

. 827‘* R 2 84}”* y4 83}”* ny(v)
R.y):= = (W)O(f ) - (m)oﬂ‘ (atawz)o 2

—vH(f (), y). (670)

The identification equation is now equivalent to
F(v,y) =0. (671)

At v = 0 this becomes (we recall that 3(0) = 0 and note that f 0) = k/6fc2 (see
(632), (633)))

A
ay(y2 —1)=0. (672)
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The only physical solution is y = —1. We set v :=0, yp:= — 1. We now see that
IF 3
—— (o, y0) = = > 0. (673)
ay 3k

Therefore we are able to solve the identification equation for y as a function of v for
v small enough. We have

Iyl = C. (674)

Differentiating (671) implicitly yields

ﬁ(v y())
iy mdv T (675)
dv

7 .
E(v’ y()

We have
IF A, s IR
— W, y)=—y —«f() +v—(v,Yy), (676)
ay 2k ay
aF df dé IR
— W, y)=—ky—@W) + —W) + R, y) +v—(v,y). (677)
v dv dv v

We first derive bounds for the remainder R and its derivatives of first order. From (638)
we have, for ¢ small enough,

<C. (678)

. df
|f(v)] <C, vd—f(v)
v

Therefore,

=C,  |R(wyl=C. (679)

oR oR
v— @, y)| =C, v— (v, y)
av dy

We now examine (675). Using (676) we find for the denominator

IF IF A R R dR
— W, )= — o,y | = — Iy =1l +«|f()— fO|+v]|—(@ ).
ay ay 2K av
(680)
Now, for small enough ¢, we have
Y =1 =1+ D - DI <Cly+1] < CYv < Cv?, (681)
. . df
[f(v) = f(O)] < sup —f(v/) vSCYv+C(52)v§Cv%, (682)
v'e[0,v] | 4V
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which, together with the second of (679) implies

IF

OF
—( y)——(vo )| < Cot. (683)

Now we look at the numerator of (675). Making use of (677) we get

aF df df
av( )—K—(v)——() <K—(v)|y+1|+|R(v y)|+v (v V|-
(684)
From (638) together with (621) we have, for small enough &,
JF
‘—f(v) ly+1=C. (685)
dv
Together with the first and the third of (679) we obtain
dF df dé
0 v =Ly + Lwy + o, (686)
ov dv dv
which implies, through (637), (653),
dF s
—(v,y) = / 3 y(v Ydv' + O, (1). (687)
v kvt

Substituting (687) for the numerator in (675), using the estimate (683) together
with (673) for the denominator in (675) and putting back the indices m and m + 1 we
arrive at

dyms1
dv

_ /3 Ym
where
lem (V)] < Cv2. (689)

Taking the absolute value and then taking the supremum over v € [0, ¢] yields

1

d B
sup |y < —A 4 (5. (690)
velo,e] | dv 1—Ce2
Choosing then ¢ suitably small such that
1 1
Ce1 < > (691)
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where C is the constant appearing in the denominator of (690), we obtain

dym+1

1
< —Y 4+ C' (7).
Ty (v)_2 + C'(62)

sup
vel0,e]

Therefore, choosing now ¥ = 2C’(8,),

d
Ym+1 ()
v

<Y.

sup
vel0,e]

Remark 11 Y depends on §5.

(692)

(693)

In the following we will establish closure for the iterations of the functions ﬁm,
Vin. The balls for the respective iterations have been chosen according to (615), (616).
Since there are no more indices m to appear, only indices m + 1, we will omit in the

following the index m + 1. We have
Y = Os,(1).
From (638) it follows (using f ©0)=xr/ 6?)

df . A
%(v) =0;50), f)= ) + Os, (v).

This implies, through (633) and the first line of (634),

%(v) = 3)\7v + O5,(v%),
f) = 61—2:)2 + 05, (0%).
From z;,,41(v) = vy,+1(v) we obtain
j—i(v) = vj—i(v) +y(v)
= —1+ Os,(v).
Therefore,
2(v) = —v + Og, (V).

Now we look at the asymptotic form of S_(v). We have

B-(v) = B*(f (v), z(v)),
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where the function on the right is 8*(¢, w) from the state ahead (i.e. given by the
solution in the maximal development) and we recall that ro = wog = 0. We have

d _ * k
i( ) = ﬂ (f(v) Z(v))—f(v)+ i (f(v) z(v))—(v) (701)
Expanding (38*/0t)(t, w) to first order and substituting t = f(v), w = z(v) we
obtain
8ﬂ* _ 3,3* 32/3* )
a1 ’ ( a1 )0 N (Btaw)ov 05, (0%, (702)
while expanding (38*/9w)(t, w) to second order, substituting t = f(v), w = z(v)
and using (see (266))
8,3* B 82,3* B
(5o), = (55),=o 0
yields
L (Z2) 2L (22) o vouen o
ow T N Graw )y o2 T2 \awd ), ) TR
Therefore,
dp_ B\ A )
Ty —() = ( o7 )0 3sz + Os, (v7). (705)
Hence,
aB* A
B_(v) = ﬂo+( (f )06/(—21;2 + 05,(0?). (706)

Now we find the asymptotic form of «_ (v). From
a-(v) =" (f(v), z(v)), (707)

we have

da_ da* df
=
v

(708)

Expanding now (da*/9t)(¢, w) and (da™®/0w)(¢, w) to first order and substituting

t = f(v), w = z(v) we obtain
g L T %) (709)
= — v v),
at ), \arow), »
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da* . 92a* By
w (f(v),z(v) = ap — w? ), v+ Os, (v7).
Therefore,
o ) (M* S () Lot oL aven + 0ne)
—(v) = — — v+ dg— (vy(v V).
dv or ), 32 " \ow? ), Odv &
Thus,

) do* A 3% v? 3
a_(v) = ag + aovy(v) + ) — + ( ) — + O0;5,(v7)
0 0

at 32 dw?

= ag + dovy(v) + O(v?),

2

where the last equality holds provided we choose ¢ suitably small.
We now deal with the asymptotic form of o (v). From

oo Jat

da _ ot 4
50 = 30 (o, B, 1)

we obtain
v or ~ / /
C(+(v) =a(vvv) :al(v)+/ (_A(a’ ﬂv V)) (U,U)dv )
0 av

where we made use of a(v, 0) = «; (v). This implies

doy = do; ot -~ v 92r -
W(v) - E(U) + (%A(Oh /35 r)) (U, U) +/0 [(8uaUA(a’ /3’ r))

+8t aA( P )aa+aA( P )8,8
—N—pr)—+ —(o,p,r)—
av \ dx ou 9B du

BA ot / /
+ — (o, B, r)c_(a, ,3)—)](1), vdv'.
ar ou

The solution of the fixed boundary problem satisfies (see proposition 4.2)

3l‘( ) A
— (U, v) — —v
v 3k2

at AQBu? —?
O oy = 2O s

< Cuv, -
=t ou 6K(ct0 —Cc—0) | —

Here the constants depend on Y and §,. Therefore (cf. (694)),

AGBu? —v?)

W) = 2v 4 Op (o), Lo, v) =
u,v) = v 5, (1), 5 s v) = 6e(cro — o)

v 3k2
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The first implies

at ~ Ao~
(a—A(a,ﬁ,r)) (v,v) = —2A ov + Os, (V7). (718)
v
From
9%t ot N ot 719)
= —uU— \)—,
guov . Pov " o

we deduce, together with (717) and (cf. (485), (489))

1, v) = ————— 4 O, ), v, v) = O, (v), (720)
C+0 —C—0
that
3%t , A )
W)= = 0®©), 721
33 @) = e St 0n 0 = 0 (721)

where the second equality holds provided we choose ¢ small enough. Therefore

v 2
/ ( ot A, B, r)) (v, v)dv' = O@W?). (722)
0 dudv

Using the first of (717) we find

/Ov (g—;( . .)) (v, V)dv = OW?), (723)

where we denote by (. . .) the bracket in the last line of (715). We conclude from (718),
(722), (723) that

Y
‘&m di( )+ 20 4 05,00, (724)

which implies
AA
(V) = 0 (V) + S 07 + O, (V%)
6k 2
= i (v) + O, (725)
where the second equality holds provided we choose & small enough.

We now turn to the jumps [a(v)], [B(v)]. The first line of (725) together with the
first line of (712) yields (note that Ag = (da™/9t))

) 82 * 2
[a(v)] = do(1 — y(v)v — (8—52)0 v? + 05, (v*)

=dp(1 — y(0))v + OW?), (726)
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where the second equality holds provided we choose ¢ sufficiently small. Using now

(224), i.e.
[B)] = [e() Gay(v), a—(v), B—(v))
we get from (726)
[B(v)] = 8Godgv® + Os, (v,

where

Go:=G(a4(0), a-(0), B-(0)) = G(eo, @0, Po).

Therefore, in view of (706), we get

p* X
B+(v) = fo + ( 5; )0 6/(_2U2 + 05, (v%).

From g4 (v) = Bo + 02,3+(v) we have

dp 2 1 dB
d—v*(v) = =B+ () = Bo) + U—zd—;w).

Taking the derivative of (727) we obtain

d d
B = (3 [a()]* — [a(v)]) G(at(v), a—(v), B—(v))
v dv

+ [a(v)] E(O““(U)’ a_(v), B-(v)).
From (698), (711), (724) we have
d = 2d O
7o [a(v)] = 2a0 + Os, (v).
Using this together with (726) in (732) we obtain
d 3.2 3
oo [B(v)] =24Gooayv” + Os, (V7).

Using now (705) we find

dﬁ(u)z(aﬂ) iv+(932(u2).
0
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Therefore, substituting (730), (735) into (731), we conclude (putting back the index
m+1)

dBy mr1

g, W= Os,(1). (736)

We now find an expression for the asymptotic form of V;,, 11 (v). We again omit the
index m + 1 for now. We have (see (170))

tr
V= [T ] (737)

(7]

We rewrite the numerator as

[T7] = T (s Bi) — T (o, B) = T" (o, Bi) — T (o4, B-)
T (o, Bo) — T (@, o). (738)

We expand

tr

p

T (@ o) = T (@ po) = = (s ) [B1+ O (1BF)  (739)

and

T (ay, B-) = T (a—, B-)
3Ttr( )[ ]_182Ttr
pa @ Pl =55

@, p) [P +0 ([aF).  (740)

Similar expressions hold for the denominator of (737). Using [B] = [a]? G(og,
a_, B_) (see (224)) it follows

9T 1 82Ttr 5

B Pl (@ po) [l + O ([
aTtt 2ttt )
™ (a4, B-) — EW(WJW B-) o]l +0O ([Ol] )
8Ttr(Ol B-) Lo tr(a B-) [«]

+.b-)— 3 +, b-
- do 2 da’ +0(1eP), (4D

™ (a4, B-) — EW(O[J” B-) ]

where for the second equality we used 37" /da # 0, which follows from the first of
(185). We now use the first of (187), i.e.

aTtr aTlt
= C+
do do

, (742)
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which implies

10
V=ciloy, f) — 5%(«% B lel +0 ([aP). (743)
We look at ¢4 (a4, B—). We have
d _ 8C+ d(X+ 3C+ dﬁ_
o O, ) = T ), B ) TEW) + e 0, ) ).
(744)

Using (df—/dv), = 0 we obtain

dcy {0y 3¢y doy 8¢y dp_
o @+ 0D = (%)o " |( 902 )o (%)0 - (_30!8/3)0 (%)o} v

+ 00

82
=L (25 sov+ 00, (745)
Qo da? /),

where we also used (dci/da)y = «/dp. We also have

0 0
aiﬁ*(w(v), B_(v) = (8%)0 +O®). (746)

Using now (745) and (746) together with the asymptotic forms of doy /dv, dB_ /dv
given by (724), (735) respectively, we obtain

d _ ok do; (Ao (Bes) (08
%C+(a+(v),ﬂ,(v)) = o dv (v) + [3,(2( Qo + ( a8 )0( at )0)

. 82c+ do; 5
+ ao ( 52 )0 %(v)]v + Os, (v9). (747)

Therefore,

32€+

da?

ey ey 08y Lo
+ 6,<2{ o +(8ﬁ )0(8t )O}v + 05, (v7), (748)

o (v) = 1 /v a; (V)dv'. (749)
v Jo

c(ag (v), B (V) = cro0 + dﬁo(ai(v) — o) + o ( ) (ai(v) —ai(v)v
0

where we introduced

Therefore, provided we choose ¢ small enough,

e (o (V), B—(V)) = c40 + kv + O@). (750)
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Using (726), (745), (750) in (743) we arrive at
V() =cqo+ %(1 + y)v + Ow?). (751)

Using now V(v) = (1/v®)(V(v) — c+0 — (k/2)(1 + y(v))v) we deduce, putting back
the index m + 1,

Vint1(v) = O(1), (752)
ie.
sup Vi1 (v)| < C (753)
vel0,e]

for a fixed numerical constant C. Choosing now the size of the ball for the iteration
of the function V},,, i.e. 82, to be equal to the numerical constant C appearing in (753)
we see that V11 € Bs,. From (736) we then have

dﬁ+,m+1

<C 754
dv - (754)

sup
vel0,é]

(v)

for a fixed numerical constant C. Choosing now the size of the ball for the iteration
of the function B ,,, i.e. §1, to be equal to the numerical constant appearing in (754)
we see that 81 ;41 € Bs,. From (694) we get

Y <C, (755)

for a fixed numerical constant C. In view of (693) this shows that y,,+1 € By. This
concludes the proof of the proposition. O

5.2 Convergence

We define

d
Il fllx := sup f (756)

[0,v] dv"

For differences between successive members of the iteration we will use the notation
Ay f = fim — fm—1. For any sequence of functions 4, € C I with identical values
him (0) =: ho for any m we have

v d
Aph(v) =/ — Aph(V)dV, (757)
0 dv
which implies

|Amh| < v[[Amhllx. (758)
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5.2.1 Estimates for the Solution of the Fixed Boundary Problem

Lemma 5.1 Let (ty+1, "'m+1, %m+1, Bm+1) be the solution of the fixed boundary
problem as given by proposition 4.2, corresponding to the boundary functions
(Zm, B+.m> Vim). Then the following estimates hold

dApir f A . »
——— )| = 5= 1Anyllx + C ysup [Ap V] + v[[ApBillx +vI[Amylx ¢,
dv 24k [0,v]
(759)
dAmi1d A . .
——— )| < —lAwyllx + C{sup [AL V] + vl AnBillx +vllAnylixt,
dl) 24/( [0,v]
(760)
1Amt1ey ] x < Cv? [sup |AmV]+ vl AnBilix + ||Amy||x] : (761)
[0,v]
Proof The difference A, 1t satisfies
32 At A1t A1t
-l Mm+1 mrl Vm+1 el = Zm+1, (762)
oudv ou
where
at, at,
Emtl = ——Amp1V — —= Ay it (763)
ou v
In addition we have the boundary condition
A t 1 oA t 0t 1
mill _ mtl + —mAm+1 — for u=wv, (764)
v Vm+1  O0u ou
where
Ctm(V) — Vin—1(v) _
m = T Cem() = cx(@rm), Brm-1(v)),  (765)

Vin—1(v) — E—,m(v)
and the initial condition
Apt1t(u,0) =0. (766)

Before we study equation (762) we estimate the difference A,,+1(1/y) and the
term E,,+1. We have

1 Wm+1
JANS] (—) = — — s (767)
" 14 (C+,m+] - Vm)(CJr,m — V1)
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where
omt1 = (Vi — E—,m+l)(5+,m —Viu-1) — (Vi1 — E—,m)(E+,m+l — V). (768)

Remark 12 The mixture of indices in (765), (768) arises because the index increases
with the solution of the fixed boundary problem as described in the basic strategy. o+
and c4 carry the index of the solution of the fixed boundary problem while S and
Vin carry the index of the data which goes into the fixed boundary problem.

We consider first the denominator of (767). From

dE.,. m 8C+ d0l+ m 8C+ dﬂ+ m—1
LLI——— , _ LT , )
7o o (@ ms Brm—1) 7o op (@ ms Brm—1) 7o

(769)

together with (dcy/da)y = k /o and the asymptotic forms of doy ,, /dv, dB+ pm/dv
given by (724), (735) respectively, we find

Cr.m(v) = cho + kv 4+ O@W?). (770)
Using this together with
Viu(0) = 0 + O, (771)
(recall that V;, (v) = c10 + 5(1 + yn (v))v + V2V (v), yu(v) = —1 + O(v)) we get
Ctmr1 = V) Crom — Vimo1) = k207 + O(?). (772)
We turn to the numerator of (767). We rewrite it as

Omt1 = (ApV — Am+15—)(5+,m — Vi) = (Vip—1 — E—,m)(Am+15+ — ApV).
(773)

We have
AV (@tm = V1) = O@W|ARY]) + OW A, V). (774)

Now we study the difference A, 1c+. Since ¢4, (V) = c+ (4 m (V), B m—1(V))
we need to estimate the difference A,,+1a. From (see the first of (306))

v
Apgra(u, v) =/ A1 Au, V)dv', (775)
0
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we obtain

|Am1(u, v)| < Cvsup |Ap 41 An, v)

Ty
A1t
<Cv [sup ansl e v(sup|Am+1a| +5up [ Ay 1 Bl +sup|Am+1r|)] .
Ty T, T, Ty
(776)
From this we deduce that for ¢ small enough
Am+1[
sup | Ay1er] < Cu { sup | “=2FE) i sup | A1 Bl + sup [ Apsir] ) |-
T Ty T, Ty
(777)
For the difference |A,,417| we integrate (307) (cf. also (338)) to get
“ oA, O,
Aparr(u, v) = / (c_,mﬂ ml —mAm+1c_) ', 0)du'
0 du du
v 0Am41t 0t
+/ (C+,m+1 et +—mAm+1C+) (u, v)dv', (778)
0 av av
which implies
A1t A1t
| Ami1r(u, )] < Cu {sup i sup‘ ]
T, T, | 9V
+ u(sup|Am+1a| +sup|Am+1,3|)] . (779)
T, T,

Using this in (777) and choosing ¢ sufficiently small we find

A t A t
sup |Apt1a| < Cu u” su ml + su ] +usup |Ap+1Bly -
T, T, | Ou T, | 9V T,
(780)
To estimate the difference A,,+18 we use (see the second of (306))
u
BBl 0) = B Be)+ [ Ay B )l (781)
v
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which implies

aAm+1t
[Ami1 B, V)| < [ApBy (V)] + Cuy sup B

T,

+ uz(sup | Am1ee] + sup| A1l + sup |Am+1r|)]. (782)

Ty Ty Ty

Using (779) and choosing & small enough, this in turn implies

8Am+lt
Sup | A1l < sup | A | + Cu { sup | =2t
T [0,u] T
3 Amsrt
+u2(u sup |t +sup|Am+1ot|)}. (783)
Ty T

Using this in (780) we obtain

A1t
ou

‘ OAp1t

ov

T, Ty

’ + u sup |Am:3+|] , (784)
T, [0,u]

a
sup |Ap41a] < Cu [u2 sup

provided that we choose ¢ suitably small. For future reference we use this in (783)
which implies

(785)

Aptit 0Am+1!

u? su
Ty

0
sup |Au+18| < Csup |A,B+] + Cu [sup
Ty [0,u] T,

From (784) we have

sup |Ap104| < sup [Apqie]

[0,v] Ty
0N, 1t 0Nt
<Cv vzsup ] ’LH +vsup |[ApB+lt -
T, u T, v [0,v]
(786)

It now follows for the difference A,,+1c+

A t A t
|Api16s] < C[v3 sup | =22 4y su ‘L“ + sup |Am,8+|}. (787)

Ty Ty [0,v]
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Using this we get

o 0A 41t A, +11
|Am+lc—(c+,m - Vm—l)| =< Cv U3 sup — o ’ * sup |Am;3+| B
T, ou T, dv [0,v]
(788)
_ _ A1t 0Nt
[(Vin—1 — ¢ ) Apy1c4| < C v sup i + vsup —=t + sup [AmB+l s
T, ou T, v [0,v]

(789)

where for (788) we used ¢4 — Vip—1 = O(v) and for (789) weused V1 —c— p =
c+0 — c—o + O(v).
The remaining part of the numerator of (767) is

_ (c40 — c—o)KkV A
(Vi1 = Em) (A V) = %Amy + OWHARY)) + OW AL V).
(790)

Using now (774), (788), (789), (790) together with (772) in (767) we arrive at

1 Cc1p— C—0 A 1
Ayl (;) = +—Amy +O(AnyD) +O(ALV]) + O(E [SOUP] |Am,3+|)
v

2KV
1
ml ) (791)

1 A
+ Of —sup + Oy vsup | ————
v T, T,

We turn to E,,4+1. For an estimate of this we need estimates for the differences
At t, Apgqv. From the first of (318) we have

A4t

1 dc 1
Amiipt = — L At (ey =€)
(Ccrm+1 — C—mt1)(CHm — C—m)  Ou
+ I 3Bmyicy (792)
Com — C—.m ou ’

which implies

8Am+1C+
ou

[ A1 fc’|Am+lC+|+|Am+lc—|+‘ ] (793)

For the last term we use

0Apy1c4 _ (3&) 0Ap+10 + 8OlmA " (86'_—&-)
— Y = — T ——AQnm
m+1

ou o ou ou da
0 oA 0 0
+ ot m—+”3_|_ﬁAm+] 7ty (794)
B ) i ou ou 2B
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For the partial derivatives of c; with respect to «, B we have

8c+ 3C+
A —_— A —
Bt (5] (5
For the partial derivative of 8 with respect to u we use the second of (306). L.e. we
have

= C{lAmy1a] + [ Amy1Bl}- (795)

El

aAerlﬂ

= Amy1B, (796)
ou
which implies

0Am+18 <C 0Amt1t
ou - u

+ (1810l + [Aps1 Bl + |Am+1r|)] .97

Using (795), (797) in (794) and the resulting estimate in (793) we obtain

0Nt 0A L1
|Amsinl < C [|Am+1a| + A1 Bl + 4P| A7 ] + ' |+ ‘ ” ] :
(798)
For the term involving the partial derivative of « with respect to u we use
v
o (u, v) = & (u) + / A (u, v"dv', (799)
0

which implies

JA
m+1¢ (. v)
ou

v 0A A1 O A
0 0a ) 1 au du o
A A d 0A A A1t
+{—= 38mi1P + ﬁAm+1 vy -— Com+1 il
B/, Ou du 0p or J i1 du

I (A dA
4 — Apyic— +c— mApi
ou or ) i ar

At 0%ty
uov oudv

+

+ Am—i—l

At IA] (u, v)dv'. (800)

We rewrite this as

9
0A v
1 ) = / S 1, o)), (801)
u 0o =

i=1
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where the I; denote the nine terms appearing in (800) (the (...) bracket counting as
two terms). The first term we will absorb on the left hand side. For I, we use

dA Aty dA A\ Ayt
A — )= A — —
‘ '”“(aa)'— m“(&a)‘*‘(aa)m v
Am+1t

ov
0
= CHo(IAmaal + 1 AnsaBl+ | Bmir]) +| =5

} , (802)

which implies

v
‘/ DL, v)dv
0

<Cv [v(sup |Amt1ee| + sup |Ap41 B8] + sup IAm+1r|)
Ty Ty Ty
aAm+lt

+ sup 70

Ty

} : (803)

For I5 we use

dA at dA
’ (—) = |t (—) < Cw. (804)
B ) ms1 dv B ) i1
Using now (797) this implies
v A1t
‘/ L(u, v)dv'| < Cv? [sup 2mt17
0 T, du

+u? (SUP [Amt1e| + sup | Ay B + sup |Am+1r|)] . (805)
Ty Ty Ty

14 can be treated in the same way as I,. For I5 we use (804) with r in the role of B,
which implies

v A1t
/ Is(u, v')dv'| < Cv?sup | =2t | (806)
0 T,
For Ig we use
Itm (DA 3t Ot dA
3t (_) _ | 9tm Otmi (_) < Culv, (807)
du \or /),y du dv \ar /),
which implies
v
/ Is(u, v)dv' < Cu*v? sup |Apt1a| +sup |Ap+1 B8l - (808)
0 T‘u TM
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For 17 we use

0A 0A t
A l=—])| <cC 98m+10
ar ov

which implies

v
‘/ I (u, v)dv'
0

+0(|Ams1al + A1 Bl + |Am+1r|)] . (809)

aAm+1t
v

< Cu®v sup
Ty

+ v(sup | Amsia] + sup | Ay Bl + sup|Am+1r|)] . (810)
Ty Ty Ty

For I3 we use

P Apyrt A1t A1t
— =C - v
100 m+1 Mm+1 £ m—+1 9
at, at, A 411 0Nt
= A1V = A 1 — ] o A Uy —. (811)
ou v av ou
From this it follows that
%At A i1t A1t
Em < ol Amprptl P Apggv] + | T D g | 22D (812)
Judv ov ou

which implies

v
‘/ I3(u, v)dv'
0

<Cv [vsup [Amt1 ] + u’ sup |Ap+1v|
Ty Ty

0A 1t 0A 1t
+ sup ml v sup omrli b (813)
Ty Ty
For Iy we use
921, At N Ot | _ c @14
— — u’
dudv " " du | T

which implies

v
/ Io(u, v)dv'
0

Using the estimates for the integrals of I . .. Iy in (801), taking the supremum of the
resulting estimate in 7, and absorbing the term involving /; on the left hand side it
follows that for small enough & we have

< Cuv {suplAm+1a| + sup |A;+18| + sup |Am+1r|] . (815)

Ty Ty Iy
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JA 10
sup —omtlm < C[uz(sup|Am+1a| =+ sup | A, +18] +sup|Am+1r|)
T, du Ty Ty Ty
A1t 0A 1t
+ u sup omH17 +u25up 22mt17 +uzsup|Am+1u|+u3sup|Am+1v| .
T, | v T, | du T, T,

(816)

Using this estimate in (798) it follows that for & small enough we have

sup [Ap 1| = C[ SUp | Ay 10| + sup | Ay g1 8]+ u” sup [ Ay 17|

T, T, T, T,

A1t

‘ OAm+11

+ usup +u’ suplAm+1v|]. (817)
Ty Tu T,
To get an estimate for A,,41v we apply a similar procedure. The estimate (793) is
replaced by

0A 10—
[Amt1v] SCI|Am+IC+|+|Am+IC|+‘%H' (818)
Using now
oA
Tomt® — AntiA, (819)
av
it follows that in the role of the estimate (798) we have
IA 1t 0AL+1P8
|Ami1v] < C HAm1o] + | Ani1 Bl + ul Apyrr] + ‘ |+ ‘ i
(820)
Now for the estimate of dA,,+18/dv we use
a d “9B
Pm+1 = dBrm _ Bt +/ L“(u/’ v)du'. (821)
dv dv v av

This follows from the second of (306) integrated with respect to u from u = v up to
u. Using this we get for the difference d A,,118/dv terms which are analogous to the
ones in (800) (A replaced by B, d/9du replaced by d/9dv) but in addition to the integral
we have the terms

dAm/g-l-
dv

— Api1B. (822)
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For the second difference in (822) we use (796), (797). It follows

A dA
sup ’”—*“3‘ < sup | L2nPr +C[u2(sup|Am+1a|+sup|Am+lﬂ|+sup|Am+1r|)
Ty 31) [0,u] v Ty Ty Ty
A1t A1t
+ u sup ComlD + sup Comtl” +u? sup |Apyip| + 1’ suplAm+1v|]. (823)
T, | v T, | u T, T,

Therefore, for ¢ small enough, we have

dAm/g+
sup A1V < Cy sup |[Ayt1a| +sup |Apy1 Bl +usup | Apsrr| + sup | ————
T, T, T, T, 0url dv
A t A t
Fosup | o 4 sup [ 22 4 w2 sup [ Al |- (824)
Ty 81} Ty Ty
From (817), (824) together with (779) we obtain
dA, B
sup |App1p < c[supmmmn +sup | A1 Bl + 1 sup [———
T, T, T, 0ul dv
A t A t
+ usup m+1 m+1 ]’ (825)
T, v T, u
dAmﬂ+
sup |[Ap+1v] < Cy sup |Aypra| +sup |Ayp1 8| + sup |[———
T, T, T, 0| dv
OA 11t OA -1t
+ sup ml sup ‘ il ] (826)
T, v Ty u
Substituting now (784), (785) we get
dA OA 1t 0A 1t
sup |Ap+1i] < C {usup mP+ +usup‘¢ ‘n—Hl , (827)
T, [0,u] v Ty Ty
dA JIA t oA, +1t
sup |A4+1v| < C 1 sup Lm =+ su; ‘LH Iomil? , (828)
T 0| dv T, | v T, | du

where we also used supjg . [Am+1B+| < usupy ) ldAmi1B/dv|. Using the esti-
mates (827), (828) in (763) we arrive at

sup |Ep+1| < CJi(w), (829)
Ty
where
dA oA t A t
Ji(u) = u? sup L'BJF +u? sup mtl +us mtl (830)
0url dv T, | 9v T,
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We now look at equation (762). We are going to deal with this equation in a similar
way as we dealt with the one appearing in the convergence proof of the fixed boundary
problem. Integrating with respect to v yields (for K,,+ recall the first of (366))

OA 11t _ v / oA t
m-+ (u,v) =e KmH(u,v)/ eKmH(u,v) (Em+] — Ut m+1 ) (u, U/)dl)/.
0

du ov
(831)
We define
v A / aA t
Ayt I(v) = / fefimaes g 4 om0} 22 0, wa,
0 v
(832)
v A
Ppi1(v):= / eKmr1 g (v, v)dY'. (833)
0
We recall that 7,41 (u, v) is given by
K
Umt1(u, v) = ————— (1 + Ty 1 (1, v)) (334)
C+0 — C—Q

and that 7,1 («#, v) = O(u). We obtain from (831) (recall that b(v) = (31/9u)(v, v))

Am+1b(v) — e—KWH»I(U,U) [Pm+1(v) — ;CO (Am+1f(v) + Am+11(v))] .

Cy0 — C—
(835)
Defining
Oty 1
Apt1(v) = — @, V)Ant1 | — ), (836)
ou 7 (v)
we obtain from (764) (recall a(v) = (3¢/9v)(v, v))
Aptia(v) = Ap1b(0) + A1 (v), (337)
Ym+1(V)
which implies
AN, 1
m—+f(v) = ( + 1) Apg1b() + Apg1 (). (338)
dv Ym+1(v)
Using the estimate (829) in (833) we find
A t A t
|Pis1(v)] < Cv? {vnAmmnx +osup | — 1 4 su ‘8’"—”“ ] . (839)
Ty Ty

@ Springer



Shock Development in Spherical Symmetry Page 111 of 246 3

Using (791) together with the second of (362) we obtain

A
Ami1(V) = =708y (V) + O | Any®)) + OW*| ALV ()])

dA t A t
+ O(sup |Ap B+ (v)]) + Of vsup mtl + 0} sup mtl .
[0.v] T, | o
(840)
We substitute (835) into (838) and arrive at
d(WAp11f ()
+vf + A1 W) WAR11 f (V) = V> Ap11B(), (841)
where (for p see (357))
_K v pm+l(U) K 1 —K v,V
Ans1(v) = e m+1(v,0) ——(l—e m+1(,))7
c+o —c_0 v
(842)
*Km-%—l(v v) KV
Ams1B(v) = (1 T om0 + —)
€40 —C-0
0—C—0 Amt1(v)
x ( = Pot1(v) — Amm(v)) + % (843)
Integrating (841) from v = 0 gives
v v a "
VA i1 f(v) = / e~ Jr Anan WAV 2N B Y. (844)
0
Substituting back into (841) yields
7 AN 1
DOnit] () y A1 B@) — — (140411 (0)
dv v
v v " 4
x / o™ hr Amer OY2A L L B (845)
0
Now we decompose A,,+1 B into
0 1
Apmy1B = Apy1B + Apy1 B, (846)

1
where A,,+1 B contains the terms of A,,11 B which are linear in A,,+1/. Analogously
we decompose

dA 0 1
;;:”C = Rys1 + R (847)

@ Springer



3 Page 112 of 246 D. Christodoulou, A. Lisibach

0
We estimate A4 B using (839),(840). We obtain

0 .
[Ami1B)| < C[IAmy(v)I +v[AR V)| + [[AmByllx

A t 0A t
+ sup SomtID sup‘ﬂ ] (848)
T, T, u
This implies
0
[Rpn+1(v)| < CuJo(v), (849)
where
N OA 11t A, +1t
Jo@) = [Any(@)] + 0| A V ()] + | A By llx + sup | ——t +sup‘+u+ :
T, T,
(850)

1
We now estimate A,11B. For this we need an estimate for A,4i/. From
Kpt1(u, v) = O(v?) we have

K1) 1 = 0@?), (851)
Since we also have 7,11 (v) = O(v) we obtain from (832)

m+lt

[Amy 1] (V)] = Cv/ ‘ v, v)|dv, (852)

which implies

1 C C [V|0A+1t
|Am+1BO)| = 5| Ans1] ()] < —/ 'L“w, v)|dv.  (853)
v v Jo av

Therefore,

v

1 2 ! / / 1 ! !
— [ VI AnB@)HdY < = [ V[App 1 BO)|dY
0

U2
_/ (/ ‘aAm-i-lt( /’ v//) dv”)dv/

< C/ A1 T (v, v")dv”, (854)
0

| /\
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where we use the definition

A t
Apms1T(0,0") = sup mH )] (855)
v'ev”,v]
Using this definition also in (853) we obtain
1 v
V|AL1B()| < C/ A1 T (v, )dv'. (856)
0
From the estimates (854), (856) we find
1 v
Ron @)1 =C [ Ay T, o)av” (857)
0
This together with (849) gives
dA v
‘Z;—Hf(v) <C [v]o(v) +/ Aps1T (v, v’)dv’] . (858)
v 0

Integrating (762) with respect to u from u = v yields

A1t
av

(u, v) = e~ Fmsrtr) [Am+1a<v>

u oA t
+/ elmi1 @) (um_l,_l(u v) + (vm+1 E;"MH )(u/, v)) du’].
v

(859)
Using now vy, +1 (1, v) = O(v) (cf. (489)) together with (829) we obtain
A1t Y1OA 41t
‘ gm (u,v)| < C[IAm+1a(v)|+uJ1(u)+v/ usa L v)‘du/].
v v
(860)
Now, from (831) we get
A1t V1 0A 41t
mH v < € qu(u)+/ mA v do' (861)
au 0 av

From this we obtain

/ ‘aAer ,

)| du' <C|v(u—v)11(u)+(u—v)/ Ay T (u, v')dv' ]
(862)
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Using this in (860) we find

[ttwn] << ST
w,v)|=<C IAm+1a(v)|+qu(u)+v(u—v)/ App1 T, v)dv .
0
(863)
From (837) we have
Amira) = —— (‘M’”“f()+ (A ()) (864)
e iy U qw T Rt )

Using the estimates for A,,+1 and dA,,+1 f/dv given by (840), (858) respectively, we
obtain

|Apqra()| = C IvJo(v) +/v Apa1T (v, v’)dv'] . (865)
0

Using this in (863) we get

0N, 11t v
‘ 5"“ (u,v)| <C {vJo(v) +udy(u) +/ Apmi1T (v, v’)dv’}
v 0
oA t A t
<C ’uFm(u)—i—usup omt17 + usu ComH1T
T, T, v
v
+/ Am+1T(u,v’)dv/], (866)
0
where we use the definition
A dA
Fy(u):= sup |[Apy| +usup |A, V| + sup L’&L . (867)
[0,u] [0,u] ou | dv
We also define
~ OA 11t OA 11t
Fpy(u) := Fy () + sup | —2+1 +sup’5"—v“ . (868)
T, T,

From (866) with u’ in the role of u and taking the supremum over u’ € [v, u] we
deduce

v
Aps1T(u,v) <C [uFm(u) +/ Ams+1T (u, v’)dv’} . (869)
0
Defining now

v
Apg12, (V) := / Ayt T (u, v)dv', (870)
0
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(869) becomes

d -
%Am+l X,() < CuFy(u) + CApy1 2y (v),

which implies

Ami124(0) < CuvFy (u).

Therefore,
|Ami1 T (. v)| < CuFyy(u),
i.e.
A t -
‘L“(u,w < CuFp(u),
which in turn implies, through (861),
A t -
‘ ", v)| < Cuboy ().
It follows that for ¢ small enough
A t
‘ ", v)| < CuFm (),
ov
oA t
‘BL“@:,U) < CuFy ().
u

(871)

(872)

(873)

(874)

(875)

(876)

(877)

We call these the rough estimates. In the following we will use these to get more

precise estimates.
Using (876) in (832) we get

|Ams11(v)] < CV*Fp(v),

which implies, through the first inequality of (853),

1
[Amy1BW)| = CuFy(v).

Now, from (848), together with the rough estimates, we obtain

0
|Am+1BW)| < CF,(v).

(878)

(879)

(880)
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Therefore,
|Am+1B()| = CFp(v), (881)
which, in conjunction with (844), implies
|Am1f ()] < Cv*Fu(v). (882)
Using the rough estimates in (839) yields
|Prs1(0)] < CVFu(v). (883)
Now we use (878), (882), (883) in (835) and arrive at

Amsib(v) 4+ <BmttI O e ), (884)

C+0 —C€—0
Using the rough estimates in (840) we get
A N
Ampi(0) = =50Any () + OWH ARV @)) + O W AnBllx) + OW? Fpy ().
(885)

Using now (883), (885) in (843) we get

A A
Amy@) + O sup [Ap V) + Ol AmB+IIx) + OWFy(v)).

0
Am—HB = -5
6K2 [0,v]

(886)

Together with (879) we find

A A
Amt1B() = =7 Any (V) + O [SOUP] 1An VD) + OUlAmB+1x) + OWFy ().

(887)

Now we derive the precise estimate for A,,41(v). In view of (842) we need first an
estimate for p,,+1(v). From (357) we have

Pm+1(V) = po.m+1(V) + OW). (888)
From (394) we have
Po.m+1(v) = O(). (889)
Therefore,
Ams1(v) = O(1), (890)
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which, in conjunction with (882), implies

A1) WA 41 f () = OW Fpy (). (891

Using (887), (891) in (841) we arrive at

dWApy1 f () A f
dWAn1 f) L Ay (@) + O sup |A, V)
dv 6K [0,v]

+ O | AmBrllx) + OW Fp(v)). (892)

Let us make the following generic definition. By E,, (v) we mean a function of the
kind

En(v):= 0@l Anylix) + 0([s0up] A VD) +O@lAnBillx).  (893)

Using now
d dA,B
sup mP+ < Ccv? sup ﬂ , (894)
[0,v] dv [0,v] dv
(892) becomes
d(WAp11 f(V)) A
e = 0 Ay ) + 0 E (). (895)
Therefore,
I A v ” / / 3
B f0) = /0 V2 Ay (0)dV + 03 B (0). (896)

Integrating by parts we obtain

6 v3 1 (Y .dA,
LAme(v) —Amy(v) v/o & o y( Ndv' + v E,(v).  (897)

Now we express the above in terms of Am+1f(v) given by Ay f(v) =
V2 A g1 f (). Using | A, y(v)| < v||Amyllx, we obtain from (896),

A
| A1 f ()] < P 3V Amylix + vEn(v). (898)
Since

dAmiif 1 (d(vAme(v))
dv 3 dv

- 3Am+1f(v)) ; (899)
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from (895), (897) we deduce

dAm—Hf
dv

A
(v)’ = Sgez1Amylx + Ew (). (900)

We turn t0 841 (v) = gm+1(v) — ¢40 fm+1(v). From (see (640))

d5m+1 dfm+1

=V, — —_ 901
T (Vin — c40) 7 (901)
we have
dA 1) d dA
i1 AImtl oy sy — ey D2 (902)
dv dv dv

For the first term in (902) we use (see (632) and V,,,(v) — c40 = %(1 + vy (v))v +
OW?)

dﬁ"—“(v)ziwowz), ApV(v) = —vAmy(v)+(9(v2E (v)), (903)
dv 3k2

and get

f’““ AImtl ) AV () = %v Amy(®) + OW Ep (v)). (904)

For the second term in (902) we use

fm+l

2y W= 20 fns1 () + 07 J;m:l (v), (905)

which implies, in conjunction with (898), (900),

dA;"—Hf( ) = OWER(v)). (906)
Therefore,
(Vin—1(v) — C+0)d;n—+1f( ) = O Ep(v)). (907)
Putting things together we arrive at
‘mc’l"—:”s(v) = %vamy(v) + OW Ep(v)). (908)

Integrating (and also integrating by parts) we obtain
A voadA
Am418() = o= (v Amy(v) = / v’3d—’"y<v’)dv’) + O En(v). (909)
0 v
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Now we use 8,11 given by 8,41(v) = V38,41 (v). We obtain from (908), (909)

dApitd 1 A [V gdAyy

= —— ——=@)dv + O(E , 910
dv o7 6x Jo v, (vV)dv + O(En(v)) (910)
which implies
dAm_HS A
—_— < —JA E . 911
7u (v) _24K|| mYllx + Em(v) 911)
We have
dA o YA o 0A o
m+1 +(U) — m+1 + m—+1 (v, v). 912)
dv ov ou
For the first term we use as a starting point (819), i.e.
oA
S = A, (913)
v

which implies

At
av

<C OAm411
- av

+0(| A1l + [ A1 Bl + |Am+1r|)] o194

To deal with the difference A,,41r we use (779). For the differences A, 410, Ap418
we use (784), (785) respectively. Using also the estimates (876), (877) together with
the definition (867), we find

Ayt

< Cuky(u), (915)
ov

sup
Ty

For the second term in (912) we use (816). For the differences in the first line of (816)
we use the same estimates which we used for the first term in (912). For the differences
in the second line of (816) we use again the estimates (876), (877). We obtain

LJAVEST
sup | ————

T,

<cC |u2Fm<u> + u? sup | A1 ] + u? sup |Am+1v|] . (916)
]

u T, [0,u

For the differences of ;v and v we use (827), (828) together with (876), (877). We
obtain

0Am+1¢
u

< Cu’Fp(u). 917)

T,
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Therefore,
lAmriayllx < CvFy(v),

i.e. (see (867) and take into account that B ,,, (v) = Bo + v2ﬁ+.m (v))

I Amsraslx < Cv? [IIAmyllx + sup A, V] + vIIAm5+|Ix] .
[0,v]

In view of (900), (911) and (919), the proof of the lemma is complete.

5.2.2 Estimates for the Identification Equation

(918)

(919)

Lemma 5.2 Let f;,(v) = vzfm ), ym (v), gm(v) satisfy the identification equation

gm (V) + 10 = r*(fin (v), VYW (V).

Then the following relation holds

dv @) = A dv

dApiry 3k | dAp f dAm+1a
— () = — f k() (V)
+ O Apt1 fIx) + O@I Apt1 ¥l %),
where

V38 (V) = 8 (V) = g (V) — 10 fn (V).

Proof We look at (see (675))

8Fm+l
Bimsr ) ay i)
dv 8ﬁm+1 ’
5 W, Ym+1(v))
y

where (we omit the argument of y)

dFmi1 A, . dR
ay (v5 ym+1) = Zym+1 _Kfm+1(v)+v_(v7 ym-i-l),
) f 1 dbpir
P (0, Yt 1) = KVl — e (V) + e (v)
v dv
0R 11
+ Ryu+1(0, ymt1) +v am+ W, Ym+t1)-
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The difference we have to estimate is given by

oF
dA At Gy ) IF 1
1
++y(v)=_ _ — a’"(u,y,,,)A,,,+1 1. 920
v 8Fm+l v
v, Ym+1) —(,y)
ay dy
Now

~

oF Bt f df, PN
Am—H _(U, y) = —KYm+1 m—+1f(v) _ Kﬂ(v)Aerly + m—+1 (v)
v dv dv o

JR
+ Apt1 R, y) +vA4 (%(v, y)) . (927)

For the second term we use (cf. (638))

A

= CvllApyryllx- (928)

d
Ldm (V) Api1y
dv

For the fourth term in (927) we recall (see (670))

azr* " 2 84"* y4—
= (25), ) () £

>+ \ ¥ f(w) .
B (8[811)2)0 Ty vH(f (v), y), (929)

where H is a smooth function of its two arguments. We estimate the difference of the
first term by

~ 2 ~ ~ ~ ~
At (F®)" = (a1 @ + fa @) Ani1 f©) = OU A f0)D
= Ol Amt1 f11x)- (930)
The difference of the second term in (929) we estimate using (recall y(v) = O(1))
A1yt = Ol Ant1ylx), (931)

while for the difference of the third term in (929) we use

A1 P F@)) = fur1t @ Ams1y? + 2 Api1 f(0)
= Ol Amt1Ylx) + O@I Ami1 flx)- (932)
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For the difference of the fourth term in (929) we use
VA H(f ), 9 < COP U A4 fllx + 1 Ams1yllx). (933)
Therefore,
|Ams1R@, )| < Coll Apr1 £llx + 1Am1Y1lx) (934)

Now we look at the fifth term in (927). We have

dR _ 3%r* df 3\ yrdf
5, 0N = ( ) f(v) O (8t3w2) ()
df

—v(@ H)(f(), M) = H(f (), y), (935)

where by 91 H we denote the partial derivative of H with respect to its first argument.
For the difference of the first term we use

m+1(f(v)—f( )) f’"“(v)Am+1f(v>+fm(> ”’“f (v)
= Ol Ams1flx), (936)

while for the difference of the second term we use

d f d m d m
Am+1(y2£(v)>) It a0 452 8me ]

dv dv
= Ol Am+1YlIx) + OUAms1 Fllx)- 937)

For the differences of the last two terms in (935) we use

|Am+101H(F @), s [Ams 1 H(F ), )] < Co(l Apst Fllx 4 I Ams111x)-
(938)

Therefore,

< Co(|Ame1 fllx 4+ 1 Ams1 ).

Amsr {v(alm(f(v) y)—fw) +HG ). y)}
(939)

It follows that

R
VApp | — @, y)
v

< Co(| Amy1 fllx + vl Ams1yllx)- (940)
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We conclude that

aF dApsr f dAy1d
At [ 2E .3 ) = —ieymar By 4 dBmaid
v dv dv

+ OWI A1 f1X) + OWlAns1ylx).  (941)

Now we look at the second term in (926). We use

1 Am-l-lf
A —_)=— . 942
+ (f) Fouet o ©42)

We need to estimate the difference A,,41 ((8 ﬁ/ay)(v, y)). We have

OF A 5 . IR
Apri| =@, ) )= 5= Anm+1(07) — kAmy1 f (V) + VA1 | — (0, 9) ) -
ay 2k ay

(943)
For the first term we have
Ami1(0?) = O Aps1Y]x)- (944)

For the third term in (943) we use

oR atre\ y? 33r* A oH .
E(U, y)=— (W)o i (mazw)OYf(U) - Ua(f(v), ). (945)

For difference of the first term we use

Am+1Y® = O Api1yllx), (946)

while for the difference of the second term we use

A1V F () = O@I Aps1Y 1) + O@I Apt1 FlIx)- (947)

For the difference of the third term in (945) we have

oH 4 A
‘Am+l (vg(f(v), y)) < CO(1Ams1 fllx + 1 Amt1ylx). (948)

Therefore, we obtain for the third term in (943)

dR A
VAm+1 (a(v, y)) < CO*(|Ams1 fllx + [ Ams1ylix). (949)
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We conclude that

aF
Am+1 (a_(va )’))
y

To deal with (926) we also need (see (673), (676))

< Coll i1 Flix + 1 Am1llx). (950)

IF A
. W, ym1(0) = — + O(v). (951)
y 3k

Using now the asymptotic forms as given by (941), (950) and (951) in (926) we arrive
at (921). O

5.2.3 Estimates for the Jump Conditions
Lemma 5‘3 Let a+,m(”), :3+,m(v): fm (U)! Zm (U)’ Vm(v) Satl.Sfy

[ )]
[T 0)]

[Bn ()] = [otn (W) Gl m(), @ (), B @), Viu(v) = . (952)

where

aem(@) =" (fu(0), 2n (), Bm) = B (fn(V), 2m (V). (953)

where the right hand sides are given by the state ahead, i.e. by the solution in the
maximal development, and

(70" )] = T* (@t m (0), B () = T (@ (V) B (V). (954)

Then, the following estimates hold:

dA
‘W(v) < C {1 Amr1zllx + 1Ams1 fllx + V21 At lix ),
(955)
K
| A1V ) = Z80120)| = € (01 Amrizlx + vl Amr1 Fllx + vl Aprcslx}
(956)
Proof We start with
(8] = [a] G(ast, a_, B-). (957)
We have
dA d dG
Aol _ 5 (162 D6} + s (02 29). (058)
dv dv dv
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We start with an estimate for the difference of

B—m() = B*(fn (), 2 (v)), (959)

where B*(¢, w) is given by the state ahead, i.e. by the solution in the maximal devel-
opment. We have

dAmyp1p- (ﬁ) dAmt1 f +%A B (3,3*)
m+1

dv ot dv dv ot
818* dAm+IZ dzp, 818*
— 4+ —A . 960
+(8w )m—H dv * dv =" ow (960)

Here the partial derivatives of B possess the same arguments as on the right hand side
of (959). Taking into account the second of (703) we obtain
p*
< C{lAm+1 fl+1Amtazl}, Amt1 w

B*
‘Aerl ( a1 )
< C{lAmt1 fl+v|Aptizl}. (%61)

In view of (696), (698), (702), (704) we arrive at

dA _
Similarly we find
dA, 10—
‘";—J;l < C{llAmt1 fllx + 1 Am+izllx} (963)

(The factor v? does not appear since the conditions (703) do not hold for the partial
derivatives of o with respect to w).
We split the first term on the right hand side of (958) into /1 + I, where

dA d
m+1 [05]’ L=3 [atm]
dv

1 =3 [ams1]> G At (10 G). (964)

For I} we use

dAm—i—l [Ol] _ dAm+10l+ _ dAm_HOt_
dv  dv dv

(965)

The second term is estimated by (963). Taking into account [« (v)] = O(v) (see (726))
we get

L] < CV* ([ Ams1ogllx + [ At fllx + [ Amrizllx}- (966)
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For I, we use
[Ap1Gl < C{llAmp1apllx + 1Appro—llx + 1 Ams1B-lx}.
Together with (962), (963) we obtain
L] < CV* {| Amriog llx + 1Ams1 £llx + | Amsizlix) -

The second term in (958) we split into I3 + 14, where

Li=|— Amyrlal”,  Iy:=law]” Aprr | =) -
dv /.4 dv

Reasoning in a similar way as to arrive at (966), (968) we find

1] < Co {| Ampragllx + 1 Ams1 fllx + 1 Amp1zlix}
113l < Co* {1 Ams1aslx + 1 Ams1 fllx + [ Antazlix) -

Using now (966), (968), (970), (971) in (958), we obtain

4

dAm—H [ﬁ]

‘T < z |;|

i=1
< CV {| Amsrosllx + 1Ams1 flx + [ Amsrzllx}

which implies

|Amt1 [B]] < COP {[|Am1og x + [ Ams1 fllx + | Amsrzlix) -
From (972) together with (962) we conclude

dAm+1.B+
dv

We turn to the jump condition
Tt r
We have

A B, —A,B
Am—HV _ m+1Dm mBm+1 7
Bm+le
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where

Am = T”’ (a+,m1 ,3+,m) - Ttr (a—,m, ﬁ—’m)»
By, = T”(a—i-,mv lg—i-,m) - T”(Ol_’m, ,3—,m)-

Let us denote the numerator of (976) by N. We have
—N = AmBm—H - Am+le = AmAm—i-lB - BmAm+1A~
Now we rewrite
1 2
Am = Am + Ama

where

! tr tr

Am =T (O‘+,m’ ﬂJr,m) -T (O“r,mv ﬁ*,m),

2
Ay = Ttr(a+,m» ,3—,m) - Tlr(a—,my ﬂ—,m)-

Now, for a smooth function F (x, y) we have

oF
F(x,y2) — F(x,y1) = (5) x, YD) (2 — y1) 4+ O((v2 — y)?).

Suppose now g2 (v) — g1(v) = O(v). It follows

(977)

(978)

(979)

(980)

(981)

oF
F(f (), &) — F(f(v), g1(v)) = () (82(v) — g1(v) + O(v(g2(v) — g1(v)))
0

dy

JoF
= (a) (82(v) — g1(v)) + O(?).
Yo

Using this we obtain

] tr 2 tr
Am=(3T ) Bl + O, Am=(aT ) ] + OW?).
B Jo da Jo

Now we recall (for the first see (726))

[0 (V)] = o (1 — Y (V) + O(V?) = O(v),
(B ()] = [ (V)] G(tg (V) A (V), B (V).

Therefore,

tr
A = (3T ) d0(1 = ym(@)v + OW?).
80[ 0

(982)

(983)

(984)

(985)

@ Springer



3 Page 128 of 246 D. Christodoulou, A. Lisibach

Similarly we find

Ttt
By = (8 ) &0(1 = ym @)V + O,
80[ 0

Now we look at the difference A,,+1B. We have

1 2
Amt1B = Apy1B + Apy1 B,

where
! it it
ApB=T (a+,m+19 /3+,m+l) -T (a+,m» /3+,m)7
2
Apy1B = T”(a—,m7 /3—,m) - Tn(a—,m-&-la /3—,m+l)-
We rewrite
1 la 1b
Am+lB = Am+lB + Am+lBa
where

la
tt It
A1 B =T" (@4 ms1, Broms1) — T (0 m, B+ m+1)s

1b
Ay B = Tn(a+,mv B+m+1) — Tn(a+,ma Btm)-

Now, appealing to the first line of (982), we have

la oT"
Apt1B = ( " ) Amtrat + OW[Apri04]),
0

15 9T
Api1B = ( ) Api1B+ + OW|A 184D
0

0B
Therefore,
1 aTtt aTtt
Apy1B = ( ) Apiot + ( ) Amt1P+
da J B/
+ OW|Apyroq]) + OW| Ay B4D.
We rewrite

2 2a 2b
Am—HB = Am—HB + Am+lBa
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Shock Development in Spherical Symmetry Page 129 of 246 3

where

2a

A1 B = =(T" @1, Bom) = T @ Bomi)) s (997)
2 R o
Apt+1B = T (- m, B—m+1) = T (0t— i, B—m) |- (998)

Again, by the first line of (982), we have

2b aTtt
Apt1B = — ( ) Amy1B-+ OW|Apy1B-D. (999)
B /o
Defining
W, w):=T"(@"(t, w), B*(funt1s Zm+1)), (1000)

where o™ (¢, w), B* (¢, w) are given by the state ahead, we have

2a

AnitB == (Y, 2ne) = Yo 2). (1001)
We have
W W
Ui, w)=90,00+ (=) r+(=) w
at J ow /
2w\ 12 R W\ w?
— ) 5 t — ) =+ 0@, Pw, tw?, wd).
+(ar2)02 +(3t8w)0 w+(aw2)0 g HOUw rwh wh
(1002)
Using

aT! 9%a*
da )0( ar? )o’

T 02a*
X , 1003
0 +( ia )0 (ataw)o (1009
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where we also use (da*/dw)g = d, (92a*/dw?)g = dp (see (281)), we obtain

2 aT! [ dar* AT
—Apy1B = — ) Amsif+ GoApy12

() () ]
=) & &0 VAR412Z
da? /), da /),

+ OW|Apy1 ) + O Apyrz)), (1004)

where we also use 3(Ap+1(z2) = —v(Apy12) + OW?|Ayiz]), since z(v) =
—v+ O®?) and f(v) = O(?). This together with (999) implies

2 9T ) 82Ttt = oT! .
Apy1B =— ( o )anAmHz + [(W)an + ( % )an] VAm+12
) aT"! da*
+ O Amt1zl) — — ] Amt1f
oo 0 ot 0
aTtt
op

+ OW[Apt1 f]) — ( ) Amy1B-+ OW|Aps1B-D). (1005)
0

From (995) and (1005) we obtain
aTtt aZTtt 5 aTtt
App1B=— ( ™ )anAmHz + I(W)an + ( Y )an] VAm+12

n T A aT™ da* A f
a —_— — —
Ja o m+1%+ 9o o a1 0 m—+1

aTtt
+ ( ) At 81+ O Ams18+1) + O A1)
0

B
+ 0@ Amt1zllx) + O Amt1a4llx) + O@WH At fllx). (1006)

Making use of the estimate (973) we arrive at

9T aZTtl 5 T
A B =— X0 A — ) a 0 A
m+1 ( Yo )Ooeo m+12 + [( a2 )an —l—( o )an] VAR112

n T A oT" da* A 7
oL —
Jdo 0 m 1S oo 0 at 0 mtl

+ O Amtrzllx) + O Ampratllx) + OW | At fllx), (1007)

where we also used (962), (974). The analogous expression holds for A, 1 A but with
T'" in the role of T*'. Putting things together we arrive at the following expression for
the numerator of (976)
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v 5. 3(1 ( )) BZTU aT!" 82Ttr Tt A
= —vay(1 — yu(v —) - —
0 Y 3052 0 o 0 80[2 0 Jo 0 m+1%

+ O Amtrzllx) + OW | Ampratllx) + OW | At fllx)- (1008)

Let us inspect the curly bracket in (1008). For this we use (see the first and second
of (185))

aT" Gl/lt BT” wt
(I +vp?, — ——
o oo

(v+nd 4+ vn). (1009)

Using (180), (210), the first of (179) and the first of (184) we obtain

32T d
- = w’ L1+ ) ((1+3n2+3vn+vn3)—(1 —un)—’Z), (1010)
o dp
2T d
—5 = W; (v =+ 21 4 2v%n + 21> + 6vn® + 20%9° + vt) —v( _’72)_7z .
do 4n? dp
(1011)
Therefore, we obtain the following expression for the curly bracket in (1008)
Gyt dn
— =20 (1 — v (1 + vomo)’ (1 + (—) - né) : (1012)
815 dp /g
Using the definition of u (see (189)) we see that (1012) is equal to
G21ﬂ4
- é’n;o (1 = v3)(1 + vono)* wo. (1013)
0

Therefore,

Syt
N =v? i =001 = vg) (1 + v010) 1o Amt12

’70
+ O Amtizllx) + O 1A i1t llx) + O Apir fllx).  (1014)

We turn to the investigation of the denominator of (976). Let
D := B, +1By. (1015)

Rewriting
1 2
By, = By + By, (1016)
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where
1
B, = T”(O‘+,m7 ,3+,m) - T" (a+,m’ lgﬂm)y (1017)
2
By =T" (01 m, o) — T (2=, B—m) (1018)

1 2
and arguing as we did for the derivation of the asymptotic forms of A,, and A,,, we
arrive at

(aT”) : 2
B, = ao(1 = ym())v + OW). (1019)
da J

Similarly with m + 1 in the role of m. Therefore, we obtain

aTtt 2
D= 4( ” ) av? + O, (1020)
0

where we used y,, = —1 + O(v). Using the first of (1009) we find
Gy

m

4
01 + vono)* + O ). (1021)

— 12252
D =voag

Now, from cy = (v + 1)/(1 + vn) together with (184), (189), (210) we have

2004

1
= EM(l —v?). (1022)

(I+wvny
Using k = ap(dc4+/da)o we obtain from (1014), (1021)

K
Ani1V @) = S Ans1z(v) + OW*|Amt1zllx)
+ Ol A1t llx) + OWIAmt1 fllx)- (1023)

m}

5.2.4 Closing the Argument

Proposition 5.2 For ¢ small enough the sequence (yy,, B+,m, Vi) converges in By x
Bs, x Bs,.

Proof We first note

A C
[Amt1B+lx = ﬁ”Am—HIB-%—”X' (1024)
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We now use the first estimate from lemma 5.3 together with the estimates for |d f /dv|
and ||A; 4104 | x from lemma 5.1. We obtain

| Amt1Billx < C [uAmyux +sup [A, V] + v||AmB+||x] : (1025)
[0,v]

For an estimate of ||A,,+1y]|x we look at the estimate of lemma 5.2. Using also the
first two estimates of lemma 5.1 we obtain

1 A N
[Amt1ylix < g”Amy”X +C {U||Am:3+||x + sup IAmVI} ; (1026)
[0,v]

provided we choose ¢ suitably small. Now we note

~ 1
A1 V() = — (Ansrv) - v%Amﬂy(v)) . (1027)

We now use the second estimate from lemma 5.3 together with (1026). We obtain

sup |Ap V| < C |v||Amy||X +vsup A, V] + v2||Amﬁ+||x} . (1028)
[0,v] [0,v]

We rewrite the estimates (1025), (1026), (1028) as
1 . .
Apriyllx < §||Am)’||X + Ciyv[[ApBellx +sup AL V],
[0,v]
IAm+1B+lx < Ca l||Amy||x + sup A, V] + v||AmB+||x] ,
[0,v]

sup |[Apms1 V] < C3 [v||Amy||X +vsup [A, V] + vzllAm,3+||X} . (1029)
[0,v] [0,v]

It follows that for ¢ small enough the sequence (y;,, ,3+,m, Vm) converges in By X
Bs, x Bs,.

The two propositions above show that the sequence (y;,, ,3+,m, Vi) converges uni-
formly in [0, €] to (y, fi+, \7) € By x Bs; X Bs,.

We see that (F},,) as given by (867) converges to 0 as m — oo uniformly in [0, €].
Therefore, in view of (876), (877) also dt,,/dv, dt,, /du converge uniformly in 7. Let
us denote the limit of (#,,) by ¢. This, in view of (827), (828), implies the convergence
of (m, vm) to (u, v) uniformly in 7, and, in view of (829), also the convergence of
(&) to 0. Therefore, the pair of integral equations (831), (859) are satisfied in the
limit. It then follows that ¢ satisfies (359).
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In view of (784), (785) we have convergence of (&, B,) to (¢, B) uniformly in 7,
which implies convergence of (¢4 ;) to c+ uniformly in 7. In view of the Hodograph
system the partial derivatives of (r,,) converge uniformly in 7, and the limit satisfies
this system.

Now, the uniform convergence of (o, Bin), () and the partial derivatives of
(t;) imply the uniform convergence of (A,;), (B;,) to A, B. Therefore, the partial
derivatives d«,, /dv, 0B, /du converge to do/dv, dB/du, uniformly in T, and it holds
do/dv = A, 0B/du = B, i.e. also the other two equations of the characteristic system
are satisfied in the limit. In view of (816), (823) also the partial derivatives (dc,, /du),
(0Bm/0v) converge to da/du, 9f/dv uniformly in 7.

From (759), (760) we see that ( fm) (Sm) converge to f $ umformly in C[0, ¢].
Therefore, z = vy satisfies the identification equation when f := v? f g:= =035 +
ciov? f are substituted. Also V, B, are given by the jump conditions when o, f, z
are substituted. We have thus found a solution to the free boundary problem.

We have that z(v) is given by z(v) = vy(v), where y € clo, el, y(0) = -1
(see (699)). f(v) is given by f(v) = vzf(v) with f € C [0, €], f(O) = A/6Kk?
(see (697)). ﬂ+(v) is given by B4 (v) = fo + v2ﬂ+(v) with /3+ € C'[0,e], f4(0) =
(aﬂ/at)o 1/6i% (see (730)). ay (v) = a; (v) + v2&4 (v) witha, € C[0, €], &4 (0) =
AA0/6K (see (725)) From (639) together with §(v) = v38(v) we have g(v) =
v2g(v) with g € C'[0, €], §(0) = Aco/6K>.

We recall (252) which is the singular boundary of the maximal development in
acoustical coordinates (¢, w):

A
t(w) = to + —w? + OW?). (1030)
2k?
Therefore, using w = z(v) = —v + O(v?), we have
A9 3
1:(z(v) =10 + v + O@W). (1031)
2K

Comparing this with (see (697))

A
f)+10=ty+ @zﬂ + 0@, (1032)

we see that for ¢ sufficiently small the shock curve /C lies in the past of the singular
boundary of the maximal development B.
From (771) we have

V() = cpo+ O@W?). (1033)

From (770) we have that the characteristic speed of the outgoing characteristics along
KC in the state behind is

¢4 (V) = cq0 + kv + OW). (1034)
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Now, let us denote by ¢, the characteristic speed of the outgoing characteristics along
KC in the state ahead. We have

ey (V) = e (@ (f (v), 2(V)), B*(f (v), 2())). (1035)

Now,

dc, Odcy (da*df da*dz deq (0B*df  9B* dz
— = = =)+ = — —=). 1
dv da ( at dv + ow dv) + ap \ ar dv + ow dv (1036)
Therfore, using (286) and
d p*
—f(v) = O(v), P (f (), z(v)) = O(v), (1037)
dv Jw
we find
dc,
— ) =—«+0(), (1038)
dv
which implies
e, (v) = o — kv + OW). (1039)
From (1033), (1034) and (1039) we obtain
V(v) —c () = kv + O, (1040)
cr(v) — V(v) = kv + O0?). (1041)

These imply the determinism condition, provided that ¢ is sufficiently small.
We have therefore proven the following existence theorem.

Theorem 5.1 Letinitial datafort and o be given along C. Let ry>0. Let the solution in
the state ahead be given by o™ (t, w), B*(t, w), r*(t, w). Then, for ¢ small enough, there
exists a continuously differentiable solution (t, r, o, B) of the characteristic system in
Te such that

(1) along C it attains the initial data and r (0, 0) = ry.
(i) ay():=a(@,v), B+@):=pW,v), a_(v):=a*(f(v),z(v), P-(v):=
B*(f (), z(v)) satisfy the jump conditions

—[T"®] V) + [T W] =0, (1042)
—[T"W] V) + [T W] =0, (1043)

where

T () = TH (@t (v), B+ (v),  TE'(0) = TH (@-(v), B-(v)),  (1044)
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V(v) satisfies

df _dg
=, WV @) =) (1045)

and z(v) satisfies the identification equation

gW) +ro=r*(f(v), z(v)), (1046)

where
f):=t(v,v), g):=r(v,v) —rop. (1047)

Furthermore, we have Ve 10, €], where ‘7(v) is given by

V) = cio+ %(1 Fy)v + 02V ). (1048)
(iii) We have
z2(v) = vy(v), yeC'0,e], y0) =-—1, (1049)
~ ~ A A
f)=vfw), fec'0.e, f(0)= o (1050)
A
g(v) = v7g(v), gecC'loel, 20 = %, (1051)
2, N . Ao
(V) — (V) =v’a4(v), @y €C0l, @1 (0) =", (1052)
25 3 1 3 A (9P
B+() — Bo=v"B), P+€C[0,¢], B+(0)= oz (—) . (1053)
K 82‘ 0
(iv) The curve K given in rectangular coordinates by
v (f(v), g(v) +ro) (1054)

lies in the past of the singular boundary of the maximal development B and
satisfies the determinism condition, i.e. it is supersonic relative to the state ahead
and subsonic relative to the state behind.

6 Uniqueness
6.1 Asymptotic Form
Proposition 6.1 Let (¢, r, a, B) be a continuously differentiable solution of the free

boundary problem and let z(v) be the corresponding solution of the identification
equation. Let z(v) and
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f):=t,v), g :=r@v)—ro, o) :=al,v), B+(v):=pF(,v)

(1055)
be given by
z(v) = vy(v), (1056)
f) =v?f), (1057)
g(v) = 1?3 (v), (1058)
ot (v) — o (V) = V64 (v), (1059)
Bi(v) — Bo = v* B4 (), (1060)
with
yeC0,¢el, f.8 é4, Br e Cl0, el (1061)
Then it follows that
_ fO = 2 p) = A *Ao
y(o) - _1’ f(O) - 6K2 ) g(o) - 6K2 ) (¥+(0) 6/(2 5
3,(0) = 2= (aﬂ*) (1062)
PO = 62 \ ar ),
and
ﬁ(0) La'—‘(’,(O) (1063)

C4+0 dv

Proof We first note that the characteristic system together with the solution being
continuously differentiable implies

0%t 1 dc_ dt  dcy Ot
- G _ T ) e O, (1064)
oudv ¢4 —c— \ dv du du dv

We recall the initial data for ¢:

t(u,0) = h(u) = uwhw), hecC0,¢], h0)= m. (1065)

Taking into account

ot ot _ ﬁ
E(v, v)+%(v,v) = dv(v)

=20 () +v? df ), (1066)
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we deduce

ar (o [ 9% —0
du)y, \ov/), \dudv/,
Now,
9=+ L
a’vv_au v,V 70 v,V
ot ot
=c_-(v)—w,v) +cy(v)—(v,v)
ou v

_ df at _ _
= C+(v)d—(v) + —,v) (c-(v) — c4+(v))
v u

2

o df +[az 0+/“ 9
=) ) 5, 0) | uov

Substituting
d dg
W) = 200) + v’ ),
dt dh . dh
3 (0,0) = Z (1) =307 (v) + 07 (v),
together with (1066) yields, after dividing by v and taking the limit v — O,

§(0) = c40£(0).

Since by (1060)

dp+
— @O =0
7v 0
and the second of (161), namely
o8 ot ~
T __B ,
5 o (o, B, 1)

gives, by the first of (1067),

(50),
ou 0_ ’
(),
v 0_ '

it follows
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Now, dt/dv and d8/0dv satisfy along C a system of the form

d (oB/dvY _ (ai an 0B/0v _
du (Bt/av) = (a2] an ) \ojan ) Tor v=0 (1076)
which, together with (1067), (1075) implies
at d
—(w,0) =0, —'B(u,O)zo. (1077)
ov ov
Hence
ot 0
wwy =o)Ly =o0,0), (1078)
dv ov

the indices on the Landau symbols representing the variable with respect to which the
limit is taken, the limit being uniform in the other variable.

Making use of the equations for « and S from the characteristic system (see (161))
we obtain

dey ey dar ey Of «

_— = — — —B, 1079
ou do Jdu + daB du ( )
0 dcy 0t ~  Jdcy 0
Jdv da dv aB dv
Therefore,
0
2, v) =k + 0,(1), (1081)
u
0
P (u,v) = 0, (1), (1082)
ov
where for the first we used (dcy/da)g = K /@ (see (286)). Hence
c+(v) = c40 + kv + O(v). (1083)

We turn to the integral in (1068). Making again use of the characteristic system we
obtain

de—  dc_ 0t - Odc_ 9P

_—= —_— (1084)
v da dv daB dv
Hence
dc_
Z (, v) = 0,(1), (1085)
dv
which, in view of (1064), implies
9%t
——(u, v) = Oy(1). (1086)
ouov
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We have

ouov
= 0y(v), (1087)

a ., o v 92 b
—W,v)=—0 + (v, v")dv
au ou 0

where we made use of (1070). Together with (see (1085))

1 dc_ ,
— ) (v, V) = 0y(1), (1088)
cy —c_ Jv
we find
v 1 dc_ dt
/ 2= . vydv' = o?). (1089)
0o \cy —c_ dv Ju
We have
a ., o, /va% Lo,
n ) - ) ) d
E)v(v v) 8v(v v)+ v 8u8v(u v)du
df / at / / /U 82t / / /
= 5 - a ) ) d
dv(v) Bu(v v+ o 8u8v(u v)du
= 2v’f(0) + vOy (1), (1090)

where for the second term in the second line we substituted (1087), setting v = v'.
Together with (see (1081))

1 acy , K
—— ), V) = ———— + 0y(1), (1091)
cy —c_ du Cc10 —C—0
we find
v 1 ey ot £ (0
/ ZE ) (v, v = KO ay o?). (1092)
o \Ccy—c_ du dv C10 —C—0

Now, rewriting the integrand in (1068) using (1064) and then substituting (1089)
and (1092), we obtain

V32 70
/ (V)Y = _ SO 2y o0, (1093)
o oudv C+0 — C—0

Substituting now (1066), (1069), (1070), (1083), (1093) into (1068), noting that

af Oy +0oWw), gh) =g+ j—i(O)v +0o(), (1094)

f(v)=f(0)+d—v
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A

df  df dg =~ dg
7, W =7, O+ 0w, ) =—(0)+0w), (1095)

and that by (1071) the terms linear in v cancel, dividing by v? and taking the limit as
v — 0, we find

a8 0) = df(O) + 1 £(0) . (1096)
dv - . 6K
We now consider the identification equation

g() +ro =r*(f(v), z(v)). (1097)

In view of (1071), (1096) the left hand side is
; 2 df r A 3 3
ro + c4o0f (0)v” + C+OE(0) +xf(0) — roll L o). (1098)

For the right hagd side of (1097) we expand r*(¢, w) up to third order. Substituting
t = f@) =v>f(v), w = z(v) = vy(v) we obtain

A df 2o Ay(0)®
ro+ cyof (O)v* + (c+0d—i(0) + y(0) f(0) — %) v+ 0. (1099)

Therefore, setting (1098) equal to (1099), dividing by v? and taking the limit v — 0
we obtain

. A . 1y(0)3
Kk f(0) — ri YOk f(0) — . (1100)
K 6K
Defining now
m:=3k — * = —y(0) (1101)
T o T

(we recall that for a physical solution we need p>0), this becomes
m(1+ p®) + 3kp(1 — p*) =0. (1102)

We now turn to the jump conditions. Using (cf. (1094))

af - 2df
o W) =2vf()+v Ty (v)
=2 ; de 2
=2vf(0) + 3v %(0)4-(9(1) ) (1103)
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and the analogous expansion for dg/dv(v) in

98 (1)
_dr oy _dv
V(v) = dv(v) =ar (1104)
—(v)
dv
we obtain
U B KU PN
V() =cyo+ 70 (dv 0) — 4o 7 (0)) v+ 0(v). (1105)
Hence, in view of (1096) and the first of (1101),
V(v) = cy0 + %v—}—(’)(v). (1106)
We recall the jump conditions:
[T" W] V) =[T" )], (1107)
[T" ] V@) =[T"W)]. (1108)
where
[T ()] =T (v) — T (v) (1109)
and
TE (v) = TH (ay-(v), B1 (), (1110)
" (v) = T* (a—(v), B- (), (1111)
where
a (V) =a"(f(v),z(v), B-(v) =B*(f(v),z(v)) (1112)

the functions o™ (¢, w), B* (¢, w) in (1112) being given by the solution in the maximal
development. Using the initial condition for « as given by (312), we obtain from
(1059), (1060)

o4 (V) — g = dov + (% + &+(0)) V2 + o(?), (1113)
B (v) — Bo = B+ (0)v* + O(v?). (1114)

It would actually suffice to assume &, 3 e €Y. But since oy and B, correspond to the
solution of the fixed boundary problem, the assumption for & and ,é to be continuously
differentiable is consistent.

Expanding now 7"V («, 8) up to second order and substituting (1113), (1114) we
obtain
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AT\ . aTH ao
Tfr“’(v) N TOW - ( do )anv * [ ( dor )o ( 2 +a+(0))

AT™Y THY\ &3 , )
+(% )Oﬂ+(0)+(v)07}v roud.  113)

Expanding a* (¢, w), B* (¢, w) up to second order and substituting r = vzf(v), w =
vy(v) we obtain

*

a(v)—ao=doy(v)v+[(aa ) f(0)+°‘°y2() ]vzw(vz), (1116)

ﬂ*
ot

B+(v) — Bo = ( ) fO)* + 00, (1117)

where for the second one we made use of (266). Expanding now TH*"(«, 8) up to
second order and substituting (1116), (1117) we obtain

W AT\ | aTHY aa*) aoy(0)2)
" (v) =T, +( ™ Oocoy(v)v—i— 2 ), o1 f(0)+ >

AT (B*\ - TH\ &3y(0)?) , 5
(), (30), fo (e ), 05 oo
(1118)

Using the definitions

(5).7 (5),
m_ =2 fO), n_:=2 f(0), (1119)
at J

this becomes

) o (T . L[ (oT™ .
™" () =T} +( o )any(v)v+§[( ” )O (m_+aoy(0)2)

THY 2y
+ (%), + (o) b orfrseed.
0 0

Therefore, from (1115), (1120),
oTH

T[LU —
o) = (%,

L[ [aT*\ .. 5 R
+2[ ( - )0 (01 = y©) +26:.© —m-)

oTHY ~ 82T;,w )
" (313)0 (2/3+(0) - n‘) T (%{2)00‘5(1 - y(O)z)]v2 + o).
(1121)

v

) ap(l — y()v
0
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We now substitute (1121) together with (1106) into (1107), (1108). Making use of
(see (187))

aT" AT 1 0T

da T oa g da

(1122)

dividing by v? and taking the limit as v — 0 we arrive at

. aTtt ) 82Ttt aQTtr
md ( Y™ )0 (1= y(0) +d5 [C+o (W)o - ( Py )0] (1= y(0)?)

aTtt aTtr
e (), () Jre = e
) aTtr ) 82Ttr aZTrr
mao( o )0(1 —y(0)) + 63 IC+0( Py )0—( Py )0] (1= (0
AT aT""
+{C+°( % )O_( % )o]”:O’ (1

where we used the definition

Iy :=2B4+(0) —n_. (1125)
Let us define
aTtt) (aTtr) (aTtr) (aTrr)
col i=cC — ) - , Ccpi=cC — ) - , (1126)
01 +0( 8,3 0 8/3 0 02 +0 3,3 0 8,3 0
o 32Ttt 82Ttr o 82Ttr aZTrr
cii=dy e (o ) rrel N Rl Bl (e B o),
(1127)
aTlt aTlr
1 :=ap ( ) , Cni=dp ( ) . (1128)
da / da J

Using these definitions together with p = —y(0) in (1123), (1124) we obtain

corly + (1 = p?) + cyym(1 4 p) =0, (1129)
coaly + c12(1 — p?) + caom(1 + p) = 0. (1130)

We now solve the system of equations (1102), (1129), (1130). Solving (1102) for
m yields

(1131)
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Substituting this in (1129), (1130) gives

(1+p)

corly = (1 — P2) (—Cu + 3K621%) s (1132)
1+p
(1+p)

conly = (1 — p?) (—612 T 3Kczz%) . (1133)
14+p

Multiplying (1132) by cgz and (1133) by co1 and then subtracting the resulting equa-
tions from each other yields

1
0=(—-p? (—dl T 3Kd2u) , (1134)
1+ p3
where we used the definitions
dy:=cpci1 —coic12,  dz2 i=c02C21 — CO1C22. (1135)

If dy, d> have opposite sign (recall that «>0) then p = 1 is the only root of (1134)
(recall the requirement p>0 for a physical solution). We look at dy /d5. From (1122)
we deduce

32Ttt 82Ttr 8C+ 9T 82Ttr 82Trr aC+ aT!"
ch _ _ =t , Cp—— —— = —— . (1136)
daor? a2 da da dor? a2 da O
Therefore
e = —&2 aﬁ ot = —kc clp = —&? ac_+ T = —kc
11 0 aa 0 ad 0 21> 12 0 aC{ 0 aa 0 22,
(1137)
where we made use of (dcy/da)g = /&g (see (286)). Hence,
d _
L feen =i g (1138)

dy  copc21 — Co1c22

and we conclude that p = 1 is the only root of (1134). From (1131) we deduce m = O.
(1129) then yields /4 = 0. Therefore, from (1071), (1101) and the second of (1119)
together with (1125) we obtain

~ A A n A 9B8*
YO =—1,  fO =5 §0="2 0= 62 (i) :
K 0

6K 2 6Kk2 "’ ot
(1139)
From (1096) we obtain
df 1 dg
4 oy = L 98 ), (1140)
dv c4o dv
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We now turn to &4 (0). We recall

ar(v) =a,v) =a;(v) + /U (%A(a, B, r)) (v, v)dv'. (1141)
0

Therefore, (this is (715))

dﬂ( )—@( >+(§_Zg<a,ﬁ,r))(v,v)+/0”[(aaa r))
ot da 9B
+a—(—< o >—+—ﬂ( B, )—+—(aﬁr)c— )}(vv)dv
(1142)

Using (1090), (1093) we obtain

d“—*( ) = iv"(v) +2£(0)Agv + O(v), (1143)

which implies (using the second of (1139))

Ao o 2
or(v) —oi(v) = — + o(v?). (1144)
(4
Therefore,
54(0) 2 (1145)
a = —.
* 6x2
This concludes the proof of the proposition. O

6.2 Uniqueness
Theorem 6.1 Let (¢, r',a’, ), (t",r",a”, B") be two continuously differentiable

solutions to the free boundary problem and let 7' (v), 7" (v) be the corresponding
solutions of the identification equation. Let 7' (v), 7" (v) and

flw):=r'wv), g@:=r'wuv-r, od@:=d00v), BL):=pFW0),

(1146)
") =1"(w,v), g'W:=r"(w,v)—ry, o (W):=a"(,v), L) =", v),
(1147)

be given by
Z) =vy'(v), Z"(v) =vy"(v), (1148)
oy =), f'w)=vf"), (1149)
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gw) =), ¢ =v78"W), (1150)
o (V) — @i (v) = VI (), & (v) — i (v) = VP& (v), (1151)
BlL(w) — Bo = v*BL(v), L) — Bo =B, (1152)
with
Yo' L f g8 &L B B e 0, el (1153)

Let V' (v), V" (v) be given by

dg’'
— ()
V'(v) = cqp0+ g(l + Y ()v + vV (v), where V'(v) = j})/ , (1154)
E(U)
d
L)

V@) = cso+ 50 @0V W), where V() = At —.
)

dv

"

(1155)
with
vV, V" e 0, s]. (1156)

Then it follows that for ¢ sufficiently small, the two solutions coincide.

Proof In the following, whenever there is no prime or no double prime on a function it
is meant that the statement holds for both the primed as well as for the double primed
function. Let us make the following definition for any function f

Af:=f"— f. (1157)

We see that the assumptions from proposition 6.1 are satisfied. Therefore, we are
able to make use of the statement and the proof of proposition 6.1. From proposition
6.1 we have

d
d_z(”) =—1+0@), z(v)=-v+0@Y, (1158)
v
af oy * 2 _ A2 3
7o (v) = 32V +0®W), f()= a2V +O0®W?), (1159)
dg ey ’ ACy0 - 3
=l — = 11
T, W =320 007, g) =707+ 0w, (1160)
d(X_;’_ _ dOll' )\.AO 2 o )VAO 2 3
dU (v) - dU (U) + 3K2 v + O(U )» a-‘r(v) - al(v) + 6/(2 v + O(U )7

(1161)
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dBy ~_ h (9B* 2 _ A (BT o 3
W) = 5 ( - )Ov O, () = ot ( - )Ov + 0.
(1162)
Using the asymptotic forms (1158), (1159) in
a_(v) =a"(f(v),z(v)),  B-(v) = B*(f(v), 2(v)), (1163)
we obtain, in the same way as we arrived at (705), (706), (711), (712),
do_ d
:—v(v) - doﬁ(v) +OW), a_(v) = ao+doz(v) + O, (1164)
4By (O : gt 2 () 2 rons
v (v) = 30 ( 5 >Ov+(9(v ), B—(v) =po+ %) ( a7 >0U +0®W).
(1165)
Substituting (1158) in (1164) we obtain
do_ . . 2
d—(v) =—ao+O0W), a_(v)=oay—dapv+ O®@). (1166)
v
The second of (1161) together with the second of (1166) imply
[a(v)] = 260V + O?). (1167)

Looking at the proof of lemma 5.3 we see that the above asymptotic forms constitute
all the necessary requirements for this proof to hold. Therefore, we have the following
estimates

dA
’df+(v)SC{UzllAZHx-i-IIAfllx+vzllAOt+||X}, (1168)
K

AV = S8:0)| = € [Iazlx +vlaflx +vldarlx}.  (1169)

where the X norm is defined by (756).
We now define

8(v):=g) —crof(v). (1170)
From (1149), (1150) we have
() = v (&) — 40/ (V). (1171)
Furthermore, from f ,gecC 1 [0, €] together with (1063) we have

§() — cy0f(v) = O(v). (1172)
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Therefore, we can write

with

§ecl,e1n 0, ¢,

S(v) = v38(v),

8(0) = 0.

(1173)

(1174)

We now show that d8 /dv extends continuously to 0. From the definition (1170) we

obtain

where (see (1154), (1155))

V) =cio+ %(1 +y)v + vV ().

We have

Therefore,

and we obtain

where

Le.

It follows that

. df
E(U) = V@) - C+O)E(v),

1+y® _ l/v D v
0

v v dv

V(@) —cqo = V2v2 + O(vz).

1 dé VoA
im —— = —,
v=0v3dv 3k2

(1175)

(1176)

(1177

(1178)

(1179)

(1180)

(1181)

(1182)
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where we used the first of (1159). Taking into account 6(0) = 0, this implies

1 VoA
lim —8 = —. 1183
0 04 T 1262 (1183)
Hence,
dé 1ds 36 Vo

lim — = 1i —— ) =—. 1184
020 dv vlg%)(lﬁ dv v4) 12,2 (1184)

Thus 8 extends to a C! function on [0, €], i.e. we have
secho, el (1185)

Looking now at the proof of lemma 5.2 we see that the above asymptotic forms
constitute all the necessary requirements for this proof to hold. Therefore, we have

(v)

dAy 3k dAf
dv T

— @+ —( )] +OW|AflIx) + O®[AY|x). (1186)

Now we look at the partial derivatives of . We recall (1064):

(1187)
Jdv du du Jdv

3%t 1 dc_ ot dcy Ot
dudv ¢y —c— ’

Integrating with respect to v from v = 0 yields

ot —K (u,v) ’ Y K(u,v") ot / ’
ﬁ(u,v)ze Y hi(u) — A e M /JL% (u,v)dv'} , (1188)

where we recall

19
gt (1189)
cy —c— du

K@u,v) = /v(—v)(u, VYdv', up=
0

and

1 dc_

V= —_—
cy —c_ Jv

(1190)

We also recall from the proof of proposition 6.1 the expressions (1087), (1090):

ﬁ(u,v):Ou(u), (1191)
ou
%(u, v) =20 £ (0) + uoy(1). (1192)
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From the second of (1062) we obtain

O o) = 2+ uoy(l) (1193)
™ u,v _3K2v uO,(1).
From (1091) we have
K
nu,v)y = —— + 0,(1). (1194)
C+0 —C—0
From (1088) we have
v(u, v) = 0y(1). (1195)

Using this together with (1192) in (1188) and recalling (1065) and the second of
(1062), we obtain

2.2
g(u, v) AGu v°)

2
=404 . 1196
ou 6K (c+0 — c—0) +Oulu) ( )

We now improve the expressions for u and v. From

a at ~
—’3 = —B (1197)
Ju du
we have
0
% _ Ow?). (1198)
ou
From
o ot ~
—=—A (1199)
ov av
we have
Y or ~ / /
oa(u,v) =o; () + —A ) (u,v)dv'. (1200)
0 av
Therefore,
aa( ) dozi( )+/“ 92t it ar 0A . vy (1201)
—(u,v) = —(u —— —— ) (u, v)dV',
au du o \ dudv ov du
which implies
Jo .
a—(u, v) =dp + Ou). (1202)
u
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In view of (1079) and the second of (1189) we have (recall that (dc/da)q o = k)

W@, v) = — L O®). (1203)
Cy0 —C—0

From (1193) and (1199) we have

Ja
—(u,v) = Ou). (1204)
av
From (1197) we have
" or ~ / /
Bu,v) = py(v) + a—B (u', v)du'. (1205)
v u
Therefore
B dp., /“ 3%t - 9t dBY ., ,
= =T B+ —— d 12
au(”’ v) dv ) + » \ dudv + du v (@, v)du, (1206)
which implies
a
—ﬁ(u, v) = O(u). (1207)
av
In view of (1084) we have
v(u,v) = O(u). (1208)

Now we look at 1/y (v) given by (see (321))

_ &) -V

YW=V oy

(1209)

where

cx(v) :=cx(aq (v), 1 (V). (1210)

Using the above asymptotic forms for o, S+ and V we obtain, in exactly the same
way as we did in the part on the fixed boundary problem,

I cqo
y)

—c_g
I+ p ) (1211)
Kv

with

o +1

B (1212)
1-30@+1)

p() =po(v) +OW), po(v) =
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The above asymptotic forms now allow us to follow the proof of lemma 5.1. We thus
obtain

dAf A . .
< ——IAylx + C {sup [AV| + v[|AByllx + vl Aylx p.  (1213)
dv 24k [0,v]
dAS o ~
——W sgnAyan sup [AV] +vl|ABLllx + vllAyllx t,  (1214)
[0,v]
|Aay|x < Cv? [sup |AV] + vl|AB+lIx + IIAyIIX} : (1215)
[0,v]

We now combine (1168), (1169), (1186), (1213), (1214), (1215) in the same way
as we did in the proof of proposition 5.2 and find, for ¢ sufficiently small,

1 ~ ~
1Alx < SHAYIx +C [vllAﬂ+IIX + sup |AV|I ,
[0,v]
IAB+Ix < c[||Ay||x+ sup|AV|+v||AB+||X],
[0,v]
[0,v]

sup |AV| < C [vnAynx +vsup [AV] + 02||A3+||X} : (1216)
[0,v]

These imply, for ¢ sufficiently small,

Ayl SC’vllAﬂ+|lx+sup|AV|] (1217)
[0,€]
IAB I SCIIIAy||x+[S()11[)]IA‘7I], (1218)
€
sup [AV] = C {vllavlix +v? 188+ 1x] (1219)
[0,¢]

Substituting (1217) in (1218) and (1219) yields

ABL]lx < Csup |AV], (1220)
[0,¢e]

sup [AV] < Cv? || AB+Ix, (1221)

[0,e]

for ¢ sufficiently small. Substituting (1220) in (1221) gives, for ¢ sufficiently small,

AV =0, (1222)
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which gives

1ABLIIx =0, (1223)
which gives

IAyllx = 0. (1224)

In view of (1213), (1214) and (1215), the vanishing of these differences implies that
also the differences of f, § and o4 vanish. Now we make use of estimates appearing
in the proof of lemma 5.1. In all these estimates there appear no indices in the present
context. F'(u) given by (867) vanishes. Therefore, in view of (876), (877) the differ-
ences of the partial derivatives of ¢ vanish. In view of (784), (785) the differences of
o and B vanish, therefore also the differences of i and v vanish. In view of (779)
also the difference of r vanishes. In view of (816), (823) the differences of do/du and
aB/dv vanish. In view of the characteristic system the differences of da/dv and 98 /9u
vanish. In view of the Hodograph system also the differences of the partial derivatives
of r vanish. Therefore, the two solutions (prime and double prime) coincide. This
completes the uniqueness proof. O

6.3 Continuity of L o and L 8 Across the Incoming Characteristic
Originating at the Cusp Point

In the present subsection we carry the argument of the above proof further. In particular
we will first improve the estimates (1193), (1204) and (1207). Then on the basis of
these improved estimates we will show the continuity of L« and L S across C.

Proposition 6.2 L« and L f are continuous across C.

Proof Let us consider dz/dv, d8/dv along K. We have, along KC,

ot _df 9t 0B _dBy 0P

— = -, =— - — (1225)
v dv du v dv au
and, by proposition 6.1,
df A )
%(U) = 33" + O®W?), (1226)
dps A (0 )
—W) = — @) . 1227
Tu (v) 32 ( o Ov+ (v%) (1227)
Evaluating (1196) at u = v we obtain
ot A ) )
— V)= 10) . 1228
ou @, v) 3k(c+0 — c—9) vt o) ( )
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From (1226) and (1228) we obtain, through the first of (1225),
A 2
— W, v) = —v+ O0®W). (1229)
v K
By (1197) and (1228) we get
ap

(v, v) = OW?). (1230)
ou

From (1227) and (1230) we obtain, through the second of (1225),

B A [0B*
ﬁ(v’v) _(8t

=5 ) v+ OW?). (1231)
0

Let us then consider the system (329), (330) along any incoming characteristic. It
is a system of the form (331):

d (9B/ov\ _ (an an) (9B/dv
du (az/au) B (a21 ap )\ at/dv )- (1232)
This is a linear homogeneous system with a coefficient matrix
a= (“” “‘2) (1233)
azy ax

which is continuous on 7. The initial data are on X and given by (1229), (1231). Let
the matrix m be the solution of

dm .
— =am, ml = id. (1234)
du

Then the solution of (1232) is

/v (0B/dv
(at/av) =m (8t/8v) o (1235)
Since
m—id = O — v), (1236)
and by (1229), (1231),
op/ov| _
(81‘/81} ) ‘K = O®), (1237)
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it follows that

()= () rown
i.e. by (1229), (1231),

g(u, V) = Lv + O(uv), (1239)

v 3k2

%(u, V) = ;L? (g)o v+ Ouv), (1240)

which improve (1193) and (1207) respectively. Also, (1239) implies, through (1199),

Jo )»A~0
—u,v) = —v+ O(uv), (1241)
v 32
which improves (1204).
Since o and ¢ are by construction continuous across C while 8 and r satisfy along
C the o.d.e. system

b _ 0 1242
E - 5 ((X, ﬂv r)v ( )
dr ot
d_u = 8—uc_(o[, B), (1243)
while
B(0,0) = B*(0, 0) = By, r(0,0) = r*(0,0) = ro, (1244)

at the cusp point, it follows that » and 8 are continuous across C as well. Then,

do/ov ~
= = A(w, B, 1245
= S (a, B, 1) (1245)
is also continuous across C.
Let us consider
ap /v
LiB= . 1246
+B 21/00 (1246)
From (329), (330) we have
1 9tdc_ - 9t dB
an = dl-p X2 (1247)
cy —c_ du ap du I
1 dey 01 dc - P ot 3EA+ dB (1248)
ap = — _— — — —cq ),
12 cy —c_ \ du ou Jdo ou \ oo ar T
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I 9 dc_
ay = —— 2L %= (1249)
cy —c_du ap
= — o (9ex B34 (1250)
cy —c_ \ du  du da '

We see that the matrix a is continuous across C. This implies that the matrix m is
continuous across C. By (1235),

my1Ly Bl +mi2

) (1251)
mat Ly Bl +man

Lip=

while by (1229) and (1231),

. _(9B/ 0p" ,
(LBl = lim LBl = 5‘36(&/33) (v, v) = ( - )0 = (L+f%),. (1252)

Hence L B is continuous across C as well. O

7 Higher Regularity

In the following we denote by P,, , a polynomial in v of degree m starting with an
n’th order term. We denote by Py, ,(v) a sum of }3,,”, and a function of O(v"t1). We
then define Py, (v) := Py o(v). We also denote by Q,, »(u, v) a sum of a polynomial
in u and v of degree m starting with an n’th order term and a function of O (1)
(we recall that in the domain in question, i.e. in 7, we have 0 < v < u < ¢). We then
define Q,, := Q0. We extend the meaning of P, , and Q,, , to the casen = m + 1
by

Pumt1:=00@"™ ™), Qi1 :=0@™). (1253)

Furthermore we will use the definitions

v d"y ’ » 1
Ly n(v) = / U/n_(v )dv', Ly n (V) i=—1y n(v) (1254)
’ 0 dvm ’ v
and
Y, "y F a"f (1255)
= sup |[—=1|, = su .
" [o,f] dv™ " [o,f] dv™

In the following we prove that the solution established in the existence theorem is
smooth. We do this by induction, showing that all derivatives of y, f are bounded and
all derivatives of ¢, r, r, B are in cl.

@ Springer



3 Page 158 of 246 D. Christodoulou, A. Lisibach

7.1 Inductive Hypothesis

We make the following inductive hypotheses: We assume that we have bounds for Y,

F,form=1,...,n—1,ie.

For the function o4 (v) = a (v, v) we assume

—1
d" oy

a1 =P

For the function ¢ (1, v) we assume, for n > 3,

8k—2t 8k_2t
WZQz,ikin, E)vk*z:Ql’:kin’
gi+i 524 o
duigv) (auav) =Quiidj=n=3.

(Yn—l)
(anl)

(@4 n-1)

(tp,n—l)

(tm,n—l)

With the indices p and m we indicate that we refer to pure and mixed derivatives.

In the case n = 2, (t,,,—1) is not present and (¢ ,—1) is

t = 0>.

For the functions « and 8 we assume

ak72a ak72a
szzs:kSna ka—_z:Ql’:kSn’
ai+j 82(1 0 e 3
— | — ) = i n—3,
duidv) \Judv b=
8]{—2‘3 8k_2ﬂ
2 = Quik=n oo =0nk=n,
8i+j 32ﬂ Q o ;
— = i n—3,
ou'ov’/ \ duov ! /=
and
an—la 8'1_10(
a1 — 20 5o = Qo
an—llg an—lﬂ
ST = Qo, o1 — Qo.
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For n = 2 the properties (¢¢u,n—1), (Bm,n—1) are not present and (&t p n—1), (Bp,n—1)
are

a= 0>, (ap,1)

B = Qa. (Bp.D)

7.2 Base Casen =2

We show that the inductive hypothesis holds for n = 2. We are going to use estimates
established during the existence proof. The index on functions in estimates in the
existence proof was in order to label the iterates. These estimates also hold in the limit
hence without any indices. Also the dependencies on §; of the bounds are not present
anymore since 8> has been chosen appropriately.

Since Y1 = Y, where Y was defined in (315), we have from (755),

Yy <C. (Y1)
From (638) we have
F <C, (F1)
while from (724) we have
dO{+
— = Py.
7 | (a4,1)
Using now the first of (716) in
v ot o
t(u,v) =t(u,0) + — (u, v)dv (1256)
0 av

together with the fact that 7 (u, 0) = u’ fz(u), where / is a smooth function, we obtain
(tp,1). From (1198), (1202), (1204), (1207) we have

Jo oo
— =00, — =001, (1257)
ou Jv
9 9
% _ 0, % _ g, (1258)
dJu Jv

Therefore, («p,1) and (Bop,1) hold.
We have

au,v) = o;(u) + /U 8—Ol(u, v)dv'. (1259)
0 Jdv
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From

o at -~
— = —A(a, B, 1), (1260)
ov v

together with the first of (716) we obtain

o
— =011 (1261)
ov

Using this together with the fact that «; is a smooth function in (1259), we deduce that
(ap,1) holds.

We have
“op ,
Bu,v) = B+(v) + a(u ,v)du'. (1262)
From
0 ot ~
—’3 = —B, (1263)
ou ou

together with the second of (716) we obtain

a
—aﬁ =01.1. (1264)
u

From the second of (1162) we have
B+ = Pa. (1265)

Using this together with (1264) in (1262) we deduce that (8,,1) holds. We conclude
that the inductive hypothesis holds in the case n = 2.

7.3 Inductive Step

We now show the inductive step, i.e. we show that (¥,,—1), ..., (Bo.n—1) hold with n in
the role of n — 1. Once this is proved, we have proven the following regularity theorem.

Theorem 7.1 The solution whose existence is the content of theorem 5.1 and whose
uniqueness is the content of theorem 6.1 is actually smooth.

We remark that to see that also the function r («#, v), which is not present in the inductive
hypothesis, is a smooth function, we appeal to the Hodograph system, i.e. to (162).

We write
dk—ly dk—ly v dky , ,
dl}k71 = (dvkl )0 +A W(U )dU s (1266)
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where we recall the notation (-), for evaluation at the cusp point, i.e. for functions of
v evaluation at v = 0. Since z = vy, we have
d'z dy . dly

T =V i (1267)

Setting i = n — 1 and using (1266), we deduce from the inductive hypothesis (¥,,—1)

dn—lZ

= (1268)

This implies, through integration,

an —
Z:[P”—“ m =0, (1269)

dvm Prm—1 1=<m=<n-1

Recalling f(v) = v? f (v) and making use of the assumption (F;,_1) we obtain,
analogous to the way we arrived at (1269),

P2 m =0,
P11 m=1, (1270)

P 2<m<n-—1.

d”‘lf
dv™ -

Making use of assumption (¢4 ,—1) we obtain, through integration,

am o

Tom =P, :0<m<n-—1. (1271)
v

We now look at the behavior of o_ (v) and S_(v). Recalling

a-(v) =" (f(v),z2(v)),  B-(v) =B (f(V), 2(v)), (1272)

where o*(t, w), B*(¢, w) denotes the solution in the state ahead and ¢ (v, v) = f(v),
w = z(v) are substituted, we have

do_ aa* df dp_ 3,8* df  ap*

= (f z)—+ (f z) (f )—+ (f z)—
dv dv
(1273)
Now, by (1269) and (1270) we have
P,_1, (1274)
and for higher order derivatives we have
aH—ja ) )
9w T (D= P i j = m. (1275)

@ Springer



3 Page 162 of 246 D. Christodoulou, A. Lisibach

Analogous, but now taking into account the fact that (38*/9w), = 0, we have

ap* B ap*
8t (f’Z)—Pn—l, aw

(f;2) = Pa-121 (1276)
and for higher order derivatives we have

3i+j,3*
ot dw/

(f,)=PFP—1:i+j=m. (277)

Taking m — 1 derivatives of the first of (1273) and making use of (1269), (1270),
(1274) and (1275) we obtain

d"o_

du™

=P 1:0<m<n-—1. (1278)

Taking m — 1 derivatives of the second of (1273) and making use of (1269), (1270),
(1276) and (1277) we obtain

d"p_ -
P =[&”J m=1. (1279)

dv™ Pn—m 25”’15”—1

Now we look at the behavior of B, (v). For this werecall [ 8] = [a]® G (., a—, B).
We have

am [’3] m m di [Ol]3 dm—iG
= - —. 12
du™ ; (i ) dvt  dvm! (1280)

From (1271), (1278) and taking into account o_ (0) = a4 (0), we obtain

[]= P11, (@l =Puo. [0 = Pugis, (1281)
and
d:U[:] =Pi_pm1:1<m=<n-—1 (1282)
and similarly
P =1
dZﬁP éfu Z:zz (1283)

Pi_my1 3<m<n-—1.
In view of (1271), (1278), (1279) we have

"G
dvm—i

= Pomie1. (1284)
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Using (1281), (1283) and (1284) in (1280) we obtain

P13 m =0,
d"[Bl | Pu2 m=1,

= 1285
dvm P11 m=2, ( )
Pi_m+1 3<m<n-—1.
Therefore, from (1279) we obtain
d" By P11 m=1,
dvm [ Pow 2<m<=n—1. (1286)

We note that (1271), (1278), (1279) and (1286) constitute the behaviors of a4 (v),
Bx(v).

7.3.1 Estimate for d"~'V /dv"~!

We turn to estimating d" 'V /dv"~!. We recall

("]
V=1t—1, (1287)
[7]
which implies
dv 1 d|T"" d|T"
v _ [r] ey (1288)
dv [T”] dv dv
We use the notation
C+ =cx(oy, By), Cx=cxla_, po). (1289)
and we recall (see (187), (188))
aTlr 8Ttt 8Tlr aTtl‘
= , =c_ . 1290
et Toa B g (1290)
(1288) becomes
WV v g™ e ) g
— = —— 1y = V)— (a4, —_ c_ — o, —_
dv [T”] * da - P ay ap AR
(é V)aTn( )dm (é V)aT"( )dli (1291)
“ b O P g T op P
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Defining now a(v) and b(v) by

1 d
a:= — 7 170 [7"]. (1292)
1 d d
b= — 1] - — [T}, 1293
[Tn] [d [ ] C+0dv[ ]] ( )
i.e.
1 T aT” do_
a = [T”] [ ( o, ﬁ+) a ((X,, ﬁ*)%
T dB+ BT” dpg—
e - 1294
+aﬂ(a+ﬁ+)v aﬂ( ﬁ) ] (1294)
1 _ aT" da aT" do_
= T[(C+ €+0) (@, /3+)—1L —(éy — c+0)—— (@, B- )
(7] dv
. ﬂ+ aT" /3
_ — — 1, (1295
+(c op €+0) op (a—, B- ) (1295)
we can rewrite (1291) as
av
= (V —cyo)a + b. (1296)
dv
Now we define a by
- 1
aw):=a)+ —. (1297)
v
With
u:=V —cy, li:=vu, b:=uvb, (1298)
(1296) becomes
du ~
& Gai+b. (1299)
dv
The (i — 1)’th order derivative of this can be written as
dia . . -
E =a;_1u+bj_. (1300)
Differentiating this we obtain
ditli da;—
m = ( dv +aa, 1) (130])
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which gives us the following recursion formulas

d
a; = (— +é) aj-1, aop=a, (1302)
dv
- dbi_ . R
by = =V 4y G b, by=b. (1303)
dv
Solving these gives
i d N. . db Zama,b)
ai:(% +a) a, bl:ﬁ—i_zw (1304)

In the expression for the n’th derivative for y there will be involved the n’th derivative
of f which in turn involves the (n — 1)’th derivative of V. Therefore, we have to
estimate

dnfl i _ _ »
—dv”_l =da,_oUi + b,_». (1305)

To estimate a,,_» we have to estimate the n — 2 order derivative of a. To estimate
b,,_» we need to estimate the n — 2 order derivative of b and the n — 3 order derivative
of a. We consider first b,_». We derive expressions for a, b to O(v?). We start with b.
Since [T” (O)] = 0, we have to estimate the n — 2 order derivative of the numerator

of b to O(v3). Let us denote by T; the i’th term in the curly bracket of (1295) and let

4
_ Z T;. (1306)
i=1
Then
b= N 1307
- [T”] . ( )
We have
d(x,
T =
3
- [ o f (f z)—]- (1308)
Let us look at
ar? (. dz
) ((C+ - C+0)%) . (1309)

Using (1267) with n — 1 in the role of i and in the resulting expression (1266) with n
and n — 1 in the role of k we obtain
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dn—lZ B .
=P+ nv/ (v Ydv' — (n — 1)/ (v )dv (1310)
v

Using now (1310) with n — 1 in the role of n and using (1266) with n in the role of k
for the resulting integrands yields

dn—ZZ _ n o, vdny v
- p " 2 Wdv — 1 / /
o2 2+2v /0 Ton (W)dv' — (n — Dy A v

n—2 [V ,d"y
1311
t—3 /0 v (1311)
We rewrite (1310) and (1311) as
dn—lZ _
W = P] +nUIn,() — (Vl — I)In,], (1312)
dn2z _ n o, n—2
) =P+ Ev Ino—(m—Dvl, 1 + Tln’z, (1313)
dn—kZ
m:Pk_1:3§k§n—2, (1314)
d
S (1315)
dv

where (1314) follows directly from (1269) and (1315) follows from z = vy, y(0) =
—1.
Since

¢4 () = cq(a—(v), B-(v)), (1316)

we have, in view of (1278), (1279),
dm
d—m(C+ —c40) = Ppom—1. (1317)

Taking the derivative of (1316) we obtain

d 0 *
%(5+—C+o)=<%(a e ﬂ BVEBE o T z)]
dcy aa cy 8,8* df
+|%((¥,,3) Y , 2 ﬁ((x—,ﬁ (f )]

(1318)

Taking n — 3 derivatives of this and making use of (1269), (1270), (1278), (1279),

(1315) and
(8’3*) — 0, (—8C+) (8a*) =K, (1319)
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we obtain
dn—Z d"— 2
S —ch0) = Pt

(1320)

Substituting (1313) we obtain

dn_2 o n , n—2
m(ﬂ —ct0) =P+« 5Y Ino—(n—Dvly + Tln,Z , (1321
dn—k
gk G — o) = P13 <k <n—2, (1322)
d .,
E(C’L —Cc40) = =k + P, (1323)

¢y —cro=—kv+ P12, (1324)

where (1322) is (1317) with m = n — k, (1323) follows from (1318), (1319) and
(1324) follows from ¢é4(0) = c49. We note that (1312), ..., (1315) and (1321), ...,
(1324) express the derivatives of z and é; — ¢4 to O(v®) forn > 5. In the case n = 4
the derivatives of z and ¢4 — ¢4 to O(v?) are given by the same expressions with
the exceptions of (1314) and (1322) which have to be excluded. In the case n = 3
also (1315) and (1323) have to be excluded, i.e. in the case n = 3 the derivatives of
zand ¢y — cyp to O(v3) are given by (1312), (1313), (1321), (1324). Finally, in the
case n = 2 the derivative of z to O(v3) is given by (1312) and é; — ¢4 to O(v?)
is given by (1321). The fact that the latter is true is seen from the fact that (1313) is
also true for n = 2 and then using this in (1320) which in the case n = 2 is the Taylor
expansion of &4 — ¢ g to O(v3).
Integrating by parts we have

v dn dn—ly v dn—ly
Iym = dv' = — m=1Z___Zhdv'. (1325
n,m /0 To > Wdv' = v T /0 mv dvn,l(v) v (1325)

By the inductive hypothesis this is O(v™). In the case m = 0 we have

v gn dn—l dn—l
o= / Y whydv = =2 — 7). (1326)
' o dv" dyn—1 dvi-1),
which is O(1) by the inductive hypothesis. (1325) and (1326) imply
il = 0@, R L = O05). (1327)

Now, in the case n > 5 we have

2

dn—Z . n n—2 i an— 1- t
= (<c+ C+0)—) Z( l. ) (&4 = e40) Ty

=0
= 2\ & . dan—1-iz
i) T

3 ~

i=2
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n—1 d dn—ZZ
+ (¢4 — C+0)dvﬁ +(n— 2)%(@ - CJFO)W
n—2 dz
+ T2 ¢+ — C+O)%- (1328)

All terms in the sum are products of terms of the form (1314) and (1322) therefore they
are all a P,. For the second line in (1328) we make use of (1312), (1313), (1315) and
(1321), (1323), (1324) together with (1327). Therefore, we obtain in the case n > 5,

dn—2

. dz
T2 ((C+ - C+O)%) =Py —«Jy, (1329)

where we defined

1
] = —n(n+ )U21n

» (n—l)(n—Z)In
2

0—nm—1Dvl, 1+ 5

2. (1330)

In the case n = 4 the sumin (1328) is not present and (1314), (1322) are not needed.
Therefore, (1329) is valid in the case n = 4 as well.
Let us look at the case n = 3. From (1313) and (dz/dv)y = —1 we have

dz

o
e T {31)213,0 — vl + 13,2} . (1331)
dv ’ 2

Using this together with (1319) in (1318) yields

d K
ey o) =~k + P+ 3 {3v213,0 vl + 13,2} . (1332)

Using now (1312) in the case n = 3 together with (1324), (1331), (1332) we obtain

d

. dz
o ((C+ - C+O)E) =Py —«kJ3, (1333)

which is (1329) with 3 in the role of n. Therefore, (1329) is valid in the case n = 3 as
well.

In the case n = 2 we have from (1312) together with (dz/dv)y = —1

d _
d_z =—14+Pi1+2vho— D1, (1334)
v

while from (1321) in the case n = 2 together with (5+)0 = 40, (d(5+ — c+0)/dv)0 =
—k,

éy —cr0=—Kkv+ Pro+« {v2]2,0 — v12,1} . (1335)
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From (1334) and (1335) we obtain

d
@ — c+o)d—z — kv + Prs — i, (1336)
v

which agrees with (1329) in the case n = 2. We therefore that (1329) is valid for
n>2.
Integrating (1329) we obtain

dk . dz
Tk ((C+ - C+0)%) =Py k-1:k=<n-3, (1337)
. dz
(Cy —c0)—— = P11 (1338)
dv

We note that these are valid in the case n > 4. In the case n = 3 we have to make use
of (1333) instead of (1337) ((1338) stays valid), while in the case n = 2 we have to
make use of (1336) alone.

Now we look at

dn? df
m (éy — C+O)E . (1339)
From (1270) we have
dn—lf
Tt = Py, (1340)
dn—2f
Jo2 =P, (1341)
dn—kf
—— =P :3<k<n-2, (1342)
dovn—k
d
ﬁ =P_11. (1343)

We note that (1340), ..., (1343) express derivatives of f forn > 5. In the case n = 4
the derivatives of f are expressed by the same expressions with the exceptions of
(1342) which has to be excluded. In the case n = 3 the second and first derivative of
f are given by (1340) and (1343) respectively. Finally in the the case n = 2 the first
derivative of f is given by (1343).

We start with the case n > 5. We have

2

dn— 2 n n—2 i n—l—if
T2 ((C+ C+0)—) Z( ; )—(C+—C+O) v

=0
-3 n—2 di . dn—l—if
. _<(c+ - C+O)f

i dvl dyn—1-i

; «..

=2
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dn—lf

+ (64 — C+0)dvﬁ

n—2
+ m(5+ - C+0)%-

d ,
+ (= 2)—(¢+ — cy0)
dv

dn—2f
dvnfz

(1344)

All terms in the sum are products of terms of the form (1322) and (1342) therefore
they are all a P». For the second line in (1344) we make use of (1321), (1323), (1324)
and (1340), (1341), (1343) together with (1327). We see that in the case n > 5 all
terms in (1344) are a P> and therefore so is (1339). In the case n = 4 the sum in (1344)
is not present, hence (1322) and (1342) are not needed. Therefore, also in the case
n =4 (1339)is a P>. In the case n = 3 we use (1332) together with (1324), (1340),
(1343). We obtain that also in the case n = 3 (1339) is a P». Finally in the case n = 2

we use (1335) and (1343). We conclude that, forn > 2,

n—2 . df
Jon2 (C+—C+0)% = P

By integration we obtain from (1345)

@ Iy 2 12<k < 2
W (C+—C+0)% =Ip—k:2=K=n-—2,

d @ )df _
dv C+ —C+0 av ) = n—1,1,

. df
(C4+ —cy0)—— = Pup2.
dv

Here (1346) is only valid for n > 4 and (1347) is only valid for n > 3.

Let us define

*

3T”

0
Fii=S—(@-(f.2). p-(f. 2D 5 —(f.2).
o ow
oT! da*
F = 3 (a—(f,2), B-(f,2)) (f, 2.
o ot

From (1269), (1270) we have

d*F
dvk

123
F =d0( 90 ) + P11,
0

where for the second we used (da™*/dw)y = do.

=P, y_1:k<n—-2 for F el{F, F»},
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Now, in the case n > 4 we have
a2 dz\ & (n-2\d'F d" dz
— 1'71(5+—C+0)*Z = S P (C°+—C+0)*Z
dv—2 dv p i dvt dyn—2-i dv
— (n—=2\d'F d"* [ dz
e i) dvt dor—2i = CJrO)%

LR d"? @ Nk +d"*2F1(° Nk
Va2 (6 — 0, don=2 Ty
(1353)

All terms in the sum are products of terms of the form (1337) and (1351) therefore
they are all a P. For the first term in the second line of (1353) we use (1329) together
with (1352) and for the second term in the second line of (1353) we use (1338). We
find

dn—Z

dv—2

. dz . aT"
Fi(éy —cio)7 ) = Pr —aok Jn. (1354)
dv da /

In the case n = 3 we have

d i@ )dz dFl(c )dZ—i—Fd @ )dz (1355)
— Cr—cy0)— )= —(Cr —cr0)—+ F— |y —cr0)— ) -
dw ' T ) T T T Y T e U T
Making use of (1333), (1338), (1351), (1352) we see that (1354) is also valid in the
case n = 3. In the case n = 2 we make use of (1336), (1352) and see that (1354) is
valid in the case n = 2 as well but we have in particular

. dz ) aT"
Fi(¢y —cr0)—— = Pro + ok
dv oa

) (w—J). (1356)
0

Now, in the case n > 4 we have
dn=2 df\ "2 (n—-2\d'F d"2 df
—— |2+ —ct0)— ) = )5 | — o)
dvn—2 dv i i dvt dyh—2-i dv
~ [(n—=2\d'F, d"" 1 [ df
- pr i dvt dyn—2-i © = CW)%

d"3F d ( df
+(n—2) T3 v ¢+ — C+O)E

d
(¢4 — C+o)—£. (1357)

All terms in the sum are products of terms of the form (1346) and (1351) therefore
they are all at least a P,. For the first term in the last line of (1357) we use (1347)
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together with (1351). For the second term in the last line in (1357) we use (1348)
together with (1351). We find in the case n > 4,

dn—2

. df
m (FZ(C+ - C+O)%) = P. (1358)

In the case n = 3 the sum in (1357) is not present and the second line in (1357) is
dealt with in the same way as in the case n > 4. We see that (1358) is also valid in the
case n = 3. In the case n = 2 we use again (1348) together with (1351). We see that
(1358) is also valid in the case n = 2 and we have in particular

. df
F (¢4 — CJFO)E =Py (1359)

From (1354), (1358), in view of (1308) and the definitions (1349), (1350), we
deduce, forn > 2,

dn727é
dvn—Z

8Tn
= P, 4+ apk ( 3 ) Jn. (1360)
@ Jo

In the case n = 2 we have in particular, from (1356) (1359),

it
Th = Py — apk ( 5 ) (v — Jo). (1361)
@ Jo
We turn to
dn7271
T2’ (1362)
where (see (1295), (1306), (1307))
= n dO[+ N dO[_;,_
T = (¢4 — c40) (ay, ) ——=F——, (1363)
oo dv dv
where we defined
_ Ttt
Fi= (Gt — cp0) o (as, By). (1364)

Jda
Since ¢4 (v) = c4 (a4 (v), B+(v)), in view of (1271), (1286) we have

d"F
F =Py, T =Prm:1<m=<n-2 (1365)
v
From this together with (1271) we obtain
dn—2]1
oz = b (1366)
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We now look at the case n = 2 in more detail. In the case n = 2 we use

1t

aT" oT
(ay, B+) = 5 + Py, (1367)
@ Jo

o

together with
C+ —Cq0 =KV + Poo, (1368)

to deduce (in agreement with the first of (1365))

aTlt
F = ( ) kv + Prs. (1369)
30[ 0
From (1271) we have
dO[+ .
— =ap+ P11. (1370)
dv

Therefore, in the case n = 2, we obtain

aTtt
T1 = dok ( 5 ) v+ Pro. (1371)
0

o

We turn to 73 4+ T4 (see (1295), (1306), (1307)).

_ oT" d . oT" dB_
T3+ Ty = (C— — cy0) Y (ory, ,3+)% — (6~ —cy0) o (a—, ﬂf)dp;v
_ T . T dB_
= [(C— — C40) Y. (g, B1) — (é- — cyo0) Y. (a—, B-) ;;v
_ T d
+(c- — CJFO)W(O“” ﬂ+)d[—f]. (1372)
Defining
T
F:=(c- — c+0)¥, (1373)
F:=F(ay, By), (1374)
F:=F(a_, B_), (1375)
(1372) becomes

oyl g8
TZ+Ty=(F—-F) v + F do

(1376)
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From (1271), (1278), (1279), (1286) we have
m

duv™

(F—F)=P,_1.1, (F—F)=Py_m_1:1<m<n-2. (1377)

Now, in the case n > 4,

n—2 n=2, i n—1—i
d ((F_ﬁ)dﬂ_)z (n Z)d—.(i—ﬁ)d B_

dv—2 dv pry i )dv dyn—1-1
_"i n=2\d p o d T
- P i )dv dyn—1-1
+(F ﬁ)dn_lﬂ‘ + a (F ﬁ)dﬁ‘ (1378)
dvn—1 dvyn—2 dv '

All terms in the sum are products of terms of the form of the second case of (1279)
and the second of (1377). For the second line in (1378) we use the first case of (1279)
and the first of (1377). We find that in the case n > 4,

n=2 L dB
e ((F — F)W) = P. (1379)

In the case n = 3 the sum in (1378) is not present. For the remaining terms we
argue as in the case n > 4 and find again (1379). In the case n = 2 only the product
of the first case of (1279) and the first of (1377) is present and we find

B

- . dB_
(F—F)—— = Py, (1380)
dv

in agreement with (1379). In view of (1271), (1286), we have

d"F
dvn‘l

=P, (1381)

Using this together with (1285) we obtain, for n > 3,

A" (dIB1\ o (n—2\d'Fd" ]
s (FW)—Z( ; )W—dvn—l—f

=) Py iPryi= P (1382)

F——=P). (1383)
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From (1379), (1380), (1382), (1383) we obtain that for n > 2,

dan
W(TS +Ty) = P,

and, in particular in the case n = 2,
T34+ T4 = Pro.

In view of (1306), we deduce from (1360), (1366) and (1384)

dn—ZN » ] T P
—_— = —a .
dv—2 2T e o "

In the case n = 2 we have in particular, from (1361), (1371) and (1385),

aT"
N =P —apk ( ) J.
da J

Now we look at

dnfz
dyn—2 (7]

We first restrict ourselves to the case n > 3. Defining

8Ttt
Fy:= (e, B+),
o
8Ttt
Fgi=— ) )
=08 (o, B+)
AT da*  AT! 38"
Fi:=F/(f,z), where F/:= ” (a*, ,3*)? + W(a*, ﬂ*)y,
T da* AT B
Fy:=F,(f z), whereF) := o (¥, ,3*)% + W(Ol*, ﬂ*)%,
we have
d da dg, _df dz
—[T"=F,— + Fs—/—~ - F,~=L — F,—.
dv[ ] “ dv + ﬂdv "dv Y dv

From (1269), (1270) we obtain

d"F, d"F,
dv™ dv™

(1384)

(1385)

(1386)

(1387)

(1388)

(1389)

(1390)

(1391)

(1392)

(1393)

(1394)
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In particular, from (da/0w), = &g we have

aTlt
Fy = dg ( ) + P11 (1395)
o 0

Now, in the case n > 4 we have

" (L dz _”f n—3\d'F, "2
dv—3 Y dv _i=0 i dvi dyn—2-i
n—3 . R
-3\ F, e dn
=Zl( i )dvi do 2 T (1396)

In view of (1269) and the first of (1394) we see that all terms in the sum are a P;. For
the remaining term we use (1313) together with (1395). Therefore, in the case n > 4,

dn=3 dz . (oT" n o, n—2
m Fwa = P2+0[() Jar EU In,()—(l’l—l)vln’l +Tln’2 .
0
(1397)

In the case n = 3 we only have the last term in (1396). Arguing as in the case
n > 4 we see that (1397) is also valid in the case n = 3. From (1270) together with
the second of (1394) we obtain, in the case n > 3,

"3 df\ S (n—3\d'Fdvf
dom3 (F%)=Z( i )WWZPZ' (1398)
i=0

In view of (1271), (1286) we have

d"F, d"F
= P ot = P, (1399)
Therefore, in the case n > 3,
A3 day\ " n—3\d Fyd" ey
g () =2 () = 0
i=0
A" dBy\ " (n—3\d Fgd"2ip,
dyn—3 (Fﬂﬁ) - Z“( i ) dvi dvn2i Fa. (1401)
i=0

From (1397), (1398), (1400) and (1401) we deduce, in the case n > 3,

dn—2
dvn72

8Ttt
[T"] =P, — a0 ( ) K,, (1402)
80{ 0
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where

n o, n—2
K, = Ev Iio—(@m—1Dvl, 1 + Tln’z' (1403)

Now we look at the case n = 2. From (1389) and the first of (1399) we have

aTtl
Fy, = ( ) + P11 (1404)
Jo 0

Therefore, together with (1370) and using also (1286) and the second of (1399), we
obtain

da oT! d
F,—t — a()( ) + P, Fﬁ—ﬂ+ =P (1405)
dv 0 dv

From (1270) and the second of (1394) we have

d
Fd—f — P (1406)
v

For the derivative of z in the case n = 2 we use (1312). Since y(0) = —1, (1312) in
the case n = 2 is

d _
d—z = 1+ Pri+2vho— D1 (1407)
v
Together with (1395) we obtain
dz . (3T . [3T"
Fy— = —ap + P11+ ag 2uho—I1). (1408)
dv da /g da /

Using (1405), (1406) and (1408) in (1393) we obtain

d [Tlt] ) 9T ) 9T
= 2a0 + P11 —ao Qubo — I1). (1409)
dv da /g ’ da /g ’ ’
Since

v

2 / V' L o()dv = v 1o — DLa, (1410)
0
v

/ 12,](1)/)(11)/ =vh— o, (1411)

0

we obtain from (1409),

1t

aT
[77"] = P22+ o ( .

) Qv — K»), (1412)
0

where we made use of [T” (0)| = 0. From this we see that (1402) is also valid for
n > 2. In addition we see that T”] is divisible by v.
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We now integrate (1386) n — 2 times to obtain N. If we integrate n — 2 times a P»
we obtain a P,. In view of the definition (1330) we must calculate the /-fold iterated
integral of

v, i =0,1,2. (1413)

Let
fi:=2 fo, (1414)

for an integrable function fj (see (1431) below). We define
v
w)i= [ ), (1415)
0
v
g(v) = / fiwHdv'. (1416)
0

We integrate [ times the function v¥ go(v) and denote the result by Gy, We claim

k! (_1)m vl—m
k+0!" g°+z m— DI —m)! k +m)

Gi1 = Sktm- (1417)

We prove the claim in (1417) by induction. We start with [ = 1. Integrating by parts
and making use of (1415), (1416), we obtain

v
Gr1 = / v¥go(w)dv’
0
_ b vkl gy — /v v”‘“dﬂ(v’)dt)’
k+1 0 dv
1
= 7 (o0 =) (1418)

which is (1417) in the case [ = 1. Let then (1417) hold forl =1, ..., [. We have
v
/ Vg0 (v)dv =
0

v _ 1 _
/ VI g Y = ey (v ghm = grirn) . (1420)
| —

P (Uk+l+lgo - gk+l+1) , (1419)

Using the above to integrate (1417) we obtain

! _
k! k+l+1 Z (=™ pltl-m
(k+l+1)' m—DII+1—m)! k+m

i =" I
- [m + Z m—DIA+1—m)! k+m]gk+l+1. (1421)

m=1

Gri+1 = 8k+m
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Since the first line agrees already with the right hand side with / 4 1 in the role of /,
except for the last term in the sum, the thing left to show is

! _1\m _1)\/+1
_L_Z D I _&b L 4
k+1+D! = m—-DA+1-m'k+m 1" k+1+1
We have
l
(=nm 1 k!
_Z!H’HZ::I(m—l)!(l+1—m)zk+m+(k+l+1)!]
_—Zl:( I )(—1)m_ 11k!
- —\m—1)k+m (k+1+1D)
k!
:_mpl, (1423)
where
1 i o
Pl:=Z!+Z( )(—1)’"(k+1)-~-(k+m)~-~(k+l+1), (1424)
— m—1

where the tilde denotes omission. P; is a polynomial in k of degree /. The coefficient
of k' is

l
> ( ! )(—1)’" = (=D (1425)
= \m — 1

Sinceifn € {1,...,1}
0 m#n,

n—DI(=D"Yl=n+1! m=n,
(1426)

(—n+1)-~-(—7+Vm)~--(—n+z+1>=[

we have

> (m l_ 1)(—D”’(—n F1) o (=ntm)(—n+l+1) = -1 (1427)

m=1
Therefore,
P(—n)=0:n=1,...,1, (1428)
i.e. the roots of P;(k) are k = —1, ..., —[, which implies, together with the fact that

the coefficient of k' in P;(k) is given by (1425),
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Pk =(—Dk+1) - (k+1). (1429)

Using this in (1423) yields (1422). This completes the proof of (1417). We remark
that since (1417) was proved by induction on /, a positive integer, it also holds when
k is a negative integer, as long as k + [ < 0 and for £ < O the first factor in the first
term of (1417) is interpreted as

kKU 1 B (=1)! _ )l( —k—1—1)
(k+D! (k+D--Gk+1) (k=D (=k—=1) (— k—l)'
(1430)
We now set
d"y
fo =1 1i=0,1,2, (1431)
dv?
such that (see (1416))
20 =1, (1432)

We also set k = 2 —i. Then Gy given by (1417) is the /-fold iterated integral of
vkgo = v?> 71, (cf. (1413)) and

v d}’l
gj(v)=/ Vit = ( Ndv'
0 dv?
= Initj. (1433)
Therefore, the /-fold iterated integral of p2i I, is

I—m

(2—1) 2 il ( 1)m v
(2—l+l)' 1n1+z (m—l)'(l—m)'(2—z—|- ) nm+2 (1434)

Using this in J,, given by (1330), we obtain, after a straightforward computation, that
the /-fold iterated integral of J, is

142 m
142 -D)"(n—m)(n+1—m)
0 ;ano A2 —myi ™ (1435

where we recall the notation fn,m = (1/v"™) 1, ;. From (1386) this gives d" 72N/
dv"~!72_ Setting then j = [ + 2 we obtain

n—j Tt J me, .
d ]NzP/—doK(a ) Z( D"(n—m)(n+1-— m)In’m. (1436)

dvon—J m!(] —m)!
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In particular, setting j = n yields (see (1387))

n—1

T S+ 1 —m)
N:Pn,2—o't0/<( )U"Z( ot lzmy (1437)

do m!(n —1 —m)!

Making use of (1434), we obtain, after a straightforward computation, that the
[-fold iterated integral of K, (see the definition (1403)) is

1+2

o2 (=D"(mn—m) .
Zm'(1+2 m)'l”’"' (1438)

Together with (1402) this gives d"~/=2 [T""] /dv"~'=2. Setting then j = [ + 2 we
obtain

dn=i AT\ s (=) (1 —m) -
L =P - T L 1439
i 7= P O‘O( b )0” Z:;) miG—my " (1439)

In particular, setting j = n yields (see (1412))

[1"] = +a& ot 20 — " Z SV, (1440)
= fn2 0 Jo m‘(n—l—m)‘ R

Since [T*'] and N are divisible by v, we define

— Tll R N
[Ttt] = [ ] N:=— (1441)
v v’
Furthermore, we note that, in view of (1387), (1412) and using (see (1327))
[vhol < Cv, || <Cv, (1442)
we have
N — 8T”
N@©) =0, [T"](0) =20 ( ) . (1443)
da J,
We then have (see (1307))
N
b=———. (1444)
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Letnow f be a C* function of v such that f(0) = 0. We define

c_f
T
We have
d'f Sk d (1N dif
dvk_l: i)dvk—i \v /] dv
Since
" (1 (—1)™m!
dvr \v) = Tymt
(1446) is
d*f Kk
P
where Ay is the operator
(DR
A= 2 g
1=

which is homogeneous of degree zero relative to scaling.
In view of

dmok _ [ —(kfin)!vk*m m <k,

du™m 0 m >k,
we have
Av™ = ag ",
where
min{m,k} m
Ak = —kt,
kom Z(; (l. )( )

We see that ay , = 0 for m < k, unless m = 0. Therefore,

ArPe1 =0,

(1445)

(1446)

(1447)

(1448)

(1449)

(1450)

(1451)

(1452)

(1453)

i.e. the null space of Ay is the space of polynomials of degree k with no constant term,

—

a k-dimensional space. In view of the above, applying d"~2/dv"~? to N, [T”], we

obtain
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d" 2N (n—2)!

T = o Ap_oN, (1454)
" —=  (n—=2)!
dvn_2[Ttt]= = Ana [T"]. (1455)

Setting k =n — 2 and j = n — i in (1449) we obtain

" . )
—1)/ d"IN

A,_oN = ( ), v —. (1456)

(n— ! dv—J

Since the null space of A, _» is the space of polynomials of degree n — 2 with no
constant term, only the terms corresponding to the powers v"~!, v in P, > survive
when we apply A,,_> to N. Therefore, substituting (1436) into (1456), we obtain

T — (=1
AnaN = Pyt = ok ( ) w3 ED
0

Y
do s (n— !

j
D" —m)(n+1—m) .
x Z G — ) Lum. (1457)

m=0

We rewrite the double sum as

n

_1 m _ 1 _ R
> gL (1458)
’ m! ,
m=0
where
n .
(—=1/
Jj=max({2,m} (n— DG —m)!
Let us consider
n .
~ (_1)]
= L = G =t (1460)
. ,Z,,:, (n — PG —m)!

For m > 2 we have a, ,, = an m,but form =0, 1 we have

1
nn—2)!"
1
-

(1461)

ap,0 = an,0 —

(1462)

dp,1 = an,1 —
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We set k = j — m in (1460) to obtain

5 - '"E (n—m
o= i (1)

k=0
_ (_l)m _1\n—m
= o

This vanishes except in the case n = m and we have a, , = (—1)". Le.

. _ |0 m # n,
nm =1 (=1 m=n.
We conclude
_1_ w=0
n(n]—Z)! -
apm = a1 m=1L
=D" m=n,
0 m #0,1,n.

Substituting (1465) in (1458) we conclude that the double sum in (1457) is

n+1) . __" 3
-2 oyt

Therefore, from (1454),

dn—ZN ) 9T . .
oy = Pi—doc (S ) v {(n+ 1)1,,,0—n1n,1}.
0

dvan

For n = 2 we have from (1437),

A oT!"! A o
N:PLl—O'l()K( 3 ) v{312,0—212,1}.
0

o

Using the inductive hypothesis (¥;,—1) we have

d"2N
v Fo.
Integrating this yields
d"N A
=Pi_p—2:1<m=<n-3, N =P, o1,

dv™

(1463)

(1464)

(1465)

(1466)

(1467)

(1468)

(1469)

(1470)

where for the second we used (1437). We note that the first of (1470) is only valid for

n>4.
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Setting k =n — 2 and j = n — i in (1449) we obtain

2 (=1 N
Ana[T"] =D (’i —)j)'vn_]dv”—f [7"]. (1471)
j=2 '

Substituting (1439) yields

] _ — aT”) n : (_1)j ! (=D)"(n —m) »
An2 [T] = Pan-s “0( oa )" Z(n—j)! 2. (G —myl

Jj=2 m=0
(1472)
We rewrite the double sum as
. (=D"(n —m)
2 A lnm, (1473)

m=0

where the coefficients ay, ,, are defined by (1459) and given by (1465). We find that
the double sum in (1472) is

1 A .
=21 (In,O - In,]) . (1474)
Therefore, from (1455)
dn—2 e ] Pyl ) .
Jon—2 [Ttt] =P —a ( . )o v (In,o - ]n,l) . (1475)

For n = 2 we have, in view of (1412),

— 3Ttt R n
| — S — —
[T ] =P +a ( 5 )O {2 v (12,0 12,1)} . (1476)

Using the inductive hypothesis (Y,,—1) we have

dn—Z e

e [T!] = Po. (1477)

Integrating this yields

dm — F . BT”
W[Tﬂ] =Pima:1<m=n-=3, [T"]= P21+ 2 ( o )07
(1478)

where for the second we used the second of (1440). We note that the first of (1478) is
only valid for n > 4.
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We now go back to (1307) and calculate d"~2b/dv"~? using (1467) and (1475). In
the case n > 4 we have

d"2b "2 2\ dn 1\ d"N
dvi—2 _’;)( m )dv”—Z—m [T/ﬂ dv™
o ”Z*f n—2yd>m [ 1\ 4N
o =\ m dyn—2-m [/T?] dv™m

dn—2 1 . 1 d" 2N

S 1479
dv'=2 \ [14] [10] (1479

Each of the terms in the sum involves products of terms of the form given by the first
of (1470) and the first of (1478), therefore they are all a P;. Making use of

- dn—Z 1 B 1 dn—Z m P
dvt—2 [/T;] - [7_‘?]2 dvt—2 1
1 A o
= P] — TU (In’()—]n’]), (1480)
a0 (47),

where for the second equality we used (1475) and the second of (1478), together with
the second of (1470), we see that the first term in the second line of (1479) is a P;.
For the second term in the second line of (1479) we use (1467) and the second of
(1478). In the case n = 3 the sum in (1479) is not present. With the second line in this
equation we deal in the same way as in the case n > 4. In the case n = 2 we have

A

N
h=——u (1481)

[7"]

and we make use of (1468), (1476). We conclude

d"?b ~ ~ Pr n>=3,
=5 ((n + Dipo — nln,l) + [ Ry (1482)
Integrating this we obtain
d"b
m =P pmo2:m=<n-=3, b= Py, 21, (1483)
where for the second we used (1443). The first is valid in the case n > 3.
We recall b = vb. We have
d"2b  d" b d"=3b
= +(n—2) (1484)

dvi—2 vdvn—Z dvn=3"
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Since
v R 1)2 R R
/ Vio@)dv' = = (1,1,0 - 1,1,2) , (1485)
0
v
/ iy (v = v? (1,,,1 — 1,1,2) , (1486)
0

we obtain from (1482),

d"3b ok ,(n+1-
a3 = 2"

~ n—1, P, n>4,
n0 —nly 1+ Tln,Z) + [ Pry =3 (1487)

Substituting in (1484) and using again (1482) yields d"~2b/dv"~2 for n > 3. In the
case n = 2 we use directly (1482). We conclude

d"h  « i nz4,
=—L+1 P n=3, (1488)
) n >
dv" 2 Prr n=2,

(see (1330) for the definition of J,,). Using the inductive hypothesis (¥,,—) we have

d"%b
Ton 2 = Pi. (1489)
Therefore, by integration,
d"b db -
W =Prpm-1:1<m=<n-=3, E = Ih-21, b= Py 1p. (1490)

The first one is valid in the case n > 4. The second and the third are valid in the case
n > 3. We note that in the case n > 2 we have

b= 0@wY. (1491)

We turn to a given by (1292). We have

= M 1492
G e
where
M = 4 [T”] (1493)
= .
In view of (1393) we have
M d"? doy dp, df dz
= F, Fg— — F,— — Fy— . 1494
dvi—2  dun? [ “go T4 "dv wdv] (1494)
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As in (1400), (1401) we have

dr—? doy dr—? dp
-~ (FR==)=P, —(FR—)=r.
dvn—2 ( *dv ) S ( P av ) !

As in (1398) we have

dn—2 - df _»p
a2 \av) ="

Using the first of (1394) together with (1269) we obtain
dr—? F dz\ P
a2 \"Mav) ="

d"*m
vz =

Therefore,

Now, from (1409) we have

aTtt
M(0) = 2ag ( ) .
da /

Recalling the second of (1443), we define

M =M — M(0),
—/ —

[T'7] :=[T""] — M(0).

We then have
M’ + M(0)
a=- —/ ’
v ([T”] + M(O))
which, recalling (1297), implies
—/
N [T7] — M’
a= —/ :
v ([T”] + M(O))

Setting now
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we have

(7]
Integrating (1498) in view of (1500) we obtain

amm’
duv™

= I'n—m-2, M/Z n—2,1- (1506)

We now use (1454) with M, M’ in the role of N, N respectively. Since the null space
of A,_» is the space of polynomials of degree n — 2 with no constant term, we obtain

d"m

T2 = o). (1507)

By (1477) we have

dn—2 —

Tl = Po. (1508)
Integrating this yields
dm —/ —/
1] = Pooma, [T] = Pacan, (1509)

dv™

—
_— ——=

—/
the second in view of the fact that [ 7] (0) = 0. Then, from (1454) with [T*"] , [T"]
in the role of N, N respectively, we obtain

dn—2 iy

T3 [T] = 0O). (1510)

The estimates (1507), (1510) imply, through integration,

—

d"M dm ==
—[T"] = Py—p—z :m <n—=3. (1511)

dvm ’ dom

From (1477), (1478) we have

m _—
W[T”] =Py m<n-—2. (1512)

(1511), (1512) imply, through (1505),

d"2a

T = 0. (1513)
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Integrating this yields

d"a
_de = Py :m<n—3. (1514)

In order to estimate d"~'ii/dv"~" we have to estimate d,_», bp—> (see (1305)).
From the first of (1304) we have

d n—2
ap—p = (— —i—&) a. (1515)
dv

Using now (1513), (1514) we obtain
an—n = OQ). (1516)

We turn to l;n_z. We restrict ourselves first to the case n > 3. From the second of
(1304) we have

. A2 " (=3 —m\d" 3 dl G,
o=t 2 > ()T G 051D
m=0 [=0
For the first term we use (1488). The double sum we rewrite as

"f ] (n—3—1+l)udl‘” - (1518)

P ! dv=3-7  du!

Now, in view of the first of (1304), the factor d'a j—1/d v! involves d/ /d v/ . Therefore,
each of the terms in the inner sum in (1518) involves
d" 3 Ibdia

Here 0 < j < n — 3. In the case j = n — 3 we use the third of (1490) together with
(1514). We obtain

EdHa
dvn—3

=P (1520)

In the case j = n — 4 we use the second of (1490) together with (1514). We note that
this case only shows up for n > 4. We obtain
db d"*a

%dvﬂ =P. (1521)
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In the case 0 < j < n — 5 we use the first of (1490) together with (1514). We note
that this case only shows up for n > 5. We obtain

d" 3= ibdia

In the case n = 2 we use l;,,_z = l;o and (1488) in the case n = 2. In view of the
above we conclude
_ P n=>4

b,y = an +1 P n - 3, (1523)
Py n=2.

We turn to d”~'u/dv"~!. Let us investigate first the case n = 2. To find an estimate
for u we integrate (1299) and obtain

v vV o~ " o~
i = / elv WAV o andy (1524)
0

From (1516) and (1523) we have

do=0().  bo="3)+ Py =00, (1525)
Therefore,
v "V~ " " ~
/ (elv' Go(")dv” _ 1) how"dv'| < Cv (1526)
0
and we obtain, through (1524),
K v
u=P3+ 5/ J)Hdv'. (1527)
0
Using now
v 1
/ V21 o (0)dv = 3 (v312,0 _ 12,3) , (1528)
0
v |
/ V1 ()dv = ~ (vzlz, L 12,3) , (1529)
) 2
we obtain
~ K (3 2
u= P3,3+5 (U ho—v 12,1)~ (1530)
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We note that ii = O(v>). From this together with (1516) and (1523), in view of (1299),
we obtain

it _ p g (1531)
dv T

Substituting this together with (1530) into

du 1du u
du _ldw u 1532
dv vdv v? ( )
we find
du _ g (2i i ) (1533)
— = —v — .
v Lt 3 20— D1

Now we turn to the case n > 3. From i = O(v?) together with (1516) and (1523)
in (1305) we obtain

ik
.

P n >4,
T = 3 [ (1534)

Py n=3.

The [-fold iterated integral of J, is given by (1435). From (1534) this gives
d" "l /dv—171. Setting then j = [ 4+ 1 we obtain

i kB Cr i —my 1 —m) £"+1’3 ! =Z’_ 1
Ny A Z : Iym + n,2 J )
dvi=i 2 ot m!(j + 1 —m)! ’ Py j=n-12
Piy1 j=n-=3.

(1535)

The different behavior of the polynomial part is explained by the Taylor expansion
of u beginning with a cubic term. Now we use (1454) WitAh u, u in the role of N, N,
respectively, and with n + 1 in the role of n (recall that vN = N). L.e. we use

A"y (=1
dvn—l = v

Ap_1ii. (1536)

Setting k =n — 1 and j = n — i in (1449) we have

n

—1)/-1 di
Agrii = DI pejd™ (1537)
j=1

=l dv
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Recalling that the null space of A, consists of all polynomials of degree n — 1 with

no constant term, we obtain, substituting (1535),

n j+l1

_ K (=D Y —m)(n+ 1 —m) .
Ap_tii = Puyin+ Ev"“ Z z Lim. (1538)

S mn = G T m)!

We rewrite the double sum in (1538) as

& D" —m 1 —m) .
z bn,m | In,m7
0 m!
where
) .
(—1)J!
b = .
. 2 (n— NG +1—m)

j=max{l,m—1}
Recalling ay, ,, given by (1460), we see that for m > 2 we have

~ 0 2<m=Z<n,
bn,m = —Aap,m—-1 = (_l)n—l m=n4+1.

On the other hand,

and

n i1
(=D 1
bn’o = =

i n=—PNG+D! m+DHm -1

Then (1539) is

n N n—1 x
- !

and we conclude from (1536),

d" 'y

K A~ A~
—— =Pio+svinhho—n—Dliy.
dvyn—] 2

Now, from (1533), (1545) we conclude, in view of u = V — ¢4,

dn_IV K S ~ P] 1 n—= 2’
e = 50 (nho — 0= D) + | p nos

(1539)

(1540)

(1541)

(1542)

(1543)

(1544)

(1545)

(1546)

@ Springer



3 Page 194 of 246 D. Christodoulou, A. Lisibach

7.3.2 Estimate for d"~'p/dv" ™!
We recall the function p given by

I o
y (v)

— 01+ pw)),
KUV

where

W) = cr(v) = V()
v Vo) —¢ ()’

Using also u = V — ¢4 and defining

<
I
< | <

, where V:=c4 —cy0 —u,

we obtain

K U+cyo—c—
p= — 1.
C4+0 — C—0 Vv

We have (recall ¢ (v) = ¢4 (o (v), B+(v)))

% = %(‘Ms ,3+)d;L: + %(a+, ’8+)% - —.
Recalling
d;—;(O) = do, ddi;(O) =0, (%)odo =K
and (1533) we obtain
ﬁ(0) =K
dv
Therefore,

v(0) =«x, p0)=0.
From (1271), (1286) we have

—1=
ar Cyt
dvn—l
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Together with (1545) we obtain

v koo > Pii+x n=2,
=5V (nln,o —(n— 1)1n,1) + { P Y (1556)

We now use (1415), (1416) and (1417) to compute the /-fold iterated integral of this.
In the role of fo we have d"y/dv" and vd"y/dv". We obtain

a1t K
Pl+1 _ _Ul+1

dyn—1-1 = 2

1
noos (—1ym Lo
(l+1)!1"’°+”mZ = DI — )l Gm 5 1) !

1
1. —1Hm 1 4
Liy—@m—1) Z % I, m+1] (1557)

Setting then j = [ + 1, we obtain, after a straightforward computation,

"Iy« L (1) (= m) - P j=n,
5o Z [ (1558)

dvnj !(]_m)‘ Inm+ PJ‘ jfl’l—l,

where we also used the fact that v(0) = 0.

We now apply (1536), (1537) with v, v in the role of u, i respectively. Since the
null space of A,,_1 consists of all polynomials of degree n — 1 with no constant term,
we obtain

(=D (n — m)
Ap1P = Pont s o zzm'(n—])'(]—m)'ln’m' (1559)

We rewrite the double sum as

n

(=D"(n—m) , -

> — G ndnm, (1560)
m=0 ’
where

. .

—1)J
Q= > S (1561)

(n =PI —m)!

j=max{l,m}

Comparing with the coefficients a, », given by (1460) we see that for m > 1 we have
ay ,, = Gn,m, but for m = 0 we have

1
o= G0 — = (1562)
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From (1464) we obtain

1

— m = O,
apy=1E=D" m=n, (1563)
0 m # 0, n.

Therefore, (1560) reduces to —IAn,o /(n — 1)! and we conclude from (1559),

kv .

A1V = Py — mln,o. (1564)

Hence, from (1536) with v, ¥ in the role of u, u respectively,

dty

K ~
oot = Po= 5l (1565)

Using the inductive hypothesis (¥,,—1) in (1545) and (1565) we obtain

d"lu a1y
e Py, T O(l). (1566)

From (1271), (1286) we obtain, in view of c_ = c_ (a4, B+),

anlc_

Integrating (1566), (1567), we obtain form <n — 2

d"u d™v d"c_
W = I'n—-m-1, W = I'n—-m-2, dom = Py—m- (1568)
By (1554), (1565), (1568) we obtain (see (1550))
" 'p o K u+cyg—c_d v
a1~ 0 C40 — C— v2 dyn—1
1.
=P+ 5 Ino- (1569)

ny

Setting fy = Zvi in (1414) so that go = IAn,o (see (1415)), the [-fold iterated integral
of IA,,,O is given by (1417) with 0 in the role of k, i.e. it is

~ l
1| Ino =" .
v [ 0 +> —m!(l—m)!ln’m}' (1570)
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From this we obtain d" '~/ p /dv"~1~!. Setting j = [ + 1 and taking into account that
p(0) =0 we find

d"ip 1 i (-nm . P i =n
_ - j 1 n—1,1 ] ,
dor—i 2 Z m'(] _1_ )|I" m + P j<n—1. (1571)

Let 0 := p/v. We now apply (1536), (1537) with p, p in the role of u, it respectively.
Since the null space of A, consists of all polynomials of degree n — 1 with no constant
term, we obtain

e
A =0QW" " Iy m. 1572
n—1p =0 )+ U m\(n— DG —1—m)! n,m ( )

j=1m=0

We rewrite the double sum as

n—1

(o DL
Z ——cumln,m, (1573)
m! R
where
n .
(—1)7 !
Comi= D —— 2 (1574)
o = DG = T =m)!
Comparing with the coefficients a, , given by (1460) we see that ¢, ,, = —dn m+1-
Then, from (1464),
0 0<m<n-2,
Cn,m [ (-1)”7] m=n— 1 (]575)
Hence (1573) is IAn,,,_l/(n — I)!and (1572) is
1 vn—l R
n
Ap1p=00") + Emln,n—l- (1576)
Then (1536) with g, p in the role of u, i respectively, yields
dan— ])5
Jo T = =0O(1) + 5 Inn-1. (1577)
Now we find the /-fold iterated integral of (1577). Since
I 1
_In,n—l = _nln,n—la (]578)
v v
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we use (1417) with fy = v"‘l% which then implies go = I, ,—1 and k = —n, so
8k+m = In.m—1 (see (1415), (1416)). Since k < 0 we use (1430) for the first term in
(1417). Therefore, the /-fold iterated integral of (1577) is

=y i1 [ —1—1)! .
T P+ = [(—1) Ty me
[ m
-> (1) Lim-1}. (1579)
— (m— D! —m)!(n—m)

From the inductive hypothesis (¥,—1) (see also (1327)) we get

d"p o) m=n-—2,
dv™ h [anf% 0<m<n-3. (1580)
7.3.3 Inductive Step for Derivatives of t, «, B Part One
In the following, using the assumptions (¢, ;,—1), ..., (Bo,n—1), We prove
8}1—1[ an—lt
ST = 0y, T T = 01, (1581)
i+ (9%
—— ) = it j=n-2. 1582
ou'dv/ <8u8v) Quiitj=n ( )

This will then establish (¢, ), (f;m,,). We recall the equation for 7 (u, v) satisfied for
(I/l, U) € TE

9%t ot at

— —yv— =0, 1583
dudv +MBU Uau ( )
where
1 a 1 dcy 0 dcy 0
w= ot _ dey 9o | 9cy 9B , (1584)
cy —C— Ju cy —c— \ da du aB du
1 ac— 1 dc_ 0 dc_ d
b= deo _ de-dar | Bc- 9y (1585)
cy —c— v cy —c— \ da v B dv

We first prove (1581), (1582) for n = 2. For (1581) in the case n = 2 we make use
of what has already been established in the existence proof (see the proposition in the
end of the chapter dealing with the solution of the fixed boundary problem), i.e. we
have

at at

— = , — = . 1586
o 022 ™ O1.1 ( )
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Using the inductive hypotheses (2o ,—1), (Bo.,n—1) With n = 2 together with (1586) in
(1583) we obtain

9%t
oudv

=011, (1587)

which is (1582) in the case n = 2.
We now consider the case n > 3. We have, fori + j =n — 2,

diti 0%t ot ot ot
— =— | —u— —. 1588
i gvi (3u8v) i v ( "o +U8u) (1588)
Let us first consider the case i, j > 1. We note that this case only shows up forn > 4.

The case n = 3 will be contained in the proof of the cases i = 0 and j = 0. From
(am,n—l)» (ﬁm,n—l), (ap,n—l)s (ﬂp,n—l) together with (1586) we obtain

ot or 0 oty ar 0 (1589)
duigvi v <V Guigvi ou <M

From (t,, ,—1) we have
giti+ly  gititly

in, i+’ 9, itlg,]
u ov u v

= Q1. (1590)

All other derivatives of «, § and ¢ appearing in (1588) are of the order less than n — 1
and are, by the inductive hypothesis, all Q. Therefore,

giti ( 9%t

- = i+ j=n—=2,i,j>1. 1591
ou'dv/ 8u8v) Quiitj=n o ( )

This is (1582) in the case i, j > 1.
We now study (1588) in the case i = 0. We note that in the case n = 3 only this
case (or the other case, namely j = 0) shows up and not the case i, j > 1. We define

R gn—2 ot N ot N a1y (1592)
= —uU— +v—
vl =2 s du o=t

and rewrite (1588) in the case i = 0 as

9 ("1t an=ly
30 \ 5o +MW—,1=RU,n_1, (1593)

which implies

n—1

0"t “ /
(u,v>=e‘““’”’[m<v,v>+ / e““*”’Rv,n_l(qu)du’], (1594)
v v

n—1

gyn—1
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where we recall

u
L(u,v) =/ w, v)du'. (1595)
v
We have
9n—2 ot B g1y an ZM ot N n-3 n—2 an—2—mM gmtly
avi—2 \M oy _“avn— "2 v —=\m Jun—2—m gym+1-
(1596)

The terms in the sum involve derivatives of ¢+ w.r.t. v of order at most n — 2 which,
by the inductive hypotheses (¢, ,—1), are all Q1. The terms in the sum also involve
derivatives of i w.r.t. v of order at most n — 3 which in turn, through (1584), involve
derivatives of o, B of order at most n — 2. By the inductive hypothesis (ap 1),
(@m,n=1)s (Bp.n—1)> (Bm,n—1), each of these terms is a Q. Therefore, the sumisa Q.
The second term in (1596) involves mixed derivatives of @ and 8 of order n — 1 and
pure derivatives of order n — 2 which, by the inductive hypothesis (& 1), (Ctm,n—1),
(ﬂp,n—l)’ (Bm,n—1), are a Q1. Therefore,

gn—2 ot =1y
(M—) =pi— Q1 (1597)

Jun—2 v dun

We also have

=2 ar\ 9" v . "iﬁ: n— 2\ 9n=2-my gmtly (1598)
—_— V— = —— —_——m
dv"—2 \ du 9v"2 du =\ m dun—2—m gymay

The first term on the right involves pure derivatives of «, 8 w.r.t. v of order at most
n — 1. These derivatives are, by the inductive hypothesis (80.,—1), all Qp. Making
use of the first of (1586) we see that the first term is a Q1. In view of the inductive
hypothesis each of the terms in the sum is also a Q. Therefore,

2 ot
o2 (UE) = Q1. (1599)
From (1592), (1597), (1599) we obtain
Ryn—1=01. (1600)
We recall
—(v v) —V(U) (v v), (1601)
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where y is given by (1548). Differentiating n — 2 times we obtain

3 o\ 2% or "2 o\dly 3 \"2 o
[(a+a) a}“’”:;( / )dl(){( ) 5](”’”

(1602)
Defining now
3\ oar
ai(v) ;== ’(% + 5) %] (v, v), (1603)
0 0 ot
we have
k
ar(v) + b (v) = [(i + i) t] (v, v)
Jv  Ju
= dk—f( ) (1605)
= ak Y

Also, (1602) reads
n—2 1
n—2\dy
by—1 = Z( I )Wan—l—l
1=0
n—
= Yan— 1+Z( I ) 7 n—1-l- (1606)

Using now the relation (1605) with n — 1 in the role of k, substituting (1606) and
solving for a,_1 yields

1 [a'r 2 m—2\dly
an_lzm[dl}nl —Z( l )d =11 (1607)
=1

By the third case of (1270) the first term in the curly bracket is a P1. From (¢, 1),
(tm.n—1) we have

ar =Py :k<n-2. (1608)

From (1547) we have

K v
= — . 1609
v cto—c—o L+p ( )
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From (1569) we have

n—1

Wf: — o). (1610)
We therefore find (recall that p(0) = 0)
d"_l)/
Joni T = Po. (1611)
This implies
flmTr)n/ = Py_m—1- (1612)
From the above we deduce
an—1 = Py. (1613)

From (1603) with n — 1 in the role of k we have
=1y Sm-2y
W(U, v) =an1(v)—2( ! )m(v,v). (1614)

=1

By (tm n—1) all the terms in the sum are a P;. Therefore,

"1t
W(U’ v) = P1(v), (1615)

which, together with (1600), through (1594), implies

n—lt

gyn—1

(u,v) = Q1. (1616)

This is the second of (1581). Using this in (1593) we obtain (1582) in the case i = 0.
We now study (1588) in the case j = 0. We define

R "2 dt N at 31t 1617
g=—l—pu—+v—)—-v—-
wn=1=g =2 \ "H oy u dun—1
and rewrite (1588) in the case j = 0 as
d (9"t a1t
™ (8u”—1) — Vaun—l = Ryn—1, (1618)
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which implies

8n—lt dn—lh v ,

Ay V) = e~ Kv) [—1 () —/ eXUVIR, i (u, v/)dv/} ., (1619)

0
where we recall
v
Ku,v) = / (—=v) (u, vVdv' (1620)
0

and the initial condition f(u,0) = h(u). We assume & to be a smooth function.
Analogous to the treatment of R, ,—1 (see (1596), ..., (1599)) we find

Ru,n—l = Q11 (1621)

which, through (1619), implies

n—1

ad
_aun_’l (U, v) = 05 (1622)

This is the first of (1581). Using this in (1618) we obtain (1582) in the case j = 0.
We have thus shown (1581), (1582), i.e. we have established (¢p,,,), (tim,n)-
Now we turn to show

L Loy
Tl = 0, Tt = 01, (1623)
a3
— = i+ j=n-2, 1624
ou'dv/ (8u8v) Quiitj=n ( )
8n—lﬂ 3"_1,3
P 07, P 01, (1625)
3i+j 82,3
— = it j=n-2. 1626
du'dv/ (Buav) Quiitj=n ( )
This will then establish (a ), (Ctn,n), (Bp,n) and (B, n).
Let us recall the system of equations for «, 8
do at -~
— = —Al, B, 1), (1627)
v Jdv
0 ot -~
P —B(a, B, 1), (1628)
du au
which implies
vt . l 1
o(u, v) = ai(u) + a—A(a, B.r) g (u,v)dv, (1629)
0 v
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"ot ~
B(u, v) =ﬁ+(v)+/ {8—B(a,,3,r)] W', v)du'. (1630)
v u
Here «; is given by the initial conditions on C and we assume «; to be smooth. 84 is
given by the jump condition and we recall [8] = [«]® G(ay, a_, B_).
From (1629) we obtain

91y d"a; v [n—1 n— 1\ 9itls gn—1-i A o
dun—1 (. v) = don—! @) +/0 ; ( i )8ui8v qun—1-i (u, v)dv'.
(1631)
Here we use the abbreviation A for A(a, B, r). We split the sum into
”Z‘f n—1\ 8t gn1-i 4 Lo 1A Lo g (1632)
P i Jouidv dun—1=t v Jurl  dunlgv
From
A, v) = A(a(u, v), B, v), r(u, v)) (1633)
and recalling the second of the Hodograph system
or ot
—=ct(a, f)—, (1634)
ov av
0 ot
L e (e B (1635)
ou ou

we see that in the second term of (1632) there are involved the partial derivatives of
a, B and t w.r.t. u of order at most n — 1. Using now the assumption («g ,—1) for the
partial derivatives of « and B together with (1622) we obtain

n—14
E;uT—/l‘ = Qop. (1636)
Together with the second of (1586) we find that the second term in (1632) isa Q1 ;.
From (1582) in the case j = 0, which was established above, we find that the third
term in (1632) is a Q1. Each of the terms in the sum in (1632) involves derivatives
of A of order less than n — 1 and mixed derivatives of ¢ of order less than n. These
terms are being taken care of by the assumptions (1), (tm,n—1)» (@p n—1), (@m,n—1),
(Bp,n—1)s (Bm,n—1). Therefore, taking into account fov Q1(u, v)dv' = Q», we find

an—la
St = O (1637)
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We note that in the case n = 2 the sum in (1632) is not present and instead of using
(1582) we use (1587) to deal with the last term in (1632).
From (1628) we obtain

an—l n—2 -2 8i+1t 3n—2—il§
P :Z(" , ) g2 (1638)

ouitl gyn—2—-i

We split the sum into

n—3 n—2 3i+1t an—Z—ié 8n_lt 5
Z( . ) + B (1639)

i aui+] 3un727i aunfl '
i=0
The first ones of () ,—1), (@p,n—1), (Bp,n—1) in conjunction with (1635) imply

8n727i é
Using the first of (¢, ,—1) we find that the sum in (1639) is a Q>. Now, «, B and r
being continuously differentiable as established in the existence proof, we obtain from
(1629), (1630) together with (1586) and (1286) that « = Q», B = Q», which implies

A, B = 0>. (1641)

From the second of this together with (1622) we obtain that also the second term in
(1639) is a Q7. Therefore,

anfl

We note that in the case n = 2 the sum in (1639) is not present and for the second
term we use the first of (1586).
From (1627) we obtain

an—l n—2 ) ai-i-lt an—Z—iA'
—_a = " YN e (1643)
g1 i Juitl gyn 2—i
i=0
We split the sum into

n—3 i i _

n—2\ ot gn2—TA gl

( i )avi-i-l qun—2-i + g1 A. (1644)

Il
=}

i
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Each of the second ones of (¢p ,—1), (p.n—1), (Bp,n—1) in conjunction with (1634)
imply

an—2—i1&

W=Q1!0§i§n—3. (1645)
v

Using the second of (¢, ,—1) we find that the sum in (1644) is a Q1. From the first of
(1641) together with (1616) we obtain that also the second term in (1644) is a Q.
Therefore,

9"l

Gt = Q1 (1646)

We note that in the case n = 2 the sum in (1644) is not present and for the second
term we use the second of (1586).
For f = f(u, v) we define

F(a,v):= /U f,v)dv'. (1647)

We claim

8kF kf k 8k lf
m(a,v)=/a — (v, v)dV +Z(1+1)W(v V). (1648)

We prove this claim by induction. It is satisfied for k = 1. Let it now hold for k. Then

8k+1F v ak-H
W(Cl,v)=/ T’H'J:(v’ v)dv' + f(v v)
k—1 k—1 k
K\ okf ok f
+Z(1+1)auk Tl V" +10(l+1)8u"118v1+1(v v)-

(1649)

Rewriting the second sum as

E (v, v), (1650)
k—lq,1

— ( )Bu v

the sum of the two sums is

k—1
k k ok f ok £ ok f
Z[(l) " (z+1)] gk Tl U V) T e @0+ @), (165D

=0
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Making use of

k kY (k+1 1652
(1)+(1+1)_(l+1)’ ( )

(1651) becomes

k+1 ok 9k
Z(lil)auk—lfal( v) — a{(” v). (1653)

Using this in (1649) we obtain

IHF k! k+1) o
W(a,v):/ ” L Lwva +Z(l+1)%av,<v,v>, (1654)
a

which is (1648) with k 4 1 in the role of k. This proves the claim.
In view of (1630) we now set f (u, v) = —B(v, u) and a = u in (1647), where we
recall

B = ﬁé(a, B,r). (1655)
ou

From (1648) we then obtain
9n— lﬂ 4" 1’3+ u [n-1 n—1\ 9itls 8n—1—ié , ,
e = b [ (") S e @ v
i=0

_g(n_l)’L(ﬁE)]( ) (1656)
2 \1+ 1) {oular=7 \ou o

For the first term we use (1286) in the case m = n — 1. We split the sum in the integral
into

i gitly gn—1-i g Lo B L (1657)
- i duiou dv"—1=i  Ju dvr—1 = Jur—logu

We see that in the second term there are involved the partial derivatives of «, 8 and r
w.r.t. v of order at most n — 1. From the assumptions (®g ,—1), (Bo.n—1) together with
(1616) we obtain

"~'B

St = Qo (1658)

Together with the first of (1586) we find that the second term in (1657) is a Q1. From
(1582) in the case i = 0, which was established above, we find that the third term
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in (1657) is a Q;. All terms in the sum in (1657) involve derivatives of B of order
less than n — 1 and mixed derivatives of ¢ of order less than n. These terms are being
taken care of by the assumptions (5 ,—1), ..., (Bm,n—1). Therefore, the second term in
(1656)isa Q.

We split the sum in the second line of (1656) into

g o Z) (0 1659
g(;‘ (l + 1) dulgyn—2-1 (Bu ) * un—2 (8u ) ' (1659)
The second term involves a derivative of ¢ with respect to u of order n — 1 which, by
(1622) is a Q,. All other terms appearing in (1659) involve mixed derivatives of ¢ of
order at most n — 1 which, by the assumption (, ,—1), are a Q1. Furthermore, these
terms involve derivatives of 7, o, B and r of order at most n — 2. By the assumptions
(tp,n=1)s ---» (Bo,n—1) and the Hodograph system (1634), (1635), all of them are a Q.
Therefore, the third term in (1656) is a Q. We conclude,

an—l‘B

ST = 0. (1660)

We note that in the case n = 2 the sum in (1657) is not present and instead of using
(1582) we use (1587) to deal with the last term in (1657).

In view of the system (1627), (1628) and the Hodograph system (1634), (1635), a
mixed derivative of o or 8 of order n is given in terms of a mixed derivative of ¢ of
order at most n and derivatives of ¢, 8 and ¢ of order at most n — 1. By the assumptions
(tp,n—1)s -, (Bo,n—1) together with (1581), (1582), (1637), (1642), (1646), (1660) we
conclude that each of the mixed derivatives of « and 8 of order n is a Q1, i.e.

ati (3% 66
—_— = it j=n—-2, 1661
dui o) (auav) Quiitj=n (1e61)

ai—l—j 32/3

— = it j=n-2. 1662
ou'dv’ (Buav) Quiitj=n ( )

From (1581), (1582), (1623), (1624), (1625), (1626) we conclude that (¢ ), (tm,n),

(ap,n), ((Xm,n)a (ﬁp,nl (,Bm,n) hold.
In the following we prove

B 3B
- 0,. - 0. 1663
o Qo o Qo (1663)

Putting n in the role of n — 1 in the equations (1619), (1631) and (1638) we have

8%t —Kuw | 4N K N

g (u,v)=e ’ m(u)— A e "Ry p(u,v)dY (1664)
"o d"a; Vs ) 9t 9 A

—(u,v) = (u)+/ ‘Z()——_ u,v)dv',  (1665)
ou” dv? o [\ ou'dv du"t
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3”[3 n—1 n—1 aiJrlt anflfié

i=0

From (1617) with n in the role of n — 1, together with (¢,), (tm,n)s (&p.n)s (Cm,n),
(ﬂp,n), (ﬂm,n), we haVe

"B

u}’l

"o
Ru,n = Ql + Q/l_ + Q/l/ s (1667)
ou”

which implies

0 i(u,v) = 0 +/ [Qﬁa a +Q”8 ’3] (u, v)dv'. (1668)
0

ou ou'" Loun

We split the sum in (1665) into

n_l . e~
n\ o'ty 9" A 9r 3"A  9"tlr .
- 4 — —A. 1669
Z (z) dutdv Ju"! + dv du” + oudv ( )

i=

In view of (p.), (tm.n)> (@p.n)s (%m.n)s (Bp.n)s (Bm,n) and the Hodograph system, each
of the terms in the sum is a Q; and for the second term in (1669) we have

nA n

"«
— /
ou" Q1+Q18u”

"B
ou’"

+ 0f

+ Q/l//

"t
(1670)
u

un’

From (1588) withi = n — 1, j = 0 we obtain, using again the results for the partial
derivatives of «, B and ¢,

an+lt "

—0,+0 "B
dungy < Flgyn

Ju”

+ 0f

+ Q/l//

"t
—. (1671)
u

a

Substituting now (1670), (1671) in (1669) and the resulting expression in (1665) we
obtain

n

" v "
o (u,v) = Q1+/0 [QQW"‘QY

"B
ou”

+ Q,/,a_"t ( /)d / (1672)
(e u,v)dv'.

For (1666) we make use of (1668). We obtain

anﬂ v I B"O{ 1 anﬂ / /
un (u,v) = Q1+/() ’Q]W‘FQ]W (u,v)dv'. (1673)
Defining
a" a" a"t
PTG A2 g LA LA (1674)
ou" au" au"
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and taking the sum of the absolute values of (1668), (1672) and (1673) we obtain

F(u,v) <C+ C’/Ov F(u,v')dv, (1675)
which implies
F(u,v) <C, (1676)
which in turn implies
2"7‘;‘ , 2"76 , %‘_ (1677)

Therefore, using this in (1668), (1672) and (1673), we obtain

o "B 't

du’ dun’ Jun

= Qo, (1678)

the first and the second of which are (1663). For the analogous expression for deriva-
tives with respect to v see 7.3.8.

7.3.4 Estimate for d" f/dv"

We recall the function A given by

1
A(v) = e K@V (ﬁ(v) + ;) - = (1 - e‘K(”’”)) ; (1679)
C+0) — C—0 v

where we recall
v
Ku,v) = / (=v)(u, v)dv'. (1680)
0

We set f(u,v) = —v(u,v) and a = 0 in (1647) which implies F (0, v) = K (v, v).
We obtain from (1648)

"k vgn=ly "3\ 92
—— (v, v) =—/ —— . v)dv = > — (v, v). (1681)
0

dvn—1 Jun—1 — [+ 1) dun—2-13v

The integrand involves partial derivatives of «, f of order at most n, where the pure
derivatives with respect to v of order n do not show up. By the above results for the
partial derivatives of «, B these are all a Q¢ which implies that the first term is a P;.
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The second term involves derivatives of o, 8 of order at most n — 1. Again by the
results for the partial derivatives of «, 8 these are all a P;. We conclude

d" 'K
W(U, v) = P(v), (1682)
which implies, by integration,
d"K
T W, ) =Prp@):l=m=n—-1 K@, v)= P 1(v), (1683)
v

where for the second we took into account K (0, 0) = 0.
We apply d"‘l/dv”_l to (1679). Using (1577), (1580) and (1683) we obtain

d" 1A

1 .
Toi T = o) + 3y fnnt- (1684)

Since the expression for d”~' A /dv"~! is formally identical to the one for "~ p /dv"* !
given by the right hand side of (1577), the [-fold iterated integral of (1684) is given

by the right hand side of (1579), i.e.

d" A » vl | [ n—=1—=1! .
don—1-1 — -1+ ) (=D n—1) n,n—1

l "
i (m— DI —m)!(n —m)

>

In,m—l} . (1685)

m

Let us recall (here f(v) =t (v, v))

df A
—~— =_—M+N, 1686
dv 2«2 + ( )
and
M) = Mo(v) + M1 (v) + Ma(v),  N(v) = No(v) + Ni(v), (1687)
as well as
1 Y 2 / 2
My(v):=v — — veduv = —v, (1688)
U2 0 3
1 v v " "
My (v) = —2/ (1 _ o i AWy )v/zdv’, (1689)
v= Jo
A v v " "
M (v) = — @) / e~ Jo AWV 2 gy (1690)
v Jo
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and

A 1 v v /" " A
Ni(v) :=vBi(v) — (1 +vA(v))/ e~ I AW B hay', i =0, 1.
v 0
(1691)

We also recall

N A KV
B — —K(v,v) — (1= —K(v,v)
0(0) =5 [e (p(v) o C_O) (1-eF0m)

1 KV Cip — C— A
+ e KO (1 +p) + ) ( =0 ) — 50 + h(v)) :
v c K 2K

+0 —C—0
(1692)
A 1 K@) KU
Bi(v):= — —e ’ 14+pW)+ —— ) I (v). (1693)
v C+0 —C—0
Differentiating (1686) n — 1 times we obtain
d"f B A d M N aIN (1694)
dvt  2k2 dyn-! dvn—1"
Setting a = 0 and
Fu, )= (1 —e fu”A<””>d“”) V2 (1695)
in (1647), and letting I~7(v) := F(0, v), we have
F 1
Mi(v) = % = —2/ £, v)dv (1696)
v v 0
and
LR (1697)
— () = —-(0,v),
dvk vk
where the right hand side is given by (1648). Since
- dF
F(0) = —(0) =0, (1698)
dv
the Taylor expansion of F begins with quadratic terms. Since
dk (1 (=DF(k + 1)
vk (—2) =T (1699
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we have

d”_lMl dn—l I’:
dv=1 — qon—1\ 2
(n— 1! -
= WBn_IF’ (1700)

where By is the linear kth order operator

(1701)

k k—m m

=D""k+1-m) , d
Be=2, m! o
m=0

This operator is homogeneous w.r.t. scaling. Hence By, takes a polynomial to a poly-
nomial of the same degree. Let G be a polynomial which begins with quadratic terms.
Then M :=G/ v? s analytic, hence so is v=%=2 B, G. This follows from (1700) with
G in the role of F , M in the role of M; and k + 1 in the role of n. It follows that the
polynomial By G begins with terms of degree k 4+ 2. We conclude that the null space of
By consists of all polynomials of degree k + 1 which begin with quadratic terms, i.e.

kak+l,2 =0. (1702)
This is a k-dimensional space.
Since f (v, v) = 0, we have
k=1
k — 1) k-l f
> (0. 0) =0, (1703)
k—1—I gyl
= ( [ ou v
which implies
okl f = (k-1 o1

Substituting this into (1648) and making use of (note that this is only valid for/ < k—2)

k k—1 k—1
_ - , 1705
(e)-C)=0) 1705)
we obtain
[+1

OkF v gk P 7 T Nl
W(O, U):/O W(v,v)dv +1_O( )m(v,v). (1706)

To deal with the first term in (1706) we have to study 8% £/du*. From (1685) together
with the inductive hypothesis (¥,,_1) (see also the second of (1327)) we obtain
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P 2<l<n-1,

n—l—lA
A _oay  1=1, (1707)
dvn—l—l
Oow™ 1=0.
Using this we deduce from (1695)
ak u " " dk_lA
#(u, V) = vle= Jy AWMV [W(u) + Pnkl}» (1708)

which implies

kf dkilA v v " "
| S =t [ BA a b a0 1709
0 0

Setting now [ = n — k in (1685), equation (1709) becomes

v gk p—k+2 k=1,
/0 87{(0’ U/)dv/ = Pn—k+2,3 + [(_ )n k( — 1)'In,n—l

n—k

' i 1710
=D —k—D'(n—1) ””‘1]' (710

=1

We now look at the second term in (1706). From (1695) we deduce, using (1707),

gk— lf 2d’<—2A
Juk—T (v, v) = dok—2 (V) + Pu—k+2,2, (1711)
f a4
k290 (v, v) —Zvd =5 (V) + Pok+2,1, (1712)
gk— lf dk 4
k390 (v, v) = dvk*“ () + Py—i42, (1713)
ak lf
STy U V) = P33 <1<k =2, (1714)
Therefore,
k=2
k—1y ol d*2A dk-3
— e = (k= 1)’ k— 1)k —2)v—0>n0
IZ(; ([ + 1) Quk—1-19y! ( v dvk—2 +( )( v dok=3

(k—1)(k=2)(k —3)d**A
+ 3 dvk—4

+ Py (1715)

Substituting now (1685) withn —m + 1, n — m 4+ 2, n — m + 3 in the role of /
into the first, second and third term on the right hand side, respectively, and using the
resulting expression together with (1710) in (1706), we obtain, after a straightforward
computation,
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d*F W2k TR Y i+ 1 =D +2-1) &

Py Ly (716
dok TR e & gD+ 3—k -0 (1716

Using this now in (1700) (see (1701) with n — 1 in the role of k for the operator B;_1),
we obtain

d""' M, v n i3t = G (1 — D+ 2 — 1) »
— — Zn—=1)
do—t g l)'% ; ml( — D!(n+3—m—1)! =t
(1717)
We rewrite the double sum in (1717) as
n+3 1-1
D)1 =D +2-1) -
> eni Lui-r, (1718)
(=1
=1
where
min{n—1,n4+3-1}
=D"(n —m)
= . 1719
Cnl 2 mln+3—1—m)! (1719)

m=0

We consider

n+3—1 (—l)m (I’l —m)

Gni= . (1720)

m!(in+3—1—m)!
m=0

For ! > 3 we have ¢, ; = ¢,;. For [ = 2 we have

- (=n"
Cno=cun2+ —(n T (1721)
while for / = 1 we have
_ (=n" 2(="
= — . 1722
Cl =l T T it ) (1722)
To compute ¢, ; We express it as
En,l = nap,| — bn,la (1723)
where
n+3-1
(="
ani = 2, m\(n+3—1—m
m=0
B 1 "i_l n+3-1 (—1y"
T m+3-=D ot m
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1

- 1-1 n+3-1
(n+3—l)!( )
10 I <n+3,
_[1 l=n+3 (1724)
and
n, =
’ ! —1—m)
o m!in+3—1—m)!
1 d n+3—1 3.1
ot 2 (e
n+3-D! dx m
m=0 x=1
— ; i {(1 _x)n+3—l}
n+3-=0D!dx el
10 l#n+2,
_[—1 I=n+2. (1725)
Hence
0 1<l<n++1,
chi=11 l=n+2, (1726)
n l=n+3.
We obtain from (1721), (1722) and (1726)
=" —
“wrt (=2
Cnl =70 3<li<n+1, (1727)
1 l=n+2,
n l=n+3.
Substituting in (1718) and the resulting expression in (1717) we obtain
dn_lM] _ v n i n—li 2 i + Pl,l }’[:2,
a1 6l nt2™ a1 T i D2 M P on>3
(1728)

To see that the polynomial part in (1728) has no term of order zero in the case n = 2
we consider

Bt 2 ) gy - A [ e gy,
dv v3 Jo v Jo

(1729)
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Since (1685) inthe case n = 2,1 = 1 (this is (1684) in the case n = 2 integrated once)
is

1. 1A
A=Py— =1 -1, 1730
0 22,1+22,o ( )

we have from the inductive hypothesis (¥,,—1)

A =0(). (1731)
Using this in (1729) we obtain
dM
27— o). (1732)
dv

We turn to d"~! M /dv"~!. Recalling (1689), (1690) we can write
1 2
My = =30 A+ vMiA. (1733)

Applying d"~! /dv"~! to the first term we obtain

a1 24 1 ,d" 1A 2( 1 d"2A 1( Dn—2) d"3A
— =V =—=v —-——m-NHhr——-=—-1)n—-2)——.
dvr=1\3 37 dvnl 3 dv=2 3 dv=3

(1734)

For the first term we use (1684) while for the second and third we use (1685) with
I = 1,1 = 2 respectively. We arrive at

a=t (1, v A - Py n=2,
_d‘u”71 (51} A) = 6 {—nln,() + (l’l — I)In,l} + [ P[’ n> 3. (1735)

Applying d"~' /dv"~! to the second term in (1733) we obtain

n—1 dn—2 n—1

T M) = (1= D (M1 A) vy

(M A). (1736)

From (1728) together with the inductive hypothesis (¥,,—1) we have

(1737)

dnflMl_ OW n=2,
dvi=t | P n>3,

which, through integration and taking into account that the Taylor expansion of M}
starts with quadratic terms, implies

d™ M, Pn71,2 m =0,
Pi21 m=1, (1738)
Pi_m—1 2<m<n-—2.

dv™
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Using (1707) and (1738) in (1736) yields

dnfl PI,Z n=2,
W(UM[A) =1 P11 n=3 (1739)
Py n >4,

which, together with (1735), implies

d" My _ v Pii n=2,

Z_{_nln,O‘l‘(n_l)In,l}‘i‘[Pl n>3.

v s (1740)

Noting that only in the case n = 2 we have the contribution d My/dv = 2/3 (see
(1688)), we obtain from (1728), (1740)

d"'M v [ nn+1), +n(n—l)i 2 P
dv—t 6| n+2 "7 T ET "' T i Dmr2
2
2+ P n=2,
3 ,
+ [ 7 n>3 (1741)
We turn to d" !N /dv"~!. We look at (1691) and write
Ni =N+ Hj1 +Hp, i=0,1, (1742)
where
~ 1 v ~
N!(v):=vB;(v) — —2/ V2B (V)dv, i=0,1, (1743)
v 0
1 v A v " 4
Hiy(v) := —2/ V2B (v) (1 — o iA@Y )du/, i=0,1, (1744)
v= Jo
A v A v " 4
Hpp(v) := — ﬂ/ V2 B; (e o AV gy i — 0, 1. (1745)
v 0

We first establish estimates for the derivatives of éo. In view of (1692) this involves
estimates for the derivatives of K (v, v) and p(v). The derivatives of K (v, v) are given
by (1683). We recall that the second bracket in the second line of (1692) is a smooth
function whose Taylor expansion begins with cubic terms. This implies

4By _ & dlp  [Piora (1746)
dv/ 2k2 dvJ 1

=0,
Pn—j—l <j<n-1
From (1610), through integration, we obtain

dj,O Pn72,1 ]
- = P, —j=2 1
dv] ! .

o) J

I 1A

Oa
J
n

1A

n—2, (1747)
1.
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where we made use of p(0) = 0 (see the second of (1554)). Therefore,

4’ By P,21 =0,
o7 = P, jo 1<j<n-2, (1748)
v o1y j=n-1

Using this together with (1707) and making use of arguments analogous to the ones
we used for derivatives of f f/v (see (1445)) and M| = F/v (see (1700)) to take
care of the terms involving prefactors of 1/v and 1/v? respectively, we arrive at

d"=' Hy; -
O’—[P“ n=2, i=1,2 (1749)

dvr—!

We now turn to the principal term in (1742) in the case i = 0, which is Nj. We
define

v
Go(v) :=v>By(v) — / V2 By(v)dv' (1750)
0
and rewrite
Go
N) = —. 1751
0 U2 ( )

Since the Taylor expansion of G begins with quartic terms, we can apply (1700) with
N(’), Gy in the roles of M1, F, respectively, i.e.

d"'Nj  (n— D)

I R B,-1Gy, (1752)
where By, is the operator (1701). We claim
d" Gy 3d B() 2dm_1§() dm_zé()
Jom = Jom + Bm — 1)v Jom ] + Bm —2)(m — Dv T2
d" 3B
L (m—1)%m—2) 0 (1753)

dym—3

For the proof of the claim in (1753) we suppress the index 0. Form = 1, 2, 3 it is
true as can be seen by direct computation. For m = 3 we have

&G 3d3 ,d*B dB
= 8vP—— + 14v— +4B. 1754
ad g T g T, T (1754)
For m > 3 we write
d"G ~ d"™B ,d" B d" 2B d" 3B
Jom = W + C2,mv dvm_l + Cl,mV dvm_2 + CO,m dvm_3 . (1755)
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From (1754) we have
3 =28, c13 = 14, co3 =4

Differentiating (1755)

a1 G 3dm+IB? 2d;nl}
dym+1 =v dym+1 + (C2,m +3)v du™
dm—l D
+ (cl,m + 202,m)v— + (CO,m + cl,m)—

dUm—I

gives us the following recursion formulas

C2mt1 = Com + 3,
Clm+1 = Clm + 2C2,m»

€0,m+1 = Co,m + Cl,m-
From the first of (1756) and (1758),
cam =3m — 1.
Substituting in (1759) gives
Clon+1 = Clm +6m —2.

Therefore, since c1,1 =0,

m—1
cim= D (6j—2)=@3m—2)(m—1).
j=1

Substituting in (1760) gives
Co.m+1 = co.m + Bm —2)(m — 1).
Therefore, since cp2 = 0,

m—1

com= D Bj=2( =1 =@m—1)7*m—2).

j=2

In view of (1761), (1763) and (1765) the claim (1753) is proven.

dym—2"

(1756)

(1757)

(1758)
(1759)
(1760)

(1761)

(1762)

(1763)

(1764)

(1765)

We substitute (1746) withm, m —1,m —2, m — 3 in the role of j into (1753). For the
expressions involving derivatives of p we use (1571). We obtain, after a straightforward

computation,
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d"Gy AR I e~ 2 — 1) .

- P Lyi-1. (1766
dvm nomt2 42 &= (=D +3—m =) mi-1- (1766)

Now we go back to (1752). We must calculate B,,_1Gg. From (1701),

n—1
N GV e—m) L, d"Go
B,_1Go _m§:0 — v (1767)

Since the null space of By, consists of all polynomials of degree n which begin with
quadratic terms, B, applied to the polynomial part of G gives a P,42 ,+1. Then

a2 it e (i1 — D (42 — D)2

Bn—]GO = Pn+2.n+1 - TK2 for (1_1)'7}1‘(}’1 T 3 —m— l)' nd—1-
(1768)
The double sum is
n+3 1—1 2
D"+ 1-Dm+2-07 .
D cn . Dot (1769)

=1

where the coefficients ¢, ; are given by (1719). Using (1727) we obtain, after a straight-
forward computation,

A" (a4 1), nin—1) .
B,_1Go = P, = - I
n—1U0 n+2,n+1 + 4/(2 (n — 1)' [ n+2 n,0 n+ 1 n,l1
2 .
I — . 1770
T atntD ”’"*2] (1770)

Substituting in (1752) and using the resulting expression together with (1749) in the
(n — 1)’th order derivative of (1742) with i = 0, we arrive at

d"'No A [n(n+1). ni-Dp o 2 ;
dv=T "4 | a2 T ikt M T e+
Pl,l n = 2,

To see that the polynomial partin (1771) has no term of order zero in the case n = 2
we take the derivative of (1691)

dN;  dB; . 2 24 1dA AL (U oa Ay
E=”E‘”A3f+[v—s+v—z‘sz+¥]/o”B"(”)e e
(1772)
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From (1707), (1748) we have, in the case n = 2,

dA . dB
A = O(1), — = O(v_l), By = O(v), 20 o(l). (1773)
dv dv
Using these in (1772) with i = 0 we obtain
dN,
=0 =~ o). (1774)
dv

We turn to derive an estimate for d"~'N;/dv"~!. In view of (1693) we need an
estimate for d"~! I/dv”’], where we recall

1(v) = /O {ek(”’”/) — 1+ K@y, v’)] g—f)(u, V)dv', (1775)
where
K(u,v):/ov(—v)(u,v/)dv/, (u, v):ar()l(ju(u,v)—l. (1776)
Defining

ot
fu,v):= {eK(”’”) — 14KV, v)} 8—(14, v) (1777)
v

we have
I(v) = /U f(v,v)dv'. (1778)
0

Making now use of (1647), (1648), we obtain

dnfll v anflf , , n—2 n—1 aanf
W(U) :A =T (v, v)dv +§(l+l)m(v, V). (1779)

We see that we need estimates for mixed derivatives of f of order at most n — 2, for
derivatives of f with respect to u of order at most n — 1 and for derivatives of f with
respect to v of order at most n — 2. Therefore we need expressions for derivatives of
a and B with respect to u of order at most n, expressions for mixed derivatives of «
and B of order at most n and expressions for derivatives of & and 8 with respect to v
of order at most n — 1. We also need expressions for mixed derivatives of ¢ of order
at most n and expressions for derivatives of ¢ with respect to v of order at most n — 1.
We define

Hu,v) =XV — 1 4 KWz v, (1780)
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For the first term in (1779) we have

8n—1 an—l ot n—1 —1 ig n—i
oy e non v
oun—l  gun-1 v i dul du"—1-igy

i=0

n—1\o'H 03"t " 'H 3t
= —. (1781
Z( i )814’ u"—1-1gy + du"—1 v (1781)

By the results for the partial derivatives of «, B and ¢ established above we see that
each of the terms in the sum is a Q. By the same results we see that

a1l

Together with the second of (1586) we see that the second term in the second line in
(1781) is a Q1,1. Therefore,

v an—lf
/0 o (v, V)dv" = Py 1 (v). (1783)

For the second term in (1779) we write

e N n? g2 at

Z aon—2-15,1 S\ A5

= [+1)0u">""9v l+ 1) ou™ ov v

n=2 Lo I\ 9"2-l /aiH ol+1-iy
lz (l + 1) (l) un—2-1 ( v 3Ul+1_i)
> ()0
=0 im0 =0 I+1 Jj

3T H iy
X - - - =
Aul dut gun—2-1=J gyl +1-i

NM

Il
M

~
oS

I n

[\S)

I

=

(1784)

We first look at the case i = j = 0. From (1271), (1286) we have o, B+ = P>.
Therefore, ¢+ = P,. Using this together with the first ones of («p ,—1), (Bp,n—1) In
(1584) we obtain

n, v) = Pr(v), (1785)

which, together with

(36_+) (3_“) — (%> —0. (1786)
o 0 dJu 0 du 0
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implies

(v, v) = P2 1(v). (1787)
Therefore, together with (1682),

H(v,v) = P,1(v). (1788)
From (2 ,,), (tm,n) we have

"1t

Eﬁjj%ﬁTzQNOSZSn—Z (1789)

From (1788), (1789) we deduce that each of the terms in (1784) withi = j =0 isa
P .

Now we look at the case i + j = n — 2. The only term in (1784) satisfying this
condition is

9" 2H ot
_ (1790)
du’l dv! dv

The first factor involves derivatives of « and § of order at most n — 1. Therefore, by
(@p.n)s @m,n)s (Bp,n)s (Bm,n) the first factor in (1790) is a Q. By (1270) and the first
of (1586) we have forn > 3

oy =Ly L y=rp (1791
v VT Y T e Y T
Therefore, for n > 3,
OEH DY () = Py ) (1792)
— ) (v,v) = V).
Ju’ ovt dv 2.1

In the case n = 2 (1790) is H(d¢/dv). Using the second of (1586) and (1788) we
obtain that (1792) is also valid in the case n = 2. We note that for n = 2 this is
the only non-vanishing term in (1784). For n = 3 the two cases i = j = 0 and
i + j =n—2=1cover all the terms appearing in (1784).

Let now n > 4. For the terms in (1784) with 1 <i 4+ j < n — 3 we need estimates
for

3k+1[ _
—————a[lfkfn 3 (1793)
Juk—1gyl+1 0<l<k.
We set
k+1
g(U) = W(U, U). (1794)
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Then

dlg a  a\’ okl
(5 &) g o

dvP du ' v) uk-Tgul+!
i (p) gpHkt1y
= (v, v).
—q+k—lg5y,q++1
o \d oup—1 avd

Setting p =n — k — 2 and j = g + [ implies, through (1789),

dn—k—Zg _»p

dvn—k=2 L
This yields, through integration,

g = Pn—k—l,
ie.,

akJrlt
W(U’ v) = Ppj—1(v).
Hence,
ok +1y l<k<n-3,
Fak gyt (V) = P2 [Oflfk.

We also need estimates for

FH  [1<k<n-3,
duk—lgv! " |0 < <k

These in turn require estimates for

#*la  [1<k<n-3,
quk+=Tgyl * |0 <1<k

We set

3k+l

h(v) = m(v, l)).

Then

dl’h() 9 N 3\’ otly . 9)
——w={l—+=) ——— v
dvP du  ov) oukti-igy!

P p gpHktly
= Z ) SuP—d+k—I+1gpa+ (v, v).

(1795)

(1796)

(1797)

(1798)

(1799)

(1800)

(1801)

(1802)

(1803)

@ Springer



3 Page 226 of 246 D. Christodoulou, A. Lisibach

Setting p =n —k — 2 and j = g + [ and using (p ), (@ ,) implies

dn—k—2h
a2 = b (1804)
This yields, through integration,
h=Py_k-1, (1805)
ie.,
oty
5;;1T:75;7(v,v)== Ppk—1(v). (1806)
Hence,
o l<k<n-3,
M(U» v) = P2(v) : [O “I<k (1807)

The same procedure applies to derivatives of B using (Bp,1), (Bm,»). Therefore,

O H l<k<n-3,

From (1799) together with (1808) we obtain that each of the terms in (1784) with
1<i+j<n-—3isa P,. We conclude

n§_2 PN = hw (1809)
’v == 9
<\ +1) w2l v 20

which, together with (1783) implies

an'r
Making use of

ot 9%t
K(©0,0)=17(0,0) = —(0,0) = ——(0,0) =0, (1811)

av Juov

we obtain
1(0) = i 0) = 1 0 =0 (1812)
Tdv 0 dvr T
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Therefore, by integrating (1810), we deduce

. Pit13  j=0,
d]_] _ Pn,2 j= 17
dvi | P j=2,

Priy1—-j 3=<j=<n-1

(1813)

Now we apply (1700) with 7 in the role of F (see (1696) for the relation between

M and F).

-t (1 (n—1
a1\ 2] = Tntt Bni,

where the operator By is given in (1701). We find

" (1
dvn=1 \v2 = bo,

which, through integration, implies

d (I _[Pia j=0,
dvi \v2) | Pimi—j 1<j<n-1

Now we apply d"~! /dv*~! to By. We rewrite

where

E(v):= —e KOV (1 —i—p(v)—l——KU )
C+0 —C—0

Using (1747) and (1683) we obtain

d'g
dvi T

Now,

d" 1B, _”il n—1\d (1\d'"'"'8  1d"'E
dv—1 i )dvi \w?) don—1=t 0 2 dyn—l

i=1
Therefore, from (1816) and (1819),

dn—lél

dvn1 — Fo.

(1814)

(1815)

(1816)

(1817)

(1818)

(1819)

(1820)

(1821)
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which, through integration, implies

d’ B, Pio11
I ! (1822)

dvi | Pao1—j

We see that, in particular, (1748) with 1 in the role of 0 holds. Therefore, also (1749)
with 1 in the role of 0 holds, i.e. we have

i=102. (1823)

dn_lH]i _ Pl,l n :2’
dvi=t | n=3,

Now we define (this is (1750) with 1 in the role of 0)

v
Gii=v3B) — / o2 By (v)dv' (1824)
0
and have
’ Gy
N =L (1825)
v

We then have, as in (1752) with 1 in the role of 0,

d"INT (= 1)
dv”*l = Un+1

B,—1G1, (1826)

where (this is (1767) with 1 in the role of 0)

n—1
D e —m) L, dM Gy
Bn_lGl_m§=0 — v (1827)

Now we use (1822) in (1753), setting successively j = m,m — 1,m — 2, m — 3.
We obtain

d"G

dv™

= Pymin. (1828)

Using this in (1827) and taking into account that the null space of B,,_ consists of all
polynomials of degree n which begin with quadratic terms, we obtain

B, 1G1 = Pyyony1- (1829)

Substituting this in (1826) yields

=P, (1830)
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which, together with (1823), yields

n—1 _
d N‘=[PU n=2, (1831)

dyn—1 P n > 3.

To see that the polynomial part has no term of order zero in the case n = 2 we use
(1821), (1822) together with the first and the second of (1773) in (1772) withi = 1.
Combining the estimates (1771) and (1831) we obtain

d"'N . [nn+ l)i nn—1) » 2 ;
dv T " 42 | a2 T Tl MM T e+
Pl,l n = 2,
+ [ P, n> 3. (1832)
We introduce
Ao
Q(v):=f(v) — —v". (1833)
6K
We have
da'®  d'f 2on=2
= — 1 32 ’ 1834
dv" dv? HOK n > 3. (1834)
Combining now (1741) with (1832) we obtain (see (1686))
d"® A nn+1) . n(n—l)f n 2 i
dv*  6k2 nt2 "0 nt1 " (n+Dn+2) nnt2
Py n=2,
+[P1 03 (1835)
We note that since
df d>f A
0) =0, —(0) =0, —(0) = —, 1836
£(0) -(0) 5 (0) = £ (1836)
we have
P(0) = dq)(O) = dch(O) =0 (1837)
Cdv T dvr T
We recall f = v f . Using (1700) we obtain
arf dr (& 1
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where (see (1701)) the linear »n’th order operator M,, is given by

n
_ln—m' 1_ d’n

m=0

(=Dl + 1 nl
_y ¢ )”(iT )v"—ljn_l. (1839)
= (n—=D! v

We recall that the null space of B, (and hence the null space of M,,) is the space of all
polynomials of degree n 4+ 1 which begin with quadratic terms.

Now we use (1417) to compute, for 0 </ < n, the [-fold iterated integral of vIA,,,O,
vfn,l, vIA,,,,,Jrz appearing in (1835). Setting fy = 325 in (1415), so that go = 1,0 =

IAn,O, and k = 1 in (1417), we find that the /-fold iterated integral of vfn,o is given by

¢+ D! m—-DII —m)! (m+1)

m=1

A l A
1, —1Hm 1
S+ [ no_ Z (=D nm+1 ] . (1840)

Setting fo = v% in (1415), sothat go = 1,,,1 = vIA,Ll, and k = 0 in (1417), we find
that the /-fold iterated integral of vIAnJ is given by

A~ l A~
1 (_l)m Inm 1
I+1 n,1 ,m+
ml . 1841
v [ 1! +mZ::1(m—1)!(l—m)! m ] (1841)

Setting fo = v" 1?2 f:}f in (1415), so that go = I, ny2 = V" 21, pyo, and k = —n — 1,

we find that the /-fold iterated integral of vIA,,,,,Jrg is given by

A

[ GV =DYaa < =" Fumi
v [ ! Z(m—1)!(z—m)!(n+1—m) - (184

m=1

We note that here we made use of (1417) in the case k < 0, which is valid since
k + 1 < —1. Therefore we interpret the first factor in the first term of (1417) as in
(1430).

Using now (1840), (1841) and (1842) for the /-fold iterated integral of (1835) in
conjunction with (1839), yields

n n

AUn+1[n(n+1)i Z (—=Dn! _n(n—l)i Z(—l)ln!(l+1)

62 | nt2 "’Olzo(n—z)!l! ntl "*1120 n—DW!

M,® =

(_1)m+ln!

2 ) n n l
—Inn l 1) — s
eI De 2 '*2,;( D ;%(erl)!(l—m)!

n—m)y(n—1-my(A+1) . ia
n—D'(n+1—m) 1’””“] +00™). (1843)

@ Springer



Shock Development in Spherical Symmetry Page 231 of 246 3

Here we made use of the fact that, when (1835) is iteratively integrated n times, the
polynomial part of ® is of degree n + 1 and, in view of (1837) begins with cubic
terms. Therefore, the polynomial part of @ is annihilated by B,, hence it is annihilated
by M,,. The first sum in (1843) is

n

n I
Z(l)(—l) =(1-1"=0, (1844)

=0

since n > 2.
In view of this the second sum in (1843) is

= (n ;,_ 4 = (n N
Z(,)<—1>’— dx[z(l)< x)]
=0 =0 x=1

since n > 2.
The third sum in (1843) is

d
= —(1=0"|,_; =0, (1845

S+ = w (1846)
=0

Finally, we rewrite the double sum in (1843) as

t ()" —m)(n— 1 —m)n! .
2 mt Dl 1yt omlnmn (1847)

m=1
where

n

. =D+ 1)
Gnm = l:Zn; d—m)(n -1

i'ln—m—1)!

i=0

We see that in (1847) the terms with m = n and m = n — 1 vanish. Therefore, we can
restrict to the case 1 < m < n — 2. We have

n—m (_1)1' M om ,'
_ i!(n—m—i)!z(n—m)'z( i )(_1)
i=0 i=0
1 n—m
(n_m),( -1
—0, (1849)
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sincen —m > 1. Also,

n n—m
1

(=D

—m
i=0 i=0

1 d |'& (m-—m ;
z(n—m)!ﬁ[g‘( i )(_x)”

1

d _
= (="

(n—m)dx
=0,

since n — m > 2. We conclude that
apm=0:1<m<n-2.

Hence the double sum in (1843) vanishes.
We deduce from the above

)\.Un—H

6/(—2fn,n+2 +0W"?).

M, ® =

Therefore, substituting in (1838), we conclude

drf s
dvf = mln,n-i-Z +0O).

7.3.5 Estimate for d”g/dv”

We recall the function § given by
8(v) = g) —cyof(v),
where
g) =r(,v) —ro.

We also recall the function & given by §(v) = 38 (v). Using

d* ( I ) _ DF ke +2)

dvk \v3 2pk+3 ’
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o~ (n 1) d"*s
dv”_ “ \k dvk v3 ) dvnk

k=
1~ n!(—=DFk + 1)(k +2) d" %8
2 (n — k)lwk+3 dvn—k

we deduce

= L8, (1857)

where L, is the n’th order differential operator

Z( D" "pl(n +2 — m)(n+1—m)

Ln=3 m! dvm’

5 (1858)

m=0

which is homogeneous w.r.t. scaling. Hence L,, takes a polynomial to a polynomial of
the same degree. Let G be a polynomial which begins cubic terms. Then M := G /v3
is analytic, hence so is v™*"3L,, G. This follows from (1857) with G in the role of &
and M in the role of §. It follows that the polynomial L, G begins with terms of degree
k + 3. We conclude that the null space of L, consists of all polynomials of degree
n + 2 which begin with cubic terms, i.e.

L,Pyi23=0. (1859)

This is a n-dimensional space.
We now estimate d"”§/dv™. Let us recall the splitting of §(v)

8(v) = 8o(v) + 81(v), (1860)
where the functions &y and §; are given by

dd
—0( ) = —(1 +y)v?, 8(0) =0, (1861)

A
D) = (V) — 20— S0 45000) 510+ (V) — 40060, 51(0) =0,

(1862)
where we recall the function ¢
p) =Ly - 2 (1863)
V=00 T 32
We note that
do
d() = d—(v), (1864)
v

where ® is given in (1833).
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Now we apply d"~! /dv™~! to d8y/dv. We claim

de() B A zdm_ly dm—Zy dm—3y
dvm 6k

ot H20m = Do = D =) ] + P,

(1865)

where P is a generic polynomial and we interpret d*y/dv* for k < 0 as the k-fold
iterated integral of y. For m > 1 this follows directly and we note that for m > 3 the
polynomial P is the zero polynomial. For the case m = 0 we define

up(v):= /v y(@)dv', (1866)
0

ur(v) ;= /v ur (V)dv', (1867)
0

uz(v) ;= /v ur (V)dv'. (1868)
0

Then the right hand side in (1865) becomes

[, _
= {v ) —2vu2(v)+2u3(v)} + P), (1869)

while from (1861) we have
)\‘ v
o) = o [ 020w) + Dav
6K 0
= 6—K A

v d
v (1 + ﬂ(t/)) dv’
dv
A

)\, v
=+ = uv) - 2/ Vi )dv't . (1870)
18« 6K 0

We write

v v
d
/ Vi ()dy = / v 22 hay
0 0 dv

= vus(v) — /v ur (W)dv'
0
= vuz(v) — u3z(v). (1871)

Substituting in (1870) we see that (1870) coincides with (1869) up to a polynomial.
Therefore, (1865) holds for m = 0 also, hence it holds for m > 0.
From
n—1 y B dn— 1 y
dv—! W) = dv—!

(0) + In0(v), (1872)
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together with the expression for the /-fold iterated integral of fn,O given by (1570) we
obtain d" '~y /dv" =1~ Setting m = n — 1 — [ we obtain

am ~ i n—l—m 1) R
_y — Py + Unflfm n—,O + : ( ) : In,j
du™ (n—1—m)! i jlin—1—m — j)!
(1873)
Replacing m by m — 1, m — 2, m — 3 and substituting in (1865) we obtain
2— ; ; ;
"8 _ k girm | _ntD o "*‘Z’" DV —po—j+h;
dvm 6 n+2—mn"° S jen2-m—jr "
Puto—ma—m 0<m<3,
+ [ Pnio—m m > 4. (1874)

The polynomial part follows from 8o = O (v*), which in turn follows from d So/dv =
o).

Now we estimate L, 8¢, where the operator L, is given in (1858). Recalling that the
null space of L, consists of all polynomials of degree n + 2 which begin with cubic
terms, we see that L, annihilates the polynomial part of §y. Therefore,

A n+2 ny : n m
Laby = 55— [n<n+1)<—1) In,oz;) LD
m=

n n+2—m

(=D nln42—m)(n+1—m)(n — Hn+1—j) ~
+Z Z m!jl(n +2 —m— j)! Tnj

m=0 j=1
(1875)

Since

" n

> ( )(—1)”’ =(1-1)"=0, (1876)
m=0 m

for n > 1, the first sum in (1875) vanishes.
We rewrite the double sum in (1875) as

n+2 i . .

D)™ inln — o +1—j) -
> j'J La il ;. (1877)
=] '

where
" LM+ 2—mY(n+ 1 —m)
ap,j = E .

m!(n+2—m— j)! (1878)

m=0

@ Springer



3 Page 236 of 246 D. Christodoulou, A. Lisibach

We were able to include the term m = n + 1 for j = 1 trivially because it vanishes.
We have

1 " gy
e J— m J— J—
= T mZ::,) ( . )( D" (042 = m)(n+ 1 —m)
n+2—j .
= ;d_z n+2_'] xn+2—m(_1)m
(n+2— j)dx? o m 1
Xx=
1 42 . )
. Y "+2—f} 1879
(n+2— j)l dx2 {x =D et (1879)
Therefore,
m+1Dn+2) j=n+2,
2(n +1 i =n-+1,
an,j = 1(n ) jzz (1880)
0 j<n-—1

However, the terms with the coefficients a, , and a, ,+1 do not contribute in the sum
in (1877) and we obtain that (1877) collapses to the term j = n + 2, i.e. (1877) is
equal to

2ppin. (1881)

Therefore,
A n+27
Lyéo = a” In,n+2» (1882)

which, when substituted in (1857) with §p in the role of §, gives

dng() A oA
o = aIn’nJrz, (1883)

We turn to d"gl/dv”. We apply d"~! /dv"~! to d8;/dv. For n > 3 we obtain,

=—v

d"8; A [d”lV kvd™ly (n—l)Kd”zy]

dvt 362 | dvt 2 dvnt 2 dvn2
A [dV7PV 0 kvdry (n =2k d' 3y
F =D e — -
3k2 | dvn—2 2 dv—2 2 dv3
n—1
n—1\dVvdad-1lg
+ ( z )W—dvn—l—l' (1884)
1=0
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From (1872) and (1873) with m = n — 2 we have, for n > 3,

dnfly

UW = 131,1 + Uin,O,
dn72y _ R R
m = Pl =+ Uln’() — U[n’l.

Using (1546) we obtain

"'V okvd™ 'y (n—Drd" %y

o T 2ae T 2 am2
which implies that the first line in (1884) is a P> ;.
From (1873) with m = n — 3 we have
dn—3y _ v2 R R R
T3 = P+ X {In,O =2l + In,z} .

Using
v R U2 R R
/ Vino@)dv' = = (fo = dnz)
0 2
U ~ ~ ~A
/ VI 1 ()dv = ? (In,l - In,2) ,
0
we obtain, through integration of (1546),

a2y Kv? A o “
== {nI,,,o —2(n— Dy + (- 2)1,1,2} .

From (1886), (1888) and (1891) we obtain

A"V kvd" %y  (n—2kd" 3y
- - = P,
dv'=2 2 dv? 2 dv3

i.e. the second line in (1884) is a P;.
From (1546) together with the fact that V (v) — c49 = O®w?) we have

P,_ m=0
dnv c+o+ Pr—1.2 ,
Py 2 m=1,
Pi_m_1 2<m<n-—1.

dvm =

In view of (1864) we have from (1835), (1837),

P,_12 m=0
d"‘l n N 9
¢ _ Pypy m=1,
P11 2<m<n-—1.

dvm

(1885)

(1886)

(1887)

(1888)

(1889)

(1890)

(1891)

(1892)

(1893)

(1894)
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Using now (1893) and (1894) we deduce that each term in the sum in (1884) is a P,.
We conclude that for n > 3, (1884) is a P,.

In the case n = 2 in place of (1884) we have
d?s, A dv  « kv dy A
i Y RS | _ -7

dv? 3/<2v(dv 2( ) )

K
7 ) 30 (V-0 =50+ )
d¢p dV
V- — 4+ —9.
+V—cpo)-+ o

(1895)
Using

v
/ Lo)dv' =v (12,0 - 12,1)
0

(1896)
in (1872) with n = 2 we obtain (recall that y(0) = —1)

Ud _ A ~
l+y=/ d—y(v/)dv/=P1,1+v(12,o—12,1)~
0 v

(1897)
Together with (1546) and (1872), both with n = 2, we obtain

V. _Kqpy_2dy_p (1898)
dv 20 TV T gy T
Using (1889), (1890), both with n = 2, in (1546) with n = 2, we deduce

vav o, kv . .
V—cyo= d—(v )dv' = — (12,0—12,1) + Pro.
0 v 2

(1899)
This together with (1897) implies

K
V—cio— 5(1 + v = Pyo.

(1900)
In view of (1893), (1894),

d¢ dV
(V- C+0)£, E(b = 0@Wd).

(1901)
From (1898), (1900) and (1901) we obtain

(1902)
Together with the above conclusion for n > 3 we conclude

sy
dot %

(1903)
@ Springer



Shock Development in Spherical Symmetry Page 239 of 246 3

From (1903) we have

d™s,
dvm

=Piiom. (1904)
In view also of (650) we have, in particular,
51 = Pasra (1905)

It follows that L,, annihilates the polynomial part of §;. From (1857) (see also (1858))
with §; in the role of § we obtain

d"é,
= 0O(). 1906
o =0 (1906)
Combining with (1883) we conclude
" _ X Lyni2 +O) (1907)
dvt  6ry "2 ’
7.3.6 Estimate for d"y/dv"
We recall
d 3F)/9v) (v,
dy BB/ ye) (1908)
dv (QF/3y)(v, y(v))
where
oF A, s dR
— W, )=y —«f)+tv_—(v,y), (1909)
ay 2k ay
IF df dé R
— W,y = —Ky—f(v) +—@ +RW,y)+v—(v,y). (1910)
ov dv dv ov
We recall that R is given by
32}’* R 2 347‘* y4
R(v,y):= — ——) =
(v, ) (at2 )O(f(v)) (8w4)024
’rr \ VW :
_ —vH ), 1911
(8t3w2)0 > vH(f(v),y) (1911)

where H is a smooth function of its arguments.

Setting fo = v”+2fle,' in (1415) so that go :AI,,’,,+2 and using (1417) with k =
—n — 3 we obtain the /-fold iterated integral of %I,,,,Hz. Using this in (1853), (1907)
we obtain
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d"f [ Piw—2 O<m<n-2,

o i o) m=n-1, (1912

dmg . Pim—n 0=<m=<n-2,

dvm IO(I) m=n—1. (1913)
From (1873) we have

dmy_ Prm—o 0<m=<n-2,

dvm H o1y  m=n-—1. (1914

Recalling (aﬁ/ay)(o, —1) = %, we deduce from (1912), (1913) and (1914)

a [9F £ 40w m=0,

o 8_(U’ yW) =1 Pi—m—2 l<m=<n-2, (1915)
v Y O(1) m=n-—1,

am | aF dmtif  gmtl§ Pom O0<m<n-—2,

W{g(”’y(“”] ZKW+W+[0(1) m=n-—1.

(1916)

We apply d”_l/dv”_1 to (1908). Using (1853), (1907), (1915) and (1916) we
obtain

d" 1.
= =l + O, (1917)
i.e.
dny 1 v / +2dny / /
()= v”+3/0 ™ S W)V + O, (1918)
Setting
v dl’l
Z,(v) = / 28 oy (1919)
0 dv"
we have
d (Z
a (_) — 0o, (1920)
v v
Integrating gives
Z
== 0. (1921)
v
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Therefore,

Z, = O3, (1922)

which, when substituted in (1918), yields
d'y
dv

=0(), (1923)

i.e. Y, is bounded, hence (Y},) holds and the inductive step for the derivatives of the
function y is complete.

7.3.7 Bound for d" f /dv" and d"a, /dv" =

We recall (1853)
IS0 s |+ o). (1924)
In view of the bound on Y,, we have
f;;{ = O(1). (1925)

Therefore, F,, is pounded. Hence (F,,) holds and the inductive step for the Qerivatives
of the function f is complete. We note that (1925) implies (recall f = V2 f)

d"f
dv"

=P (1926)

We turn to d" a4 /dv". From (1629) we obtain
dr d"o; v n 3i+1t anfiA~
a+(v)= % / Z n . _ (v, v)dv
dv" du” o |\ du'dv du"~t
a1 at -
— | —A , V). 1927
+Z(1+1)[aun—l—lavl (av )](U 2 (1927)

The first term is taken care of by the assumption on the initial data. In the following
we will make use of (1 ), (tm,n)> (@p,n)s (@m,n), (Bp.un)s (Bm,n) and (1678) without
any further reference. Each of the terms in the sum of the second term is at least a Qy.
Therefore, the second term is a Pj,;. We split the third term according to

Ly N ar N\ "=m—2y 9! ar -
_r_(2i) =3 iy
—\l+1)our—1-19v! \ dv pry [+ 1) our—1-13v! \ v
n—2\ 0"l [or -
ZA). 1928
+( n )Bv"—l (Bv ) ( )
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The first term involves mixed derivatives of ¢ of order n and less and derivatives of «,
B and ¢ of order n — 1 and less which are all Q1. Therefore, the first term in (1928) is
a Pj. For the second term in (1928) we have

[ an—1 (31‘ )] ot .
— | —A (v,v) =P+ (v, v)A(v, v), (1929)

avt—1 \ 9v dvn

where for the first term we reason as above. To deal with the second term in (1929)
we use (1603) with #n in the role of k and (1607) with 7 in the role of n — 1 which is

1 [arfr Zn-1\dy
=— - gt 1930
fn l—i—yIdv" ;( ! )dvl“”’ (1930)

For the first term in the bracket we use (1926). For the sum we note that each of the
a, _; involves derivatives of ¢ of order n — 1 and less and is therefore a P;. From (1923)
we have

R v dny
Lo :/ @)dv' = O®). (1931)
0 dv"
Therefore, from (1569),
dn—lp
o T = Py, (1932)

which, through (1609), implies, recalling that p(0) = 0,

dnfl y
Therefore,
an, = Py. (1934)

Therefore, from (1603) with n in the role of k we find

n

ﬂ(v, v) = P1(v). (1935)
ov"

Using this in (1929) we see that the second term in (1928) is a P; and therefore the
whole sum in (1928) is a P; which in turn implies that the third term in (1927) is a
P;. We conclude

= Py, (1936)
i.e. (4 ) holds.
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7.3.8 Inductive Step for Derivatives of t, o, B Part Two

In the following we prove

e _ 00 "B

T T = Q0. (1937)

Together with (1663) this will then establish (¢ ,—1), (Bo,n—1) With n in the role of
n — 1, i.e. it will establish (co,,), (Bo,,). With n in the role of n — 1 in the equations
(1594), (1643), (1656) we have

"t —L(u,v) 9"t " L(u',v) / /
3o (u,v) =e ’ W(U’ v) + e" YRy a(u v)du' (1938)
v
o Uy N L Ll
S (1) = > B e el K02 (1939)
i=0

anlg dn,B+ /u n n 3i+1t 8n—ié , ,
L) = —— - - ,v)d
v @, v) dv" @) + v ; i) ovtou vt (@', v)du

n—1 n—1
n 0 ot ~
B Z (l + 1) [W (53)] (v, v). (1940)

1=0
Analogous to (1667) we find

¥ I

Ryn= 01+ 0} aor T o (1941)

v

Therefore, taking into account (1935),

av; (u,v) = 0 +/ [Q’la * 5 Q,,a ﬂ] ', v)du'. (1942)

ad v v Foun

For (1939) we make use of (1942) together with (¢ ,,), (tm,n)» (0p.n)> (m.n), (Bp.n)s
(Bm.n)- We find

n u n n
gv(::(u,v) =0 +/U [Q’lszJr Q’{zv’f] ', v)du'. (1943)
Now, (Y},) implies that (1269) holds with n in the role of n — 1. By (1926) and
(1936) also (1270) and (1271) hold with 7 in the role of n — 1. Therefore, we obtain,
in the same way as we derived (1286), that (1286) holds with » in the role of n — 1.
Therefore, the first term in (1940) is a Py.
We split the sum in the integral of (1940) into

n—1 ; P~ ~
9itly 9"=iB 9t "B 9"t -
> (") (1944)

i) avigu ovrt * au ovn | dugvn

i=
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In view of (2 ), (tm,n) (@p.n)s (Qm,n)s (Bp.n)s (Bm,n) and the Hodograph system, each
of the terms in the sum is a Q and for the second term in (1944) we have

"B B L L - L
o Q1+ le + O or T+ Q2 v’

(1945)

From (1588) withi = 0, j = n—1 we obtain, using again (t, ), (ty1,n), (@p 1), (Cm,n),

(Bp.n)s (Bm.n),

9ty , 0" , "B 3t
Juov" Q1+ 0, " + 0 v + 0 dun’ (1946)

We now look at the last term in (1940). We split the sum into

! ar T
——F— | —8B — | —B). 1947
Z (l + 1) dulgyn—1-1 (au ) * un—1 (au ) (1947)

=0

In view of (2 ), (tm,n)> (@p.n)s (@m.n)s (Bp.n)s (Bm,n) and the Hodograph system, each
of the terms in the sum is a Q and for the second term we use (1678) and conclude
that this termis a Q¢. Using now (1945), (1946) in (1944) and the resulting expression
in (1940) we find

0" " "o " 0"t
ﬂ(u v) = Qo+/ {Ql +Q18 f +Q/{/m] ', v)ydu'.  (1948)
v
Defining
n n
G:= o il ; (1949)
av" av" av”

and taking the sum of the absolute values of (1942), (1943) and (1948), we obtain

u
Gu,v) <C+ C’/ G/, v)du', (1950)
v
which implies
G(u,v) =C, (1951)
which in turn implies
a" 9" 0"t
Fa| |28 |2 (1952)
av" av" av"

@ Springer



Shock Development in Spherical Symmetry Page 245 of 246 3

Therefore, using this in (1942), (1943), (1948) we obtain

3o "B "t

— T = , 1953
dv dvt Ju" Qo ( )

the first and second of which are (1937). From (1663) and (1937) we conclude that
(0,1), (Bo,n) hold. This completes the proof of the inductive step for the derivatives
of @, B and ¢. Therefore, the inductive step is complete.

7.4 Blowup on the Incoming Characteristic Originating at the Cusp Point

We recall the following asymptotic forms

oo )»A()

%(M,U) = 3K—2U+O(MU), (1954)
3B A [

- = — | — 1
81)(“’1}) 3/(2 ( at )0U+O(uv)’ ( 955)
Y ) = v+ O (1956)
90 u,v) = 3’(21) uv).

As established above, «, 8 and ¢ are smooth functions of u and v in the state behind
the shock. Let us now consider an outgoing characteristic originating at a point on
C corresponding to the coordinates (u#, 0). According to (1954), (1955) and (1956),
along this outgoing characteristic the Taylor expansions in v of «, 8 as well as t do not
contain linear terms but do contain odd powers beginning with the third. Therefore, «
and B hence also the v, are smooth functions not of the parameter ¢ but rather of the
parameter

=1y, where 1o = t(u, 0). (1957)

Therefore, the derivatives of the v, with respect to L of order greater than the first
blow up as we approach C from the state behind the shock (recall (124) for L).
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