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Abstract The general problem of shock formation in three space dimensions was
solved by D. Christodoulou in [2]. In this work also a complete description of the
maximal development of the initial data is provided. This description sets up the
problem of continuing the solution beyond the point where the solution ceases to
be regular. This problem is called the shock development problem. It belongs to the
category of free boundary problems but in addition has singular initial data because
of the behavior of the solution at the blowup surface. The present work delivers the
solution to this problem in the case of spherical symmetry for a barotropic fluid. A
complete description of the singularities associated to the development of shocks in
terms of smooth functions is given.
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1 Introduction

1.1 Overview

The Euler equations are a set of nonlinear hyperbolic partial differential equations.
Physically they represent the conservation of energy, momentum and mass. It is well
known that, given smooth initial data, solutions of equations of this type can blow up
in finite time. In the case of the Euler equations the gradients of the solution become
infinite. The mechanism of the blowup is called formation of a shock and has first
been studied in one space dimension by Riemann in 1858 [6]. The general problem
of shock formation in three space dimensions for a fluid with an arbitrary equation of
state was solved by Christodoulou in the monograph [2]. In this work also a complete
description of the maximal development of the initial data is provided. This description
properly sets up the problem of continuing the solution beyond the point where the
solution ceases to be regular. This problem is called the shock development problem
and is stated in the epilogue of [2]. It belongs to the category of free boundary problems
but possesses the additional difficulty of having singular data due to the behavior of
the solution at the blowup surface. The present work gives the solution to this problem
in the physically important case of spherical symmetry for a fluid with barotropic
equation of state. The result is a step in understanding the development of shocks in
fluids. It provides the basis on which the continuation, interaction and breakdown of
shocks in spherical symmetry can be studied. Furthermore, the mathematical tools
invented to deal with the problem will be of importance in studying solutions to
nonlinear hyperbolic equations beyond shock formation.
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1.2 Shock Development

The general problem of shock formation in a relativistic fluid has been studied in the
monograph [2] by Christodoulou. This work is in the framework of special relativity.
The theorems in this monograph give a detailed picture of shock formation in 3-
dimensional fluids. In particular a detailed description is given of the geometry of the
boundary of the maximal development of the initial data and of the behavior of the
solution at this boundary. The notion of maximal development in this context is not
that relative to the background Minkowski metric ημν , but rather the one relative to the
acoustical metric gμν . This is a Lorentzian metric, the null cones of which are the sound
cones. In the monograph it is shown that the boundary of the maximal development
in the ’acoustical’ sense (relative to g) consists of a regular part and a singular part.
Each component of the regular part C is an incoming characteristic (relative to g)
hypersurface which has a singular past boundary. The singular part of the boundary is
the locus of points where the density of foliations by outgoing characteristic (relative
to g) hypersurfaces blows up. It is the union ∂−B ∪B, where each component of ∂−B
is a smooth embedded surface in Minkowski spacetime, the tangent plane to which at
each point is contained in the exterior of the sound cone at that point. On the other hand,
each component of B is a smooth embedded hypersurface in Minkowski spacetime,
the tangent hyperplane to which at each point is contained in the exterior of the sound
cone at that point, with the exception of a single generator of the sound cone, which lies
on the hyperplane itself. The past boundary of a component of B is the corresponding
component of ∂−B. The latter is at the same time the past boundary of a component of
C . This is the surface where a shock begins to form. The maximal development in the
case of spherical symmetry is shown in figure 1. In spherical symmetry a component
of ∂−B corresponds to a sphere and therefore to a point in the t-r -plane, the cusp point,
which we denote by O .

Now the maximal development in the acoustical sense, or ’maximal classical solu-
tion’, is the physical solution of the problem up to C ∪∂−B, but not up to B. In the last

Fig. 1 The maximal development in a neighborhood of a blowup point in spherical symmetry. C denotes
the regular part of the boundary of the maximal development. C is incoming characteristic and originates
at the cusp point O . The cusp point O corresponds to ∂−B. B denotes the singular part of the boundary
of the maximal development. The family of outgoing characteristic curves is drawn as straight lines for
simplification
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Fig. 2 The state behind in dark
shade and the state ahead in light
shade, separated by C and the
shock K where outgoing
characteristics meet. The family
of outgoing characteristic curves
is drawn as straight lines for
simplification

part of the monograph the problem of the physical continuation of the solution is set
up as the shock development problem. This is a free boundary problem associated to
each component of ∂−B. In this problem one is required to construct a hypersurface of
discontinuity K, the shock, lying in the past of the corresponding component of B but
having the same past boundary as the latter, namely the given component of ∂−B, the
tangent hyperplanes to K and B coinciding along ∂−B. Moreover, one is required to
construct a solution of the differential conservation laws in the domain in Minkowski
spacetime bounded in the past by C ∪K, agreeing with the maximal classical solution
on C ∪ ∂−B, while having jumps across K relative to the data induced on K by the
maximal classical solution. For reasons which will be made clear below we call this
solution state behind while the solution in the maximal development we call state
ahead. The jumps across K have to satisfy the jump conditions which follow from the
integral form of the conservation laws (the relativistic form of the Rankine-Hugoniot
jump conditions). Finally,K is required to be spacelike relative to the acoustical metric
g induced by the maximal classical solution, which holds in the past of K, and time-
like relative to the new solution, which holds in the future of K (the last condition is
equivalent to the condition that the jump in entropy is positive). The maximal classical
solution thus provides the boundary conditions on C ∪ ∂−B, as well as a barrier at B.
The situation in spherical symmetry is shown in figure 2.

In the present work the shock development problem is solved in the case of spherical
symmetry and under the assumption that the fluid is described by a barotropic equation
of state. The presence of spherical symmetry represents an important physical case,
also from the point of view of applications, and reduces the problem to one on the
t-r -plane, where t denotes Minkowski time and r denotes the radial coordinate. The
assumption of a barotropic equation of state is appropriate for liquids and also for
a radiation gas. For a radiation gas we have p = (1/3)ρ where p is the pressure
and ρ is the energy density in the rest frame of the fluid. This model applies in
particular to the early, radiation dominated, phase of the history of the universe. The
fluid being barotropic the energy-momentum conservation law decouples from the
particle conservation law. The system of partial differential equations reduces to an
inhomogeneous system with two unknowns. One of the key concepts used to deal
with the system of equations are the Riemann Invariants α, β of the principal part
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of the system of equations. The equations are reformulated in terms of characteristic
coordinates (u, v). These coordinates are defined by the outgoing and incoming null
rays with respect to the acoustical metric g, u being constant along outgoing null
rays and v being constant along incoming null rays. In addition the coordinates are
set up such that the shock K is given by u = v. The system of equations for the
time and radial coordinates (t, r) in terms of (u, v) is the Hodograph system. The
Hodograph system together with the system of equations for the Riemann Invariants
is a non-linear four by four system. This system is then solved using a double iteration
consisting of an inner and an outer iteration. In the outer iteration the position of the
free boundary in the t-r -plane is iterated, providing, through the jump conditions,
in each step the boundary conditions for a fixed boundary problem. The equations
being non-linear, this fixed boundary problem is then solved using again an iteration,
the inner iteration. The solution of the fixed boundary problem then allows to set the
position of the free boundary in the t-r -plane for the next iterate. This is accomplished
as follows. The solution of the fixed boundary problem provides the values of r and
t in terms of the characteristic coordinates along the shock K, i.e. r(v, v), t (v, v). In
the formation problem the solution in the maximal development (denoted by (·)∗) is
given in terms of the acoustical coordinates (t, w), where w is a function which is
constant along outgoing characteristic hypersurfaces. Now r(v, v) is set equal to the
radial coordinate given by the acoustical coordinates, i.e. r∗(t, w), when t = t (v, v)

is substituted, i.e. r(v, v) = r∗(t (v, v), w). This equation is called the identification
equation since it identifies the radial coordinates of events in spacetime, with respect
to the solution of the fixed boundary problem and with respect to the solution in the
maximal development, along the shock K. It plays a very important role, and the study
of it is at the heart of the solution to the problem. The identification equation has to
be solved for w in terms of v in order to be able to apply the jump conditions and
in order to compute the boundary data for the next iterate in the outer iteration. This
is not possible offhandedly. Only after correctly guessing the asymptotic form of the
solution as we approach the sphere ∂−B, can the identification equation be reduced to
an equation which is solvable for w in terms of v. The iteration then yields the local
existence of a continuously differentiable solution to the shock development problem.
Also uniqueness of this solution is proven. Finally it is proven that the solution is,
away from the shock K, smooth.

The problem is solved in the framework of special relativity. Nevertheless, no
special care is needed to extract information on the non-relativistic limit. This is due
to the fact that the non-relativistic limit is a regular limit, obtained by letting the speed
of light in conventional units tend to infinity, while keeping the sound speed fixed.

1.3 Relation to Other Work

We first remark that the methods of the present work trivially apply to the case of
one-dimensional isentropic flow. The equations in this case can be written in the form
of a non-linear hyperbolic conservation law

∂t u + A(u)∂xu = 0. (1)

123



3 Page 6 of 246 D. Christodoulou, A. Lisibach

There exists a quite complete theory for studying equations of this form. In the fol-
lowing we are going to put the present work in relation to that theory.

The fundamental building block of that theory is the solution of the Riemann prob-
lem [4] which is the problem of studying the above equation for data which is piecewise
constant with a single jump at the origin. The solution of this problem is self simi-
lar and consists of several constant states connecting the piecewise solution on both
sides of the jump. Approximate solutions for more general data are then constructed
by patching together several solutions of Riemann problems. This is done using the
Glimm scheme [3] whose deterministic version has been established by Liu [5]. In
that approach, the initial data is approximated by a piecewise constant function and the
algorithm produces a sequence of approximate solutions whose convergence relies on
a compactness argument based on uniform bounds on the total variation. Therefore,
these methods establish the existence of solutions in the space of functions of bounded
variation.

We should keep in mind that the objective is to determine solutions which arise by
evolving given smooth initial data according to the physical laws, not only existence,
uniqueness and continuous dependence on the data but also the description of the main
qualitative features of the solution, chief among which is the precise description of
the singularities which arise. The aim being of course to derive results that can be
compared with experiment.

From given smooth initial data singularities develop naturally. But from a solution in
the space of functions of bounded variation no regularity information can be extracted,
not even on what is the set of points at which the solution fails to be continuous.

This is in contrast to the present work where we obtain complete knowledge of the
solution in terms of smooth functions. That is, we obtain a complete resolution of the
singularity. In comparison with the theory of elliptic problems, what we develop is the
analogue of a complete regularity theory rather than only the analogue of an existence
theory in the class of functions admissible in the variational problem.

Furthermore, the approach using the space of functions of bounded variation is
unsuitable to address the physical three dimensional problem, being in principle con-
fined to one spatial dimension.

1.4 Overview of the Article

We give an overview of the content of each section. We also state the places where
important theorems can be found.

Section 2

In 2.1 we present the model of a perfect fluid in special relativity. Based on the
conservation laws for energy-momentum and particle number (see (6) and (7)) we
derive the equations of motion (the Eulerian system given by (6), (10) and (11)). We
analyze the characteristics of this system and introduce the sound speed η as well as the
acoustical metric gμν which describes the sound cone (see (23) together with (24)). In
2.2 we derive the jump conditions across a hypersurface of discontinuity, (see (40) and
(41)). They follow from the integral form of the conservation laws which we derive
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on the basis of the conservation laws for energy-momentum and particle number. In
2.3 we define which hypersurfaces of discontinuity are shocks. Then we present the
determinism condition and the entropy condition. These are both conditions on the
solution of the equations of motion across a shock. The determinism condition is the
condition that the shock is supersonic relative to the state ahead and subsonic relative
to the state behind the shock. The determinism condition is illustrated in figure 4.
The entropy condition is the condition that the jump in entropy per particle is positive
across a shock. In 2.3 we also show that for suitably small jumps, the determinism
condition and the entropy condition are equivalent. In 2.4 we restrict our analysis to
the case where the fluid is barotropic, i.e. where p = f (ρ) where p is the pressure and
ρ is the mass-energy density. Due to this assumption we get a decoupling of one of the
equations of motion (see the system (107), (108), (109) in contrast to the system (36),
(37), (38)). Furthermore, we then restrict to the irrotational case which implies that
one of the remaining equations is identically satisfied (the one dealing with vorticity),
thus reducing the equations of motion to a single equation for the potential φ (see
(116)). This equation takes the form of a nonlinear wave equation when rewriting it
using the acoustical metric (see (119)).

Most of the material in this section can be found in the first chapter and the epilogue
of [2] and in the first section of [1].

Section 3

We restrict to the spherically symmetric case. In 3.1 we look at the radial null vectors
L± (null with respect to the acoustical metric), introduce the normalization Lt =
1 and rewrite the nonlinear wave equation using these null vectors (see (128)). In
3.2 we keep only the principal part of the nonlinear wave equation and derive the
Riemann invariants α, β corresponding to it. These Riemann invariants correspond to
the Riemann invariants of the solution under the assumption of plain symmetry, i.e. the
purely one dimensional problem. In 3.3 we rewrite the nonlinear wave equation for
spherically symmetric solutions using α, β (see (154)). Then we introduce double
null coordinates (with respect to the acoustical metric). The equations of motion then
become the equations for the derivatives of the Riemann invariants together with the
system satisfied by the space-time coordinates t , r (the Hodograph system). We refer to
this set of equations as the characteristic system. In 3.4 we rewrite the jump conditions
as an equation for the shock speed V and an equation in terms of jumps (see (170),
(171)). Then we derive the relation [β] = [α]3 G([α]), where [ f ] = f+ − f− and
G is a smooth function of its arguments with G(0) a constant. In 3.5 we describe
the boundary of the maximal development of the initial data. Here we make use of
the result [2] where one can find a detailed description of this boundary in chapter
15. While in [2] no assumption on the symmetry of the problem was made, here we
restrict the result to spherical symmetry. We then derive the behavior of the Riemann
invariants α, β at the cusp point, which is the first point of blowup. This behavior is
given in (266), (267). We then describe the incoming characteristic originating at the
cusp point by giving t in terms of the acoustical coordinate w along this characteristic.
In 3.6 we state the shock development problem in all its details and outline the strategy
for its solution. See in particular (325).
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Section 4

As described in the outline of the strategy in the end of section 3, in each step of the
iteration, which is used to solve the shock development problem, we need to solve
the characteristic system with given initial data for α and t , boundary data for β and
a given shock speed V which enters the free boundary condition (see (301)). The
characteristic system being nonlinear we use again an iteration. In 4.1 we set up the
iteration scheme. We also prove (see proposition 4.1) a preliminary result concerning
the equation for t . This second order partial differential equation follows once r has
been eliminated from the Hodograph system (see equation (336)). In 4.1 we also
establish the inductive step of the iteration. This is the content of lemma 4.1. In the
second subsection we show convergence. This result is the content of lemma 4.2. The
section concludes with the existence result for the fixed boundary problem given by
proposition 4.2.

Section 5

As described in the outline of the strategy in the end of section 3 we solve the shock
development problem using an iteration. In 5.1 we specify the form of the boundary
functions to be iterated and the corresponding function spaces. Then we establish the
inductive step of the iteration. This is the content of proposition 5.1. In subsection 5.2
we show convergence. We first show three lemmas, each of them corresponding to a
particular step in the induction process. Lemma 5.1 gives estimates for the solution
to the fixed boundary problem. Lemma 5.2 gives estimates for the solution of the
identification equation (see equation (298) in the description of the strategy). Lemma
5.3 gives estimates for the quantities related by the jump conditions. These three
lemmas are then used to close the convergence argument in the proof of proposition
5.2. The above then leads to the existence of a continuously differentiable solution to
the free boundary problem. This is the content of theorem 5.1.

Section 6

The proof of uniqueness of the solution is done in two steps. In 6.1 we first prove that
any solution of the characteristic system which satisfies the smoothness conditions
from the existence theorem (theorem 5.1) possesses the same leading order behavior
as the solution given by the existence theorem. This is the content of proposition
6.1. In 6.2 we prove uniqueness of the solution of the shock development problem,
assuming the solution has the given leading order behavior. The result is the content of
theorem 6.1. In 6.3 we prove that L+α and L+β are continuous across the incoming
characteristic originating at the cusp point.

Section 7

Up to this point we established a solution to the shock development problem in the
class of continuously differentiable functions. Now we prove that this solution is
smooth (see theorem 7.1). This is accomplished by induction with respect to the order
of differentiation. The inductive hypothesis is stated in 7.1 and the base case of the
induction is shown in 7.2. In 7.3 we show the inductive step. In 7.4 we show that the
derivatives of the Riemann invariants (and therefore the derivatives of the physical
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quantities) with respect to L+ of order greater than the first blow up as we approach
the incoming characteristic originating at the cusp point from the state behind the
shock.

2 Relativistic Fluids

2.1 Relativistic Perfect Fluids

The motion of a perfect fluid in special relativity is described by a future-directed unit
time-like vector field u and two positive functions n and s, the number of particles
per unit volume (in the local rest frame of the fluid) and the entropy per particle,
respectively. Let us denote the Minkowski metric by η. The conditions on the velocity
u are then

η(u, u) = −1, u0 > 0. (2)

The mechanical properties of the fluid are specified once we give the equation of state,
which expresses the mass-energy density ρ as a function of n and s

ρ = ρ(n, s). (3)

Let e = ρ/n be the energy per particle. According to the first law of thermodynamics
we have

de = −pdv + θds, (4)

where p is the pressure, v = 1/n the volume per particle and θ the temperature. We
have

p = n
∂ρ

∂n
− ρ, θ = 1

n

∂ρ

∂s
. (5)

The functions ρ, p, θ are assumed to be positive. The equations of motion for a
perfect fluid are given by the particle conservation law and the energy-momentum
conservation law, i.e.

∇μ I
μ = 0, (6)

∇νT
μν = 0, (7)

where T and I are the energy-momentum-stress tensor and the particle current, respec-
tively, given by

Tμν = (ρ + p)uμuν + p(η−1)μν, Iμ = nuμ. (8)

The component of (7) along u is the energy equation

uμ∇μρ + (ρ + p)∇μu
μ = 0. (9)
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Using (6) in (9) together with (5) we deduce

uμ∇μs = 0, (10)

i.e. modulo the particle conservation law, the energy equation is equivalent to the
entropy being constant along the flow lines. Nevertheless the equivalence of the energy
and entropy conservation only holds for C1 solutions. Let 


μ
ν := δ

μ
ν + uμuν denote

the projection onto the local simultaneous space of the fluid. The projection of (7) is
the momentum conservation law

(ρ + p)uν∇νu
μ + 
μν∇ν p = 0. (11)

The symbol σξ of the Eulerian system (6), (10), (11) at a given covector ξ is the
linear operator on the space of variations (ṅ, ṡ, u̇) whose components are

uμξμṅ + nξμu̇
μ, (12)

uμξμṡ, (13)

(ρ + p)uνξν u̇
μ + 
μνξν ṗ. (14)

We note that

ṗ = ∂p

∂n
ṅ + ∂p

∂s
ṡ. (15)

The characteristic subset of T ∗
x M , that is the set of covectors ξ such that the null space

of σξ is nontrivial, consists of the hyperplane P∗
x :

HP := uμξμ = 0 (16)

and the cone C∗
x :

HC := 1

2

(
(uμξμ)2 − η2
μνξμξν

)
= 0, (17)

where η is the sound speed

η2 :=
(

∂p

∂ρ

)

s
. (18)

We assume that the equation of state satisfies the basic requirement

0 < η2. (19)

The characteristic subset of TxM corresponding to P∗
x , i.e., the set of vectors ẋ ∈ TxM

of the form

ẋμ = ∂HP

∂ξμ

= uμ, ξ ∈ P∗
x , (20)

123



Shock Development in Spherical Symmetry Page 11 of 246 3

is simply the vector u(x), while the characteristic subset of TxM corresponding to C∗
x ,

i.e., the set of vectors ẋ ∈ TxM of the form

ẋμ = ∂HC

∂ξμ

= uνξνu
μ − η2
μνξν, ξ ∈ C∗

x , (21)

is the sound cone Cx :

(η2uμuν − 
μν)ẋ
μ ẋν = 0. (22)

We define the acoustical metric gμν by

gμν := ημν + (1 − η2)uμuν . (23)

Cx is then given by

gμν ẋ
μ ẋν = 0. (24)

We assume that the equation of state satisfies the basic requirement

η2 < 1, (25)

which is equivalent to the condition that the sound cone is contained within the light
cone. For ξ ∈ P∗

x the null space of σξ consists of the variations satisfying

ṗ = 0, ξμu̇
μ = 0 (26)

(the isobaric vorticity waves). For ξ ∈ C∗
x the null space of σξ consists of the variations

satisfying

ṡ = 0, u̇μ = − 
μνξν ṗ

(ρ + p)uνξν

(27)

(the adiabatic sound waves). We note that the inverse acoustical metric is given by

(g−1)μν = (η−1)μν −
(

1

η2 − 1

)
uμuν . (28)

We define the one form β by

βμ := − huμ, (29)

where h is the enthalpy per particle given by

h := e + pv = ρ + p

n
. (30)
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We deduce

(Luβ)μ = −uν∇ν(huμ)

= h

ρ + p
∇μ p + uμu

ν

(
h

ρ + p
∇ν p − ∇νh

)
, (31)

where for the first equality we used the definition of the Lie derivative together with
the first of (2) while for the second equality we used (11). By (30) in conjunction with
(4) the expression in the last parenthesis is equal to −θ∇νs. Therefore, by (10), the
last term vanishes and we have

Luβ = dh − θds. (32)

We define the vorticity two form by

ω := dβ. (33)

Let us denote by iX contraction from the left by X . From (29) we deduce

iuβ = h. (34)

Since for any exterior differential form ϑ it holds that LXϑ = iXdϑ + diXϑ , we
obtain from (32)

iuω = −θds. (35)

We conclude that the equations of motion (6), (7) are equivalent to the system

∇μ I
μ = 0, (36)

uμ∇μs = 0, (37)

iuω = −θds. (38)

In fact (37) follows from (38).

2.2 Jump Conditions

It is well known that the solution of the equations (6), (7), in general, develop discon-
tinuities. Let K be a hypersurface of discontinuity, i.e. a C1 hypersurface K with a
neighborhood U such that Tμν and Iμ are continuous in the closure of each connected
component of the complement of K in U but are not continuous across K. Let Nμ be
a covector at x ∈ K, the null space of which is the tangent space of K at x

TxK = {Xμ ∈ TxM : NμX
μ = 0}. (39)
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Then, denoting by [·] the jump across K at x , we have the jump conditions

[
Tμν

]
Nν = 0, (40)[

Iμ
]
Nμ = 0. (41)

These follow from the integral form of the conservation laws (6), (7). Consider the
3-form I ∗

αβγ dual to Iμ, that is,

I ∗
αβγ = Iμεμαβγ , (42)

where εμαβγ is the volume 4-form of the Minkowski metric η. In terms of I ∗ equation
(6) becomes

d I ∗ = 0. (43)

Also, given any vector field X , we can define the vector field

Pμ := ηαβX
αT βμ. (44)

By virtue of (7), P satisfies

∇μP
μ = 1

2
πμνT

μν, (45)

where

πμν = LXημν. (46)

In terms of the 3-form P∗ dual to P

P∗
αβγ = Pμεμαβγ , (47)

equation (45) reads

dP∗ = 1

2
(π · T )ε. (48)

Consider now an arbitrary point x ∈ K and let U be a neighborhood of x in
Minkowski spacetime. We denote W = K∩U . Let Y be a vector field without critical
points in some larger neighborhood U0 ⊃ U and transversal to K. Let Lδ(y) denote
the segment of the integral curve of Y through y ∈ W corresponding to the parameter
interval (−δ, δ)

Lδ(y) := {Fs(y) : s ∈ (−δ, δ)}, (49)
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where Fs is the flow generated by Y . We then define the neighborhood Vδ of x in
Minkowski spacetime by

Vδ :=
⋃
y∈W

Lδ(y). (50)

Integrating equations (43), (48) in Vδ and applying Stokes’ theorem we obtain

∫

∂Vδ

I ∗ = 0, (51)

∫

∂Vδ

P∗ =
∫

Vδ

1

2
(π · T )ε. (52)

Now the boundary of Vδ consists of the hypersurfaces

Wδ := {Fδ(y) : y ∈ W}, W−δ := {F−δ(y) : y ∈ W}, (53)

together with the lateral hypersurface

⋃
y∈∂W

Lδ(y). (54)

Since this lateral component and Vδ are bounded in measure by a constant multiple of
δ, we take the limit δ → 0 in (51), (52) to obtain

∫

W
[
I ∗] = 0, (55)

∫

W
[
P∗] = 0. (56)

That these are valid for any neighborhood W of x in K implies that the corresponding
3-forms induced on K from the two sides coincide at x , or, equivalently, that

[
Iμ
]
Nμ = 0,

[
Pμ
]
Nμ = 0. (57)

The first of these equations coincides with (41), while the second, for four vector fields
X constituting at x a basis for TxM , implies (40).

2.3 Determinism and Entropy Condition

By virtue of (25) only time-like hypersurfaces of discontinuity can arise. Since TxK
is time-like, the normal vector Nμ = (η−1)μνNν is space-like and we can normalize
it to have unit magnitude

ημνN
μN ν = 1. (58)
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Fig. 3 Four fluid flow lines
crossing the shock K from the
state ahead to the state behind

We must still determine the orientation of K. Let Nμ point from one side of TxK,
which we label + and which we say is behind TxK, to the other side of TxK, which
we label − and which we say is ahead of TxK. Then for any quantity q we have
[q] = q+ − q−. If we define

u⊥ := − η(u, N ), (59)

then the jump condition (41) reads

n+u⊥+ = n−u⊥− =: f, (60)

where the quantity f is called particle flux. If f 
= 0, the discontinuity is called a
shock. In this case we choose the orientation of N such that f >0, that is, the fluid
particles cross the hypersurface of discontinuity K from the state ahead to the state
behind (see figure 3). If f = 0 the discontinuity is called a contact discontinuity and
in this case the orientation of Nμ is merely conventional.

In terms of v, the volume per particle, we have

u⊥− = f v−, u⊥+ = f v+. (61)

The jump condition (40) reads

(ρ+ + p+)u+u⊥+ − p+N = (ρ− + p−)u−u⊥− − p−N . (62)

Substituting (61) into (62) the latter reduces to

f h+u+ − p+N = f h−u− − p−N , (63)

where we used (30). According to (63) the vectors u+, u− and N all lie in the same
timelike plane. Taking the η-inner product of (63) with N we obtain

f h+u⊥+ + p+ = f h−u⊥− + p−. (64)
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Substituting from (61) this becomes

p+ − p− = − f 2(h+v+ − h−v−). (65)

On the other, taking the η-inner product of each side of (63) with itself we obtain

p2+ − p2− = f 2(h2+ − h2− − 2h+v+ p+ + 2h−v− p−). (66)

Equations (65) and (66) together imply whenever f 
= 0, as is the case for a shock,
the following relation

h2+ − h2− = (p+ − p−)(h+v+ + h−v−). (67)

This is the relativistic Hugoniot relation, first derived by A. Taub [7]. We note that in
the case of a contact discontinuity ( f = 0) (63) reduces to p+ = p−.

The only shock discontinuities which arise naturally are those which are supersonic
relative to the state ahead and subsonic relative to the state behind. We call this the
determinism condition. The condition that K is supersonic relative to the state ahead
means that, for each x ∈ K, Nμ is a time-like covector relative to g−1− , i.e.

(g−1− )μνNμNν < 0, (68)

while the condition that K is subsonic relative to the state behind means that, for each
x ∈ K, Nμ is a space-like covector relative to g−1+ , i.e.

(g−1+ )μνNμNν > 0. (69)

In view of (28), conditions (68) and (69) are

u⊥− >
η−√

1 − η2−
, u⊥+ <

η+√
1 − η2+

. (70)

Substituting from (61), these become

f >
η−/v−√
1 − η2−

, f <
η+/v+√
1 − η2+

. (71)

We conclude that the determinism condition reduces to

η−/v−√
1 − η2−

<
η+/v+√
1 − η2+

. (72)

The determinism condition is illustrated in figure 4.
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Fig. 4 Illustration of the
determinism condition: Sound
cones at a point on K. Dotted:
Backward sound cone with
respect to the state ahead.
Dashed: Forward sound cone
with respect to the state behind.
Thin solid line: fluid flow line

We now look at the entropy condition which is

[s] = s+ − s− > 0. (73)

In the following we will show the equivalence of the entropy condition to the deter-
minism condition. Since (recall (4), (30))

dh = de + d(pv)

= vdp + θds, (74)

the expansion of [h] = h+ − h− in powers of [p] and [s] is

[h] = v− [p] + 1

2

(
∂v

∂p

)

−
[p]2 + 1

6

(
∂2v

∂p2

)

−
[p]3 + θ− [s] + O([s]2)

+ O([p]4) + O([p] [s]). (75)

Hence

h2+ − h2− = 2h−v− [p] +
{
h−
(

∂v

∂p

)

−
+ v2−

}
[p]2

+
{
h−
3

(
∂2v

∂p2

)

−
+ v−

(
∂v

∂p

)

−

}
[p]3

+ 2h−θ− [s] + O([s]2) + O([p]4) + O([p] [s]). (76)

Also [v] = v+ − v− is expanded as

[v] =
(

∂v

∂p

)

−
[p] + 1

2

(
∂2v

∂p2

)

−
[p]2 + O([p]3) + O([s]). (77)
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Hence

(h+v+ + h−v−)(p+ − p−) = 2h−v− [p] +
{
h−
(

∂v

∂p

)

−
+ v2−

}
[p]2

+
{
h−
2

(
∂2v

∂p2

)

−
+ 3v−

2

(
∂v

∂p

)

−

}
[p]3

+ O([p]4) + O([p] [s]). (78)

Comparing (76) and (78) with the Hugoniot relation (67) we conclude

[s] = 1

12θ−h−

{
h−
(

∂2v

∂p2

)

−
+ 3v−

(
∂v

∂p

)

−

}
[p]3 + O([p]4). (79)

Consider next the condition (72). Defining the quantity

q :=
(

1

η2 − 1

)
v2, (80)

the condition (72) is seen to be equivalent to

[q] < 0. (81)

From (5), (18) we have

1

η2 = ∂ρ

∂p
= (ρ + p)

n

∂n

∂p
= − (ρ + p)

v

∂v

∂p
. (82)

Hence, in view of (30) and v = 1/n, q is given by

q = −h
∂v

∂p
− v2. (83)

We then obtain

∂q

∂p
= −h

∂2v

∂p2 − 3v
∂v

∂p
. (84)

In view of the fact that by (79) [s] = O([p]3), we obtain

[q] = −
{
h−
(

∂2v

∂p2

)

−
+ 3v−

(
∂v

∂p

)

−

}
[p] + O([p]2). (85)

Therefore, the condition (81) is equivalent for suitably small [p] to

{
h−
(

∂2v

∂p2

)

−
+ 3v−

(
∂v

∂p

)

−

}
[p] > 0, (86)

123



Shock Development in Spherical Symmetry Page 19 of 246 3

provided that the quantity in the curly bracket is non-zero. This together with (79) is
equivalent to (73). We have therefore established, for suitably small [p], the equiva-
lence of the determinism condition (72) to the entropy condition (73).

Remark 1 We will impose the determinism condition in the shock development prob-
lem and we will see that this condition is necessary for the solution to be uniquely
determined by the data (see the formulation of the shock development problem together
with the description of the boundary of the maximal development below).

Remark 2 By (86), the sign of the coefficient of [p] in (86) is the same as the sign of
[p]. Let now � be defined by

1 − h2� = η2. (87)

The coefficient of [p] in (86) can be related to (d�/dh)− if the state ahead of the
shock is isentropic, as will be the case under consideration. From (30) we have

(
d�

dh

)

s
= (d�/dp)s

(dh/dp)s
= 1

v

(
d�

dp

)

s
, (88)

where we use the subscript s to indicate isentropy. Hence

vh2
(
d�

dh

)

s
= −

(
dη2

dp

)

s
− 2v

h
(1 − η2). (89)

By (30) we have

(
dh

dn

)

s
= hη2

n
, (90)

which implies

1

η2 = − h

v2

(
dv

dp

)

s
. (91)

Substituting (91) and its derivative with respect to p at constant s in (89) we obtain

−v3h2

η4

(
d�

dh

)

s
= 3v

(
dv

dp

)

s
+ h

(
d2v

dp2

)

s
. (92)

Therefore, if the state ahead is isentropic, the quantity in the curly bracket in (86) is

h−
(

∂2v

∂p2

)

−
+ 3v−

(
∂v

∂p

)

−
= −v3−h2−

η4−

(
d�

dh

)

−
. (93)

We conclude that the jump in pressure [p] behind the shock is >0 or < 0 according
as to whether (d�/dh)− is < 0 or >0, at least for suitably small [p].
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2.4 Barotropic Fluids

In the barotropic case p = f (ρ) is an increasing function of ρ. Therefore,

n
∂ρ

∂n
= p + ρ (94)

is a function of ρ, which implies that for a barotropic perfect fluid, ρ, and hence also
p, is a function of the product σ := nm, where m is a function of s alone. In fact

σ = nm(s) = exp

(∫
dρ

ρ + f (ρ)

)
(95)

and it satisfies

ρ + p = σ
dρ

dσ
. (96)

The positivity of θ implies that m is a strictly increasing function. Therefore, we can
eliminate s in favor of m. (37) becomes

uμ∇μm = 0. (97)

We define

ψμ := − h̃uμ, (98)

where

h̃ := h

m
= ρ + p

σ
= dρ

dσ
. (99)

Comparing (98) with (29) we see that

βμ = mψμ. (100)

Defining now

� := dψ, (101)

we obtain

ω = m� + dm ∧ ψ. (102)

From the second of (5) we have

θds = h̃dm. (103)
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Therefore

iuω = miu� − (ψ · u)dm = miu� − θds, (104)

which implies through (38)

iu� = 0. (105)

From the particle conservation (36) and the adiabatic condition (97) we deduce

∇μ(σuμ) = m∇μ(nuμ) + nuμ∇μm = 0, (106)

which, through (96), is equivalent to the energy equation (9). Therefore, imposing
the energy equation (106) as well as the adiabatic condition (97) the conservation
of particle number follows. We conclude that in the barotropic case the system of
equations reduces to the system

∇μ(σuμ) = 0, (107)

uμ∇μm = 0, (108)

iu� = 0. (109)

The unknowns are u, m and σ . Equation (108) is decoupled from the other two. We
may thus ignore it and consider only the system consisting of (107), (109).

The irrotational barotropic case is characterized by the existence of a function φ

such that

ψ = dφ, (110)

which implies

� = 0. (111)

Therefore, (109) is identically satisfied. By (98),

ψ · X = −h̃η(u, X) > 0 (112)

whenever X is a future-directed timelike vector. Therefore φ is a time function. By
(98), (110),

H := h̃2 = −(η−1)μν∂μφ∂νφ. (113)

From (99)

dH

dσ
= dH

dh̃

dh̃

dσ
= 2h̃

σ

dp

dσ
= 2Hη2

σ
, (114)

which implies that σ can be expressed as a smooth, strictly increasing function of H ,
i.e. σ = σ(H). Defining
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G(H) := σ(H)√
H

, (115)

equation (107) becomes

∇μ(G(H)∂μφ) = 0, (116)

where H is given by (113). Taking into account that (see (28), (98), (114))

(g−1)μν = (η−1)μν − F∂μφ∂νφ, (117)

where

F := 2

G

dG

dH
, (118)

(116) becomes

(g−1)μν∇μ∂νφ = 0. (119)

We note that

η2 = 1

1 + HF
. (120)

We also note that in terms of H and F , the acoustical metric is given by

gμν = ημν + F

1 + HF
∂μφ∂νφ. (121)

Since (107) and therefore in the irrotational case (119) is equivalent to the energy
equation (9), in the barotropic case we only need to consider the energy-momentum
jump conditions (40).

3 Setting the Scene

3.1 Nonlinear Wave Equation in Spherical Symmetry

We choose spherical coordinates (t, r, ϑ, ϕ). Then η = diag(−1, 1, r2, r2 sin2 ϑ) and
spherically symmetric solutions φ = φ(t, r) of equation (119) satisfy

(g−1)μν∂μ∂νφ = −2

r
∂rφ, μ, ν = r, t. (122)

The radial null vectors L± with respect to the acoustical metric satisfy

gμνL
μ
±Lν± = 0, μ, ν = r, t. (123)

123



Shock Development in Spherical Symmetry Page 23 of 246 3

Using the normalization condition Lt = 1, we obtain

L± = ∂t + v ± η

1 ± vη
∂r , (124)

where η is the sound speed (see (18)) and v is the fluid spatial velocity given by

v = ur

ut
= −ur

ut
= −ψr

ψt
, (125)

where we recall ψμ = ∂μφ. Using the null vectors the inverse acoustical metric can
be written as

(g−1)μν = (g−1)t t

2
(Lμ

+Lν− + Lμ
−Lν+). (126)

From (117) we have

(g−1)t t = −1 − F(ψ2
t ). (127)

From (120) in conjunction with (113) we see that the assumption η2 < 1 is expressed
by the condition that F>0. The nonlinear wave equation can be written as

Lμ
+Lν−∂μ∂νφ = 2

r(1 + F(ψt )2)
∂rφ. (128)

3.2 Riemann Invariants of the Principal Part

Keeping only the principal part of (128) we are left with

Lμ
+Lν−∂μψν = 0. (129)

The Riemann invariants are defined to be the functions α(ψt , ψr ), β(ψt , ψr ) such that

l+μ

∂α

∂ψμ

= 0, l−μ

∂β

∂ψμ

= 0, (130)

where l±μ are the basis 1-forms dual to the basis vector fields Lμ
±. From (130) we

deduce

∂α

∂ψμ

= ξLμ
−,

∂β

∂ψμ

= λLμ
+ (131)

for some functions ξ , λ. Using (129) we obtain

Lμ
+∂μα = Lμ

+
∂α

∂ψν

∂μψν = ξLμ
+Lν−∂μψν = 0, (132)
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Lμ
−∂μβ = Lμ

−
∂β

∂ψν

∂μψν = λLμ
−Lν+∂μψν = 0, (133)

which shows that (129) is equivalent to the system

L+α = 0, L−β = 0. (134)

We now proceed to determine α and β. The basis 1-forms dual to the basis vector
fields Lμ

± satisfy

l+μL
μ
+ = 1, l−μL

μ
+ = 0, l+μL

μ
− = 0, l−μL

μ
− = 1. (135)

Therefore

l± = 1

2η(1 − v2)

[
(1 ± vη)(η ∓ v)dt ± (1 − v2η2)dr

]
. (136)

Defining the operators

V± :=
∑
μ

l±μ

∂

∂ψμ

, (137)

(130) becomes

V+α = 0, V−β = 0. (138)

We introduce the functions h̃, ζ as coordinates in the positive open cone in the ψt -ψr

plane by

ψt = h̃ cosh ζ, ψr = h̃ sinh ζ. (139)

(For h̃ see (99), (113)). Note that by (125),

v = − tanh ζ. (140)

We obtain from (136), (139)

V± = cosh ζ ∓ η sinh ζ

2ηh̃

(
ηh̃

∂

∂ h̃
± ∂

∂ζ

)
. (141)

Defining then the operators

U± := ηh̃
∂

∂ h̃
± ∂

∂ζ
, (142)
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(138) becomes

U+α = 0, U−β = 0. (143)

Let us now define the thermodynamic potential ρ̃ by

ρ̃ :=
∫

dh̃

ηh̃
. (144)

ρ̃ is defined up to an additional constant. We may fix ρ̃ by setting it equal to zero in
the surrounding constant state. Since (142) takes in terms of ρ̃ the form

U± = ∂

∂ρ̃
± ∂

∂ζ
, (145)

the solutions of (143) are

α = ρ̃ − ζ, β = ρ̃ + ζ, (146)

up to composition on the left with an arbitrary increasing function. Using

ζ = arctanh

(
ψr

ψt

)
= − arctanh

(
ur

ut

)
= − arctanh (v) = −1

2
log

(
1 + v

1 − v

)

(147)

we see that our expressions α, β agree with (5.16) of [7] where φ is in the role of ρ̃

and u is in the role of v. α and β are the relativistic version of the Riemann invariants
introduced in [6].

3.3 Characteristic System

In analogy to the equivalence of (129) and (134) it follows from (131) that (128) is
equivalent to the system

L+α = 2ξ

r(1 + F(ψt )2)
∂rφ, L−β = 2λ

r(1 + F(ψt )2)
∂rφ. (148)

We now proceed to determine ξ , λ for the choice (146) of Riemann invariants of the
principal part. From h̃2 = ψ2

t − ψ2
r we have

∂ h̃

∂ψt
= ψt

h̃
. (149)

From (147) we obtain

∂ζ

∂ψt
= −ψr

h̃2
. (150)
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Using (149), (150) together with (144) we obtain

∂α

∂ψt
= dρ̃

dh̃

∂ h̃

∂ψt
− ∂ζ

∂ψt
= 1

H

(
ψt

η
+ ψr

)
, (151)

∂β

∂ψt
= dρ̃

dh̃

∂ h̃

∂ψt
+ ∂ζ

∂ψt
= 1

H

(
ψt

η
− ψr

)
. (152)

Using (131) in the case μ = t and recalling (124) we deduce from (151), (152)

ξ = 1

H

(
ψt

η
+ ψr

)
, λ = 1

H

(
ψt

η
− ψr

)
. (153)

The system of equations (148) becomes

L+α = 2ψr

r H̃

(
ψt

η
+ ψr

)
, L−β = 2ψr

r H̃

(
ψt

η
− ψr

)
, (154)

where

H̃ := (1 + F(ψt )
2)H. (155)

Now we introduce characteristic coordinates u, v such that u = const. represents
the outgoing and v = const. the incoming characteristic curves. Furthermore, as the
characteristic speeds we set c± := Lr±. It follows that the space-time coordinates t , r
satisfy

∂r

∂v
− c+

∂t

∂v
= 0,

∂r

∂u
− c−

∂t

∂u
= 0. (156)

The system (154) becomes1

1 We use

∂

∂v
= ∂t

∂v

∂

∂t
+ ∂r

∂v

∂

∂r
= ∂t

∂v

(
∂

∂t
+

∂r
∂v
∂t
∂v

∂

∂r

)
= ∂t

∂v

(
∂

∂t
+ c+

∂

∂r

)
= ∂t

∂v
L+. (157)

Similarly

∂

∂u
= ∂t

∂u
L−. (158)
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∂α

∂v
= ∂t

∂v
L+α = ∂t

∂v

2ψr

r H̃

(
ψt

η
+ ψr

)
,

∂β

∂u
= ∂t

∂u
L−β = ∂t

∂u

2ψr

r H̃

(
ψt

η
− ψr

)
.

(159)

Defining

Ã(α, β, r) := 2ψr

r H̃

(
ψt

η
+ ψr

)
, B̃(α, β, r) := 2ψr

r H̃

(
ψt

η
− ψr

)
, (160)

the characteristic system (156), (159) becomes

∂α

∂v
= ∂t

∂v
Ã(α, β, r),

∂β

∂u
= ∂t

∂u
B̃(α, β, r), (161)

∂r

∂v
= ∂t

∂v
c+(α, β),

∂r

∂u
= ∂t

∂u
c−(α, β). (162)

We note that (162) is the Hodograph system.

Remark 3 The characteristic system is invariant under the conformal map

u �→ f (u), v �→ g(v), (163)

where f and g are increasing functions.

Remark 4 In view of (113), (120), (125), (155) we can express Ã, B̃ in terms of r , the
sound speed η and the spatial fluid velocity v as

Ã = − 2vη

r(1 + vη)
, B̃ = − 2vη

r(1 − vη)
. (164)

3.4 Jump Conditions

Let N be the unit vector normal to K

N = 1√
1 − V 2

(V ∂t + ∂r ), (165)

where V = V (t, r) is the shock speed. We define

N ′ :=
√

1 − V 2N (166)

and reformulate (40) as

[
Tμν

]
N ′

ν = 0. (167)
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In components these are the two jump conditions

− [T tt] V + [T tr ] = 0, (168)

− [T rt ] V + [T rr ] = 0, (169)

which are equivalent to

V =
[
T tr
]

[
T tt
] , (170)

0 = [T tt ] [T rr ]− [T tr ]2 =: J. (171)

Since

ut = 1√
1 − v2

, ur = v√
1 − v2

, (172)

we obtain from (8)

T tt = ρ + p

1 − v2 − p, T tr = (ρ + p)v

1 − v2 , T rr = (ρ + p)v2

1 − v2 + p. (173)

Using (see (96), (99), (113), (115), (125))

ρ + p = σ h̃ = GH = G(ψ2
t − ψ2

r ) = Gψ2
t (1 − v2) (174)

the components of the energy-momentum-stress tensor become

T tt = Gψ2
t − p, T tr = Gψ2

t v, T rr = Gψ2
t v2 + p. (175)

Let

γ := log h̃ − ρ̃. (176)

(139) become

ψt = eγ

2
(eβ + eα), ψr = eγ

2
(eβ − eα). (177)

Using (see (144))

dγ

dρ̃
= 1

h̃

dh̃

dρ̃
− 1 = η − 1, (178)

we get

∂ψt

∂α
= ψt

2
(η + v),

∂ψt

∂β
= ψt

2
(η − v),

∂ψr

∂α
= −ψt

2
(1 + vη),

∂ψr

∂β
= ψt

2
(1 − vη). (179)
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Now (see (118), (120), (144), (146))

∂G

∂α
= dG

dH

dH

dρ̃

∂ρ̃

∂α

= 1

2
GFHη

= G

2η
(1 − η2). (180)

And similarly

∂G

∂β
= G

2η
(1 − η2). (181)

From (114), (144), (146) we have

∂p

∂α
= dp

dH

dH

dρ̃

∂ρ̃

∂α

= 1

2
Gψ2

t η(1 − v2). (182)

And similarly

∂p

∂β
= 1

2
Gψ2

t η(1 − v2). (183)

From (125) together with (179) we obtain

∂v

∂α
= 1

2
(1 − v2),

∂v

∂β
= −1

2
(1 − v2). (184)

Using (179), (180), (181), (182), (183), (184) to compute the partial derivatives of the
components of T , given by (175), we arrive at

∂T tt

∂α
= Gψ2

t

2η
(1 + vη)2,

∂T tr

∂α
= Gψ2

t

2η
(v + η)(1 + vη),

∂T rr

∂α
= Gψ2

t

2η
(v + η)2,

(185)

∂T tt

∂β
= Gψ2

t

2η
(1 − vη)2,

∂T tr

∂β
= Gψ2

t

2η
(v − η)(1 − vη),

∂T rr

∂β
= Gψ2

t

2η
(v − η)2.

(186)

Let us denote c± := Lr± (see (124)). From (185) we have

∂T tr

∂α
= c+

∂T tt

∂α
= 1

c+
∂T rr

∂α
, (187)
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while from (186) we have

∂T tr

∂β
= c−

∂T tt

∂β
= 1

c−
∂T rr

∂β
. (188)

Let us define

μ := dη

dρ̃
+ 1 − η2. (189)

We note that with �̃ defined by

1 − h̃2� = η2, (190)

we have

�̃ = m2�, (191)

where � is given by (87). So
(
d�

dh

)

s
= 1

m3

d�̃

dh̃
(192)

and

d�̃

dh̃
= − 2

h̃3
μ. (193)

We have the following proposition:

Proposition 3.1

J (α+, α−, β+, β−) =
(
Gψ2

t (1 − v2)
)2
{

[α] [β] + μ2

192η2

(
[α]4 + [β]4

)

+ O
(

[α]2 [β]
)

+ O
(

[α] [β]2
)

+ O
(

[α]5
)

+ O
(

[β]5
)}

,

(194)

where the coefficients on the right are evaluated at (α−, β−).

Proof We prove the Proposition by showing the following statements:

(i) J is symmetric under the interchange of α and β.
(ii)

J (α−, α−, β−, β−) = ∂ J

∂α+
(α−, α−, β−, β−)

= ∂2 J

∂α2+
(α−, α−, β−, β−)
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= ∂3 J

∂α3+
(α−, α−, β−, β−)

= 0. (195)

(iii) ∂2 J

∂α+∂β+
(α−, α−, β−, β−) = (Gψ2

t (1 − v2))2(α−, β−). (196)

(iv) ∂4 J

∂α4+
(α−, α−, β−, β−) =

(
(Gψ2

t )2

8η2 (1 − v2)2μ2
)

(α−, β−). (197)

To check (i) we note that ρ and p, like all thermodynamic variables, are functions
of ρ̃ = 1

2 (α +β), therefore symmetric under the interchange of α and β. On the other
hand v = −ψr/ψt = − tanh ζ and ζ = 1

2 (β − α), therefore v is antisymmetric under
the interchange of α and β. It follows from (171) (173) that J is symmetric under the
interchange of α and β.

Since J is quadratic in the differences of components of T , the first two of (ii) are
satisfied. Let

� := ∂T tt+
∂α+

∂T rr+
∂α+

−
(

∂T tr+
∂α+

)2

. (198)

(Where the notation ∂Tμν
+ /∂α+ = (∂Tμν/∂α)(α+, β+) is used). Now, (185) implies

� = 0. (199)

Therefore

∂2 J

∂α2+
= ∂2T tt+

∂α2+

[
T rr ]+ [T tt ] ∂2T rr+

∂α2+
− 2

∂2T tr+
∂α2+

[
T tr ] , (200)

which implies

∂2 J

∂α2+
(α−, α−, β−, β−) = 0. (201)

From (200) we get

∂3 J

∂α3+
= ∂3T tt+

∂α3+

[
T rr ]+ [T tt ] ∂3T rr+

∂α3+
− 2

∂3T tr+
∂α3+

[
T tr ]+ ∂�

∂α+
, (202)
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which, in conjunction with (199), implies

∂3 J

∂α3+
(α−, α−, β−, β−) = 0. (203)

Now we turn to (iii). We have

∂2 J

∂α+∂β+
(α−, α−, β−, β−) =

(
∂T tt

∂α

∂T rr

∂β
+ ∂T tt

∂β

∂T rr

∂α
− 2

∂T tr

∂α

∂T tr

∂β

)
(α−, β−).

(204)

Using (185), (186) we deduce

∂2 J

∂α+∂β+
(α−, α−, β−, β−) =

(
Gψ2

t (1 − v2)
)2

(α−, β−). (205)

Now we turn to (iv). From (202) we obtain

∂4 J

∂α4+
= ∂4T tt+

∂α4+

[
T rr ]+ ∂3T tt+

∂α3+

∂T rr+
∂α+

+ ∂T tt+
∂α+

∂3T rr+
∂α3+

+ [T tt ] ∂4T rr+
∂α4+

− 2
∂4T tr+
∂α4+

[
T tr ]− 2

∂3T tr+
∂α3+

∂T tr+
∂α+

. (206)

From

0 = ∂2�

∂α2+

= ∂3T tt+
∂α3+

∂T rr+
∂α+

+ ∂T rr+
∂α+

∂3T rr+
∂α3+

− 2
∂T tr+
∂α+

∂3T tr+
∂α3+

+2

⎛
⎝∂2T tt+

∂α2+

∂2T rr+
∂α2+

−
(

∂2T tr+
∂α2+

)2
⎞
⎠ ,

(207)

we deduce

∂4 J

∂α4+
(α−, α−, β−, β−) = −2E, (208)

where

E := ∂2T tt+
∂α2+

∂2T rr+
∂α2+

−
(

∂2T tr+
∂α2+

)2

. (209)
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To proceed we need expressions for the second derivatives of the components of T .
Using

∂η

∂α
= 1

2

dη

dρ̃
, (210)

together with (180), the first of (184) and the first of (179), it follows from (185) by
a straightforward computation

E = −
(
Gψ2

t

4η2

)2

η2(1 − v2)2μ2, (211)

with μ given by (189). Therefore,

∂4 J

∂α4+
(α−, α−, β−, β−) =

(
(Gψ2

t )2

8η2 (1 − v2)2μ2
)

(α−, β−). (212)

This concludes the proof of the proposition. ��
We will use the following proposition.

Proposition 3.2 Any smooth function f (x, y) can be written as

f (x, y) = f (x, 0) + f (0, y) − f (0, 0) + xyg(x, y), (213)

where

g := ∂2 f

∂x∂y
(214)

and g(x, y) is the mean value of g in the rectangle R(x, y) := {(x ′, y′) ∈ R
2 : 0 ≤

x ′ ≤ x, 0 ≤ y′ ≤ y}.
Proof Integrating (214) on the rectangle R(x, y) yields the result. ��
We now consider J (α+, α−, β+, β−) as a function of [α], [β] with given α−, β−. We
denote this function again by J . Using propositions 3.1, 3.2 we can write

J ([α] , [β]) =
(
Gψ2

t (1 − v2)
)2
{

[α] [β] M ([α] , [β])

+ μ2

192η2

(
[α]4 L ([α]) + [β]4 N ([β])

)}
, (215)

where the coefficients are evaluated at (α−, β−). Here M , L and N are smooth func-
tions of their arguments and M(0, 0) = L(0) = N (0) = 1.
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Proposition 3.3 Let f (x, y) be a smooth function on R
2 of the form

f (x, y) = xym(x, y) + x4l(x) + y4n(y), (216)

withm(0, 0) = 1, wherem, l, n are smooth functions. For small enough x, the equation

f (x, y) = 0 (217)

has a unique solution for y, given by

y = x3g(x), (218)

where g(x) is a smooth function and g(0) = −l(0).

Proof Setting y = x3z, (217) becomes

h(x, z) = 0, (219)

where

h(x, z) := zm(x, x3z) + l(x) + x8z4n(x3z). (220)

Since m(0, 0) = 1, the pair (x0, z0) := (0,−l(0)) satisfies (219). Now, since

∂h

∂z
(x0, z0) = m(0, 0) = 1, (221)

we can apply the implicit function theorem to deduce that there exists a smooth function
g(x) such that for small enough x − x0 we have z = g(x) with g(0) = z0. It follows
that for small enough x , f (x, y) = 0 has a solution

y = x3z = x3g(x), with g(0) = −l(0). (222)

Applying this proposition to J ([α] , [β]) = 0 and taking into account (215) it follows
that there is a smooth function G ([α]) such that

[β] = [α]3 G ([α]) , with G(0) = − μ2

192η2 . (223)

We recall that above we considered J (α+, α−, β+, β−) as a function of [α], [β] with
given α−, β−. In the following we will make use of (223) in the form (with a different
function G)

[β] = [α]3 G(α+, α−, β−). (224)
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3.5 Boundary of the Maximal Development

Let initial data be given on a spacelike hypersurface which coincides with the initial
data of a constant state outside a bounded domain. According to [2] the boundary
of the domain of the maximal solution consists of a regular part C and a singular
part ∂−B ∪ B. Each component of ∂−B is a smooth, space-like (w.r.t. the acoustical
metric), 2-dimensional submanifold, while the corresponding component of B is a
smooth embedded 3-dimensional submanifold ruled by curves of vanishing arc length
(w.r.t. the acoustical metric), having past end points on the component of ∂−B. The
corresponding component ofC is the incoming null (w.r.t. the acoustical metric) hyper-
surface associated to the component of ∂−B. It is ruled by incoming null geodesics of
the acoustical metric with past end points on the component of ∂−B. The result of [2]
holds for a general equation of state.

In the following we will restrict ourselves to the barotropic case. We also assume
the initial data to be spherically symmetric. Therefore, also the solution is spherically
symmetric and it suffices to study the problem in the t-r -plane, where t , r are part of
the standard spherical coordinates (t, r, ϑ, ϕ).

In the t-r -plane the boundary of the maximal development corresponds to a curve
consisting of a regular part C and a singular part ∂−B ∪ B. Each component of B
corresponds to a smooth curve of vanishing arc length with respect to the induced
acoustical metric, having as its past end point the point corresponding to ∂−B. The
corresponding component of C corresponds in the t-r -plane to an incoming null geo-
desic with respect to the induced acoustical metric with past end point being the point
corresponding to ∂−B. We denote this point by O . See figure 5 on the right.

In the following we will use (t, w) as the acoustical coordinates (in contrast to [2],
where (t, u) are playing the corresponding roles). We recall that the level sets of w are
the outgoing characteristic hypersurfaces with respect to the acoustical metric. The
solution in the maximal development is a smooth solution with respect to the acoustical
coordinates. In terms of these coordinates the solution also extends smoothly to the
boundary. We recall the function μ which plays a central role in [2], given by

Fig. 5 Left: Part of the maximal development in acoustical coordinates. Right: Part of the maximal devel-
opment as a subset of spacetime.C denotes the incoming characteristic originating at the cusp point O while
B denotes the singular part of the boundary of the maximal development. Both figures show the maximal
development just in a neighborhood of a cusp point
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1

μ
= −(g−1)μν∂μt∂νw. (225)

(See (2.13) of [2]). μ vanishes on the singular part of the boundary. On the other hand,
μ is positive on the regular part C and the solution extends smoothly to this part also
in the (t, r) coordinates.

We now show that

μ = −η
∂r

∂w
. (226)

We use the vector field T , given in acoustical coordinates by (cf. (2.31) of [2])

T := ∂

∂w
. (227)

We have

Tr = ∂r

∂w
, T t = ∂t

∂w
= 0. (228)

Therefore

T = ∂r

∂w

∂

∂r
. (229)

Now we use the function κ as defined by (2.24) of [2]

κ := g(T, T ) = grr (T
r )2 > 0. (230)

So

∂r

∂w
= − κ√

grr
< 0. (231)

The minus sign appears due to the initial condition

r(0, w) = −w + k, (232)

where k is a positive constant (see page 39 of [2]). We now recall the function α (see
(2.41) of [2])

1

α2 = −(g−1)μν∂μt∂ν t (233)

and the relation (see (2.48) of [2])

μ = ακ. (234)
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Since (see (117))

α2 = − 1

(g−1)t t
= 1

1 + F(∂tφ)2 , (235)

and (see (120), (121))

grr = 1 + Fη2(∂rφ)2, (236)

we obtain

α2grr = η2. (237)

Together with (234) we arrive at

κ2

grr
= μ2

α2grr
= μ2

η2 , (238)

which, in conjunction with (231), implies (226).

Remark 5 The acoustical metric hμν as introduced in [2] coincides with gμν , but
quantities such as φ, β, F used in [2] do not coincide with the quantities denoted in
the same way which were introduced in the present work. Making a distinction by
putting a tilde on the quantities from [2] we have for example

β̃μ = mβμ, (239)

where β̃ is introduced in (1.44) of [2], while β is the one form defined in (29). For
m see (95). Therefore, despite the fact that the wave equations of the present work
and [2] have the same form, the physical meaning of the wave function is different.
Nevertheless, functions such as α, κ , μ and relations thereof such as (234) are related
only to the Lorentzian geometry given by the acoustical metric and can therefore be
used in the present context as well.

In the following we restrict ourselves to one component of ∂−B ∪B and the corre-
sponding component of C with past end point ∂−B which we denote by O . Now, the
function μ vanishes on O ∪ B. From (226) together with η>0, it follows that ∂r/∂w

vanishes on O ∪ B. In particular

(
∂r

∂w

)

0
= 0, (240)

where the index 0 denotes evaluation at the cusp point O . Let the singular part of the
boundary of the maximal solution be given by t = t∗(w) and let us set w0 = 0, t0 = 0,
i.e. the cusp point O is the origin of the acoustical coordinate system. In spherical
symmetry, the results at the end of Chapter 15 of [2] translate into

t∗(w) = t0 + 1

2
aw2 + O(w3), (241)
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a = −
(

∂2μ/∂w2

∂μ/∂t

)

0
> 0. (242)

Using (226) and (240) we obtain

(
∂μ

∂t

)

0
= −η0κ, (243)

where we defined

κ :=
(

∂2r

∂w∂t

)

0
. (244)

From Chapter 15 of [2] we have

(
∂μ

∂t

)

0
< 0. (245)

It follows that κ>0. Since μ(t∗(w),w) = 0, we obtain

(
dμ

dw

)

0
=
(

∂μ

∂t

)

0

(
dt∗
dw

)

0
+
(

∂μ

∂w

)

0
= 0, (246)

which, using (241), implies

(
∂μ

∂w

)

0
= 0. (247)

Taking the partial derivative of (226) with respect to w and evaluating at the cusp point
yields

(
∂2r

∂w2

)

0
= 0, (248)

where we used (240). Taking the second partial derivative of (226) with respect to w

and evaluating at the cusp point we obtain

(
∂2μ

∂w2

)

0
= η0λ

κ
, (249)

where we defined

λ := − κ

(
∂3r

∂w3

)

0
. (250)
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From Chapter 15 of [2] we have

(
∂2μ

∂w2

)

0
> 0, (251)

which implies that λ>0. From (241), (242), (243), (249) we deduce that B, i.e. the
singular part of the boundary of the maximal development, is given in a neighborhood
of the cusp point by

t∗(w) = t0 + λ

2κ2 w2 + O(w3). (252)

In the following we will also make use of the definition

ξ := κ

(
∂4r

∂w4

)

0
. (253)

We summarize the behavior of the radial coordinate at the cusp point.

(
∂r

∂w

)

0
=
(

∂2r

∂w2

)

0
= 0,

(
∂3r

∂w3

)

0
< 0,

(
∂2r

∂w∂t

)

0
> 0. (254)

We made the definitions

κ :=
(

∂2r

∂w∂t

)

0
, λ := − κ

(
∂3r

∂w3

)

0
. (255)

The boundary of the domain of the maximal solution close to a cusp point is shown
in Figure 5.

3.5.1 Behavior of α and β at the Cusp Point

In [2] the null vector fields L , L are used. In the t-r -plane they are given in terms of
acoustical coordinates by (see page 933 of [2])

L = ∂

∂t
, L = μ

α2

∂

∂t
+ 2

∂

∂w
. (256)

Therefore,

L+ = L = ∂

∂t
, L− = α2

μ
L = ∂

∂t
+ 2α2

μ

∂

∂w
. (257)

Now, since the solution is smooth with respect to the acoustical coordinates (t, w) and
the Riemann invariants are given smooth functions of ψμ we have

(L+α)0 < ∞, (L+β)0 < ∞. (258)
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Remark 6 We note that in (256), (257) (and also in (262) and in the second line of
(265) below) α refers to the quantity given by (233) as in [2]. However in (258)
and everywhere else in the present work α denotes the Riemann invariant defined by
the first of (146). Also in (260), (261), (265) below κ denotes, as in [2], the inverse
spatial density of the outgoing characteristic hypersurfaces, defined in (230) while
everywhere else in the present work it denotes the quantity defined in (244).

Now we look at the partial derivative of α and β with respect to w. From the second
of (131)

∂β

∂w
= Tβ = ∂β

∂ψμ

Tψμ = λLμ
+Tψμ. (259)

Let us now use the vector field T̂ , collinear and in the same sense as T and of unit
magnitude with respect to the acoustical metric (see (2.57) of [2])

T̂ = κ−1T . (260)

Using now XμYψμ = YμXψμ (recall that ψμ = ∂μφ), we deduce from (259)

∂β

∂w
= κ f, (261)

where f is a smooth function of (t, w). Therefore, in conjunction with (234),

L−β = ∂β

∂t
+ 2α f

∂β

∂w
, (262)

which implies

(L−β)0 < ∞. (263)

Now,

∂α

∂w
= Tα = ∂α

∂ψμ

Tψμ = ξLμ
−Tψμ, (264)

where we used the first of (131). Using again the vector field T̂ we get

∂α

∂w
= ξκ T̂μL−ψμ

= ξ T̂μ

(
κ

∂ψμ

∂t
+ 2α

∂ψμ

∂w

)
, (265)

where we used (234). Substituting this in L−α we see that (L−α)0 blows up.
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We note that from (261) together with (247) and the relation (234) we have

(
∂β

∂w

)

0
= 0,

(
∂2β

∂w2

)

0
= 0, (266)

while from (265) we have

(
∂α

∂w

)

0
< ∞. (267)

3.5.2 Incoming Characteristic Originating at the Cusp Point

Let in acoustical coordinates C be given by w = w(t). Setting r(t) = r(t, w(t)), we
obtain

d

dt
r(t) = c−(t, w(t)). (268)

Since

c− = dr

dt
= ∂r

∂t
+ ∂r

∂w

dw

dt
, (269)

we have

dw

dt
= c− − c+

∂r
∂w

. (270)

Therefore, the inverse function t(w) satisfies

dt

dw
= − ∂r

∂w

c+ − c−
. (271)

Using (254) we deduce

(
dt

dw

)

0
= 0. (272)

Taking the derivative of (271) with respect to w we obtain from (254), in view of
(272), that

(
d2t

dw2

)

0
= 0. (273)

Taking a second derivative of (271) and using (254), (255) yields

(
d3t

dw3

)

0
= λ

κ(c+0 − c−0)
. (274)
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Taking the third derivative of (271) and evaluating the result at the cusp point yields,
in conjunction with the above results

(
d4t

dw4

)

0
= − λ(4κ − 3l)

κ(c+0 − c−0)2 − ξ

κ(c+0 − c−0)
, (275)

where we used the definition (253) and we defined

l :=
(
dc−
dw

)

0
. (276)

We conclude from (272), (273), (274) and (275) that

t(w) = t0+ λ

κ(c+0−c−0)

w3

6
−
(

λ(4κ − 3l)

κ(c+0 − c−0)2 + ξ

κ(c+0 − c−0)

)
w4

24
+O

(
w5
)

.

(277)

The function α along C is given by

α(w) = α(t(w),w). (278)

Taking into account (272), (273) we obtain

(
dα

dw

)

0
=
(

∂α

∂w

)

0
, (279)

(
d2α

dw2

)

0
=
(

∂2α

∂w2

)

0
. (280)

Defining

α̇0 :=
(

∂α

∂w

)

0
, α̈0 :=

(
∂2α

∂w2

)

0
, (281)

we have

α(w) = α0 + α̇0w + 1

2
α̈0w

2 + O(w3). (282)

For the function β along C given by

β(w) = β(t(w),w), (283)

we find, taking into account (266),

β(w) = β0 + O(w3). (284)
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Now, since

c+(α(w), β(w)) = ∂r

∂t
(t(w),w), (285)

applying d/dw to this, evaluating at w = 0 and using (244), (266), (272) and (279)
we obtain

(
∂c+
∂α

)

0
α̇0 = κ. (286)

3.6 Shock Development Problem

The notion of maximal development of the initial data is reasonable from the mathe-
matical point of view and also the correct notion from the physical point of view up to
C ∪ ∂−B. However, it is not the correct notion from the physical point of view up to
B. Let us consider a given component of B which we again denote by B. Its past end
point we denote by O (this corresponds to ∂−B). We also consider the corresponding
component of C , i.e. the incoming null curve originating at O which we again denote
by C (see figure 5 on the right).

The shock development problem is the following:
Find a timelike curve K in the t-r plane, lying in the past of B and originating at

O , together with a solution of the equations of motion in the domain in Minkowski
spacetime bounded in the past by K and C , such that the data induced by this solution
on C coincides with the data induced by the prior maximal solution, while across K
the new solution displays jumps relative to the prior maximal solution, jumps which
satisfy the jump conditions. The past of K, where the prior maximal solution holds, is
called the state ahead, and the future of K, where the new solution holds, is called the
state behind (see 2.3). K is to be space-like relative to the acoustical metric induced
by the maximal solution and time-like relative to the new solution which holds in the
future of K. The requirement in the last sentence is the determinism condition.

Let Tε be the subset bounded by C , K and the outgoing characteristic originating
at the point on C with acoustical coordinate w = ε>0. In Tε we use characteristic
coordinates. We first shift the origin of the (t, w) coordinate plane so that the cusp
point O has coordinates (0, 0). We then assign to a point in Tε the coordinates (u, v)

if it lies on the outgoing characteristic which intersects C at the point w = u and
on the incoming characteristic which intersects K at the point where the outgoing
characteristic through the point w = v on C intersects K. It follows that (see figure 6)

Tε =
{
(u, v) ∈ R

2 : 0 ≤ v ≤ u ≤ ε
}

. (287)

Remark 7 We note that to set up the characteristic coordinates in this way we have to
a priori assume that the solution is smooth in these coordinates. This is shown to be
true below.
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Fig. 6 The domain Tε

In the following we will denote α, β and r corresponding to the solution in the maximal
development byα∗,β∗ and r∗ to distinguish them fromα,β, r which we use in referring
to the solution in Tε. The quantities corresponding to the prior maximal solution are
expressed in (t, w) coordinates. The solution in Tε has to satisfy the characteristic
system (see (161), (162))

∂α

∂v
= ∂t

∂v
Ã(α, β, r),

∂β

∂u
= ∂t

∂u
B̃(α, β, r), (288)

∂r

∂v
= ∂t

∂v
c+(α, β),

∂r

∂u
= ∂t

∂u
c−(α, β), (289)

together with initial data (for t see (277))

t (u, 0) = h(u) := t(u), (290)

α(u, 0) = α∗(h(u), u) =: αi (u) (291)

and

r(0, 0) = r∗(0, 0) =: r0, (292)

β(0, 0) = β∗(0, 0) =: β0. (293)

The system consisting of the second of (288) and the second of (289) together with
(292), (293) constitutes, at v = 0, a system of ordinary differential equations for β

and r . Hence the above conditions on β and r at O imply that the data for β and r
along C coincide with the data induced by the prior maximal solution.

Let

f (v) := t (v, v), g(v) := r(v, v) − r0. (294)

Condition (171) is

J (α−(v), α+(v), β−(v), β+(v)) = 0, (295)

where

α+(v) = α(v, v), β+(v) = β(v, v), (296)
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the right hand sides given by the solution in Tε and

α−(v) = α∗( f (v), z(v)), β−(v) = β∗( f (v), z(v)), (297)

the right hand sides given by the solution in the maximal development, where z(v) is
the solution of the identification equation

g(v) + r0 = r∗( f (v), z(v)), (298)

identifying the radial coordinate of points on K coming from the solution in the
maximal development and from the solution in Tε. Condition (170) is

V (v) =
[
T tr (v)

]
[
T tt (v)

] . (299)

f (v) and g(v) have to satisfy

d f

dv
(v)V (v) = dg

dv
(v). (300)

We restate the free boundary problem as follows.

For small enough ε find in Tε a solution of (288), (289) which attains along C the
given data and along K satisfies (295), (300), where V (v) is given by (299) and z(v)

is given by (298).

We solve the problem using an iteration whose strategy is the following. We start
with approximate solutions zm(v), β+,m(v), Vm(v). Then we solve the character-
istic system (288), (289) with (αm+1, βm+1, tm+1, rm+1) in the role of (α, β, t, r)
with initial data tm+1(u, 0) = h(u), αm+1(u, 0) = αi (u) (on C), boundary data
βm+1(v, v) = β+,m(v) (on K) and r(0, 0) = r0 together with the requirement that

d fm+1

dv
(v)Vm(v) = dgm+1

dv
(v), (301)

where

fm+1(v) := tm+1(v, v), gm+1(v) := rm+1(v, v) − r0. (302)

We then substitute fm+1(v), gm+1(v) for f (v), g(v), respectively, in the identification
equation (298) and solve for z in terms of v. The solution we define to be zm+1(v).
Using now zm+1(v), fm+1(v) we obtain through (297) α−,m+1(v), β−,m+1(v). We
then use these together with α+,m+1(v) to solve (295) for β+(v) which we define to
be β+,m+1(v). Note that βm+1(v, v) = β+,m(v) but αm+1(v, v) = α+,m+1(v). We
then define Vm+1(v) by (299) where the jumps on the right hand side correspond to
α±,m+1(v), β±,m+1(v). We summarize the strategy as follows

zm, β+,m, Vm
1→ αm+1, βm+1, tm+1, rm+1

2→ fm+1, gm+1, α+,m+1

3→ zm+1
4→ β+,m+1, Vm+1. (303)
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In the following we shall call the triplet (zm, β+,m, Vm), which are functions on the
boundary K, boundary functions corresponding to the m’th iterate.

We make the following crucial observation. Let

F(v, z) := g(v) + r0 − r∗( f (v), z). (304)

Since (see (240))

(
∂F

∂z

)

0
= −

(
∂r∗

∂w

)

0
= 0 (305)

it is not possible to use the standard implicit function theorem to directly solve the
identification equation (298) for z in our iteration scheme. We will use leading order
expansions of g(v), f (v), z(v) in the identification equation to arrive, through a cancel-
lation, at a reduced identification equation which can then be solved for the remainder
function of z(v).

4 Solution of the Fixed Boundary Problem

4.1 Setup of Iteration Scheme and Inductive Step

The goal is to find a solution of the system of equations

∂α

∂v
= ∂t

∂v
Ã(α, β, r),

∂β

∂u
= ∂t

∂u
B̃(α, β, r), (306)

∂r

∂v
= ∂t

∂v
c+(α, β),

∂r

∂u
= ∂t

∂u
c−(α, β), (307)

together with initial data α(u, 0) = αi (u) (on C), boundary data β(v, v) = β+(v) (on
K), initial data t (u, 0) = h(u) (on C) and r(0, 0) = r0, together with the requirement
that for a given function V (v) the equation

d f

dv
(v)V (v) = dg

dv
(v), (308)

is to be satisfied, where

f (v) := t (v, v), g(v) := r(v, v) − r0, (309)

and the requirement that t is a time function, i.e.

∂t

∂u
,

∂t

∂v
> 0 for u, v > 0. (310)

Since we set t0 = 0 we obtain from (309) f (0) = g(0) = 0. For the initial data of t
along C we assume (see (277))
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t (u, 0) = h(u) = u3ĥ(u), ĥ ∈ C1[0, ε], ĥ(0) = λ

6κ(c+0 − c−0)
. (311)

For the initial data of α along C we assume (see (282))

α(u, 0) = αi (u) = α0 + α̇0u + u2α̂i (u), α̂i ∈ C1[0, ε], α̂i (0) = 1

2
α̈0.

(312)

Furthermore, we assume β+(v) ∈ C1[0, ε], V (v) ∈ C0[0, ε] and

dβ+
dv

(v) = O(v), V (v) = c+0 + κ

2
(1 + y(v))v + O(v2), (313)

where y ∈ C1[0, ε] is a given function with

y(0) = −1. (314)

We define

Y := sup
[0,ε]

∣∣∣∣
dy

dv

∣∣∣∣ . (315)

The solution is to be found in a domain Tε for small enough ε, where

Tε :=
{
(u, v) ∈ R

2 : 0 ≤ v ≤ u ≤ ε
}

. (316)

Taking the derivative of the first of (307) with respect to u and of the second of (307)
with respect to v and subtracting yields

(c+ − c−)
∂2t

∂u∂v
+ ∂c+

∂u

∂t

∂v
− ∂c−

∂v

∂t

∂u
= 0. (317)

Defining

μ := 1

c+ − c−
∂c+
∂u

, ν := 1

c+ − c−
∂c−
∂v

, (318)

equation (317) becomes

∂2t

∂u∂v
+ μ

∂t

∂v
− ν

∂t

∂u
= 0. (319)

Using (307) equation (308) becomes

a(v) = 1

γ (v)
b(v), (320)
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where we use the definitions

a(v) := ∂t

∂v
(v, v), b(v) := ∂t

∂u
(v, v), γ (v) := c̄+(v) − V (v)

V (v) − c̄−(v)
, (321)

where

c̄±(v) := c±(α+(v), β+(v)). (322)

Let us recall that in acoustical coordinates (t, w), the boundary of the singular part
of the maximal development B is given by t∗(w) (see (252)). We have

(
dt∗
dw

)

0
= 0. (323)

Since we are looking for a solution in which the shock K lies in the past of B we
should have

(
d f

dv

)

0
= 0, (324)

where f (v) = t (v, v) describes the shock curve K. By this assumption together
with (311) we get

∂t

∂v
(0, 0) = 0. (325)

From the first of (313) together with the second of (306) in conjunction with (311)
we obtain

∂β

∂v
(0, 0) = 0. (326)

Taking the derivative of the second of (306) with respect to v we find

∂2β

∂u∂v
= ∂2t

∂u∂v
B̃ + ∂t

∂u

(
∂ B̃

∂α

∂t

∂v
Ã + ∂ B̃

∂β

∂β

∂v
+ ∂ B̃

∂r
c+

∂t

∂v

)
, (327)

where we also used the first of (306) together with the first of (307). Using the first of
(306) we obtain

∂c−
∂v

= ∂c−
∂α

∂t

∂v
Ã + ∂c−

∂β

∂β

∂v
. (328)

Using this in (317) we get

∂2t

∂u∂v
= − 1

c+ − c−

{
∂c+
∂u

∂t

∂v
− ∂t

∂u

(
∂c−
∂α

∂t

∂v
Ã + ∂c−

∂β

∂β

∂v

)}
. (329)
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Using this for the first term in (327) we get

∂2β

∂u∂v
= − 1

c+ − c−

{
∂c+
∂u

∂t

∂v
− ∂t

∂u

(
∂c−
∂α

∂t

∂v
Ã + ∂c−

∂β

∂β

∂v

)}
B̃

+ ∂t

∂u

(
∂ B̃

∂α

∂t

∂v
Ã + ∂ B̃

∂β

∂β

∂v
+ ∂ B̃

∂r
c+

∂t

∂v

)
. (330)

Along C (329), (330) build a system of the form

d

du

(
∂β/∂v

∂t/∂v

)
=
(
a11 a12
a21 a22

)(
∂β/∂v

∂t/∂v

)
for v = 0. (331)

Together with the initial conditions given by (325), (326), we arrive at

∂t

∂v
(u, 0) = 0,

∂β

∂v
(u, 0) = 0. (332)

Hence, we expect

∂t

∂v
(u, v) = O(v),

∂β

∂v
(u, v) = O(v). (333)

Therefore, we base our iteration scheme with this expectation in mind.
We construct a solution of the fixed boundary problem as the limit of a sequence

of functions ((αn, βn, tn, rn); n = 0, 1, 2, . . .). Given (αn, βn) we find (αn+1, βn+1)

in the following way. We set

μn := 1

c+n − c−n

∂c+n

∂u
, νn := 1

c+n − c−n

∂c−n

∂v
, (334)

where

c±n := c±(αn, βn). (335)

Let tn be the solution of the linear equation

∂2tn
∂u∂v

+ μn
∂tn
∂v

− νn
∂tn
∂u

= 0, (336)

together with the initial data on C (cf. (311)) and the boundary condition on K

an(v) = 1

γn(v)
bn(v). (337)
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We then find rn by integrating (307), i.e.

rn(u, v) = rn(u, 0) +
∫ v

0

(
c+,n

∂tn
∂v

)
(u, v′)dv′

= r0 +
∫ u

0

(
c−,n

∂tn
∂u

)
(u′, 0)du′ +

∫ v

0

(
c+,n

∂tn
∂v

)
(u, v′)dv′. (338)

We then define αn+1 and βn+1 by

αn+1(u, v) := αi (u) +
∫ v

0
An(u, v′)dv′, βn+1(u, v) := β+(v) +

∫ u

v

Bn(u
′, v)du′,

(339)

where

An := ∂tn
∂v

Ã(αn, βn, rn), Bn := ∂tn
∂u

B̃(αn, βn, rn). (340)

We have thus found (αn+1, βn+1).
To initiate the sequence we set

α0(u, v) = αi (u), β0(u, v) = β+(v). (341)

t0(u, v) is given by the solution of (336) (with 0 in the role of n) with μ0, ν0 given by
(334) (with 0 in the role of n). r0(u, v) is then given by (338).

The way we set things up we see that to each pair (αn, βn) there corresponds a
unique pair (tn, rn) given by (336), (338). It therefore suffices to show that the iteration
mapping maps the respective spaces to itself (by induction) and the convergence only
for the sequence ((αn, βn); n = 0, 1, 2, . . .). Let us denote by (α, β) the limit of
((αn, βn); n = 0, 1, 2, . . .). The convergence of (αn, βn) to (α, β) will imply the
convergence of (tn, rn) to (t, r), where t is the solution of (336) with the coefficients
μ, ν given by c±(α, β) and r is given by (338) such that when t , r are substituted into
the right hand sides of (352) below, the left hand sides of (352) are α, β respectively.
Therefore this will imply the existence to a solution of the fixed boundary problem.

The first of (313) is equivalent to

∣∣∣∣
dβ+
dv

(v)

∣∣∣∣ ≤ Cv. (342)

We now define

b0 := |β0| + Cε2

2
, (343)

where the constant C is the constant from (342). Therefore,

sup
v∈[0,ε]

|β+(v)| ≤ b0. (344)
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Fig. 7 The rectangle Rδ

Let now

a0 := sup
v∈[0,ε]

|αi (v)|. (345)

Let δ>0 and let Rδ be the rectangle given by (see figure 7)

Rδ := {(α, β) ∈ R
2 : |α| ≤ δ + a0, |β| ≤ δ + b0}. (346)

We define

N := max

{
sup
�δ

| Ã(α, β, r)|, sup
�δ

|B̃(α, β, r)|
}

, (347)

where we defined

�δ := Rδ × [ 1
2r0,

3
2r0
]
. (348)

Let

C0 := 2λ

3κ2 . (349)

We now choose a constant N0 such that

N0 > C0N . (350)

Defining

α′
n(u, v) := αn(u, v) − αi (u), β ′

n(u, v) := βn(u, v) − β+(v), (351)

we have

α′
n+1(u, v) =

∫ v

0
An(u, v′)dv′, β ′

n+1(u, v) =
∫ u

v

Bn(u
′, v)du′. (352)
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Let X be the closed subspace ofC1(Tε, R
2) consisting of those functions F = (F1, F2)

which satisfy

(i) F1(u, 0) = 0, F2(v, v) = 0, (353)

(ii) ‖F‖X := max

{
sup
Tε

∣∣∣∣
1

u

∂F1

∂u

∣∣∣∣ , sup
Tε

∣∣∣∣
1

v

∂F1

∂v

∣∣∣∣ , sup
Tε

∣∣∣∣
1

u

∂F2

∂u

∣∣∣∣ , sup
Tε

∣∣∣∣
1

v

∂F2

∂v

∣∣∣∣
}

≤ N0.

(354)

As a preliminary result concerning the linear equation (336) we have the following
proposition.

Proposition 4.1 Let

μ(u, v) = κ

c+0 − c−0
(1 + τ(u, v)), where τ(u, v) = O(u), (355)

ν(u, v) = O(v), (356)

1

γ (v)
= c+0 − c−0

κv
(1 + ρ(v)), where ρ(v) = ρ0(v) + O(v), with

ρ0(v) =
1
2 (y(v) + 1)

1 − 1
2 (y(v) + 1)

, (357)

h(u) = λ

κ(c+0 − c−0)

u3

6
+ O(u4). (358)

Then, providedwe choose ε small enough, depending on Y , the solution of the equation

∂2t

∂u∂v
+ μ

∂t

∂v
− ν

∂t

∂u
= 0, (359)

with initial condition

t (u, 0) = h(u) (360)

and boundary condition

a(v) = 1

γ (v)
b(v), where a(v) := ∂t

∂v
(v, v), b(v) := ∂t

∂u
(v, v), (361)

is in C1(Tε) and satisfies

∣∣∣∣
∂t

∂v
(u, v) − λ

3κ2 v

∣∣∣∣ ≤ C(Y )uv,

∣∣∣∣
∂t

∂u
(u, v) − λ(3u2 − v2)

6κ(c+0 − c−0)

∣∣∣∣ ≤ C(Y )u3

(362)

123



Shock Development in Spherical Symmetry Page 53 of 246 3

for (u, v) ∈ Tε, where C(Y ) are non-negative, non-decreasing, continuous functions
of Y . Furthermore, let f (v) := t (v, v), then

d f

dv
(v) − λ

3κ2 v = λ

18κ2

{
2v(y(v) + 1) + 1

v2

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2),

(363)

for v ∈ [0, ε].
Proof Integrating (359) with respect to v from v = 0 yields

∂t

∂u
(u, v) = e−K (u,v)

{
h′(u) −

∫ v

0
eK (u,v′)

(
μ

∂t

∂v

)
(u, v′)dv′

}
, (364)

while integrating (359) with respect to u from u = v yields

∂t

∂v
(u, v) = e−L(u,v)

{
a(v) +

∫ u

v

eL(u′,v)

(
ν

∂t

∂u

)
(u′, v)du′

}
, (365)

where we used the definitions

K (u, v) :=
∫ v

0
(−ν)(u, v′)dv′, L(u, v) :=

∫ u

v

μ(u′, v)du′. (366)

From the first of (366) together with (356) we obtain

K (u, v) = O(v2). (367)

Evaluating (364) at u = v yields

b(v) = e−K (v,v)

{
h′(v) −

∫ v

0
eK (v,v′)

(
μ

∂t

∂v

)
(v, v′)dv′

}
. (368)

Defining (see (355) for the definition of τ(u, v))

I (v) :=
∫ v

0

{
eK (v,v′) − 1 + eK (v,v′)τ (v, v′)

} ∂t

∂v
(v, v′)dv′, (369)

we have

b(v) = e−K (v,v)

{
h′(v) − κ

c+0 − c−0
( f (v) − h(v) + I (v))

}
, (370)

where we used
∫ v

0

∂t

∂v
(v, v′)dv′ = t (v, v) − t (v, 0) = f (v) − h(v). (371)
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From (320), (321) we have

d f

dv
(v) =

(
1

γ (v)
+ 1

)
b(v), (372)

which implies, using (357), (370),

v
d f

dv
(v) = −e−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)
f (v)

+ e−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)(
c+0 − c−0

κ
h′(v) + h(v) − I (v)

)
.

(373)

Using the definitions

A(v) := e−K (v,v)

(
ρ(v)

v
+ κ

c+0 − c−0

)
− 1

v

(
1 − e−K (v,v)

)
, (374)

B(v) := e−K (v,v)

v2

(
1 + ρ(v) + κv

c+0 − c−0

)(
c+0 − c−0

κ
h′(v) + h(v) − I (v)

)
,

(375)

equation (373) becomes

d(v f (v))

dv
+ A(v)v f (v) = v2B(v). (376)

Since (cf. (311))

h′(v) = λ

2κ(c+0 − c−0)
v2 + O(v3), (377)

we can write

B(v) = λ

2κ2 + B̂(v), (378)

where

B̂(v) := λ

2κ2

{
e−K (v,v)

(
ρ(v) + κv

c+0 − c−0

)
−
(

1 − e−K (v,v)
)}

+ 1

v2 e
−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)

×
(
c+0 − c−0

κ
h′(v) − λ

2κ2 v2 + h(v) − I (v)

)
. (379)
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Integrating (376) from v = 0 yields

v f (v) =
∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2B(v′)dv′. (380)

Substituting this back into (376) gives

d f

dv
(v) = vB(v) − 1

v2 (1 + vA(v))

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2B(v′)dv′. (381)

Using now (378) we find

d f

dv
(v) = λ

2κ2 M(v) + N (v), (382)

where N (v) is linear in B̂(v), while M(v) is independent of B̂(v), i.e.

M(v) = M0(v) + M1(v) + M2(v), N (v) = N0(v) + N1(v), (383)

with

M0(v) := v − 1

v2

∫ v

0
v′2dv′ = 2

3
v, (384)

M1(v) := 1

v2

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′)
v′2dv′, (385)

M2(v) := − A(v)

v

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2dv′, (386)

and

Ni (v) := v B̂i (v) − 1

v2 (1 + vA(v))

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2 B̂i (v′)dv′, i = 0, 1,

(387)

where we split B̂(v) into a part depending on I (v) and a part independent of I (v), i.e.

B̂0(v) := λ

2κ2

{
e−K (v,v)

(
ρ(v) + κv

c+0 − c−0

)
−
(

1 − e−K (v,v)
)}

+ 1

v2 e
−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)

×
(
c+0 − c−0

κ
h′(v) − λ

2κ2 v2 + h(v)

)
, (388)

B̂1(v) := − 1

v2 e
−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)
I (v). (389)
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In view of (357) we have

ρ(v) + κv

c+0 − c−0
= ρ0(v) + O(v). (390)

In the arguments to follow q>0 will denote a number which we can make as small
as we wish by choosing ε suitably small. From y(0) = −1 we have

|y(v) + 1| ≤ vY ≤ q. (391)

Now, since we can make 1 − 1
2vY as close to 1 as we wish by choosing ε suitably

small depending on Y (in the following we will not state this dependence explicitly
anymore) and since (cf. (391))

1 − 1
2 |y(v) + 1| ≥ 1 − 1

2vY, (392)

we obtain

1

1 − 1
2 |y(v) + 1| ≤ p, (393)

for p>1 but as close to 1 as we wish by choosing ε suitably small. Hence

|ρ0(v)| ≤ p

2
|y(v) + 1| ≤ p

2
vY ≤ p

2
εY ≤ q, (394)

where q>0 as small as we wish by restricting ε (and therefore εY ) suitably (cf. (391)).
Therefore,

|ρ(v)| ≤ q + Cv, (395)

We now look at B̂0. From (311) it follows that the asymptotic form of the second
bracket on the second line of (388) is O(v3). Taking into account (367), (390), as well
as (395), we obtain

B̂0(v) = λ

2κ2 ρ0(v) + O(v). (396)

(374) together with (394) yields

v|A(v)| = |ρ0(v)| + O(v) ≤ q ′. (397)

From (374) we obtain

∫ v

v′
|A(v′′)|dv′′ ≤

∫ v

v′
|ρ0(v

′′)|
v′′ dv′′ +

∫ v

v′
O(1)dv′′ ≤ q ′′, (398)
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where for the first integral we use (cf. (394))

|ρ0(v)| ≤ p

2
vY, (399)

and we again choose ε sufficiently small. q ′, q ′′ are like q, positive and as small as we
wish by restricting ε suitably. From the two bounds in (397) and (398) it follows that
the contribution of the O(v) term in B̂0 (cf. (396)) to N0 (cf. (387) with i = 0) has
the asymptotic form O(v2).

We now look at the contribution of the first term in (396) to N0 (cf. (387)). This
contribution is

λ

2κ2

{
vρ0(v) − 1

v2

∫ v

0
v′2ρ0(v

′)dv′
}

+ λ

2κ2

{
1

v2

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′)
v′2ρ0(v

′)dv′

− A(v)

v

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2ρ0(v

′)dv′
}

. (400)

Since the function (1 − ex )/x is bounded for x ∈ [−1, 1], it follows from (398) that
the first term in the second curly bracket in (400) is bounded by

C

v2

∫ v

0

(∫ v

v′
|A(v′′)|dv′′

)
v′2|ρ0(v

′)|dv′. (401)

Now, since

∫ v

v′
|A(v′′)|dv′′ =

∫ v

v′
|ρ0(v

′′)|
v′′ + O(1)dv′′ ≤ C(Y + 1)v, (402)

where we used (399), we obtain

C

v2

∫ v

0

(∫ v

v′
|A(v′′)|dv′′

)
v′2|ρ0(v

′)|dv′ ≤ C

v

∫ v

0
(Y + 1)v′2|ρ0(v

′)|dv′

≤ C(Y + 1)Yv3, (403)

where we again used (399). Choosing ε sufficiently small such that Y 2ε ≤ 1, it follows
that C(Y + 1)Yv3 ≤ Cv2, i.e. the first term in the second curly bracket of (400) is
bounded in absolute value by Cv2.

Now we look at the second term in the second curly bracket in (400). We will use

v2|ρ0(v)| ≤ Cv3Y, |A(v)| = |ρ0(v)|
v

+ O(1) ≤ C(Y + 1). (404)
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Those are consequences of (397) and (399). Using these and (398), we have

∣∣∣∣
A(v)

v

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2ρ0(v

′)dv′
∣∣∣∣ ≤

C(Y + 1)Y

v

∫ v

0
v′3dv′ ≤ Cv2, (405)

where in the last step we again use the assumption that Y 2ε ≤ 1. We conclude that the
second term in the second curly bracket of (400) is bounded in absolute value by Cv2.
Therefore, the second curly bracket in (400) is bounded in absolute value by Cv2.

We rewrite the first curly bracket in (400) as

v 1
2 (y(v) + 1) − 1

v2

∫ v

0

v′2

2
(y(v′) + 1)dv′ + v

{
ρ0(v) − 1

2 (y(v) + 1)
}

− 1

v2

∫ v

0
v′2{ρ0(v

′) − 1
2 (y(v′) + 1)

}
dv′. (406)

For the curly brackets we use the estimate

∣∣ρ0(v) − 1
2 (y(v) + 1)

∣∣ =
∣∣∣∣∣

1
4 (y(v) + 1)2

1 − 1
2 (y(v) + 1)

∣∣∣∣∣ ≤ Cv2Y 2, (407)

where we used (391). We deduce that the second line in (406) is bounded in absolute
value by Cv2 where we again make use of the assumption that Y 2ε ≤ 1. We conclude
that

N0(v) = λ

4κ2

{
v(y(v) + 1) − 1

v2

∫ v

0
v′2(y(v′) + 1)dv′

}
+ O(v2). (408)

Integrating by parts yields

N0(v) = λ

12κ2

{
2v(y(v) + 1) + 1

v2

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2). (409)

We now turn to N1. For this we have to estimate B̂1. In view of (389) we have

|B̂1(v)| ≤ C

v2 |I (v)|. (410)

Now we look at I (v). From (367), (355) we have

|eK (v,v′) − 1| ≤ Cv′2, |τ(v, v′)| ≤ Cv. (411)

These imply

|I (v)| ≤ Cv

∫ v

0

∣∣∣∣
∂t

∂v
(v, v′)

∣∣∣∣ dv′, (412)
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which yields

|B̂1(v)| ≤ C

v

∫ v

0

∣∣∣∣
∂t

∂v
(v, v′)

∣∣∣∣ dv′. (413)

Now,

1

v2

∫ v

0
v′2|B̂1(v

′)|dv′ ≤ 1

v

∫ v

0
v′|B̂1(v

′)|dv′

≤ C

v

∫ v

0

{∫ v′

0

∣∣∣∣
∂t

∂v
(v′, v′′)

∣∣∣∣ dv′′
}
dv′

≤ C

v

∫ v

0

{∫ v

v′′

∣∣∣∣
∂t

∂v
(v′, v′′)

∣∣∣∣ dv′
}
dv′′

≤ C

v

∫ v

0
(v − v′′)T (v, v′′)dv′′

≤ C
∫ v

0
T (v, v′′)dv′′, (414)

where to go from the second to the third line we changed the order of integration and
in the fourth line we used the definition

T (u, v) := sup
u′∈[v,u]

∣∣∣∣
∂t

∂v
(u′, v)

∣∣∣∣ . (415)

Using (413) and (414) in (387) with i = 1 we obtain

|N1(v)| ≤ C
∫ v

0
T (v, v′)dv′. (416)

We postpone the estimation of T until the estimates for M are completed.
We now look at M1 (cf. (385)). We rewrite M1 as

M1(v) = 1

v2

∫ v

0

{∫ v

v′
A(v′′)dv′′

}
v′2dv′

+ 1

v2

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′ −
∫ v

v′
A(v′′)dv′′

)
v′2dv′. (417)

Since

A(v) = ρ0(v)

v
+ O(1), (418)

we can rewrite the term on the first line as

1

3v2

∫ v

0
A(v′)v′3dv′ = 1

3v2

∫ v

0

(
ρ0(v

′)
v′ + O(1)

)
v′3dv′

= 1

3v2

∫ v

0
ρ0(v

′)v′2dv′ + O(v2). (419)
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We now rewrite

1

3v2

∫ v

0
ρ0(v

′)v′2dv′

= 1

3v2

{∫ v

0

1
2 (y(v′) + 1)v′2dv′ +

∫ v

0

(
ρ0(v

′) − 1
2 (y(v′) + 1)

)
v′2dv′

}

= 1

18v2

{
v3(y(v) + 1) −

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2), (420)

where for the first term we used integration by parts while for the second term we
used (407) together with the assumption that εY 2 ≤ 1. This implies that the term in
the first line of (417) is equal to

1

18v2

{
v3(y(v) + 1) −

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2). (421)

Using the fact that the function (1 − e−x − x)/x2 is bounded for x ∈ [−1, 1], implies
that the term on the second line in (417) is bounded by

C

v2

∫ v

0

(∫ v

v′
|A(v′′)|dv′′

)2

v′2dv′. (422)

Now, since

∫ v

v′
|A(v′′)|dv′′ ≤

∫ v

0
|A(v′)|dv′ ≤ Cv(Y + 1), (423)

where we used (404), we obtain

C

v2

∫ v

0

(∫ v

v′
|A(v′′)|dv′′

)2

v′2dv′ ≤ Cv3(Y + 1)2 ≤ Cv2, (424)

where we used the assumption εY 2 ≤ 1. This together with (421) implies

M1(v) = 1

18v2

{
v3(y(v) + 1) −

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2). (425)

We now look at M2 (cf. (386)). We rewrite M2 as

M2(v) = − A(v)

3
v2 + A(v)

v

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′)
v′2dv′. (426)
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For the first term we have

− A(v)

3
v2 = −ρ0(v)

3
v + O(v2)

= −v

6
(y(v) + 1) − v

3

(
1
2 (y(v) + 1) − ρ0(v)

)
+ O(v2)

= −v

6
(y(v) + 1) + O(v2), (427)

where we used (407) together with the assumption εY 2 ≤ 1. Taking into account that
the function (1 − e−x )/x is bounded for x ∈ [−1, 1] and integrating by parts we find
that the second term in (426) can be estimated in absolute value by

C |A(v)|
∣∣∣∣
∫ v

0
A(v′)dv′

∣∣∣∣ v2. (428)

Using the second of (404) we get

C |A(v)|
∣∣∣∣
∫ v

0
A(v′)dv′

∣∣∣∣ v2 ≤ C(Y + 1)2v3 ≤ Cv2, (429)

where we again used the assumption εY 2 ≤ 1. From (427), (429) we obtain

M2(v) = −v

6
(y(v) + 1) + O(v2). (430)

We shall now turn to the estimate of T (u, v) and prove that T (u, v) ≤ Cv. To
accomplish this we will use the ode (382) but we will use less delicate estimates for
Mi and Ni than derived above. We derive these rough estimates from the delicate
estimates (409), (425), (430) by using the two estimates (cf. (391))

|y(v) + 1| ≤ C,

∣∣∣∣v
dy

dv
(v)

∣∣∣∣ ≤ C. (431)

Using the resulting (rough) estimates together with (384), (416) in (382) we arrive at

∣∣∣∣
d f

dv
(v)

∣∣∣∣ ≤ C

{
v +

∫ v

0
T (v, v′)dv′

}
. (432)

Using the asymptotic form of μ(u, v) as given by (355) it follows from the second
of(366) that |L(u, v)| ≤ Cε. We deduce from (365) together with the asymptotic form
of ν given by (356), very roughly,

∣∣∣∣
∂t

∂v
(u, v)

∣∣∣∣ ≤ C

{
|a(v)| + v

∫ u

v

∣∣∣∣
∂t

∂u
(u′, v)

∣∣∣∣ du′
}

. (433)

123



3 Page 62 of 246 D. Christodoulou, A. Lisibach

From (364) we deduce, very roughly,

∣∣∣∣
∂t

∂u
(u, v)

∣∣∣∣ ≤ C

{
u2 +

∫ v

0

∣∣∣∣
∂t

∂v
(u, v′)

∣∣∣∣ dv′
}

. (434)

Substituting in the integral in (433) the bound (434) yields

∫ u

v

∣∣∣∣
∂t

∂u
(u′, v)

∣∣∣∣ du′ ≤ C(u − v)

{
u2 +

∫ v

0
T (u, v′)dv′

}
. (435)

Now,

d f

dv
(v) = a(v) + b(v) = (1 + γ (v))a(v), (436)

which implies

|a(v)| =
∣∣∣∣

1

1 + γ (v)

d f

dv
(v)

∣∣∣∣ ≤
∣∣∣∣
d f

dv
(v)

∣∣∣∣ ≤ C

{
v +

∫ v

0
T (v, v′)dv′

}
, (437)

where for the first inequality we used

0 ≤ γ (v) ≤ Cv, (438)

which follows from (357), and for the second inequality in (437) we used (432).
Substituting (435) and (437) into (433) yields

∣∣∣∣
∂t

∂v
(u, v)

∣∣∣∣ ≤ C

{
v +

∫ v

0
T (u, v′)dv′

}
. (439)

Since T (u, v) is non-decreasing in its first argument (cf. (415)) we have

∣∣∣∣
∂t

∂v
(u′, v)

∣∣∣∣ ≤ C

{
v +

∫ v

0
T (u′, v′)dv′

}
for u′ ∈ [v, u]. (440)

Taking the supremum over all u′ ∈ [v, u] we find

T (u, v) ≤ C

{
v +

∫ v

0
T (u, v′)dv′

}
. (441)

Defining

�u(v) :=
∫ v

0
T (u, v′)dv′, (442)
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equation (441) becomes

d�u

dv
(v) ≤ C(v + �u(v)). (443)

Since �u(0) = 0, we get

�u(v) ≤
∫ v

0
eC(v−v′)Cv′dv′ ≤ C ′v2. (444)

Therefore,

T (u, v) ≤ Cv. (445)

Plugging this estimate into the estimate for N1, i.e. into (416), we obtain

|N1(v)| ≤ Cv2. (446)

Using now the delicate estimates for M0, N0, M1, M2 as given by (384), (409), (425),
(430) in the ode (382), we arrive at

d f

dv
(v) − λ

3κ2 v = λ

18κ2

{
2v(y(v) + 1) + 1

v2

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2). (447)

This is (363).
Using now

|y(v) + 1| ≤ Yv,

∣∣∣∣
dy

dv

∣∣∣∣ ≤ Y, (448)

in (447) we obtain

∣∣∣∣
d f

dv
(v) − λ

3κ2 v

∣∣∣∣ ≤ C(Y )v2. (449)

Since

a(v) = d f

dv
(v) − b(v) = d f

dv
(v) − γ (v)

1 + γ (v)

d f

dv
(v), (450)

we obtain from (438),

a(v) = d f

dv
(v) + O(v2). (451)

Together with (449) we conclude

∣∣∣∣a(v) − λ

3κ2 v

∣∣∣∣ ≤ C(Y )v2. (452)
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Recalling the definition (415) and using (445) we get

∫ v

0

∣∣∣∣
∂t

∂v
(u, v′)

∣∣∣∣ dv′ ≤
∫ v

0
T (u, v′)dv′ ≤ Cv2. (453)

Substituting this into (434) yields

∣∣∣∣
∂t

∂u
(u, v)

∣∣∣∣ ≤ Cu2. (454)

We now revisit (365), in particular the term

∫ u

v

e−(L(u,v)−L(u′,v))

(
ν

∂t

∂u

)
(u′, v)du′. (455)

From (355) we derive

|L(u, v) − L(u′, v)| =
∣∣∣∣
∫ u

u′
μ(u′′, v)du′′

∣∣∣∣ ≤ Cu. (456)

Using now (356) and (454) we have

∣∣∣∣
∫ u

v

e−(L(u,v)−L(u′,v))

(
ν

∂t

∂u

)
(u′, v)du′

∣∣∣∣ ≤ Cu3v. (457)

We now look at the first term in (365) and rewrite it as

e−L(u,v)a(v) = e−L(u,v) λ

3κ2 v + e−L(u,v)

(
a(v) − λ

3κ2 v

)
. (458)

The second term can be estimated using (452), while for the first term we use (355)
to estimate

∣∣∣∣L(u, v) − κ(u − v)

c+0 − c−0

∣∣∣∣ ≤ C
∫ u

v

u′du′ ≤ Cu2. (459)

Now,

e
− κ(u−v)

c+0−c−0 = 1 − κ(u − v)

c+0 − c−0
+ O(u2), (460)

which, together with (459), implies

e−L(u,v) = 1 − κ(u − v)

c+0 − c−0
+ O(u2). (461)
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Using the estimates (452), (461) in (458) and the resulting estimate together with (457)
in (365) yields

∣∣∣∣
∂t

∂v
(u, v) − λ

3κ2 v

∣∣∣∣ ≤ C(Y )uv. (462)

This is the first of (362).
We now revisit (364), in particular the term

∫ v

0
eK (u,v′)

(
μ

∂t

∂v

)
(u, v′)dv′. (463)

We rewrite it as

∫ v

0
eK (u,v′)

(
μ

∂t

∂v

)
(u, v′)dv′ = λ

3κ2

∫ v

0
eK (u,v′)μ(u, v′)v′dv′

+
∫ v

0
eK (u,v′)μ(u, v′)

(
∂t

∂v
(u, v′) − λ

3κ2 v′
)
dv′.

(464)

Using (355), the first term on the right of (464) possesses the following asymptotic
form

λ

3κ2

∫ v

0
eK (u,v′)μ(u, v′)v′dv′ = λ

6κ(c+0 − c−0)
v2 + O(uv2). (465)

By (355) and (462), the second integral in (464) can be bounded in absolute value by
C(Y )uv2. Together with (311) we obtain from (364),

∣∣∣∣
∂t

∂u
(u, v) − λ(3u2 − v2)

6κ(c+0 − c−0)

∣∣∣∣ ≤ C(Y )u3. (466)

This is the second of (362). This completes the proof of the proposition. ��
Lemma 4.1 For ε sufficiently small depending, on N0, Y , the sequence ((α′

n, β
′
n); n =

0, 1, 2, . . .) is contained in X.

Proof From (341), (351) we have

α′
0(u, v) = 0, β ′

0(u, v) = 0. (467)

Therefore

(α′
0, β

′
0) ∈ X. (468)
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We now show the inductive step. In the following the generic constants will depend
on N0 but we shall not specify this dependence. It suffices for us that this constants are
non-negative non-decreasing continuous functions of N0. The inductive hypothesis is

‖(α′
n, β

′
n)‖X ≤ N0. (469)

We start with

|α′
n|(u, v) =

∣∣∣∣α′
n(u, 0) +

∫ v

0

∂α′
n

∂v
(u, v′)dv′

∣∣∣∣ ≤ N0ε
2, (470)

where we used α′
n(u, 0) = 0.

|β ′
n|(u, v) =

∣∣∣∣β ′
n(v, v) +

∫ u

v

∂β ′
n

∂u
(u′, v)du′

∣∣∣∣ ≤ N0ε
2, (471)

where we used β ′
n(v, v) = 0. Choosing ε small enough we deduce

(α′
n + αi , β

′
n + β+) = (αn, βn) ∈ Rδ. (472)

Therefore, the functions c±,n and derivatives thereof are bounded, i.e.

sup
Tε

|c±,n|, sup
Tε

∣∣∣∣
(

∂c±
∂α

)

n

∣∣∣∣ , sup
Tε

∣∣∣∣
(

∂c±
∂β

)

n

∣∣∣∣ ≤ C. (473)

(also for higher order derivatives). From (351) we have

4
∂α′

n

∂u
= ∂αn

∂u
− dαi

du
,

∂α′
n

∂v
= ∂αn

∂v
, (474)

∂β ′
n

∂u
= ∂βn

∂u
,

∂β ′
n

∂v
= ∂βn

∂v
− dβ+

dv
. (475)

We now derive bounds on μn , νn . From the first of (318) we have

μn = 1

c+n − c−n

∂c+n

∂u
= 1

c+n − c−n

{(
∂c+
∂α

)

n

∂αn

∂u
+
(

∂c+
∂β

)

n

∂βn

∂u

}
. (476)

For the second term we have

1

c+n − c−n

(
∂c+
∂β

)

n

∂βn

∂u
= O(u), (477)

where we used the first of (475) together with the inductive hypothesis (469). Defining
the functions

123



Shock Development in Spherical Symmetry Page 67 of 246 3

f1 := 1

c+0 − c−0
− 1

c+n − c−n
, f2 :=

(
∂c+
∂α

)

0
−
(

∂c+
∂α

)

n
,

f3 :=
(

∂α

∂u

)

0
−
(

∂α

∂u

)

n
, (478)

the first term in (476) becomes

1

c+n − c−n

(
∂c+
∂α

)

n

∂αn

∂u
=
(

1

c+0 − c−0
− f1

)((
∂c+
∂α

)

0
− f2

)((
∂α

∂u

)

0
− f3

)
.

(479)

For f1,2 we note that f1,2 ∈ C1[0, ε] with f1,2(0, 0) = 0, which implies

f1,2(u, v) = O(u). (480)

For f3 we have

f3(u, v) = α̇0 −
(

∂αn

∂u

)
(u, v) = α̇0 − ∂α′

n

∂u
(u, v) − dαi

du
(u), (481)

where we used the first of (474). The inductive hypothesis together with (312) yields

f3(u, v) = O(u). (482)

From (480), (482) together with

1

c+0 − c−0

(
∂c+
∂α

)

0

(
∂α

∂u

)

0
= κ

c+0 − c−0
, (483)

where we recalled (∂c+/∂α)0α̇0 = κ (see (286)), we obtain

1

c+n − c−n

(
∂c+
∂α

)

n

∂αn

∂u
= κ

c+0 − c−0
+ O(u). (484)

Together with (477) we conclude

μn(u, v) = κ

c+0 − c−0
+ O(u). (485)

We now look at

νn = 1

c+n − c−n

{(
∂c−
∂α

)

n

∂αn

∂v
+
(

∂c−
∂β

)

n

∂βn

∂v

}
. (486)
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For the first term we use the second of (474) which together with the inductive hypoth-
esis (469) implies

1

c+n − c−n

(
∂c−
∂α

)

n

∂αn

∂v
= O(v). (487)

For the second term in (486) we use the second of (475) together with the inductive
hypothesis (469) and the property of the boundary data given by the first of (313). We
get

1

c+n − c−n

(
∂c−
∂β

)

n

∂βn

∂v
= O(v). (488)

Therefore

νn(u, v) = O(v). (489)

We now look at γn(v). Since

c̄+n(v) = c+(α+n(v), β+(v)), (490)

we have
dc̄+n

dv
(v) = ∂c+

∂α
(α+n(v), β+(v))

dα+n

dv
(v) + ∂c+

∂β
(α+n(v), β+(v))

dβ+
dv

(v). (491)

Now,

α+n(v) = α′
n(v, v) + αi (v). (492)

From α′(u, 0) = 0 together with the inductive hypothesis (469) we obtain

|α′
n(v, v)| ≤ 1

2
N0v

2. (493)

Hence

α+n(v) = α0 + α̇0v + O(v2). (494)

From (342) we have

β+(v) = β0 + O(v2). (495)

From

dα+n

dv
(v) =

(
∂α′

n

∂u
+ ∂α′

n

∂v

)
(v, v) + dαi

dv
(v), (496)

together with the inductive hypothesis we have

dα+n

dv
(v) = α̇0 + O(v). (497)
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Expanding now (∂c+/∂α)(α, β), (∂c+/∂β)(α, β) and making use of (494), (495)
we obtain

∂c+
∂α

(α+n(v), β+(v)) =
(

∂c+
∂α

)

0
+
(

∂2c+
∂α2

)

0
α̇0v + O(v2), (498)

∂c+
∂β

(α+n(v), β+(v)) =
(

∂c+
∂β

)

0
+
(

∂2c+
∂β∂α

)

0
α̇0v + O(v2). (499)

Using these together with (342), (497) in (491) and recalling (∂c+/∂α)0 α̇0 = κ we
find

dc̄+n

dv
(v) = κ + O(v). (500)

Hence

c̄+n(v) = c+0 + κv + O(v2). (501)

Therefore, using the second of (313),

c̄+n(v) − V (v) = κv − κ

2
(1 + y(v))v + O(v2). (502)

From the fact that c̄−n(v) = c−(α+n(v), β+(v)) is in C1[0, ε] we obtain, in conjunc-
tion with the second of (313),

V (v) − c̄−n(v) = c+0 − c−0 + O(v). (503)

Now, using (502) and (503) in the third of (321) we find

1

γn(v)
= c+0 − c−0

κv
(1 + ρn(v)), (504)

where

ρn(v) = ρ0(v) + O(v), with ρ0(v) =
1
2 (y(v) + 1)

1 − 1
2 (y(v) + 1)

. (505)

Remark 8 There is no index missing on β+ in (490). This is because β+ originates
from the boundary data which is not subjected to the iteration while α+n is part of the
solution of the fixed boundary problem, therefore subjected to the iteration.

In view of (311), (485), (489), (504), (505) we are in the position to apply proposi-
tion 4.1 with (μn, τn, νn, γn, ρn, tn) in the role of (μ, τ, ν, γ, ρ, t). From proposition
4.1 we have (recalling the constant C0 given in (349))

∣∣∣∣
∂tn
∂u

∣∣∣∣ ≤ C0u
2,

∣∣∣∣
∂tn
∂v

∣∣∣∣ ≤ C0v, (506)
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provided that ε is sufficiently small. Using (506) in (338) together with (473) we get

1
2r0 ≤ rn ≤ 3

2r0, (507)

provided that ε is sufficiently small. It follows from (472), (507) and the definitions
(346), (347)

sup
Tε

| Ã(αn, βn, rn)|, sup
Tε

|B̃(αn, βn, rn)| ≤ N . (508)

Taking the derivative of the first of (352) with respect to v and of the second of (352)
with respect to u we obtain from (506) together with (508) that

∣∣∣∣
∂α′

n+1

∂v

∣∣∣∣ =
∣∣∣∣
∂tn
∂v

Ãn

∣∣∣∣ ≤ C0vN ,

∣∣∣∣
∂β ′

n+1

∂u

∣∣∣∣ =
∣∣∣∣
∂tn
∂u

B̃n

∣∣∣∣ ≤ C0uN . (509)

Now we establish bounds for ∂α′
n+1/∂u, ∂β ′

n+1/∂v. (472), (507) imply

sup
Tε

∣∣∣∣∣

(
∂ Ã

∂k

)

n

∣∣∣∣∣ , sup
Tε

∣∣∣∣∣

(
∂ B̃

∂k

)

n

∣∣∣∣∣ ≤ C, k ∈ {α, β, r}. (510)

From the first of (352),

∂α′
n+1

∂u
(u, v) =

∫ v

0

∂An

∂u
(u, v′)dv′

=
∫ v

0

{
∂tn
∂v

(
∂ Ã

∂α

)

n

∂αn

∂u
+ ∂tn

∂v

(
∂ Ã

∂β

)

n

∂βn

∂u

+ ∂tn
∂v

(
∂ Ã

∂r

)

n

c−n
∂tn
∂u

+ Ãn
∂2tn
∂u∂v

}
(u, v′)dv′, (511)

where for the third term we used the second of (307). From (336), (355), (356), (506)
we obtain

∣∣∣∣
∂2tn
∂u∂v

∣∣∣∣ ≤ Cv. (512)

Now we bound (511). For the first three terms we use the second of (506), (510)
and the inductive hypothesis (469) in conjunction with (351) (and the fact that we
have bounds on the derivative of the initial data αi ). For the fourth term in (511) we
use (512). We conclude

∣∣∣∣
∂α′

n+1

∂u

∣∣∣∣ ≤ Cu2. (513)

123



Shock Development in Spherical Symmetry Page 71 of 246 3

From the second of (351),

∂β ′
n+1

∂v
(u, v) =

∫ u

v

∂Bn

∂v
(u′, v)du′ − Bn(v, v)

=
∫ u

v

{
∂tn
∂u

(
∂ B̃

∂α

)

n

∂αn

∂v
+ ∂tn

∂u

(
∂ B̃

∂β

)

n

∂βn

∂v

+ ∂tn
∂u

(
∂ B̃

∂r

)

n

c+n
∂tn
∂v

+ B̃n
∂2tn
∂u∂v

}
(u′, v)du′ − Bn(v, v), (514)

We can bound the integral in the same way as we did for (511) (and using the first of
(313)). For the term Bn(v, v) we use

|Bn(v, v)| =
∣∣∣∣
∂tn
∂u

(v, v)B̃n(v, v)

∣∣∣∣ ≤ C0vN , (515)

where we used the second of (509). Therefore,

∣∣∣∣
∂β ′

n+1

∂u

∣∣∣∣ ≤ Cuv + C0vN . (516)

From (509), (513), (516) we have

1

u

∣∣∣∣
∂α′

n+1

∂u

∣∣∣∣ ,
1

v

∣∣∣∣
∂α′

n+1

∂v

∣∣∣∣ ,
1

u

∣∣∣∣
∂β ′

n+1

∂u

∣∣∣∣ ,
1

v

∣∣∣∣
∂β ′

n+1

∂v

∣∣∣∣ ≤ Cu + C0N . (517)

Replacing u by u′, taking the supremum over u′ ∈ [v, u] and choosing ε sufficiently
small we find

‖(α′
n+1, β

′
n+1)‖X ≤ N0. (518)

This completes the inductive step and therefore the proof of the lemma. ��

4.2 Convergence

Lemma 4.2 For ε sufficiently small depending on N0, Y , the sequence ((α′
n, β

′
n); n =

0, 1, 2, . . .) converges in X.

Proof We use the notation

�nψ := ψn − ψn−1. (519)

From the first of (352) we have

∂�n+1α
′

∂v
= �n A = Ãn

∂�nt

∂v
+ ∂tn−1

∂v
�n Ã. (520)
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Therefore

∣∣∣∣
∂�n+1α

′

∂v

∣∣∣∣ ≤ C

{∣∣∣∣
∂�nt

∂v

∣∣∣∣+ v
(
|�nα| + |�nβ| + |�nr |

)}
. (521)

From the first of (351) we have

�nα = �nα
′ =
∫ v

0

∂�nα
′

∂v
(u, v′)dv′, (522)

which implies

|�nα| ≤ v2 sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣ . (523)

Similarly we get

|�nβ| ≤ u2 sup
Tε

∣∣∣∣
1

u

∂�nβ
′

∂u

∣∣∣∣ . (524)

For an estimate of |�nr(u, v)| we use (338), which gives

�nr =
∫ u

0

{
c−,n

∂�nt

∂u
+ ∂tn−1

∂u
�nc−

}
(u′, 0)du′

+
∫ v

0

{
c+,n

∂�nt

∂v
+ ∂tn−1

∂v
�nc+

}
(u, v′)dv′. (525)

We first look at the terms �nc±.

|�nc±| ≤ C {|�nα| + |�nβ|} ≤ Cu2

{
sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣+ sup
Tε

∣∣∣∣
1

u

∂�nβ
′

∂u

∣∣∣∣
}

, (526)

where for the second inequality we use (523), (524). To find an estimate for the
differences of partial derivatives of t we subtract (319) with tn−1 in the role of t from
(319) with tn in the role of t (analogously for the roles of μ and ν). We arrive at

∂2�nt

∂u∂v
+ μn

∂�nt

∂v
− νn

∂�nt

∂u
= �n, (527)

where

�n := ∂tn−1

∂u
�nν − ∂tn−1

∂v
�nμ. (528)
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The initial conditions for (527) are �nt (u, 0) = 0. Furthermore we have the boundary
condition

∂�nt

∂v
= 1

γn

∂�nt

∂u
+ ∂tn−1

∂u
�n

(
1

γ

)
, for u = v. (529)

Integrating (527) with respect to v from v = 0 yields

∂�nt

∂u
(u, v) = e−Kn(u,v)

∫ v

0
eKn(u,v′)

(
�n − μn

∂�nt

∂v

)
(u, v′)dv′, (530)

where we used the first of (366). Evaluating (530) at u = v gives

�nb(v) = e−Kn(v,v)

{
Pn(v) − κ

c+0 − c−0

(
�n f (v) + �n I (v)

)}
, (531)

where we used the definitions

�n I (v) :=
∫ v

0

{
eKn(v,v′) − 1 + eKn(v,v′)τn(v, v′)

} ∂�nt

∂v
(v, v′)dv′, (532)

Pn(v) :=
∫ v

0
eKn(v,v′)�n(v, v′)dv′. (533)

For the definition of τn(v) see (355).
We now estimate the differences �nμ, �nν. From the first equality in (476) we

obtain

�nμ = − 1

(c+,n − c−,n)(c+,n−1 − c−,n−1)

∂c+,n

∂u
�n(c+ − c−)

+ 1

c+,n−1 − c−,n−1

∂�nc+
∂u

. (534)

The first term can be bounded using the estimates (526). For the second term we use

∂c+,n

∂u
=
(

∂c+
∂α

)

n

∂αn

∂u
+
(

∂c+
∂β

)

n

∂βn

∂u
, (535)

which implies

∂�nc+
∂u

=
(

∂c+
∂α

)

n

∂�nα

∂u
+ ∂αn−1

∂u
�n

(
∂c+
∂α

)

+
(

∂c+
∂β

)

n

∂�nβ

∂u
+ ∂βn−1

∂u
�n

(
∂c+
∂β

)
. (536)
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For the first and third difference we use

∂�nα

∂u
= ∂�nα

′

∂u
,

∂�nβ

∂u
= ∂�nβ

′

∂u
. (537)

For the difference of derivatives of cn,± we use

∣∣∣∣�n

(
∂c+
∂α

)∣∣∣∣ ≤ C {|�nα| + |�nβ|} ≤ Cu2

{
sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣+ sup
Tε

∣∣∣∣
1

u

∂�nβ
′

∂u

∣∣∣∣
}

,

(538)

where we used (523), (524). The same result holds with β in the role of α. Using (537),
(538) in (536) and the resulting estimate together with (535) in (534), we obtain

|�nμ| ≤ C

{∣∣∣∣
∂�nα

′

∂u

∣∣∣∣+
∣∣∣∣
∂�nβ

′

∂u

∣∣∣∣+ u2

(
sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣+ sup
Tε

∣∣∣∣
1

u

∂�nβ
′

∂u

∣∣∣∣
)}

.

(539)

From (486) we get

�nν = − 1

(c+,n − c−,n)(c+,n−1 − c−,n−1)

∂c−,n

∂v
�n (c+ − c−)

+ 1

c+,n−1 − c−,n−1

∂�nc−
∂v

. (540)

The first term can be bounded using the estimate (526) and taking into account that

∣∣∣∣
∂c−,n

∂v

∣∣∣∣ =
∣∣∣∣
(

∂c−
∂α

)

n

∂αn

∂v
+
(

∂c−
∂β

)

n

∂βn

∂v

∣∣∣∣ ≤ Cv, (541)

where we used the inductive hypothesis (469). For the second term in (540) we use the
expression for ∂�nc−/∂v analogous to (536) and take into account the expressions
analogous to (537). We arrive at

|�nν| ≤ C

{∣∣∣∣
∂�nα

′

∂v

∣∣∣∣+
∣∣∣∣
∂�nβ

′

∂v

∣∣∣∣+ u2v

(
sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣+ sup
Tε

∣∣∣∣
1

u

∂�nβ
′

∂u

∣∣∣∣
)}

.

(542)

Defining (see (354))

� := ‖(�nα
′,�nβ

′)‖X , (543)

we deduce from (539), (542),

|�nμ| ≤ Cu�, |�nν| ≤ Cv�. (544)
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Recalling (506) we deduce from (544) that

|�n| ≤ Cuv�. (545)

Therefore,

|Pn(v)| ≤ Cv3�. (546)

Since

d�n f

dv
= �na + �nb, (547)

the boundary condition (529) gives

d�n f

dv
=
(

1

γn
+ 1

)
�nb + kn, (548)

where we use the definition

kn(v) := ∂tn−1

∂u
(v, v)�n

(
1

γ (v)

)
. (549)

Using (505) we obtain

v
d�n f

dv
=
(
c+0 − c−0

κ
+ v + c+0 − c−0

κ
ρn(v)

)
�nb + vkn . (550)

Substituting (531) we get

d(v�n f )

dv
+ An(v�n f ) = v2�n B, (551)

where An(v) is given by (374) and

�n B(v) := e−Kn(v,v)

v2

(
1 + ρn(v) + κv

c+0 − c−0

)(
c+0 − c−0

κ
Pn(v) − �n I (v)

)

+ kn(v)

v
. (552)

Integrating (551) from v = 0 to v yields

v�n f (v) =
∫ v

0
e− ∫ v

v′ An(v
′′)dv′′

v′2�n B(v′)dv′. (553)
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Substituting this back into (551) gives

d�n f (v)

dv
= v�n B(v) − 1

v2 (1 + vAn(v))

∫ v

0
e− ∫ v

v′ An(v
′′)dv′′

v′2�n B(v′)dv′.

(554)

We decompose �n B according to

�n B = 0
�n B + 1

�n B, (555)

where
1
�n B contains the terms of �n B which are linear in �n I . The right hand side

of (554) being linear in �n B, we decompose analogous to the decomposition (555),
i.e.

d�n f (v)

dv
= 0

Rn + 1
Rn, (556)

1
Rn being linear in �n I . Recalling the third of (321) together with the second of (313)
we deduce

∣∣∣∣�n

(
1

γ

)
(v)

∣∣∣∣ ≤ C
|�nα(v, v)|

v2 ≤ C sup
Tε

∣∣∣∣
1

v

∂�nα
′

∂v

∣∣∣∣ ≤ C�, (557)

where we used (523) (notice that in the third of (321) we have γn in the role of γ

and c̄±,n(v) = c±(α+n(v), β+(v)) in the role of c̄±(v) but β+(v) as well as V (v) are
given by the boundary data). From the first of (506) we then get

|kn(v)| ≤ Cv2�. (558)

Using (546) and (558) we find

| 0
�n B(v)| ≤ Cv�. (559)

From (397) we have

|vAn(v)| ≤ C. (560)

Therefore, through (554),

| 0
Rn(v)| ≤ Cv2�. (561)

We now estimate �n I . From (367) we get

|eK (v,v′) − 1| ≤ Cv2, (562)
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while from (355) we have

|τn(v, v)| ≤ Cv. (563)

Using (562) and (563) in (532) we obtain

|�n I (v)| ≤ Cv

∫ v

0

∣∣∣∣
∂�nt

∂v
(v, v′)

∣∣∣∣ dv′. (564)

Therefore,

| 1
�n B(v)| ≤ C

v2 |�n I (v)| ≤ C

v

∫ v

0

∣∣∣∣
∂�nt

∂v
(v, v′)

∣∣∣∣ dv′, (565)

which implies

1

v2

∫ v

0
v′2| 1

�n B(v′)|dv′ ≤ 1

v

∫ v

0
v′| 1

�n B(v′)|dv′

≤ C

v

∫ v

0

(∫ v′

0

∣∣∣∣
∂�nt

∂v
(v′, v′′)

∣∣∣∣ dv′′
)
dv′

≤ C
∫ v

0
�nT (v, v′′)dv′′, (566)

where

�nT (u, v) := sup
u′∈[v,u]

∣∣∣∣
∂�nt

∂v
(u′, v)

∣∣∣∣ . (567)

Since, from (565)

v| 1
�n B(v)| ≤ C

∫ v

0
�nT (v, v′′)dv′′, (568)

we conclude, together with (566), that the part of the right hand side of (554) which

is linear in �n I (which we denote by
1
Rn) satisfies the estimate

| 1
Rn(v)| ≤ C

∫ v

0
�nT (v, v′′)dv′′. (569)

From (561), (569) we conclude

∣∣∣∣
d�n f (v)

dv

∣∣∣∣ ≤ Cv2� + C
∫ v

0
�nT (v, v′)dv′. (570)
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Integrating (527) with respect to u from u = v yields

∂�nt

∂v
(u, v)

= e−Ln(u,v)

{
�na(v) +

∫ u

v

eLn(u′,v)

(
�n(u

′, v) +
(

νn
∂�nt

∂u

)
(u′, v)

)
du′
}

.

(571)

From (355), (356) we have

|νn(u, v)| ≤ Cv, |μn(u, v)| ≤ C. (572)

The second of these implies, through the second of (366), that

|Ln(u, v)| ≤ Cu. (573)

Using the first of (572) as well as (573) and (545) we obtain

∣∣∣∣
∂�nt

∂v
(u, v)

∣∣∣∣ ≤ C

{
|�na(v)| + u2v� + v

∫ u

v

∣∣∣∣
∂�nt

∂u
(u′, v)

∣∣∣∣ du′
}

. (574)

Now, from (530) in conjunction with (545) and the second of (572) we get

∣∣∣∣
∂�nt

∂u
(u, v)

∣∣∣∣ ≤ C

{
uv2� +

∫ v

0

∣∣∣∣
∂�nt

∂v
(u, v′)

∣∣∣∣ dv′
}

. (575)

Using this for the integral of the right hand side of (574) we estimate

∫ u

v

∣∣∣∣
∂�nt

∂u
(u′, v)

∣∣∣∣ du′ ≤ Cuv2(u − v)� +
∫ u

v

(∫ v

0

∣∣∣∣
∂�nt

∂v
(u′, v′)

∣∣∣∣ dv′
)
du′

≤ C

{
uv2(u − v)� + (u − v)

∫ v

0
�nT (u, v′)dv′

}
. (576)

Substituting this into (574) we obtain

∣∣∣∣
∂�nt

∂v
(u, v)

∣∣∣∣ ≤ C

{
|�na(v)| + u2v� + v(u − v)

∫ v

0
�nT (u, v′)dv′

}
. (577)

From (547), (548),

�na(v) = 1

1 + γn(v)

(
d�n f (v)

dv
+ γn(v)kn(v)

)
. (578)

Using (558), (570) we obtain

|�na(v)| ≤ C

{
v2� +

∫ v

0
�nT (v, v′)dv′

}
. (579)
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Using this estimate in (577) we find

∣∣∣∣
∂�nt

∂v
(u, v)

∣∣∣∣ ≤ C

{
uv� +

∫ v

0
�nT (u, v′)dv′

}
. (580)

Taking the supremum over u in [v, u] we deduce

�nT (u, v) ≤ C

{
uv� +

∫ v

0
�nT (u, v′)dv′

}
. (581)

Setting

�n�u(v) :=
∫ v

0
�nT (u, v′)dv′, (582)

(581) becomes

d

dv
�n�u(v) ≤ Cuv� + C�n�u(v). (583)

Integrating yields

�n�u(v) ≤ Cuv2�. (584)

Using this in (581), we find

|�nT (u, v)| ≤ Cuv�. (585)

The above imply, through (580),

∣∣∣∣
∂�nt

∂v
(u, v)

∣∣∣∣ ≤ Cuv�. (586)

Using this in (575) we conclude

∣∣∣∣
∂�nt

∂u
(u, v)

∣∣∣∣ ≤ Cuv2�. (587)

Using these estimates together with (506) and (526) in (525) we deduce

|�nr(u, v)| ≤ Cu3�. (588)

It then follows from (521) together with (523), (524), (586), (588) that

∣∣∣∣
∂�n+1α

′

∂v

∣∣∣∣ ≤ Cuv�. (589)
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From the second of (352) we deduce

∂�n+1β
′

∂u
= �n B = B̃n

∂�nt

∂u
+ ∂tn−1

∂u
�n B̃. (590)

Therefore (cf. (521)),

∣∣∣∣
∂�n+1β

′

∂u

∣∣∣∣ ≤ C

{∣∣∣∣
∂�nt

∂u

∣∣∣∣+ u
(
|�nα| + |�nβ| + |�nr |

)}
. (591)

Using now (523), (524), (587) (588) we arrive at

∣∣∣∣
∂�n+1β

′

∂u
(u, v)

∣∣∣∣ ≤ Cu2�. (592)

Now, from the first of (352) we deduce

∂�n+1α
′

∂u
(u, v) =

∫ v

0

{(
∂A

∂α

)

n

∂�nα

∂u
+ ∂αn−1

∂u
�n

(
∂A

∂α

)
+
(

∂A

∂β

)

n

∂�nβ

∂u

+ ∂βn−1

∂u
�n

(
∂A

∂β

)
+
(

∂A

∂r

)

n
c−,n

∂�nt

∂u

+ ∂tn−1

∂u

(
∂A

∂r

)

n
�nc− + ∂tn−1

∂u
c−,n−1�n

(
∂A

∂r

)

+ Ãn
∂2�nt

∂u∂v
+ ∂2tn−1

∂u∂v
�n Ã

}
(u, v′)dv′. (593)

For the second term on the right of (593) we use

∣∣∣∣�n

(
∂A

∂α

)∣∣∣∣ ≤ C

{
|�nα| + |�nβ| + |�nr | +

∣∣∣∣
∂�nt

∂v

∣∣∣∣
}

≤ Cu2�, (594)

where for the last inequality we used (523), (524), (586), (588). The fourth term on
the right of (593) we treat analogous to the second. For the fifth term we use (587) and
for the sixth we use (526). The seventh and the last term in (593) can be bounded in
the same way as the second and the fourth. This leaves us with the eighth term. From
(527) in conjunction with (545), (586), (587) we get

∣∣∣∣
∂2�nt

∂u∂v
(u, v)

∣∣∣∣ ≤ Cuv�. (595)

Putting things together we deduce from (593)

∣∣∣∣
∂�n+1α

′

∂u
(u, v)

∣∣∣∣ ≤ Cu2�. (596)
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Using the second of (352) we see that for the difference

∂�n+1β
′

∂v
(597)

we get an analogous equation as we got in (593) with the exception of the additional
term

−�n B(v, v). (598)

For the terms analogous to the ones showing up in (593) we use the analogous estimates
while for the term (598) we use the first equality in (590) with u = v and the estimate
(592). Therefore,

∣∣∣∣
∂�n+1β

′

∂v
(u, v)

∣∣∣∣ ≤ Cuv�. (599)

Using (589), (592), (596), (599), it follows

‖(�n+1α
′,�n+1β

′)‖X ≤ Cu� = Cu‖(�nα
′,�nβ

′)‖X . (600)

It follows that for ε small enough we have convergence of the sequence in the space
X . This concludes the proof of the lemma. ��

The two lemmas above show that the sequence (α′
n, β

′
n) converges to (α′, β ′) ∈ X

uniformly in Tε. Therefore we also have uniform convergence of (αn, βn) to (α, β) ∈
C1(Tε) (see (351)). Now, (586), (587) show the convergence of the derivatives of
tn . Therefore, the pair of integral equations (364), (365) are satisfied in the limit. We
denote by t the limit of (tn). It then follows that the mixed derivative ∂2t/∂u∂v satisfies
(359). In view of the Hodograph system (307) the partial derivatives of rn converge
and the limit satisfies the Hodograph system. Let us denote by r the limit of (rn).
We have thus found a solution of the fixed boundary problem. Since every member
of the sequence (tn) satisfies the expressions for the asymptotic form as given in the
statement of proposition 4.1 these expressions (i.e. (362), (363)) also hold for the limit
t . We have therefore proven the following proposition.

Proposition 4.2 Let h(u) and αi (u) be given by

h(u) = u3ĥ(u), ĥ ∈ C1[0, ε], ĥ(0) = λ

6κ(c+0 − c−0)
, (601)

αi (u) = α0 + α̇0v + v2α̂i (v), α̂i ∈ C1[0, ε], α̂i (0) = 1

2
α̈0. (602)

Furthermore, let β+(v) ∈ C1[0, ε], V (v) ∈ C0[0, ε] satisfy
dβ+
dv

(v) = O(v), V (v) = c+0 + κ

2
(1 + y(v))v + O(v2), (603)
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where y is a given function such that

y ∈ C1[0, ε], y(0) = −1. (604)

Let

Y := sup
[0,ε]

∣∣∣∣
dy

dv

∣∣∣∣ . (605)

Let r0>0 and let N0 be given as in (350). Then there exists a solution (α, β, t, r) ∈
C1(Tε) of the characteristic system (306), (307) such that α(u, 0) = αi (u), β(v, v) =
β+(v), t (u, 0) = h(u), r(0, 0) = r0 and

∂t

∂v
(v, v) = 1

γ (v)

∂t

∂u
(v, v), with γ (v) = c+(α(v, v), β+(v)) − V (v)

V (v) − c−(α(v, v), β+(v))
, (606)

‖(α − αi , β − β+)‖X ≤ N0, (607)

d f

dv
(v) − λ

3κ2 v = λ

18κ2

{
2v(y(v) + 1) + 1

v2

∫ v

0
v′3 dy

dv
(v′)dv′

}
+ O(v2), (608)

∣∣∣∣
∂t

∂v
(u, v) − λ

3κ2 v

∣∣∣∣ ≤ C(Y )uv,

∣∣∣∣
∂t

∂u
(u, v) − λ(3u2 − v2)

6κ(c+0 − c−0)

∣∣∣∣ ≤ C(Y )u3, (609)

provided ε is sufficiently small depending on N0, Y .

5 Construction

5.1 Inductive Step

We recall briefly the strategy of the iteration. We start with the boundary functions
corresponding to the m’th iterate (zm, β+,m, Vm). We then solve the corresponding
fixed boundary problem using the result from the previous chapter. The solution of the
fixed boundary problem provides us with the functions α+,m+1, fm+1, gm+1. Using
fm+1, gm+1 we solve the identification equation, the solution of which we denote by
zm+1. Using then α+,m+1, zm+1 in the jump conditions we obtain β+,m+1, Vm+1. We
have thus obtained the boundary functions corresponding to the (m + 1)’th iterate
(zm+1, β+,m+1, Vm+1). This concludes the iteration.

The input for the construction problem are the following assumptions for the bound-
ary functions zm , β+,m , Vm :

zm(v) = vym(v) with ym(0) = −1, (610)

β+,m(v) = β0 + v2β̂+,m(v) with β̂+,m(0) = λ

6κ2

(
∂β∗

∂t

)

0
, (611)

Vm(v) = c+0 + κ

2
(1 + ym(v))v + v2V̂m(v), (612)
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with ym, β̂+,m ∈ C1[0, ε], V̂m ∈ C0[0, ε]. λ, κ and (∂β∗/∂t)0 are given by the solution
in the maximal development. We recall (see (244), (250))

κ =
(

∂2r∗

∂w∂t

)

0
, λ = −κ

(
∂3r∗

∂w3

)

0
. (613)

We choose closed balls in the function spaces as follows

BY =
{
f ∈ C1[0, ε] : f (0) = −1,

∣∣∣∣
d f

dv

∣∣∣∣ ≤ Y

}
, (614)

Bδ1 =
{
f ∈ C1[0, ε] : f (0) = λ

6κ2

(
∂β∗

∂t

)

0
,

∣∣∣∣
d f

dv

∣∣∣∣ ≤ δ1

}
, (615)

Bδ2 =
{
f ∈ C0[0, ε] : | f | ≤ δ2

}
, (616)

where Y , δ1, δ2 are to be chosen appropriately.
We initiate the sequence by

y0 := − 1, β̂+,0 := λ

6κ2

(
∂β∗

∂t

)

0
, V̂0 := 0. (617)

Proposition 5.1 Choosing the constants Y , δ1, δ2 appropriately, the sequence
((ym, β̂+,m, V̂m);m = 0, 1, 2, . . .) is contained in BY × Bδ1 × Bδ2 , provided we
choose ε suitably small.

Proof We see that

(y0, β̂+,0, V̂0) ∈ BY × Bδ1 × Bδ2 . (618)

The inductive hypothesis is

ym ∈ BY , β̂+,m ∈ Bδ1, V̂m ∈ Bδ2 . (619)

Therefore,

sup
v∈[0,ε]

∣∣∣∣
dym
dv

∣∣∣∣ ≤ Y. (620)

In the arguments to follow q>0 will denote a number which we can make as small
as we wish by choosing ε suitably small. From ym(0) = −1 we obtain

|ym(v) + 1| ≤ vY ≤ q. (621)

In the following we use the notation g(v) = Od(v
n) to denote

|g(v)| ≤ C(d)vn, (622)

where the constant C is a non-negative, non-decreasing, continuous function of d.
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From (611) and (612) we get

dβ+,m

dv
(v) = O(v), Vm(v) = c+0 + κ

2
(1 + ym(v))v + Oδ2(v

2), (623)

provided that ε is sufficiently small. This can be seen as follows. The statements (623)
are equivalent, respectively, to

∣∣∣∣
dβ+,m

dv
(v)

∣∣∣∣ ≤ Cv,

∣∣∣Vm(v) − c+0 − κ

2
(1 + ym(v))v

∣∣∣ ≤ C(δ2)v
2. (624)

From the inductive hypothesis (619) we have
∣∣∣∣β̂+,m(v) − λ

6κ2

(
∂β∗

∂t

)

0

∣∣∣∣ ≤ vδ1, (625)

which implies

|β̂+,m(v)| ≤ C (626)

for a fixed numerical constant C if we choose ε sufficiently small. Using this in (see
(611))

1

v

dβ+,m

dv
(v) = 2β̂+,m(v) + v

dβ̂+,m

dv
(v) (627)

we obtain ∣∣∣∣
1

v

dβ+,m

dv
(v)

∣∣∣∣ ≤ C + vδ1 ≤ C (628)

if we choose ε sufficiently small. This is equivalent to the first of (624). The second
of (624) follows directly from the inductive hypothesis.

Recalling the definition of N0 in the fixed boundary problem (see (342),…,(350)),
we note that since the constant in the first of (624) is a fixed numerical constant, also
N0 is a fixed numerical constant.

We now apply proposition 4.2 with (ym, β+,m, Vm) in the role of (y, β+, V ). The
resulting solution we denote by (αm+1, βm+1, tm+1, rm+1). We also denote

fm+1(v) := tm+1(v, v), (629)

gm+1(v) := rm+1(v, v) − r0, (630)

α+,m+1(v) := αm+1(v, v). (631)

From the solution of the fixed boundary problem we have

d fm+1

dv
(v) − λ

3κ2 v = λ

18κ2

{
2v(ym(v) + 1) + 1

v2

∫ v

0
v′3 dym

dv
(v′)dv′

}
+ Oδ2(v

2).

(632)
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Defining the function f̂m+1 by

fm+1(v) = v2 f̂m+1(v), (633)

we deduce

d f̂m+1

dv
(v) = 1

v2

(
d fm+1

dv
(v) − 2

v
fm+1(v)

)

= λ

18κ2v2

{
2v(ym(v) + 1) + 1

v2

∫ v

0
v′3 dym

dv
(v′)dv′ − 2

v
(Am + Bm)

}

+ Oδ2(1), (634)

where

Am :=
∫ v

0
2v′(ym(v′) + 1)dv′, Bm :=

∫ v

0

1

v′2

(∫ v′

0
v′′3 dym

dv
(v′′)dv′′

)
dv′

(635)

and we used (632). Integrating by parts we obtain

Am = v2(ym(v) + 1) −
∫ v

0
v′2 dym

dv
(v′)dv′, Bm = −1

v

∫ v

0
v′3 dym

dv
(v′)dv′

+
∫ v

0
v′2 dym

dv
(v′)dv′. (636)

This implies

d f̂m+1

dv
(v) = λ

6κ2v4

∫ v

0
v′3 dym

dv
(v′)dv′ + Oδ2(1). (637)

Hence

∣∣∣∣
d f̂m+1

dv
(v)

∣∣∣∣ ≤
λY

24κ2 + C(δ2). (638)

Defining the function δm(v) by

δm(v) := gm(v) − c+0 fm(v), (639)

we obtain

dδm+1

dv
(v) = (Vm(v) − c+0)

d fm+1

dv
(v). (640)
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Remark 9 The appearance of the indicesm andm+1 originates from the basic strategy
(see (303)) in which the solution of the fixed boundary problem carrying the index
m + 1 satisfies

d fm+1

dv
(v)Vm(v) = dgm+1

dv
(v). (641)

This confusion did not appear up to now since we dropped the index m from the outer
iteration during the solution process of the fixed boundary problem. An analogous
situation appears when evaluating the function βm+1 on the boundary u = v. There
we have

βm+1(v, v) = β+,m(v), (642)

since β+,m is the boundary value for the fixed boundary problem whose solution carries
the index m + 1. The function β+,m+1 is determined later on by making use of the
jump conditions. The appearance of the indices m and m + 1 in (632) are explained
in the same way.

We define the function φ(v) by

φm+1(v) := d fm+1

dv
(v) − λ

3κ2 v. (643)

We split up the function δm+1(v) according to

δm+1(v) = δ0(v) + δ1(v), (644)

where the functions δ0(v) and δ1(v) are given by δ0(0) = 0, δ1(0) = 0 and

dδ0

dv
(v) = λ

6κ
(1 + ym(v))v2,

dδ1

dv
(v) =

(
Vm(v) − c+0 − κ

2
(1 + ym(v))v

) λ

3κ2 v + (Vm(v) − c+0)φm+1(v).

(645)

(We make use of Vm(v) = c+0 + κ
2 (1 + ym(v))v + Oδ2(v

2)). Defining the functions

δ̂i (v), i = 0, 1 by δi (v) = v3δ̂i (v) we get

d δ̂0

dv
(v) = 1

v3

dδ0

dv
(v) − 3

v4 δ0(v)

= λ

6κ

{
1 + ym(v)

v
− 3

v4

∫ v

0
(1 + ym(v′))v′2dv′

}

= λ

6κv4

∫ v

0
v′3 dym

dv
(v′)dv′, (646)

where we integrated by parts.

123



Shock Development in Spherical Symmetry Page 87 of 246 3

From Vm(v) − c+0 = κ
2 (1 + ym(v))v + Oδ2(v

2) we have (see (621))

|Vm(v) − c+0| ≤ κ

2
v2Y + C(δ2)v

2. (647)

Together with (see the right hand side of (632))

|φm+1(v)| ≤ CYv2 + C(δ2)v
2, (648)

we obtain

|Vm(v) − c+0||φm+1(v)| ≤ CY 2v4 + C(δ2)Yv4. (649)

Therefore, for ε sufficiently small,

∣∣∣∣
dδ1

dv
(v)

∣∣∣∣ ≤ C(δ2)v
3, |δ1(v)| ≤ C(δ2)v

4. (650)

Using this in

d δ̂1

dv
(v) = 1

v3

dδ1

dv
(v) − 3

v4 δ1(v) (651)

we deduce

∣∣∣∣
d δ̂1

dv
(v)

∣∣∣∣ ≤ C(δ2). (652)

Using (646), (652) we arrive at

d δ̂m+1

dv
(v) = λ

6κv4

∫ v

0
v′3 dym

dv
(v′)dv′ + Oδ2(1). (653)

Hence

∣∣∣∣
d δ̂m+1

dv
(v)

∣∣∣∣ ≤
λY

24κ
+ C(δ2). (654)

In view of (632), (640), (647) we have

∣∣∣∣
dδm+1

dv
(v)

∣∣∣∣ ≤ C(Y, δ2)v
3. (655)

Therefore, in conjunction with δm+1(0) = gm+1(0) − c+0 fm+1(0) = 0, we have

|δm+1(v)| ≤ C(Y, δ2)v
4, (656)
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which implies

δ̂m+1(0) = 0. (657)

Now we look at the identification equation, i.e. at

gm+1(v) + r0 = r∗( fm+1(v), vym+1). (658)

Here the function on the right hand side is the solution r∗(t, w) given in the maximal
development (recall that we set t0 = w0 = 0), while the left hand side is given by the
solution of the fixed boundary problem (The identification equation is an equation for
ym+1 as a function of v given the functions gm+1(v), fm+1(v)). We have

gm+1(v) = δm+1(v) + c+0 fm+1(v) = v3δ̂m+1(v) + c+0v
2 f̂m+1(v). (659)

In the following discussion of the identification equation we will omit the index m+1.
We define the function

h(t, w) := r∗(t, w) − r0 −
(

∂r∗

∂t

)

0
t −
(

∂2r∗

∂t2

)

0

t2

2
−
(

∂2r∗

∂t∂w

)

0
tw

−
(

∂4r∗

∂w4

)

0

w4

24
−
(

∂3r∗

∂t∂w2

)

0

tw2

2
−
(

∂3r∗

∂w3

)

0

w3

6
. (660)

Thus

r∗(t, w) = r0 +
(

∂r∗

∂t

)

0
t +
(

∂2r∗

∂t2

)

0

t2

2
+
(

∂2r∗

∂t∂w

)

0
tw

+
(

∂4r∗

∂w4

)

0

w4

24
+
(

∂3r∗

∂t∂w2

)

0

tw2

2
+
(

∂3r∗

∂w3

)

0

w3

6
+ h(t, w). (661)

Remark 10 The function h(t, w) is introduced in order to represent the terms O(vk)

for k ≥ 5 in the expansion of r∗(t, w), when v2 f̂ (v) for t and vy for w are being
substituted. We use

(
∂r∗

∂w

)

0
=
(

∂2r∗

∂w2

)

0
= 0. (662)

Let now

F(v, y) := g(v) + r0 − r∗( f (v), vy). (663)

The identification equation becomes

F(v, y) = 0. (664)
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Using now

(
∂r∗

∂t

)

0
= c+0,

(
∂2r∗

∂w∂t

)

0
= κ,

(
∂3r∗

∂w3

)

0
= −λ

κ
, (665)

and expressing (t, w) in terms of v and y according to t = f (v) = v2 f̂ (v), w = vy
and making use of (659) the function F(v, y) becomes

F(v, y) = λ

6κ
v3y3 − κv3 f̂ (v)y + v3δ̂(v)

−
(

∂2r∗

∂t2

)

0
v4
(
f̂ (v)

)2 −
(

∂4r∗

∂w4

)

0

y4v4

24

−
(

∂3r∗

∂t∂w2

)

0

y2v4 f̂ (v)

2
− h(v2 f̂ (v), vy). (666)

We note that

h(v2 f̂ (v), vy) = v5H( f̂ (v), y), (667)

where H is a smooth function of its two arguments.
Defining the function F̂ by the relation

F(v, y) = v3 F̂(v, y), (668)

(666) is equivalent to

F̂(v, y) = λ

6κ
y3 − κ f̂ (v)y + δ̂(v) + vR(v, y), (669)

where the remainder R is given by

R(v, y) := −
(

∂2r∗

∂t2

)

0

(
f̂ (v)

)2 −
(

∂4r∗

∂w4

)

0

y4

24
−
(

∂3r∗

∂t∂w2

)

0

y2 f̂ (v)

2

− vH( f̂ (v), y). (670)

The identification equation is now equivalent to

F̂(v, y) = 0. (671)

At v = 0 this becomes (we recall that δ̂(0) = 0 and note that f̂ (0) = λ/6κ2 (see
(632), (633)))

λ

6κ
y(y2 − 1) = 0. (672)
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The only physical solution is y = −1. We set v0 := 0, y0 := − 1. We now see that

∂ F̂

∂y
(v0, y0) = λ

3κ
> 0. (673)

Therefore we are able to solve the identification equation for y as a function of v for
v small enough. We have

|y| ≤ C. (674)

Differentiating (671) implicitly yields

dy

dv
(v) = −

∂ F̂

∂v
(v, y(v))

∂ F̂

∂y
(v, y(v))

. (675)

We have

∂ F̂

∂y
(v, y) = λ

2κ
y2 − κ f̂ (v) + v

∂R

∂y
(v, y), (676)

∂ F̂

∂v
(v, y) = −κy

d f̂

dv
(v) + d δ̂

dv
(v) + R(v, y) + v

∂R

∂v
(v, y). (677)

We first derive bounds for the remainder R and its derivatives of first order. From (638)
we have, for ε small enough,

| f̂ (v)| ≤ C,

∣∣∣∣v
d f̂

dv
(v)

∣∣∣∣ ≤ C. (678)

Therefore,
∣∣∣∣v

∂R

∂v
(v, y)

∣∣∣∣ ≤ C,

∣∣∣∣v
∂R

∂y
(v, y)

∣∣∣∣ ≤ C, |R(v, y)| ≤ C. (679)

We now examine (675). Using (676) we find for the denominator

∣∣∣∣
∂ F̂

∂y
(v, y) − ∂ F̂

∂y
(v0, y0)

∣∣∣∣ ≤
λ

2κ
|y2 − 1| + κ| f̂ (v) − f̂ (0)| + v

∣∣∣∣
∂R

∂v
(v, y)

∣∣∣∣ .
(680)

Now, for small enough ε, we have

|y2 − 1| = |(y + 1)(y − 1)| ≤ C |y + 1| ≤ CYv ≤ Cv
1
2 , (681)

| f̂ (v) − f̂ (0)| ≤ sup
v′∈[0,v]

∣∣∣∣
d f̂

dv
(v′)
∣∣∣∣v ≤ CYv + C(δ2)v ≤ Cv

1
2 , (682)
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which, together with the second of (679) implies

∣∣∣∣
∂ F̂

∂y
(v, y) − ∂ F̂

∂y
(v0, y0)

∣∣∣∣ ≤ Cv
1
2 . (683)

Now we look at the numerator of (675). Making use of (677) we get

∣∣∣∣
∂ F̂

∂v
(v, y) − κ

d f̂

dv
(v) − d δ̂

dv
(v)

∣∣∣∣ ≤ κ

∣∣∣∣
d f̂

dv
(v)

∣∣∣∣|y + 1| + |R(v, y)| + v

∣∣∣∣
∂R

∂v
(v, y)

∣∣∣∣ .
(684)

From (638) together with (621) we have, for small enough ε,

∣∣∣∣
d f̂

dv
(v)

∣∣∣∣|y + 1| ≤ C. (685)

Together with the first and the third of (679) we obtain

∂ F̂

∂v
(v, y) = κ

d f̂

dv
(v) + d δ̂

dv
(v) + O(1), (686)

which implies, through (637), (653),

∂ F̂

∂v
(v, y) = λ

3κv4

∫ v

0
v′3 dy

dv
(v′)dv′ + Oδ2(1). (687)

Substituting (687) for the numerator in (675), using the estimate (683) together
with (673) for the denominator in (675) and putting back the indices m and m + 1 we
arrive at

dym+1

dv
(v) = 1

v4(1 − εm(v))

∫ v

0
v′3 dym

dv
(v′)dv′ + Oδ2(1), (688)

where

|εm(v)| ≤ Cv
1
2 . (689)

Taking the absolute value and then taking the supremum over v ∈ [0, ε] yields

sup
v∈[0,ε]

∣∣∣∣
dym+1

dv
(v)

∣∣∣∣ ≤
1
4Y

1 − Cε
1
2

+ C ′(δ2). (690)

Choosing then ε suitably small such that

Cε
1
2 ≤ 1

2
, (691)
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where C is the constant appearing in the denominator of (690), we obtain

sup
v∈[0,ε]

∣∣∣∣
dym+1

dv
(v)

∣∣∣∣ ≤
1

2
Y + C ′(δ2). (692)

Therefore, choosing now Y = 2C ′(δ2),

sup
v∈[0,ε]

∣∣∣∣
dym+1

dv
(v)

∣∣∣∣ ≤ Y. (693)

Remark 11 Y depends on δ2.

In the following we will establish closure for the iterations of the functions β̂m ,
V̂m . The balls for the respective iterations have been chosen according to (615), (616).
Since there are no more indices m to appear, only indices m + 1, we will omit in the
following the index m + 1. We have

Y = Oδ2(1). (694)

From (638) it follows (using f̂ (0) = λ/6κ2)

d f̂

dv
(v) = Oδ2(1), f̂ (v) = λ

6κ2 + Oδ2(v). (695)

This implies, through (633) and the first line of (634),

d f

dv
(v) = λ

3κ2 v + Oδ2(v
2), (696)

f (v) = λ

6κ2 v2 + Oδ2(v
3). (697)

From zm+1(v) = vym+1(v) we obtain

dz

dv
(v) = v

dy

dv
(v) + y(v)

= −1 + Oδ2(v). (698)

Therefore,

z(v) = −v + Oδ2(v
2). (699)

Now we look at the asymptotic form of β−(v). We have

β−(v) = β∗( f (v), z(v)), (700)
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where the function on the right is β∗(t, w) from the state ahead (i.e. given by the
solution in the maximal development) and we recall that t0 = w0 = 0. We have

dβ−
dv

(v) = ∂β∗

∂t
( f (v), z(v))

d f

dv
(v) + ∂β∗

∂w
( f (v), z(v))

dz

dv
(v). (701)

Expanding (∂β∗/∂t)(t, w) to first order and substituting t = f (v), w = z(v) we
obtain

∂β∗

∂t
( f (v), z(v)) =

(
∂β∗

∂t

)

0
−
(

∂2β∗

∂t∂w

)

0
v + Oδ2(v

2), (702)

while expanding (∂β∗/∂w)(t, w) to second order, substituting t = f (v), w = z(v)

and using (see (266))

(
∂β∗

∂w

)

0
= 0,

(
∂2β∗

∂w2

)

0
= 0, (703)

yields

∂β∗

∂w
( f (v), z(v)) =

{(
∂2β∗

∂t∂w

)

0

λ

6κ2 + 1

2

(
∂3β∗

∂w3

)

0

}
v2 + Oδ2(v

3). (704)

Therefore,

dβ−
dv

(v) =
(

∂β∗

∂t

)

0

λ

3κ2 v + Oδ2(v
2). (705)

Hence,

β−(v) = β0 +
(

∂β∗

∂t

)

0

λ

6κ2 v2 + Oδ2(v
3). (706)

Now we find the asymptotic form of α−(v). From

α−(v) = α∗( f (v), z(v)), (707)

we have

dα−
dv

(v) = ∂α∗

∂t
( f (v), z(v))

d f

dv
(v) + ∂α∗

∂w
( f (v), z(v))

dz

dv
(v). (708)

Expanding now (∂α∗/∂t)(t, w) and (∂α∗/∂w)(t, w) to first order and substituting
t = f (v), w = z(v) we obtain

∂α∗

∂t
( f (v), z(v)) =

(
∂α∗

∂t

)

0
−
(

∂2α∗

∂t∂w

)

0
v + Oδ2(v

2), (709)
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∂α∗

∂w
( f (v), z(v)) = α̇0 −

(
∂2α∗

∂w2

)

0
v + Oδ2(v

2). (710)

Therefore,

dα−
dv

(v) =
{(

∂α∗

∂t

)

0

λ

3κ2 +
(

∂2α∗

∂w2

)

0

}
v + α̇0

d

dv
(vy(v)) + Oδ2(v

2). (711)

Thus,

α−(v) = α0 + α̇0vy(v) +
{(

∂α∗

∂t

)

0

λ

3κ2 +
(

∂2α∗

∂w2

)

0

}
v2

2
+ Oδ2(v

3)

= α0 + α̇0vy(v) + O(v2), (712)

where the last equality holds provided we choose ε suitably small.
We now deal with the asymptotic form of α+(v). From

∂α

∂v
= ∂t

∂v
Ã(α, β, r) (713)

we obtain

α+(v) = α(v, v) = αi (v) +
∫ v

0

(
∂t

∂v
Ã(α, β, r)

)
(v, v′)dv′, (714)

where we made use of α(v, 0) = αi (v). This implies

dα+
dv

(v) = dαi

dv
(v) +

(
∂t

∂v
Ã(α, β, r)

)
(v, v) +

∫ v

0

{(
∂2t

∂u∂v
Ã(α, β, r)

)

+ ∂t

∂v

(
∂ Ã

∂α
(α, β, r)

∂α

∂u
+ ∂ Ã

∂β
(α, β, r)

∂β

∂u

+ ∂ Ã

∂r
(α, β, r)c−(α, β)

∂t

∂u

)}
(v, v′)dv′. (715)

The solution of the fixed boundary problem satisfies (see proposition 4.2)

∣∣∣∣
∂t

∂v
(u, v) − λ

3κ2 v

∣∣∣∣ ≤ Cuv,

∣∣∣∣
∂t

∂u
(u, v) − λ(3u2 − v2)

6κ(c+0 − c−0)

∣∣∣∣ ≤ Cu3. (716)

Here the constants depend on Y and δ2. Therefore (cf. (694)),

∂t

∂v
(u, v) = λ

3κ2 v + Oδ2(uv),
∂t

∂u
(u, v) = λ(3u2 − v2)

6κ(c+0 − c−0)
+ Oδ2(u

3). (717)
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The first implies
(

∂t

∂v
Ã(α, β, r)

)
(v, v) = λ

3κ2 Ã0v + Oδ2(v
2). (718)

From

∂2t

∂u∂v
= −μ

∂t

∂v
+ ν

∂t

∂u
, (719)

we deduce, together with (717) and (cf. (485), (489))

μ(u, v) = κ

c+0 − c−0
+ Oδ2(u), ν(u, v) = Oδ2(v), (720)

that

∂2t

∂u∂v
(v, v′) = − λ

3κ(c+0 − c−0)
v + Oδ2(v

2) = O(v), (721)

where the second equality holds provided we choose ε small enough. Therefore
∫ v

0

(
∂2t

∂u∂v
Ã(α, β, r)

)
(v, v′)dv′ = O(v2). (722)

Using the first of (717) we find
∫ v

0

(
∂t

∂v
(. . .)

)
(v, v′)dv′ = O(v2), (723)

where we denote by (. . .) the bracket in the last line of (715). We conclude from (718),
(722), (723) that

dα+
dv

(v) = dαi

dv
(v) + λ Ã0

3κ2 v + Oδ2(v
2), (724)

which implies

α+(v) = αi (v) + λ Ã0

6κ2 v2 + Oδ2(v
3)

= αi (v) + O(v2), (725)

where the second equality holds provided we choose ε small enough.
We now turn to the jumps [α(v)], [β(v)]. The first line of (725) together with the

first line of (712) yields (note that Ã0 = (∂α∗/∂t)0)

[α(v)] = α̇0(1 − y(v))v −
(

∂2α∗

∂w2

)

0

v2

2
+ Oδ2(v

3)

= α̇0(1 − y(v))v + O(v2), (726)
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where the second equality holds provided we choose ε sufficiently small. Using now
(224), i.e.

[β(v)] = [α(v)]3 G(α+(v), α−(v), β−(v)) (727)

we get from (726)

[β(v)] = 8G0α̇
3
0v3 + Oδ2(v

4), (728)

where

G0 :=G(α+(0), α−(0), β−(0)) = G(α0, α0, β0). (729)

Therefore, in view of (706), we get

β+(v) = β0 +
(

∂β∗

∂t

)

0

λ

6κ2 v2 + Oδ2(v
3). (730)

From β+(v) = β0 + v2β̂+(v) we have

dβ̂+
dv

(v) = − 2

v3 (β+(v) − β0) + 1

v2

dβ+
dv

(v). (731)

Taking the derivative of (727) we obtain

d

dv
[β(v)] =

(
3 [α(v)]2 d

dv
[α(v)]

)
G(α+(v), α−(v), β−(v))

+ [α(v)]3 dG

dv
(α+(v), α−(v), β−(v)). (732)

From (698), (711), (724) we have

d

dv
[α(v)] = 2α̇0 + Oδ2(v). (733)

Using this together with (726) in (732) we obtain

d

dv
[β(v)] = 24G0α̇

3
0v2 + Oδ2(v

3). (734)

Using now (705) we find

dβ+
dv

(v) =
(

∂β∗

∂t

)

0

λ

3κ2 v + Oδ2(v
2). (735)
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Therefore, substituting (730), (735) into (731), we conclude (putting back the index
m + 1)

dβ̂+,m+1

dv
(v) = Oδ2(1). (736)

We now find an expression for the asymptotic form of Vm+1(v). We again omit the
index m + 1 for now. We have (see (170))

V =
[
T tr
]

[
T tt
] . (737)

We rewrite the numerator as

[
T tr ] = T tr (α+, β+) − T tr (α−, β−) = T tr (α+, β+) − T tr (α+, β−)

+ T tr (α+, β−) − T tr (α−, β−). (738)

We expand

T tr (α+, β+) − T tr (α+, β−) = ∂T tr

∂β
(α+, β−) [β] + O

(
[β]2

)
(739)

and

T tr (α+, β−) − T tr (α−, β−)

= ∂T tr

∂α
(α+, β−) [α] − 1

2

∂2T tr

∂α2 (α+, β−) [α]2 + O
(

[α]3
)

. (740)

Similar expressions hold for the denominator of (737). Using [β] = [α]3 G(α+,

α−, β−) (see (224)) it follows

V =
∂T tr

∂α
(α+, β−) − 1

2

∂2T tr

∂α2 (α+, β−) [α] + O
(

[α]2
)

∂T tt

∂α
(α+, β−) − 1

2

∂2T tt

∂α2 (α+, β−) [α] + O
(

[α]2
)

=
∂T tr

∂α
(α+, β−) − 1

2

∂2T tr

∂α2 (α+, β−) [α]

∂T tt

∂α
(α+, β−) − 1

2

∂2T tt

∂α2 (α+, β−) [α]

+ O
(

[α]2
)

, (741)

where for the second equality we used ∂T tt/∂α 
= 0, which follows from the first of
(185). We now use the first of (187), i.e.

∂T tr

∂α
= c+

∂T tt

∂α
, (742)
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which implies

V = c+(α+, β−) − 1

2

∂c+
∂α

(α+, β−) [α] + O
(

[α]2
)

. (743)

We look at c+(α+, β−). We have

d

dv
c+(α+(v), β−(v)) = ∂c+

∂α
(α+(v), β−(v))

dα+
dv

(v) + ∂c+
∂β

(α+(v), β−(v))
dβ−
dv

(v).

(744)

Using (dβ−/dv)0 = 0 we obtain

∂c+
∂α

(α+(v), β−(v)) =
(

∂c+
∂α

)

0
+
{(

∂2c+
∂α2

)

0

(
dα+
dv

)

0
+
(

∂2c+
∂α∂β

)

0

(
dβ−
dv

)

0

}
v

+ O(v2)

= κ

α̇0
+
(

∂2c+
∂α2

)

0
α̇0v + O(v2), (745)

where we also used (∂c+/∂α)0 = κ/α̇0. We also have

∂c+
∂β

(α+(v), β−(v)) =
(

∂c+
∂β

)

0
+ O(v). (746)

Using now (745) and (746) together with the asymptotic forms of dα+/dv, dβ−/dv

given by (724), (735) respectively, we obtain

d

dv
c+(α+(v), β−(v)) = κ

α̇0

dαi

dv
(v) +

{
λ

3κ2

(
κ Ã0

α̇0
+
(

∂c+
∂β

)

0

(
∂β∗

∂t

)

0

)

+ α̇0

(
∂2c+
∂α2

)

0

dαi

dv
(v)

}
v + Oδ2(v

2). (747)

Therefore,

c+(α+(v), β−(v)) = c+0 + κ

α̇0
(αi (v) − α0) + α̇0

(
∂2c+
∂α2

)

0
(αi (v) − αi (v))v

+ λ

6κ2

{
κ Ã0

α̇0
+
(

∂c+
∂β

)

0

(
∂β∗

∂t

)

0

}
v2 + Oδ2(v

3), (748)

where we introduced

αi (v) := 1

v

∫ v

0
αi (v

′)dv′. (749)

Therefore, provided we choose ε small enough,

c+(α+(v), β−(v)) = c+0 + κv + O(v2). (750)
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Using (726), (745), (750) in (743) we arrive at

V (v) = c+0 + κ

2
(1 + y(v))v + O(v2). (751)

Using now V̂ (v) = (1/v2)(V (v)− c+0 − (κ/2)(1 + y(v))v) we deduce, putting back
the index m + 1,

V̂m+1(v) = O(1), (752)

i.e.

sup
v∈[0,ε]

|V̂m+1(v)| ≤ C (753)

for a fixed numerical constant C . Choosing now the size of the ball for the iteration
of the function V̂m , i.e. δ2, to be equal to the numerical constant C appearing in (753)
we see that V̂m+1 ∈ Bδ2 . From (736) we then have

sup
v∈[0,ε]

∣∣∣∣
dβ̂+,m+1

dv
(v)

∣∣∣∣ ≤ C (754)

for a fixed numerical constant C . Choosing now the size of the ball for the iteration
of the function β̂+,m , i.e. δ1, to be equal to the numerical constant appearing in (754)
we see that β̂+,m+1 ∈ Bδ1 . From (694) we get

Y ≤ C, (755)

for a fixed numerical constant C . In view of (693) this shows that ym+1 ∈ BY . This
concludes the proof of the proposition. ��

5.2 Convergence

We define

‖ f ‖X := sup
[0,v]

∣∣∣∣
d f

dv

∣∣∣∣ . (756)

For differences between successive members of the iteration we will use the notation
�m f := fm − fm−1. For any sequence of functions hm ∈ C1 with identical values
hm(0) =: h0 for any m we have

�mh(v) =
∫ v

0

d

dv
�mh(v′)dv′, (757)

which implies

|�mh| ≤ v‖�mh‖X . (758)
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5.2.1 Estimates for the Solution of the Fixed Boundary Problem

Lemma 5.1 Let (tm+1, rm+1, αm+1, βm+1) be the solution of the fixed boundary
problem as given by proposition 4.2, corresponding to the boundary functions
(zm, β+,m, Vm). Then the following estimates hold

∣∣∣∣
d�m+1 f̂

dv
(v)

∣∣∣∣ ≤
λ

24κ2 ‖�m y‖X + C

{
sup
[0,v]

|�mV̂ | + v‖�m β̂+‖X + v‖�m y‖X
}

,

(759)∣∣∣∣∣
d�m+1δ̂

dv
(v)

∣∣∣∣∣ ≤
λ

24κ
‖�m y‖X + C

{
sup
[0,v]

|�mV̂ | + v‖�m β̂+‖X + v‖�m y‖X
}

,

(760)

‖�m+1α+‖X ≤ Cv2

{
sup
[0,v]

|�mV̂ | + v‖�m β̂+‖X + ‖�m y‖X
}

. (761)

Proof The difference �m+1t satisfies

∂2�m+1t

∂u∂v
+ μm+1

∂�m+1t

∂v
− νm+1

∂�m+1t

∂u
= �m+1, (762)

where

�m+1 = ∂tm
∂u

�m+1ν − ∂tm
∂v

�m+1μ. (763)

In addition we have the boundary condition

∂�m+1t

∂v
= 1

γm+1

∂�m+1t

∂u
+ ∂tm

∂u
�m+1

(
1

γ

)
for u = v, (764)

where

γm = c̄+,m(v) − Vm−1(v)

Vm−1(v) − c̄−,m(v)

, c̄±,m(v) = c±(α+,m(v), β+,m−1(v)), (765)

and the initial condition

�m+1t (u, 0) = 0. (766)

Before we study equation (762) we estimate the difference �m+1(1/γ ) and the
term �m+1. We have

�m+1

(
1

γ

)
= ωm+1

(c̄+,m+1 − Vm)(c̄+,m − Vm−1)
, (767)
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where

ωm+1 = (Vm − c̄−,m+1)(c̄+,m − Vm−1) − (Vm−1 − c̄−,m)(c̄+,m+1 − Vm). (768)

Remark 12 The mixture of indices in (765), (768) arises because the index increases
with the solution of the fixed boundary problem as described in the basic strategy. α+
and c± carry the index of the solution of the fixed boundary problem while β+ and
Vm carry the index of the data which goes into the fixed boundary problem.

We consider first the denominator of (767). From

dc̄+,m

dv
= ∂c+

∂α
(α+,m, β+,m−1)

dα+,m

dv
+ ∂c+

∂β
(α+,m, β+,m−1)

dβ+,m−1

dv
(769)

together with (∂c+/∂α)0 = κ/α̇0 and the asymptotic forms of dα+,m/dv, dβ+,m/dv

given by (724), (735) respectively, we find

c̄+,m(v) = c+0 + κv + O(v2). (770)

Using this together with

Vm(v) = c+0 + O(v2), (771)

(recall that Vm(v) = c+0 + κ
2 (1 + ym(v))v + v2V̂ (v), ym(v) = −1 + O(v)) we get

(c̄+,m+1 − Vm)(c̄+,m − Vm−1) = κ2v2 + O(v3). (772)

We turn to the numerator of (767). We rewrite it as

ωm+1 = (�mV − �m+1c̄−)(c̄+,m − Vm−1) − (Vm−1 − c̄−,m)(�m+1c̄+ − �mV ).

(773)

We have

�mV (c̄+,m − Vm−1) = O(v2|�m y|) + O(v3|�mV̂ |). (774)

Now we study the difference �m+1c̄±. Since c̄±,m(v) = c±(α+,m(v), β+,m−1(v))

we need to estimate the difference �m+1α+. From (see the first of (306))

�m+1α(u, v) =
∫ v

0
�m+1A(u, v′)dv′, (775)
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we obtain

|�m+1α(u, v)| ≤ Cv sup
Tu

|�m+1A(u, v)|

≤ Cv

{
sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v

(
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)}

.

(776)

From this we deduce that for ε small enough

sup
Tu

|�m+1α| ≤ Cu

{
sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ u

(
sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)}

.

(777)

For the difference |�m+1r | we integrate (307) (cf. also (338)) to get

�m+1r(u, v) =
∫ u

0

(
c−,m+1

∂�m+1t

∂u
+ ∂tm

∂u
�m+1c−

)
(u′, 0)du′

+
∫ v

0

(
c+,m+1

∂�m+1t

∂v
+ ∂tm

∂v
�m+1c+

)
(u, v′)dv′, (778)

which implies

|�m+1r(u, v)| ≤ Cu

{
sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣

+ u

(
sup
Tu

|�m+1α| + sup
Tu

|�m+1β|
)}

. (779)

Using this in (777) and choosing ε sufficiently small we find

sup
Tu

|�m+1α| ≤ Cu

{
u2 sup

Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ u sup
Tu

|�m+1β|
}

.

(780)

To estimate the difference �m+1β we use (see the second of (306))

�m+1β(u, v) = �mβ+(v) +
∫ u

v

�m+1B(u′, v)du′, (781)
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which implies

|�m+1β(u, v)| ≤ |�mβ+(v)| + Cu

{
sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣

+ u2
(

sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)}

. (782)

Using (779) and choosing ε small enough, this in turn implies

sup
Tu

|�m+1β| ≤ sup
[0,u]

|�mβ+| + Cu

{
sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣

+u2

(
u sup

Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

|�m+1α|
)}

. (783)

Using this in (780) we obtain

sup
Tu

|�m+1α| ≤ Cu

{
u2 sup

Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ u sup
[0,u]

|�mβ+|
}

, (784)

provided that we choose ε suitably small. For future reference we use this in (783)
which implies

sup
Tu

|�m+1β| ≤ C sup
[0,u]

|�mβ+| + Cu

{
sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u3 sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣
}

.

(785)

From (784) we have

sup
[0,v]

|�m+1α+| ≤ sup
Tv

|�m+1α|

≤ Cv

{
v2 sup

Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v sup
[0,v]

|�mβ+|
}

.

(786)

It now follows for the difference �m+1c̄±

|�m+1c̄±| ≤ C

{
v3 sup

Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ v sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
[0,v]

|�mβ+|
}

. (787)
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Using this we get

|�m+1c̄−(c̄+,m − Vm−1)| ≤ Cv

{
v3 sup

Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ v sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
[0,v]

|�mβ+|
}

,

(788)

|(Vm−1 − c̄−,m)�m+1c̄+| ≤ C

{
v3 sup

Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ v sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
[0,v]

|�mβ+|
}

,

(789)

where for (788) we used c̄+,m −Vm−1 = O(v) and for (789) we used Vm−1 − c̄−,m =
c+0 − c−0 + O(v).

The remaining part of the numerator of (767) is

(Vm−1 − c̄−m)(�mV ) = (c+0 − c−0)κv

2
�m y + O(v2|�m y|) + O(v2|�mV̂ |).

(790)

Using now (774), (788), (789), (790) together with (772) in (767) we arrive at

�m+1

(
1

γ

)
= c+0 − c−0

2κv
�m y + O(|�m y|) + O(|�mV̂ |) + O

(
1

v2 sup
[0,v]

|�mβ+|
)

+ O
(

1

v
sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣
)

+ O
(

v sup
Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
)

. (791)

We turn to �m+1. For an estimate of this we need estimates for the differences
�m+1μ, �m+1ν. From the first of (318) we have

�m+1μ = − 1

(c+,m+1 − c−,m+1)(c+,m − c−,m)

∂c+,m+1

∂u
�m+1(c+ − c−)

+ 1

c+,m − c−,m

∂�m+1c+
∂u

, (792)

which implies

|�m+1μ| ≤ C

{
|�m+1c+| + |�m+1c−| +

∣∣∣∣
∂�m+1c+

∂u

∣∣∣∣
}

. (793)

For the last term we use

∂�m+1c+
∂u

=
(

∂c+
∂α

)

m+1

∂�m+1α

∂u
+ ∂αm

∂u
�m+1

(
∂c+
∂α

)

+
(

∂c+
∂β

)

m+1

∂�m+1β

∂u
+ ∂βm

∂u
�m+1

(
∂c+
∂β

)
. (794)
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For the partial derivatives of c+ with respect to α, β we have

∣∣∣∣�m+1

(
∂c+
∂α

)∣∣∣∣ ,
∣∣∣∣�m+1

(
∂c+
∂β

)∣∣∣∣ ≤ C {|�m+1α| + |�m+1β|} . (795)

For the partial derivative of β with respect to u we use the second of (306). I.e. we
have

∂�m+1β

∂u
= �m+1B, (796)

which implies

∣∣∣∣
∂�m+1β

∂u

∣∣∣∣ ≤ C

{∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u2
(
|�m+1α| + |�m+1β| + |�m+1r |

)}
. (797)

Using (795), (797) in (794) and the resulting estimate in (793) we obtain

|�m+1μ| ≤ C

{
|�m+1α| + |�m+1β| + u2|�m+1r | +

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+
∣∣∣∣
∂�m+1α

∂u

∣∣∣∣
}

.

(798)

For the term involving the partial derivative of α with respect to u we use

αm(u, v) = αi (u) +
∫ v

0
Am(u, v′)dv′, (799)

which implies

∂�m+1α

∂u
(u, v)

=
∫ v

0

{(
∂A

∂α

)

m+1

∂�m+1α

∂u
+ ∂αm

∂u
�m+1

(
∂A

∂α

)

+
(

∂A

∂β

)

m+1

∂�m+1β

∂u
+ ∂βm

∂u
�m+1

(
∂A

∂β

)
+
(

∂A

∂r

)

m+1
c−,m+1

∂�m+1t

∂u

+ ∂tm
∂u

((
∂A

∂r

)

m+1
�m+1c− + c−,m�m+1

(
∂A

∂r

))

+ Ãm+1
∂2�m+1t

∂u∂v
+ ∂2tm

∂u∂v
�m+1 Ã

}
(u, v′)dv′. (800)

We rewrite this as

∂�m+1α

∂u
(u, v) =

∫ v

0

9∑
i=1

Ii (u, v′)dv′, (801)
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where the Ii denote the nine terms appearing in (800) (the (. . .) bracket counting as
two terms). The first term we will absorb on the left hand side. For I2 we use

∣∣∣∣�m+1

(
∂A

∂α

)∣∣∣∣ ≤
∣∣∣∣
∂tm+1

∂v
�m+1

(
∂ Ã

∂α

)∣∣∣∣+
∣∣∣∣
(

∂ Ã

∂α

)

m

∂�m+1t

∂v

∣∣∣∣

≤ C

{
v
(
|�m+1α| + |�m+1β| + |�m+1r |

)
+
∣∣∣∣
∂�m+1t

∂v

∣∣∣∣
}

, (802)

which implies

∣∣∣∣
∫ v

0
I2(u, v′)dv′

∣∣∣∣ ≤ Cv

{
v
(

sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)

+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣
}

. (803)

For I3 we use

∣∣∣∣
(

∂A

∂β

)

m+1

∣∣∣∣ =
∣∣∣∣
∂tm+1

∂v

(
∂ Ã

∂β

)

m+1

∣∣∣∣ ≤ Cv. (804)

Using now (797) this implies

∣∣∣∣
∫ v

0
I3(u, v′)dv′

∣∣∣∣ ≤ Cv2

{
sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣

+u2

(
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)}

. (805)

I4 can be treated in the same way as I2. For I5 we use (804) with r in the role of β,
which implies

∣∣∣∣
∫ v

0
I5(u, v′)dv′

∣∣∣∣ ≤ Cv2 sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣ . (806)

For I6 we use

∣∣∣∣
∂tm
∂u

(
∂A

∂r

)

m+1

∣∣∣∣ =
∣∣∣∣∣
∂tm
∂u

∂tm+1

∂v

(
∂ Ã

∂r

)

m+1

∣∣∣∣∣ ≤ Cu2v, (807)

which implies

∣∣∣∣
∫ v

0
I6(u, v′)dv′

∣∣∣∣ ≤ Cu2v2

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β|
}

. (808)
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For I7 we use

∣∣∣∣�m+1

(
∂A

∂r

)∣∣∣∣ ≤ C

{∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v
(
|�m+1α| + |�m+1β| + |�m+1r |

)}
, (809)

which implies

∣∣∣∣
∫ v

0
I7(u, v′)dv′

∣∣∣∣ ≤ Cu2v

{
sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣

+ v

(
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)}

. (810)

For I8 we use

∂2�m+1t

∂u∂v
= �m+1 − μm+1

∂�m+1t

∂v
+ νm+1

∂�m+1t

∂u

= ∂tm
∂u

�m+1ν − ∂tm
∂v

�m+1μ − μm+1
∂�m+1t

∂v
+ νm+1

∂�m+1t

∂u
. (811)

From this it follows that
∣∣∣∣
∂2�m+1t

∂u∂v

∣∣∣∣ ≤ C

{
v|�m+1μ| + u2|�m+1ν| +

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}

, (812)

which implies

∣∣∣∣
∫ v

0
I8(u, v′)dv′

∣∣∣∣ ≤ Cv

{
v sup

Tu
|�m+1μ| + u2 sup

Tu
|�m+1ν|

+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}

. (813)

For I9 we use

∣∣∣∣
∂2tm
∂u∂v

∣∣∣∣ ≤
∣∣∣∣μm

∂tm
∂v

∣∣∣∣+
∣∣∣∣νm

∂tm
∂u

∣∣∣∣ ≤ Cu, (814)

which implies

∣∣∣∣
∫ v

0
I9(u, v′)dv′

∣∣∣∣ ≤ Cuv

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
}

. (815)

Using the estimates for the integrals of I2 . . . I9 in (801), taking the supremum of the
resulting estimate in Tu and absorbing the term involving I1 on the left hand side it
follows that for small enough ε we have
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sup
Tu

∣∣∣∣
∂�m+1α

∂u

∣∣∣∣ ≤ C

{
u2
(

sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)

+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ u2 sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u2 sup
Tu

|�m+1μ| + u3 sup
Tu

|�m+1ν|
}
.

(816)

Using this estimate in (798) it follows that for ε small enough we have

sup
Tu

|�m+1μ| ≤ C

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + u2 sup
Tu

|�m+1r |

+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u3 sup
Tu

|�m+1ν|
}
. (817)

To get an estimate for �m+1ν we apply a similar procedure. The estimate (793) is
replaced by

|�m+1ν| ≤ C

{
|�m+1c+| + |�m+1c−| +

∣∣∣∣
∂�m+1c−

∂v

∣∣∣∣
}

. (818)

Using now

∂�m+1α

∂v
= �m+1A, (819)

it follows that in the role of the estimate (798) we have

|�m+1ν| ≤ C

{
|�m+1α| + |�m+1β| + u|�m+1r | +

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+
∣∣∣∣
∂�m+1β

∂v

∣∣∣∣
}

.

(820)

Now for the estimate of ∂�m+1β/∂v we use

∂βm+1

∂v
= dβ+,m

dv
− Bm+1 +

∫ u

v

∂Bm+1

∂v
(u′, v)du′. (821)

This follows from the second of (306) integrated with respect to u from u = v up to
u. Using this we get for the difference ∂�m+1β/∂v terms which are analogous to the
ones in (800) (A replaced by B, ∂/∂u replaced by ∂/∂v) but in addition to the integral
we have the terms

d�mβ+
dv

− �m+1B. (822)
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For the second difference in (822) we use (796), (797). It follows

sup
Tu

∣∣∣∣
∂�m+1β

∂v

∣∣∣∣ ≤ sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣+ C

{
u2
(

sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
Tu

|�m+1r |
)

+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u2 sup
Tu

|�m+1μ| + u3 sup
Tu

|�m+1ν|
}
. (823)

Therefore, for ε small enough, we have

sup
Tu

|�m+1ν| ≤ C

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + u sup
Tu

|�m+1r | + sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣

+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u2 sup
Tu

|�m+1μ|
}
. (824)

From (817), (824) together with (779) we obtain

sup
Tu

|�m+1μ| ≤ C

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + u3 sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣

+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}
, (825)

sup
Tu

|�m+1ν| ≤ C

{
sup
Tu

|�m+1α| + sup
Tu

|�m+1β| + sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣

+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}
. (826)

Substituting now (784), (785) we get

sup
Tu

|�m+1μ| ≤ C

{
u sup

[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}

, (827)

sup
Tu

|�m+1ν| ≤ C

{
sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}

, (828)

where we also used sup[0,u] |�m+1β+| ≤ u sup[0,u] |d�m+1β/dv|. Using the esti-
mates (827), (828) in (763) we arrive at

sup
Tu

|�m+1| ≤ C J1(u), (829)

where

J1(u) := u2 sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣+ u2 sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ u sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣ . (830)
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We now look at equation (762). We are going to deal with this equation in a similar
way as we dealt with the one appearing in the convergence proof of the fixed boundary
problem. Integrating with respect to v yields (for Km+1 recall the first of (366))

∂�m+1t

∂u
(u, v) = e−Km+1(u,v)

∫ v

0
eKm+1(u,v′)

(
�m+1 − μm+1

∂�m+1t

∂v

)
(u, v′)dv′.

(831)

We define

�m+1 I (v) :=
∫ v

0

{
eKm+1(v,v′) − 1 + eKm+1(v,v′)τm+1(v, v′)

} ∂�m+1t

∂v
(v, v′)dv′,

(832)

Pm+1(v) :=
∫ v

0
eKm+1(v,v′)�m+1(v, v′)dv′. (833)

We recall that τm+1(u, v) is given by

μm+1(u, v) = κ

c+0 − c−0
(1 + τm+1(u, v)) (834)

and that τm+1(u, v) = O(u). We obtain from (831) (recall that b(v) = (∂t/∂u)(v, v))

�m+1b(v) = e−Km+1(v,v)

{
Pm+1(v) − κ

c+0 − c−0
(�m+1 f (v) + �m+1 I (v))

}
.

(835)

Defining

�m+1(v) := ∂tm
∂u

(v, v)�m+1

(
1

γ (v)

)
, (836)

we obtain from (764) (recall a(v) = (∂t/∂v)(v, v))

�m+1a(v) = 1

γm+1(v)
�m+1b(v) + �m+1(v), (837)

which implies

d�m+1 f

dv
(v) =

(
1

γm+1(v)
+ 1

)
�m+1b(v) + �m+1(v). (838)

Using the estimate (829) in (833) we find

|Pm+1(v)| ≤ Cv2

{
v‖�mβ+‖X + v sup

Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}

. (839)
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Using (791) together with the second of (362) we obtain

�m+1(v) = λ

6κ2 v�m y(v) + O(v2|�m y(v)|) + O(v2|�mV̂ (v)|)

+ O(sup
[0,v]

|�mβ+(v)|) + O
(

v sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣
)

+ O
(

v3 sup
Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
)

.

(840)

We substitute (835) into (838) and arrive at

d(v�m+1 f (v))

dv
+ Am+1(v)(v�m+1 f (v)) = v2�m+1B(v), (841)

where (for ρ see (357))

Am+1(v) = e−Km+1(v,v)

(
ρm+1(v)

v
+ κ

c+0 − c−0

)
− 1

v

(
1 − e−Km+1(v,v)

)
,

(842)

�m+1B(v) = e−Km+1(v,v)

v2

(
1 + ρm+1(v) + κv

c+0 − c−0

)

×
(
c+0 − c−0

κ
Pm+1(v) − �m+1 I (v)

)
+ �m+1(v)

v
. (843)

Integrating (841) from v = 0 gives

v�m+1 f (v) =
∫ v

0
e− ∫ v

v′ Am+1(v
′′)dv′′

v′2�m+1B(v′)dv′. (844)

Substituting back into (841) yields

d�m+1 f

dv
(v) = v�m+1B(v) − 1

v2 (1 + vAm+1(v))

×
∫ v

0
e− ∫ v

v′ Am+1(v
′′)dv′′

v′2�m+1B(v′)dv′. (845)

Now we decompose �m+1B into

�m+1B = 0
�m+1B + 1

�m+1B, (846)

where
1
�m+1B contains the terms of �m+1B which are linear in �m+1 I . Analogously

we decompose

d�m+1 f

dv
= 0

Rm+1 + 1
Rm+1. (847)
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We estimate
0
�m+1B using (839),(840). We obtain

| 0
�m+1B(v)| ≤ C

{
|�m y(v)| + v|�mV̂ (v)| + ‖�mβ+‖X

+ sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣
}
. (848)

This implies

| 0
Rm+1(v)| ≤ Cv J0(v), (849)

where

J0(v) := |�m y(v)| + v|�mV̂ (v)| + ‖�mβ+‖X + sup
Tv

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ sup
Tv

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣ .
(850)

We now estimate
1
�m+1B. For this we need an estimate for �m+1 I . From

Km+1(u, v) = O(v2) we have

eKm+1(v,v′) − 1 = O(v2). (851)

Since we also have τm+1(v) = O(v) we obtain from (832)

|�m+1 I (v)| ≤ Cv

∫ v

0

∣∣∣∣
∂�m+1t

∂v
(v, v′)

∣∣∣∣ dv′, (852)

which implies

| 1
�m+1B(v)| ≤ C

v2 |�m+1 I (v)| ≤ C

v

∫ v

0

∣∣∣∣
∂�m+1t

∂v
(v, v′)

∣∣∣∣ dv′. (853)

Therefore,

1

v2

∫ v

0
v′2| 1

�m+1B(v′)|dv′ ≤ 1

v

∫ v

0
v′| 1

�m+1B(v′)|dv′

≤ C

v

∫ v

0

(∫ v′

0

∣∣∣∣
∂�m+1t

∂v
(v′, v′′)

∣∣∣∣ dv′′
)
dv′

≤ C
∫ v

0
�m+1T (v, v′′)dv′′, (854)
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where we use the definition

�m+1T (v, v′′) := sup
v′∈[v′′,v]

∣∣∣∣
∂�m+1t

∂v
(v′, v′′)

∣∣∣∣ . (855)

Using this definition also in (853) we obtain

v| 1
�m+1B(v)| ≤ C

∫ v

0
�m+1T (v, v′)dv′. (856)

From the estimates (854), (856) we find

| 1
Rm+1(v)| ≤ C

∫ v

0
�m+1T (v, v′)dv′′. (857)

This together with (849) gives

∣∣∣∣
d�m+1 f

dv
(v)

∣∣∣∣ ≤ C

{
v J0(v) +

∫ v

0
�m+1T (v, v′)dv′

}
. (858)

Integrating (762) with respect to u from u = v yields

∂�m+1t

∂v
(u, v) = e−Lm+1(u,v)

{
�m+1a(v)

+
∫ u

v

eLm+1(u′,v)

(
�m+1(u

′, v) +
(

νm+1
∂�m+1t

∂u

)
(u′, v)

)
du′
}
.

(859)

Using now νm+1(u, v) = O(v) (cf. (489)) together with (829) we obtain

∣∣∣∣
∂�m+1t

∂v
(u, v)

∣∣∣∣ ≤ C

{
|�m+1a(v)| + u J1(u) + v

∫ u

v

∣∣∣∣
∂�m+1t

∂u
(u′, v)

∣∣∣∣ du′
}

.

(860)

Now, from (831) we get

∣∣∣∣
∂�m+1t

∂u
(u, v)

∣∣∣∣ ≤ C

{
v J1(u) +

∫ v

0

∣∣∣∣
∂�m+1t

∂v
(u, v′)

∣∣∣∣ dv′
}

. (861)

From this we obtain

∫ u

v

∣∣∣∣
∂�m+1t

∂u
(u′, v)

∣∣∣∣ du′ ≤ C

{
v(u − v)J1(u) + (u − v)

∫ v

0
�m+1T (u, v′)dv′

}
.

(862)
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Using this in (860) we find

∣∣∣∣
∂�m+1t

∂v
(u, v)

∣∣∣∣ ≤ C

{
|�m+1a(v)| + u J1(u) + v(u − v)

∫ v

0
�m+1T (u, v′)dv′

}
.

(863)

From (837) we have

�m+1a(v) = 1

1 + γm+1(v)

(
d�m+1 f

dv
(v) + γm+1(v)�m+1(v)

)
. (864)

Using the estimates for �m+1 and d�m+1 f/dv given by (840), (858) respectively, we
obtain

|�m+1a(v)| ≤ C

{
v J0(v) +

∫ v

0
�m+1T (v, v′)dv′

}
. (865)

Using this in (863) we get

∣∣∣∣
∂�m+1t

∂v
(u, v)

∣∣∣∣ ≤ C

{
v J0(v) + u J1(u) +

∫ v

0
�m+1T (v, v′)dv′

}

≤ C

{
uFm(u) + u sup

Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ u sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣

+
∫ v

0
�m+1T (u, v′)dv′

}
, (866)

where we use the definition

Fm(u) := sup
[0,u]

|�m y| + u sup
[0,u]

|�mV̂ | + sup
[0,u]

∣∣∣∣
d�mβ+

dv

∣∣∣∣ . (867)

We also define

F̃m(u) := Fm(u) + sup
Tu

∣∣∣∣
∂�m+1t

∂u

∣∣∣∣+ sup
Tu

∣∣∣∣
∂�m+1t

∂v

∣∣∣∣ . (868)

From (866) with u′ in the role of u and taking the supremum over u′ ∈ [v, u] we
deduce

�m+1T (u, v) ≤ C

{
u F̃m(u) +

∫ v

0
�m+1T (u, v′)dv′

}
. (869)

Defining now

�m+1�u(v) :=
∫ v

0
�m+1T (u, v′)dv′, (870)
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(869) becomes

d

dv
�m+1�u(v) ≤ CuF̃m(u) + C�m+1�u(v), (871)

which implies

�m+1�u(v) ≤ Cuv F̃m(u). (872)

Therefore,

|�m+1T (u, v)| ≤ CuF̃m(u), (873)

i.e.

∣∣∣∣
∂�m+1t

∂v
(u, v)

∣∣∣∣ ≤ CuF̃m(u), (874)

which in turn implies, through (861),

∣∣∣∣
∂�m+1t

∂u
(u, v)

∣∣∣∣ ≤ CuF̃m(u). (875)

It follows that for ε small enough

∣∣∣∣
∂�m+1t

∂v
(u, v)

∣∣∣∣ ≤ CuFm(u), (876)
∣∣∣∣
∂�m+1t

∂u
(u, v)

∣∣∣∣ ≤ CuFm(u). (877)

We call these the rough estimates. In the following we will use these to get more
precise estimates.

Using (876) in (832) we get

|�m+1 I (v)| ≤ Cv3Fm(v), (878)

which implies, through the first inequality of (853),

| 1
�m+1B(v)| ≤ CvFm(v). (879)

Now, from (848), together with the rough estimates, we obtain

| 0
�m+1B(v)| ≤ CFm(v). (880)
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Therefore,

|�m+1B(v)| ≤ CFm(v), (881)

which, in conjunction with (844), implies

|�m+1 f (v)| ≤ Cv2Fm(v). (882)

Using the rough estimates in (839) yields

|Pm+1(v)| ≤ Cv3Fm(v). (883)

Now we use (878), (882), (883) in (835) and arrive at

∣∣∣∣�m+1b(v) + κ�m+1 f (v)

c+0 − c−0

∣∣∣∣ ≤ Cv3Fm(v). (884)

Using the rough estimates in (840) we get

�m+1(v) = λ

6κ2 v�m y(v) + O(v2|�mV̂ (v)|) + O (v‖�mβ+‖X ) + O(v2Fm(v)).

(885)

Using now (883), (885) in (843) we get

0
�m+1B = λ

6κ2 �m y(v) + O(v sup
[0,v]

|�mV̂ |) + O(‖�mβ+‖X ) + O(vFm(v)).

(886)

Together with (879) we find

�m+1B(v) = λ

6κ2 �m y(v) + O(v sup
[0,v]

|�mV̂ |) + O(‖�mβ+‖X ) + O(vFm(v)).

(887)

Now we derive the precise estimate for Am+1(v). In view of (842) we need first an
estimate for ρm+1(v). From (357) we have

ρm+1(v) = ρ0,m+1(v) + O(v). (888)

From (394) we have

ρ0,m+1(v) = O(v). (889)

Therefore,

Am+1(v) = O(1), (890)
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which, in conjunction with (882), implies

Am+1(v)(v�m+1 f (v)) = O(v3Fm(v)). (891)

Using (887), (891) in (841) we arrive at

d(v�m+1 f (v))

dv
= λ

6κ2 v2�m y(v) + O(v3 sup
[0,v]

|�mV̂ |)

+ O(v2‖�mβ+‖X ) + O(v3Fm(v)). (892)

Let us make the following generic definition. By Em(v) we mean a function of the
kind

Em(v) :=O(v‖�m y‖X ) + O(sup
[0,v]

|�mV̂ |) + O(v‖�m β̂+‖X ). (893)

Using now

sup
[0,v]

∣∣∣∣
d�mβ+

dv

∣∣∣∣ ≤ Cv2 sup
[0,v]

∣∣∣∣
d�m β̂+

dv

∣∣∣∣, (894)

(892) becomes

d(v�m+1 f (v))

dv
= λ

6κ2 v2�m y(v) + v3Em(v). (895)

Therefore,

�m+1 f (v) = 1

v

λ

6κ2

∫ v

0
v′2�m y(v

′)dv′ + v3Em(v). (896)

Integrating by parts we obtain

6κ2

λ
�m+1 f (v) = v3

3
�m y(v) − 1

3v

∫ v

0
v′3 d�m y

dv
(v′)dv′ + v3Em(v). (897)

Now we express the above in terms of �m+1 f̂ (v) given by �m+1 f (v) =
v2�m+1 f̂ (v). Using |�m y(v)| ≤ v‖�m y‖X , we obtain from (896),

|�m+1 f̂ (v)| ≤ λ

24κ2 v‖�m y‖X + vEm(v). (898)

Since

d�m+1 f̂

dv
= 1

v3

(
d(v�m+1 f (v))

dv
− 3�m+1 f (v)

)
, (899)
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from (895), (897) we deduce

∣∣∣∣
d�m+1 f̂

dv
(v)

∣∣∣∣ ≤
λ

24κ2 ‖�m y‖X + Em(v). (900)

We turn to δm+1(v) = gm+1(v) − c+0 fm+1(v). From (see (640))

dδm+1

dv
= (Vm − c+0)

d fm+1

dv
(901)

we have

d�m+1δ

dv
= d fm+1

dv
�mV + (Vm−1 − c+0)

d�m+1 f

dv
. (902)

For the first term in (902) we use (see (632) and Vm(v) − c+0 = κ
2 (1 + ym(v))v +

O(v2))

d fm+1

dv
(v) = λ

3κ2 v + O(v2), �mV (v) = κ

2
v�m y(v) + O(v2Em(v)), (903)

and get

d fm+1

dv
(v)�mV (v) = λ

6κ
v2�m y(v) + O(v3Em(v)). (904)

For the second term in (902) we use

d fm+1

dv
(v) = 2v f̂m+1(v) + v2 d f̂m+1

dv
(v), (905)

which implies, in conjunction with (898), (900),

d�m+1 f

dv
(v) = O(vEm(v)). (906)

Therefore,

(Vm−1(v) − c+0)
d�m+1 f

dv
(v) = O(v3Em(v)). (907)

Putting things together we arrive at

d�m+1δ

dv
(v) = λ

6κ
v2�m y(v) + O(v3Em(v)). (908)

Integrating (and also integrating by parts) we obtain

�m+1δ(v) = λ

18κ

(
v3�m y(v) −

∫ v

0
v′3 d�m y

dv
(v′)dv′

)
+ O(v4Em(v)). (909)
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Now we use δ̂m+1 given by δm+1(v) = v3δ̂m+1(v). We obtain from (908), (909)

d�m+1δ̂

dv
= 1

v4

λ

6κ

∫ v

0
v′3 d�m y

dv
(v′)dv′ + O(Em(v)), (910)

which implies

∣∣∣∣∣
d�m+1δ̂

dv
(v)

∣∣∣∣∣ ≤
λ

24κ
‖�m y‖X + Em(v). (911)

We have

d�m+1α+
dv

(v) =
(

∂�m+1α

∂v
+ ∂�m+1α

∂u

)
(v, v). (912)

For the first term we use as a starting point (819), i.e.

∂�m+1α

∂v
= �m+1A, (913)

which implies

∣∣∣∣
∂�m+1α

∂v

∣∣∣∣ ≤ C

{∣∣∣∣
∂�m+1t

∂v

∣∣∣∣+ v
(
|�m+1α| + |�m+1β| + |�m+1r |

)}
. (914)

To deal with the difference �m+1r we use (779). For the differences �m+1α, �m+1β

we use (784), (785) respectively. Using also the estimates (876), (877) together with
the definition (867), we find

sup
Tu

∣∣∣∣
∂�m+1α

∂v

∣∣∣∣ ≤ CuFm(u), (915)

For the second term in (912) we use (816). For the differences in the first line of (816)
we use the same estimates which we used for the first term in (912). For the differences
in the second line of (816) we use again the estimates (876), (877). We obtain

sup
Tu

∣∣∣∣
∂�m+1α

∂u

∣∣∣∣ ≤ C

{
u2Fm(u) + u2 sup

Tu
|�m+1μ| + u3 sup

[0,u]
|�m+1ν|

}
. (916)

For the differences of μ and ν we use (827), (828) together with (876), (877). We
obtain

sup
Tu

∣∣∣∣
∂�m+1α

∂u

∣∣∣∣ ≤ Cu2Fm(u). (917)
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Therefore,

‖�m+1α+‖X ≤ CvFm(v), (918)

i.e. (see (867) and take into account that β+,m(v) = β0 + v2β̂+.m(v))

‖�m+1α+‖X ≤ Cv2

{
‖�m y‖X + sup

[0,v]
|�mV̂ | + v‖�m β̂+‖X

}
. (919)

In view of (900), (911) and (919), the proof of the lemma is complete. ��

5.2.2 Estimates for the Identification Equation

Lemma 5.2 Let fm(v) = v2 f̂m(v), ym(v), gm(v) satisfy the identification equation

gm(v) + r0 = r∗( fm(v), vym(v)). (920)

Then the following relation holds

d�m+1y

dv
(v) = 3κ

λ

{
κ
d�m+1 f̂

dv
(v) + d�m+1δ̂

dv
(v)

}

+ O(v‖�m+1 f̂ ‖X ) + O(v‖�m+1y‖X ), (921)

where

v3δ̂m(v) = δm(v) = gm(v) − c+0 fm(v). (922)

Proof We look at (see (675))

dym+1

dv
(v) = −

∂ F̂m+1

∂v
(v, ym+1(v))

∂ F̂m+1

∂y
(v, ym+1(v))

, (923)

where (we omit the argument of y)

∂ F̂m+1

∂y
(v, ym+1) = λ

2κ
y2
m+1 − κ f̂m+1(v) + v

∂R

∂y
(v, ym+1), (924)

∂ F̂m+1

∂v
(v, ym+1) = −κym+1

d f̂m+1

dv
(v) + d δ̂m+1

dv
(v)

+ Rm+1(v, ym+1) + v
∂Rm+1

∂v
(v, ym+1). (925)
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The difference we have to estimate is given by

d�m+1y

dv
(v) = −

�m+1

(
∂ F̂

∂v
(v, y)

)

∂ F̂m+1

∂y
(v, ym+1)

− ∂ F̂m
∂v

(v, ym)�m+1

⎛
⎜⎜⎜⎝

1

∂ F̂

∂y
(v, y)

⎞
⎟⎟⎟⎠ . (926)

Now

�m+1

(
∂ F̂

∂v
(v, y)

)
= −κym+1

d�m+1 f̂

dv
(v) − κ

d f̂m
dv

(v)�m+1y + d�m+1δ̂

dv
(v)

+ �m+1R(v, y) + v�m+1

(
∂R

∂v
(v, y)

)
. (927)

For the second term we use (cf. (638))

∣∣∣∣κ
d f̂m
dv

(v)�m+1y

∣∣∣∣ ≤ Cv‖�m+1y‖X . (928)

For the fourth term in (927) we recall (see (670))

R(v, y) = −
(

∂2r∗

∂t2

)

0

(
f̂ (v)

)2 −
(

∂4r∗

∂w4

)

0

y4

24

−
(

∂3r∗

∂t∂w2

)

0

y2 f̂ (v)

2
− vH( f̂ (v), y), (929)

where H is a smooth function of its two arguments. We estimate the difference of the
first term by

�m+1

(
f̂ (v)

)2 = ( f̂m+1(v) + f̂m(v))�m+1 f̂ (v) = O(|�m+1 f̂ (v)|)
= O(v‖�m+1 f̂ ‖X ). (930)

The difference of the second term in (929) we estimate using (recall y(v) = O(1))

�m+1y
4 = O(v‖�m+1y‖X ), (931)

while for the difference of the third term in (929) we use

�m+1(y
2 f̂ (v)) = f̂m+1(v)�m+1y

2 + y2
m�m+1 f̂ (v)

= O(v‖�m+1y‖X ) + O(v‖�m+1 f̂ ‖X ). (932)
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For the difference of the fourth term in (929) we use

|v�m+1H( f̂ (v), y)| ≤ Cv2(‖�m+1 f̂ ‖X + ‖�m+1y‖X ). (933)

Therefore,

|�m+1R(v, y)| ≤ Cv(‖�m+1 f̂ ‖X + ‖�m+1y‖X ) (934)

Now we look at the fifth term in (927). We have

∂R

∂v
(v, y) = −2

(
∂2r∗

∂t2

)

0
f̂ (v)

d f̂

dv
(v) −

(
∂3r∗

∂t∂w2

)

0

y2

2

d f̂

dv
(v)

− v(∂1H)( f̂ (v), y)
d f̂

dv
(v) − H( f̂ (v), y), (935)

where by ∂1H we denote the partial derivative of H with respect to its first argument.
For the difference of the first term we use

�m+1

(
f̂ (v)

d f̂

dv
(v)

)
= d f̂m+1

dv
(v)�m+1 f̂ (v) + f̂m(v)

d�m+1 f̂

dv
(v)

= O(‖�m+1 f̂ ‖X ), (936)

while for the difference of the second term we use

�m+1

(
y2 d f̂

dv
(v))

)
= d f̂m+1

dv
(v)�m+1(y

2) + y2
m
d�m+1 f̂

dv
(v)

= O(v‖�m+1y‖X ) + O(‖�m+1 f̂ ‖X ). (937)

For the differences of the last two terms in (935) we use

|�m+1∂1H( f̂ (v), y)|, |�m+1H( f̂ (v), y)| ≤ Cv(‖�m+1 f̂ ‖X + ‖�m+1y‖X ).

(938)

Therefore,

∣∣∣∣∣�m+1

{
v(∂1H)( f̂ (v), y)

d f̂

dv
(v) + H( f̂ (v), y)

}∣∣∣∣∣ ≤ Cv(‖�m+1 f̂ ‖X + ‖�m+1y‖X ).

(939)

It follows that
∣∣∣∣v�m+1

(
∂R

∂v
(v, y)

)∣∣∣∣ ≤ Cv(‖�m+1 f̂ ‖X + v‖�m+1y‖X ). (940)
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We conclude that

�m+1

(
∂ F̂

∂v
(v, y)

)
= −κym+1

d�m+1 f̂

dv
(v) + d�m+1δ̂

dv
(v)

+ O(v‖�m+1 f̂ ‖X ) + O(v‖�m+1y‖X ). (941)

Now we look at the second term in (926). We use

�m+1

(
1

f

)
= − �m+1 f

fm+1 fm
. (942)

We need to estimate the difference �m+1

(
(∂ F̂/∂y)(v, y)

)
. We have

�m+1

(
∂ F̂

∂y
(v, y)

)
= λ

2κ
�m+1(y

2) − κ�m+1 f̂ (v) + v�m+1

(
∂R

∂y
(v, y)

)
.

(943)

For the first term we have

�m+1(y
2) = O(v‖�m+1y‖X ). (944)

For the third term in (943) we use

∂R

∂y
(v, y) = −

(
∂4r∗

∂w4

)

0

y3

6
−
(

∂3r∗

∂t∂2w

)

0
y f̂ (v) − v

∂H

∂y
( f̂ (v), y). (945)

For difference of the first term we use

�m+1y
3 = O(v‖�m+1y‖X ), (946)

while for the difference of the second term we use

�m+1(y f̂ (v)) = O(v‖�m+1y‖X ) + O(v‖�m+1 f̂ ‖X ). (947)

For the difference of the third term in (945) we have

∣∣∣∣�m+1

(
v
∂H

∂y
( f̂ (v), y)

)∣∣∣∣ ≤ Cv2(‖�m+1 f̂ ‖X + ‖�m+1y‖X ). (948)

Therefore, we obtain for the third term in (943)

∣∣∣∣v�m+1

(
∂R

∂y
(v, y)

)∣∣∣∣ ≤ Cv2(‖�m+1 f̂ ‖X + ‖�m+1y‖X ). (949)
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We conclude that
∣∣∣∣∣�m+1

(
∂ F̂

∂y
(v, y)

)∣∣∣∣∣ ≤ Cv(‖�m+1 f̂ ‖X + ‖�m+1y‖X ). (950)

To deal with (926) we also need (see (673), (676))

∂ F̂

∂y
(v, ym+1(v)) = λ

3κ
+ O(v). (951)

Using now the asymptotic forms as given by (941), (950) and (951) in (926) we arrive
at (921). ��

5.2.3 Estimates for the Jump Conditions

Lemma 5.3 Let α+,m(v), β+,m(v), fm(v), zm(v), Vm(v) satisfy

[βm(v)] = [αm(v)]3 G(α+,m(v), α−,m(v), β−,m(v)), Vm(v) =
[
T tr
m (v)

]
[
T tt
m (v)

] , (952)

where

α−,m(v) = α∗( fm(v), zm(v)), β−,m(v) = β∗( fm(v), zm(v)), (953)

where the right hand sides are given by the state ahead, i.e. by the solution in the
maximal development, and

[
Tμν
m (v)

] = Tμν(α+,m(v), β+,m(v)) − Tμν(α−,m(v), β−,m(v)). (954)

Then, the following estimates hold:

∣∣∣∣
d�m+1β+

dv
(v)

∣∣∣∣ ≤ C
{
v2‖�m+1z‖X + ‖�m+1 f ‖X + v2‖�m+1α+‖X

}
,

(955)∣∣∣�m+1V (v) − κ

2
�m+1z(v)

∣∣∣ ≤ C
{
v2‖�m+1z‖X + v‖�m+1 f ‖X + v‖�m+1α+‖X

}
.

(956)

Proof We start with

[β] = [α]3 G(α+, α−, β−). (957)

We have

d�m+1 [β]

dv
= 3�m+1

(
[α]2 d [α]

dv
G

)
+ �m+1

(
[α]3 dG

dv

)
. (958)
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We start with an estimate for the difference of

β−,m(v) = β∗( fm(v), zm(v)), (959)

where β∗(t, w) is given by the state ahead, i.e. by the solution in the maximal devel-
opment. We have

d�m+1β−
dv

=
(

∂β∗

∂t

)

m+1

d�m+1 f

dv
+ d fm

dv
�m+1

(
∂β∗

∂t

)

+
(

∂β∗

∂w

)

m+1

d�m+1z

dv
+ dzm

dv
�m+1

(
∂β∗

∂w

)
. (960)

Here the partial derivatives of β possess the same arguments as on the right hand side
of (959). Taking into account the second of (703) we obtain

∣∣∣∣�m+1

(
∂β∗

∂t

)∣∣∣∣ ≤ C {|�m+1 f | + |�m+1z|} ,

∣∣∣∣�m+1

(
∂β∗

∂w

)∣∣∣∣
≤ C {|�m+1 f | + v|�m+1z|} . (961)

In view of (696), (698), (702), (704) we arrive at

∣∣∣∣
d�m+1β−

dv

∣∣∣∣ ≤ C
{
‖�m+1 f ‖X + v2‖�m+1z‖X

}
. (962)

Similarly we find

∣∣∣∣
d�m+1α−

dv

∣∣∣∣ ≤ C {‖�m+1 f ‖X + ‖�m+1z‖X } . (963)

(The factor v2 does not appear since the conditions (703) do not hold for the partial
derivatives of α with respect to w).

We split the first term on the right hand side of (958) into I1 + I2, where

I1 := 3
[
αm+1

]2
Gm+1

d�m+1 [α]

dv
, I2 := 3

d [αm]

dv
�m+1

(
[α]2 G

)
. (964)

For I1 we use

d�m+1 [α]

dv
= d�m+1α+

dv
− d�m+1α−

dv
. (965)

The second term is estimated by (963). Taking into account [α(v)] = O(v) (see (726))
we get

|I1| ≤ Cv2 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } . (966)
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For I2 we use

|�m+1G| ≤ C {‖�m+1α+‖X + ‖�m+1α−‖X + ‖�m+1β−‖X } . (967)

Together with (962), (963) we obtain

|I2| ≤ Cv2 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } . (968)

The second term in (958) we split into I3 + I4, where

I3 :=
(
dG

dv

)

m+1
�m+1 [α]3 , I4 := [αm]3 �m+1

(
dG

dv

)
. (969)

Reasoning in a similar way as to arrive at (966), (968) we find

|I3| ≤ Cv3 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } , (970)

|I4| ≤ Cv4 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } . (971)

Using now (966), (968), (970), (971) in (958), we obtain

∣∣∣∣
d�m+1 [β]

dv

∣∣∣∣ ≤
4∑

i=1

|Ii |

≤ Cv2 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } , (972)

which implies

|�m+1 [β] | ≤ Cv3 {‖�m+1α+‖X + ‖�m+1 f ‖X + ‖�m+1z‖X } . (973)

From (972) together with (962) we conclude

∣∣∣∣
d�m+1β+

dv

∣∣∣∣ ≤ C
{
‖�m+1 f ‖X + v2‖�m+1z‖X + v2‖�m+1α+‖X

}
. (974)

We turn to the jump condition

V =
[
T tr
]

[
T tt
] . (975)

We have

�m+1V = Am+1Bm − AmBm+1

Bm+1Bm
, (976)
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where

Am := T tr (α+,m, β+,m) − T tr (α−,m, β−,m),

Bm := T tt (α+,m, β+,m) − T tt (α−,m, β−,m). (977)

Let us denote the numerator of (976) by N . We have

−N = AmBm+1 − Am+1Bm = Am�m+1B − Bm�m+1A. (978)

Now we rewrite

Am = 1
Am + 2

Am, (979)

where

1
Am = T tr (α+,m, β+,m) − T tr (α+,m, β−,m),

2
Am = T tr (α+,m, β−,m) − T tr (α−,m, β−,m). (980)

Now, for a smooth function F(x, y) we have

F(x, y2) − F(x, y1) =
(

∂F

∂y

)
(x, y1)(y2 − y1) + O((y2 − y1)

2). (981)

Suppose now g2(v) − g1(v) = O(v). It follows

F( f (v), g2(v)) − F( f (v), g1(v)) =
(

∂F

∂y

)

0
(g2(v) − g1(v)) + O(v(g2(v) − g1(v)))

=
(

∂F

∂y

)

0
(g2(v) − g1(v)) + O(v2). (982)

Using this we obtain

1
Am =

(
∂T tr

∂β

)

0
[βm] + O(v2),

2
Am =

(
∂T tr

∂α

)

0
[αm] + O(v2). (983)

Now we recall (for the first see (726))

[αm(v)] = α̇0(1 − ym(v))v + O(v2) = O(v),

[βm(v)] = [αm(v)]3 G(α+,m(v), α−,m(v), β−,m(v)). (984)

Therefore,

Am =
(

∂T tr

∂α

)

0
α̇0(1 − ym(v))v + O(v2). (985)
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Similarly we find

Bm =
(

∂T tt

∂α

)

0
α̇0(1 − ym(v))v + O(v2). (986)

Now we look at the difference �m+1B. We have

�m+1B = 1
�m+1B + 2

�m+1B, (987)

where

1
�m+1B = T tt (α+,m+1, β+,m+1) − T tt (α+,m, β+,m), (988)
2
�m+1B = T tt (α−,m, β−,m) − T tt (α−,m+1, β−,m+1). (989)

We rewrite

1
�m+1B = 1a

�m+1B + 1b
�m+1B, (990)

where

1a
�m+1B = T tt (α+,m+1, β+,m+1) − T tt (α+,m, β+,m+1), (991)
1b
�m+1B = T tt (α+,m, β+,m+1) − T tt (α+,m, β+,m). (992)

Now, appealing to the first line of (982), we have

1a
�m+1B =

(
∂T tt

∂α

)

0
�m+1α+ + O(v|�m+1α+|), (993)

1b
�m+1B =

(
∂T tt

∂β

)

0
�m+1β+ + O(v|�m+1β+|). (994)

Therefore,

1
�m+1B =

(
∂T tt

∂α

)

0
�m+1α+ +

(
∂T tt

∂β

)

0
�m+1β+

+ O(v|�m+1α+|) + O(v|�m+1β+|). (995)

We rewrite

2
�m+1B = 2a

�m+1B + 2b
�m+1B, (996)
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where

2a
�m+1B = −

(
T tt (α−,m+1, β−,m+1) − T tt (α−,m, β−,m+1)

)
, (997)

2b
�m+1B = −

(
T tt (α−,m, β−,m+1) − T tt (α−,m, β−,m)

)
. (998)

Again, by the first line of (982), we have

2b
�m+1B = −

(
∂T tt

∂β

)

0
�m+1β− + O(v|�m+1β−|). (999)

Defining

�(t, w) := T tt (α∗(t, w), β∗( fm+1, zm+1)), (1000)

where α∗(t, w), β∗(t, w) are given by the state ahead, we have

2a
�m+1B = −

(
�( fm+1, zm+1) − �( fm, zm)

)
. (1001)

We have

�(t, w) = �(0, 0) +
(

∂�

∂t

)

0
t +
(

∂�

∂w

)

0
w

+
(

∂2�

∂t2

)

0

t2

2
+
(

∂2�

∂t∂w

)

0
tw +

(
∂2�

∂w2

)

0

w2

2
+ O(t3, t2w, tw2, w3).

(1002)

Using

(
∂�

∂t

)

0
=
(

∂T tt

∂α

)

0

(
∂α∗

∂t

)

0
,

(
∂�

∂w

)

0
=
(

∂T tt

∂α

)

0
α̇0,

(
∂2�

∂t2

)

0
=
(

∂2T tt

∂α2

)

0

(
∂α∗

∂t

)2

0
+
(

∂T tt

∂α

)

0

(
∂2α∗

∂t2

)

0
,

(
∂2�

∂w2

)

0
=
(

∂2T tt

∂α2

)

0
α̇2

0 +
(

∂T tt

∂α

)

0
α̈0,

(
∂2�

∂t∂w

)

0
=
(

∂2T tt

∂α2

)

0

(
∂α∗

∂t

)

0
α̇0 +

(
∂T tt

∂α

)

0

(
∂2α∗

∂t∂w

)

0
, (1003)
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where we also use (∂α∗/∂w)0 = α̇0, (∂2α∗/∂w2)0 = α̈0 (see (281)), we obtain

−2a
�m+1B =

(
∂T tt

∂α

)

0

(
∂α∗

∂t

)

0
�m+1 f +

(
∂T tt

∂α

)

0
α̇0�m+1z

−
{(

∂2T tt

∂α2

)

0
α̇2

0 +
(

∂T tt

∂α

)

0
α̈0

}
v�m+1z

+ O(v|�m+1 f |) + O(v2|�m+1z|), (1004)

where we also use 1
2 (�m+1(z2)) = −v(�m+1z) + O(v2|�m+1z|), since z(v) =

−v + O(v2) and f (v) = O(v2). This together with (999) implies

2
�m+1B = −

(
∂T tt

∂α

)

0
α̇0�m+1z +

{(
∂2T tt

∂α2

)

0
α̇2

0 +
(

∂T tt

∂α

)

0
α̈0

}
v�m+1z

+ O(v2|�m+1z|) −
(

∂T tt

∂α

)

0

(
∂α∗

∂t

)

0
�m+1 f

+ O(v|�m+1 f |) −
(

∂T tt

∂β

)

0
�m+1β− + O(v|�m+1β−|). (1005)

From (995) and (1005) we obtain

�m+1B = −
(

∂T tt

∂α

)

0
α̇0�m+1z +

{(
∂2T tt

∂α2

)

0
α̇2

0 +
(

∂T tt

∂α

)

0
α̈0

}
v�m+1z

+
(

∂T tt

∂α

)

0
�m+1α+ −

(
∂T tt

∂α

)

0

(
∂α∗

∂t

)

0
�m+1 f

+
(

∂T tt

∂β

)

0
�m+1 [β] + O(v|�m+1β+|) + O(v|�m+1β−|)

+ O(v3‖�m+1z‖X ) + O(v2‖�m+1α+‖X ) + O(v2‖�m+1 f ‖X ). (1006)

Making use of the estimate (973) we arrive at

�m+1B = −
(

∂T tt

∂α

)

0
α̇0�m+1z +

{(
∂2T tt

∂α2

)

0
α̇2

0 +
(

∂T tt

∂α

)

0
α̈0

}
v�m+1z

+
(

∂T tt

∂α

)

0
�m+1α+ −

(
∂T tt

∂α

)

0

(
∂α∗

∂t

)

0
�m+1 f

+ O(v3‖�m+1z‖X ) + O(v2‖�m+1α+‖X ) + O(v2‖�m+1 f ‖X ), (1007)

where we also used (962), (974). The analogous expression holds for �m+1A but with
T tr in the role of T tt . Putting things together we arrive at the following expression for
the numerator of (976)
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N = −v2α̇3
0(1 − ym(v))

{(
∂2T tt

∂α2

)

0

(
∂T tr

∂α

)

0
−
(

∂2T tr

∂α2

)

0

(
∂T tt

∂α

)

0

}
�m+1z

+ O(v4‖�m+1z‖X ) + O(v3‖�m+1α+‖X ) + O(v3‖�m+1 f ‖X ). (1008)

Let us inspect the curly bracket in (1008). For this we use (see the first and second
of (185))

∂T tt

∂α
= Gψ2

t

2η
(1 + vη)2,

∂T tr

∂α
= Gψ2

t

2η
(v + η)(1 + vη). (1009)

Using (180), (210), the first of (179) and the first of (184) we obtain

∂2T tt

∂α2 = Gψ2
t

4η2 (1 + vη)

(
(1 + 3η2 + 3vη + vη3) − (1 − vη)

dη

dρ̃

)
, (1010)

∂2T tr

∂α2 = Gψ2
t

4η2

(
(v + 2η + 2v2η + 2η3 + 6vη2 + 2v2η3 + vη4) − v(1 − η2)

dη

dρ̃

)
.

(1011)

Therefore, we obtain the following expression for the curly bracket in (1008)

−G2
0ψ

4
t0

8η2
0

(1 − v2
0)(1 + v0η0)

2
(

1 +
(
dη

dρ̃

)

0
− η2

0

)
. (1012)

Using the definition of μ (see (189)) we see that (1012) is equal to

−G2
0ψ

4
t0

8η2
0

(1 − v2
0)(1 + v0η0)

2μ0. (1013)

Therefore,

N = v2α̇3
0
G2

0ψ
4
t0

4η2
0

(1 − v2
0)(1 + v0η0)

2μ0�m+1z

+ O(v4‖�m+1z‖X ) + O(v3‖�m+1α+‖X ) + O(v3‖�m+1 f ‖X ). (1014)

We turn to the investigation of the denominator of (976). Let

D := Bm+1Bm . (1015)

Rewriting

Bm = 1
Bm + 2

Bm, (1016)
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where

1
Bm = T tt (α+,m, β+,m) − T tt (α+,m, β−,m), (1017)
2
Bm = T tt (α+,m, β−,m) − T tt (α−,m, β−,m) (1018)

and arguing as we did for the derivation of the asymptotic forms of
1
Am and

2
Am , we

arrive at

Bm =
(

∂T tt

∂α

)

0
α̇0(1 − ym(v))v + O(v2). (1019)

Similarly with m + 1 in the role of m. Therefore, we obtain

D = 4

(
∂T tt

∂α

)2

0
α̇2

0v2 + O(v3), (1020)

where we used ym = −1 + O(v). Using the first of (1009) we find

D = v2α̇2
0
G2

0ψ
4
t0

η2
0

(1 + v0η0)
4 + O(v3). (1021)

Now, from c+ = (v + η)/(1 + vη) together with (184), (189), (210) we have

(1 + vη)2 ∂c+
∂α

= 1

2
μ(1 − v2). (1022)

Using κ = α̇0(∂c+/∂α)0 we obtain from (1014), (1021)

�m+1V (v) = κ

2
�m+1z(v) + O(v2‖�m+1z‖X )

+ O(v‖�m+1α+‖X ) + O(v‖�m+1 f ‖X ). (1023)

��

5.2.4 Closing the Argument

Proposition 5.2 For ε small enough the sequence (ym, β̂+,m, V̂m) converges in BY ×
Bδ1 × Bδ2 .

Proof We first note

‖�m+1β̂+‖X ≤ C

v2 ‖�m+1β+‖X . (1024)
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We now use the first estimate from lemma 5.3 together with the estimates for |d f̂ /dv|
and ‖�m+1α+‖X from lemma 5.1. We obtain

‖�m+1β̂+‖X ≤ C

{
‖�m y‖X + sup

[0,v]
|�mV̂ | + v‖�m β̂+‖X

}
. (1025)

For an estimate of ‖�m+1y‖X we look at the estimate of lemma 5.2. Using also the
first two estimates of lemma 5.1 we obtain

‖�m+1y‖X ≤ 1

3
‖�m y‖X + C

{
v‖�m β̂+‖X + sup

[0,v]
|�mV̂ |

}
, (1026)

provided we choose ε suitably small. Now we note

�m+1V̂ (v) = 1

v2

(
�m+1V (v) − v

κ

2
�m+1y(v)

)
. (1027)

We now use the second estimate from lemma 5.3 together with (1026). We obtain

sup
[0,v]

|�m+1V̂ | ≤ C

{
v‖�m y‖X + v sup

[0,v]
|�mV̂ | + v2‖�m β̂+‖X

}
. (1028)

We rewrite the estimates (1025), (1026), (1028) as

‖�m+1y‖X ≤ 1

3
‖�m y‖X + C1

{
v‖�m β̂+‖X + sup

[0,v]
|�mV̂ |

}
,

‖�m+1β̂+‖X ≤ C2

{
‖�m y‖X + sup

[0,v]
|�mV̂ | + v‖�m β̂+‖X

}
,

sup
[0,v]

|�m+1V̂ | ≤ C3

{
v‖�m y‖X + v sup

[0,v]
|�mV̂ | + v2‖�m β̂+‖X

}
. (1029)

It follows that for ε small enough the sequence (ym, β̂+,m, V̂m) converges in BY ×
Bδ1 × Bδ2 .

The two propositions above show that the sequence (ym, β̂+,m, V̂m) converges uni-
formly in [0, ε] to (y, β̂+, V̂ ) ∈ BY × Bδ1 × Bδ2 .

We see that (Fm) as given by (867) converges to 0 as m → ∞ uniformly in [0, ε].
Therefore, in view of (876), (877) also ∂tm/∂v, ∂tm/∂u converge uniformly in Tε. Let
us denote the limit of (tm) by t . This, in view of (827), (828), implies the convergence
of (μm, νm) to (μ, ν) uniformly in Tε and, in view of (829), also the convergence of
(�m) to 0. Therefore, the pair of integral equations (831), (859) are satisfied in the
limit. It then follows that t satisfies (359).
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In view of (784), (785) we have convergence of (αm, βm) to (α, β) uniformly in Tε,
which implies convergence of (c±,m) to c± uniformly in Tε. In view of the Hodograph
system the partial derivatives of (rm) converge uniformly in Tε and the limit satisfies
this system.

Now, the uniform convergence of (αm, βm), (rm) and the partial derivatives of
(tm) imply the uniform convergence of (Am), (Bm) to A, B. Therefore, the partial
derivatives ∂αm/∂v, ∂βm/∂u converge to ∂α/∂v, ∂β/∂u, uniformly in Tε and it holds
∂α/∂v = A, ∂β/∂u = B, i.e. also the other two equations of the characteristic system
are satisfied in the limit. In view of (816), (823) also the partial derivatives (∂αm/∂u),
(∂βm/∂v) converge to ∂α/∂u, ∂β/∂v uniformly in Tε.

From (759), (760) we see that ( f̂m), (δ̂m) converge to f̂ , δ̂ uniformly in C1[0, ε].
Therefore, z = vy satisfies the identification equation when f := v2 f̂ , g := v3δ̂ +
c+0v

2 f̂ are substituted. Also V , β+ are given by the jump conditions when α+, f , z
are substituted. We have thus found a solution to the free boundary problem.

We have that z(v) is given by z(v) = vy(v), where y ∈ C1[0, ε], y(0) = −1
(see (699)). f (v) is given by f (v) = v2 f̂ (v), with f̂ ∈ C1[0, ε], f̂ (0) = λ/6κ2

(see (697)). β+(v) is given by β+(v) = β0 + v2β̂+(v) with β̂+ ∈ C1[0, ε], β̂+(0) =
(∂β/∂t)0 λ/6κ2 (see (730)). α+(v) = αi (v)+ v2α̂+(v) with α̂+ ∈ C1[0, ε], α̂+(0) =
λ Ã0/6κ2 (see (725)). From (639) together with δ(v) = v3δ̂(v), we have g(v) =
v2 ĝ(v) with ĝ ∈ C1[0, ε], ĝ(0) = λc+0/6κ2.

We recall (252) which is the singular boundary of the maximal development in
acoustical coordinates (t, w):

t∗(w) = t0 + λ

2κ2 w2 + O(w3). (1030)

Therefore, using w = z(v) = −v + O(v2), we have

t∗(z(v)) = t0 + λ

2κ2 v2 + O(v3). (1031)

Comparing this with (see (697))

f (v) + t0 = t0 + λ

6κ2 v2 + O(v3), (1032)

we see that for ε sufficiently small the shock curve K lies in the past of the singular
boundary of the maximal development B.

From (771) we have

V (v) = c+0 + O(v2). (1033)

From (770) we have that the characteristic speed of the outgoing characteristics along
K in the state behind is

c̄+(v) = c+0 + κv + O(v2). (1034)
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Now, let us denote by c+ the characteristic speed of the outgoing characteristics along
K in the state ahead. We have

c+(v) = c+(α∗( f (v), z(v)), β∗( f (v), z(v))). (1035)

Now,

dc+
dv

= ∂c+
∂α

(
∂α∗

∂t

d f

dv
+ ∂α∗

∂w

dz

dv

)
+ ∂c+

∂β

(
∂β∗

∂t

d f

dv
+ ∂β∗

∂w

dz

dv

)
. (1036)

Therfore, using (286) and

d f

dv
(v) = O(v),

∂β∗

∂w
( f (v), z(v)) = O(v), (1037)

we find

dc+
dv

(v) = −κ + O(v), (1038)

which implies

c+(v) = c+0 − κv + O(v2). (1039)

From (1033), (1034) and (1039) we obtain

V (v) − c+(v) = κv + O(v2), (1040)

c̄+(v) − V (v) = κv + O(v2). (1041)

These imply the determinism condition, provided that ε is sufficiently small.
We have therefore proven the following existence theorem.

Theorem 5.1 Let initial data for t andα be given alongC. Let r0>0. Let the solution in
the state aheadbe given byα∗(t, w),β∗(t, w), r∗(t, w). Then, for ε small enough, there
exists a continuously differentiable solution (t, r, α, β) of the characteristic system in
Tε such that

(i) along C it attains the initial data and r(0, 0) = r0.
(ii) α+(v) := α(v, v), β+(v) := β(v, v), α−(v) := α∗( f (v), z(v)), β−(v) :=

β∗( f (v), z(v)) satisfy the jump conditions

− [T tt (v)
]
V (v) + [T tr (v)

] = 0, (1042)

− [T rt (v)
]
V (v) + [T rr (v)

] = 0, (1043)

where

Tμν
+ (v) = Tμν(α+(v), β+(v)), Tμν

− (v) = Tμν(α−(v), β−(v)), (1044)

123



3 Page 136 of 246 D. Christodoulou, A. Lisibach

V (v) satisfies

d f

dv
(v)V (v) = dg

dv
(v) (1045)

and z(v) satisfies the identification equation

g(v) + r0 = r∗( f (v), z(v)), (1046)

where

f (v) := t (v, v), g(v) := r(v, v) − r0. (1047)

Furthermore, we have V̂ ∈ C0[0, ε], where V̂ (v) is given by

V (v) = c+0 + κ

2
(1 + y(v))v + v2V̂ (v). (1048)

(iii) We have

z(v) = vy(v), y ∈ C1[0, ε], y(0) = −1, (1049)

f (v) = v2 f̂ (v), f̂ ∈ C1[0, ε], f̂ (0) = λ

6κ2 , (1050)

g(v) = v2 ĝ(v), ĝ ∈ C1[0, ε], ĝ(0) = λc+0

6κ2 , (1051)

α+(v) − αi (v) = v2α̂+(v), α̂+ ∈ C1[0, ε], α̂+(0) = λ Ã0

6κ2 , (1052)

β+(v) − β0 = v2β̂(v), β̂+ ∈ C1[0, ε], β̂+(0) = λ

6κ2

(
∂β

∂t

)

0
. (1053)

(iv) The curve K given in rectangular coordinates by

v �→ ( f (v), g(v) + r0) (1054)

lies in the past of the singular boundary of the maximal development B and
satisfies the determinism condition, i.e. it is supersonic relative to the state ahead
and subsonic relative to the state behind.

6 Uniqueness

6.1 Asymptotic Form

Proposition 6.1 Let (t, r, α, β) be a continuously differentiable solution of the free
boundary problem and let z(v) be the corresponding solution of the identification
equation. Let z(v) and
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f (v) := t (v, v), g(v) := r(v, v) − r0, α+(v) := α(v, v), β+(v) := β(v, v)

(1055)

be given by

z(v) = vy(v), (1056)

f (v) = v2 f̂ (v), (1057)

g(v) = v2 ĝ(v), (1058)

α+(v) − αi (v) = v2α̂+(v), (1059)

β+(v) − β0 = v2β̂+(v), (1060)

with

y ∈ C0[0, ε], f̂ , ĝ, α̂+, β̂+ ∈ C1[0, ε]. (1061)

Then it follows that

y(0) = −1, f̂ (0) = λ

6κ2 , ĝ(0) = λc+0

6κ2 , α̂+(0) = λ Ã0

6κ2 ,

β̂+(0) = λ

6κ2

(
∂β∗

∂t

)

0
(1062)

and

d f̂

dv
(0) = 1

c+0

dĝ

dv
(0). (1063)

Proof We first note that the characteristic system together with the solution being
continuously differentiable implies

∂2t

∂u∂v
= 1

c+ − c−

(
∂c−
∂v

∂t

∂u
− ∂c+

∂u

∂t

∂v

)
∈ C0(Tε). (1064)

We recall the initial data for t :

t (u, 0) = h(u) = u3ĥ(u), ĥ ∈ C1[0, ε], ĥ(0) = λ

6κ(c+0 − c−0)
. (1065)

Taking into account

∂t

∂u
(v, v) + ∂t

∂v
(v, v) = d f

dv
(v)

= 2v f̂ (v) + v2 d f̂

dv
(v), (1066)
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we deduce

(
∂t

∂u

)

0
=
(

∂t

∂v

)

0
=
(

∂2t

∂u∂v

)

0
= 0. (1067)

Now,

dg

dv
(v) = ∂r

∂u
(v, v) + ∂r

∂v
(v, v)

= c̄−(v)
∂t

∂u
(v, v) + c̄+(v)

∂t

∂v
(v, v)

= c̄+(v)
d f

dv
(v) + ∂t

∂u
(v, v) (c̄−(v) − c̄+(v))

= c̄+(v)
d f

dv
(v) +

{
∂t

∂u
(v, 0) +

∫ v

0

∂2t

∂u∂v
(v, v′)dv′

}
(c̄−(v) − c̄+(v)) .

(1068)

Substituting

dg

dv
(v) = 2vĝ(v) + v2 dĝ

dv
(v), (1069)

∂t

∂u
(v, 0) = dh

dv
(v) = 3v2ĥ(v) + v3 dĥ

dv
(v), (1070)

together with (1066) yields, after dividing by v and taking the limit v → 0,

ĝ(0) = c+0 f̂ (0). (1071)

Since by (1060)

dβ+
dv

(0) = 0 (1072)

and the second of (161), namely

∂β

∂u
= ∂t

∂u
B̃(α, β, r), (1073)

gives, by the first of (1067),

(
∂β

∂u

)

0
= 0, (1074)

it follows
(

∂β

∂v

)

0
= 0. (1075)
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Now, ∂t/∂v and ∂β/∂v satisfy along C a system of the form

d

du

(
∂β/∂v

∂t/∂v

)
=
(
a11 a12
a21 a22

)(
∂β/∂v

∂t/∂v

)
for v = 0, (1076)

which, together with (1067), (1075) implies

∂t

∂v
(u, 0) = 0,

∂β

∂v
(u, 0) = 0. (1077)

Hence

∂t

∂v
(u, v) = Ov(1),

∂β

∂v
(u, v) = Ov(1), (1078)

the indices on the Landau symbols representing the variable with respect to which the
limit is taken, the limit being uniform in the other variable.

Making use of the equations for α and β from the characteristic system (see (161))
we obtain

∂c+
∂u

= ∂c+
∂α

∂α

∂u
+ ∂c+

∂β

∂t

∂u
B̃, (1079)

∂c+
∂v

= ∂c+
∂α

∂t

∂v
Ã + ∂c+

∂β

∂β

∂v
. (1080)

Therefore,

∂c+
∂u

(u, v) = κ + Ou(1), (1081)

∂c+
∂v

(u, v) = Ov(1). (1082)

where for the first we used (∂c+/∂α)0 = κ/α̇0 (see (286)). Hence

c̄+(v) = c+0 + κv + O(v). (1083)

We turn to the integral in (1068). Making again use of the characteristic system we
obtain

∂c−
∂v

= ∂c−
∂α

∂t

∂v
Ã + ∂c−

∂β

∂β

∂v
. (1084)

Hence

∂c−
∂v

(u, v) = Ov(1), (1085)

which, in view of (1064), implies

∂2t

∂u∂v
(u, v) = Ov(1). (1086)
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We have

∂t

∂u
(v, v′) = ∂t

∂u
(v, 0) +

∫ v′

0

∂2t

∂u∂v
(v, v′′)dv′′

= Ov(v), (1087)

where we made use of (1070). Together with (see (1085))

(
1

c+ − c−
∂c−
∂v

)
(v, v′) = Ov′(1), (1088)

we find

∫ v

0

(
1

c+ − c−
∂c−
∂v

∂t

∂u

)
(v, v′)dv′ = O(v2). (1089)

We have

∂t

∂v
(v, v′) = ∂t

∂v
(v′, v′) +

∫ v

v′
∂2t

∂u∂v
(u′, v′)du′

= d f

dv
(v′) − ∂t

∂u
(v′, v′) +

∫ v

v′
∂2t

∂u∂v
(u′, v′)du′

= 2v′ f̂ (0) + vOv′(1), (1090)

where for the second term in the second line we substituted (1087), setting v = v′.
Together with (see (1081))

(
1

c+ − c−
∂c+
∂u

)
(v, v′) = κ

c+0 − c−0
+ Ov(1), (1091)

we find

∫ v

0

(
1

c+ − c−
∂c+
∂u

∂t

∂v

)
(v, v′)dv′ = κ f̂ (0)

c+0 − c−0
v2 + O(v2). (1092)

Now, rewriting the integrand in (1068) using (1064) and then substituting (1089)
and (1092), we obtain

∫ v

0

∂2t

∂u∂v
(v, v′)dv′ = − κ f̂ (0)

c+0 − c−0
v2 + O(v2). (1093)

Substituting now (1066), (1069), (1070), (1083), (1093) into (1068), noting that

f̂ (v) = f̂ (0) + d f̂

dv
(0)v + O(v), ĝ(v) = ĝ(0) + dĝ

dv
(0)v + O(v), (1094)
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d f̂

dv
(v) = d f̂

dv
(0) + O(v),

dĝ

dv
(v) = dĝ

dv
(0) + O(v), (1095)

and that by (1071) the terms linear in v cancel, dividing by v2 and taking the limit as
v → 0, we find

dĝ

dv
(0) = c+0

d f̂

dv
(0) + κ f̂ (0) − λ

6κ
. (1096)

We now consider the identification equation

g(v) + r0 = r∗( f (v), z(v)). (1097)

In view of (1071), (1096) the left hand side is

r0 + c+0 f̂ (0)v2 +
(
c+0

d f̂

dv
(0) + κ f̂ (0) − λ

6κ

)
v3 + O(v3). (1098)

For the right hand side of (1097) we expand r∗(t, w) up to third order. Substituting
t = f (v) = v2 f̂ (v), w = z(v) = vy(v) we obtain

r0 + c+0 f̂ (0)v2 +
(
c+0

d f̂

dv
(0) + y(0)κ f̂ (0) − λy(0)3

6κ

)
v3 + O(v3). (1099)

Therefore, setting (1098) equal to (1099), dividing by v3 and taking the limit v → 0
we obtain

κ f̂ (0) − λ

6κ
= y(0)κ f̂ (0) − λy(0)3

6κ
. (1100)

Defining now

m := 3κ − λ

2 f̂ (0)κ
, p := − y(0), (1101)

(we recall that for a physical solution we need p>0), this becomes

m(1 + p3) + 3κp(1 − p2) = 0. (1102)

We now turn to the jump conditions. Using (cf. (1094))

d f

dv
(v) = 2v f̂ (v) + v2 d f̂

dv
(v)

= 2v f̂ (0) + 3v2 d f̂

dv
(0) + O(v2) (1103)
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and the analogous expansion for dg/dv(v) in

V (v) = dr

dv
(v) =

dg

dv
(v)

d f

dv
(v)

, (1104)

we obtain

V (v) = c+0 + 3

2 f̂ (0)

(
dĝ

dv
(0) − c+0

d f̂

dv
(0)

)
v + O(v). (1105)

Hence, in view of (1096) and the first of (1101),

V (v) = c+0 + m

2
v + O(v). (1106)

We recall the jump conditions:
[
T tt (v)

]
V (v) = [T tr (v)

]
, (1107)[

T tr (v)
]
V (v) = [T rr (v)

]
, (1108)

where
[
Tμν(v)

] = Tμν
+ (v) − Tμν

− (v) (1109)

and

Tμν
+ (v) = Tμν(α+(v), β+(v)), (1110)

Tμν
− (v) = Tμν(α−(v), β−(v)), (1111)

where

α−(v) = α∗( f (v), z(v)), β−(v) = β∗( f (v), z(v)) (1112)

the functions α∗(t, w), β∗(t, w) in (1112) being given by the solution in the maximal
development. Using the initial condition for α as given by (312), we obtain from
(1059), (1060)

α+(v) − α0 = α̇0v +
(

α̈0

2
+ α̂+(0)

)
v2 + O(v2), (1113)

β+(v) − β0 = β̂+(0)v2 + O(v2). (1114)

It would actually suffice to assume α̂, β̂ ∈ C0. But since α+ and β+ correspond to the
solution of the fixed boundary problem, the assumption for α̂ and β̂ to be continuously
differentiable is consistent.

Expanding now Tμν(α, β) up to second order and substituting (1113), (1114) we
obtain
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Tμν
+ (v) = Tμν

0 +
(

∂Tμν

∂α

)

0
α̇0v +

{(
∂Tμν

∂α

)

0

(
α̈0

2
+ α̂+(0)

)

+
(

∂Tμν

∂β

)

0
β̂+(0) +

(
∂2Tμν

∂α2

)

0

α̇2
0

2

}
v2 + O(v2). (1115)

Expanding α∗(t, w), β∗(t, w) up to second order and substituting t = v2 f̂ (v), w =
vy(v) we obtain

α−(v) − α0 = α̇0y(v)v +
{(

∂α∗

∂t

)

0
f̂ (0) + α̈0y(0)

2

2
}

v2 + O(v2), (1116)

β+(v) − β0 =
(

∂β∗

∂t

)

0
f̂ (0)v2 + O(v2), (1117)

where for the second one we made use of (266). Expanding now Tμν(α, β) up to
second order and substituting (1116), (1117) we obtain

Tμν
− (v) = Tμν

0 +
(

∂Tμν

∂α

)

0
α̇0y(v)v +

{(
∂Tμν

∂α

)

0

((
∂α∗

∂t

)

0
f̂ (0) + α̈0y(0)2

2

)

+
(

∂Tμν

∂β

)

0

(
∂β∗

∂t

)

0
f̂ (0) +

(
∂2Tμν

∂α2

)

0

α̇2
0 y(0)2

2

}
v2 + O(v2).

(1118)

Using the definitions

m− := 2

(
∂α∗

∂t

)

0
f̂ (0), n− := 2

(
∂β∗

∂t

)

0
f̂ (0), (1119)

this becomes

Tμν
− (v) = Tμν

0 +
(

∂Tμν

∂α

)

0
α̇0y(v)v + 1

2

{(
∂Tμν

∂α

)

0

(
m− + α̈0y(0)2

)

+
(

∂Tμν

∂β

)

0
n− +

(
∂2Tμν

∂α2

)

0
α̇2

0 y(0)2
}
v2 + O(v2). (1120)

Therefore, from (1115), (1120),

[
Tμν(v)

] =
(

∂Tμν

∂α

)

0
α̇0(1 − y(v))v

+ 1

2

{(
∂Tμν

∂α

)

0

(
α̈0(1 − y(0)2) + 2α̂+(0) − m−

)

+
(

∂Tμν

∂β

)

0

(
2β̂+(0) − n−

)
+
(

∂2Tμν

∂α2

)

0
α̇2

0(1 − y(0)2)

}
v2 + O(v2).

(1121)
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We now substitute (1121) together with (1106) into (1107), (1108). Making use of
(see (187))

∂T tr

∂α
= c+

∂T tt

∂α
= 1

c+
∂T rr

∂α
, (1122)

dividing by v2 and taking the limit as v → 0 we arrive at

mα̇0

(
∂T tt

∂α

)

0
(1 − y(0)) + α̇2

0

{
c+0

(
∂2T tt

∂α2

)

0
−
(

∂2T tr

∂α2

)

0

}
(1 − y(0)2)

+
{
c+0

(
∂T tt

∂β

)

0
−
(

∂T tr

∂β

)

0

}
l+ = 0, (1123)

mα̇0

(
∂T tr

∂α

)

0
(1 − y(0)) + α̇2

0

{
c+0

(
∂2T tr

∂α2

)

0
−
(

∂2T rr

∂α2

)

0

}
(1 − y(0)2)

+
{
c+0

(
∂T tr

∂β

)

0
−
(

∂T rr

∂β

)

0

}
l+ = 0, (1124)

where we used the definition

l+ := 2β̂+(0) − n−. (1125)

Let us define

c01 := c+0

(
∂T tt

∂β

)

0
−
(

∂T tr

∂β

)

0
, c02 := c+0

(
∂T tr

∂β

)

0
−
(

∂T rr

∂β

)

0
, (1126)

c11 := α̇2
0

{
c+0

(
∂2T tt

∂α2

)

0
−
(

∂2T tr

∂α2

)

0

}
, c12 := α̇2

0

{
c+0

(
∂2T tr

∂α2

)

0
−
(

∂2T rr

∂α2

)

0

}
,

(1127)

c21 := α̇0

(
∂T tt

∂α

)

0
, c22 := α̇0

(
∂T tr

∂α

)

0
. (1128)

Using these definitions together with p = −y(0) in (1123), (1124) we obtain

c01l+ + c11(1 − p2) + c21m(1 + p) = 0, (1129)

c02l+ + c12(1 − p2) + c22m(1 + p) = 0. (1130)

We now solve the system of equations (1102), (1129), (1130). Solving (1102) for
m yields

m = −3κp
1 − p2

1 + p3 . (1131)
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Substituting this in (1129), (1130) gives

c01l+ = (1 − p2)

(
−c11 + 3κc21

p(1 + p)

1 + p3

)
, (1132)

c02l+ = (1 − p2)

(
−c12 + 3κc22

p(1 + p)

1 + p3

)
. (1133)

Multiplying (1132) by c02 and (1133) by c01 and then subtracting the resulting equa-
tions from each other yields

0 = (1 − p2)

(
−d1 + 3κd2

p(1 + p)

1 + p3

)
, (1134)

where we used the definitions

d1 := c02c11 − c01c12, d2 := c02c21 − c01c22. (1135)

If d1, d2 have opposite sign (recall that κ>0) then p = 1 is the only root of (1134)
(recall the requirement p>0 for a physical solution). We look at d1/d2. From (1122)
we deduce

c+
∂2T tt

∂α2 − ∂2T tr

∂α2 = −∂c+
∂α

∂T tt

∂α
, c+

∂2T tr

∂α2 − ∂2T rr

∂α2 = −∂c+
∂α

∂T tr

∂α
. (1136)

Therefore

c11 = −α̇2
0

(
∂c+
∂α

)

0

(
∂T tt

∂α

)

0
= −κc21, c12 = −α̇2

0

(
∂c+
∂α

)

0

(
∂T rr

∂α

)

0
= −κc22,

(1137)

where we made use of (∂c+/∂α)0 = κ/α̇0 (see (286)). Hence,

d1

d2
= c02c11 − c01c12

c02c21 − c01c22
= −κ < 0 (1138)

and we conclude that p = 1 is the only root of (1134). From (1131) we deduce m = 0.
(1129) then yields l+ = 0. Therefore, from (1071), (1101) and the second of (1119)
together with (1125) we obtain

y(0) = −1, f̂ (0) = λ

6κ2 , ĝ(0) = λc+0

6κ2 , β̂+(0) = λ

6κ2

(
∂β∗

∂t

)

0
.

(1139)

From (1096) we obtain

d f̂

dv
(0) = 1

c+0

dĝ

dv
(0). (1140)
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We now turn to α̂+(0). We recall

α+(v) = α(v, v) = αi (v) +
∫ v

0

(
∂t

∂v
Ã(α, β, r)

)
(v, v′)dv′. (1141)

Therefore, (this is (715))

dα+
dv

(v) = dαi

dv
(v) +

(
∂t

∂v
Ã(α, β, r)

)
(v, v) +

∫ v

0

{(
∂2t

∂u∂v
Ã(α, β, r)

)

+ ∂t

∂v

(
∂ Ã

∂α
(α, β, r)

∂α

∂u
+ ∂ Ã

∂β
(α, β, r)

∂β

∂u
+ ∂ Ã

∂r
(α, β, r)c−

∂t

∂u

)}
(v, v′)dv′.

(1142)

Using (1090), (1093) we obtain

dα+
dv

(v) = dαi

dv
(v) + 2 f̂ (0) Ã0v + O(v), (1143)

which implies (using the second of (1139))

α+(v) − αi (v) = λ Ã0

6κ2 v2 + O(v2). (1144)

Therefore,

α̂+(0) = λ Ã0

6κ2 . (1145)

This concludes the proof of the proposition. ��

6.2 Uniqueness

Theorem 6.1 Let (t ′, r ′, α′, β ′), (t ′′, r ′′, α′′, β ′′) be two continuously differentiable
solutions to the free boundary problem and let z′(v), z′′(v) be the corresponding
solutions of the identification equation. Let z′(v), z′′(v) and

f ′(v) := t ′(v, v), g′(v) := r ′(v, v) − r0, α′+(v) := α′(v, v), β ′+(v) := β ′(v, v),

(1146)

f ′′(v) := t ′′(v, v), g′′(v) := r ′′(v, v) − r0, α′′+(v) := α′′(v, v), β ′′+(v) := β ′′(v, v),

(1147)

be given by

z′(v) = vy′(v), z′′(v) = vy′′(v), (1148)

f ′(v) = v2 f̂ ′(v), f ′′(v) = v2 f̂ ′′(v), (1149)

123



Shock Development in Spherical Symmetry Page 147 of 246 3

g′(v) = v2 ĝ′(v), g′′(v) = v2 ĝ′′(v), (1150)

α′+(v) − αi (v) = v2α̂′+(v), α′′+(v) − αi (v) = v2α̂′′+(v), (1151)

β ′+(v) − β0 = v2β̂ ′+(v), β ′′+(v) − β0 = v2β̂ ′′+(v), (1152)

with

y′, y′′, f̂ ′, f̂ ′′, ĝ′, ĝ′′, α̂′+, α̂′′+, β̂ ′+, β̂ ′′+ ∈ C1[0, ε]. (1153)

Let V̂ ′(v), V̂ ′′(v) be given by

V ′(v) = c+0 + κ

2
(1 + y′(v))v + v2V̂ ′(v), where V ′(v) =

dg′

dv
(v)

d f ′

dv
(v)

, (1154)

V ′′(v) = c+0 + κ

2
(1 + y′′(v))v + v2V̂ ′′(v), where V ′′(v) =

dg′′

dv
(v)

d f ′′

dv
(v)

,

(1155)

with

V̂ ′, V̂ ′′ ∈ C0[0, ε]. (1156)

Then it follows that for ε sufficiently small, the two solutions coincide.

Proof In the following, whenever there is no prime or no double prime on a function it
is meant that the statement holds for both the primed as well as for the double primed
function. Let us make the following definition for any function f

� f := f ′′ − f ′. (1157)

We see that the assumptions from proposition 6.1 are satisfied. Therefore, we are
able to make use of the statement and the proof of proposition 6.1. From proposition
6.1 we have

dz

dv
(v) = −1 + O(v), z(v) = −v + O(v2), (1158)

d f

dv
(v) = λ

3κ2 v + O(v2), f (v) = λ

6κ2 v2 + O(v3), (1159)

dg

dv
(v) = λc+0

3κ2 v + O(v2), g(v) = λc+0

6κ2 v2 + O(v3), (1160)

dα+
dv

(v) = dαi

dv
(v) + λ Ã0

3κ2 v + O(v2), α+(v) = αi (v) + λ Ã0

6κ2 v2 + O(v3),

(1161)
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dβ+
dv

(v) = λ

3κ2

(
∂β∗

∂t

)

0
v + O(v2), β+(v) = β0+ λ

6κ2

(
∂β∗

∂t

)

0
v2 + O(v3).

(1162)

Using the asymptotic forms (1158), (1159) in

α−(v) = α∗( f (v), z(v)), β−(v) = β∗( f (v), z(v)), (1163)

we obtain, in the same way as we arrived at (705), (706), (711), (712),

dα−
dv

(v) = α̇0
dz

dv
(v) + O(v), α−(v) = α0 + α̇0z(v) + O(v2), (1164)

dβ−
dv

(v) = λ

3κ3

(
∂β∗

∂t

)

0
v + O(v2), β−(v) = β0 + λ

6κ2

(
∂β∗

∂t

)

0
v2+O(v3).

(1165)

Substituting (1158) in (1164) we obtain

dα−
dv

(v) = −α̇0 + O(v), α−(v) = α0 − α̇0v + O(v2). (1166)

The second of (1161) together with the second of (1166) imply

[α(v)] = 2α̇0v + O(v2). (1167)

Looking at the proof of lemma 5.3 we see that the above asymptotic forms constitute
all the necessary requirements for this proof to hold. Therefore, we have the following
estimates

∣∣∣∣
d�β+
dv

(v)

∣∣∣∣ ≤ C
{
v2‖�z‖X + ‖� f ‖X + v2‖�α+‖X

}
, (1168)

∣∣∣�V (v) − κ

2
�z(v)

∣∣∣ ≤ C
{
v2‖�z‖X + v‖� f ‖X + v‖�α+‖X

}
, (1169)

where the X norm is defined by (756).
We now define

δ(v) := g(v) − c+0 f (v). (1170)

From (1149), (1150) we have

δ(v) = v2(ĝ(v) − c+0 f̂ (v)). (1171)

Furthermore, from f̂ , ĝ ∈ C1[0, ε] together with (1063) we have

ĝ(v) − c+0 f̂ (v) = O(v). (1172)
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Therefore, we can write

δ(v) = v3δ̂(v), (1173)

with

δ̂ ∈ C1(0, ε] ∩ C0[0, ε], δ̂(0) = 0. (1174)

We now show that d δ̂/dv extends continuously to 0. From the definition (1170) we
obtain

dδ

dv
(v) = (V (v) − c+0)

d f

dv
(v), (1175)

where (see (1154), (1155))

V (v) = c+0 + κ

2
(1 + y(v))v + v2V̂ (v). (1176)

We have

1 + y(v)

v
= 1

v

∫ v

0

dy

dv
(v′)dv′. (1177)

Therefore,

lim
v→0

1 + y(v)

v
= dy

dv
(0) (1178)

and we obtain

lim
v→0

V (v) − c+0

v2 = V2, (1179)

where

V2 := κ

2

dy

dv
(0) + V̂ (0). (1180)

I.e.

V (v) − c+0 = V2v
2 + O(v2). (1181)

It follows that

lim
v→0

1

v3

dδ

dv
= V2λ

3κ2 , (1182)
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where we used the first of (1159). Taking into account δ(0) = 0, this implies

lim
v→0

1

v4 δ = V2λ

12κ2 . (1183)

Hence,

lim
v→0

d δ̂

dv
= lim

v→0

(
1

v3

dδ

dv
− 3δ

v4

)
= V2λ

12κ2 . (1184)

Thus δ̂ extends to a C1 function on [0, ε], i.e. we have

δ̂ ∈ C1[0, ε]. (1185)

Looking now at the proof of lemma 5.2 we see that the above asymptotic forms
constitute all the necessary requirements for this proof to hold. Therefore, we have

d�y

dv
(v) = 3κ

λ

{
κ
d� f̂

dv
(v) + d�δ̂

dv
(v)

}
+ O(v‖� f̂ ‖X ) + O(v‖�y‖X ). (1186)

Now we look at the partial derivatives of t . We recall (1064):

∂2t

∂u∂v
= 1

c+ − c−

(
∂c−
∂v

∂t

∂u
− ∂c+

∂u

∂t

∂v

)
. (1187)

Integrating with respect to v from v = 0 yields

∂t

∂u
(u, v) = e−K (u,v)

{
h′(u) −

∫ v

0
eK (u,v′)

(
μ

∂t

∂v

)
(u, v′)dv′

}
, (1188)

where we recall

K (u, v) =
∫ v

0
(−ν)(u, v′)dv′, μ = 1

c+ − c−
∂c+
∂u

(1189)

and

ν = 1

c+ − c−
∂c−
∂v

. (1190)

We also recall from the proof of proposition 6.1 the expressions (1087), (1090):

∂t

∂u
(u, v) = Ou(u), (1191)

∂t

∂v
(u, v) = 2v f̂ (0) + uOv(1). (1192)
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From the second of (1062) we obtain

∂t

∂v
(u, v) = λ

3κ2 v + uOv(1). (1193)

From (1091) we have

μ(u, v) = κ

c+0 − c−0
+ Ou(1). (1194)

From (1088) we have

ν(u, v) = Ov(1). (1195)

Using this together with (1192) in (1188) and recalling (1065) and the second of
(1062), we obtain

∂t

∂u
(u, v) = λ(3u2 − v2)

6κ(c+0 − c−0)
+ Ou(u

2). (1196)

We now improve the expressions for μ and ν. From

∂β

∂u
= ∂t

∂u
B̃ (1197)

we have

∂β

∂u
= O(u2). (1198)

From

∂α

∂v
= ∂t

∂v
Ã (1199)

we have

α(u, v) = αi (u) +
∫ v

0

(
∂t

∂v
Ã

)
(u, v′)dv′. (1200)

Therefore,

∂α

∂u
(u, v) = dαi

du
(u) +

∫ v

0

(
∂2t

∂u∂v
Ã + ∂t

∂v

∂ Ã

∂u

)
(u, v′)dv′, (1201)

which implies

∂α

∂u
(u, v) = α̇0 + O(u). (1202)
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In view of (1079) and the second of (1189) we have (recall that (∂c+/∂α)0 α̇0 = κ)

μ(u, v) = κ

c+0 − c−0
+ O(u). (1203)

From (1193) and (1199) we have

∂α

∂v
(u, v) = O(u). (1204)

From (1197) we have

β(u, v) = β+(v) +
∫ u

v

(
∂t

∂u
B̃

)
(u′, v)du′. (1205)

Therefore

∂β

∂v
(u, v) = dβ+

dv
(v) +

∫ u

v

(
∂2t

∂u∂v
B̃ + ∂t

∂u

∂ B̃

∂v

)
(u′, v)du′, (1206)

which implies

∂β

∂v
(u, v) = O(u). (1207)

In view of (1084) we have

ν(u, v) = O(u). (1208)

Now we look at 1/γ (v) given by (see (321))

γ (v) := c̄+(v) − V (v)

V (v) − c̄−(v)
, (1209)

where

c̄±(v) := c±(α+(v), β+(v)). (1210)

Using the above asymptotic forms for α+, β+ and V we obtain, in exactly the same
way as we did in the part on the fixed boundary problem,

1

γ (v)
= c+0 − c−0

κv
(1 + ρ(v)) (1211)

with

ρ(v) = ρ0(v) + O(v), ρ0(v) =
1
2 (y(v) + 1)

1 − 1
2 (y(v) + 1)

. (1212)
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The above asymptotic forms now allow us to follow the proof of lemma 5.1. We thus
obtain

∣∣∣∣
d� f̂

dv
(v)

∣∣∣∣ ≤
λ

24κ2 ‖�y‖X + C

{
sup
[0,v]

|�V̂ | + v‖�β̂+‖X + v‖�y‖X
}

, (1213)

∣∣∣∣∣
d�δ̂

dv
(v)

∣∣∣∣∣ ≤
λ

24κ
‖�y‖X + C

{
sup
[0,v]

|�V̂ | + v‖�β̂+‖X + v‖�y‖X
}

, (1214)

‖�α+‖X ≤ Cv2

{
sup
[0,v]

|�V̂ | + v‖�β̂+‖X + ‖�y‖X
}

. (1215)

We now combine (1168), (1169), (1186), (1213), (1214), (1215) in the same way
as we did in the proof of proposition 5.2 and find, for ε sufficiently small,

‖�y‖X ≤ 1

3
‖�y‖X + C

{
v‖�β̂+‖X + sup

[0,v]
|�V̂ |

}
,

‖�β̂+‖X ≤ C

{
‖�y‖X + sup

[0,v]
|�V̂ | + v‖�β̂+‖X

}
,

sup
[0,v]

|�V̂ | ≤ C

{
v‖�y‖X + v sup

[0,v]
|�V̂ | + v2‖�β̂+‖X

}
. (1216)

These imply, for ε sufficiently small,

‖�y‖X ≤ C

{
v‖�β̂+‖X + sup

[0,ε]
|�V̂ |

}
, (1217)

‖�β̂+‖X ≤ C

{
‖�y‖X + sup

[0,ε]
|�V̂ |

}
, (1218)

sup
[0,ε]

|�V̂ | ≤ C
{
v‖�y‖X + v2‖�β̂+‖X

}
. (1219)

Substituting (1217) in (1218) and (1219) yields

‖�β̂+‖X ≤ C sup
[0,ε]

|�V̂ |, (1220)

sup
[0,ε]

|�V̂ | ≤ Cv2‖�β̂+‖X , (1221)

for ε sufficiently small. Substituting (1220) in (1221) gives, for ε sufficiently small,

�V̂ = 0, (1222)
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which gives

‖�β̂+‖X = 0, (1223)

which gives

‖�y‖X = 0. (1224)

In view of (1213), (1214) and (1215), the vanishing of these differences implies that
also the differences of f , δ and α+ vanish. Now we make use of estimates appearing
in the proof of lemma 5.1. In all these estimates there appear no indices in the present
context. F(u) given by (867) vanishes. Therefore, in view of (876), (877) the differ-
ences of the partial derivatives of t vanish. In view of (784), (785) the differences of
α and β vanish, therefore also the differences of μ and ν vanish. In view of (779)
also the difference of r vanishes. In view of (816), (823) the differences of ∂α/∂u and
∂β/∂v vanish. In view of the characteristic system the differences of ∂α/∂v and ∂β/∂u
vanish. In view of the Hodograph system also the differences of the partial derivatives
of r vanish. Therefore, the two solutions (prime and double prime) coincide. This
completes the uniqueness proof. ��

6.3 Continuity of L+α and L+β Across the Incoming Characteristic
Originating at the Cusp Point

In the present subsection we carry the argument of the above proof further. In particular
we will first improve the estimates (1193), (1204) and (1207). Then on the basis of
these improved estimates we will show the continuity of L+α and L+β across C .

Proposition 6.2 L+α and L+β are continuous across C.

Proof Let us consider ∂t/∂v, ∂β/∂v along K. We have, along K,

∂t

∂v
= d f

dv
− ∂t

∂u
,

∂β

∂v
= dβ+

dv
− ∂β

∂u
(1225)

and, by proposition 6.1,

d f

dv
(v) = λ

3κ2 v + O(v2), (1226)

dβ+
dv

(v) = λ

3κ2

(
∂β∗

∂t

)

0
v + O(v2). (1227)

Evaluating (1196) at u = v we obtain

∂t

∂u
(v, v) = λ

3κ(c+0 − c−0)
v2 + O(v2). (1228)
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From (1226) and (1228) we obtain, through the first of (1225),

∂t

∂v
(v, v) = λ

3κ2 v + O(v2). (1229)

By (1197) and (1228) we get

∂β

∂u
(v, v) = O(v2). (1230)

From (1227) and (1230) we obtain, through the second of (1225),

∂β

∂v
(v, v) = λ

3κ2

(
∂β∗

∂t

)

0
v + O(v2). (1231)

Let us then consider the system (329), (330) along any incoming characteristic. It
is a system of the form (331):

d

du

(
∂β/∂v

∂t/∂v

)
=
(
a11 a12
a21 a22

)(
∂β/∂v

∂t/∂v

)
. (1232)

This is a linear homogeneous system with a coefficient matrix

a =
(
a11 a12
a21 a22

)
(1233)

which is continuous on Tε. The initial data are on K and given by (1229), (1231). Let
the matrix m be the solution of

dm

du
= am, m|K = id. (1234)

Then the solution of (1232) is

(
∂β/∂v

∂t/∂v

)
= m

(
∂β/∂v

∂t/∂v

)∣∣∣∣K
. (1235)

Since

m − id = O(u − v), (1236)

and by (1229), (1231),

(
∂β/∂v

∂t/∂v

)∣∣∣∣K
= O(v), (1237)

123



3 Page 156 of 246 D. Christodoulou, A. Lisibach

it follows that
(

∂β/∂v

∂t/∂v

)
=
(

∂β/∂v

∂t/∂v

)∣∣∣∣K
+ O(uv), (1238)

i.e. by (1229), (1231),

∂t

∂v
(u, v) = λ

3κ2 v + O(uv), (1239)

∂β

∂v
(u, v) = λ

3κ2

(
∂β∗

∂t

)

0
v + O(uv), (1240)

which improve (1193) and (1207) respectively. Also, (1239) implies, through (1199),

∂α

∂v
(u, v) = λ Ã0

3κ2 v + O(uv), (1241)

which improves (1204).
Since α and t are by construction continuous across C while β and r satisfy along

C the o.d.e. system

dβ

du
= ∂t

∂u
B̃(α, β, r), (1242)

dr

du
= ∂t

∂u
c−(α, β), (1243)

while

β(0, 0) = β∗(0, 0) = β0, r(0, 0) = r∗(0, 0) = r0, (1244)

at the cusp point, it follows that r and β are continuous across C as well. Then,

L+α = ∂α/∂v

∂t/∂v
= Ã(α, β, r) (1245)

is also continuous across C .
Let us consider

L+β = ∂β/∂v

∂t/∂v
. (1246)

From (329), (330) we have

a11 = 1

c+ − c−
∂t

∂u

∂c−
∂β

B̃ + ∂t

∂u

∂ B̃

∂β
, (1247)

a12 = − 1

c+ − c−

(
∂c+
∂u

− ∂t

∂u

∂c−
∂α

Ã

)
B̃ + ∂t

∂u

(
∂ B̃

∂α
Ã + ∂ B̃

∂r
c+

)
, (1248)
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a21 = 1

c+ − c−
∂t

∂u

∂c−
∂β

, (1249)

a22 = − 1

c+ − c−

(
∂c+
∂u

− ∂t

∂u

∂c−
∂α

Ã

)
. (1250)

We see that the matrix a is continuous across C . This implies that the matrix m is
continuous across C . By (1235),

L+β = m11L+β|K + m12

m21L+β|K + m22
, (1251)

while by (1229) and (1231),

(L+β)0 = lim
v→0

L+β|K = lim
v→0

(
∂β/∂v

∂t/∂v

)
(v, v) =

(
∂β∗

∂t

)

0
= (L+β∗)

0 . (1252)

Hence L+β is continuous across C as well. ��

7 Higher Regularity

In the following we denote by P̄m,n a polynomial in v of degree m starting with an
n’th order term. We denote by Pm,n(v) a sum of P̄m,n and a function of O(vm+1). We
then define Pm(v) := Pm,0(v). We also denote by Qm,n(u, v) a sum of a polynomial
in u and v of degree m starting with an n’th order term and a function of O(um+1)

(we recall that in the domain in question, i.e. in Tε, we have 0 ≤ v ≤ u ≤ ε). We then
define Qm := Qm,0. We extend the meaning of Pm,n and Qm,n to the case n = m + 1
by

Pm,m+1 :=O(vm+1), Qm,m+1 :=O(um+1). (1253)

Furthermore we will use the definitions

Im,n(v) :=
∫ v

0
v′n dm y

dvm
(v′)dv′, Îm,n(v) := 1

vn
Im,n(v) (1254)

and

Ym := sup
[0,ε]

∣∣∣∣
dm y

dvm

∣∣∣∣ , Fm := sup
[0,ε]

∣∣∣∣
dm f̂

dvm

∣∣∣∣. (1255)

In the following we prove that the solution established in the existence theorem is
smooth. We do this by induction, showing that all derivatives of y, f̂ are bounded and
all derivatives of t , r , α, β are in C1.
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7.1 Inductive Hypothesis

We make the following inductive hypotheses: We assume that we have bounds for Ym ,
Fm for m = 1, . . . , n − 1, i.e.

Y1, . . . ,Yn−1 ≤ C, (Yn−1)

F1, . . . , Fn−1 ≤ C . (Fn−1)

For the function α+(v) = α(v, v) we assume

dn−1α+
dvn−1 = P1. (α+,n−1)

For the function t (u, v) we assume, for n ≥ 3,

∂k−2t

∂uk−2 = Q2, : k ≤ n,
∂k−2t

∂vk−2 = Q1, : k ≤ n, (tp,n−1)

∂ i+ j

∂ui∂v j

(
∂2t

∂u∂v

)
= Q1 : i + j ≤ n − 3. (tm,n−1)

With the indices p and m we indicate that we refer to pure and mixed derivatives.
In the case n = 2, (tm,n−1) is not present and (tp,n−1) is

t = Q2. (tp,1)

For the functions α and β we assume

∂k−2α

∂uk−2 = Q2, : k ≤ n,
∂k−2α

∂vk−2 = Q1, : k ≤ n, (αp,n−1)

∂ i+ j

∂ui∂v j

(
∂2α

∂u∂v

)
= Q1 : i + j ≤ n − 3, (αm,n−1)

∂k−2β

∂uk−2 = Q2, : k ≤ n,
∂k−2β

∂vk−2 = Q1, : k ≤ n, (βp,n−1)

∂ i+ j

∂ui∂v j

(
∂2β

∂u∂v

)
= Q1 : i + j ≤ n − 3, (βm,n−1)

and

∂n−1α

∂un−1 = Q0,
∂n−1α

∂vn−1 = Q0, (α0,n−1)

∂n−1β

∂un−1 = Q0,
∂n−1β

∂vn−1 = Q0. (β0,n−1)
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For n = 2 the properties (αm,n−1), (βm,n−1) are not present and (αp,n−1), (βp,n−1)
are

α = Q2, (αp,1)

β = Q2. (βp,1)

7.2 Base Case n = 2

We show that the inductive hypothesis holds for n = 2. We are going to use estimates
established during the existence proof. The index on functions in estimates in the
existence proof was in order to label the iterates. These estimates also hold in the limit
hence without any indices. Also the dependencies on δ2 of the bounds are not present
anymore since δ2 has been chosen appropriately.

Since Y1 = Y , where Y was defined in (315), we have from (755),

Y1 ≤ C. (Y1)

From (638) we have

F1 ≤ C, (F1)

while from (724) we have

dα+
dv

= P1. (α+,1)

Using now the first of (716) in

t (u, v) = t (u, 0) +
∫ v

0

∂t

∂v
(u, v′)dv′ (1256)

together with the fact that t (u, 0) = u3ĥ(u), where ĥ is a smooth function, we obtain
(tp,1). From (1198), (1202), (1204), (1207) we have

∂α

∂u
= Q0,

∂α

∂v
= Q0,1, (1257)

∂β

∂u
= Q1,2,

∂β

∂v
= Q0,1. (1258)

Therefore, (α0,1) and (β0,1) hold.
We have

α(u, v) = αi (u) +
∫ v

0

∂α

∂v
(u, v′)dv′. (1259)
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From

∂α

∂v
= ∂t

∂v
Ã(α, β, r), (1260)

together with the first of (716) we obtain

∂α

∂v
= Q1,1. (1261)

Using this together with the fact that αi is a smooth function in (1259), we deduce that
(αp,1) holds.

We have

β(u, v) = β+(v) +
∫ u

v

∂β

∂u
(u′, v)du′. (1262)

From

∂β

∂u
= ∂t

∂u
B̃, (1263)

together with the second of (716) we obtain

∂β

∂u
= Q1,1. (1264)

From the second of (1162) we have

β+ = P2. (1265)

Using this together with (1264) in (1262) we deduce that (βp,1) holds. We conclude
that the inductive hypothesis holds in the case n = 2.

7.3 Inductive Step

We now show the inductive step, i.e. we show that (Yn−1), …, (β0,n−1) hold with n in
the role of n−1. Once this is proved, we have proven the following regularity theorem.

Theorem 7.1 The solution whose existence is the content of theorem 5.1 and whose
uniqueness is the content of theorem 6.1 is actually smooth.

We remark that to see that also the function r(u, v), which is not present in the inductive
hypothesis, is a smooth function, we appeal to the Hodograph system, i.e. to (162).

We write

dk−1y

dvk−1 =
(
dk−1y

dvk−1

)

0
+
∫ v

0

dk y

dvk
(v′)dv′, (1266)
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where we recall the notation (·)0 for evaluation at the cusp point, i.e. for functions of
v evaluation at v = 0. Since z = vy, we have

di z

dvi
= v

di y

dvi
+ i

di−1y

dvi−1 . (1267)

Setting i = n − 1 and using (1266), we deduce from the inductive hypothesis (Yn−1)

dn−1z

dvn−1 = P0. (1268)

This implies, through integration,

dmz

dvm
=
{
Pn−1,1 m = 0,

Pn−m−1 1 ≤ m ≤ n − 1.
(1269)

Recalling f (v) = v2 f̂ (v) and making use of the assumption (Fn−1) we obtain,
analogous to the way we arrived at (1269),

dm f

dvm
=
⎧
⎨
⎩

Pn,2 m = 0,

Pn−1,1 m = 1,

Pn−m 2 ≤ m ≤ n − 1.

(1270)

Making use of assumption (α+,n−1) we obtain, through integration,

dmα+
dvm

= Pn−m : 0 ≤ m ≤ n − 1. (1271)

We now look at the behavior of α−(v) and β−(v). Recalling

α−(v) = α∗( f (v), z(v)), β−(v) = β∗( f (v), z(v)), (1272)

where α∗(t, w), β∗(t, w) denotes the solution in the state ahead and t (v, v) = f (v),
w = z(v) are substituted, we have

dα−
dv

= ∂α∗

∂t
( f, z)

d f

dv
+ ∂α∗

∂w
( f, z)

dz

dv
,

dβ−
dv

= ∂β∗

∂t
( f, z)

d f

dv
+ ∂β∗

∂w
( f, z)

dz

dv
.

(1273)

Now, by (1269) and (1270) we have

∂α∗

∂t
( f, z) = Pn−1,

∂α∗

∂w
( f, z) = Pn−1 (1274)

and for higher order derivatives we have

∂ i+ jα∗

∂t i∂w j
( f, z) = Pn−1 : i + j ≤ m. (1275)
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Analogous, but now taking into account the fact that (∂β∗/∂w)0 = 0, we have

∂β∗

∂t
( f, z) = Pn−1,

∂β∗

∂w
( f, z) = Pn−1,1 (1276)

and for higher order derivatives we have

∂ i+ jβ∗

∂t i∂w j
( f, z) = Pn−1 : i + j ≤ m. (1277)

Taking m − 1 derivatives of the first of (1273) and making use of (1269), (1270),
(1274) and (1275) we obtain

dmα−
dvm

= Pn−m−1 : 0 ≤ m ≤ n − 1. (1278)

Taking m − 1 derivatives of the second of (1273) and making use of (1269), (1270),
(1276) and (1277) we obtain

dmβ−
dvm

=
{
Pn−1,1 m = 1,

Pn−m 2 ≤ m ≤ n − 1.
(1279)

Now we look at the behavior ofβ+(v). For this we recall [β] = [α]3 G(α+, α−, β−).
We have

dm [β]

dvm
=

m∑
i=0

(
m

i

)
di [α]3

dvi

dm−i G

dvm−i
. (1280)

From (1271), (1278) and taking into account α−(0) = α+(0), we obtain

[α] = Pn−1,1, [α]2 = Pn,2, [α]3 = Pn+1,3, (1281)

and

dm [α]

dvm
= Pn−m−1 : 1 ≤ m ≤ n − 1 (1282)

and similarly

dm [α]3

dvm
=
⎧⎨
⎩

Pn,2 m = 1,

Pn−1,1 m = 2,

Pn−m+1 3 ≤ m ≤ n − 1.

(1283)

In view of (1271), (1278), (1279) we have

dm−i G

dvm−i
= Pn−m+i−1. (1284)
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Using (1281), (1283) and (1284) in (1280) we obtain

dm [β]

dvm
=

⎧⎪⎪⎨
⎪⎪⎩

Pn+1,3 m = 0,

Pn,2 m = 1,

Pn−1,1 m = 2,

Pn−m+1 3 ≤ m ≤ n − 1.

(1285)

Therefore, from (1279) we obtain

dmβ+
dvm

=
{
Pn−1,1 m = 1,

Pn−m 2 ≤ m ≤ n − 1.
(1286)

We note that (1271), (1278), (1279) and (1286) constitute the behaviors of α±(v),
β±(v).

7.3.1 Estimate for dn−1V/dvn−1

We turn to estimating dn−1V/dvn−1. We recall

V =
[
T tr
]

[
T tt
] , (1287)

which implies

dV

dv
= 1[

T tt
]
{
d
[
T tr
]

dv
− V

d
[
T tt
]

dv

}
. (1288)

We use the notation

c̄± = c±(α+, β+), c̊± = c±(α−, β−). (1289)

and we recall (see (187), (188))

∂T tr

∂α
= c+

∂T tt

∂α
,

∂T tr

∂β
= c−

∂T tt

∂β
. (1290)

(1288) becomes

dV

dv
= 1[

T tt
]
{
(c̄+ − V )

∂T tt

∂α
(α+, β+)

dα+
dv

+ (c̄− − V )
∂T tt

∂β
(α+, β+)

dβ+
dv

− (c̊+ − V )
∂T tt

∂α
(α−, β−)

dα−
dv

− (c̊− − V )
∂T tt

∂β
(α−, β−)

dβ−
dv

}
. (1291)
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Defining now a(v) and b(v) by

a := − 1[
T tt
] d

dv

[
T tt] , (1292)

b := 1[
T tt
]
{

d

dv

[
T tr ]− c+0

d

dv

[
T tt]

}
, (1293)

i.e.

a = − 1[
T tt
]
{

∂T tt

∂α
(α+, β+)

dα+
dv

− ∂T tt

∂α
(α−, β−)

dα−
dv

+ ∂T tt

∂β
(α+, β+)

dβ+
dv

− ∂T tt

∂β
(α−, β−)

dβ−
dv

}
, (1294)

b = 1[
T tt
]
{
(c̄+ − c+0)

∂T tt

∂α
(α+, β+)

dα+
dv

− (c̊+ − c+0)
∂T tt

∂α
(α−, β−)

dα−
dv

+ (c̄− − c+0)
∂T tt

∂β
(α+, β+)

dβ+
dv

− (c̊− − c+0)
∂T tt

∂β
(α−, β−)

dβ−
dv

}
, (1295)

we can rewrite (1291) as

dV

dv
= (V − c+0)a + b. (1296)

Now we define ã by

ã(v) := a(v) + 1

v
. (1297)

With

u := V − c+0, ũ := vu, b̃ := vb, (1298)

(1296) becomes

dũ

dv
= ãũ + b̃. (1299)

The (i − 1)’th order derivative of this can be written as

di ũ

dvi
= ãi−1ũ + b̃i−1. (1300)

Differentiating this we obtain

di+1ũ

dvi+1 =
(
dãi−1

dv
+ ããi−1

)
ũ + db̃i−1

dv
+ ãi−1b̃, (1301)
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which gives us the following recursion formulas

ãi =
(

d

dv
+ ã

)
ãi−1, ã0 = ã, (1302)

b̃i = db̃i−1

dv
+ ãi−1b̃, b̃0 = b̃. (1303)

Solving these gives

ãi =
(

d

dv
+ ã

)i
ã, b̃i = di b̃

dvi
+

i−1∑
m=0

di−1−m(ãmb̃)

dvi−1−m
. (1304)

In the expression for the n’th derivative for y there will be involved the n’th derivative
of f which in turn involves the (n − 1)’th derivative of V . Therefore, we have to
estimate

dn−1ũ

dvn−1 = ãn−2ũ + b̃n−2. (1305)

To estimate ãn−2 we have to estimate the n − 2 order derivative of ã. To estimate
b̃n−2 we need to estimate the n− 2 order derivative of b̃ and the n− 3 order derivative
of ã. We consider first b̃n−2. We derive expressions for a, b to O(v2). We start with b.
Since

[
T tt (0)

] = 0, we have to estimate the n − 2 order derivative of the numerator
of b to O(v3). Let us denote by Ti the i’th term in the curly bracket of (1295) and let

N := −
4∑

i=1

Ti . (1306)

Then

b = − N[
T tt
] . (1307)

We have

T2 = −(c̊+ − c+0)
∂T tt

∂α
(α−, β−)

dα−
dv

= −(c̊+ − c+0)
∂T tt

∂α
(α−, β−)

{
∂α∗

∂t
( f, z)

d f

dv
+ ∂α∗

∂w
( f, z)

dz

dv

}
. (1308)

Let us look at

dn−2

dvn−2

(
(c̊+ − c+0)

dz

dv

)
. (1309)

Using (1267) with n − 1 in the role of i and in the resulting expression (1266) with n
and n − 1 in the role of k we obtain
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dn−1z

dvn−1 = P̄1 + nv

∫ v

0

dn y

dvn
(v′)dv′ − (n − 1)

∫ v

0
v′ dn y
dvn

(v′)dv′. (1310)

Using now (1310) with n − 1 in the role of n and using (1266) with n in the role of k
for the resulting integrands yields

dn−2z

dvn−2 = P̄2 + n

2
v2
∫ v

0

dn y

dvn
(v′)dv′ − (n − 1)v

∫ v

0
v′ dn y
dvn

(v′)dv′

+ n − 2

2

∫ v

0
v′2 dn y

dvn
(v′)dv′. (1311)

We rewrite (1310) and (1311) as

dn−1z

dvn−1 = P̄1 + nv In,0 − (n − 1)In,1, (1312)

dn−2z

dvn−2 = P̄2 + n

2
v2 In,0 − (n − 1)v In,1 + n − 2

2
In,2, (1313)

dn−k z

dvn−k
= Pk−1 : 3 ≤ k ≤ n − 2, (1314)

dz

dv
= −1 + Pn−2,1, (1315)

where (1314) follows directly from (1269) and (1315) follows from z = vy, y(0) =
−1.

Since

c̊+(v) = c+(α−(v), β−(v)), (1316)

we have, in view of (1278), (1279),

dm

dvm
(c̊+ − c+0) = Pn−m−1. (1317)

Taking the derivative of (1316) we obtain

d

dv
(c̊+ − c+0) =

{
∂c+
∂α

(α−, β−)
∂α∗

∂w
( f, z) + ∂c+

∂β
(α−, β−)

∂β∗

∂w
( f, z)

}
dz

dv

+
{

∂c+
∂α

(α−, β−)
∂α∗

∂t
( f, z) + ∂c+

∂β
(α−, β−)

∂β∗

∂t
( f, z)

}
d f

dv
.

(1318)

Taking n − 3 derivatives of this and making use of (1269), (1270), (1278), (1279),
(1315) and

(
∂β∗

∂w

)

0
= 0,

(
∂c+
∂α

)

0

(
∂α∗

∂w

)

0
= κ, (1319)
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we obtain

dn−2

dvn−2 (c̊+ − c+0) = P2 + κ
dn−2z

dvn−2 . (1320)

Substituting (1313) we obtain

dn−2

dvn−2 (c̊+ − c+0) = P2 + κ

{
n

2
v2 In,0 − (n − 1)v In,1 + n − 2

2
In,2

}
, (1321)

dn−k

dvn−k
(c̊+ − c+0) = Pk−1 : 3 ≤ k ≤ n − 2, (1322)

d

dv
(c̊+ − c+0) = −κ + Pn−2,1, (1323)

c̊+ − c+0 = −κv + Pn−1,2, (1324)

where (1322) is (1317) with m = n − k, (1323) follows from (1318), (1319) and
(1324) follows from c̊+(0) = c+0. We note that (1312), …, (1315) and (1321), …,
(1324) express the derivatives of z and c̊+ − c+0 to O(v3) for n ≥ 5. In the case n = 4
the derivatives of z and c̊+ − c+0 to O(v3) are given by the same expressions with
the exceptions of (1314) and (1322) which have to be excluded. In the case n = 3
also (1315) and (1323) have to be excluded, i.e. in the case n = 3 the derivatives of
z and c̊+ − c+0 to O(v3) are given by (1312), (1313), (1321), (1324). Finally, in the
case n = 2 the derivative of z to O(v3) is given by (1312) and c̊+ − c+0 to O(v3)

is given by (1321). The fact that the latter is true is seen from the fact that (1313) is
also true for n = 2 and then using this in (1320) which in the case n = 2 is the Taylor
expansion of c̊+ − c+0 to O(v3).

Integrating by parts we have

In,m =
∫ v

0
v′m dn y

dvn
(v′)dv′ = vm

dn−1y

dvn−1 −
∫ v

0
mv′m−1 d

n−1y

dvn−1 (v′)dv′. (1325)

By the inductive hypothesis this is O(vm). In the case m = 0 we have

In,0 =
∫ v

0

dn y

dvn
(v′)dv′ = dn−1y

dvn−1 −
(
dn−1y

dvn−1

)

0
, (1326)

which is O(1) by the inductive hypothesis. (1325) and (1326) imply

vk In,m = O(vm+k), vk În,m = O(vk). (1327)

Now, in the case n ≥ 5 we have

dn−2

dvn−2

(
(c̊+ − c+0)

dz

dv

)
=

n−2∑
i=0

(
n − 2

i

)
di

dvi
(c̊+ − c+0)

dn−1−i z

dvn−1−i

=
n−3∑
i=2

(
n − 2

i

)
di

dvi
(c̊+ − c+0)

dn−1−i z

dvn−1−i
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+ (c̊+ − c+0)
dn−1z

dvn−1 + (n − 2)
d

dv
(c̊+ − c+0)

dn−2z

dvn−2

+ dn−2

dvn−2 (c̊+ − c+0)
dz

dv
. (1328)

All terms in the sum are products of terms of the form (1314) and (1322) therefore they
are all a P2. For the second line in (1328) we make use of (1312), (1313), (1315) and
(1321), (1323), (1324) together with (1327). Therefore, we obtain in the case n ≥ 5,

dn−2

dvn−2

(
(c̊+ − c+0)

dz

dv

)
= P2 − κ Jn, (1329)

where we defined

Jn := n(n + 1)

2
v2 In,0 − n(n − 1)v In,1 + (n − 1)(n − 2)

2
In,2. (1330)

In the case n = 4 the sum in (1328) is not present and (1314), (1322) are not needed.
Therefore, (1329) is valid in the case n = 4 as well.

Let us look at the case n = 3. From (1313) and (dz/dv)0 = −1 we have

dz

dv
= −1 + P̄2,1 + 1

2

{
3v2 I3,0 − 4v I3,1 + I3,2

}
. (1331)

Using this together with (1319) in (1318) yields

d

dv
(c̊+ − c+0) = −κ + P2,1 + κ

2

{
3v2 I3,0 − 4v I3,1 + I3,2

}
. (1332)

Using now (1312) in the case n = 3 together with (1324), (1331), (1332) we obtain

d

dv

(
(c̊+ − c+0)

dz

dv

)
= P2 − κ J3, (1333)

which is (1329) with 3 in the role of n. Therefore, (1329) is valid in the case n = 3 as
well.

In the case n = 2 we have from (1312) together with (dz/dv)0 = −1

dz

dv
= −1 + P̄1,1 + 2v I2,0 − I2,1, (1334)

while from (1321) in the casen = 2 together with
(
c̊+
)

0 = c+0,
(
d(c̊+ − c+0)/dv

)
0 =

−κ ,

c̊+ − c+0 = −κv + P2,2 + κ
{
v2 I2,0 − v I2,1

}
. (1335)
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From (1334) and (1335) we obtain

(c̊+ − c+0)
dz

dv
= κv + P2,2 − κ J2, (1336)

which agrees with (1329) in the case n = 2. We therefore that (1329) is valid for
n ≥ 2.

Integrating (1329) we obtain

dk

dvk

(
(c̊+ − c+0)

dz

dv

)
= Pn−k−1 : k ≤ n − 3, (1337)

(c̊+ − c+0)
dz

dv
= Pn−1,1. (1338)

We note that these are valid in the case n ≥ 4. In the case n = 3 we have to make use
of (1333) instead of (1337) ((1338) stays valid), while in the case n = 2 we have to
make use of (1336) alone.

Now we look at

dn−2

dvn−2

(
(c̊+ − c+0)

d f

dv

)
. (1339)

From (1270) we have

dn−1 f

dvn−1 = P1, (1340)

dn−2 f

dvn−2 = P2, (1341)

dn−k f

dvn−k
= Pk : 3 ≤ k ≤ n − 2, (1342)

d f

dv
= Pn−1,1. (1343)

We note that (1340), …, (1343) express derivatives of f for n ≥ 5. In the case n = 4
the derivatives of f are expressed by the same expressions with the exceptions of
(1342) which has to be excluded. In the case n = 3 the second and first derivative of
f are given by (1340) and (1343) respectively. Finally in the the case n = 2 the first
derivative of f is given by (1343).

We start with the case n ≥ 5. We have

dn−2

dvn−2

(
(c̊+ − c+0)

d f

dv

)
=

n−2∑
i=0

(
n − 2

i

)
di

dvi
(c̊+ − c+0)

dn−1−i f

dvn−1−i

=
n−3∑
i=2

(
n − 2

i

)
di

dvi
(c̊+ − c+0)

dn−1−i f

dvn−1−i
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+ (c̊+ − c+0)
dn−1 f

dvn−1 + (n − 2)
d

dv
(c̊+ − c+0)

dn−2 f

dvn−2

+ dn−2

dvn−2 (c̊+ − c+0)
d f

dv
. (1344)

All terms in the sum are products of terms of the form (1322) and (1342) therefore
they are all a P2. For the second line in (1344) we make use of (1321), (1323), (1324)
and (1340), (1341), (1343) together with (1327). We see that in the case n ≥ 5 all
terms in (1344) are a P2 and therefore so is (1339). In the case n = 4 the sum in (1344)
is not present, hence (1322) and (1342) are not needed. Therefore, also in the case
n = 4 (1339) is a P2. In the case n = 3 we use (1332) together with (1324), (1340),
(1343). We obtain that also in the case n = 3 (1339) is a P2. Finally in the case n = 2
we use (1335) and (1343). We conclude that, for n ≥ 2,

dn−2

dvn−2

(
(c̊+ − c+0)

d f

dv

)
= P2. (1345)

By integration we obtain from (1345)

dk

dvk

(
(c̊+ − c+0)

d f

dv

)
= Pn−k : 2 ≤ k ≤ n − 2, (1346)

d

dv

(
(c̊+ − c+0)

d f

dv

)
= Pn−1,1, (1347)

(c̊+ − c+0)
d f

dv
= Pn,2. (1348)

Here (1346) is only valid for n ≥ 4 and (1347) is only valid for n ≥ 3.
Let us define

F1 := ∂T tt

∂α
(α−( f, z), β−( f, z))

∂α∗

∂w
( f, z), (1349)

F2 := ∂T tt

∂α
(α−( f, z), β−( f, z))

∂α∗

∂t
( f, z). (1350)

From (1269), (1270) we have

dk F

dvk
= Pn−k−1 : k ≤ n − 2 for F ∈ {F1, F2}, (1351)

F1 = α̇0

(
∂T tt

∂α

)

0
+ Pn−1,1, (1352)

where for the second we used (∂α∗/∂w)0 = α̇0.
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Now, in the case n ≥ 4 we have

dn−2

dvn−2

(
F1(c̊+ − c+0)

dz

dv

)
=

n−2∑
i=0

(
n − 2

i

)
di F1

dvi

dn−2−i

dvn−2−i

(
(c̊+ − c+0)

dz

dv

)

=
n−3∑
i=1

(
n − 2

i

)
di F1

dvi

dn−2−i

dvn−2−i

(
(c̊+ − c+0)

dz

dv

)

+ F1
dn−2

dvn−2

(
(c̊+ − c+0)

dz

dv

)
+ dn−2F1

dvn−2 (c̊+ − c+0)
dz

dv
.

(1353)

All terms in the sum are products of terms of the form (1337) and (1351) therefore
they are all a P2. For the first term in the second line of (1353) we use (1329) together
with (1352) and for the second term in the second line of (1353) we use (1338). We
find

dn−2

dvn−2

(
F1(c̊+ − c+0)

dz

dv

)
= P2 − α̇0κ

(
∂T tt

∂α

)

0
Jn . (1354)

In the case n = 3 we have

d

dv

(
F1(c̊+ − c+0)

dz

dv

)
= dF1

dv
(c̊+ − c+0)

dz

dv
+ F

d

dv

(
(c̊+ − c+0)

dz

dv

)
. (1355)

Making use of (1333), (1338), (1351), (1352) we see that (1354) is also valid in the
case n = 3. In the case n = 2 we make use of (1336), (1352) and see that (1354) is
valid in the case n = 2 as well but we have in particular

F1(c̊+ − c+0)
dz

dv
= P2,2 + α̇0κ

(
∂T tt

∂α

)

0
(v − J2). (1356)

Now, in the case n ≥ 4 we have

dn−2

dvn−2

(
F2(c̊+ − c+0)

d f

dv

)
=

n−2∑
i=0

(
n − 2

i

)
di F2

dvi

dn−2−i

dvn−2−i

(
(c̊+ − c+0)

d f

dv

)

=
n−4∑
i=0

(
n − 2

i

)
di F2

dvi

dn−2−i

dvn−2−i

(
(c̊+ − c+0)

d f

dv

)

+ (n − 2)
dn−3F

dvn−3

d

dv

(
(c̊+ − c+0)

d f

dv

)

+ dn−2F2

dvn−2 (c̊+ − c+0)
d f

dv
. (1357)

All terms in the sum are products of terms of the form (1346) and (1351) therefore
they are all at least a P2. For the first term in the last line of (1357) we use (1347)
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together with (1351). For the second term in the last line in (1357) we use (1348)
together with (1351). We find in the case n ≥ 4,

dn−2

dvn−2

(
F2(c̊+ − c+0)

d f

dv

)
= P2. (1358)

In the case n = 3 the sum in (1357) is not present and the second line in (1357) is
dealt with in the same way as in the case n ≥ 4. We see that (1358) is also valid in the
case n = 3. In the case n = 2 we use again (1348) together with (1351). We see that
(1358) is also valid in the case n = 2 and we have in particular

F2(c̊+ − c+0)
d f

dv
= P2,2. (1359)

From (1354), (1358), in view of (1308) and the definitions (1349), (1350), we
deduce, for n ≥ 2,

dn−2T2

dvn−2 = P2 + α̇0κ

(
∂T tt

∂α

)

0
Jn . (1360)

In the case n = 2 we have in particular, from (1356) (1359),

T2 = P2,2 − α̇0κ

(
∂T tt

∂α

)

0
(v − J2). (1361)

We turn to

dn−2T1

dvn−2 , (1362)

where (see (1295), (1306), (1307))

T1 = (c̄+ − c+0)
∂T tt

∂α
(α+, β+)

dα+
dv

= F
dα+
dv

, (1363)

where we defined

F := (c̄+ − c+0)
∂T tt

∂α
(α+, β+). (1364)

Since c̄+(v) = c+(α+(v), β+(v)), in view of (1271), (1286) we have

F = Pn,1,
dmF

dvm
= Pn−m : 1 ≤ m ≤ n − 2. (1365)

From this together with (1271) we obtain

dn−2T1

dvn−2 = P2. (1366)
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We now look at the case n = 2 in more detail. In the case n = 2 we use

∂T tt

∂α
(α+, β+) =

(
∂T tt

∂α

)

0
+ P2,1, (1367)

together with

c̄+ − c+0 = κv + P2,2, (1368)

to deduce (in agreement with the first of (1365))

F =
(

∂T tt

∂α

)

0
κv + P2,2. (1369)

From (1271) we have

dα+
dv

= α̇0 + P1,1. (1370)

Therefore, in the case n = 2, we obtain

T1 = α̇0κ

(
∂T tt

∂α

)

0
v + P2,2. (1371)

We turn to T3 + T4 (see (1295), (1306), (1307)).

T3 + T4 = (c̄− − c+0)
∂T tt

∂β
(α+, β+)

dβ+
dv

− (c̊− − c+0)
∂T tt

∂β
(α−, β−)

dβ−
dv

=
{
(c̄− − c+0)

∂T tt

∂β
(α+, β+) − (c̊− − c+0)

∂T tt

∂β
(α−, β−)

}
dβ−
dv

+ (c̄− − c+0)
∂T tt

∂β
(α+, β+)

d [β]

dv
. (1372)

Defining

F := (c− − c+0)
∂T tt

∂β
, (1373)

F̄ := F(α+, β+), (1374)

F̊ := F(α−, β−), (1375)

(1372) becomes

T3 + T4 = (F̄ − F̊)
dβ−
dv

+ F̄
d [β]

dv
. (1376)
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From (1271), (1278), (1279), (1286) we have

(F̄ − F̊) = Pn−1,1,
dm

dvm
(F̄ − F̊) = Pn−m−1 : 1 ≤ m ≤ n − 2. (1377)

Now, in the case n ≥ 4,

dn−2

dvn−2

(
(F̄ − F̊)

dβ−
dv

)
=

n−2∑
i=0

(
n − 2

i

)
di

dvi
(F̄ − F̊)

dn−1−iβ−
dvn−1−i

=
n−3∑
i=1

(
n − 2

i

)
di

dvi
(F̄ − F̊)

dn−1−iβ−
dvn−1−i

+ (F̄ − F̊)
dn−1β−
dvn−1 + dn−2

dvn−2 (F̄ − F̊)
dβ−
dv

. (1378)

All terms in the sum are products of terms of the form of the second case of (1279)
and the second of (1377). For the second line in (1378) we use the first case of (1279)
and the first of (1377). We find that in the case n ≥ 4,

dn−2

dvn−2

(
(F̄ − F̊)

dβ−
dv

)
= P2. (1379)

In the case n = 3 the sum in (1378) is not present. For the remaining terms we
argue as in the case n ≥ 4 and find again (1379). In the case n = 2 only the product
of the first case of (1279) and the first of (1377) is present and we find

(F̄ − F̊)
dβ−
dv

= P2,2, (1380)

in agreement with (1379). In view of (1271), (1286), we have

dm F̄

dvm
= Pn−m . (1381)

Using this together with (1285) we obtain, for n ≥ 3,

dn−2

dvn−2

(
F̄
d [β]

dv

)
=

n−2∑
i=0

(
n − 2

i

)
di F̄

dvi

dn−1−i [β]

dvn−1−i

=
n−2∑
i=0

Pn−i P2+i = P2. (1382)

In the case n = 2 we have, using the second case of (1285) together with (1381),

F̄
d [β]

dv
= P2,2. (1383)
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From (1379), (1380), (1382), (1383) we obtain that for n ≥ 2,

dn−2

dvn−2 (T3 + T4) = P2, (1384)

and, in particular in the case n = 2,

T3 + T4 = P2,2. (1385)

In view of (1306), we deduce from (1360), (1366) and (1384)

dn−2N

dvn−2 = P2 − α̇0κ

(
∂T tt

∂α

)

0
Jn . (1386)

In the case n = 2 we have in particular, from (1361), (1371) and (1385),

N = P2,2 − α̇0κ

(
∂T tt

∂α

)

0
J2. (1387)

Now we look at

dn−2

dvn−2

[
T tt] . (1388)

We first restrict ourselves to the case n ≥ 3. Defining

Fα := ∂T tt

∂α
(α+, β+), (1389)

Fβ := ∂T tt

∂β
(α+, β+), (1390)

Ft := F ′
t ( f, z), where F ′

t := ∂T tt

∂α
(α∗, β∗)∂α∗

∂t
+ ∂T tt

∂β
(α∗, β∗)∂β

∗

∂t
, (1391)

Fw := F ′
w( f, z), where F ′

w := ∂T tt

∂α
(α∗, β∗)∂α∗

∂w
+ ∂T tt

∂β
(α∗, β∗)∂β

∗

∂w
, (1392)

we have

d

dv

[
T tt] = Fα

dα+
dv

+ Fβ

dβ+
dv

− Ft
d f

dv
− Fw

dz

dv
. (1393)

From (1269), (1270) we obtain

dmFw

dvm
= Pn−m−1,

dmFt
dvm

= Pn−m−1. (1394)
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In particular, from (∂α/∂w)0 = α̇0 we have

Fw = α̇0

(
∂T tt

∂α

)

0
+ Pn−1,1. (1395)

Now, in the case n ≥ 4 we have

dn−3

dvn−3

(
Fw

dz

dv

)
=

n−3∑
i=0

(
n − 3

i

)
di Fw

dvi

dn−2−i z

dvn−2−i

=
n−3∑
i=1

(
n − 3

i

)
di Fw

dvi

dn−2−i z

dvn−2−i
+ Fw

dn−2z

dvn−2 . (1396)

In view of (1269) and the first of (1394) we see that all terms in the sum are a P2. For
the remaining term we use (1313) together with (1395). Therefore, in the case n ≥ 4,

dn−3

dvn−3

(
Fw

dz

dv

)
= P2 + α̇0

(
∂T tt

∂α

)

0

{
n

2
v2 In,0 − (n − 1)v In,1 + n − 2

2
In,2

}
.

(1397)

In the case n = 3 we only have the last term in (1396). Arguing as in the case
n ≥ 4 we see that (1397) is also valid in the case n = 3. From (1270) together with
the second of (1394) we obtain, in the case n ≥ 3,

dn−3

dvn−3

(
Ft

d f

dv

)
=

n−3∑
i=0

(
n − 3

i

)
di Ft
dvi

dn−2−i f

dvn−2−i
= P2. (1398)

In view of (1271), (1286) we have

dmFα

dvm
= Pn−m,

dmFβ

dvm
= Pn−m . (1399)

Therefore, in the case n ≥ 3,

dn−3

dvn−3

(
Fα

dα+
dv

)
=

n−3∑
i=0

(
n − 3

i

)
di Fα

dvi

dn−2−iα+
dvn−2−i

= P2, (1400)

dn−3

dvn−3

(
Fβ

dβ+
dv

)
=

n−3∑
i=0

(
n − 3

i

)
di Fβ

dvi

dn−2−iβ+
dvn−2−i

= P2. (1401)

From (1397), (1398), (1400) and (1401) we deduce, in the case n ≥ 3,

dn−2

dvn−2

[
T tt] = P2 − α̇0

(
∂T tt

∂α

)

0
Kn, (1402)
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where

Kn := n

2
v2 In,0 − (n − 1)v In,1 + n − 2

2
In,2. (1403)

Now we look at the case n = 2. From (1389) and the first of (1399) we have

Fα =
(

∂T tt

∂α

)

0
+ P1,1. (1404)

Therefore, together with (1370) and using also (1286) and the second of (1399), we
obtain

Fα

dα+
dv

= α̇0

(
∂T tt

∂α

)

0
+ P1,1, Fβ

dβ+
dv

= P1,1. (1405)

From (1270) and the second of (1394) we have

Ft
d f

dv
= P1,1. (1406)

For the derivative of z in the case n = 2 we use (1312). Since y(0) = −1, (1312) in
the case n = 2 is

dz

dv
= −1 + P̄1,1 + 2v I2,0 − I2,1. (1407)

Together with (1395) we obtain

Fw

dz

dv
= −α̇0

(
∂T tt

∂α

)

0
+ P1,1 + α̇0

(
∂T tt

∂α

)

0
(2v I2,0 − I2,1). (1408)

Using (1405), (1406) and (1408) in (1393) we obtain

d
[
T tt
]

dv
= 2α̇0

(
∂T tt

∂α

)

0
+ P1,1 − α̇0

(
∂T tt

∂α

)

0
(2v I2,0 − I2,1). (1409)

Since

2
∫ v

0
v′ I2,0(v

′)dv′ = v2 I2,0 − I2,2, (1410)
∫ v

0
I2,1(v

′)dv′ = v I2,1 − I2,2, (1411)

we obtain from (1409),

[
T tt] = P2,2 + α̇0

(
∂T tt

∂α

)

0
(2v − K2), (1412)

where we made use of
[
T tt (0)

] = 0. From this we see that (1402) is also valid for
n ≥ 2. In addition we see that

[
T tt
]

is divisible by v.
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We now integrate (1386) n − 2 times to obtain N . If we integrate n − 2 times a P2
we obtain a Pn . In view of the definition (1330) we must calculate the l-fold iterated
integral of

v2−i In,i : i = 0, 1, 2. (1413)

Let

fl := vl f0, (1414)

for an integrable function f0 (see (1431) below). We define

g0(v) :=
∫ v

0
f0(v

′)dv′, (1415)

gl(v) :=
∫ v

0
fl(v

′)dv′. (1416)

We integrate l times the function vkg0(v) and denote the result by Gk,l . We claim

Gk,l = k!
(k + l)!v

k+l g0 +
l∑

m=1

(−1)m

(m − 1)!(l − m)!
vl−m

(k + m)
gk+m . (1417)

We prove the claim in (1417) by induction. We start with l = 1. Integrating by parts
and making use of (1415), (1416), we obtain

Gk,1 =
∫ v

0
v′kg0(v

′)dv′

= 1

k + 1

(
vk+1g0 −

∫ v

0
v′k+1 dg0

dv
(v′)dv′

)

= 1

k + 1

(
vk+1g0 − gk+1

)
, (1418)

which is (1417) in the case l = 1. Let then (1417) hold for l = 1, . . . , l. We have
∫ v

0
v′k+l g0(v

′)dv′ = 1

k + l + 1

(
vk+l+1g0 − gk+l+1

)
, (1419)

∫ v

0
v′l−mgk+m(v′)dv′ = 1

l − m + 1

(
vl−m+1gk+m − gk+l+1

)
. (1420)

Using the above to integrate (1417) we obtain

Gk,l+1 = k!
(k + l + 1)!v

k+l+1g0 +
l∑

m=1

(−1)m

(m − 1)!(l + 1 − m)!
vl+1−m

k + m
gk+m

−
{

k!
(k + l + 1)! +

l∑
m=1

(−1)m

(m − 1)!(l + 1 − m)!
1

k + m

}
gk+l+1. (1421)
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Since the first line agrees already with the right hand side with l + 1 in the role of l,
except for the last term in the sum, the thing left to show is

− k!
(k + l + 1)! −

l∑
m=1

(−1)m

(m − 1)!(l + 1 − m)!
1

k + m
= (−1)l+1

l!
1

k + l + 1
. (1422)

We have

− l!
{

l∑
m=1

(−1)m

(m − 1)!(l + 1 − m)!
1

k + m
+ k!

(k + l + 1)!

}

= −
l∑

m=1

(
l

m − 1

)
(−1)m

k + m
− l!k!

(k + l + 1)!

= − k!
(k + l + 1)! Pl , (1423)

where

Pl := l! +
l∑

m=1

(
l

m − 1

)
(−1)m(k + 1) · · · ˜(k + m) · · · (k + l + 1), (1424)

where the tilde denotes omission. Pl is a polynomial in k of degree l. The coefficient
of kl is

l∑
m=1

(
l

m − 1

)
(−1)m = (−1)l . (1425)

Since if n ∈ {1, . . . , l}

(−n + 1) · · · ˜(−n + m) · · · (−n + l + 1)=
{

0 m 
= n,

(n − 1)!(−1)n−1(l − n + 1)! m = n,

(1426)

we have

l∑
m=1

(
l

m − 1

)
(−1)m(−n + 1) · · · ˜(−n + m) · · · (−n + l + 1) = −l!. (1427)

Therefore,

Pl(−n) = 0 : n = 1, . . . , l, (1428)

i.e. the roots of Pl(k) are k = −1, . . . ,−l, which implies, together with the fact that
the coefficient of kl in Pl(k) is given by (1425),
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Pl(k) = (−1)l(k + 1) · · · (k + l). (1429)

Using this in (1423) yields (1422). This completes the proof of (1417). We remark
that since (1417) was proved by induction on l, a positive integer, it also holds when
k is a negative integer, as long as k + l < 0 and for k < 0 the first factor in the first
term of (1417) is interpreted as

k!
(k + l)! = 1

(k + l) · · · (k + 1)
= (−1)l

(−k − l) · · · (−k − 1)
= (−1)l

(−k − l − 1)!
(−k − 1)! .

(1430)

We now set

f0 = vi
dn y

dvn
: i = 0, 1, 2, (1431)

such that (see (1416))

g0 = In,i . (1432)

We also set k = 2 − i . Then Gk,l given by (1417) is the l-fold iterated integral of
vkg0 = v2−i In,i (cf. (1413)) and

g j (v) =
∫ v

0
v′i+ j d

n y

dvn
(v′)dv′

= In,i+ j . (1433)

Therefore, the l-fold iterated integral of v2−i In,i is

(2 − i)!
(2 − i + l)!v

2−i+l In,i +
l∑

m=1

(−1)m

(m − 1)!(l − m)!
vl−m

(2 − i + m)
In,m+2. (1434)

Using this in Jn , given by (1330), we obtain, after a straightforward computation, that
the l-fold iterated integral of Jn is

vl+2
l+2∑
m=0

(−1)m(n − m)(n + 1 − m)

m!(l + 2 − m)! În,m, (1435)

where we recall the notation În,m = (1/vm)In,m . From (1386) this gives dn−l−2N/

dvn−l−2. Setting then j = l + 2 we obtain

dn− j N

dvn− j
= Pj − α̇0κ

(
∂T tt

∂α

)

0
v j

j∑
m=0

(−1)m(n − m)(n + 1 − m)

m!( j − m)! În,m . (1436)
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In particular, setting j = n yields (see (1387))

N = Pn,2 − α̇0κ

(
∂T tt

∂α

)

0
vn

n−1∑
m=0

(−1)m(n + 1 − m)

m!(n − 1 − m)! În,m . (1437)

Making use of (1434), we obtain, after a straightforward computation, that the
l-fold iterated integral of Kn (see the definition (1403)) is

vl+2
l+2∑
m=0

(−1)m(n − m)

m!(l + 2 − m)! În,m . (1438)

Together with (1402) this gives dn−l−2
[
T tt
]
/dvn−l−2. Setting then j = l + 2 we

obtain

dn− j

dvn− j

[
T tt] = Pj − α̇0

(
∂T tt

∂α

)

0
v j

j∑
m=0

(−1)m(n − m)

m!( j − m)! În,m . (1439)

In particular, setting j = n yields (see (1412))

[
T tt ] = Pn,2 + α̇0

(
∂T tt

∂α

)

0

(
2v − vn

n−1∑
m=0

(−1)m

m!(n − 1 − m)! În,m

)
. (1440)

Since
[
T tt
]

and N are divisible by v, we define

[̂
T tt
] :=

[
T tt
]

v
, N̂ := N

v
. (1441)

Furthermore, we note that, in view of (1387), (1412) and using (see (1327))

|v I2,0| ≤ Cv, |I2,1| ≤ Cv, (1442)

we have

N̂ (0) = 0,
[̂
T tt
]
(0) = 2α̇0

(
∂T tt

∂α

)

0
. (1443)

We then have (see (1307))

b = − N̂
[̂
T tt
] . (1444)
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Let now f be a Ck function of v such that f (0) = 0. We define

f̂ := f

v
. (1445)

We have

dk f̂

dvk
=

k∑
i=0

(
k

i

)
dk−i

dvk−i

(
1

v

)
di f

dvi
. (1446)

Since

dm

dvm

(
1

v

)
= (−1)mm!

vm+1 , (1447)

(1446) is

dk f̂

dvk
= k!

vk+1 Ak f, (1448)

where Ak is the operator

Ak :=
k∑

i=0

(−1)k−i

i ! vi
di

dvi
, (1449)

which is homogeneous of degree zero relative to scaling.
In view of

dmvk

dvm
=
{ k!

(k−m)!v
k−m m ≤ k,

0 m > k,
(1450)

we have

Akv
m = ak,mvm, (1451)

where

ak,m :=
min{m,k}∑

i=0

(
m

i

)
(−1)k−i . (1452)

We see that ak,m = 0 for m ≤ k, unless m = 0. Therefore,

Ak P̄k,1 = 0, (1453)

i.e. the null space of Ak is the space of polynomials of degree k with no constant term,

a k-dimensional space. In view of the above, applying dn−2/dvn−2 to N̂ ,
[̂
T tt
]
, we

obtain
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dn−2 N̂

dvn−2 = (n − 2)!
vn−1 An−2N , (1454)

dn−2

dvn−2

[̂
T tt
] = (n − 2)!

vn−1 An−2
[
T tt] . (1455)

Setting k = n − 2 and j = n − i in (1449) we obtain

An−2N =
n∑
j=2

(−1) j

(n − j)!v
n− j d

n− j N

dvn− j
. (1456)

Since the null space of An−2 is the space of polynomials of degree n − 2 with no
constant term, only the terms corresponding to the powers vn−1, vn in Pn,2 survive
when we apply An−2 to N . Therefore, substituting (1436) into (1456), we obtain

An−2N = Pn,n−1 − α̇0κ

(
∂T tt

∂α

)

0
vn

n∑
j=2

(−1) j

(n − j)!

×
j∑

m=0

(−1)m(n − m)(n + 1 − m)

m!( j − m)! În,m . (1457)

We rewrite the double sum as

n∑
m=0

an,m
(−1)m(n − m)(n + 1 − m)

m! În,m, (1458)

where

an,m :=
n∑

j=max{2,m}

(−1) j

(n − j)!( j − m)! . (1459)

Let us consider

ãn,m =
n∑

j=m

(−1) j

(n − j)!( j − m)! . (1460)

For m ≥ 2 we have ãn,m = an,m , but for m = 0, 1 we have

ãn,0 = an,0 − 1

n(n − 2)! , (1461)

ãn,1 = an,1 − 1

(n − 1)! . (1462)
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We set k = j − m in (1460) to obtain

ãn,m = (−1)m

(n − m)!
n−m∑
k=0

(
n − m

k

)
(−1)k

= (−1)m

(n − m)! (1 − 1)n−m . (1463)

This vanishes except in the case n = m and we have ãn,n = (−1)n . I.e.

ãn,m =
{

0 m 
= n,

(−1)n m = n.
(1464)

We conclude

an,m =

⎧⎪⎪⎨
⎪⎪⎩

1
n(n−2)! m = 0,

1
(n−1)! m = 1,

(−1)n m = n,

0 m 
= 0, 1, n.

(1465)

Substituting (1465) in (1458) we conclude that the double sum in (1457) is

(n + 1)

(n − 2)! În,0 − n

(n − 2)! În,1. (1466)

Therefore, from (1454),

dn−2 N̂

dvn−2 = P1 − α̇0κ

(
∂T tt

∂α

)

0
v
{
(n + 1) În,0 − n În,1

}
. (1467)

For n = 2 we have from (1437),

N̂ = P1,1 − α̇0κ

(
∂T tt

∂α

)

0
v
{

3 Î2,0 − 2 Î2,1

}
. (1468)

Using the inductive hypothesis (Yn−1) we have

dn−2 N̂

dvn−2 = P0. (1469)

Integrating this yields

dm N̂

dvm
= Pn−m−2 : 1 ≤ m ≤ n − 3, N̂ = Pn−2,1, (1470)

where for the second we used (1437). We note that the first of (1470) is only valid for
n ≥ 4.
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Setting k = n − 2 and j = n − i in (1449) we obtain

An−2
[
T tt] =

n∑
j=2

(−1) j

(n − j)!v
n− j d

n− j

dvn− j

[
T tt ] . (1471)

Substituting (1439) yields

An−2
[
T tt] = Pn,n−1 − α̇0

(
∂T tt

∂α

)

0
vn

n∑
j=2

(−1) j

(n − j)!
j∑

m=0

(−1)m(n − m)

m!( j − m)! În,m .

(1472)

We rewrite the double sum as

n∑
m=0

an,m
(−1)m(n − m)

m! În,m, (1473)

where the coefficients an,m are defined by (1459) and given by (1465). We find that
the double sum in (1472) is

1

(n − 2)!
(
În,0 − În,1

)
. (1474)

Therefore, from (1455)

dn−2

dvn−2

[̂
T tt
] = P1 − α̇0

(
∂T tt

∂α

)

0
v
(
În,0 − În,1

)
. (1475)

For n = 2 we have, in view of (1412),

[̂
T tt
] = P1,1 + α̇0

(
∂T tt

∂α

)

0

{
2 − v

(
Î2,0 − Î2,1

)}
. (1476)

Using the inductive hypothesis (Yn−1) we have

dn−2

dvn−2

[̂
T tt
] = P0. (1477)

Integrating this yields

dm

dvm

[̂
T tt
] = Pn−m−2 : 1 ≤ m ≤ n − 3,

[̂
T tt
] = Pn−2,1 + 2α̇0

(
∂T tt

∂α

)

0
,

(1478)

where for the second we used the second of (1440). We note that the first of (1478) is
only valid for n ≥ 4.
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We now go back to (1307) and calculate dn−2b/dvn−2 using (1467) and (1475). In
the case n ≥ 4 we have

dn−2b

dvn−2 = −
n−2∑
m=0

(
n − 2

m

)
dn−2−m

dvn−2−m

⎛
⎝ 1
[̂
T tt
]

⎞
⎠ dm N̂

dvm

= −
n−3∑
m=1

(
n − 2

m

)
dn−2−m

dvn−2−m

⎛
⎝ 1
[̂
T tt
]

⎞
⎠ dm N̂

dvm

− dn−2

dvn−2

⎛
⎝ 1
[̂
T tt
]

⎞
⎠ N̂ − 1

[̂
T tt
]
dn−2 N̂

dvn−2 . (1479)

Each of the terms in the sum involves products of terms of the form given by the first
of (1470) and the first of (1478), therefore they are all a P1. Making use of

− dn−2

dvn−2

⎛
⎝ 1
[̂
T tt
]

⎞
⎠ = 1

[̂
T tt
]2

dn−2

dvn−2

[̂
T tt
]+ P1

= P1 − 1

4α̇0

(
∂T tt

∂α

)
0

v
(
În,0 − În,1

)
, (1480)

where for the second equality we used (1475) and the second of (1478), together with
the second of (1470), we see that the first term in the second line of (1479) is a P1.
For the second term in the second line of (1479) we use (1467) and the second of
(1478). In the case n = 3 the sum in (1479) is not present. With the second line in this
equation we deal in the same way as in the case n ≥ 4. In the case n = 2 we have

b = − N̂
[̂
T tt
] (1481)

and we make use of (1468), (1476). We conclude

dn−2b

dvn−2 = κ

2
v
(
(n + 1) În,0 − n În,1

)
+
{
P1 n ≥ 3,

P1,1 n = 2.
(1482)

Integrating this we obtain

dmb

dvm
= Pn−m−2 : m ≤ n − 3, b = Pn−2,1, (1483)

where for the second we used (1443). The first is valid in the case n ≥ 3.
We recall b̃ = vb. We have

dn−2b̃

dvn−2 = v
dn−2b

dvn−2 + (n − 2)
dn−3b

dvn−3 . (1484)
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Since

∫ v

0
v′ În,0(v

′)dv′ = v2

2

(
În,0 − În,2

)
, (1485)

∫ v

0
v′ În,1(v

′)dv′ = v2
(
În,1 − În,2

)
, (1486)

we obtain from (1482),

dn−3b

dvn−3 = κ

2
v2
(
n + 1

2
În,0 − n În,1 + n − 1

2
În,2

)
+
{
P2 n ≥ 4,

P2,1 n = 3.
(1487)

Substituting in (1484) and using again (1482) yields dn−2b̃/dvn−2 for n ≥ 3. In the
case n = 2 we use directly (1482). We conclude

dn−2b̃

dvn−2 = κ

2
Jn +

⎧⎨
⎩

P2 n ≥ 4,

P2,1 n = 3,

P2,2 n = 2,

(1488)

(see (1330) for the definition of Jn). Using the inductive hypothesis (Yn−1) we have

dn−2b̃

dvn−2 = P1. (1489)

Therefore, by integration,

dmb̃

dvm
= Pn−m−1 : 1 ≤ m ≤ n − 3,

db̃

dv
= Pn−2,1, b̃ = Pn−1,2. (1490)

The first one is valid in the case n ≥ 4. The second and the third are valid in the case
n ≥ 3. We note that in the case n ≥ 2 we have

b̃ = O(v2). (1491)

We turn to a given by (1292). We have

a = − M[
T tt
] , (1492)

where

M := d

dv

[
T tt] . (1493)

In view of (1393) we have

dn−2M

dvn−2 = dn−2

dvn−2

{
Fα

dα+
dv

+ Fβ

dβ+
dv

− Ft
d f

dv
− Fw

dz

dv

}
. (1494)
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As in (1400), (1401) we have

dn−2

dvn−2

(
Fα

dα+
dv

)
= P1,

dn−2

dvn−2

(
Fβ

dβ+
dv

)
= P1. (1495)

As in (1398) we have

dn−2

dvn−2

(
Ft

d f

dv

)
= P1. (1496)

Using the first of (1394) together with (1269) we obtain

dn−2

dvn−2

(
Fw

dz

dv

)
= P0. (1497)

Therefore,

dn−2M

dvn−2 = P0. (1498)

Now, from (1409) we have

M(0) = 2α̇0

(
∂T tt

∂α

)

0
. (1499)

Recalling the second of (1443), we define

M ′ := M − M(0), (1500)
[̂
T tt
]′ := [̂T tt

]− M(0). (1501)

We then have

a = − M ′ + M(0)

v

([̂
T tt
]′ + M(0)

) , (1502)

which, recalling (1297), implies

ã =
[̂
T tt
]′ − M ′

v

([̂
T tt
]′ + M(0)

) . (1503)

Setting now

̂[̂
T tt
] :=

[̂
T tt
]′

v
, M̂ := M ′

v
, (1504)
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we have

ã =
̂[̂
T tt
]− M̂
[̂
T tt
] . (1505)

Integrating (1498) in view of (1500) we obtain

dmM ′

dvm
= Pn−m−2, M ′ = Pn−2,1. (1506)

We now use (1454) with M̂ , M ′ in the role of N̂ , N respectively. Since the null space
of An−2 is the space of polynomials of degree n − 2 with no constant term, we obtain

dn−2M̂

dvn−2 = O(1). (1507)

By (1477) we have

dn−2

dvn−2

[̂
T tt
]′ = P0. (1508)

Integrating this yields

dm

dvm

[̂
T tt
]′ = Pn−m−2,

[̂
T tt
]′ = Pn−2,1, (1509)

the second in view of the fact that
[̂
T tt
]′
(0) = 0. Then, from (1454) with

[̂
T tt
]′

,
̂[̂
T tt
]

in the role of N , N̂ respectively, we obtain

dn−2

dvn−2

̂[̂
T tt
] = O(1). (1510)

The estimates (1507), (1510) imply, through integration,

dm M̂

dvm
,
dm

dvm

̂[̂
T tt
] = Pn−m−3 : m ≤ n − 3. (1511)

From (1477), (1478) we have

dm

dvm

[̂
T tt
] = Pn−m−2 : m ≤ n − 2. (1512)

(1511), (1512) imply, through (1505),

dn−2ã

dvn−2 = O(1). (1513)
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Integrating this yields

dmã

dvm
= Pn−m−3 : m ≤ n − 3. (1514)

In order to estimate dn−1ũ/dvn−1 we have to estimate ãn−2, b̃n−2 (see (1305)).
From the first of (1304) we have

ãn−2 =
(

d

dv
+ ã

)n−2

ã. (1515)

Using now (1513), (1514) we obtain

ãn−2 = O(1). (1516)

We turn to b̃n−2. We restrict ourselves first to the case n ≥ 3. From the second of
(1304) we have

b̃n−2 = dn−2b̃

dvn−2 +
n−3∑
m=0

n−3−m∑
l=0

(
n − 3 − m

l

)
dn−3−m−l b̃

dvn−3−m−l

dl ãm
dvl

. (1517)

For the first term we use (1488). The double sum we rewrite as

n−3∑
j=0

j∑
l=0

(
n − 3 − j + l

l

)
dn−3− j b̃

dvn−3− j

dl ã j−l

dvl
. (1518)

Now, in view of the first of (1304), the factor dl ã j−l/dvl involves d j ã/dv j . Therefore,
each of the terms in the inner sum in (1518) involves

dn−3− j b̃

dvn−3− j

d j ã

dv j
. (1519)

Here 0 ≤ j ≤ n − 3. In the case j = n − 3 we use the third of (1490) together with
(1514). We obtain

b̃
dn−3ã

dvn−3 = P2,2. (1520)

In the case j = n − 4 we use the second of (1490) together with (1514). We note that
this case only shows up for n ≥ 4. We obtain

db̃

dv

dn−4ã

dvn−4 = P2,1. (1521)
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In the case 0 ≤ j ≤ n − 5 we use the first of (1490) together with (1514). We note
that this case only shows up for n ≥ 5. We obtain

dn−3− j b̃

dvn−3− j

d j ã

dv j
= P2. (1522)

In the case n = 2 we use b̃n−2 = b̃0 and (1488) in the case n = 2. In view of the
above we conclude

b̃n−2 = κ

2
Jn +

⎧⎨
⎩

P2 n ≥ 4,

P2,1 n = 3,

P2,2 n = 2.

(1523)

We turn to dn−1u/dvn−1. Let us investigate first the case n = 2. To find an estimate
for ũ we integrate (1299) and obtain

ũ =
∫ v

0
e
∫ v
v′ ã0(v

′′)dv′′
b̃0(v

′)dv′. (1524)

From (1516) and (1523) we have

ã0 = O(1), b̃0 = κ

2
J2 + P2,2 = O(v2). (1525)

Therefore,

∣∣∣∣
∫ v

0

(
e
∫ v
v′ ã0(v

′′)dv′′ − 1
)
b̃0(v

′)dv′
∣∣∣∣ ≤ Cv4 (1526)

and we obtain, through (1524),

ũ = P3,3 + κ

2

∫ v

0
J2(v

′)dv′. (1527)

Using now

∫ v

0
v′2 I2,0(v

′)dv′ = 1

3

(
v3 I2,0 − I2,3

)
, (1528)

∫ v

0
v′ I2,1(v

′)dv′ = 1

2

(
v2 I2,1 − I2,3

)
, (1529)

we obtain

ũ = P3,3 + κ

2

(
v3 I2,0 − v2 I2,1

)
. (1530)

123



3 Page 192 of 246 D. Christodoulou, A. Lisibach

We note that ũ = O(v3). From this together with (1516) and (1523), in view of (1299),
we obtain

dũ

dv
= P2,2 + κ

2
J2. (1531)

Substituting this together with (1530) into

du

dv
= 1

v

dũ

dv
− ũ

v2 , (1532)

we find

du

dv
= P1,1 + κ

2
v
(

2 Î2,0 − Î2,1

)
. (1533)

Now we turn to the case n ≥ 3. From ũ = O(v3) together with (1516) and (1523)
in (1305) we obtain

dn−1ũ

dvn−1 = κ

2
Jn +

{
P2 n ≥ 4,

P2,1 n = 3.
(1534)

The l-fold iterated integral of Jn is given by (1435). From (1534) this gives
dn−1−l ũ/dvn−1−l . Setting then j = l + 1 we obtain

dn− j ũ

dvn− j
= κ

2
v j+1

j+1∑
m=0

(−1)m(n − m)(n + 1 − m)

m!( j + 1 − m)! În,m +

⎧⎪⎪⎨
⎪⎪⎩

Pn+1,3 j = n,

Pn,2 j = n − 1,

Pn−1,1 j = n − 2
Pj+1 j ≤ n − 3.

(1535)

The different behavior of the polynomial part is explained by the Taylor expansion
of ũ beginning with a cubic term. Now we use (1454) with ũ, u in the role of N , N̂ ,
respectively, and with n + 1 in the role of n (recall that v N̂ = N ). I.e. we use

dn−1u

dvn−1 = (n − 1)!
vn

An−1ũ. (1536)

Setting k = n − 1 and j = n − i in (1449) we have

An−1ũ =
n∑
j=1

(−1) j−1

(n − j)! v
n− j d

n− j ũ

dvn− j
. (1537)

123



Shock Development in Spherical Symmetry Page 193 of 246 3

Recalling that the null space of An−1 consists of all polynomials of degree n − 1 with
no constant term, we obtain, substituting (1535),

An−1ũ = Pn+1,n + κ

2
vn+1

n∑
j=1

j+1∑
m=0

(−1) j+m−1(n − m)(n + 1 − m)

m!(n − j)!( j + 1 − m)! În,m . (1538)

We rewrite the double sum in (1538) as

n+1∑
m=0

bn,m
(−1)m(n − m)(n + 1 − m)

m! În,m, (1539)

where

bn,m :=
n∑

j=max{1,m−1}

(−1) j−1

(n − j)!( j + 1 − m)! . (1540)

Recalling ãn,m given by (1460), we see that for m ≥ 2 we have

bn,m = −ãn,m−1 =
{

0 2 ≤ m ≤ n,

(−1)n−1 m = n + 1.
(1541)

On the other hand,

bn,1 = −ãn,0 + 1

n! = 1

n! (1542)

and

bn,0 =
n∑
j=1

(−1) j+1

(n − j)!( j + 1)! = 1

(n + 1)(n − 1)! . (1543)

Then (1539) is

n

(n − 1)! În,0 − n − 1

(n − 1)! În,1 (1544)

and we conclude from (1536),

dn−1u

dvn−1 = P1,0 + κ

2
v
{
n În,0 − (n − 1) În,1

}
. (1545)

Now, from (1533), (1545) we conclude, in view of u = V − c+0,

dn−1V

dvn−1 = κ

2
v
(
n În,0 − (n − 1) În,1

)
+
{
P1,1 n = 2,

P1 n ≥ 3.
(1546)
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7.3.2 Estimate for dn−1ρ/dvn−1

We recall the function ρ given by

1

γ (v)
= c+0 − c−0

κv
(1 + ρ(v)), (1547)

where

γ (v) = c̄+(v) − V (v)

V (v) − c̄−(v)
. (1548)

Using also u = V − c+0 and defining

ν := ν̃

v
, where ν̃ := c̄+ − c+0 − u, (1549)

we obtain

ρ = κ

c+0 − c−0

u + c+0 − c̄−
ν

− 1. (1550)

We have (recall c̄+(v) = c+(α+(v), β+(v)))

d ν̃

dv
= ∂c+

∂α
(α+, β+)

dα+
dv

+ ∂c+
∂β

(α+, β+)
dβ+
dv

− du

dv
. (1551)

Recalling

dα+
dv

(0) = α̇0,
dβ+
dv

(0) = 0,

(
∂c+
∂α

)

0
α̇0 = κ (1552)

and (1533) we obtain

d ν̃

dv
(0) = κ. (1553)

Therefore,

ν(0) = κ, ρ(0) = 0. (1554)

From (1271), (1286) we have

dn−1c̄+
dvn−1 = P1. (1555)
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Together with (1545) we obtain

dn−1ν̃

dvn−1 = −κ

2
v
(
n În,0 − (n − 1) În,1

)
+
{
P1,1 + κ n = 2,

P1 n ≥ 3.
(1556)

We now use (1415), (1416) and (1417) to compute the l-fold iterated integral of this.
In the role of f0 we have dn y/dvn and vdn y/dvn . We obtain

dn−1−l ν̃

dvn−1−l
= Pl+1 − κ

2
vl+1

{
n

(l + 1)! În,0 + n
l∑

m=1

(−1)m

(m − 1)!(l − m)!
1

(m + 1)
În,m+1

− n − 1

l! În,1 − (n − 1)

l∑
m=1

(−1)m

(m − 1)!(l − m)!
1

m
În,m+1

}
. (1557)

Setting then j = l + 1, we obtain, after a straightforward computation,

dn− j ν̃

dvn− j
= −κ

2
v j

j∑
m=0

(−1)m(n − m)

m!( j − m)! În,m +
{
Pn,1 j = n,

Pj j ≤ n − 1,
(1558)

where we also used the fact that ν̃(0) = 0.
We now apply (1536), (1537) with ν, ν̃ in the role of u, ũ respectively. Since the

null space of An−1 consists of all polynomials of degree n − 1 with no constant term,
we obtain

An−1ν̃ = Pn,n + κ

2
vn

n∑
j=1

j∑
m=0

(−1) j+m(n − m)

m!(n − j)!( j − m)! În,m . (1559)

We rewrite the double sum as

n∑
m=0

(−1)m(n − m)

m! a′
n,m În,m, (1560)

where

a′
n,m :=

n∑
j=max{1,m}

(−1) j

(n − j)!( j − m)! . (1561)

Comparing with the coefficients ãn,m given by (1460) we see that for m ≥ 1 we have
a′
n,m = ãn,m , but for m = 0 we have

a′
n,0 = ãn,0 − 1

n! . (1562)
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From (1464) we obtain

a′
n,m =

⎧⎨
⎩

− 1
n! m = 0,

(−1)n m = n,

0 m 
= 0, n.

(1563)

Therefore, (1560) reduces to − În,0/(n − 1)! and we conclude from (1559),

An−1ν̃ = Pn,n − κvn

2(n − 1)! În,0. (1564)

Hence, from (1536) with ν, ν̃ in the role of u, ũ respectively,

dn−1ν

dvn−1 = P0 − κ

2
În,0. (1565)

Using the inductive hypothesis (Yn−1) in (1545) and (1565) we obtain

dn−1u

dvn−1 = P0,
dn−1ν

dvn−1 = O(1). (1566)

From (1271), (1286) we obtain, in view of c̄− = c−(α+, β+),

dn−1c̄−
dvn−1 = P1. (1567)

Integrating (1566), (1567), we obtain for m ≤ n − 2

dmu

dvm
= Pn−m−1,

dmν

dvm
= Pn−m−2,

dmc̄−
dvm

= Pn−m . (1568)

By (1554), (1565), (1568) we obtain (see (1550))

dn−1ρ

dvn−1 = P0 − κ

c+0 − c−0

u + c+0 − c̄−
ν2

dn−1ν

dvn−1

= P0 + 1

2
În,0. (1569)

Setting f0 = dn y
dvn

in (1414) so that g0 = În,0 (see (1415)), the l-fold iterated integral

of În,0 is given by (1417) with 0 in the role of k, i.e. it is

vl

{
În,0

l! +
l∑

m=1

(−1)m

m!(l − m)! În,m

}
. (1570)

123



Shock Development in Spherical Symmetry Page 197 of 246 3

From this we obtain dn−1−lρ/dvn−1−l . Setting j = l +1 and taking into account that
ρ(0) = 0 we find

dn− jρ

dvn− j
= 1

2
v j−1

j−1∑
m=0

(−1)m

m!( j − 1 − m)! În,m +
{
Pn−1,1 j = n,

Pj−1 j ≤ n − 1.
(1571)

Let ρ̂ := ρ/v. We now apply (1536), (1537) with ρ̂, ρ in the role of u, ũ respectively.
Since the null space of An−1 consists of all polynomials of degreen−1 with no constant
term, we obtain

An−1ρ = O(vn) + 1

2
vn−1

n∑
j=1

j−1∑
m=0

(−1) j+m−1

m!(n − j)!( j − 1 − m)! În,m . (1572)

We rewrite the double sum as

n−1∑
m=0

(−1)m

m! cn,m În,m, (1573)

where

cn,m :=
n∑

j=m+1

(−1) j−1

(n − j)!( j − 1 − m)! . (1574)

Comparing with the coefficients ãn,m given by (1460) we see that cn,m = −ãn,m+1.
Then, from (1464),

cn,m =
{

0 0 ≤ m ≤ n − 2,

(−1)n−1 m = n − 1.
(1575)

Hence (1573) is În,n−1/(n − 1)! and (1572) is

An−1ρ = O(vn) + 1

2

vn−1

(n − 1)! În,n−1. (1576)

Then (1536) with ρ̂, ρ in the role of u, ũ respectively, yields

dn−1ρ̂

dvn−1 = O(1) + 1

2v
În,n−1. (1577)

Now we find the l-fold iterated integral of (1577). Since

1

v
În,n−1 = 1

vn
In,n−1, (1578)
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we use (1417) with f0 = vn−1 dn y
dvn

which then implies g0 = In,n−1 and k = −n, so
gk+m = In,m−1 (see (1415), (1416)). Since k < 0 we use (1430) for the first term in
(1417). Therefore, the l-fold iterated integral of (1577) is

dn−1−l ρ̂

dvn−1−l
= Pl−1 + vl−1

2

{
(−1)l

(n − l − 1)!
(n − 1)! În,n−1

−
l∑

m=1

(−1)m

(m − 1)!(l − m)!(n − m)
În,m−1

}
. (1579)

From the inductive hypothesis (Yn−1) (see also (1327)) we get

dm ρ̂

dvm
=
{O(1) m = n − 2,

Pn−m−3 0 ≤ m ≤ n − 3.
(1580)

7.3.3 Inductive Step for Derivatives of t , α, β Part One

In the following, using the assumptions (tp,n−1), …, (β0,n−1), we prove

∂n−1t

∂un−1 = Q2,
∂n−1t

∂vn−1 = Q1, (1581)

∂ i+ j

∂ui∂v j

(
∂2t

∂u∂v

)
= Q1 : i + j = n − 2. (1582)

This will then establish (tp,n), (tm,n). We recall the equation for t (u, v) satisfied for
(u, v) ∈ Tε

∂2t

∂u∂v
+ μ

∂t

∂v
− ν

∂t

∂u
= 0, (1583)

where

μ = 1

c+ − c−
∂c+
∂u

= 1

c+ − c−

(
∂c+
∂α

∂α

∂u
+ ∂c+

∂β

∂β

∂u

)
, (1584)

ν = 1

c+ − c−
∂c−
∂v

= 1

c+ − c−

(
∂c−
∂α

∂α

∂v
+ ∂c−

∂β

∂β

∂v

)
. (1585)

We first prove (1581), (1582) for n = 2. For (1581) in the case n = 2 we make use
of what has already been established in the existence proof (see the proposition in the
end of the chapter dealing with the solution of the fixed boundary problem), i.e. we
have

∂t

∂u
= Q2,2,

∂t

∂v
= Q1,1. (1586)
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Using the inductive hypotheses (α0,n−1), (β0,n−1) with n = 2 together with (1586) in
(1583) we obtain

∂2t

∂u∂v
= Q1,1, (1587)

which is (1582) in the case n = 2.
We now consider the case n ≥ 3. We have, for i + j = n − 2,

∂ i+ j

∂ui∂v j

(
∂2t

∂u∂v

)
= ∂ i+ j

∂ui∂v j

(
−μ

∂t

∂v
+ ν

∂t

∂u

)
. (1588)

Let us first consider the case i, j ≥ 1. We note that this case only shows up for n ≥ 4.
The case n = 3 will be contained in the proof of the cases i = 0 and j = 0. From
(αm,n−1), (βm,n−1), (αp,n−1), (βp,n−1) together with (1586) we obtain

∂ i+ jμ

∂ui∂v j

∂t

∂v
= Q1,1,

∂ i+ jν

∂ui∂v j

∂t

∂u
= Q1,1. (1589)

From (tm,n−1) we have

∂ i+ j+1t

∂ui∂v j+1 ,
∂ i+ j+1t

∂ui+1∂v j
= Q1. (1590)

All other derivatives of α, β and t appearing in (1588) are of the order less than n − 1
and are, by the inductive hypothesis, all Q1. Therefore,

∂ i+ j

∂ui∂v j

(
∂2t

∂u∂v

)
= Q1 : i + j = n − 2, i, j ≥ 1. (1591)

This is (1582) in the case i, j ≥ 1.
We now study (1588) in the case i = 0. We note that in the case n = 3 only this

case (or the other case, namely j = 0) shows up and not the case i, j ≥ 1. We define

Rv,n−1 := ∂n−2

∂vn−2

(
−μ

∂t

∂v
+ ν

∂t

∂u

)
+ μ

∂n−1t

∂vn−1 (1592)

and rewrite (1588) in the case i = 0 as

∂

∂u

(
∂n−1t

∂vn−1

)
+ μ

∂n−1t

∂vn−1 = Rv,n−1, (1593)

which implies

∂n−1t

∂vn−1 (u, v) = e−L(u,v)

{
∂n−1t

∂vn−1 (v, v) +
∫ u

v

eL(u′,v)Rv,n−1(u
′, v)du′

}
, (1594)
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where we recall

L(u, v) =
∫ u

v

μ(u′, v)du′. (1595)

We have

∂n−2

∂vn−2

(
μ

∂t

∂v

)
= μ

∂n−1t

∂vn−1 + ∂n−2μ

∂vn−2

∂t

∂v
+

n−3∑
m=1

(
n − 2

m

)
∂n−2−mμ

∂vn−2−m

∂m+1t

∂vm+1 .

(1596)

The terms in the sum involve derivatives of t w.r.t. v of order at most n − 2 which,
by the inductive hypotheses (tp,n−1), are all Q1. The terms in the sum also involve
derivatives of μ w.r.t. v of order at most n − 3 which in turn, through (1584), involve
derivatives of α, β of order at most n − 2. By the inductive hypothesis (αp,n−1),
(αm,n−1), (βp,n−1), (βm,n−1), each of these terms is a Q1. Therefore, the sum is a Q1.
The second term in (1596) involves mixed derivatives of α and β of order n − 1 and
pure derivatives of order n− 2 which, by the inductive hypothesis (αp,n−1), (αm,n−1),
(βp,n−1), (βm,n−1), are a Q1. Therefore,

∂n−2

∂vn−2

(
μ

∂t

∂v

)
= μ

∂n−1t

∂vn−1 + Q1. (1597)

We also have

∂n−2

∂vn−2

(
ν

∂t

∂u

)
= ∂n−2ν

∂vn−2

∂t

∂u
+

n−2∑
m=1

(
n − 2

m

)
∂n−2−mν

∂vn−2−m

∂m+1t

∂vm∂u
. (1598)

The first term on the right involves pure derivatives of α, β w.r.t. v of order at most
n − 1. These derivatives are, by the inductive hypothesis (β0,n−1), all Q0. Making
use of the first of (1586) we see that the first term is a Q1. In view of the inductive
hypothesis each of the terms in the sum is also a Q1. Therefore,

∂n−2

∂vn−2

(
ν

∂t

∂u

)
= Q1. (1599)

From (1592), (1597), (1599) we obtain

Rv,n−1 = Q1. (1600)

We recall

∂t

∂u
(v, v) = γ (v)

∂t

∂v
(v, v), (1601)
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where γ is given by (1548). Differentiating n − 2 times we obtain

{(
∂

∂v
+ ∂

∂u

)n−2
∂t

∂u

}
(v, v)=

n−2∑
l=0

(
n−2

l

)
dlγ

dvl
(v)

{(
∂

∂v
+ ∂

∂u

)n−2−l
∂t

∂v

}
(v, v).

(1602)

Defining now

ak(v) :=
{(

∂

∂v
+ ∂

∂u

)k−1
∂t

∂v

}
(v, v), (1603)

bk(v) :=
{(

∂

∂v
+ ∂

∂u

)k−1
∂t

∂u

}
(v, v), (1604)

we have

ak(v) + bk(v) =
{(

∂

∂v
+ ∂

∂u

)k

t

}
(v, v)

= dk f

dvk
(v). (1605)

Also, (1602) reads

bn−1 =
n−2∑
l=0

(
n − 2

l

)
dlγ

dvl
an−1−l

= γ an−1 +
n−2∑
l=1

(
n − 2

l

)
dlγ

dvl
an−1−l . (1606)

Using now the relation (1605) with n − 1 in the role of k, substituting (1606) and
solving for an−1 yields

an−1 = 1

1 + γ

{
dn−1 f

dvn−1 −
n−2∑
l=1

(
n − 2

l

)
dlγ

dvl
an−1−l

}
. (1607)

By the third case of (1270) the first term in the curly bracket is a P1. From (tp,n−1),
(tm,n−1) we have

ak = P1 : k ≤ n − 2. (1608)

From (1547) we have

γ = κ

c+0 − c−0

v

1 + ρ
. (1609)
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From (1569) we have

dn−1ρ

dvn−1 = O(1). (1610)

We therefore find (recall that ρ(0) = 0)

dn−1γ

dvn−1 = P0. (1611)

This implies

dmγ

dvm
= Pn−m−1. (1612)

From the above we deduce

an−1 = P1. (1613)

From (1603) with n − 1 in the role of k we have

∂n−1t

∂vn−1 (v, v) = an−1(v) −
n−2∑
l=1

(
n − 2

l

)
∂n−1t

∂vn−1−l∂ul
(v, v). (1614)

By (tm,n−1) all the terms in the sum are a P1. Therefore,

∂n−1t

∂vn−1 (v, v) = P1(v), (1615)

which, together with (1600), through (1594), implies

∂n−1t

∂vn−1 (u, v) = Q1. (1616)

This is the second of (1581). Using this in (1593) we obtain (1582) in the case i = 0.
We now study (1588) in the case j = 0. We define

Ru,n−1 := ∂n−2

∂un−2

(
−μ

∂t

∂v
+ ν

∂t

∂u

)
− ν

∂n−1t

∂un−1 (1617)

and rewrite (1588) in the case j = 0 as

∂

∂v

(
∂n−1t

∂un−1

)
− ν

∂n−1t

∂un−1 = Ru,n−1, (1618)
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which implies

∂n−1t

∂un−1 (u, v) = e−K (u,v)

{
dn−1h

dun−1 (u) −
∫ v

0
eK (u,v′)Ru,n−1(u, v′)dv′

}
, (1619)

where we recall

K (u, v) =
∫ v

0
(−ν)(u, v′)dv′ (1620)

and the initial condition t (u, 0) = h(u). We assume h to be a smooth function.
Analogous to the treatment of Rv,n−1 (see (1596), …, (1599)) we find

Ru,n−1 = Q1, (1621)

which, through (1619), implies

∂n−1t

∂un−1 (u, v) = Q2. (1622)

This is the first of (1581). Using this in (1618) we obtain (1582) in the case j = 0.
We have thus shown (1581), (1582), i.e. we have established (tp,n), (tm,n).

Now we turn to show

∂n−1α

∂un−1 = Q2,
∂n−1α

∂vn−1 = Q1, (1623)

∂ i+ j

∂ui∂v j

(
∂2α

∂u∂v

)
= Q1 : i + j = n − 2, (1624)

∂n−1β

∂un−1 = Q2,
∂n−1β

∂vn−1 = Q1, (1625)

∂ i+ j

∂ui∂v j

(
∂2β

∂u∂v

)
= Q1 : i + j = n − 2. (1626)

This will then establish (αp,n), (αm,n), (βp,n) and (βm,n).
Let us recall the system of equations for α, β

∂α

∂v
= ∂t

∂v
Ã(α, β, r), (1627)

∂β

∂u
= ∂t

∂u
B̃(α, β, r), (1628)

which implies

α(u, v) = αi (u) +
∫ v

0

{
∂t

∂v
Ã(α, β, r)

}
(u, v′)dv′, (1629)
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β(u, v) = β+(v) +
∫ u

v

{
∂t

∂u
B̃(α, β, r)

}
(u′, v)du′. (1630)

Here αi is given by the initial conditions on C and we assume αi to be smooth. β+ is
given by the jump condition and we recall [β] = [α]3 G(α+, α−, β−).

From (1629) we obtain

∂n−1α

∂un−1 (u, v) = dn−1αi

dvn−1 (u) +
∫ v

0

{
n−1∑
i=0

(
n − 1

i

)
∂ i+1t

∂ui∂v

∂n−1−i Ã

∂un−1−i

}
(u, v′)dv′.

(1631)

Here we use the abbreviation Ã for Ã(α, β, r). We split the sum into

n−2∑
i=1

(
n − 1

i

)
∂ i+1t

∂ui∂v

∂n−1−i Ã

∂un−1−i
+ ∂t

∂v

∂n−1 Ã

∂un−1 + ∂nt

∂un−1∂v
Ã. (1632)

From

Ã(u, v) = Ã(α(u, v), β(u, v), r(u, v)) (1633)

and recalling the second of the Hodograph system

∂r

∂v
= c+(α, β)

∂t

∂v
, (1634)

∂r

∂u
= c−(α, β)

∂t

∂u
, (1635)

we see that in the second term of (1632) there are involved the partial derivatives of
α, β and t w.r.t. u of order at most n − 1. Using now the assumption (α0,n−1) for the
partial derivatives of α and β together with (1622) we obtain

∂n−1 Ã

∂un−1 = Q0. (1636)

Together with the second of (1586) we find that the second term in (1632) is a Q1,1.
From (1582) in the case j = 0, which was established above, we find that the third
term in (1632) is a Q1. Each of the terms in the sum in (1632) involves derivatives
of Ã of order less than n − 1 and mixed derivatives of t of order less than n. These
terms are being taken care of by the assumptions (tp,n−1), (tm,n−1), (αp,n−1), (αm,n−1),
(βp,n−1), (βm,n−1). Therefore, taking into account

∫ v

0 Q1(u, v′)dv′ = Q2, we find

∂n−1α

∂un−1 = Q2. (1637)
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We note that in the case n = 2 the sum in (1632) is not present and instead of using
(1582) we use (1587) to deal with the last term in (1632).

From (1628) we obtain

∂n−1β

∂un−1 =
n−2∑
i=0

(
n − 2

i

)
∂ i+1t

∂ui+1

∂n−2−i B̃

∂un−2−i
. (1638)

We split the sum into

n−3∑
i=0

(
n − 2

i

)
∂ i+1t

∂ui+1

∂n−2−i B̃

∂un−2−i
+ ∂n−1t

∂un−1 B̃. (1639)

The first ones of (tp,n−1), (αp,n−1), (βp,n−1) in conjunction with (1635) imply

∂n−2−i B̃

∂un−2−i
= Q2 : 0 ≤ i ≤ n − 3. (1640)

Using the first of (tp,n−1) we find that the sum in (1639) is a Q2. Now, α, β and r
being continuously differentiable as established in the existence proof, we obtain from
(1629), (1630) together with (1586) and (1286) that α = Q2, β = Q2, which implies

Ã, B̃ = Q2. (1641)

From the second of this together with (1622) we obtain that also the second term in
(1639) is a Q2. Therefore,

∂n−1β

∂un−1 = Q2. (1642)

We note that in the case n = 2 the sum in (1639) is not present and for the second
term we use the first of (1586).

From (1627) we obtain

∂n−1α

∂vn−1 =
n−2∑
i=0

(
n − 2

i

)
∂ i+1t

∂vi+1

∂n−2−i Ã

∂vn−2−i
. (1643)

We split the sum into

n−3∑
i=0

(
n − 2

i

)
∂ i+1t

∂vi+1

∂n−2−i Ã

∂vn−2−i
+ ∂n−1t

∂vn−1 Ã. (1644)

123



3 Page 206 of 246 D. Christodoulou, A. Lisibach

Each of the second ones of (tp,n−1), (αp,n−1), (βp,n−1) in conjunction with (1634)
imply

∂n−2−i Ã

∂vn−2−i
= Q1 : 0 ≤ i ≤ n − 3. (1645)

Using the second of (tp,n−1) we find that the sum in (1644) is a Q1. From the first of
(1641) together with (1616) we obtain that also the second term in (1644) is a Q1.
Therefore,

∂n−1α

∂vn−1 = Q1. (1646)

We note that in the case n = 2 the sum in (1644) is not present and for the second
term we use the second of (1586).

For f = f (u, v) we define

F(a, v) :=
∫ v

a
f (v, v′)dv′. (1647)

We claim

∂k F

∂vk
(a, v) =

∫ v

a

∂k f

∂uk
(v, v′)dv′ +

k−1∑
l=0

(
k

l + 1

)
∂k−1 f

∂uk−1−l∂vl
(v, v). (1648)

We prove this claim by induction. It is satisfied for k = 1. Let it now hold for k. Then

∂k+1F

∂vk+1 (a, v) =
∫ v

a

∂k+1 f

∂uk+1 (v, v′)dv′ + ∂k f

∂uk
(v, v)

+
k−1∑
l=0

(
k

l + 1

)
∂k f

∂uk−l∂vl
(v, v) +

k−1∑
l=0

(
k

l + 1

)
∂k f

∂uk−1−l∂vl+1 (v, v).

(1649)

Rewriting the second sum as

k∑
l=1

(
k

l

)
∂k f

∂uk−l∂vl
(v, v), (1650)

the sum of the two sums is

k−1∑
l=0

{(
k

l

)
+
(

k

l + 1

)}
∂k f

∂uk−l∂vl
(v, v) − ∂k f

∂uk
(v, v) + ∂k f

∂vk
(v, v). (1651)
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Making use of

(
k

l

)
+
(

k

l + 1

)
=
(
k + 1

l + 1

)
, (1652)

(1651) becomes

k∑
l=0

(
k + 1

l + 1

)
∂k f

∂uk−l∂vl
(v, v) − ∂k f

∂uk
(v, v). (1653)

Using this in (1649) we obtain

∂k+1F

∂vk+1 (a, v) =
∫ v

a

∂k+1 f

∂uk+1 (v, v′)dv′ +
k∑

l=0

(
k + 1

l + 1

)
∂k f

∂uk−l∂vl
(v, v), (1654)

which is (1648) with k + 1 in the role of k. This proves the claim.
In view of (1630) we now set f (u, v) = −B(v, u) and a = u in (1647), where we

recall

B = ∂t

∂u
B̃(α, β, r). (1655)

From (1648) we then obtain

∂n−1β

∂vn−1 (u, v) = dn−1β+
dvn−1 (v) +

∫ u

v

{
n−1∑
i=0

(
n − 1

i

)
∂ i+1t

∂vi∂u

∂n−1−i B̃

∂vn−1−i

}
(u′, v)du′

−
n−2∑
l=0

(
n − 1

l + 1

){
∂n−2

∂ul∂vn−2−l

(
∂t

∂u
B̃

)}
(v, v). (1656)

For the first term we use (1286) in the case m = n−1. We split the sum in the integral
into

n−2∑
i=1

(
n − 1

i

)
∂ i+1t

∂vi∂u

∂n−1−i B̃

∂vn−1−i
+ ∂t

∂u

∂n−1 B̃

∂vn−1 + ∂nt

∂vn−1∂u
B̃. (1657)

We see that in the second term there are involved the partial derivatives of α, β and r
w.r.t. v of order at most n − 1. From the assumptions (α0,n−1), (β0,n−1) together with
(1616) we obtain

∂n−1 B̃

∂vn−1 = Q0. (1658)

Together with the first of (1586) we find that the second term in (1657) is a Q1. From
(1582) in the case i = 0, which was established above, we find that the third term
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in (1657) is a Q1. All terms in the sum in (1657) involve derivatives of B̃ of order
less than n − 1 and mixed derivatives of t of order less than n. These terms are being
taken care of by the assumptions (tp,n−1), …, (βm,n−1). Therefore, the second term in
(1656) is a Q1.

We split the sum in the second line of (1656) into

n−3∑
l=0

(
n − 1

l + 1

)
∂n−2

∂ul∂vn−2−l

(
∂t

∂u
B̃

)
+ ∂n−2

∂un−2

(
∂t

∂u
B̃

)
. (1659)

The second term involves a derivative of t with respect to u of order n − 1 which, by
(1622) is a Q2. All other terms appearing in (1659) involve mixed derivatives of t of
order at most n − 1 which, by the assumption (tm,n−1), are a Q1. Furthermore, these
terms involve derivatives of t , α, β and r of order at most n − 2. By the assumptions
(tp,n−1), …, (β0,n−1) and the Hodograph system (1634), (1635), all of them are a Q1.
Therefore, the third term in (1656) is a Q1. We conclude,

∂n−1β

∂vn−1 = Q1. (1660)

We note that in the case n = 2 the sum in (1657) is not present and instead of using
(1582) we use (1587) to deal with the last term in (1657).

In view of the system (1627), (1628) and the Hodograph system (1634), (1635), a
mixed derivative of α or β of order n is given in terms of a mixed derivative of t of
order at most n and derivatives of α, β and t of order at most n−1. By the assumptions
(tp,n−1), …, (β0,n−1) together with (1581), (1582), (1637), (1642), (1646), (1660) we
conclude that each of the mixed derivatives of α and β of order n is a Q1, i.e.

∂ i+ j

∂ui∂v j

(
∂2α

∂u∂v

)
= Q1 : i + j = n − 2, (1661)

∂ i+ j

∂ui∂v j

(
∂2β

∂u∂v

)
= Q1 : i + j = n − 2. (1662)

From (1581), (1582), (1623), (1624), (1625), (1626) we conclude that (tp,n), (tm,n),
(αp,n), (αm,n), (βp,n), (βm,n) hold.

In the following we prove

∂nα

∂un
= Q0,

∂nβ

∂un
= Q0. (1663)

Putting n in the role of n − 1 in the equations (1619), (1631) and (1638) we have

∂nt

∂un
(u, v) = e−K (u,v)

{
dnh

dun
(u) −

∫ v

0
eK (u,v′)Ru,n(u, v′)dv′

}
, (1664)

∂nα

∂un
(u, v) = dnαi

dvn
(u) +

∫ v

0

{
n∑

i=0

(
n

i

)
∂ i+1t

∂ui∂v

∂n−i Ã

∂un−i

}
(u, v′)dv′, (1665)
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∂nβ

∂un
(u, v) =

{
n−1∑
i=0

(
n − 1

i

)
∂ i+1t

∂ui+1

∂n−1−i B̃

∂un−1−i

}
(u, v). (1666)

From (1617) with n in the role of n − 1, together with (tp,n), (tm,n), (αp,n), (αm,n),
(βp,n), (βm,n), we have

Ru,n = Q1 + Q′
1
∂nα

∂un
+ Q′′

1
∂nβ

∂un
, (1667)

which implies

∂nt

∂un
(u, v) = Q1 +

∫ v

0

{
Q′

1
∂nα

∂un
+ Q′′

1
∂nβ

∂un

}
(u, v′)dv′. (1668)

We split the sum in (1665) into

n−1∑
i=1

(
n

i

)
∂ i+1t

∂ui∂v

∂n−i Ã

∂un−i
+ ∂t

∂v

∂n Ã

∂un
+ ∂n+1t

∂un∂v
Ã. (1669)

In view of (tp,n), (tm,n), (αp,n), (αm,n), (βp,n), (βm,n) and the Hodograph system, each
of the terms in the sum is a Q1 and for the second term in (1669) we have

∂n Ã

∂un
= Q1 + Q′

1
∂nα

∂un
+ Q′′

1
∂nβ

∂un
+ Q′′′

1
∂nt

∂un
. (1670)

From (1588) with i = n − 1, j = 0 we obtain, using again the results for the partial
derivatives of α, β and t ,

∂n+1t

∂un∂v
= Q1 + Q′

1
∂nα

∂un
+ Q′′

1
∂nβ

∂un
+ Q′′′

1
∂nt

∂un
. (1671)

Substituting now (1670), (1671) in (1669) and the resulting expression in (1665) we
obtain

∂nα

∂un
(u, v) = Q1 +

∫ v

0

{
Q′

1
∂nα

∂un
+ Q′′

1
∂nβ

∂un
+ Q′′′

1
∂nt

∂un

}
(u, v′)dv′. (1672)

For (1666) we make use of (1668). We obtain

∂nβ

∂un
(u, v) = Q1 +

∫ v

0

{
Q′

1
∂nα

∂un
+ Q′′

1
∂nβ

∂un

}
(u, v′)dv′. (1673)

Defining

F :=
∣∣∣∣
∂nα

∂un

∣∣∣∣+
∣∣∣∣
∂nβ

∂un

∣∣∣∣+
∣∣∣∣
∂nt

∂un

∣∣∣∣ , (1674)
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and taking the sum of the absolute values of (1668), (1672) and (1673) we obtain

F(u, v) ≤ C + C ′
∫ v

0
F(u, v′)dv′, (1675)

which implies

F(u, v) ≤ C, (1676)

which in turn implies

∣∣∣∣
∂nα

∂un

∣∣∣∣ ,
∣∣∣∣
∂nβ

∂un

∣∣∣∣ ,
∣∣∣∣
∂nt

∂un

∣∣∣∣ ≤ C. (1677)

Therefore, using this in (1668), (1672) and (1673), we obtain

∂nα

∂un
,
∂nβ

∂un
,

∂nt

∂un
= Q0, (1678)

the first and the second of which are (1663). For the analogous expression for deriva-
tives with respect to v see 7.3.8.

7.3.4 Estimate for dn f̂ /dvn

We recall the function A given by

A(v) = e−K (v,v)

(
ρ̂(v) + κ

c+0 − c−0

)
− 1

v

(
1 − e−K (v,v)

)
, (1679)

where we recall

K (u, v) =
∫ v

0
(−ν)(u, v′)dv′. (1680)

We set f (u, v) = −ν(u, v) and a = 0 in (1647) which implies F(0, v) = K (v, v).
We obtain from (1648)

dn−1K

dvn−1 (v, v) = −
∫ v

0

∂n−1ν

∂un−1 (v, v′)dv′ −
n−2∑
l=0

(
n − 1

l + 1

)
∂n−2ν

∂un−2−l∂vl
(v, v). (1681)

The integrand involves partial derivatives of α, β of order at most n, where the pure
derivatives with respect to v of order n do not show up. By the above results for the
partial derivatives of α, β these are all a Q0 which implies that the first term is a P1.
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The second term involves derivatives of α, β of order at most n − 1. Again by the
results for the partial derivatives of α, β these are all a P1. We conclude

dn−1K

dvn−1 (v, v) = P1(v), (1682)

which implies, by integration,

dmK

dvm
(v, v) = Pn−m(v) : 1 ≤ m ≤ n − 1, K (v, v) = Pn,1(v), (1683)

where for the second we took into account K (0, 0) = 0.
We apply dn−1/dvn−1 to (1679). Using (1577), (1580) and (1683) we obtain

dn−1A

dvn−1 = O(1) + 1

2v
În,n−1. (1684)

Since the expression fordn−1A/dvn−1 is formally identical to the one fordn−1ρ̂/dvn−1

given by the right hand side of (1577), the l-fold iterated integral of (1684) is given
by the right hand side of (1579), i.e.

dn−1−l A

dvn−1−l
= Pl−1 + vl−1

2

{
(−1)l

(n − l − 1)!
(n − 1)! În,n−1

−
l∑

m=1

(−1)m

(m − 1)!(l − m)!(n − m)
În,m−1

}
. (1685)

Let us recall (here f (v) = t (v, v))

d f

dv
= λ

2κ2 M + N , (1686)

and

M(v) = M0(v) + M1(v) + M2(v), N (v) = N0(v) + N1(v), (1687)

as well as

M0(v) := v − 1

v2

∫ v

0
v′2dv′ = 2

3
v, (1688)

M1(v) := 1

v2

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′)
v′2dv′, (1689)

M2(v) := − A(v)

v

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2dv′ (1690)
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and

Ni (v) := v B̂i (v) − 1

v2 (1 + vA(v))

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2 B̂i (v′)dv′, i = 0, 1.

(1691)

We also recall

B̂0(v) := λ

2κ2

{
e−K (v,v)

(
ρ(v) + κv

c+0 − c−0

)
−
(

1 − e−K (v,v)
)}

+ 1

v2 e
−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)(
c+0 − c−0

κ
h′(v) − λ

2κ2 v2 + h(v)

)
,

(1692)

B̂1(v) := − 1

v2 e
−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)
I (v). (1693)

Differentiating (1686) n − 1 times we obtain

dn f

dvn
= λ

2κ2

dn−1M

dvn−1 + dn−1N

dvn−1 . (1694)

Setting a = 0 and

f (u, v) :=
(

1 − e− ∫ uv A(v′′)dv′′)
v2 (1695)

in (1647), and letting F̃(v) := F(0, v), we have

M1(v) = F̃(v)

v2 = 1

v2

∫ v

0
f (v, v′)dv′ (1696)

and

dk F̃

dvk
(v) = ∂k F

∂vk
(0, v), (1697)

where the right hand side is given by (1648). Since

F̃(0) = d F̃

dv
(0) = 0, (1698)

the Taylor expansion of F̃ begins with quadratic terms. Since

dk

dvk

(
1

v2

)
= (−1)k(k + 1)!

vk+2 , (1699)
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we have

dn−1M1

dvn−1 = dn−1

dvn−1

(
F̃

v2

)

= (n − 1)!
vn+1 Bn−1 F̃, (1700)

where Bk is the linear kth order operator

Bk =
k∑

m=0

(−1)k−m(k + 1 − m)

m! vm
dm

dvm
. (1701)

This operator is homogeneous w.r.t. scaling. Hence Bk takes a polynomial to a poly-
nomial of the same degree. Let G be a polynomial which begins with quadratic terms.
Then M :=G/v2 is analytic, hence so is v−k−2BkG. This follows from (1700) with
G in the role of F̃ , M in the role of M1 and k + 1 in the role of n. It follows that the
polynomial BkG begins with terms of degree k+2. We conclude that the null space of
Bk consists of all polynomials of degree k + 1 which begin with quadratic terms, i.e.

Bk P̄k+1,2 = 0. (1702)

This is a k-dimensional space.
Since f (v, v) = 0, we have

k−1∑
l=0

(
k − 1

l

)
∂k−1 f

∂uk−1−l∂vl
(v, v) = 0, (1703)

which implies

∂k−1 f

∂vk−1 (v, v) +
k−2∑
l=0

(
k − 1

l

)
∂k−1 f

∂uk−1−l∂vl
(v, v) = 0. (1704)

Substituting this into (1648) and making use of (note that this is only valid for l ≤ k−2)

(
k

l + 1

)
−
(
k − 1

l

)
=
(
k − 1

l + 1

)
, (1705)

we obtain

∂k F

∂vk
(0, v) =

∫ v

0

∂k f

∂uk
(v, v′)dv′ +

k−2∑
l=0

(
k − 1

l + 1

)
∂k−1 f

∂uk−1−l∂vl
(v, v). (1706)

To deal with the first term in (1706) we have to study ∂k f/∂uk . From (1685) together
with the inductive hypothesis (Yn−1) (see also the second of (1327)) we obtain
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dn−l−1A

dvn−l−1 =
⎧⎨
⎩

Pl−2 2 ≤ l ≤ n − 1,

O(1) l = 1,

O(v−1) l = 0.

(1707)

Using this we deduce from (1695)

∂k f

∂uk
(u, v) = v2e− ∫ uv A(v′′)dv′′

{
dk−1A

dvk−1 (u) + Pn−k−1

}
, (1708)

which implies

∫ v

0

∂k f

∂uk
(v, v′)dv′ = dk−1A

dvk−1 (v)

∫ v

0
v′2e− ∫ v

v′ A(v′′)dv′′
dv′ + Pn−k+2,3. (1709)

Setting now l = n − k in (1685), equation (1709) becomes

∫ v

0

∂k f

∂uk
(v, v′)dv′ = Pn−k+2,3 + vn−k+2

6

{
(−1)n−k (k − 1)!

(n − 1)! În,n−1

−
n−k∑
l=1

(−1)l

(l − 1)!(n − k − l)!(n − l)
În,l−1

}
. (1710)

We now look at the second term in (1706). From (1695) we deduce, using (1707),

∂k−1 f

∂uk−1 (v, v) = v2 d
k−2A

dvk−2 (v) + Pn−k+2,2, (1711)

∂k−1 f

∂uk−2∂v
(v, v) = 2v

dk−3A

dvk−3 (v) + Pn−k+2,1, (1712)

∂k−1 f

∂uk−3∂v2 (v, v) = 2
dk−4A

dvk−4 (v) + Pn−k+2, (1713)

∂k−1 f

∂uk−1−l∂vl
(v, v) = Pn−k+3 : 3 ≤ l ≤ k − 2. (1714)

Therefore,

k−2∑
l=0

(
k − 1

l + 1

)
∂k−1 f

∂uk−1−l∂vl
= (k − 1)v2 d

k−2A

dvk−2 + (k − 1)(k − 2)v
dk−3A

dvk−3

+ (k − 1)(k − 2)(k − 3)

3

dk−4A

dvk−4 + Pn−k+2. (1715)

Substituting now (1685) with n − m + 1, n − m + 2, n − m + 3 in the role of l
into the first, second and third term on the right hand side, respectively, and using the
resulting expression together with (1710) in (1706), we obtain, after a straightforward
computation,
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dk F̃

dvk
= Pn−k+2 − vn+2−k

6

n+3−k∑
l=1

(−1)l(n + 1 − l)(n + 2 − l)

(l − 1)!(n + 3 − k − l)! În,l−1. (1716)

Using this now in (1700) (see (1701) with n−1 in the role of k for the operator Bn−1),
we obtain

dn−1M1

dvn−1 = P1 − v

6
(n − 1)!

n−1∑
m=0

n+3−m∑
l=1

(−1)n+1−l+m(n − m)(n + 1 − l)(n + 2 − l)

m!(l − 1)!(n + 3 − m − l)! În,l−1.

(1717)

We rewrite the double sum in (1717) as

n+3∑
l=1

cn,l
(−1)n+1−l(n + 1 − l)(n + 2 − l)

(l − 1)! În,l−1, (1718)

where

cn,l :=
min{n−1,n+3−l}∑

m=0

(−1)m(n − m)

m!(n + 3 − l − m)! . (1719)

We consider

c̃n,l :=
n+3−l∑
m=0

(−1)m(n − m)

m!(n + 3 − l − m)! . (1720)

For l ≥ 3 we have c̃n,l = cn,l . For l = 2 we have

c̃n,2 = cn,2 + (−1)n

(n + 1)! , (1721)

while for l = 1 we have

c̃n,1 = cn,1 + (−1)n

(n + 1)! − 2(−1)n

(n + 2)! . (1722)

To compute c̃n,l we express it as

c̃n,l = nan,l − bn,l , (1723)

where

an,l =
n+3−l∑
m=0

(−1)m

m!(n + 3 − l − m)!

= 1

(n + 3 − l)!
n+3−l∑
m=0

(
n + 3 − l

m

)
(−1)m
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= 1

(n + 3 − l)! (1 − 1)n+3−l

=
{

0 l < n + 3,

1 l = n + 3
(1724)

and

bn,l =
n+3−l∑
m=0

m(−1)m

m!(n + 3 − l − m)!

= 1

(n + 3 − l)!
d

dx

{
n+3−l∑
m=0

(
n + 3 − l

m

)
(−x)m

}∣∣∣∣∣
x=1

= 1

(n + 3 − l)!
d

dx

{
(1 − x)n+3−l

}∣∣∣∣
x=1

=
{

0 l 
= n + 2,

−1 l = n + 2.
(1725)

Hence

c̃n,l =
⎧⎨
⎩

0 1 ≤ l ≤ n + 1,

1 l = n + 2,

n l = n + 3.

(1726)

We obtain from (1721), (1722) and (1726)

cn,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− n(−1)n

(n+2)! l = 1,

− (−1)n

(n+1)! l = 2,

0 3 ≤ l ≤ n + 1,

1 l = n + 2,

n l = n + 3.

(1727)

Substituting in (1718) and the resulting expression in (1717) we obtain

dn−1M1

dvn−1 = v

6

{
n

n + 2
În,0 − n − 1

n + 1
În,1 − 2

(n + 1)(n + 2)
În,n+2

}
+
{
P1,1 n = 2,

P1 n ≥ 3.

(1728)

To see that the polynomial part in (1728) has no term of order zero in the case n = 2
we consider

dM1

dv
= − 2

v3

∫ v

0

(
1 − e− ∫ v

v′ A(v′′)dv′′)
v′2dv′ − A(v)

v2

∫ v

0
e− ∫ v

v′ A(v′′)dv′′
v′2dv′.

(1729)
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Since (1685) in the case n = 2, l = 1 (this is (1684) in the case n = 2 integrated once)
is

A = P0 − 1

2
Î2,1 + 1

2
Î2,0, (1730)

we have from the inductive hypothesis (Yn−1)

A = O(1). (1731)

Using this in (1729) we obtain

dM1

dv
= O(v). (1732)

We turn to dn−1M2/dvn−1. Recalling (1689), (1690) we can write

M2 = −1

3
v2A + vM1A. (1733)

Applying dn−1/dvn−1 to the first term we obtain

− dn−1

dvn−1

(
1

3
v2A

)
= −1

3
v2 d

n−1A

dvn−1 − 2

3
(n − 1)v

dn−2A

dvn−2 − 1

3
(n−1)(n − 2)

dn−3A

dvn−3 .

(1734)

For the first term we use (1684) while for the second and third we use (1685) with
l = 1, l = 2 respectively. We arrive at

− dn−1

dvn−1

(
1

3
v2A

)
= v

6

{
−n În,0 + (n − 1) În,1

}
+
{
P1,1 n = 2,

P1 n ≥ 3.
(1735)

Applying dn−1/dvn−1 to the second term in (1733) we obtain

dn−1

dvn−1 (vM1A) = (n − 1)
dn−2

dvn−2 (M1A) + v
dn−1

dvn−1 (M1A). (1736)

From (1728) together with the inductive hypothesis (Yn−1) we have

dn−1M1

dvn−1 =
{O(v) n = 2,

P0 n ≥ 3,
(1737)

which, through integration and taking into account that the Taylor expansion of M1
starts with quadratic terms, implies

dmM1

dvm
=
⎧⎨
⎩

Pn−1,2 m = 0,

Pn−2,1 m = 1,

Pn−m−1 2 ≤ m ≤ n − 2.

(1738)
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Using (1707) and (1738) in (1736) yields

dn−1

dvn−1 (vM1A) =
⎧
⎨
⎩

P1,2 n = 2,

P1,1 n = 3,

P1 n ≥ 4,

(1739)

which, together with (1735), implies

dn−1M2

dvn−1 = v

6

{
−n În,0 + (n − 1) În,1

}
+
{
P1,1 n = 2,

P1 n ≥ 3.
(1740)

Noting that only in the case n = 2 we have the contribution dM0/dv = 2/3 (see
(1688)), we obtain from (1728), (1740)

dn−1M

dvn−1 = v

6

{
−n(n + 1)

n + 2
În,0 + n(n − 1)

n + 1
În,1 − 2

(n + 1)(n + 2)
În,n+2

}

+
{ 2

3 + P1,1 n = 2,

P1 n ≥ 3.
(1741)

We turn to dn−1N/dvn−1. We look at (1691) and write

Ni = N ′
i + Hi1 + Hi2, i = 0, 1, (1742)

where

N ′
i (v) := v B̂i (v) − 1

v2

∫ v

0
v′2 B̂i (v′)dv′, i = 0, 1, (1743)

Hi1(v) := 1

v2

∫ v

0
v′2 B̂i (v′)

(
1 − e− ∫ v

v′ A(v′′)dv′′)
dv′, i = 0, 1, (1744)

Hi2(v) := − A(v)

v

∫ v

0
v′2 B̂i (v′)e− ∫ v

v′ A(v′′)dv′′
dv′, i = 0, 1. (1745)

We first establish estimates for the derivatives of B̂0. In view of (1692) this involves
estimates for the derivatives of K (v, v) and ρ(v). The derivatives of K (v, v) are given
by (1683). We recall that the second bracket in the second line of (1692) is a smooth
function whose Taylor expansion begins with cubic terms. This implies

d j B̂0

dv j
= λ

2κ2

d jρ

dv j
+
{
Pn−1,1 j = 0,

Pn− j−1 1 ≤ j ≤ n − 1.
(1746)

From (1610), through integration, we obtain

d jρ

dv j
=
⎧⎨
⎩

Pn−2,1 j = 0,

Pn− j−2 1 ≤ j ≤ n − 2,

O(1) j = n − 1.

(1747)
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where we made use of ρ(0) = 0 (see the second of (1554)). Therefore,

d j B̂0

dv j
=
⎧⎨
⎩

Pn−2,1 j = 0,

Pn− j−2 1 ≤ j ≤ n − 2,

O(1) j = n − 1.

(1748)

Using this together with (1707) and making use of arguments analogous to the ones
we used for derivatives of f̂ = f/v (see (1445)) and M1 = F̃/v2 (see (1700)) to take
care of the terms involving prefactors of 1/v and 1/v2 respectively, we arrive at

dn−1H0i

dvn−1 =
{
P1,1 n = 2,

P1 n ≥ 3,
i = 1, 2. (1749)

We now turn to the principal term in (1742) in the case i = 0, which is N ′
0. We

define

G0(v) := v3 B̂0(v) −
∫ v

0
v′2 B̂0(v

′)dv′ (1750)

and rewrite

N ′
0 = G0

v2 . (1751)

Since the Taylor expansion of G0 begins with quartic terms, we can apply (1700) with
N ′

0, G0 in the roles of M1, F̃ , respectively, i.e.

dn−1N ′
0

dvn−1 = (n − 1)!
vn+1 Bn−1G0, (1752)

where Bk is the operator (1701). We claim

dmG0

dvm
= v3 d

m B̂0

dvm
+ (3m − 1)v2 d

m−1 B̂0

dvm−1 + (3m − 2)(m − 1)v
dm−2 B̂0

dvm−2

+ (m − 1)2(m − 2)
dm−3 B̂0

dvm−3 . (1753)

For the proof of the claim in (1753) we suppress the index 0. For m = 1, 2, 3 it is
true as can be seen by direct computation. For m = 3 we have

d3G

dv3 = v3 d
3 B̂

dv3 + 8v2 d
2 B̂

dv2 + 14v
d B̂

dv
+ 4B̂. (1754)

For m ≥ 3 we write

dmG

dvm
= v3 d

m B̂

dvm
+ c2,mv2 d

m−1 B̂

dvm−1 + c1,mv
dm−2 B̂

dvm−2 + c0,m
dm−3 B̂

dvm−3 . (1755)
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From (1754) we have

c2,3 = 8, c1,3 = 14, c0,3 = 4. (1756)

Differentiating (1755)

dm+1G

dvm+1 = v3 d
m+1 B̂

dvm+1 + (c2,m + 3)v2 d
m B̂

dvm

+ (c1,m + 2c2,m)v
dm−1 B̂

dvm−1 + (c0,m + c1,m)
dm−2 B̂

dvm−2 , (1757)

gives us the following recursion formulas

c2,m+1 = c2,m + 3, (1758)

c1,m+1 = c1,m + 2c2,m, (1759)

c0,m+1 = c0,m + c1,m . (1760)

From the first of (1756) and (1758),

c2,m = 3m − 1. (1761)

Substituting in (1759) gives

c1,m+1 = c1,m + 6m − 2. (1762)

Therefore, since c1,1 = 0,

c1,m =
m−1∑
j=1

(6 j − 2) = (3m − 2)(m − 1). (1763)

Substituting in (1760) gives

c0,m+1 = c0,m + (3m − 2)(m − 1). (1764)

Therefore, since c0,2 = 0,

c0,m =
m−1∑
j=2

(3 j − 2)( j − 1) = (m − 1)2(m − 2). (1765)

In view of (1761), (1763) and (1765) the claim (1753) is proven.
We substitute (1746) withm,m−1,m−2,m−3 in the role of j into (1753). For the

expressions involving derivatives of ρ we use (1571). We obtain, after a straightforward
computation,
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dmG0

dvm
= Pn−m+2 − λvn−m+2

4κ2

n+3−m∑
l=1

(−1)l(n + 1 − l)(n + 2 − l)2

(l − 1)!(n + 3 − m − l)! În,l−1. (1766)

Now we go back to (1752). We must calculate Bn−1G0. From (1701),

Bn−1G0 =
n−1∑
m=0

(−1)n−m−1(n − m)

m! vm
dmG0

dvm
. (1767)

Since the null space of Bn−1 consists of all polynomials of degree n which begin with
quadratic terms, Bn−1 applied to the polynomial part of G0 gives a P̄n+2,n+1. Then

Bn−1G0 = Pn+2,n+1 − λvn+2

4κ2

n−1∑
m=0

n+3−m∑
l=1

(−1)n−m−1+l(n−m)(n+1 − l)(n+2 − l)2

(l−1)!m!(n + 3 − m − l)! În,l−1.

(1768)

The double sum is

n+3∑
l=1

cn,l
(−1)n+1−l(n + 1 − l)(n + 2 − l)2

(l − 1)! În,l−1, (1769)

where the coefficients cn,l are given by (1719). Using (1727) we obtain, after a straight-
forward computation,

Bn−1G0 = Pn+2,n+1 + λ

4κ2

vn+2

(n − 1)!
{
n(n + 1)

n + 2
În,0 − n(n − 1)

n + 1
În,1

+ 2

(n + 2)(n + 1)
În,n+2

}
. (1770)

Substituting in (1752) and using the resulting expression together with (1749) in the
(n − 1)’th order derivative of (1742) with i = 0, we arrive at

dn−1N0

dvn−1 = λ

4κ2 v

{
n(n + 1)

n + 2
În,0 − n(n − 1)

n + 1
În,1 + 2

(n + 2)(n + 1)
În,n+2

}

+
{
P1,1 n = 2,

P1 n ≥ 3.
(1771)

To see that the polynomial part in (1771) has no term of order zero in the case n = 2
we take the derivative of (1691)

dNi

dv
= v

d B̂i
dv

− vAB̂i +
{

2

v3 + 2A

v2 − 1

v

d A

dv
+ A

v2

}∫ v

0
v′2 B̂i (v′)e− ∫ v

v′ A(v′′)dv′′
dv′.

(1772)
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From (1707), (1748) we have, in the case n = 2,

A = O(1),
d A

dv
= O(v−1), B̂0 = O(v),

d B̂0

dv
= O(1). (1773)

Using these in (1772) with i = 0 we obtain

dN0

dv
= O(v). (1774)

We turn to derive an estimate for dn−1N1/dvn−1. In view of (1693) we need an
estimate for dn−1 I/dvn−1, where we recall

I (v) =
∫ v

0

{
eK (v,v′) − 1 + eK (v,v′)τ (v, v′)

} ∂t

∂v
(v, v′)dv′, (1775)

where

K (u, v) =
∫ v

0
(−ν)(u, v′)dv′, τ (u, v) = c+0 − c−0

κ
μ(u, v) − 1. (1776)

Defining

f (u, v) :=
{
eK (u,v) − 1 + eK (u,v)τ (u, v)

} ∂t

∂v
(u, v) (1777)

we have

I (v) =
∫ v

0
f (v, v′)dv′. (1778)

Making now use of (1647), (1648), we obtain

dn−1 I

dvn−1 (v) =
∫ v

0

∂n−1 f

∂un−1 (v, v′)dv′ +
n−2∑
l=0

(
n − 1

l + 1

)
∂n−2 f

∂un−2−l∂vl
(v, v). (1779)

We see that we need estimates for mixed derivatives of f of order at most n − 2, for
derivatives of f with respect to u of order at most n − 1 and for derivatives of f with
respect to v of order at most n − 2. Therefore we need expressions for derivatives of
α and β with respect to u of order at most n, expressions for mixed derivatives of α

and β of order at most n and expressions for derivatives of α and β with respect to v

of order at most n − 1. We also need expressions for mixed derivatives of t of order
at most n and expressions for derivatives of t with respect to v of order at most n − 1.
We define

H(u, v) := eK (u,v) − 1 + eK (u,v)τ (u, v). (1780)
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For the first term in (1779) we have

∂n−1 f

∂un−1 = ∂n−1

∂un−1

(
H

∂t

∂v

)
=

n−1∑
i=0

(
n − 1

i

)
∂ i H

∂ui
∂n−i t

∂un−1−i∂v

=
n−2∑
i=0

(
n − 1

i

)
∂ i H

∂ui
∂n−i t

∂un−1−i∂v
+ ∂n−1H

∂un−1

∂t

∂v
. (1781)

By the results for the partial derivatives of α, β and t established above we see that
each of the terms in the sum is a Q1. By the same results we see that

∂n−1H

∂un−1 = Q0. (1782)

Together with the second of (1586) we see that the second term in the second line in
(1781) is a Q1,1. Therefore,

∫ v

0

∂n−1 f

∂un−1 (v, v′)dv′ = P2,1(v). (1783)

For the second term in (1779) we write

n−2∑
l=0

(
n − 1

l + 1

)
∂n−2 f

∂un−2−l∂vl
=

n−2∑
l=0

(
n − 1

l + 1

)
∂n−2

∂un−2−l∂vl

(
H

∂t

∂v

)

=
n−2∑
l=0

l∑
i=0

(
n − 1

l + 1

)(
l

i

)
∂n−2−l

∂un−2−l

(
∂ i H

∂vi

∂ l+1−i t

∂vl+1−i

)

=
n−2∑
l=0

l∑
i=0

n−2−l∑
j=0

(
n − 1

l + 1

)(
l

i

)(
n − 2 − l

j

)

× ∂ i+ j H

∂u j∂vi

∂n−1−i− j t

∂un−2−l− j∂vl+1−i
. (1784)

We first look at the case i = j = 0. From (1271), (1286) we have α+, β+ = P2.
Therefore, c̄± = P2. Using this together with the first ones of (αp,n−1), (βp,n−1) in
(1584) we obtain

μ(v, v) = P2(v), (1785)

which, together with

(
∂c+
∂α

)

0

(
∂α

∂u

)

0
= κ,

(
∂β

∂u

)

0
= 0, (1786)
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implies

τ(v, v) = P2,1(v). (1787)

Therefore, together with (1682),

H(v, v) = P2,1(v). (1788)

From (tp,n), (tm,n) we have

∂n−1t

∂un−2−l∂vl+1 = Q1 : 0 ≤ l ≤ n − 2. (1789)

From (1788), (1789) we deduce that each of the terms in (1784) with i = j = 0 is a
P2,1.

Now we look at the case i + j = n − 2. The only term in (1784) satisfying this
condition is

∂n−2H

∂u j∂vi

∂t

∂v
. (1790)

The first factor involves derivatives of α and β of order at most n − 1. Therefore, by
(αp,n), (αm,n), (βp,n), (βm,n) the first factor in (1790) is a Q1. By (1270) and the first
of (1586) we have for n ≥ 3

∂t

∂v
(v, v) = d f

dv
(v) − ∂t

∂u
(v, v) = P2,1. (1791)

Therefore, for n ≥ 3,

(
∂n−2H

∂u j∂vi

∂t

∂v

)
(v, v) = P2,1(v). (1792)

In the case n = 2 (1790) is H(∂t/∂v). Using the second of (1586) and (1788) we
obtain that (1792) is also valid in the case n = 2. We note that for n = 2 this is
the only non-vanishing term in (1784). For n = 3 the two cases i = j = 0 and
i + j = n − 2 = 1 cover all the terms appearing in (1784).

Let now n ≥ 4. For the terms in (1784) with 1 ≤ i + j ≤ n − 3 we need estimates
for

∂k+1t

∂uk−l∂vl+1 :
{

1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1793)

We set

g(v) := ∂k+1t

∂uk−l∂vl+1 (v, v). (1794)
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Then

d pg

dv p
(v) =

{(
∂

∂u
+ ∂

∂v

)p
∂k+1t

∂uk−l∂vl+1

}
(v, v)

=
p∑

q=0

(
p

q

)
∂ p+k+1t

∂u p−q+k−l∂vq+l+1 (v, v). (1795)

Setting p = n − k − 2 and j = q + l implies, through (1789),

dn−k−2g

dvn−k−2 = P1. (1796)

This yields, through integration,

g = Pn−k−1, (1797)

i.e.,

∂k+1t

∂uk−l∂vl+1 (v, v) = Pn−k−1(v). (1798)

Hence,

∂k+1t

∂uk−l∂vl+1 (v, v) = P2(v) :
{

1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1799)

We also need estimates for

∂k H

∂uk−l∂vl
:
{

1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1800)

These in turn require estimates for

∂k+1α

∂uk+1−l∂vl
:
{

1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1801)

We set

h(v) := ∂k+1α

∂uk+1−l∂vl
(v, v). (1802)

Then

d ph

dv p
(v) =

{(
∂

∂u
+ ∂

∂v

)p
∂k+1α

∂uk+1−l∂vl

}
(v, v)

=
p∑

q=0

(
p

q

)
∂ p+k+1α

∂u p−q+k−l+1∂vq+l
(v, v). (1803)
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Setting p = n − k − 2 and j = q + l and using (αp,n), (αm,n) implies

dn−k−2h

dvn−k−2 = P1. (1804)

This yields, through integration,

h = Pn−k−1, (1805)

i.e.,

∂k+1α

∂uk+1−l∂vl
(v, v) = Pn−k−1(v). (1806)

Hence,

∂k+1α

∂uk+1−l∂vl
(v, v) = P2(v) :

{
1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1807)

The same procedure applies to derivatives of β using (βp,n), (βm,n). Therefore,

∂k H

∂uk−l∂vl
(v, v) = P2(v) :

{
1 ≤ k ≤ n − 3,

0 ≤ l ≤ k.
(1808)

From (1799) together with (1808) we obtain that each of the terms in (1784) with
1 ≤ i + j ≤ n − 3 is a P2. We conclude

n−2∑
l=0

(
n − 1

l + 1

)
∂n−2 f

∂un−2−l∂vl
(v, v) = P2(v), (1809)

which, together with (1783) implies

dn−1 I

dvn−1 = P2. (1810)

Making use of

K (0, 0) = τ(0, 0) = ∂t

∂v
(0, 0) = ∂2t

∂u∂v
(0, 0) = 0, (1811)

we obtain

I (0) = d I

dv
(0) = d2 I

dv2 (0) = 0. (1812)
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Therefore, by integrating (1810), we deduce

d j I

dv j
=

⎧⎪⎪⎨
⎪⎪⎩

Pn+1,3 j = 0,

Pn,2 j = 1,

Pn−1,1 j = 2,

Pn+1− j 3 ≤ j ≤ n − 1.

(1813)

Now we apply (1700) with I in the role of F̃ (see (1696) for the relation between
M1 and F̃).

dn−1

dvn−1

(
I

v2

)
= (n − 1)!

vn+1 Bn−1 I, (1814)

where the operator Bk is given in (1701). We find

dn−1

dvn−1

(
I

v2

)
= P0, (1815)

which, through integration, implies

d j

dv j

(
I

v2

)
=
{
Pn−1,1 j = 0,

Pn−1− j 1 ≤ j ≤ n − 1.
(1816)

Now we apply dn−1/dvn−1 to B̂1. We rewrite

B̂1 = �
I

v2 , (1817)

where

�(v) := − e−K (v,v)

(
1 + ρ(v) + κv

c+0 − c−0

)
. (1818)

Using (1747) and (1683) we obtain

d j�

dv j
= Pn− j−2. (1819)

Now,

dn−1 B̂1

dvn−1 =
n−1∑
i=1

(
n − 1

i

)
di

dvi

(
I

v2

)
dn−1−i�

dvn−1−i
+ I

v2

dn−1�

dvn−1 . (1820)

Therefore, from (1816) and (1819),

dn−1 B̂1

dvn−1 = P0, (1821)
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which, through integration, implies

d j B̂1

dv j
=
{
Pn−1,1 j = 0,

Pn−1− j 1 ≤ j ≤ n − 1.
(1822)

We see that, in particular, (1748) with 1 in the role of 0 holds. Therefore, also (1749)
with 1 in the role of 0 holds, i.e. we have

dn−1H1i

dvn−1 =
{
P1,1 n = 2,

P1 n ≥ 3,
i = 1, 2. (1823)

Now we define (this is (1750) with 1 in the role of 0)

G1 := v3 B̂1 −
∫ v

0
v′2 B̂1(v

′)dv′ (1824)

and have

N ′
1 = G1

v2 . (1825)

We then have, as in (1752) with 1 in the role of 0,

dn−1N ′
1

dvn−1 = (n − 1)!
vn+1 Bn−1G1, (1826)

where (this is (1767) with 1 in the role of 0)

Bn−1G1 =
n−1∑
m=0

(−1)n−m−1(n − m)

m! vm
dmG1

dvm
. (1827)

Now we use (1822) in (1753), setting successively j = m,m − 1,m − 2,m − 3.
We obtain

dmG1

dvm
= Pn−m+2. (1828)

Using this in (1827) and taking into account that the null space of Bn−1 consists of all
polynomials of degree n which begin with quadratic terms, we obtain

Bn−1G1 = Pn+2,n+1. (1829)

Substituting this in (1826) yields

dn−1N ′
1

dvn−1 = P1, (1830)
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which, together with (1823), yields

dn−1N1

dvn−1 =
{
P1,1 n = 2,

P1 n ≥ 3.
(1831)

To see that the polynomial part has no term of order zero in the case n = 2 we use
(1821), (1822) together with the first and the second of (1773) in (1772) with i = 1.

Combining the estimates (1771) and (1831) we obtain

dn−1N

dvn−1 = λ

4κ2 v

{
n(n + 1)

n + 2
În,0 − n(n − 1)

n + 1
În,1 + 2

(n + 2)(n + 1)
În,n+2

}

+
{
P1,1 n = 2,

P1 n ≥ 3.
(1832)

We introduce

�(v) := f (v) − λ

6κ2 v2. (1833)

We have

dn�

dvn
= dn f

dvn
−
{

λ
3κ2 n = 2,

0 n ≥ 3.
(1834)

Combining now (1741) with (1832) we obtain (see (1686))

dn�

dvn
= λ

6κ2 v

{
n(n + 1)

n + 2
În,0 − n(n − 1)

n + 1
În,1 + 2

(n + 1)(n + 2)
În,n+2

}

+
{
P1,1 n = 2,

P1 n ≥ 3.
(1835)

We note that since

f (0) = 0,
d f

dv
(0) = 0,

d2 f

dv2 (0) = λ

3κ2 , (1836)

we have

�(0) = d�

dv
(0) = d2�

dv2 (0) = 0. (1837)

We recall f = v2 f̂ . Using (1700) we obtain

dn f̂

dvn
= dn

dvn

(
�

v2

)
= 1

vn+2 Mn�, (1838)
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where (see (1701)) the linear n’th order operator Mn is given by

Mn = n!Bn =
n∑

m=0

(−1)n−mn!(n + 1 − m)

m! vm
dm

dvm

=
n∑

l=0

(−1)ln!(l + 1)

(n − l)! vn−l d
n−l

dvn−l
. (1839)

We recall that the null space of Bn (and hence the null space of Mn) is the space of all
polynomials of degree n + 1 which begin with quadratic terms.

Now we use (1417) to compute, for 0 ≤ l ≤ n, the l-fold iterated integral of v În,0,
v În,1, v În,n+2 appearing in (1835). Setting f0 = dn y

dvn
in (1415), so that g0 = In,0 =

În,0, and k = 1 in (1417), we find that the l-fold iterated integral of v În,0 is given by

vl+1

{
În,0

(l + 1)! +
l∑

m=1

(−1)m

(m − 1)!(l − m)!
În,m+1

(m + 1)

}
. (1840)

Setting f0 = v
dn y
dvn

in (1415), so that g0 = In,1 = v În,1, and k = 0 in (1417), we find

that the l-fold iterated integral of v În,1 is given by

vl+1

{
În,1

l! +
l∑

m=1

(−1)m

(m − 1)!(l − m)!
În,m+1

m

}
. (1841)

Setting f0 = vn+2 dn y
dvn

in (1415), so that g0 = In,n+2 = vn+2 În,n+2, and k = −n − 1,

we find that the l-fold iterated integral of v În,n+2 is given by

vl+1

{
(−1)l(n − l)! În,n+2

n! −
l∑

m=1

(−1)m

(m − 1)!(l − m)!
În,m+1

(n + 1 − m)

}
. (1842)

We note that here we made use of (1417) in the case k < 0, which is valid since
k + l ≤ −1. Therefore we interpret the first factor in the first term of (1417) as in
(1430).

Using now (1840), (1841) and (1842) for the l-fold iterated integral of (1835) in
conjunction with (1839), yields

Mn� = λvn+1

6κ2

{
n(n + 1)

n + 2
În,0

n∑
l=0

(−1)ln!
(n − l)!l! − n(n − 1)

n + 1
În,1

n∑
l=0

(−1)ln!(l + 1)

(n − l)!l!

+ 2

(n + 1)(n + 2)
În,n+2

n∑
l=0

(l + 1) −
n∑

l=1

l∑
m=1

(−1)m+ln!
(m + 1)!(l − m)!

× (n − m)(n − 1 − m)(l + 1)

(n − l)!(n + 1 − m)
În,m+1

}
+ O(vn+2). (1843)
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Here we made use of the fact that, when (1835) is iteratively integrated n times, the
polynomial part of � is of degree n + 1 and, in view of (1837) begins with cubic
terms. Therefore, the polynomial part of � is annihilated by Bn hence it is annihilated
by Mn . The first sum in (1843) is

n∑
l=0

(
n

l

)
(−1)l = (1 − 1)n = 0, (1844)

since n ≥ 2.
In view of this the second sum in (1843) is

n∑
l=0

(
n

l

)
(−1)l l = d

dx

{
n∑

l=0

(
n

l

)
(−x)l

}∣∣∣∣∣
x=1

= d

dx
(1 − x)n

∣∣
x=1 = 0, (1845)

since n ≥ 2.
The third sum in (1843) is

n∑
l=0

(l + 1) = (n + 1)(n + 2)

2
. (1846)

Finally, we rewrite the double sum in (1843) as

n∑
m=1

(−1)m(n − m)(n − 1 − m)n!
(m + 1)!(n + 1 − m)! an,m În,m+1, (1847)

where

an,m :=
n∑

l=m

(−1)l(l + 1)

(l − m)!(n − l)!

= (−1)m
n−m∑
i=0

(−1)i (m + i + 1)

i !(n − m − i)! . (1848)

We see that in (1847) the terms with m = n and m = n − 1 vanish. Therefore, we can
restrict to the case 1 ≤ m ≤ n − 2. We have

n−m∑
i=0

(−1)i

i !(n − m − i)! = 1

(n − m)!
n−m∑
i=0

(
n − m

i

)
(−1)i

= 1

(n − m)! (1 − 1)n−m

= 0, (1849)
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since n − m ≥ 1. Also,

n−m∑
i=0

(−1)i i

i !(n − m − i)! = 1

(n − m)!
n−m∑
i=0

(
n − m

i

)
(−1)i i

= 1

(n − m)!
d

dx

{
n−m∑
i=0

(
n − m

i

)
(−x)i

}∣∣∣∣∣
x=1

= 1

(n − m)!
d

dx
(1 − x)n−m

∣∣
x=1

= 0, (1850)

since n − m ≥ 2. We conclude that

an,m = 0 : 1 ≤ m ≤ n − 2. (1851)

Hence the double sum in (1843) vanishes.
We deduce from the above

Mn� = λvn+1

6κ2 În,n+2 + O(vn+2). (1852)

Therefore, substituting in (1838), we conclude

dn f̂

dvn
= λ

6κ2v
În,n+2 + O(1). (1853)

7.3.5 Estimate for dn δ̂/dvn

We recall the function δ given by

δ(v) = g(v) − c+0 f (v), (1854)

where

g(v) = r(v, v) − r0. (1855)

We also recall the function δ̂ given by δ(v) = v3δ̂(v). Using

dk

dvk

(
1

v3

)
= (−1)k(k + 2)!

2vk+3 , (1856)
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we deduce

dn δ̂

dvn
=

n∑
k=0

(
n

k

)
dk

dvk

(
1

v3

)
dn−kδ

dvn−k

= 1

2

n∑
k=0

n!(−1)k(k + 1)(k + 2)

(n − k)!vk+3

dn−kδ

dvn−k

= 1

vn+3 Lnδ, (1857)

where Ln is the n’th order differential operator

Ln = 1

2

n∑
m=0

(−1)n−mn!(n + 2 − m)(n + 1 − m)

m! vm
dm

dvm
, (1858)

which is homogeneous w.r.t. scaling. Hence Ln takes a polynomial to a polynomial of
the same degree. Let G be a polynomial which begins cubic terms. Then M :=G/v3

is analytic, hence so is v−k−3LnG. This follows from (1857) with G in the role of δ

and M in the role of δ̂. It follows that the polynomial LnG begins with terms of degree
k + 3. We conclude that the null space of Ln consists of all polynomials of degree
n + 2 which begin with cubic terms, i.e.

Ln P̄n+2,3 = 0. (1859)

This is a n-dimensional space.
We now estimate dmδ/dvm . Let us recall the splitting of δ(v)

δ(v) = δ0(v) + δ1(v), (1860)

where the functions δ0 and δ1 are given by

dδ0

dv
(v) = λ

6κ
(1 + y(v))v2, δ0(0) = 0, (1861)

dδ1

dv
(v) =

(
V (v) − c+0 − κ

2
(1 + y(v))v

) λ

3κ2 v + (V (v) − c+0)φ(v), δ1(0) = 0,

(1862)

where we recall the function φ

φ(v) = d f

dv
(v) − λ

3κ2 v. (1863)

We note that

φ(v) = d�

dv
(v), (1864)

where � is given in (1833).
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Now we apply dm−1/dvm−1 to dδ0/dv. We claim

dmδ0

dvm
= λ

6κ

{
v2 d

m−1y

dvm−1 + 2(m − 1)v
dm−2y

dvm−2 + (m − 1)(m − 2)
dm−3y

dvm−3

}
+ P̄,

(1865)

where P̄ is a generic polynomial and we interpret dk y/dvk for k < 0 as the k-fold
iterated integral of y. For m ≥ 1 this follows directly and we note that for m ≥ 3 the
polynomial P̄ is the zero polynomial. For the case m = 0 we define

u1(v) :=
∫ v

0
y(v′)dv′, (1866)

u2(v) :=
∫ v

0
u1(v

′)dv′, (1867)

u3(v) :=
∫ v

0
u2(v

′)dv′. (1868)

Then the right hand side in (1865) becomes

λ

6κ

{
v2u1(v) − 2vu2(v) + 2u3(v)

}
+ P̄(v), (1869)

while from (1861) we have

δ0(v) = λ

6κ

∫ v

0
v′2(y(v′) + 1)dv′

= λ

6κ

∫ v

0
v′2
(

1 + du1

dv
(v′)
)
dv′

= λ

18κ
v3 + λ

6κ

{
v2u1(v) − 2

∫ v

0
v′u1(v

′)dv′
}

. (1870)

We write

∫ v

0
v′u1(v

′)dv′ =
∫ v

0
v′ du2

dv
(v′)dv′

= vu2(v) −
∫ v

0
u2(v

′)dv′

= vu2(v) − u3(v). (1871)

Substituting in (1870) we see that (1870) coincides with (1869) up to a polynomial.
Therefore, (1865) holds for m = 0 also, hence it holds for m ≥ 0.

From

dn−1y

dvn−1 (v) = dn−1y

dvn−1 (0) + În,0(v), (1872)
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together with the expression for the l-fold iterated integral of În,0 given by (1570) we
obtain dn−1−l y/dvn−1−l . Setting m = n − 1 − l we obtain

dm y

dvm
= P̄n−1−m + vn−1−m

⎧⎨
⎩

În,0

(n − 1 − m)! +
n−1−m∑
j=1

(−1) j

j !(n − 1 − m − j)! În, j

⎫⎬
⎭ .

(1873)

Replacing m by m − 1, m − 2, m − 3 and substituting in (1865) we obtain

dmδ0

dvm
= λ

6κ
vn+2−m

⎧⎨
⎩

n(n + 1)

(n + 2 − m)! În,0 +
n+2−m∑
j=1

(−1) j (n − j)(n − j + 1)

j !(n + 2 − m − j)! În, j

⎫⎬
⎭

+
{
Pn+2−m,4−m 0 ≤ m ≤ 3,

Pn+2−m m ≥ 4.
(1874)

The polynomial part follows from δ0 = O(v4), which in turn follows from d δ̂0/dv =
O(1).

Now we estimate Lnδ0, where the operator Ln is given in (1858). Recalling that the
null space of Ln consists of all polynomials of degree n + 2 which begin with cubic
terms, we see that Ln annihilates the polynomial part of δ0. Therefore,

Lnδ0 = λ

12κ
vn+2

{
n(n + 1)(−1)n În,0

n∑
m=0

(
n

m

)
(−1)m

+
n∑

m=0

n+2−m∑
j=1

(−1)n−m− j n!(n+2−m)(n+1−m)(n − j)(n + 1 − j)

m! j !(n + 2 − m − j)! În, j

}
.

(1875)

Since

n∑
m=0

(
n

m

)
(−1)m = (1 − 1)n = 0, (1876)

for n ≥ 1, the first sum in (1875) vanishes.
We rewrite the double sum in (1875) as

n+2∑
j=1

(−1)n+ j n!(n − j)(n + 1 − j)

j ! an, j În, j , (1877)

where

an, j :=
n+2− j∑
m=0

(−1)m(n + 2 − m)(n + 1 − m)

m!(n + 2 − m − j)! . (1878)
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We were able to include the term m = n + 1 for j = 1 trivially because it vanishes.
We have

an, j = 1

(n + 2 − j)!
n+2− j∑
m=0

(
n + 2 − j

m

)
(−1)m(n + 2 − m)(n + 1 − m)

= 1

(n + 2 − j)!
d2

dx2

⎧⎨
⎩

n+2− j∑
m=0

(
n + 2 − j

m

)
xn+2−m(−1)m

⎫⎬
⎭

∣∣∣∣∣∣
x=1

= 1

(n + 2 − j)!
d2

dx2

{
x j (x − 1)n+2− j

}∣∣∣
x=1

. (1879)

Therefore,

an, j =

⎧⎪⎪⎨
⎪⎪⎩

(n + 1)(n + 2) j = n + 2,

2(n + 1) j = n + 1,

1 j = n,

0 j ≤ n − 1.

(1880)

However, the terms with the coefficients an,n and an,n+1 do not contribute in the sum
in (1877) and we obtain that (1877) collapses to the term j = n + 2, i.e. (1877) is
equal to

2 În,n+2. (1881)

Therefore,

Lnδ0 = λ

6κ
vn+2 În,n+2, (1882)

which, when substituted in (1857) with δ0 in the role of δ, gives

dn δ̂0

dvn
= λ

6κv
În,n+2. (1883)

We turn to dn δ̂1/dvn . We apply dn−1/dvn−1 to dδ1/dv. For n ≥ 3 we obtain,

dnδ1

dvn
= λ

3κ2 v

{
dn−1V

dvn−1 − κv

2

dn−1y

dvn−1 − (n − 1)κ

2

dn−2y

dvn−2

}

+ (n − 1)
λ

3κ2

{
dn−2V

dvn−2 − κv

2

dn−2y

dvn−2 − (n − 2)κ

2

dn−3y

dvn−3

}

+
n−1∑
l=0

(
n − 1

l

)
dlV

dvl

dn−1−lφ

dvn−1−l
. (1884)
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From (1872) and (1873) with m = n − 2 we have, for n ≥ 3,

v
dn−1y

dvn−1 = P̄1,1 + v În,0, (1885)

dn−2y

dvn−2 = P̄1 + v În,0 − v În,1. (1886)

Using (1546) we obtain

dn−1V

dvn−1 − κv

2

dn−1y

dvn−1 − (n − 1)κ

2

dn−2y

dvn−2 = P2, (1887)

which implies that the first line in (1884) is a P2,1.
From (1873) with m = n − 3 we have

dn−3y

dvn−3 = P̄2 + v2

2

{
În,0 − 2 În,1 + În,2

}
. (1888)

Using

∫ v

0
v′ În,0(v

′)dv′ = v2

2

(
În,0 − În,2

)
, (1889)

∫ v

0
v′ În,1(v

′)dv′ = v2
(
În,1 − În,2

)
, (1890)

we obtain, through integration of (1546),

dn−2V

dvn−2 = κv2

4

{
n În,0 − 2(n − 1) În,1 + (n − 2) În,2

}
. (1891)

From (1886), (1888) and (1891) we obtain

dn−2V

dvn−2 − κv

2

dn−2y

dvn−2 − (n − 2)κ

2

dn−3y

dvn−3 = P2, (1892)

i.e. the second line in (1884) is a P2.
From (1546) together with the fact that V (v) − c+0 = O(v2) we have

dmV

dvm
=
⎧⎨
⎩
c+0 + Pn−1,2 m = 0,

Pn−2,1 m = 1,

Pn−m−1 2 ≤ m ≤ n − 1.

(1893)

In view of (1864) we have from (1835), (1837),

dmφ

dvm
=
⎧⎨
⎩

Pn−1,2 m = 0,

Pn−2,1 m = 1,

Pn−m−1 2 ≤ m ≤ n − 1.

(1894)
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Using now (1893) and (1894) we deduce that each term in the sum in (1884) is a P2.
We conclude that for n ≥ 3, (1884) is a P2.

In the case n = 2 in place of (1884) we have

d2δ1

dv2 = λ

3κ2 v

(
dV

dv
− κ

2
(1 + y) − κv

2

dy

dv

)
+ λ

3κ2

(
V − c+0 − κ

2
(1 + y)v

)

+ (V − c+0)
dφ

dv
+ dV

dv
φ. (1895)

Using

∫ v

0
Î2,0(v

′)dv′ = v
(
Î2,0 − Î2,1

)
(1896)

in (1872) with n = 2 we obtain (recall that y(0) = −1)

1 + y =
∫ v

0

dy

dv
(v′)dv′ = P̄1,1 + v

(
Î2,0 − Î2,1

)
. (1897)

Together with (1546) and (1872), both with n = 2, we obtain

dV

dv
− κ

2
(1 + y) − κv

2

dy

dv
= P1,1. (1898)

Using (1889), (1890), both with n = 2, in (1546) with n = 2, we deduce

V − c+0 =
∫ v

0

dV

dv
(v′)dv′ = κv2

2

(
Î2,0 − Î2,1

)
+ P2,2. (1899)

This together with (1897) implies

V − c+0 − κ

2
(1 + y)v = P2,2. (1900)

In view of (1893), (1894),

(V − c+0)
dφ

dv
,
dV

dv
φ = O(v3). (1901)

From (1898), (1900) and (1901) we obtain

d2δ1

dv2 = P2,2. (1902)

Together with the above conclusion for n ≥ 3 we conclude

dnδ1

dvn
= P2. (1903)
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From (1903) we have

dmδ1

dvm
= Pn+2−m . (1904)

In view also of (650) we have, in particular,

δ1 = Pn+2,4. (1905)

It follows that Ln annihilates the polynomial part of δ1. From (1857) (see also (1858))
with δ1 in the role of δ we obtain

dn δ̂1

dvn
= O(1). (1906)

Combining with (1883) we conclude

dn δ̂

dvn
= λ

6κv
În,n+2 + O(1). (1907)

7.3.6 Estimate for dn y/dvn

We recall

dy

dv
(v) = − (∂ F̂)/∂v)(v, y(v))

(∂ F̂/∂y)(v, y(v))
, (1908)

where

∂ F̂

∂y
(v, y) = λ

2κ
y2 − κ f̂ (v) + v

∂R

∂y
(v, y), (1909)

∂ F̂

∂v
(v, y) = −κy

d f̂

dv
(v) + d δ̂

dv
(v) + R(v, y) + v

∂R

∂v
(v, y). (1910)

We recall that R is given by

R(v, y) := −
(

∂2r∗

∂t2

)

0

(
f̂ (v)

)2 −
(

∂4r∗

∂w4

)

0

y4

24

−
(

∂3r∗

∂t∂w2

)

0

y2 f̂ (v)

2
− vH( f̂ (v), y), (1911)

where H is a smooth function of its arguments.
Setting f0 = vn+2 dn y

dvn
in (1415) so that g0 = In,n+2 and using (1417) with k =

−n − 3 we obtain the l-fold iterated integral of 1
v
În,n+2. Using this in (1853), (1907)

we obtain
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dm f̂

dvm
=
{
Pn−m−2 0 ≤ m ≤ n − 2,

O(1) m = n − 1,
(1912)

dm δ̂

dvm
=
{
Pn−m−2 0 ≤ m ≤ n − 2,

O(1) m = n − 1.
(1913)

From (1873) we have

dm y

dvm
=
{
Pn−m−2 0 ≤ m ≤ n − 2,

O(1) m = n − 1.
(1914)

Recalling (∂ F̂/∂y)(0,−1) = λ
3κ

, we deduce from (1912), (1913) and (1914)

dm

dvm

{
∂ F̂

∂y
(v, y(v))

}
=
⎧
⎨
⎩

λ
3κ

+ O(v) m = 0,

Pn−m−2 1 ≤ m ≤ n − 2,

O(1) m = n − 1,

(1915)

dm

dvm

{
∂ F̂

∂v
(v, y(v))

}
= κ

dm+1 f̂

dvm+1 + dm+1δ̂

dvm+1 +
{
Pn−m−2 0 ≤ m ≤ n − 2,

O(1) m = n − 1.

(1916)

We apply dn−1/dvn−1 to (1908). Using (1853), (1907), (1915) and (1916) we
obtain

dn y

dvn
= 1

v
În,n+2 + O(1), (1917)

i.e.

dn y

dvn
(v) = 1

vn+3

∫ v

0
v′n+2 d

n y

dvn
(v′)dv′ + O(1). (1918)

Setting

Zn(v) :=
∫ v

0
v′n+2 d

n y

dvn
(v′)dv′, (1919)

we have

d

dv

(
Zn

v

)
= O(vn+1). (1920)

Integrating gives

Zn

v
= O(vn+2). (1921)
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Therefore,

Zn = O(vn+3), (1922)

which, when substituted in (1918), yields

dn y

dvn
= O(1), (1923)

i.e. Yn is bounded, hence (Yn) holds and the inductive step for the derivatives of the
function y is complete.

7.3.7 Bound for dn f̂ /dvn and dnα+/dvn = P1

We recall (1853)

dn f̂

dvn
(v) = λ

6κ2vn+3

∫ v

0
v′n+2 d

n y

dvn
(v′)dv′ + O(1). (1924)

In view of the bound on Yn we have

dn f̂

dvn
= O(1). (1925)

Therefore, Fn is bounded. Hence (Fn) holds and the inductive step for the derivatives
of the function f̂ is complete. We note that (1925) implies (recall f = v2 f̂ )

dn f

dvn
= P1. (1926)

We turn to dnα+/dvn . From (1629) we obtain

dnα+
dvn

(v) = dnαi

dun
(v) +

∫ v

0

{
n∑

i=0

(
n

i

)
∂ i+1t

∂ui∂v

∂n−i Ã

∂un−i

}
(v, v′)dv′

+
n−1∑
l=0

(
n − 2

l + 1

){
∂n−1

∂un−1−l∂vl

(
∂t

∂v
Ã

)}
(v, v). (1927)

The first term is taken care of by the assumption on the initial data. In the following
we will make use of (tp,m), (tm,n), (αp,n), (αm,n), (βp,n), (βm,n) and (1678) without
any further reference. Each of the terms in the sum of the second term is at least a Q0.
Therefore, the second term is a P1,1. We split the third term according to

n−1∑
l=0

(
n − 2

l + 1

)
∂n−1

∂un−1−l∂vl

(
∂t

∂v
Ã

)
=

n−2∑
l=0

(
n − 2

l + 1

)
∂n−1

∂un−1−l∂vl

(
∂t

∂v
Ã

)

+
(
n − 2

n

)
∂n−1

∂vn−1

(
∂t

∂v
Ã

)
. (1928)
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The first term involves mixed derivatives of t of order n and less and derivatives of α,
β and t of order n − 1 and less which are all Q1. Therefore, the first term in (1928) is
a P1. For the second term in (1928) we have

{
∂n−1

∂vn−1

(
∂t

∂v
Ã

)}
(v, v) = P1 + ∂nt

∂vn
(v, v) Ã(v, v), (1929)

where for the first term we reason as above. To deal with the second term in (1929)
we use (1603) with n in the role of k and (1607) with n in the role of n − 1 which is

an = 1

1 + γ

{
dn f

dvn
−

n−1∑
l=1

(
n − 1

l

)
dlγ

dvl
an−l

}
. (1930)

For the first term in the bracket we use (1926). For the sum we note that each of the
an−l involves derivatives of t of order n−1 and less and is therefore a P1. From (1923)
we have

În,0 =
∫ v

0

dn y

dvn
(v′)dv′ = O(v). (1931)

Therefore, from (1569),

dn−1ρ

dvn−1 = P0, (1932)

which, through (1609), implies, recalling that ρ(0) = 0,

dn−1γ

dvn−1 = P1. (1933)

Therefore,

an = P1. (1934)

Therefore, from (1603) with n in the role of k we find

∂nt

∂vn
(v, v) = P1(v). (1935)

Using this in (1929) we see that the second term in (1928) is a P1 and therefore the
whole sum in (1928) is a P1 which in turn implies that the third term in (1927) is a
P1. We conclude

dnα+
dvn

= P1, (1936)

i.e. (α+,n) holds.
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7.3.8 Inductive Step for Derivatives of t , α, β Part Two

In the following we prove

∂nα

∂vn
= Q0,

∂nβ

∂vn
= Q0. (1937)

Together with (1663) this will then establish (α0,n−1), (β0,n−1) with n in the role of
n − 1, i.e. it will establish (α0,n), (β0,n). With n in the role of n − 1 in the equations
(1594), (1643), (1656) we have

∂nt

∂vn
(u, v) = e−L(u,v)

{
∂nt

∂vn
(v, v) +

∫ u

v

eL(u′,v)Rv,n(u
′, v)du′

}
, (1938)

∂nα

∂vn
(u, v) =

{
n−1∑
i=0

(
n − 1

i

)
∂ i+1t

∂vi+1

∂n−1−i Ã

∂vn−1−i

}
(u, v), (1939)

∂nβ

∂vn
(u, v) = dnβ+

dvn
(v) +

∫ u

v

{
n∑

i=0

(
n

i

)
∂ i+1t

∂vi∂u

∂n−i B̃

∂vn−i

}
(u′, v)du′

−
n−1∑
l=0

(
n

l + 1

){
∂n−1

∂ul∂vn−1−l

(
∂t

∂u
B̃

)}
(v, v). (1940)

Analogous to (1667) we find

Rv,n = Q1 + Q′
1
∂nα

∂vn
+ Q′′

1
∂nβ

∂vn
. (1941)

Therefore, taking into account (1935),

∂nt

∂vn
(u, v) = Q1 +

∫ u

v

{
Q′

1
∂nα

∂vn
+ Q′′

1
∂nβ

∂vn

}
(u′, v)du′. (1942)

For (1939) we make use of (1942) together with (tp,n), (tm,n), (αp,n), (αm,n), (βp,n),
(βm,n). We find

∂nα

∂vn
(u, v) = Q1 +

∫ u

v

{
Q′

1
∂nα

∂vn
+ Q′′

1
∂nβ

∂vn

}
(u′, v)du′. (1943)

Now, (Yn) implies that (1269) holds with n in the role of n − 1. By (1926) and
(1936) also (1270) and (1271) hold with n in the role of n − 1. Therefore, we obtain,
in the same way as we derived (1286), that (1286) holds with n in the role of n − 1.
Therefore, the first term in (1940) is a P1.

We split the sum in the integral of (1940) into

n−1∑
i=1

(
n

i

)
∂ i+1t

∂vi∂u

∂n−i B̃

∂vn−i
+ ∂t

∂u

∂n B̃

∂vn
+ ∂n+1t

∂u∂vn
B̃. (1944)
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In view of (tp,n), (tm,n), (αp,n), (αm,n), (βp,n), (βm,n) and the Hodograph system, each
of the terms in the sum is a Q1 and for the second term in (1944) we have

∂n B̃

∂vn
= Q1 + Q′

1
∂nα

∂vn
+ Q′′

1
∂nβ

∂vn
+ Q′′′

1
∂nt

∂vn
. (1945)

From (1588) with i = 0, j = n−1 we obtain, using again (tp,n), (tm,n), (αp,n), (αm,n),
(βp,n), (βm,n),

∂n+1t

∂u∂vn
= Q1 + Q′

1
∂nα

∂vn
+ Q′′

1
∂nβ

∂vn
+ Q′′′

1
∂nt

∂vn
. (1946)

We now look at the last term in (1940). We split the sum into

n−2∑
l=0

(
n

l + 1

)
∂n−1

∂ul∂vn−1−l

(
∂t

∂u
B̃

)
+ ∂n−1

∂un−1

(
∂t

∂u
B̃

)
. (1947)

In view of (tp,n), (tm,n), (αp,n), (αm,n), (βp,n), (βm,n) and the Hodograph system, each
of the terms in the sum is a Q1 and for the second term we use (1678) and conclude
that this term is a Q0. Using now (1945), (1946) in (1944) and the resulting expression
in (1940) we find

∂nβ

∂vn
(u, v) = Q0 +

∫ u

v

{
Q1

∂nα

∂vn
+ Q′

1
∂nβ

∂vn
+ Q′′′

1
∂nt

∂vn

}
(u′, v)du′. (1948)

Defining

G :=
∣∣∣∣
∂nα

∂vn

∣∣∣∣+
∣∣∣∣
∂nβ

∂vn

∣∣∣∣+
∣∣∣∣
∂nt

∂vn

∣∣∣∣ , (1949)

and taking the sum of the absolute values of (1942), (1943) and (1948), we obtain

G(u, v) ≤ C + C ′
∫ u

v

G(u′, v)du′, (1950)

which implies

G(u, v) ≤ C, (1951)

which in turn implies

∣∣∣∣
∂nα

∂vn

∣∣∣∣ ,
∣∣∣∣
∂nβ

∂vn

∣∣∣∣ ,
∣∣∣∣
∂nt

∂vn

∣∣∣∣ ≤ C. (1952)

123



Shock Development in Spherical Symmetry Page 245 of 246 3

Therefore, using this in (1942), (1943), (1948) we obtain

∂nα

∂vn
,
∂nβ

∂vn
,

∂nt

∂vn
= Q0, (1953)

the first and second of which are (1937). From (1663) and (1937) we conclude that
(α0,n), (β0,n) hold. This completes the proof of the inductive step for the derivatives
of α, β and t . Therefore, the inductive step is complete.

7.4 Blowup on the Incoming Characteristic Originating at the Cusp Point

We recall the following asymptotic forms

∂α

∂v
(u, v) = λ Ã0

3κ2 v + O(uv), (1954)

∂β

∂v
(u, v) = λ

3κ2

(
∂β∗

∂t

)

0
v + O(uv), (1955)

∂t

∂v
(u, v) = λ

3κ2 v + O(uv). (1956)

As established above, α, β and t are smooth functions of u and v in the state behind
the shock. Let us now consider an outgoing characteristic originating at a point on
C corresponding to the coordinates (u, 0). According to (1954), (1955) and (1956),
along this outgoing characteristic the Taylor expansions in v of α, β as well as t do not
contain linear terms but do contain odd powers beginning with the third. Therefore, α

and β hence also the ψμ are smooth functions not of the parameter t but rather of the
parameter

√
t − t0, where t0 = t (u, 0). (1957)

Therefore, the derivatives of the ψμ with respect to L+ of order greater than the first
blow up as we approach C from the state behind the shock (recall (124) for L+).
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