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Abstract This paper is the first part of a trilogy [22,23] dedicated to a proof of global
well-posedness and scattering of the (4 + 1)-dimensional mass-less Maxwell–Klein–
Gordon equation (MKG) for any finite energy initial data. The main result of the
present paper is a large energy local well-posedness theorem for MKG in the global
Coulomb gauge, where the lifespan is bounded from below by the energy concentration
scale of the data. Hence the proof of global well-posedness is reduced to establishing
non-concentration of energy. To deal with non-local features of MKG we develop
initial data excision and gluing techniques at critical regularity, which might be of
independent interest.

Keywords Maxwell-Klein-Gordon · Coulomb gauge · Local well-posedness ·
Energy concentration scale · Initial data gluing

1 Introduction

Let R1+4 be the (4 + 1)-dimensional Minkowski space with the metric

mμν := diag (−1,+1,+1,+1,+1)

in the standard rectilinear coordinates (t = x0, x1, · · · , x4). Let L = R
1+4 × C be

the trivial U(1) complex line bundle over R1+4. The Maxwell–Klein–Gordon system
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is a relativistic gauge field theory that describes the evolution of a pair (A, φ) of a con-
nection on L and a section of L . In Section 1.1, we present the necessary background
material concerning the Maxwell–Klein–Gordon system on R

1+4. Readers already
familiar with this equation may skip ahead to Section 1.2, where the main results and
ideas of the paper are presented.

1.1 The Maxwell–Klein–Gordon System on R
1+4

Let L = R
1+4 × C be the trivial complex line bundle with structure group U(1) =

{eiχ ∈ C}. Global sections of L are precisely C-valued functions on R
1+4. Using the

trivial connection on R
1+4 as a reference and employing the identification u(1) ≡ iR,

any connection Dμ on L can be written as

Dμ = ∂μ + i Aμ

where Aμ is a real-valued 1-form on R
1+4.

The (mass-less) Maxwell–Klein–Gordon system for a pair (A, φ) of a connection
on L and a section of L takes the form

{
∂μFνμ = Im(φDνφ)

�Aφ = 0,
(MKG)

where Fμν := (dA)μν = ∂μ Aν − ∂ν Aμ is the curvature 2-form associated to Dμ and
�A := DμDμ is the covariant d’Alembertian. We are using the usual convention of
raising and lowering indices using the Minkowski metric, and also of summing over
repeated upper and lower indices.

We consider the initial value problem for (MKG). An initial data set for (MKG)
consists of two pairs of 1-forms (a j , e j ) and C-valued functions ( f, g) on R

4. We say
that (a j , e j , f, g) is the initial data for a solution (A, φ) if

(A j , F0 j , φ, Dtφ)�{t=0}= (a j , e j , f, g).

Note that (MKG) imposes the condition that the following equation be true for any
initial data for (MKG):

∂ j e j = Im( f g). (1.1)

This equation is the Gauss (or the constraint) equation for (MKG).
A basic geometric feature of the Maxwell–Klein–Gordon system is gauge invari-

ance. Let χ be a gauge transformation for (MKG), i.e., a real-valued function on
R

1+4, so that eiχ ∈ U(1). Then (MKG) is invariant under the associated gauge trans-
form (A, φ) �→ (A − dχ, eiχφ). Geometrically, a gauge transform corresponds to a
change of basis in the fiber C of the complex line bundle L over each point in R

1+4. To
establish any sort of well-posedness of the initial value problem and also to reveal the
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hyperbolicity1 of (MKG), the ambiguity arising from this invariance must be fixed.
For this purpose we rely on the global Coulomb gauge condition

∑4
j=1 ∂ j A j = 0 in

this paper.
The Maxwell–Klein–Gordon system on R

1+4 obeys the law of conservation of
energy. The conserved energy of a solution (A, φ) at time t is defined as

E{t}×R4 [A, φ] := 1

2

∫
{t}×R4

∑
0≤μ<ν≤4

|Fμν |2 +
∑

0≤μ≤4

|Dμφ|2 dx . (1.2)

For any sufficiently regular solution to (MKG) on I ×R
4, where I ⊆ R is a connected

interval, E{t1}×R4 [A, φ] = E{t2}×R4 [A, φ] for every t1, t2 ∈ I . For a (MKG) initial
data set (a, e, f, g), the conserved energy takes the form

ER4 [a, e, f, g] = 1

2

∫
R4

4∑
1≤ j<k≤4

|∂ j ak − ∂ka j |2 +
4∑

j=1

|e j |2 +
4∑

j=1

|D j f |2 + |g|2 dx,

(1.3)
where D j := ∂ j + ia j . Furthermore, given any (measurable) subset O ′ ⊆ R

4, we
define the local energy EO ′ [a, e, f, g] by replacing the domain of integral above by
O ′.

The Maxwell–Klein–Gordon system can in fact be formulated on anyR1+d (d ≥ 1).
However, the (4 + 1)-dimensional case is distinguished by the fact that the system
becomes energy critical. That is, in R

1+4 both the conserved energy (1.2) and the
equations (MKG) are invariant under the scaling

(A, φ) �→ ( Ã, φ̃)(t, x) := (λ−1 A, λ−1φ)(λ−1t, λ−1x) for any λ > 0.

1.2 Main Results and Ideas

The present paper is the first of a sequence of three papers [22,23], in which we give
a complete proof of global well-posedness and scattering of (MKG) on R

1+4 for any
finite energy data. This theorem is analogous to the threshold theorem for energy
critical wave maps [18,29,30,33–37]. The main result of this paper is the following
local well-posedness theorem for (MKG) in the global Coulomb gauge at the energy
regularity.

Theorem 1.1 (Local well-posedness of (MKG) at energy regularity, simple version).
Let E be any positive number and let (a, e, f, g) be a smooth initial data set with
energy ≤ E satisfying the global Coulomb condition

∑4
j=1 ∂ j a j = 0.

(1) Then there exists an open time interval I 
 0 and a unique smooth solution
(A, φ) to the initial value problem on I × R

4 satisfying the global Coulomb
gauge condition

∑4
j=1 ∂ j A j = 0.

1 Observe that without any choice of gauge, the the principal part of ∂μFνμ is −�Aν + ∂ν∂μ Aμ, which
does not have a well-defined character.
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(2) Define the energy concentration scale of (a, e, f, g) by

rc = rc(E)[a, e, f, g] := sup{r > 0 : ∀x ∈ R
4, EBr (x)[a, e, f, g] < δ0(E, ε2∗)},

where Br (x) denotes the open ball of radius r centered at x, ε∗ is a universal
constant (see Theorem 1.2 below) and δ0(E, ε2∗) is some positive function (to be
specified in Section 6). Then I contains the interval [−rc, rc].

(3) Finally, the solution map extends continuously on compact time intervals to gen-
eral finite energy initial data, with the same lifespan properties as in (2) above.

For a more precise version, see Theorem 6.1. We remark that we do not lose any
generality by restricting to initial data sets in the global Coulomb gauge, as any finite
energy initial data sets can be gauge transformed into this gauge; see Section 3. We
formulate our local well-posedness theorem specifically in the global Coulomb gauge
in view of the rest of the series [22,23], where we show global well-posedness and
scattering in this gauge.

An important feature of Theorem 1.1 is that it provides a lower bound on the lifespan
in terms of the energy concentration scale rc of the data. Taking the contrapositive, we
see that any finite time blow up of a solution to (MKG) must be accompanied by energy
concentration at a point. In [22,23], following the scheme successfully developed by
one of the authors (D. Tataru) and J. Sterbenz in the context of energy critical wave
maps [29,30], we establish global well-posedness of (MKG) for finite energy data by
showing that such a phenomenon cannot occur. We refer to the last and the main paper
of the sequence [23] for an overview of the entire series.

To prove Theorem 1.1, we rely on the following small energy global well-posedness
theorem for the Maxwell–Klein–Gordon equations in the global Coulomb gauge,
which was established recently by one of the authors (D. Tataru) jointly with J. Krieger
and J. Sterbenz.

Theorem 1.2 (Small energy global well-posedness in Coulomb gauge [19]). There
exists an ε∗ > 0 such that the following holds. Let (a, e, f, g) be a smooth initial data
on R

4 satisfying the global Coulomb gauge condition
∑4

	=1 ∂	a	 = 0 and

ER4 [a, e, f, g] ≤ ε2∗ .

(1) Then there exists a unique smooth global solution (A, φ) to the initial value
problem for (MKG) on R

1+4 satisfying

‖A0‖Y 1(R1+4) + ‖Ax‖S1(R1+4) + ‖φ‖S1(R1+4) �
√
ER4 [a, e, f, g], (1.4)

where Ax = (A1, . . . , A4).
(2) For every compact time interval I ⊆ R, the solution map extends continuously

to general finite energy initial data after restriction2 to I × R
4. More precisely,

2 Although this continuity statement is not explicitly stated in [19, Theorem 1], its proof can be read off
from [19, Section 5.5]. We remark that continuous dependence on the data in H1 does not seem to hold in
the global space S1(R1+4), due to the strong dependence of the linear magnetic flow for �A on the low
frequency part of Ax .
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if (a(n), e(n), f (n), g(n)) is a sequence of finite energy initial data sets in global
Coulomb gauge whose limit is (a, e, f, g) in H1 (defined in Section 3.1), then

‖A(n)
0 − A0‖Y 1(I×R4) +‖A(n)

x − Ax‖S1(I×R4) +‖φ(n) −φ‖S1(I×R4) → 0 as n → ∞,

(1.5)
where (A(n), φ(n)) is the global solution to (MKG) with data (a(n), e(n), f (n), g(n)).

More detailed descriptions of the function spaces S1 and Y 1 will be given in Sections 6
and 7. In particular, S1 is a delicate function space consisting of a number of pieces,
including the energy norm, a frequency localized Strichartz norm, an Ẋ s,b-type norm
and a null frame norm as in the energy critical wave maps problem [31,38]. The precise
version of the main local well-posedness theorem (Theorem 6.1) also involves these
spaces. At this point we simply remark that for any interval I × R

4, we have

‖(ϕ, ∂tϕ)‖Ct (I ;Ḣ1
x ×L2

x ) � ‖ϕ‖S1(I×R4), ‖(ϕ, ∂tϕ)‖Ct (I ;Ḣ1
x ×L2

x ) � ‖ϕ‖Y 1(I×R4).

For a simpler energy critical semilinear wave equation, such as �u = ±u
d+2
d−2 on

R
1+d , a statement analogous to Theorem 1.1 is an immediate consequence of the

small energy global well-posedness theorem (Theorem 1.2 in our context) and the
finite speed of propagation of the system. Roughly speaking, the proof of local well-
posedness (in particular, local existence) proceeds in the following three steps (see,
for instance [32, Section 5.1]):

Step 1. Truncation of the initial data set locally in space so that the energy becomes
small;

Step 2. Application of small energy global well-posedness to produce the correspond-
ing set of global solutions; and

Step 3. Patching together the resulting solutions via finite speed of propagation3.

However, implementation of this strategy in our context is not as straightforward
due to non-local features of the Maxwell–Klein–Gordon system in the global Coulomb
gauge. One source of non-locality is the Gauss equation for initial data sets, which for-
bids us from naively truncating initial data to reduce to the small energy case. Another
source is the global Coulomb gauge condition, which imposes a Poisson (hence non-
local) equation for the component A0 of the connection 1-form. In particular, finite
speed of propagation fails in the global Coulomb gauge.

In this paper we develop techniques for overcoming such issues concerning
non-locality of the Maxwell–Klein–Gordon equations, and employ them to prove
Theorem 1.1 from Theorem 1.2 by essentially carrying out Steps 1–3 above. These
techniques (in addition to Theorem 1.1 itself) are also crucially used in the last paper
of the sequence [23], where we carry out a blow-up analysis of (MKG) to preclude
concentration of energy and non-scattering.

To deal with the non-locality of the Gauss equation, we introduce the method of
initial data excision and gluing at critical regularity for (MKG); see Propositions 4.1

3 More precisely, in Step 3, by finite speed of propagation, note that the global solutions in Step 2 restricted
to the domain of dependence of the truncated regions in Step 1 give rise to a family of local-in-space-time
solutions, which agree with each other on the intersection of the domains.
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and 4.2 for the precise formulation. Instead of naively truncating an initial data set
(a, e, f, g), which would violate the Gauss equation, the idea is to excise the unwanted
part and then glue another solution to the Gauss equation with the appropriate behav-
ior. Similar techniques have been developed for the initial data sets of the Einstein
equations in general relativity [4–6,8]. In our context, we need to develop a sharp ver-
sion that works at the critical regularity. Our key tool is an explicit solution operator to
the divergence equation [2,3,11] which preserves the compact support property; see
Proposition 4.4.

The initial data excision and gluing technique allows us to carry out an analogue of
Step 1. Then applying suitable gauge transformations to the resulting initial data sets
to impose the global Coulomb gauge condition, we are in position to use Theorem 1.2
to produce the corresponding global solutions. This procedure is analogous to Step 2.
However, we face difficulty in patching these solutions in the global Coulomb gauge
(which corresponds to Step 3), since finite speed of propagation does not hold in this
gauge.

We use two ideas for addressing this issue. The first is the observation that even
though finite speed of propagation may fail in a particular gauge (e.g., the global
Coulomb gauge), it remains true up to a gauge transformation. We refer to this fact
as the local geometric uniqueness of (MKG); see Proposition 5.2. Hence we obtain
from the global solutions produced in Step 2 a family of local-in-space-time solu-
tions (A[α], φ[α]) to (MKG), which agree with each other on the intersection of the
domains up to gauge transformations. We call such solutions compatible pairs (see
Definition 6.15). Geometrically, these are nothing but a description of a global pair of
a connection 1-form and a section of L in local trivializations.

The second idea is to patch these local descriptions together to form a single solu-
tion in the global Coulomb gauge. We begin by adapting an argument of Uhlenbeck
[41, Section 3] to produce a single global-in-space solution in the desired function
spaces S1, Y 1; see Proposition 6.16. For this purpose, we develop a functional space
framework for performing gauge transforms between local-in-spacetime solutions in
S1 and Y 1; see Section 6.3 and Section 7. A key point in this argument is that a gauge
transformation χ between two Coulomb gauges obeys the Laplace equation �χ = 0,
and hence enjoys improved regularity. The solution resulting from this patching argu-
ment does not necessarily satisfy the exact global Coulomb condition. Nevertheless
this solution is approximately Coulomb, since it arose by patching together Coulomb
solutions. Hence there exists a nicely behaved gauge transformation into the global
Coulomb gauge, which completes the analogue of Step 3 and hence the sketch of our
proof of Theorem 1.1.

Remark 1.3 The main result and the techniques developed in this paper are perturba-
tive in nature, and hence can be easily generalized to higher dimensions, i.e., R1+d

for any d ≥ 4. In what follows we focus on the most interesting case R
1+4 for con-

creteness.

1.3 Other Works on the Maxwell–Klein–Gordon Equations

Here we give a brief review of the literature on the Maxwell–Klein–Gordon problem.
In dimensions 2+1 and 3+1 the Maxwell–Klein–Gordon system is energy subcritical,
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so global regularity follows from local well-posedness at the energy regularity; see
Klainerman–Machedon [15] and Selberg-Tesfahun [27]. We also mention the works
of Moncrief [21] and Eardley-Moncrief [9,10], where global regularity of sufficiently
smooth solutions in R

1+2 and R
1+3 was established by a different argument; the latter

two also handled the more general Yang–Mills–Higgs system on R
1+3. The problem

of low regularity well-posedness in R
1+3 was further studied by Cuccagna [7] and

then more recently by Machedon-Sterbenz [20], who reached the essentially optimal

regularity A(0), φ(0) ∈ H
1
2 +. In [12], global well-posedness was established below

the energy norm, more precisely for A(0), φ(0) ∈ H
√

3
2 +

In dimension 4+1, Klainerman–Tataru [16] established an essentially optimal local
well-posedness result for a model equation closely related to Maxwell–Klein–Gordon
and Yang–Mills. This result was further refined by Selberg [26], who considered the
full Maxwell–Klein–Gordon system on R

1+4, and Sterbenz [28].
For the critical regularity problem, Rodnianski–Tao [24] made an initial break-

through and proved global regularity for small scaling critical Sobolev data in
dimensions 6 + 1 and higher. This result was greatly improved in the aforementioned
work of Krieger–Sterbenz–Tataru [19] to include the energy critical dimension (4+1),
which provides the starting point of the present paper.

Finally, we note that an independent proof of global well-posedness and scattering of
(MKG) has recently been announced by Krieger–Lührmann [17], following a version
of the Bahouri–Gérard nonlinear profile decomposition [1] and the Kenig–Merle con-
centration compactness/rigidity scheme [13,14], developed by Krieger–Schlag [18]
for the energy critical wave maps problem.

1.4 The Structure of the Paper

After some preliminaries in Section 2, we begin with a systematic study of finite energy
initial data sets for (MKG) in Section 3. We show, in particular, that every such initial
data set can be gauge transformed to the global Coulomb gauge (Lemma 3.3), and also
that it can be approximated by smooth data (Lemma 3.2). In Section 4, we develop the
theory of excision and gluing of Maxwell–Klein–Gordon initial data sets at the energy
regularity (Propositions 4.1, 4.2). In Section 5, we formulate a notion of solutions
to (MKG) arising from general finite energy initial data (admissible CtH1 solutions)
and prove local geometric uniqueness of (MKG) in this class (Proposition 5.2). In
Section 6, we give a precise statement of the main local well-posedness theorem
(Theorem 6.1) and prove it up to some estimates concerning the functions spaces
S1, Y 1. Finally, in Section 7 we delve further into the structure of the spaces S1, Y 1

and establish the function space estimates used in Section 6, thereby completing the
proof of Theorem 6.1.

2 Preliminaries

2.1 Notation and Conventions

We write A � B when there exists a constant C > 0 such that A ≤ C B. The
dependence of the constant is specified by a subscript, e.g., A �r B means that there
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exists C = C(r) > 0 such that A ≤ C B. We write A ≈ B when both A � B and
B � A hold.

We employ the index notation in this paper. Unless otherwise specified, we always
use the rectilinear coordinates (t = x0, x1, . . . , x4). The greek indices (e.g., μ, ν, . . .)
run over 0, 1, . . . , 4, whereas the roman indices only run over 1, . . . , 4. As already
mentioned in the introduction, we raise and lower indices using the Minkowski metric
mμν , and use the convention of summing up repeated upper and lower indices.

We denote the open ball in R
4 of radius r and center x by Br (x). Given a cube

R ⊆ R
4, we refer to its side length by 	(R). For a convex subset K of R4 (or R1+4)

and c ∈ (0,∞), we define cK to be the dilation of K by c about the center of mass of
K . For example, if Br (x) is an open ball in R

4, then cBr (x) is the open ball with the
same center and the radius c times that of B, i.e., cBr (x) = Bcr (x).

2.2 Dyadic Frequency Projections

Let m≤0(r) be a smooth cutoff which equals 1 on {r ≤ 1} and vanishes outside {r ≥ 2}.
For every k ∈ Z, define m≤k(r) := m≤0(r/2k) and mk(r) := m≤k(r) − m≤k−1(r).
Then mk is supported in the set {2k−1 ≤ r ≤ 2k+1} and forms a partition of unity, i.e.,

∑
k

mk(r) = 1.

The following dyadic frequency (or Littlewood–Paley) projections are used in this
paper:

Pkϕ = F−1[mk(|ξ |)F[ϕ]], Q jϕ = F−1[m j (||τ | − |ξ ||)F[ϕ]],
S	ϕ = F−1[m	(|(τ, ξ)|)F[ϕ]], Tjϕ = F−1[m j (|τ |)F[ϕ]].

We also use the notation P≤k := ∑
k′≤k Pk , P(k1,k2] :=

∑
k′∈(k1,k2] Pk′ etc.

2.3 Standard Functions Spaces on R
d and Domains

Unless otherwise specified, we define function spaces on a subset O ⊆ R
d by restrict-

ing the R
d version, i.e.,

‖ϕ‖X (O) := inf
ψ=ϕ on O

‖ψ‖X (Rd ).

The homogeneous Sobolev and Besov semi-norms ‖ · ‖Ẇ s,p(Rd ), ‖ · ‖Ḃs,p
r (Rd ) on R

d

are characterized using the Littlewood–Paley projections as follows:

‖ϕ‖Ẇ s,p(Rd ) ≈ ‖
( ∑

k

22sk |Pkϕ|2
) 1

2 ‖L p(Rd ), ‖ϕ‖Ḃs,p
r (Rd )

≈
( ∑

k

2rsk‖Pkϕ‖r
L p(Rd )

) 1
r
.

We define the corresponding spaces Ẇ s,p(Rd), Ḃs,p
r (Rd) to consist of tempered dis-

tributions that are regular at zero frequency (i.e., ‖P≤kϕ‖L∞(Rd ) → 0 as k → −∞)
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and have finite corresponding semi-norms. We use the standard notation Ẇ s,2 = Ḣ s .
When s < d

p or s = d
p with r = 1 (in the Besov case) the above semi-norms are in

fact norms when restricted to the space S(Rd) of Schwartz functions on R
d , and the

corresponding spaces are obtained as the completion of S(Rd) with respect to these
norms.

3 Finite Energy Initial Data for Maxwell–Klein–Gordon

In this section we systematically develop the basic theory of finite energy initial data
sets for (MKG). In Section 3.1 we define the spaces of finite energy and classical initial
data sets for (MKG), and also the corresponding spaces of gauge transformations. In
Section 3.2, we prove a few elementary facts about finite energy initial data sets,
such as approximation by classical initial data and gauge transformation to a globally
Coulomb initial data. We also show that any globally Coulomb finite energy initial
data set can be approximated by classical initial data sets in the global Coulomb gauge.

3.1 Finite Energy Initial Data Sets and Gauge Transformations

Let O ⊆ R
4 be a non-empty open set. Given 1-forms a, e and C-valued functions

f, g on O , we say that the quadruple (a, e, f, g) is a (MKG) initial data set if the
following Gauss (or the constraint) equation holds:

∂	e	 = Im[ f g]. (3.1)

We define the space H1(O), which consists of (MKG) initial data sets (a, e, f, g) for
which the following norm is finite:

‖(a, e, f, g)‖H1(O) := sup
j=1,...,4

‖(a j , e j )‖(Ḣ1
x ∩L4

x )×L2
x (O) + ‖( f, g)‖(Ḣ1

x ∩L4
x )×L2

x (O).

A Coulomb (gauge) initial data set is a data set (a, e, f, g) which in addition satisfies
the divergence condition

∇ · a = ∂	a	 = 0.

Given an H1(O) initial data set (a, e, f, g), we define its energy on O ′ ⊆ O by

EO ′ [a, e, f, g] := 1

2

∫
O ′

∑
1≤ j<k≤4

|(da) jk |2 +
∑

1≤ j≤4

|e j |2 +
∑

1≤ j≤4

|D j f |2 + |g|2 dx,

(3.2)
where (da) jk = ∂ j ak − ∂ka j and D j f = ∂ j f + ia j f . The space H1(O) is a natural
domain on which the energy functional is always finite, and for this reasonH1(O) will
also be referred to as the space of finite energy initial data. In general the energy does
not control the H1 norm, and for this reason we view the H1 bounds as qualitative,
whereas the energy related bounds are quantitative. However, in the case of global
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2 Page 10 of 70 S.-J. Oh, D. Tataru

Coulomb data sets the situation improves and we can estimate the H1 norm in terms
of the energy, see Lemma 3.3.

We also remark that the energy EO ′ [a, e, f, g] is invariant under gauge transforma-
tions, which will be rigorously defined below.

For N ≥ 1, we define the higher regularity space HN (O) in a similar fashion with
the norm

‖(a, e, f, g)‖HN (O) :=
N∑

n=1

‖(∂(n−1)
x a, ∂(n−1)

x e, ∂(n−1)
x f, ∂(n−1)

x g)‖H1(O).

To define the space H∞(O) of classical initial data sets, we first define the space
H0(O) to consist of (MKG) initial data sets with finite H0(O) semi-norm, which is
given by

‖(a, e, f, g)‖H0(O) := ‖a‖L2
x
+ ‖ f ‖L2

x

Then we take H∞(O) := ∩∞
N=0HN (O) and topologize it using {‖ · ‖HN (O)}N≥0. We

remark that H∞(O) initial data have not only better regularity (it is in fact smooth),
but also better integrability than HN (O).

Next, we define spaces of gauge transformations between initial data sets. A gauge
transformation χ , which is simply an R-valued function on O , acts on an initial data
set (a, e, f, g) as follows:

�χ [a, e, f, g] := (a − dχ, e, eiχ f, eiχ g).

We define the space G2(O) to consist of locally integrable gauge transformations such
that the following semi-norm is finite:

‖χ‖G2(O) := ‖∂xχ‖L4
x (O) + ‖∂2

x χ‖L2
x (O).

Given an integer N ≥ 1, we define the GN+1(O) semi-norm as

‖χ‖GN+1(O) :=
N∑

n=1

(
‖∂(n)

x χ‖L4
x (O) + ‖∂(n+1)

x χ‖L2
x (O)

)
,

and the space GN+1(O) to consist of locally integrable gauge transformations with
finiteGN+1(O) semi-norm. Observe that ‖χ‖GN+1(O) = 0 if and only if χ is a constant.
Accordingly, GN+1(O) becomes a Banach space once we mod out by constants, but
we shall not do so in this paper. Finally, we also define

G∞(O) :=
∞⋂

n=1

Ḣn
x ∩ Ẇ n−1,4

x (O).

The space of gauge transformations between initial data sets in the class HN (O) is
precisely GN+1(O). Indeed, given χ ∈ GN+1(O), it follows from the chain rule and

123



(4 + 1)-d MKG at energy regularity Page 11 of 70 2

the fact that σ �→ eiσ is a bounded smooth function that eiχ ∈ GN+1(O) and

‖eiχ‖GN+1(O) � ‖χ‖GN+1(O)(1 + ‖χ‖N
GN+1(O)

).

From this fact, we see that if (a, e, f, g) ∈ HN (O) and χ ∈ GN+1(O), then
�χ(a, e, f, g) ∈ HN (O). Conversely, if χ is a locally integrable gauge trans-
formation on O such that we have (a′, e′, f ′, g′) = �χ(a, e, f, g) for some
(a, e, f, g), (a′, e′, f ′, g′) ∈ HN (O), then it easily follows that χ ∈ GN+1(O) from
the relation dχ = a − a′.

The map �χ [a, e, f, g] furthermore enjoys a nice continuity property. We state a
version of this property for the case N = 1, i.e., (a, e, f, g) ∈ H1(O) and χ ∈ G2(O).

Lemma 3.1 Let O be an open connected subset ofR4. Let (a(n), e(n), f (n), g(n)) [resp.
χ(n)] be a sequence of H1(O) initial data sets [resp. G2(O) gauge transformations]
such that

‖(a − a(n), e − e(n), f − f (n), g − g(n))‖H1(O) → 0, ‖χ − χ(n)‖G2(O) → 0,

for some (a, e, f, g) ∈ H1(O) and χ ∈ G2(O) as n → ∞. Then there exists a
sequence χ

(n)
0 ∈ R of constant gauge transformations such that

‖�χ [a, e, f, g] − �
χ(n)+χ

(n)
0

[a(n), e(n), f (n), g(n)]‖H1(O) → 0 as n → ∞. (3.3)

Proof We shall write

(̃a, ẽ, f̃ , g̃) = �χ [a, e, f, g], (̃a(n), ẽ(n), f̃ (n), g̃(n)) = �χ(n)[a(n), e(n), f (n), g(n)].

Before we begin the proof, we first make a few reductions. We first remark that the
constants χ

(n)
0 above are needed because they are not seen by the G2(O) norm. We can

eliminate them if we normalize χ(n), e.g. by requiring that they have zero averages on
some ball B ⊂ O: ∫

B
χ(n) dx = 0 (3.4)

We will make this assumption from here on.
Observe further that (3.3) is easy when all χ(n)’s are the same. Then applying −χ

to every term in the sequence, it suffices to consider the case χ = 0. Finally, the
convergence of (̃a(n), ẽ(n)) in Ḣ1

x ∩ L4
x (O) × L2

x (O) is obvious, so we will focus on
( f̃ (n), g̃(n)).

We claim that

‖D̃ j f̃ − D̃(n)
j f̃ (n)‖L2

x (O) + ‖ f̃ − f̃ (n)‖L4
x (O) + ‖g̃ − g̃(n)‖L2

x (O) → 0 as n → ∞,

where D̃ j = ∂ j + i ã j , D̃(n)
j = ∂ j + i ã(n)

j . Then the desired conclusion (3.3) would

follow, using the claim and the L4
x (O) convergence of ã(n) → ã to deduce that

∂x f̃ (n) → ∂x f̃ in L2
x (O).
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We now prove g̃(n) → g̃ in L2
x (O); a similar argument works for f̃ (n) and D̃(n)

j f̃ (n)

as well. We write

‖g̃− g̃(n)‖L2
x (O) = ‖g−eiχ(n)

g(n)‖L2
x (O) ≤ ‖(1−eiχ(n)

)g‖L2
x (O)+‖eiχ(n)

(g−g(n))‖L2
x (O).

Since ‖eiχ(n)‖L∞
x

≤ 1, it follows that the last term vanishes as n → ∞. It remains to
prove

‖(1 − eiχ(n)

)g‖L2
x (O) → 0. (3.5)

By Lebesgue’s dominated convergence theorem, it suffices to show that each subse-
quence nk has a further subsequence nk j so that χ

(nk j ) → 0 almost everywhere in O .
To see this we use Poincare’s inequality. In view of the normalization (3.4), this shows
that from the convergence ‖χ(n)‖G2(O) → 0 we obtain

χ(n) → 0 in L4
loc(O).

Then the a.e. convergence on a subsequence immediately follows. ��

3.2 Approximation and Gauge Transformation Lemmas

In this subsection, we record a few useful facts concerning H1 initial data sets on R
4.

The first result says that any H1(R4) initial data set can be approximated by classical
initial data sets.

Lemma 3.2 Let (a, e, f, g) be an initial data set for (MKG) in the class H1(R4).
Then there exists a sequence (a(n), e(n), f (n), g(n)) of initial data sets in H∞(R4)

which approximates (a, e, f, g) in H1(R4).

Proof Take any C∞
0 (R4) sequence (̃a(n), ẽ(n), f̃ (n), g̃(n)) which converges to (a, e,

f, g) in the H1(R4) norm, and take

a(n) = ã(n), f (n) = f̃ (n), g(n) = g̃(n).

To satisfy the Gauss equation, we take

e(n)
j = ẽ(n)

j + (−�)−1∂ j (∂
	ẽ(n)

	 − Im[ f (n)g(n)]).

It can be readily verified that e(n) ∈ H∞
x (R4). Moreover, since ∂	ẽ(n)

	 − Im[ f (n)g(n)]
→ 0 in Ḣ−1

x (R4), it follows that e(n)
j → e j in L2

x (R
4), as desired. ��

The second result shows that any H1(R4) initial data set can be gauge transformed
to a globally Coulomb initial data set.
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Lemma 3.3 Let (̃a, ẽ, f̃ , g̃) be an initial data set for (MKG) in the class H1(R4).
Then there exists a gauge transform χ ∈ G2(R4), unique up to a constant, such that

(a, e, f, g) = (̃a − dχ, ẽ, eiχ f̃ , eiχ g̃)

satisfies the global Coulomb gauge condition ∂	a	 = 0 [resp. ∂	a′
	 = 0] on R

4.
Moreover, we have the estimate

‖χ‖G2(R4) � ‖̃a‖Ḣ1
x (R4). (3.6)

Proof Let
ω j = (−�)−1∂ j∂

	ã	. (3.7)

Since ã ∈ Ḣ1
x (R4), it follows that ω j ∈ Ḣ1

x (R4). Note moreover that

∂iω j − ∂ jωi = 0

for every i, j = 1, 2, 3, 4. Thus there exists4 a real-valued function χ such that

dχ = ω,

which furthermore satisfies χ ∈ G2(R4) and (3.6). Note that (a, e, f, g) defined as
above satisfies the global Coulomb condition, since ∂	a	 = ∂	ã	 + �χ = 0. The
uniqueness statement follows from the fact that the solution to �∂ jχ = ∂ j∂

	ã	 in
L4

x (O) is uniquely given by (3.7). ��
An immediate consequence of Lemma 3.1 and the preceding two lemmas is that

any Coulomb initial data set in H1(R4) can be approximated in H1(R4) by classical
Coulomb initial data sets. We record this statement as a corollary.

Corollary 3.4 Let (a, e, f, g) be a globally Coulomb initial data set for (MKG) in the
classH1(R4). Then there exists a sequence (ǎ(n), ě(n), f̌ (n), ǧ(n)) of globally Coulomb
initial data sets in H∞(R4) which approximates (a, e, f, g) in H1(R4).

4 Excision and Gluing of Initial Data Sets

A recurrent nuisance in gauge theory is the presence of a non-trivial constraint equation
for the initial data sets. More concretely, consider the problem of localizing a (MKG)
initial data set. The most naive way to proceed would be to apply a smooth cutoff;
however, integrating the constraint equation (also called the Gauss equation)

∂	e	 = Im[ f g]

4 This is obvious when ã ∈ S(R4); the full statement follows by approximation of a by Schwartz 1-forms,
using the fact that BMO is a Banach space modulo constant functions.
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by parts over balls of large radius, we see that e	 must in general be non-trivial on
the boundary spheres even if f, g are compactly supported. This simple argument
precludes the naive approach of simply cutting off (a, e, f, g).

The purpose of this section is to introduce a set of techniques for addressing this
difficulty, namely excision and gluing of (MKG) initial data sets. In the context of
localization of initial data sets, the basic idea is as follows: Instead of simply excising
the unwanted part of the initial data set, we glue it to another initial data set, which has
an explicit description in the excised region. For instance, in the exterior of a ball (see
Proposition 4.1 below) we glue with a data set of the form (e(q) j := q

2π2
x j

|x |4 , 0, 0, 0),
which is precisely the electro-magnetic field of an electric monopole of charge q
situated at the origin.

Key to our approach is a simple solution operator V for the divergence equation
that preserves the support and obeys a sharp regularity bound. This solution operator
was first used by Bogovskiı̆ [2,3]. We remark that a similar solution operator was used
in [11] in the context of the incompressible Euler equations.

The main results are stated in the next two propositions. The first one concerns
excision and gluing of initial data sets to the exterior of a ball.

Proposition 4.1 (Excision and gluing of initial data sets to the exterior). Let B be a
ball of radius r0 in R

4, and 1 < σ1 < σ0 ≤ 2. Then there exists an operator Eext from
the class H1(σ0 B \ B) to the class H1(R4 \ B) satisfying the following properties:

(1) (̃a, ẽ, f̃ , g̃) := Eext[a, e, f, g] is an extension of (a, e, f, g),

(̃a, ẽ, f̃ , g̃) = (a, e, f, g) on the annulus σ1 B \ B.

(2) We have (̃a, f̃ , g̃) = (0, 0, 0) on R
4 \ σ0 B. On the other hand, there exists a real

number q = q(e), depending continuously on e ∈ L2(σ0 B \ B), such that

ẽ j (x) = q
x j

r4 on R
4 \ σ0 B.

(3) The following bounds hold, with implicit constants depending on σ1, σ0:

‖Eext[a, e, f, g]‖H1(R4\B) � ‖(a, e, f, g)‖H1(σ0 B\B), (4.1)

E
R4\B[Eext[a, e, f, g]] � r−2

0 ‖ f ‖2
L2

x (σ0 B\B)
+ Eσ0 B\B[a, e, f, g]. (4.2)

(4) The operator Eext is continuous from H1(σ0 B \ B) to H1(R4 \ B). Moreover,
Eext enjoys persistence of higher regularity, i.e., for every N ≥ 1, we have
Eext[HN (σ0 B \ B)] ⊆ HN (R4 \ B).

The second proposition concerns excision and gluing of initial data in the interior
of a ball.

Proposition 4.2 (Excision and gluing of initial data sets to the interior). Let B be a
ball of radius r0 in R

4, and 1 < σ2 < σ0 ≤ 2. Then there exists an operator E int from
the class H1(σ0 B \ B) to the class H1(σ0 B) satisfying the following properties:
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(1) E int[a, e, f, g] is an interior extension of (a, e, f, g),

E int[a, e, f, g] = (a, e, f, g) on the annulus σ0 B \ σ2 B.

(2) The following bounds hold, with implicit constants depending on σ2, σ0:

‖E int[a, e, f, g]‖H1(σ0 B) � ‖(a, e, f, g)‖H1(σ0 B\B) + ‖e‖
1
2

L2
x (σ0 B\B)

, (4.3)

Eσ0 B[E int[a, e, f, g]] � Eσ0 B\B[a, e, f, g] + r−2
0 ‖ f ‖2

L2
x (σ0 B\B)

. (4.4)

(3) The operator E int is continuous from H1(σ0 B \ B) to H1(σ0 B). Moreover,
E int enjoys persistence of higher regularity, i.e., for every N ≥ 1, we have
E int[HN (σ0 B \ B)] ⊆ HN (σ0 B).

Remark 4.3 There are two main difficulties in the proving these propositions. The first
one is the presence of the Gauss equation, which has been discussed at the beginning
of this section. The second difficulty stems from the local energy inequalities (4.2)
and (4.4), which require, in particular, choosing a ‘good gauge’ before excising the
initial data. To resolve this difficulty, we rely on the solvability in L2-Sobolev spaces
of the one-form Hodge system under suitable boundary conditions (see Section 4.2).
This statement can be thought of as an easier abelian variant of Uhlenbeck’s lemma
[41] concerning existence of a gauge transformation to the Coulomb gauge.

The rest of this section is structured as follows: In Section 4.1, we introduce a
solution operatorV = V j [h] to the divergence equation ∂ jV j [h] = h that, in particular,
is compactly supported if h is. In Section 4.2, we briefly recall a standard result for
the 1-form Hodge system on domains with smooth boundary, which will be needed
later. Then in Section 4.3, we present proofs of Propositions 4.1 and 4.2.

4.1 Support-Preserving Solution Operator for the Divergence Equation

In this subsection, we define a solution operator to the divergence equation which
preserves the support property of the source. This solution operator was first introduced
by Bogovskiı̆ [2,3]. Our construction below follows the approach of [11], in which
a similar solution operator was constructed for the symmetric divergence equation
∂ j R j	 = U 	. We sharpen the estimates for V compared to [11] (where non-sharp
estimates sufficed), which turns out to be necessary due to the criticality of our problem.
The class of domains we work with is that of star-shaped domains, and unions thereof.
We call a domain strongly star-shaped with respect to a set B if it is star-shaped with
respect to any point in B.

Proposition 4.4 Let B be a ball in R
d , d ≥ 2. Then there exists a pseudodifferential

operator V ∈ O P S−1
loc(R

d), taking functions to 1-forms, which has the following
properties:

(1) For any compact domain D which is star-shaped with respect to B, if h ∈ D′ is
supported in D then V[h] is also supported in D.
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(2) Suppose that h has compact support and

∫
Rd

h dx = 0.

Then V[h] satisfies the divergence equation

∂	V	[h] = h. (4.5)

Remark 4.5 The fact that D is star-shaped with respect to B requires that B ⊆ D.
Thus by scaling all bounds for the operator V in D depend only on the ratio
diam (D)/diam (B). In particular, since V ∈ O P S−1

loc(R
d), we obtain

‖V[h]‖W 1,p(Rd ) � ‖h‖L p(Rd ), 1 < p < ∞. (4.6)

Thus, by the Gagliardo-Nirenberg-Sobolev inequality we obtain the inequality

‖V[h]‖Lq
x (Rd ) �p,q (diam B)

d
q − d

p +1‖h‖L p
x (Rd ) (4.7)

whenever 1 < p ≤ q < ∞ and

d

p
− 1 ≤ d

q
≤ d

p
.

Before we begin the proof of Proposition 4.4 in earnest, we give a short argument
that provides a solution operator V with the required support properties but with less
regularity. We will use this to motivate the actual construction. Let h be a smooth
function supported in a ball B satisfying

∫
Rd h = 0. Our goal is to find a solution v	

to (4.5) which satisfies the support property supp v	 ⊆ B. Note that
∫
Rd h = 0 is a

necessary condition for such a solution to exist by the divergence theorem.
Taking the Fourier transform of h and Taylor expanding at ξ = 0, we get

ĥ(ξ) = ĥ(0) + ξ	

∫ 1

0
∂	ĥ(σξ) dσ.

Since ĥ(0) = ∫
h dx = 0, we see that ĥ has the form of a divergence. Indeed, defining

v j [h] := F−1
x [

∫ 1

0
∂ j ĥ(σξ) σ ],

we see that ∂	v	[h] = h, as desired. More generally, we remark that if
∫
Rd h �= 0,

then

∇ · v = h − cδ0, c =
∫
Rd

h dx .
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Carrying out the inverse Fourier transform, we obtain the following physical space
formula for v j [h]:

v j [h](x) =
∫ 1

0

x j

σ
h
( x

σ

) dσ

σ d
.

Note that the value of v j [h] at x is determined by a weighted integral of h on the radial
ray {sx : s ≥ 1}. In particular, the desired support property supp v ⊆ B immediately
follows. In terms of regularity, however, integration along rays only yields radial
regularity. No angular regularity at all is gained by doing this.

One can also view the above construction as arising from a mass transportation
problem. The above v corresponds to transporting all the mass of h along rays to zero.

In order to produce a better solution operator, all we need to do is to expand the
above Dirac mass at zero into a smooth bump function, i.e. some smooth averaging of
the above construction. This idea is carried out in the following proof.

Proof of Proposition 4.4 By translation and scaling we assume that B is the unit ball.
Given y ∈ R

d , define

v(y) j [h](x) =
∫ 1

0

(x − y) j

σ
h
( x − y

σ
+ y

) dσ

σ d
.

Let ζ be a smooth normalized bump function in B, i.e.

supp ζ ⊆ B,

∫
Rd

ζ = 1. (4.8)

We now define V j [h] :=
∫

ζ(y)v(y) j [h] dy, i.e.,

V j [h](x) =
∫ ∫ 1

0
ζ(y)

(x − y) j

σ
h
( x − y

σ
+ y

) dσ

σ d
dy. (4.9)

As before, V[h] is a solution to the divergence equation

∂	V	[h] = h − cζ, c =
∫
Rd

h dx

where the second term in the right-hand side vanishes provided that h has integral
zero. Moreover, from the construction it follows that we have the support property

suppV[h] ⊆
⋃

x∈supp h

Conv({x} ∪ B),

where Conv(X) refers to the convex hull of X . This is exactly what we need.
It remains to prove that V is a regular pseudodifferential operator of order −1. For

that we look at the kernel K (x−y, y) ofV , which after a change of variable is written as

K (z, y) =
∫

z

1 − σ
ζ
( 1

1 − σ
z + y

) dσ

(1 − σ)d
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The support condition on ζ restricts the integral to the range |1 − σ | � |z|. Then a
direct integration yields the bound

|K (z, y)| � |z|1−d

Similarly, we have the differentiated bounds

|∂(k)
z ∂

( j)
y K (z, y)| ≤ ck j |z|1−d−k .

The symbol a(ξ, y) of V in the right calculus5 is obtained by taking the Fourier trans-
form of K with respect to z. Then the preceding bound implies the homogeneous
symbol bound

|∂(k)
ξ ∂

( j)
y a(ξ, y)| �k, j |ξ |−1−k .

On the other hand, taking into account the support properties of K , it follows that
|∂(k)

ξ ∂
( j)
y a| is bounded for every k, j as well. Hence the assertionV ∈ O P S−1 follows.

In the sequel we apply the above proposition in two situations. The first is for a
ball:

Corollary 4.6 Let B be a ball in R
d . Then there exists a pseudodifferential opera-

tor V B ∈ O P S−1, mapping distributions h supported in B to distributions V B[h]
supported in B, and which satisfies property (2) in Proposition 4.4.

For this we only need to observe that B is star-shaped with respect to B.
Our second application is for an annulus:

Corollary 4.7 Let A = σ B \ B, with σ > 1, be an annulus. Then there exists a
pseudodifferential operator V A ∈ O P S−1, mapping distributions h supported in A to
distributionsV A[h] supported in A, and which satisfies property (2) in Proposition 4.4.
Further, all bounds are uniform for σ away from 1.

In particular we note the following bound

‖V A[h]‖L2
x (R4) � ‖h‖

L
4
3
x (R4)

(4.10)

with an implicit constant that is uniform for σ away from 1.
To show that this follows from Proposition 4.4, we cover A with three or more

overlapping round sectors of identical angle θ , A = ⋃K
k=1 Ak , so that the double-

angle sectors 2Ak ⊆ A are star-shaped. The number of such sectors depends only on
the dimension d if σ is large, but increases as σ → 1. The closer σ gets to 1, the worse
our bounds will get.

In each such sector we can apply Proposition 4.4. However, to conclude the proof
of the corollary we need to also be able to distribute the zero integral condition to the
sectors. This is achieved in the next lemma:

5 We prefer the right calculus, because there the symbol is only needed for y ∈ D.
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Lemma 4.8 Consider a covering of the annulus A = σ B \ B with round sectors
A = ⋃

Ak of angle θ . Let ηk be an associated partition of unity in A whose angular
support is contained in the double-angle sector 2Ak. Then for each distribution h
which satisfies

supp h ⊆ A and
∫

h dx = 0.

there exists a linear decomposition h = ∑K
k=1 hk so that

supp hk ⊆ 2Ak,

∫
hk dx = 0.

and the maps h → hk − ηkh are finite rank ≤ 2 from D′ to D.

The previous corollary is then proved by applying Proposition 4.4 to each hk in the
sectors 2Ak .

Proof We label the sectors Ak so that Ak ∩ Ak+1 �= ∅. For each k, let ζk be a smooth
function with unit mass supported in 2Ak ∩2Ak+1. For convenience, we define ζ0 = 0.
The idea is to write

hk := ηkh − ζk

∫ ∑
j≤k

η j h + ζk−1

∫ ∑
j<k

η j h for 1 ≤ k ≤ K − 1,

hK := ηK h + ζK−1

∫
ηK−1h.

By construction, we have
∫

hk = 0 for 1 ≤ k ≤ K − 1; then it follows that
∫

hK = 0
since

∫
h = 0. ��

4.2 L2 Hodge Theory for 1-Forms

Another ingredient in our proofs of Propositions 4.1 and 4.2 is the solvability of a
boundary value problem for the 1-form Hodge system. The result that we need is as
follows:

Proposition 4.9 Let O be a pre-compact connected open subset of R4 with a smooth
boundary ∂O. Assume furthermore that the first de Rham cohomology group of O
vanishes, i.e., H1

deRham(O) = 0. Then for any 2-form F on O such that F ∈ H N (O)

(N ≥ 0), there exists a unique 1-form ω ∈ H N+1(O) which solves the following
boundary value problem for the 1-form Hodge system:

dω = F, ∂	ω	 = 0, ω �∂O (n) = 0, (4.11)

where n is the outer-pointing normal vector field on ∂O. Moreover, ω obeys the
estimate

‖ω‖H N+1
x (O)

� ‖F‖H N
x (O). (4.12)
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This is a standard result; we refer the reader to [40, Section 5.9]. The cohomology
condition ensures, by the Hodge theorem, that the kernel of the Hodge system is trivial.
Then the latter fact allows us to conclude unique solvability of (4.11) by the Fredholm
alternative theorem.

4.3 Proof of Propositions 4.1 and 4.2

We are ready to prove Propositions 4.1–4.2.

Proof of Proposition 4.1 Without any loss of generality, we may assume that B is
centered at the origin of R4. For 1 < σ1 < σ0 ≤ 2, we define σ1 = σ

(0)
0 < σ

(1)
0 <

σ
(2)
0 < σ

(3)
0 = σ0 as

σ
(0)
0 = σ1, σ

(1)
0 = 1

2
σ1 + 1

2
σ0, σ

(2)
0 = 1

3
σ1 + 2

3
σ0, σ

(3)
0 = σ0.

Below, we will write
Eext[a, e, f, g] = (̃a, ẽ, f̃ , g̃).

Step 1. Excision of a j . The purpose of this step is to cutoff a j to obtain ã j on R
4 \ B

such that

ã = a on σ
(1)
0 B \ B, ã = 0 on R

4 \ σ
(3)
0 B, (4.13)

‖̃a‖Ḣ1
x ∩L4

x (R4\B) �σ0 ‖a‖Ḣ1
x ∩L4

x (σ0 B\B), (4.14)

‖dã‖2
L2

x (R4\B)
�σ0 Eσ0 B\B[a, e, f, g], (4.15)

where (dã) jk = ∂ j ãk − ∂k ã j . If one drops the last condition, then the simple choice
ã = ηa for a suitable cutoff η will do the job; however, having the estimate (4.15)
with only the energy of (a, e, f, g) on the annular region σ0 B \ B on the right-hand
side will be crucial for our later purposes, in particular for performing the blow-up
analysis in [23]. Our idea for achieving this goal is as follows: First, we will find a
gauge equivalent connection 1-form ǎ on the annular region σ0 B \ B such that

‖ǎ‖Ḣ1
x ∩L4

x (σ0 B\B) + (diam B)−1‖ǎ‖L2
x (σ0 B\B) �σ0 ‖da‖L2

x (σ0 B\B) (4.16)

We remind the reader that ‖da‖2
L2

x (σ0 B\B)
≤ Eσ0 B\B[a, e, f, g]. The connection 1-

form ǎ can be safely excised outside σ
(2)
0 B ⊃ σ

(1)
0 B. Finally, we patch together a j

and ã j inside σ
(2)
0 B using a suitable gauge transformation to produce ã satisfying

(4.13)–(4.15).
We now proceed to the details. Let O = O(σ0, B) denote the annulus σ0 B \ B.

Applying Proposition 4.9 with F = da on the region O (which is possible since
H1
R
(O) = 0), we infer the existence of a unique 1-form ǎ which solves

dǎ = da, ∂	ǎ	 = 0, ǎ �∂ B (∂r ) = ǎ �∂(σ0 B) (∂r ) = 0. (4.17)
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Moreover, ǎ obeys the estimate (4.16). To see this, first observe that this estimate
follows from (4.12) and Sobolev when B is a ball of unit radius. The general case
follows once we note that, for a fixed σ0 > 1, both sides of (4.16) are invariant under
scaling.

Next, we prove that ǎ is gauge equivalent to a. This amounts to finding a function
χ such that

ǎ = a − dχ.

Since d(ǎ − a) = 0, the existence of such a function χ on O is guaranteed by the
topological fact that H1

deRham(O) = 0; it is moreover unique if we furthermore require
that

∫
O χ = 0. By Poincaré’s inequality and (4.16), it follows that χ satisfies the

bound

‖∂(2)
x χ‖L2

x (O) + ‖∂xχ‖L4
x (O) + (diam B)−2‖χ‖L2

x (O) � ‖a‖Ḣ1
x ∩L4

x (O). (4.18)

We now show that, thanks to (4.16), it is safe to cut off ǎ. Let η(2) be a smooth
function on R

4 such that

η(2) = 1 on σ
(2)
0 B, η(2) = 0 outside σ

(3)
0 B, |∂(N )

x η(2)| �N ,σ0 (diam B)−N for N ≥ 0.

Then by (4.16), it is immediate that for any open subset O ′ ⊆ O ,

‖d(η(2)ǎ)‖L2
x (O ′) ≤ ‖η(2)dǎ‖L2

x (O ′) + ‖∂xη(2)‖L∞
x (O ′)‖ǎ‖L2

x (O ′) �σ0 ‖da‖L2
x (O ′).

(4.19)
To conclude the proof, we finally patch a and ǎ by a suitable gauge transformation

to obtain ã with the desired properties. Let η(1) be a smooth function on R
4 such that

η(1) = 1 on σ
(1)
0 B, η(1) = 0 outside σ

(2)
0 B, |∂(N )

x η(1)| �N ,σ0 (diam B)−N for N ≥ 0.

We now define ã by the following formula:

ã := η(2)(a − dχ̃ ), where χ̃ := (1 − η(1))χ. (4.20)

From (4.18), it follows that χ̃ obeys

‖∂(2)
x χ̃‖L2

x (σ0 B\B) + ‖∂x χ̃‖L4
x (σ0 B\B) + (diam B)−2‖χ̃‖L2

x (σ0 B\B) � ‖a‖Ḣ1
x ∩L4

x (O)

(4.21)
It remains to verify the properties (4.13)–(4.15). The first property (4.13) follows easily
from the construction. The second property (4.14) follows from

‖η(2)dχ̃‖Ḣ1
x ∩L4

x (R4\B) �σ0 ‖dχ̃‖Ḣ1
x ∩L4

x (σ0 B\B) �σ0 ‖a‖Ḣ1
x ∩L4

x (σ0 B\B), (4.22)

which in turn follows from (4.21). Finally, the third property (4.15) is a consequence
of (4.13) and (4.19) with O ′ = σ0 B \ σ

(1)
0 B.
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Step 2. Excision of f, g. In this step, we excise ( f, g) to construct ( f̃ , g̃) on R
4 \ B

that satisfies the following properties:

( f̃ , g̃) = ( f, g) on σ1 B \ B, ( f̃ , g̃) = 0 on R
4 \ σ

(1)
0 B, (4.23)

‖ f̃ ‖Ḣ1
x ∩L4

x (R4\B) � ‖ f ‖Ḣ1
x ∩L4

x (σ0 B\B), (4.24)

‖g̃‖L2
x (R4\B) � ‖g‖L2

x (σ0 B\B), (4.25)∑
j=1,...4

‖D̃ j f̃ ‖2
L2

x (R4\B)
� (diam B)−2‖ f ‖2

L2
x (σ0 B\B)

+
∑

j=1,...,4

‖D j f ‖2
L2

x (σ0 B\B)
,

(4.26)

where D̃ j = ∂ j + i ã j . These conditions are easily achieved by naively choosing

σ1 = σ
(0)
0 and cutting off f, g by a smooth function η(0) that is supported in σ

(1)
0 B

and equals 1 on σ
(0)
0 B.

Step 3. Excision and gluing of e j . In this step, we construct ẽ j that, together with ã j ,
f̃ and g̃ constructed in the preceding steps, would satisfy the properties in Proposition
4.1. The problem of localizing of ẽ j is subtle, as it must satisfy the Gauss equation

∂	ẽ	 = Im[ f̃ g̃]. (4.27)

In particular, integrating (4.27) over a ball Br of radius r � 1, the divergence theorem
implies ∫

∂ Br

ẽ	n	 =
∫
R4

Im[ f̃ g̃] dx, where n	 = x	

|x | ,

which precludes the possibility of having a compactly supported ẽ in general. Instead,
we will glue the 1-form e to another solution e(q) (see (4.30)) to the Gauss equation
with a well-understood behavior at infinity, while keeping e unchanged in the region
σ1 B. The key to carrying out this procedure is Proposition 4.4, which allows us to
solve away certain errors in the Gauss equation in a bounded region of space.

We define ẽ to be
ẽ = η2

(0)e + (1 − η2
(0))e(q) + e(G), (4.28)

where {e(q)}q∈R is an explicit 1-parameter family of solutions to ∂	e(q)	 = 0 on
R

4 \ {0}, to be introduced below, and e(G) will be constructed to satisfy the equation

∂	e(G)	 = −∂	η2
(0)(e	 − e(q)	) with supp e(G) ⊆ σ

(1)
0 B \ σ1 B. (4.29)

For e(q) and e(G) as above, we can readily verify that (4.27) holds as follows:

∂	ẽ	 − Im[ f̃ g̃] = ∂	(η2
(0)e	 + (1 − η2

(0))e(q)	 + e(G)	) − η2
(0)Im[ f g]

= η2
(0)(∂

	e	 − Im[ f g]) + (∂	η2
(0))(e	 − e(q)	) + ∂	e(G)	 = 0.
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The 1-form e(q) is defined on R
4 \ {0} component-wisely as follows:

e(q) j = q

2π2

x j

|x |4 . (4.30)

Note that e(q) is precisely the electric field of a point charge at the origin given by
the 4-dimensional version of Coulomb’s law. Indeed, e(q) satisfies the free divergence
equation

∂	e(q)	 = 0, (4.31)

and the charge of e(q) measured on any sphere ∂ Br of radius r centered at the origin
(in fact, any hypersurface enclosing the origin) equals q, i.e.,

∫
∂ Br

e(q)	n	 = q where n	 = x	

|x | . (4.32)

We now turn to the construction of e(G). We wish to apply Corollary 4.7; thus we
must ensure that

0 =
∫

∂	η2
(0)(e	 − e(q)	) dx . (4.33)

By (4.32) and the divergence theorem, we compute

∫
∂	η2

(0) e(q)	 dx = −q.

Thus, (4.33) dictates the following choice of q as a function of e for a fixed σ0:

q[e] := −
∫

∂	η2
(0) e	 dx . (4.34)

Since ∂	η(0) is supported in σ
(1)
0 B \ σ1 B ⊆ σ0 B \ B, we have

|q| �
∫

σ0 B\B

1

|x | |e| dx �σ0 (diam B)‖e‖L2
x (σ0 B\B).

Therefore, the L2 norm of e(q) obeys the bound

‖e(q)‖L2
x (R4\B) � |q|‖ 1

|x |3 ‖L2
x (R4\B) � ‖e‖L2

x (σ0 B\B). (4.35)

Similarly, we also have

‖∂	η2
(1)(e	 − e(q)	)‖

L
4
3
x (R4)

� ‖e − e(q)‖L2
x (σ0 B\B) � ‖e‖L2

x (σ0 B\B).
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Applying Corollary 4.7 with A = σ
(1)
0 B\σ1 B we obtain a solution e(G) to the problem

(4.29) that satisfies
‖e(G)‖L2

x (R4) �σ0 ‖e‖L2
x (σ0 B\B). (4.36)

Combined with (4.14), (4.15), (4.24), (4.25), (4.26), (4.28) and (4.35), estimates (4.1)
and (4.2) follow. The proof of Statements (2)–(3) of Proposition 4.1 is therefore com-
plete.

Step 4. Continuity and persistence of regularity . It remains to verify Statement (4)
of Proposition 4.1. Inspection of our proof so far (using also the linearity statement in
Corollary 4.7) shows that ã, ẽ, f̃ and g̃ are in fact linear in a, e, f and g, respectively;
thus the continuity statement is a triviality. Checking the persistence of regularity
property is a routine exercise using the corresponding statements in Corollary 4.7 and
Proposition 4.9; we omit the details.

Next, we prove Proposition 4.2. The main idea is the same as for the preceding
proof of Proposition 4.1; the key difference is the choice of an 1-parameter family of
solutions e(p) to the Gauss equation in Step 3, which now must be regular at the origin.

Proof of Proposition 4.2 As before, we may assume that B is centered at the origin
of R4. For any given 1 < σ2 < σ0 ≤ 2, we define 1 = σ

(−3)
0 < σ

(−2)
0 < σ

(−1)
0 <

σ
(0)
0 = σ2 < σ0 as

σ
(−3)
0 = 1, σ

(−2)
0 = 2

3
+ 1

3
σ0, σ

(−1)
0 = 1

2
+ 1

2
σ0, σ

(0)
0 = σ2.

In what follows, we will write E int[a, e, f, g] = (̃a, ẽ, f̃ , g̃).

Step 1. Excision of a j . This step is very similar to Step 1 in the proof of Proposition
4.1, except that we now excise the data in the inner part of the annulus. The goal is to
construct ã on σ0 B such that the following properties hold:

ã = a on σ0 B \ σ
(−1)
0 B, ã = 0 on σ

(−3)
0 B, (4.37)

‖̃a‖Ḣ1
x ∩L4

x (σ0 B) �σ0 ‖a‖Ḣ1
x ∩L4

x (σ0 B\B), (4.38)

‖dã‖2
L2

x (σ0 B)
�σ0 Eσ0 B\B[a, e, f, g]. (4.39)

Let O = O(σ0, B) denote the annulus σ0 B \ B. Applying Proposition 4.9 with
F = da on O , we obtain a unique 1-form ǎ that satisfies (4.16)–(4.17), and also a
function χ satisfying ǎ = a − dχ ,

∫
O χ = 0 and (4.18). Let η(−3), η(−2) be smooth

function on R
4 such that

η(−3) = 0 on σ
(−3)
0 B, η(−3) = 1 outside σ

(−2)
0 B,

|∂(N )
x η(−3)| �N ,σ0 (diam B)−N for N ≥ 0,

η(−2) = 0 on σ
(−2)
0 B, η(−2) = 1 outside σ

(−1)
0 B,

|∂(N )
x η(−2)| �N ,σ0 (diam B)−N for N ≥ 0.
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We define
ã := η(−3)(a − dχ̃ ), where χ̃ := (1 − η(−2))χ. (4.40)

Then proceeding as before, it can be checked that ã satisfies (4.37)–(4.39).

Step 2. Excision of f , g. We seek to construct f ′, g′ on σ0 B such that

( f ′, g′) = ( f, g) on σ0 B \ σ2 B, ( f ′, g′) = 0 on R
4 \ σ

(−1)
0 B, (4.41)

‖ f ′‖Ḣ1
x ∩L4

x (σ0 B) �σ0 ‖ f ‖Ḣ1
x ∩L4

x (σ0 B\B), (4.42)

‖g′‖L2
x (σ0 B) � ‖g‖L2

x (σ0 B\B), (4.43)∑
j=1,...4

‖D̃ j f ′‖2
L2

x (σ0 B)
�σ0 ‖ 1

|x | f ‖2
L2

x (σ0 B\B)
+

∑
j=1,...,4

‖D j f ‖2
L2

x (σ0 B\B)
,

(4.44)

where D̃ j = ∂ j + i ã j and σ2 = σ
(0)
0 = 1+σ0

2 .
Let η(−1) be a smooth function on R

4 such that

η(−1) = 0 on σ
(−1)
0 B, η(−1) = 1 outside σ

(0)
0 B,

|∂(N )
x η(−1)| �N ,σ0 (diam B)−N for N ≥ 0.

We simply define
f ′ = η(−1) f, g′ = η(−1)g. (4.45)

Then (4.41)–(4.44) can be easily verified.

Step 3. Excision and gluing of f , g and e j . In this step, we finally define ẽ, f̃ and
g̃ on σ0 B. As remarked above, the basic idea is similar to that in Step 3 of the proof
of Proposition 4.1. However, the 1-forms {e(q)}q∈R are not suitable for gluing to the
cutoff of e outside a ball centered at the origin, since each e(q) (with q �= 0) is singular
at 0. Thus we need to devise a different one parameter family of initial data sets. To
have a solution to the Gauss equation with a nontrivial electric charge while being
regular, we need to introduce a non-trivial charge density Im[ f(p)g(p)] as well as e(p),
where p is the charge parameter.

Let ζ be a smooth function on R
4 such that

ζ ≥ 0, ζ = 0 outside B,

∫
R4

ζ 2 dx = 1, |∂(N )
x ζ | �N (diam B)−N−2.

Then for p ∈ R, we define

e(p) j = −p(−�)−1∂ jζ
2, (4.46)

f(p) = √
p(diam B)

1
2 ζ, (4.47)

g(p) = −i(diam B)−1 f(p) = −i
√

p(diam B)−
1
2 ζ. (4.48)
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Note that (e(p), f(p), g(p)) solves the Gauss equation

∂	e(p)	 = Im[ f(p)g(p)], (4.49)

and obeys the following properties:

∫
r B

∂	e(p)	 = p for any r > 1, (4.50)

‖e(p)‖L2
x

� p(diam B)−1, ‖ f(p)‖Ḣ1
x ∩L4

x (R4) + ‖g(p)‖L2
x (R4) � √

p(diam B)−
1
2 .

(4.51)

Recall the definitions of η(−1), f ′, g′ from the previous step. We define (̃e, f̃ , g̃)

as follows:

ẽ = η2
(−1)e + (1 − η2

(−1))e(p) + e(G)

f̃ = f ′ + f(p)

g̃ = g′ + g(p)

where e(G) will be constructed so that

∂	e(G)	 = −∂	η2
(−1)(e	 − e(p)	) with supp e(G) ⊆ σ

(0)
0 B \ B. (4.52)

Note that

supp f ′ ∪ supp g′ ⊆ supp η(−1) and supp η(−1) ∩ (supp f(p) ∪ supp g(p)) = ∅.

Using these properties, we can verify that (̃e, f̃ , g̃) solves the Gauss equation as
follows:

∂	ẽ	 − Im[ f̃ g̃] = ∂	(η2
(−1)e	 + (1 − η2

(−1))e(p)	 + e(G)	)

− η2
(−1)Im[ f g] − (1 − η2

(−1))Im[ f(p)g(p)]
= ∂	η2

(−1)(e	 − e(p)	) + ∂	e(G)	 = 0.

In order to apply Corollary 4.7, we need

0 =
∫

∂	η2
(−1)(e	 − e(p)	) dx,

which enforces the following choice of p as a function of e for a fixed σ0:

p[e] :=
∫

∂	η2
(−1)e	 dx . (4.53)
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As before, p obeys the bound

|p| �σ0 (diam B)‖e‖L2
x (σ0 B\B), (4.54)

and therefore

‖∂	η2
(−1)(e	 − e(p)	)‖

L
4
3
x (R4)

�σ0 ‖e − e(p)‖L2
x (σ0 B\B) �σ0 ‖e‖L2

x (σ0 B\B).

Now applying Corollary 4.7 with A = σ
(0)
0 B \ σ

(−1)
0 B we obtain a solution e(G) to

the problem (4.52) such that

‖e(G)‖L2
x (R4) �σ0 ‖e‖L2

x (σ0 B\B). (4.55)

From (4.38), (4.39), (4.42), (4.43), (4.44), (4.51), (4.54) and (4.55), estimates (4.3)
and (4.4) follow. Thus the proof of Statements (1)–(2) of Proposition 4.2 is complete.

Step 4. Continuity and persistence of regularity. To complete the proof, we need to
establish Statement (3) of Proposition 4.2. As in Proposition 4.1, this task is a routine
exercise of inspecting the proofs so far; we omit the details. ��

5 Local Geometric Uniqueness of Maxwell–Klein–Gordon

In this section we formulate and prove local geometric uniqueness (i.e., uniqueness up
to a gauge transformation) of Maxwell–Klein–Gordon equations at the energy regu-
larity. In Section 5.1, we formulate the notion of an admissible CtH1 solution and the
associated class CtG2 of gauge transformations, which provides an adequate setting for
local geometric uniqueness. Then in Section 5.2, we state and prove the local geometric
uniqueness of (MKG) in the class of admissible CtH1 solutions (Proposition 5.2).

5.1 Admissible CtH1 Solutions and Gauge Transformations

Here we introduce the notions of classical and admissible CtH1 solutions to (MKG).
Classical solutions refer to smooth solutions to (MKG) with sufficient spatial decay,
and admissible CtH1 solutions are defined as local-in-time limits of classical solutions
in the energy topology CtH1, to be defined below. We also define the associated classes
of gauge transformations.

Given an open set O ⊆ R
1+4 and a pair (Aμ, φ), we define the CtH1(O) norm of

(Aμ, φ) to be

‖(Aμ, φ)‖CtH1(O) := sup
t∈I (O)

(‖(Aμ, φ)‖Ḣ1
x ∩L4

x (Ot )
+ ‖(∂t Aμ, ∂tφ)‖L2

x (Ot )
),

where Ot := O ∩ ({t} ×R
4) and I (O) := {t ∈ R : Ot �= ∅}. Similarly, we define the

CtG2(O) norm to be

‖χ‖CtG2(O) := sup
t∈I (O)

(‖χ‖
Ḣ2

x ∩Ẇ 1,4
x ∩BMO(Ot )

+ ‖∂tχ‖Ḣ1
x ∩L4

x (Ot )
+ ‖∂2

t χ‖L2
x (Ot )

)
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We will say that a smooth solution (A, φ) is classical, and write (A, φ) ∈ C∞
t H∞(O),

if

(∂
(N )
t,x Aμ, ∂

(N )
t,x φ) ∈ CtH1(O) for all N ≥ 0 and (Aμ, φ) ∈ Ct (I (O); L2

x (Ot )).

We similarly define the space C∞
t G∞(O) of classical gauge transformations by saying

that χ ∈ C∞
t G∞(O) if and only if

χ ∈ Ct (I (O); L4
x (Ot )) and ∂

(N )
t,x χ ∈ Ct (I (O); L2

x (Ot )) for every N ≥ 1.

We define the notion of a admissible CtH1 solution to (MKG) and gauge equivalence
between two such solutions as follows.

Definition 5.1 (Admissible CtH1 solutions). Let O be an open subset of R1+4.

(1) We say that a pair (Aμ, φ) ∈ CtH1(O) is an admissible CtH1 solution to (MKG)
on O (or admissible CtH1(O) solution) if it can be approximated by a sequence
(A(n)

μ , φ(n)) of classical solutions to (MKG) locally in time with respect to the
CtH1 norm. More precisely, for every compact interval J ⊆ I (O), we have as
n → ∞,

‖(Aμ, φ) − (A(n)
μ , φ(n))‖CtH1(O∩(J×R4)) → 0.

(2) We say that two admissible CtH1(O) solutions (Aμ, φ) and (A′
μ, φ′) are gauge

equivalent if there exists a gauge transform χ ∈ CtG2(O) such that Aμ =
A′

μ − ∂μχ , φ = φ′eiχ .

5.2 Local Geometric Uniqueness of an Admissible CtH1 Solution

In this subsection, we state and prove the geometric uniqueness of an admissible CtH1

solution of (MKG). As discussed earlier, this statement can be thought of as the gauge
invariant version of finite speed of propagation for (MKG).

Before stating the main result (Proposition 5.2), we need to make a few definitions.
Given a point (t0, x0) ∈ R

1+4, we define its causal past J−(t0, x0) to be the past-
directed light cone with (t0, x0) as the tip, i.e.,

J−(t0, x0) := {(t, x) ∈ R
1+4 : t ≤ t0, |x − x0| ≤ t0 − t}.

For an open subset B ⊆ {t0}×R
4, we define its future domain of dependence D+(B)

to be
D+(B) = {(t, x) ∈ O : J−(t, x) ∩ ({t0} × R

4) ⊆ B}.
For example, when B is an open ball of radius r0 > 0 in {t0} × R

4 centered at x0,
its future domain of dependence is the cone given by D+(B) = {(t, x) : t0 ≤ t <

t0 + r0, 0 ≤ |x − x0| < r0 − (t − t0)}. The causal future J+(t0, x0) and past domain
of dependence D−(B) can be defined analogously.

We now state our local geometric uniqueness result.
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Proposition 5.2 (Local geometric uniqueness at energy regularity). Let T0 > 0 and
let B be an open ball in R

4. Let (A, φ), (A′, φ′) be admissible CtH1 solutions on the
region

D := D+({0} × B) ∩ ([0, T0) × R
4).

Suppose that the initial data (a, e, f, g) and (a′, e′, f ′, g′) for (A, φ) and (A′, φ′),
respectively, are gauge equivalent on B, i.e., there exists a gauge transformation
χ ∈ G2(B) such that

(a, e, f, g) = (a′ − dχ, e′, eiχ f ′, eiχ g′).

Then there exists a unique gauge transformation χ ∈ CtG2(D) such that χ �{0}×B= χ

and

(A, φ) = (A′ − dχ, eiχφ′) on D.

When the energy is small, this proposition is a rather quick consequence of Lemma
3.3, the small energy well-posedness theorem (Theorem 1.2) and the following local
geometric uniqueness for classical solutions.

Lemma 5.3 (Local geometric uniqueness of a classical solution). Let T0 > 0 and let
B be an open ball in R

4. Let (A, φ), (A′, φ′) be classical solutions on the region D
as in Proposition 5.2. Suppose that the initial data (a, e, f, g) and (a′, e′, f ′, g′) for
(A, φ) and (A′, φ′), respectively, are gauge equivalent on B by a gauge transformation
χ ∈ G∞(B). Then there exists a unique gauge transformation χ ∈ C∞

t G∞(D) such

that χ �{0}×B= χ and (A, φ) = (A′ − dχ, eiχφ′) on D.

This lemma can be proved by applying a gauge transformation to both solutions (A, φ),
(A′, φ′) so that they have the same initial data and lie in a gauge where some higher
regularity local well-posedness (hence uniqueness) and the finite speed of propagation
property holds. An example of such a gauge is the temporal gauge A0 = 0 [9,10,25].
We omit the straightforward details.

Our idea for proving Proposition 5.2, which foreshadows the strategy behind estab-
lishing the local well-posedness theorem (Theorem 6.1) in Section 6, is essentially to
piece together the aforementioned small energy uniqueness by exploiting finite speed
of propagation. An immediate obstacle is that Theorem 1.2 requires using a non-local
gauge (i.e., the global Coulomb gauge), with respect to which finite speed of propaga-
tion breaks down. To get around this, we will rely on the excision and gluing techniques
developed in Section 4.

Proof of Proposition 5.2 For simplicity of the exposition, we will assume that T0 ≥ 1,
so that D = D+(B). The general case T0 > 0 can be handled with a little modification
of the argument below. Given a subset O ⊆ R

4, we will abuse the notation for
convenience and use O and {0} × O interchangeably.

Step 1. We begin the proof of Proposition 5.2 by reducing it to the following claim:

Claim 1 Let δ > 0 and let B be an open ball inR4. Let (A, φ) and (A′, φ′) be admissi-
ble CtH1 solutions onD with gauge equivalent initial data on B as in the hypothesis of
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Proposition 5.2. Then there exists a unique gauge transform χ ∈ CtG2(D+((1−δ)B))

such that (A, φ) = (A′ − dχ, eiχφ′) on D+((1− δ)B) and χ �{0}×(1−δ)B= χ �(1−δ)B .

Indeed, once Claim 1 is proved, Proposition 5.2 would immediately follow by taking
δ → 0. Note that we have an apriori bound on the gauge transformation χ between
(A, φ) and (A′, φ′) in CtG2(D) simply from the fact that (A, φ), (A′, φ′) ∈ CtH1(D).

The advantage of establishing Claim 1 instead of directly proving the proposition
is that we have gained an extra room D+(B) \ D+((1 − δ)B), which will serve as a
‘cushion’ for performing the excision and gluing procedure developed in Section 4.

Step 2. In this step, we show that Claim 1 follows from a more local statement, namely
Claim 2 to be stated below. By translation and scaling symmetries, we may assume
that B is the unit ball {|x | < 1} in R

4. Let (A, φ) be an admissible CtH1 solution to
(MKG) on D, and let (a, e, f, g) be its initial data on {0} × B.

We make the following claim:

Claim 2 There exists 0 < ε ≤ 1
1+δ

, which depends only on (a, e, f, g) and δ > 0,
such that the following holds: For every ball Bε of radius ε such that (1 + δ)Bε ⊆ B,
there exists an admissible CtH1 solution ( Ǎ[Bε ], φ̌[Bε ]) to (MKG) on D+(Bε) such
that (A, φ)�D+(Bε ) is gauge equivalent to ( Ǎ[Bε ], φ̌[Bε ]). Moreover, for a fixed δ > 0,
( Ǎ[Bε ], φ̌[Bε ]) is uniquely determined by (a, e, f, g).

In the rest of this step, we give a proof of Claim 1 assuming Claim 2. In what
follows, we will write Bε to denote a ball of radius ε whose center may vary.

Let (a′, e′, f ′, g′) be the initial data set for (A′, φ′) on {0} × B. By hypothesis,
there exists χ ∈ G2(B) such that

(a j , e j , f, g) = (a′
j − ∂ jχ, e′j , eiχ f ′, eiχ g′).

We extend χ to D by imposing the condition ∂tχ = 0; abusing the notation a bit,

we will denote the extension still by χ . We then define (A′′, φ′′) := (A′ − dχ, eiχφ′).
Note that χ ∈ CtG2(D), (A′′, φ′′) ∈ CtH1(D), and that the initial data for (A, φ) and
(A′′, φ′′) coincide on {0} × B. Applying Claim 2 to (A, φ) and (A′′, φ′′) separately,
observe that we obtain the same solution ( Ǎ[Bε ], φ̌[Bε ]) for each Bε such that (1 +
δ)Bε ⊆ B, because the initial data are identical. Since gauge equivalence is a transitive
relation, it follows that for every (1 + δ)Bε ⊆ B, there exists χ[Bε ] ∈ CtG2(D+(Bε))

such that

(A, φ) = (A′′ − dχ[Bε ], eiχ[Bε ]φ′′) on D+(Bε)

with χ[Bε ] = 0 on {0} × Bε . Note that

D+((1 − δε)B) ∩ ([0, ε) × R
4) =

⋃
(1+δ)Bε⊆B

D+(Bε).

Since ∂tχ[Bε ] = A′′
0 − A0 for each Bε , we deduce that there exists a gauge transform

χ ′ on D+((1 − δε)B) ∩ ([0, ε) × R
4) that coincides with each χ[Bε ] on D+(Bε) and

thus
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(A, φ) = (A′′ − dχ ′, eiχ ′
φ′′) on D+((1 − δε)B) ∩ ([0, ε) × R

4).
Note also that χ ′ ∈ CtG2(D+((1− δε)B)∩ ([0, ε)×R

4)), since (A, φ) and (A′′, φ′′)
are in CtH1. Moreover, we have χ ′ �{0}×(1−δε)B= 0, since each χ[Bε ] equals 0 on
{0} × Bε . Defining χ = χ ′ + χ on D+((1 − δε)B) ∩ ([0, ε) × R

4), it follows that

(A, φ) = (A′ − dχ, eiχφ′) on D+((1 − δε)B) ∩ ([0, ε) × R
4). (5.1)

and χ �{0}×(1−δε)B= χ .
We now conclude with a continuity argument. Consider the set

T = {T ∈ [0, 1] : ∃χ ∈ CtG2 s.t. (A, φ)

= (A′ − dχ, eiχφ′) on D+((1 − δT )B) ∩ ([0, T ] × R
4)

and χ �{0}×(1−δT )B= χ }.

Clearly T is an interval containing 0. We claim that sup T = 1. Indeed, by continuity
of (A, φ) and (A′, φ′), we have sup T ∈ T so T is closed. On the other hand, if T < 1
is in T , then by (5.1) (suitably rescaled), we see that there exists some ε > 0 such
that T + ε ∈ T . Thus T is open in [0, 1]. As it is both open and closed, we must have
T = [0, 1]. Claim 1 now follows.

Step 3. Proof of Claim 2. To finish the proof, it remains to establish Claim 2. The
key ingredients are the local geometric uniqueness statement for classical solutions,
Theorem 1.2 and the excision and gluing techniques in Section 4.

Fix σ0 := 1+ δ and σ1 = 1+ δ/2. We select ε > 0 so that for every σ0 Bε ⊆ B we
have

‖(a, e, f, g)‖2
H1(σ0 Bε )

<
1

10C2
1

ε2∗ . (5.2)

where C1 = C1(σ0, σ1) ≥ 1 is the implicit constant from (4.1) in Proposition 4.1.
Since (a, e, f, g) ∈ H1(B) and σ0 Bε ⊆ B, it is not difficult to see that a non-zero
choice of ε is always possible, and it depends only on δ > 0 (through σ0 = 1+ δ) and
(a, e, f, g) on B.

Next, by the definition of an admissible solution, there exists a sequence (A(n), φ(n))

of classical solutions on D which converges to (A, φ) in the CtH1 norm. Denoting
their initial data on {0} × B by (a(n), e(n), f (n), g(n)), we may assume (by throwing
away finitely many terms) that

‖(a(n), e(n), f (n), g(n))‖2
H1(σ0 Bε )

<
1

10C2
1

ε2∗ for all n ∈ Z+. (5.3)

Now we apply Proposition 4.1 to (a(n), e(n), f (n), g(n)) [resp. (a, e, f, g)] on σ0 Bε\
Bε , from which we obtain an initial data set (̃a(n), ẽ(n), f̃ (n), g̃(n)) [resp. (̃a, ẽ, f̃ , g̃)]
on R

4 such that
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E [̃a(n), ẽ(n), f̃ (n), g̃(n)] <
1

2
ε2∗, (̃a(n), ẽ(n), f̃ (n), g̃(n)) → (̃a, ẽ, f̃ , g̃) in H1(R4).

(5.4)
Applying Lemma 3.3 and imposing some condition to fix the constant gauge trans-
formation ambiguity (e.g., requiring the integral of the gauge transformation on Bε to
vanish), we arrive at a globally Coulomb initial data set (ǎ(n), ě(n), f̌ (n), ǧ(n)) [resp.
(ǎ, ě, f̌ , ǧ)] which is gauge equivalent to (̃a(n), ẽ(n), f̃ (n), g̃(n)) [resp. (̃a, ẽ, f̃ , g̃)]
and satisfies (5.4). Then by Theorem 1.2, there exists a sequence of global classical
solutions ( Ǎ(n), φ̌(n)) with initial data (ǎ(n), ě(n), f̌ (n), ǧ(n)) in the global Coulomb
gauge, which converges in S1 ⊆ CtH1 locally in time to a solution ( Ǎ, φ̌) with initial
data (ǎ, ě, f̌ , ǧ).

Observe that (ǎ(n), ě(n), f̌ (n), ǧ(n)) �Bε is gauge equivalent to (a(n), e(n),

f (n), g(n)) �Bε by construction. By classical geometric well-posedness, it follows
that ( Ǎ(n), φ̌(n)) �D+(Bε ) is gauge equivalent to (A(n), φ(n)) �D+(Bε ) for each n. As
(A(n), φ(n)) → (A, φ) and ( Ǎ(n), φ̌(n)) → ( Ǎ, φ̌) in CtH1(D+(Bε)), we can take the
limit of the gauge transformations and conclude that there exists χ ∈ CtG2(D+(Bε))

such that
(A, φ) = ( Ǎ − dχ, eiχ φ̌) on D+(Bε).

Defining ( Ǎ[Bε ], φ̌[Bε ]) := ( Ǎ, φ̌)�D+(Bε ), Claim 2 follows. ��

6 Finite Energy Local Well-Posedness in Global Coulomb Gauge

The purpose of this section is to establish local well-posedness of the (4 + 1)-
dimensional (MKG) for finite energy Coulomb initial data in the class of admissible
solutions in the global Coulomb gauge (to be defined precisely below). As the energy
regularity is critical respect to the scaling property of (MKG), the lifespan of the solu-
tion cannot depend only on the size of the initial energy. However, given an initial
data (a, e, f, g) with E[a, e, f, g] ≤ E , we shall prove a lower bound on the lifespan
that is proportional to the energy concentration scale rc of the initial data, defined as

rc[a, e, f, g] := sup{r ≥ 0 : ∀x ∈ R
4, EBr (x)[a, e, f, g] < δ0(E, ε2∗)}, (6.1)

where δ0(E, ε2∗) > 0 is a fixed function to be determined below (see Proposition 6.7)
and ε2∗ is the threshold energy for small data global well-posedness (Theorem 1.2). Note
that for any choice of δ0 and (a, e, f, g) ∈ H1(R4), we always have rc[a, e, f, g] > 0.

We define the energy profile ρ of (a, e, f, g) to be

ρ(x) = ρ[a, e, f, g](x) := 1

2
(|da|2 + |e|2 + |D f |2 + |g|2)(x), (6.2)

so that
∫

S ρ dx = ES[a, e, f, g] for any measurable set S ⊆ R
4. We say that an

admissible CtH1 solution (Aμ, φ) on a time interval I ×R
4 obeys the global Coulomb

gauge condition if
∂	 A	 = 0 on I × R

4. (6.3)
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The precise statement of our local well-posedness theorem in global Coulomb gauge
is as follows.

Theorem 6.1 (Local well-posedness of (MKG) at energy regularity, complete ver-
sion). Let (a, e, f, g) be an H1(R4) initial data set satisfying the global Coulomb
condition ∂	a	 = 0 with energy E[a, e, f, g] ≤ E. Let rc = rc[a, e, f, g] be defined
as in (6.1). Then the following statements hold.

(1) There exists a unique CtH1 admissible solution (A, φ) to (MKG) on [−rc, rc]×R
4

with (a, e, f, g) as its data at t = 0, which obeys the global Coulomb gauge
condition (6.3).

(2) We have the additional regularity properties

A0 ∈ Y 1([−rc, rc] × R
4), Ax , φ ∈ S1([−rc, rc] × R

4), (6.4)

with bounds depending only on the energy profile ρ, where the spaces Y 1 and S1

will be defined in Section 6.3 below.
(3) The solution (A, φ) is more regular if the initial data set (a, e, f, g) is. In partic-

ular, (A, φ) is classical if (a, e, f, g) is a classical initial data set.
(4) Consider a sequence (a(n), e(n), f (n), g(n)) of H1 globally Coulomb initial data

sets such that (a(n), e(n), f (n), g(n)) → (a, e, f, g) inH1(R4) as n → ∞. Denote
the corresponding solutions to (MKG) given by Statement (1) by (A(n), φ(n)).
Then the lifespan of (A(n), φ(n)) eventually contains [−rc, rc]. Moreover, we have

‖A0 − A(n)
0 ‖Y 1[−rc,rc] + ‖Ax − A(n)

x ‖S1[−rc,rc] + ‖φ − φ(n)‖S1[−rc,rc] → 0 (6.5)

as n → ∞.

Remark 6.2 In fact our proof below yields an a-priori bound for the S1 norm of (Ax , φ)

and the Y 1 norm of A0 that depends only on the energy E , the energy concentration
scale rc and the tail of the energy profile ρ, i.e., the smallest radius r0 > 0 such that
there exists x0 ∈ R

4 satisfying

∫
R4\B 1

54 r0
(x0)

ρ dx < δ0(E, ε2∗). (6.6)

We refer to Remark 6.19 for a further discussion.

As mentioned in the introduction, a theorem of this type is usually proved by
exploiting finite speed of propagation, patching together local solutions with small
initial data. However, while implementing this strategy in our context, one is faced
with difficulties due to non-local features of (MKG). One source of non-locality is
the presence of the Gauss (or constraint) equation; another is the elliptic nature of the
global Coulomb gauge. To address the first issue, we use the technique of excision
and gluing initial data sets developed in Section 4. To deal with the second issue,
we introduce a procedure for patching rough local solutions together to produce a
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local-in-time but global-in-space solution, inspired by similar ideas in elliptic gauge
theories.

The rest of this section is structured as follows. In Section 6.1, the uniqueness state-
ment of Theorem 6.1 is established using the local geometric uniqueness result proved
in Section 5. In Section 6.2 we consider the question of partitioning the initial surface
R

4 into regions which carry a small energy. Section 6.3, we introduce the function
space framework for patching up local (MKG) solutions. Using this framework, we
establish Proposition 6.16 in Section 6.4, which is an abstract statement that contains
the essence of our patching argument. Finally, in Section 6.5, we put together the tools
developed in the previous subsections to prove Theorem 6.1.

6.1 Uniqueness in the Global Coulomb Gauge

In this brief subsection, we prove the uniqueness statement in Theorem 6.1 (i.e.,
uniqueness of an admissible CtH1(I × R

4) solution in the global Coulomb gauge)
using Proposition 5.2.

Patching together Proposition 5.2 on balls covering R
4, it follows that two admis-

sible CtH1 solutions (A, φ) and (A′, φ′) on [0, T0)×R
4 are gauge equivalent if their

initial data sets are gauge equivalent. We then make the following observation:

Lemma 6.3 Let I ⊂ R be an open interval. Let (Aμ, φ) and (A′
μ, φ′) be admissible

CtH1 solutions on I ×R
4, which are gauge equivalent and obey the global Coulomb

gauge condition (6.3). Then there exists a constant χ0 ∈ R such that (A′
μ, φ′) ≡

(Aμ, φeiχ0) on I × R
4.

Proof Note that in the global Coulomb gauge, A ∈ C0
t Ḣ1

x is determined uniquely from
∂	 A	 = 0, dA = F and (MKG). This observation fixes the gauge transformation χ

between (A, φ) and (A′, φ′) up to a constant, at which point we are done. ��.

Therefore, to complete the proof of Theorem 6.1, it suffices to prove the local
existence, persistence of regularity and continuous dependence on the initial data.

6.2 Energy Concentrations Scales

Here we consider the energy distribution of initial data (a, e, f, g) in the global
Coulomb gauge, and show that we can cover R4 with small energy cubes with side
length bounded from below by 4rc. We also ensure that the covering is slowly vary-
ing, in the sense that neighboring cubes have comparable side lengths. This condition
is needed for an effective control of the constants in the patching procedure in Sec-
tion 6.4. The number of such cubes, which we denote by K , can be trivially bounded
by (r0/rc)

4, where r0 is defined by the condition (6.6); this number will enter in the
final a-priori S1 regularity bound in (6.4). As a part of our analysis here, we also
specify the constant δ0(E, ε2∗) in (6.1). See Proposition 6.7 below for a more precise
statement.

We begin with a preliminary result, which shows that for Coulomb data the energy
controls the full H1 norm:
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Proposition 6.4 Let (a, e, f, g) ∈ H1(R4) be a Coulomb initial data set with energy
E. Then we have the bound

‖(a, e, f, g)‖2
H1(R4)

� E + E2. (6.7)

Proof We need to obtain bounds for A and f in Ḣ1
x . We begin with a, where the

Coulomb condition ∇ · a = 0 allows us to estimate in linear elliptic fashion

‖a‖Ḣ1
x

� ‖da‖L2
x

� E
1
2 .

For f we first use the diamagnetic inequality and Sobolev embeddings to obtain

‖ f ‖L4
x

� ‖∇| f |‖L2
x

� ‖D f ‖L2
x

� E
1
2

and then, splitting the covariant derivative,

‖∇ f ‖L2
x

� ‖D f ‖L2
x
+ ‖ f ‖L4

x
‖a‖L4

x
� E

1
2 + E,

which completes the proof. ��
Next, we give an improvement of Hardy’s inequality

‖|x − x0|−1 f ‖L2
x

� ‖∇| f |‖L2
x
≤ ‖D f ‖L2

x
, (6.8)

which is our tool for obtaining smallness of the weighted L2 norm in (4.2). We state
a general version on R

d .

Lemma 6.5 (Improved Hardy’s inequality). Let a j , f ∈ Ḣ1(Rd) where d ≥ 3. Then
for any ball B = Br0(x0) and σ0 ≥ 2, we have the bounds

∥∥∥∥ 1

|x − x0| f

∥∥∥∥
L2

x (2B\B)

� ‖D f ‖L2
x (σ0 B\B) + σ

− d−2
2

0 ‖D f ‖L2
x (Rd\σ0 B), (6.9)

∥∥∥∥ 1

|x − x0| f

∥∥∥∥
L2

x (2B)

� ‖D f ‖L2
x (σ0 B) + σ

− d−2
2

0 ‖D f ‖L2
x (Rd\σ0 B). (6.10)

Remark 6.6 In this paper, we only use the inequality (6.10) on balls. The version (6.9)
will be useful in the third paper [23] of the series.

Proof By translation and scaling, we may assume that B = B1(0). We begin by
splitting g := | f | into spherical harmonics. In the case of non-spherically-symmetric
modes, by Poincaré’s inequality on spheres and the diamagnetic inequality, we have

‖ 1

|x |g‖L2
x (2B\B) � ‖�∇| f |‖L2

x (2B\B) � ‖D f ‖L2
x (2B\B),
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where | �∇| f || denotes the size of the angular derivatives under the induced metric on
the sphere {|x | = const}. Hence we are reduced to the case when g is radial.

By the one-dimensional Hardy inequality, we have

σ
d−2

2
0 |g(σ0)| � ‖r

d−1
2 g′‖L2(σ0,∞) � ‖D f ‖L2

x (Rd\σ0 B).

Moreover, by the fundamental theorem of calculus and the diamagnetic inequality, we
have the one-dimensional dyadic bounds

σ− 1
2 sup

1
2 σ≤r,r ′≤σ

|g(r) − g(r ′)| � ‖g′‖L2( 1
2 σ,σ )

� σ− d−1
2 ‖D f ‖L2

x (σ B\ 1
2 σ B)

for all σ ≥ 2.

(6.11)
Then by summing up the dyadic bounds for 2 ≤ σ � σ0, we then obtain the L∞

bound

‖g‖L∞(1,2) � ‖D f ‖L2
x (σ0 B\B) + σ

− d−2
2

0 ‖D f ‖L2
x (Rd\σ0 B). (6.12)

Applying Hölder’s inequality, the desired estimate (6.9) follows.
We now turn to the bound (6.10) on the full ball 2B. Again splitting g = | f | into

spherical harmonics, we are reduced to the case of a radial function g. But in this case
we have the one-dimensional Hardy inequality

‖r
d−3

2 g‖L2(0,1) � ‖r
d−1

2 g′‖L2(0,1) + |g(1)| � ‖D f ‖L2
x (B) + |g(1)|. (6.13)

Combined with (6.12), the desired inequality (6.10) follows. ��
We are now ready to state and prove the main covering result of this section. We

also settle the choice of δ0(E, ε2∗).

Proposition 6.7 Assume that δ0(E, ε2∗) is chosen so that

δ0(E, ε2∗) = c2ε2∗ min{1, ε4∗ E−2}, (6.14)

with a small universal constant c. Let r0 and x0 be as in (6.6). Then there exists a
dyadic cube R0 of side length ≈ r0 and a partition of it into smaller dyadic cubes

R0 =
⋃
α∈A

Rα

with the following properties:

(1) Small energy: The following bound holds for Q = 18Rα and Q = ( 1
18 R0)

c:

EQ[a, e, f, g] + 1

	(Q)2 ‖ f ‖2
L2

x (Q)
� ε2∗, (6.15)

where we use the convention that 	(Q) = 	( 1
18 R0) when Q = ( 1

18 R0)
c.
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(2) Size of cubes: The side length of the cubes {Rα} is bounded from below by 4rc.
(3) Number of cubes: The number of cubes {Rα} is bounded by K := |A| � (r0/rc)

4.
(4) Slow variance: The size of all pairs of neighboring cubes may differ at most by

a factor of 2, and all cubes adjacent to the boundary of R0 have size at most
	(R0)/64.

Proof Let r0 and x0 be as in (6.6). It suffices to consider the case E > ε2∗ , since
the proposition is trivial in the other case. We may also assume that r0 ≥ 200 rc, as
otherwise we can simply choose {Rα} = {R0} where R0 is the cube of side length 2r0
centered at x0. By translation and scaling, we may henceforth take x0 = 0 and rc = 1.

We choose the large cube R0 centered at 0 so that Br0(0) ⊆ R0 ⊆ 3Br0(0) and
	(R0) ∈ 2Z. This cube will set the coordinates for our dyadic grid; more precisely,
subsequent cubes will be obtained by repeatedly subdividing the sides of R0 in half.
To ensure slow variance, we use the following procedure to construct the collection
R := {Rα}α∈A:

• In the first step, we add to the collection R the cubes of side length 1
64	(R0)

adjacent to R0;
• Then we recursively add to the collection R the cubes which are disjoint from but

adjacent to the existing collection, with half the side length of the cubes added in
the previous step;

• We repeat this process until we arrive at cubes of side length 1
4 . Then we cover the

rest of R0 with dyadic cubes of side length 1
4 .

We call R0 the initial cube, the cubes of side length between 1
2 and 1

64	(R0) the inter-
mediate cubes, and the cubes of side length 1

4 the final cubes. Note that all intermediate
cubes are contained in R0 \ ( 15

16 R0)
c.

From the construction, it is obvious to see that Properties (2), (3) and (4) hold.
The condition (6.15) clearly holds for the initial cube Q = ( 1

18 R0)
c, by (6.6) and the

localized Hardy’s inequality

∥∥∥∥ 1

|x | f

∥∥∥∥
2

L2
x (R4\ 1

54 Br0 )

� ‖D f ‖2
L2

x (R4\ 1
54 Br0 )

< δ0(E, ε2∗) = cε4∗ E−1. (6.16)

Moreover, we claim that the final cubes also satisfy (6.15). Indeed, the energy term
EQ in (6.15) follows from the definition of rc. To control the weighted L2

x norm, we
apply Lemma 6.5 and use the fact that we scaled rc = 1 to obtain

1

	(18Rα)2 ‖ f ‖2
L2

x (18Rα)
� σ 4

0 δ0(E, ε2∗) + σ−2
0 E

Then choosing δ0 as in (6.14) and σ 2
0 = c−2

0 ε−2∗ E for some small universal constant
c0 > 0, the desired estimate (6.15) follows.

Finally, for the intermediate cubes Rα ∈ R of side length between 1
4 and 1

64	(R0),
the smallness for the energy EQ in (6.15) follows immediately from (6.6). Hence it
only remains to justify the weighted L2

x bound in (6.6) for these intermediate cubes.
We split our argument into two cases:
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(a) When 	(Rα) ≥ 1
100σ−1

0 	(R0), we use (6.16) to estimate

1

	(18Rα)2 ‖ f ‖2
L2

x (18Rα)
� σ 2

0

	(R0)2 ‖ f ‖2
L2

x (18Rα)
� (c/c0)

2ε4∗ E−1,

which is good.
(b) When 	(Rα) < 1

100σ−1
0 	(R0), observe that we have

18Rα ⊆ Bα ⊆ σ0 Bα ⊆ R
4 \ 1

54
Br0

where Bα is the ball of radius 	(18Rα) with the same center as Rα . This chain of
inclusions is a consequence of the fact that all intermediate cubes belong to R0 \
( 15

16 R0)
c, which are all at distance at least 1

4	(R0) from 1
54 Br0 . Therefore, by (6.6) and

application of Lemma 6.5, we obtain

1

	(18Rα)2 ‖ f ‖2
L2

x (18Rα)
� 1

	(18Rα)2 ‖ f ‖2
L2

x (Bα)
� δ0(E, ε2∗) + σ−2

0 E,

which implies the desired bound. ��

6.3 Functions Spaces and Gauge Transformation Estimates

In this subsection we introduce the function spaces that will be used in the proof of
existence of finite energy solutions to (MKG) in the Coulomb gauge.

The first two such spaces are the spaces Y 1 and S1, which were used in [19] to
control the elliptic component (i.e., A0), respectively the hyperbolic components (i.e.
Ax and φ) of small energy solutions in the global Coulomb gauge. These functions
spaces are defined in [19] in the whole space-time R

1+4.
We start with the space Y s for the elliptic component (i.e., A0) of a solution to

(MKG) in the global Coulomb gauge. Let s be a non-negative integer and q ∈ [1,∞].
Given a tempered distribution ϕ on R

1+4, we define its Y s,q norm to be

‖ϕ‖Y s,q (R1+4) := ‖∂s
t,xϕ‖Lq

t Ḣ1/q
x (R1+4)

where we take Lq
t Ḣ1/q

x = L∞
t L2

x when q = ∞. Then the Y s space is defined as the
space of tempered distributions for which the following norm is finite:

‖ϕ‖Y s (R1+4) := ‖ϕ‖Y s,2(R1+4) + ‖ϕ‖Y s,∞(R1+4)

Observe that ‖ · ‖Y 0,q (R1+4) (and thus ‖ · ‖Y 0(R1+4)) scales the same way as the L∞
t L2

x

norm. In particular, ‖ · ‖Y 1(R1+4) scales like the L∞
t Ḣ1

x norm.
Next, we introduce the S1 norm on R

1+4, which was used in [19] to measure
the size of the hyperbolic components (i.e., Ax and φ) of solutions to (MKG) in
the global Coulomb gauge. The precise definition of this norm involves null frame
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spaces [31,38], and is rather technical to state. The fine structure of this norm, though
crucial for establishing the small data theory of (MKG) at the energy regularity, is not
necessary for the purpose of the present section. Hence, here we will be content with
simply stating the necessary properties of the S1 norm; a more detailed description of
S1 will be recalled from [19] in Section 7, where the proof of these properties will be
given.

We begin by introducing the norms Xs,b
r and X (where s, b ∈ R, 1 ≤ r ≤ ∞),

defined by

‖ϕ‖Xs,b
k;r (R1+4)

:= 2sk
( ∑

j

(2bj‖Q jϕ‖L2
t,x (R1+4))

r
) 1

r

, (6.17)

‖ϕ‖Xs,b
r (R1+4)

:= ‖ϕ‖
	2 Xs,b

r (R1+4)
=

( ∑
k

‖Pkϕ‖2
Xs,b

k;r (R1+4)

) 1
2

, (6.18)

‖ϕ‖X(R1+4) := ‖�ϕ‖
L2

t Ḣ
− 1

2
x (R1+4)

, (6.19)

with the obvious modification in the case r = ∞.

The S1 norm, to first approximation, is an intermediate norm between C0
t Ḣ1

x ∩X
1, 1

2∞
and X

1, 1
2

1 ∩ X . More precisely, we have

‖∂t,xϕ‖L∞
t L2

x
+ ‖∂t,xϕ‖

X
0, 1

2∞
� ‖ϕ‖S1 � ‖∂t,xϕ‖

X
0, 1

2
1

+ ‖ϕ‖X , (6.20)

where all norms are defined on R
1+4. Further properties of S1 will be stated in the

course of this subsection.
The spaces Y 1 and S1 have an 	2 dyadic structure in frequency. However, it is also

useful to work with different dyadic summations. Precisely, we introduce the notation
	r X for any function space X on R

1+4, where

‖ϕ‖	r X :=
( ∑

k

‖Pkϕ‖r
X

) 1
r

.

Remark 6.8 One motivation for this is the observation, heavily used in in [19], that cer-
tain portions of small data MKG waves exhibit better dyadic summability properties,
as follows:

• The elliptic portion A0 of the solution is in the smaller space 	1Y 1.
• The hyperbolic component Ax , admits a decomposition Ax = A f ree

x + Anl
x , where

A f ree
x represents the free wave matching the initial data, while the nonlinear portion

Anl has the better regularity Anl ∈ 	1S1.
• The high modulation part of both Ax and φ has better dyadic summability, (A −

x, φ) ∈ 	1 X .
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We further remark that the 	1 X norm was included in S1 in [19]. For the sake of
uniformity in notation we do not do this in our series of papers.

In addition to Y 1 and S1, in this paper we also need function spaces to describe the
class of gauge transformations we use in order to assemble local solutions to (MKG).
The main space we use for this is Y := 	1Y 2(R1+4), with norm

‖ϕ‖Y(R1+4) =
∑

k

2∑
N=0

(
2( 5

2 −N )k‖∂ N
t Pkϕ‖L2

t,x (R1+4)
+ 2(2−N )k‖∂ N

t Pkϕ‖L∞
t L2

x (R1+4)

)
.

(6.21)
For technical reasons we will also consider a variant of Y , namely the Ŷ space. Its

norm is defined as

‖η‖Ŷ(R1+4) := ‖η‖Y 2,2(R1+4) +
∑

k

22k‖Pkη‖L∞
t L2

x (R1+4).

It is easy to see that Ŷ(R1+4) is weaker than Y(R1+4), i.e.,

‖χ‖Ŷ(R1+4) � ‖χ‖Y(R1+4). (6.22)

Insofar, we have defined our function spaces on the whole spaceR1+4. Here we also
need to use them on on compact time intervals I ×R

4 or more generally on open sets.
For this it suffices to take the easy way out and use the method of restrictions. Precisely,

Let X be any one of Y 1, S1, Y , Ŷ or Ḃ
5
2 ,2
1 , etc. For an open subset ∅ �= O ⊆ R

1+4,
we define the space X (O) to consist of restrictions of elements in X (R1+4) to O, with
the norm given by

‖φ‖X (O) := inf{‖φ̃‖X (R1+4) : φ̃ ∈ X (R1+4), φ̃ = χ on O}.

Given two non-empty open sets O1 ⊇ O2, the restriction map Y(O1) → Y(O2) is a
bounded surjection.

In particular, for X as above and a time interval I we will denote by X [I ] the
restrictions to I × R

4 of X functions. We refer the reader to the second paper in our
series [22] for further discussion of the S1[I ] and Y [I ] spaces.

We remark that, in view of the above definition, all algebraic estimates involving
our spaces in R

1+4 easily carry over to any nonempty open subsets. In particular this
applies to all of the estimates below in this subsection.

The space Y (more precisely, its local version defined below) will be the main
function space that contains the local gauge transformations in the proof of Theorem
6.1. It has the desirable property that if χ ∈ Y and (A, φ) is a solution to (MKG)
such that A0 ∈ Y 1, Ax , φ ∈ S1, then the gauge transformed solution (A′, φ′) =
(A−dχ, eiχφ) also belong to the same functions spaces. The following lemma justifies
a half of this statement, precisely the part dealing with A. The other half is in Lemma
6.10.
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Lemma 6.9 For χ ∈ Y(R1+4) we have

‖∂tχ‖	1Y 1(R1+4) + ‖∂xχ‖	1 S1(R1+4) + ‖χ‖L∞
t,x (R1+4) � ‖χ‖Y(R1+4). (6.23)

Proof Due to the 	1 dyadic summation in the Y norm, we can assume without loss
of generality that χ has dyadic frequency localization at frequency 2k . Then the esti-
mate for ‖∂tχ‖Y 1 � 1 is straightforward, while the L∞ bound is a consequence of
Bernstein’s inequality.

To prove the bound for ‖∂xχ‖	1 S1 , it suffices to verify the following two bounds
for functions χ at frequency 2k :

2k‖Q≤k+10χ‖
X

1, 1
2

1

� ‖χ‖Y , (6.24)

2k‖Q>k+10χ‖X � ‖χ‖Y . (6.25)

Indeed, thanks to the spatial frequency localization χ = P[k−1,k+1]χ , it follows that
‖∂xχ‖S1 is bounded by the sum of the left-hand sides of the preceding two inequalities.
The first bound (6.24) is obtained as follows:

2k‖Q≤k+10χ‖
X

1, 1
2

1

�
∑

j≤k+10

22k2
1
2 j‖Q j χ‖L2

t,x
�

∑
j≤k+10

2
1
2 ( j−k)(2

5
2 k‖χ‖L2

t,x
) � ‖χ‖Y .

The second bound (6.25) follows from the time regularity of χ :

2k‖Q>k+10χ‖X � 2
1
2 k‖�χ‖L2

t,x
� 2

1
2 k‖∂2

t χ‖L2
t,x

+ 2
5
2 k‖χ‖L2

t,x
� ‖χ‖Y .

This completes the proof of (6.23). ��
In order to estimate the action of a gauge transformation χ on the scalar field φ in

the space S1 it suffices to use the weaker norm Ŷ:

Lemma 6.10 For χ1, χ2 ∈ Ŷ(R1+4), we have

‖χ1χ2‖Ŷ(R1+4) � ‖χ1‖Ŷ(R1+4)‖χ2‖Ŷ(R1+4). (6.26)

Moreover, there exist functions �1 : [0,∞) → [1,∞) and �2 : [0,∞)2 → [1,∞),
which grow at most polynomially, such that the following estimates hold for every
χ, χ ′ ∈ Ŷ(R1+4) and φ, φ′ ∈ S1(R1+4):

‖eiχφ‖S1 � �1(‖χ‖Ŷ )‖φ‖S1 , (6.27)

‖eiχφ − eiχ ′
φ′‖S1 � �1(‖χ‖Ŷ )‖φ − φ′‖S1 + �2(‖χ‖Ŷ , ‖χ ′‖Ŷ )‖χ − χ ′‖Ŷ‖φ′‖S1 .

(6.28)

Here, all norms are defined on the whole space-time R
1+4.
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The proof of this lemma requires further knowledge of the space S1; we will defer
this proof until Section 7.

The following simple lemma will be useful for patching up local solutions which
satisfy certain compatibility conditions; see Proposition 6.16 and the first two steps in
Section 6.5.

Lemma 6.11 Let η ∈ Ḃ
5
2 ,2
1 (R1+4). Then for X = Y 1, S1,Y or Ŷ , we have ηX ⊆ X.

Furthermore, the following estimate holds:

‖ηφ‖X � ‖η‖
Ḃ

5
2 ,2

1

‖χ‖X . (6.29)

The proof of this lemma will also be deferred until Section 7. The lemma should
be interpreted as saying that the space X is stable under multiplication by a smooth

rapidly decaying space-time cutoff η. In this sense, the choice of the space Ḃ
5
2 ,2
1 is

not essential; it is simply a convenient space with a scale-invariant norm in which
S(R1+4) is dense.

Remark 6.12 In order to apply this lemma in an open set O, we need to ensure that

η ∈ Ḃ
5
2 ,2
1 (O), i.e., η is the restriction to O of an element in Ḃ

5
2 ,2

1 (R1+4). A simple
sufficient condition, which will be enough for almost all of our usage below, is if η is
smooth on O and O is a bounded open set with piecewise smooth boundary.

We end this subsection with two lemmas, which will be useful for our proof below of
the existence and continuous dependence statements of Theorem 6.1. The first lemma
provides a criterion for a time-independent function χ to belong to Y[I ] for a compact
time interval I . The same will apply in sets of the form O = I × O , with O ⊂ R

4,
open.

Lemma 6.13 Let χ ∈ Ḃ2,2
x;1 ∩ Ḃ

5
2 ,2
x;1 (R4), and I be a compact time interval containing

0. Extend χ to I × R
4 by imposing ∂tχ = 0 and χ �{0}×R4= χ . Then χ ∈ Y[I ] and

we have
‖χ‖Y[I ] � ‖χ‖Ḃ2,2

x,1
+ |I | 1

2 ‖χ‖
Ḃ

5
2 ,2

x,1

. (6.30)

Proof By scaling and translation we can assume that I = [0, 1]. Due to the 	1 dyadic

summation in the spaces Ḃ2,2
x;1∩ Ḃ

5
2 ,2
x;1 (R4), we may assume that χ̃ has dyadic frequency

localization, i.e., χ̃ = P[k−1,k+1]χ̃ for some k ∈ Z. To prove the lemma, it suffices to
show that there exists an extension χ̃ of χ̃ to R

1+4 such that χ̃ ∈ Y(R1+4), ∂t χ̃ = 0
on I × R

4, χ̃ �{t=0}= χ̃ and satisfies

‖χ̃‖Y[I ] � ‖χ̃‖Ḃ2,2
x;1(R4)

+ ‖χ̃‖
Ḃ

5
2 ,2

x;1 (R4)

. (6.31)
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Let η ∈ C∞
0 (R) be a smooth compactly supported function such that η = 1 on I , and

take χ̃(t, x) = ηk(t)χ̃(x), where

ηk(t) =
{

η(C−12k t) for k ≤ 0,

η(C−1t) for k ≥ 0.

In Fourier space, η̂k decays rapidly away from {|τ | � C−1 min{2k, 1}}, ‖η̂k‖L1
τ

� 1

and ‖η̂k‖L2
τ

� C
1
2 2

1
2 min{k,0}. Combining these facts with the assumption that χ̃ is

frequency localized at {|ξ | ≈ 2k}, (6.31) follows for C sufficiently large (independent
of k). ��

The second lemma concerns solving a certain Poisson equation in Ŷ[I ], which
arises when we attempt to gauge transform the solution obtained by patching to the
global Coulomb gauge.

Lemma 6.14 Let I ⊆ R be a time interval. Let η ∈ Ḃ
5
2 ,2
1 [I ] and φ ∈ Ŷ[I ]. Consider

the Poisson equation
−�χ = η�φ.

Then the following statements hold.

(1) The right-hand side belongs to Ct Ḃ0,2
x;1, and therefore we may define χ(t) for each

t ∈ I unambiguously as the convolution of η�φ(t, x) with the Newton potential,
i.e.,

χ(t, x) = 3

4π2

∫
R4

1

|x − y|2 η(t, y)�φ(t, y) dy.

(2) Moreover, χ ∈ Ŷ[I ] and satisfies the estimate

‖χ‖Ŷ[I ] � ‖η‖
Ḃ

5
2 ,2

1 [I ]
‖φ‖Ŷ[I ]. (6.32)

The proof of Lemma 6.14 will be similar to that of Lemma 6.11. Hence it will be
given in Section 7 as well.

6.4 Patching Compatible Pairs

In this subsection, we present a technical tool that will be used to quantitatively patch
together local solutions, which are given by the small energy theorem (Theorem 1.2),
to obtain a global solution with the desired properties.

We now introduce the notion of compatible pairs.

Definition 6.15 (Compatible CtH1 pairs). Let O ⊆ R
1+4 be an open set and Q =

{Qα} be a finite covering of O. For each index α, consider a pair (A[α], φ[α]) ∈
CtH1(Qα) of a real-valued 1-form A[α] and a C-valued function φ[α] on Qα . We
say that the pairs (A[α], φ[α]) are compatible if for every α, β there exists a gauge
transformation χ[αβ] ∈ CtG2 ∩ C0

t,x (Qα ∩ Qβ) such that the following properties
hold:
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(1) For every α, we have χ[αα] = 0.
(2) For every α, β, we have

A[β] = A[α] − dχ[αβ], φ[β] = eiχ[αβ]φ[α] on Qα ∩ Qβ, (6.33)

(3) For every α, β, γ , the following cocycle condition is satisfied:

χ[αβ] + χ[βγ ] + χ[γα] ∈ 2πZ on Qα ∩ Qβ ∩ Qγ . (6.34)

The main result of this subsection is Proposition 6.16 below, whose formulation and
proof were motivated by the classical result of Uhlenbeck [41] on weak compactness
of connections with curvature bounded in L p.

In order to state our result we need to specify the set O and the covering Q. For
this, we begin with the partition

R
4 = ∪α Rα ∪ Rc

0

given in Proposition 6.7. Taking I = [0, 1] and rc = 1, (which suffices by scaling),
we define

O = I × R
4, Q0 = I × Rc

0, Qα = I × 1.5Rα.

The factor 1.5 above is what guarantees, in view of condition (4) in Proposition 6.7,
that this covering is locally finite.

We also consider a smaller, subordinated subcovering P = {Pα} given by

Pα = I × 1.25Rα, P0 = I × (1.001R0)
c, O = ∪α Pα

This is also locally finite. Using this notations we have:

Proposition 6.16 (Patching compatible pairs). Let (A[α], φ[α]) on Qα be compatible
pairs associated to the above covering Q of O. Suppose furthermore that for every
α, β, the gauge transformation χ[αβ] belongs to Y(Qα ∩ Qβ) (defined in Section 6.3),
which embeds into CtG2 ∩ C0

t,x (Qα ∩ Qβ).
Let {χ [αβ]} be another collection of gauge transformations such that χ [αβ] ∈

Y(Qα ∩ Qβ) for every α, β, and satisfies the cocycle condition (6.34). Assume more-
over that {χ[αβ]} is C0 close to {χ [αβ]}, in the sense that

sup
Qα∩Qβ

|χ[αβ] − χ [αβ]| < ε∗∗, (6.35)

where ε∗∗ > 0 is a universal constant to be specified below.
Then there exists gauge transformations χ[α] ∈ Y(Pα) on each Pα , depending

linearly on χ[αβ] and χ [αβ], which satisfy

−χ[α] + χ[αβ] + χ[β] = χ [αβ] on Pα ∩ Pβ.
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Moreover, χ[α] obey the following bounds with a universal implicit constant:

sup
α

‖χ[α]‖Y(Pα) � sup
α,β

(
‖χ[αβ]‖Y(Qα∩Qβ) + ‖χ [αβ]‖Y(Qα∩Qβ)

)
. (6.36)

Remark 6.17 The role of the C0 closeness condition (6.35) is to remove the 2πZ

ambiguity in the cocycle condition (6.34). More precisely, since both χ[αβ] and χ [αβ]
satisfy (6.34), we have

(χ[αβ] − χ [αβ]) + (χ[βγ ] − χ [βγ ]) + (χ[γα] − χ [γα]) ∈ 2πZ.

For a sufficiently small ε∗∗ (say ε∗∗ < 2π
3 ), the C0 closeness condition (6.35) then

implies that the absolute value of the left-hand side is bounded by < 2π ; therefore, it
follows that

(χ[αβ] − χ [αβ]) + (χ[βγ ] − χ [βγ ]) + (χ[γα] − χ [γα]) = 0. (6.37)

Proof Our {Qα} covering is locally finite, so let N0 = N0(d) (which we can take
44 in dimension d = 4) be so that each Qα intersects at most N0 neighbors. Then
we define a reduction map R which decreases the cube size by a fixed factor, so that
RN0(Qα) = Pα for α �= 0, with the obvious adjustment R−N0(Qc

0) = Pc
0 for α = 0.

For uniformity of notation, we write RQ0 := (R−1(Qc
0))

c, so that RN0 Q0 = P0.
Consider an enumeration of the elements in Q by positive integers 0, 1, . . . , K , in

nonincreasing order of size, where we take Q0 to be the first element. We proceed by
induction on this enumeration.

For the induction step, suppose that we have constructed an open covering Qk−1 =
{Qα,k−1}, with Pα ⊆ Qα,k−1 ⊆ Qα , O = ∪α Qα,k−1 and gauge transforms χ[α] on
Qα,k−1 with α = 1, . . . , k − 1 such that

(1) Qα,k−1 = Rn(α,k)Qα where n(α, k) is between 0 and N0, and is zero forα ≥ k−1,
(2) −χ[α]+χ[αβ]+χ[β] = χ [αβ] for 1 ≤ α, β ≤ k−1 provided Qα,k−1∩Qβ,k−1 �= ∅,

(3) ‖χ[α]‖Y(Qα,k−1) � Xα for 1 ≤ α ≤ k − 1,

where

Xα = sup
Qα∩Qβ �=∅

(
‖χ[αβ]‖Y(Qα∩Qβ) + ‖χ [αβ]‖Y(Qα∩Qβ)

)
.

Define the open covering Qk so that Qα,k = RQα,k−1 if α ≤ k − 1 and Qα is
a neighbor of Qk , and Qα,k = Qα,k−1 otherwise. We shall then construct a gauge
transformation χ[k] on Qk,k = Qk such that the above properties hold with k − 1
replaced by k, where χ[α] for α ≤ k − 1 are defined by simply restricting to Qα,k ⊆
Qα,k−1. From this statement, the proposition will follow by induction, starting with
Qα,0 = Qα and χ[0] = 0.

We remark that the uniformity in the estimate (3) is due to the fact that our covering
ofO is locally finite, and also thatQ is slowly varying. Indeed, it is obvious in the proof
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below that the construction in the induction step only involves Qk and its neighbors,
whose side length is comparable to that of Qk . Thus, for each α the sets Qα,k are
reduced in size only finitely many times, and the cutoff functions ζ[k] below can be
taken to be uniformly smooth with respect to the scale of Qk .

We now proceed with the proof of the induction step. We begin by defining χ̃[k] on
Qk ∩ (∪α≤k−1 Qα,k−1) to be

χ̃[k] = χ[kα] + χ[α] + χ [αk] on Qk ∩ Qα,k−1 if it is nonempty. (6.38)

Observe that this definition is consistent on Qk ∩ (∪α≤k−1 Qα,k−1) thanks to property
(2) in the induction hypothesis and the exact cocycle condition (6.37) for χ[αβ]−χ [αβ].
Moreover, by considering a partition of unity subordinate to {Qk ∩ Qα,k−1}α=1,...,k−1
and using the induction hypothesis (3) and Lemma 6.11, we can derive the estimate

‖χ̃[k]‖Y(Qk∩Qα,k ) �Ck−1 Xk (6.39)

Now let ζ[k] : O → [0, 1] be a smooth function that satisfies the following proper-
ties:

ζ[k] = 0 on Qk \ (∪α≤k−1 Qα,k−1), (6.40)

ζ[k] = 1 on ∪α≤k−1 Qα,k . (6.41)

We remark that such a ζ exists because by construction the two sets Qk \
(∪α≤k−1 Qα,k−1) and ∪α≤k−1 Qα,k are separated by a distance which is proportional
to the size of Qk . This also allows us to choose the functions ζ[k] uniformly smooth
on Qk .

Now we define
χ[k] := ζ[k]χ̃[k] on Qk,k = Qk . (6.42)

Note that properties (1) and (2) are immediately consequences of the construction.
For the property (3), we observe that ζ[k] �Qk can be extended as an element in

C∞
0 (R1+4) ⊆ Ḃ

5
2 ,2

1 (R1+4). Thus property (3) follows from Lemma 6.11 (in particular,

stability of Y by cutoffs in Ḃ
5
2 ,2
1 ), Lemma 6.11, (6.38), (6.39) and (6.42). ��

6.5 Proof of Existence and Continuous Dependence

Using the tools developed in the previous subsections, we are ready to prove the
existence and continuous dependence statements of Theorem 6.1. In what follows, we
will often use the shorthand E := E[a, e, f, g].
Step 0. Preliminaries. Let (a, e, f, g) be an H1 initial data set satisfying the
global Coulomb condition ∂	a	 = 0 and E[a, e, f, g] < E . It suffices to assume
rc[a, e, f, g] < ∞, since otherwise the small data result (Theorem 1.2) is applicable.
By scaling, we may take

rc[a, e, f, g] = 1. (6.43)
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By time reversal symmetry, it suffices to restrict to t ≥ 0 and consider the unit time
interval I = [0, 1]. Let {Rc

0} ∪ {Rα} be the covering of R4 introduced in Section 6.2,
such that the local small energy condition (6.15) holds, and let Q = {Qα}, P = {Pα}
be the associated covering of I × R

4 defined in Section 6.4.
In what follows, we will construct a local-in-time solution (A, φ) in I ×R

4, which
obeys the S1 a-priori regularity property (6.4). Moreover, we will show that our con-
struction below also has the following two properties:

• Continuous dependence: the data-to-solution map is continuous as follows:

H1(R4)
(a, e, f, g)→(A0, Ax , φ) ∈ Y 1(I × R
4) × S1(I × R

4) × S1(I × R
4).

• Regularity: If in addition (a, e, f, g) ∈ H∞(R4) then the solution (A, φ) belongs
to C∞

t H∞(R4).

Theorem 6.1 will then follow by combining these statements with the uniqueness
statement proved in Section 6.1.

Step 1. Construction of local Coulomb solutions. The goal of this step is to show
that corresponding to the Q = {Qα} covering of I ×R

4, introduced in Section 6.4, we
can produce a compatible local solution (A[α], φ[α]) on each Qα , each of which is the
restriction of a small energy global Coulomb solution to (MKG) given by Theorem
1.2. We will in effect construct these solutions on the larger sets I × 3Rα , and then
simply restrict them to Qα .

Claim 1 The following statements hold for each Coulomb initial data (a, e, f, g)

satisfying (6.15):

(1) On each set I × 3Rα there exists an admissible CtH1(I × 3Rα) solution
(A[α], φ[α]) and a gauge transformation χ [α] ∈ G2(3Rα) that satisfy the Coulomb
gauge condition

∂	 A[α]	 = 0 on I × 3Rα, (6.44)

and the initial condition

(A[α] j , F[α]0 j , φ[α], D[α]tφ[α]) = (a j − ∂ jχ [α], e j , e
iχ [α] f, e

iχ [α]g) on 3Rα .

(6.45)
Moreover, A[α]x , φ[α] ∈ S1(I ×3Rα), A[α]0 ∈ Y 1(I ×3Rα) depend continuously
on the initial data in H1, and we have the smallness bound

‖A[α]0‖Y 1(I×3Rα) + ‖A[α]x‖S1(I×3Rα) + ‖φ[α]‖S1(I×3Rα) � ε∗, (6.46)

(2) Extend χ [α] to I × 3Rα by requiring ∂tχ [α] = 0; abusing the notation slightly,
we shall denote the extension by χ [α]. Then

�χ [α] = 0 on I × 3Rα. (6.47)
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Moreover, χ [α] ∈ Y(I × 3Rα), depending continuously on the initial data, and
obeys the estimate

‖χ [α]‖Y(I×3Rα) �E 1, (6.48)

(3) For every α and β, there exists χ[αβ] ∈ Y(I × (3Rα ∩ 3Rβ)) that connects
(A[α], φ[α]) and (A[β], φ[β]) in the sense of Definition 6.15 and satisfies

�χ
(n)
[αβ] = 0 on I × (3Rα ∩ 3Rβ). (6.49)

Moreover, χ[αβ] depends continuously on the initial data and obeys the estimate

‖χ[αβ]‖Y(I×(3Rα∩3Rβ)) �E 1 (6.50)

Finally, the following C0 closeness condition holds:

sup
I×3Rα∩Qβ

|χ[αβ] − (χ [α] − χ [β])| < ε∗∗, (6.51)

where ε∗∗ > 0 is the universal small constant that appeared in Proposition 6.16.
(4) Higher regularity: if in addition (a, e, f, g) ∈ H∞, then for each α, β we have

(A7[α], φ[α]) ∈ C∞
t H∞(I × 3Rα), χ [α] ∈ G∞(I × 3Rα),

χ[αβ] ∈ C∞
t G∞(I × (3Rα ∩ 3Rβ)).

We proceed to the proof of this claim.

Step 1.1. Construction of (A[α], φ[α]) and χ [α] for α ≥ 1. Our starting point here
is the estimate (6.15). We insert a ball 3Rα ⊂ B ⊂ 2B ⊂ 18Rα , which has radius
rα ≈ 	(Rα). Applying Proposition 4.1 with σ1 = 4/3 and σ0 = 2 to (a, e, f, g) with
respect to the ball B, we obtain an initial data set (̃a[α], ẽ[α], f̃[α], g̃[α]) ∈ H1(R4),
depending continuously on (a, e, f, g) inH1, such that we have the matching condition

(̃a[α], ẽ[α], f̃[α], g̃[α]) = (a, e, f, g) on 4Rα (6.52)

and small energy

E [̃a[α], ẽ[α], f̃[α], g̃[α]] � ε2∗ . (6.53)

However, our small localized data (̃a[α], ẽ[α], f̃[α], g̃[α]) is no longer in the Coulomb
gauge. To rectify this we use a gauge transformation defined by

χ [α] := −(−�)−1∂	ã[α]	,
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where (−�)−1 on the right-hand side is defined as convolution with the Newtonian
potential. In general, this expression may not be uniquely determined if we only knew
∂	ã[α]	 ∈ L2

x . However, note that we have the support condition

supp(∂	ã[α]	) ⊆ 9Rα \ 4Rα, (6.54)

since ã ≡ 0 outside 9Rα . It follows that ∂	ã[α]	 ∈ L1
x ∩ L2

x (R
4) and therefore the

right-hand side is well-defined. The gauge transformed data set

(ǎ[α], ě[α], f̌[α], ǧ[α]) := (̃a[α] − dχ [α], ẽ[α], e
iχ [α] f̃[α], e

iχ [α] g̃[α]), (6.55)

is a small energy H1(R4) Coulomb initial data set; hence Theorem 1.2 is applicable.
Let (A[α], φ[α]) be the unique global small energy Coulomb solution to (MKG) given
by Theorem 1.2. By construction, (6.44) and (6.45) hold; moreover, (6.46) and the
continuous dependence property are consequences of Theorem 1.2.

We now verify (6.47) and (6.48) for χ [α]. Indeed, by the support condition (6.54)
we directly get (6.47), as well as the uniform bounds

‖∂(N )
x χ [α]‖L∞

x (3.5Rα) �N r−N
α ‖∂	ã[α]	‖L2

x
� r−N

α E
1
2 for every N ≥ 0.

By Lemma 6.13 (see also Remark 6.12) this directly leads to (6.48). The continuous
dependence similarly follows.

Step 1.3. Construction of (A[α], φ[α]) and χ [α] for α = 0. Again we start with (6.15)

but with α = 0. This time we insert the ball 1
18 R0 ⊂ B ⊂ 2B ⊂ 1

3 R0, which has
radius r0 ≈ 	(R0), and apply Proposition 4.2 with σ1 = 4

3 and σ0 = 2. We obtain an
initial data set (̃a[0], ẽ[0], f̃[0], g̃[0]) ∈ H1(R4) such that

(̃a[0], ẽ[0], f̃[0], g̃[0]) = (a, e, f, g) on ( 1
4 R0)

c, (6.56)

E [̃a[0], ẽ[0], f̃[0], g̃[0]] � ε2∗, (6.57)

where the last line follows from (4.4) and our choice of R0. As before, we define

χ [0] := −(−�)−1∂	ã[0]	,

which is unambiguously defined due to the support condition

supp(∂	ã[0]	) ⊆ 1.5B \ B (6.58)

as ã[0] = a on (1.5B)c is divergence-free. Again the gauge corrected data

(ǎ[0], ě[0], f̌[0], ǧ[0]) := (̃a[0] − dχ [0], ẽ[0], e
iχ [0] f̃[0], e

iχ [0] g̃[0]) (6.59)
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is an H1(R4) Coulomb initial data set with energy � ε2∗ . Hence we can apply Theo-
rem 1.2 to define (A[0], φ[0]) as the unique global small energy Coulomb solution to
(MKG) given by Theorem 1.2. Then (6.44), (6.45), (6.46) as well as the the continuous
dependence property and the regularity property follow easily from construction.

As (6.47) is a direct consequence of (6.58), it remains to establish the bound (6.48)
for χ [0]. Using again the support condition (6.58) and the decay of the Newton potential
we obtain

|∂ N
x χ [0](x)| � r−N

0 (1 + r−1
0 |x |)−2 E

1
2 , N ≥ 0, x ∈ (2B)c

which suffices for (6.48).

Step 1.4. Properties of χ[αβ]. We now proceed to prove Statement (3). The existence
of χ[αβ] will be a consequence of Proposition 5.2 (local geometric uniqueness); the
estimate (6.50) and the corresponding continuous dependence, on the other hand, will
follow from the global Coulomb condition satisfied by each solution (A[α], φ[α]).

In what follows, we explain the details in the case α, β �= 0; the case α = 0 is
handled by an obvious modification. By construction, the initial data for (A[α], φ[α])
and (A[β], φ[β]) are gauge equivalent on 3Rα ∩ 3Rβ , with the gauge transformation
given by χ [α] − χ [β]. By scaling, each of these cubes has side length larger than 1, so
their domains of dependence satisfy

I × (2Rα ∩ 2Rβ) ⊂ D+(3Rα) ∩D+(3Rβ)

Hence, Proposition 5.2 shows that the two solutions are gauge equivalent in I ×(2Rα∩
2Rβ). We denote by χ[αβ] ∈ CtG2(I × (2Rα ∩ 2Rβ)) the transition map. A-priori this
is only determined modulo 2π , but this ambiguity is easily fixed by requiring that

χ[αβ] = χ [α] − χ [β] on {0} × (2Rα ∩ 2Rβ).

Moreover, this satisfies

�χ[αβ] = 0 on I × (2Rα ∩ 2Rβ), (6.60)

thanks to the fact that �χ[αβ] = ∂	 A[α]	 − ∂	 A[β]	 = 0. Therefore, by the mean value
property of harmonic functions,

χ[αβ](t, x) =
∫

χ[αβ](t, x − y)r−4
α ϕ(y/rα) dy for (t, x) ∈ Qα ∩ Qβ, (6.61)

where we recall that ϕ is a smooth radial function on R
4 with

∫
ϕ = 1 and supp ϕ ⊆

{|x | ≤ 1}. Here we have also used the fact that rα ≈ rβ , and that an O(rα) spatial
neighborhood of Qα ∩ Qβ is contained in I × (2Rα ∩ 2Rβ).

It remains to prove (6.50) and (6.51). We begin with the following bounds for ∂tχ[αβ]
and ∂2

t χ[αβ]: Differentiating (6.61) (in t, x), using Hölder’s inequality and recalling
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the identity ∂μχ[αβ] = A[α]μ − A[β]μ, we have for N ≥ 0

‖∂(N )
x ∂t,xχ[αβ]‖L∞

t,x (Qα∩Qβ) �N r−1−N
α ‖A[α] − A[β]‖L∞

t L4
x (I×(2Rα∩2Rβ)) � r−1−N

α ε∗,
(6.62)

‖∂(N )
x ∂2

t χ[αβ]‖L∞
t,x (Qα∩Qβ) �N r−2−N

α ‖∂t A[α]0 − ∂t A[β]0‖L∞
t L2

x (I×(2Rα∩2Rβ))

� r−2−N
α ε∗. (6.63)

Taking N = 0 and integrating (6.62), the C0 closeness statement (6.51) follows.
Moreover, we have

‖χ[αβ]‖L∞
t,x (Qα∩Qβ) � ε∗ + ‖χ [α]‖L∞

x (1.5Rα) + ‖χ [β]‖L∞
x (1.5Rβ) �E 1 (6.64)

thanks to (6.48). Finally, observe that Qα ∩ Qβ is pre-compact for any pair α, β such
that α �= β, since there is only one unbounded element in Q, namely Q0. From the
bounds (6.62), (6.63) and (6.64), and the fact that Qα ∩ Qβ is pre-compact, we may
easily construct an extension χ̃[αβ] of χ[αβ] such that

‖χ̃[αβ]‖Y(R1+4) �E 1 (6.65)

Finally, we note that χ[αβ] constructed above depend continuously on (A[α], φ[α]) and
thus on the initial data (a, e, f, g) in H1.

Step 1.5. Completion of proof of Claim 1. Restricting (A[α], φ[α]) and χ [α] to Qα ,
and χ[αβ] to Qα ∩ Qβ , Statements (1)–(3) follow from the previous steps. On the
other hand, Statement 4 (persistence of regularity) can be quickly read off from the
above construction, using the corresponding statements in Propositions 4.1, 4.2 and
Theorem 1.2. We omit the details.

Step 2. Construction of global almost Coulomb solution. We now construct a global
solution (A′, φ ′

) on I × R
4 such that A′

x , φ
′ ∈ S1[I ] and A′

0 ∈ Y 1[I ] by patching
together the compatible pairs obtained in the previous step. This solution will not
satisfy the global Coulomb condition (6.3) in general. Nevertheless, it will have the
redeeming feature that the spatial divergence ∂	 A′

	 obeys an improved bound compared
to a general derivative of a A′. This feature will be a consequence of the fact that (A′, φ′)
will be constructed by patching together local Coulomb solutions (A[α], φ[α]).

The above statements are made precise in the following claim.

Claim 2 For any initial data (a, e, f, g) of energy at most E , with rc ≥ 1 and satis-
fying6 (6.15) there exists an admissible CtH1 solution (A′, φ′) to (MKG) on I × R

4

such that the following statements hold.

(1) The data for (A′, φ′) on {t = 0} coincide with (a, e, f, g), i.e.,

(A′
j , F ′

0 j , φ
′, D′

tφ
′)�{t=0}= (a j , e j , f, g). (6.66)

6 The only reason for this requirement is to ensure a uniform construction of (A′, φ′), which guarantees
its continuous dependence on the initial data.
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(2) The solution (A′, φ′) satisfies A′
x , φ

′ ∈ S1[I ], A′
0 ∈ Y 1[I ], depends continuously

on the initial data, and obeys

‖A′
0‖Y 1[I ] + ‖A′

x‖S1[I ] + ‖φ′‖S1[I ] �E,K 1 (6.67)

where K is the total number of cubes in the set {Rα} constructed in Section 6.2.
In our case, K � (r0/rc)

4.
(3) The spatial divergence of A′ satisfies ∂	 A′

	 ∈ C0
t Ḃ0,2

x;1(I × R
4). Therefore, the

convolution with the Newtonian potential

χ := −(−�)−1∂	 A′
	 = − 3

4π2

∫
R4

1

|x − y|2 ∂	 A′
	(t, y) dy

is unambiguously defined and belongs to C0
t Ḃ2,2

x;1 ⊆ C0
t,x . Moreover, it satisfies

the additional estimates

‖χ‖Ŷ[I ] �E,K 1 (6.68)

‖∂xχ‖S1[I ] �E,K 1 (6.69)

(4) If additionally (a, e, f, g) ∈ H∞, then we have

(A′, φ′) ∈ C∞
t H∞(I × R

4) and χ ∈ C∞
t G∞(I × R

4).

To prove the claim, we begin by applying Proposition 6.16 to the covering Q of
I × R

4, the compatible pairs (A[α], φ[α]) and the gauge transformations χ[αβ] and
χ [αβ] := χ [α] − χ [β]; note that the C0 closeness condition has been established

in (6.51). Then for the sub-covering P = {Pα}, we obtain gauge transformations
χ[α] ∈ Y(Pα) such that

‖χ[α]‖Y(Pα) �E 1 (6.70)

χ[αβ] = χ[α] + χ [α] − χ[β] − χ [β]. (6.71)

This identity motivates the following definition of the desired global solution (A′, φ′).
Let ηα be a smooth partition of unity adapted to the covering {Pα}. Since P is a locally
finite covering where intersecting cubes have comparable sizes, we can choose this
partition of unity so that the ηα’s are uniformly smooth on the scale of their respective
cubes. We define the global solution (A′, φ′) as follows:

A′
μ :=

∑
α

ηα(A[α]μ − ∂μχ[α] − ∂μχ [α]),

φ′ :=
∑
α

ηαe
i(χ[α]+χ [α])φ[α].

(6.72)
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Such a definition makes sense, since (6.71) implies that on every Pα ∩ Pβ �= ∅, we
have

A[α]μ − ∂μχ[α] − ∂μχ [α] = A[β]μ − ∂μχ[β] − ∂μχ [β], (6.73)

e
i(χ[α]+χ [α])φ[α] = e

i(χ[β]+χ [β])φ[β]. (6.74)

For every α �= 0, ηα ∈ Ḃ
5
2 ,2
1 (Pα) since ηα is smooth and Pα is pre-compact. On the

other hand for α = 0 we have 1 − η0 ∈ Ḃ
5
2 ,2
1 (P0). By Lemmas 6.9, 6.10, 6.11 and

estimates (6.46), (6.48), (6.70), we have

‖ηα(A[α]0 − ∂tχ[α] − ∂tχ [α])‖Y 1[I ] �E 1

‖ηα(A[α]x − ∂xχ[α] − ∂xχ [α])‖S1[I ] �E 1

‖ηαe
i(χ[α]+χ [α])φ[α]‖S1[I ] �E 1

Adding up the preceding estimates, (6.67) follows. The continuous dependence on the
initial data and the persistence of regularity also follow directly from our construction.

It remains to establish Statement (3) and the bounds (6.68), (6.69). This part depends
crucially on the special cancellation that occurs only for ∂	 A′

	. Indeed, thanks to (6.44),
(6.47) and (6.73) on each Pα ∩ Pβ �= ∅, we have

∂	 A′
	 = ∂	

∑
α

ηα(A[α]	 − ∂	χ[α] − ∂	χ [α]) = −
∑
α

ηα�χ[α],

∂	(A′
	 − A′

	) = −
∑
α

ηα�(χ[α] − χ[α]).

Equipped with these formulae, we are ready to establish (6.68) and (6.69). Since ηα

extends naturally to Ḃ
5
2 ,2
1 (I × R

4) and χ[α] ∈ Y[I ] ⊆ Ŷ[I ], we are in position to
apply Lemma 6.14 to each summand ηα�χ[α]. Then (6.68) follows. To estimate the
S1[I ] norm of (−�)−1∂ j∂

	 A′
	, simply observe that

‖(−�)−1∂ j∂
	 A′

	‖S1[I ] � ‖A′
x‖S1[I ] �E,K 1

Thus (6.69) follows.

Step 3. Gauge transformation to Coulomb solution. In this final step of the proof of
existence and continuous dependence, we perform a gauge transformation to (A′, φ′) in
order to impose the global Coulomb condition ∂	 A	 = 0. The gauge transformation
cannot be put directly into Y[I ], but this difficulty can be circumvented using the
elliptic equations of (MKG) in the global Coulomb gauge.

From the previous step, recall the definition

χ = −(−�)−1∂	 A′
	 on I × R

4,
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where the first term on the right-hand side is defined as in Statement (3) in Claim 2.
As ∂	 A′

	 �{t=0}= 0, it follows that

χ �{t=0}= 0. (6.75)

Directly taking the ∂t derivative of χ twice and using the fact that (A′, φ′) satisfies
(MKG), we see that ∂tχ and ∂2

t χ are given by

∂tχ = −(−�)−1∂	∂t A′
	 = −(−�)−1

(
Im[φ′D′

tφ
′] + �A′

0

)
,

∂2
t χ = −(−�)−1(∂t∂

	F0	 + ∂t A′
0) = −(−�)−1

(
∂	Im[φ′D′

	φ
′] + �∂t A′

0

)
.

Since φ′, A′
0 ∈ C0

t Ḣ1
x and D′

t,xφ
′, ∂t A′

0 ∈ C0
t L2

x , we have Im[φ′D′
t,xφ

′] ∈ C0
t Ḣ−1

x .

Therefore, (−�)−1Im[φ′D′
tφ] and (−�)−1∂	Im[φ′D′

	φ] are well-defined as convolu-
tion with the Newtonian potential. By the non-existence of non-trivial entire harmonic
functions in L2

x and Ḣ1
x ⊆ L4

x , it follows that

∂tχ =− (−�)−1Im[φ′D′
tφ

′] + A′
0 ∈ C0

t Ḣ1
x (6.76)

∂2
t χ =− (−�)−1∂	Im[φ′D′

	φ
′] + ∂t A′

0 ∈ C0
t L2

x . (6.77)

Let (A, φ) be defined by applying the gauge transformation χ to (A′, φ′), i.e.,

(A, φ) = (A′ − dχ, eiχφ′).

By (6.75), we have

(A j , F0 j , φ, Dtφ)�t=0= (A′
j , F ′

0 j , φ
′, D′

tφ
′)�t=0= (a j , e j , f, g).

Furthermore, thanks to the equation �χ = ∂	 A′
	, it follows that (A, φ) satisfies the

global Coulomb condition (6.3) on I ×R
4. By (6.68), (6.69), (6.76), (6.77) and Lemma

6.10, we have A0 ∈ Y 1[I ] and Ax , φ ∈ S1[I ] with

‖A0‖Y 1[I ] + ‖Ax‖S1[I ] + ‖φ‖S1[I ] �E,K 1

Combining these statements, we conclude that (A, φ) is an admissible CtH1 solution
to (MKG) in the global Coulomb gauge on I × R

4 with the initial data (a, e, f, g),
which satisfies the conditions in Theorem 6.1. Further, from the previous step, it
follows that (A, φ) is uniformly approximated by H∞ solutions, thereby finishing the
proof of Theorem 6.1. We conclude the proof with two remarks:

Remark 6.18 Our construction yields a solution operator that depends continuously
on the initial data for a class of H1 data which satisfy the uniform bounds (6.15).
However the final result does not depend on the choice of the partition {Rα}.
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Remark 6.19 Our proof gives an a-priori bound on the S1 norm of (Ax , φ) (as well
as the Y 1 norm of A0) of the form � (r0/rc)

4 CE , where the dependence on the
energy E of CE is polynomial. By comparison with the gauge-free nonlinear wave
equation, one would conjecture that the bound should be independent of r0/rc, and
that CE ≈ E1/2 + E by (6.7). However, our present argument is very far from that.

7 Proof of Gauge Transformation and Cutoff Estimates

The purpose of this section is to provide proofs of Lemmas 6.10, 6.11 and 6.14, which
were used in Section 6 in the proof of Theorem 6.1. In Section 7.1, we recall some
properties of the space S1 needed for establishing these statements. In Section 7.2, we
give a proof of Lemma 6.10 concerning gauge transformation with χ ∈ Ŷ . Finally, in
Section 7.3, we prove Lemmas 6.11 and 6.14.

In this section, when we omit writing the domain on which a norm is defined, it is
to be understood that the norm is defined globally on R

1+4. All functions considered
in this section will be assumed to be S(R1+4), unless otherwise stated. Furthermore,
we will follow the common abuse of terminology and refer to semi-norms as simply
norms.

7.1 Further Structure of S1

We recall the structure of the S1 norm from [19]. The S1 norm takes the form (see
also Remark 6.8)

‖ϕ‖S1 :=
( ∑

k

‖∂t,x Pkϕ‖2
Sk

) 1
2

+ ‖ϕ‖X .

The X norm was defined in (6.19). For every k ∈ Z, we define the Sk norm as

‖ϕ‖Sk := ‖ϕ‖Sstr
k

+ ‖ϕ‖
X

0, 1
2∞
+ ‖ϕ‖Sang

k

where the X
0, 1

2∞ norm was defined in (6.17), (6.18), and we define

‖ϕ‖Sstr
k

:= sup
(q,r): 1

q + 3
2

1
r ≤ 3

4

2( 1
q + 4

r −2)k‖ϕ‖Lq
t Lr

x
, ‖ϕ‖Sang

k
:= sup

	<0
‖ϕ‖Sang

k,k+2	
,

‖ϕ‖Sang
k, j

:=
( ∑

ω∈�	

‖Pω
	 Q<k+2	ϕ‖2

Sω
k (	)

) 1
2

, where 	 =  j − k

2
!.

The preceding square sum runs over �	 := {ω} consisting of finitely overlapping
covering of S3 by caps ω of diameter 2	, and the symbols of the multipliers Pω

	 form a
smooth partition of unity associated to this covering. The angular sector norm Sω

k (	)

contains the square-summed L2
t L∞

x norm with gain in the radial dimension in Fourier
space (essentially as in [16]) and the null frame space (first introduced in the wave
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map context [31,38]). Fortunately, for most of our argument, we need not use the fine
structure of this norm. Hence we omit the precise definition, and refer the reader to
[19, Eq. (8)]. The following stability property for Sang

k0, j0
is our only necessity.

Lemma 7.1 Let k0, j0, k2 ∈ Z be such that j0 < k0. Then for η, ϕ ∈ H∞
t,x (R

1+4), we
have

‖Pk0(S≤ j0−30η Pk2ϕ)‖Sang
k0, j0

� ‖η‖L∞
t,x
‖Pk2ϕ‖Sk2

(7.1)

Moreover, the left-hand side is vacuous unless k2 ∈ [k0 − 5, k0 + 5].

Proof This lemma is essentially [31, Section 16:Case 2(b).3.(b).2(b)] and [39,
Lemma 9.1]. We sketch the proof, following the notation in [19, Section 3].

We may assume that k2 ∈ [k0 − 5, k0 + 5], as the left-hand side is clearly vacuous

otherwise. Moreover, using the embedding X
0, 1

2
1 ⊆ Sang

k0, j0
, the case j0 > k0 − C for

any constant C > 0 is easy to handle. Hence we may assume that j0 ≤ k0 − 20, and
in particular j0 < k2.

Let 	0 =  j0−k0
2 ! and fix ω ∈ �	0 . Thanks to the small space-time Fourier support

of S≤ j0−30η, we have

Pk0 Pω
	0

Q<k0+2	0(S≤ j0−30ηPk2ϕ)

= Pk0 Pω
	0

Q<k0+2	0

(
S≤ j0−30η

∑
ω′⊆ω

Pk2 Pω′
	0−5 Q<k2+2	0+10ϕ

)

where we sum over caps ω′ ∈ �	0−5 such that ω′ ⊆ ω. Similarly, given a radially
directed rectangular block Ck(	) ⊆ {2k0−5 ≤ |ξ | ≤ 2k0+5} of dimensions 2k ×(2k+	)3

with k ≤ k0, 	 ≤ 0 and k + 	 ≥ k0 + 2	0, we have

PCk (	) Pk0 Pω
	0

Q<k0+2	(S≤ j0−30ηPk2ϕ)

= PCk (	) Pk0 Pω
	0

Q<k0+2	0

(
S≤ j0−30η

∑
ω′⊆ω

∑
C′

k (	)

PC′
k (	)

Pk2 Pω′
	0−5 Q<k2+2	0+10ϕ

)

where ω′ is summed over the same set and we sum over C′
k(	) which is either equal to

or adjacent to Ck(	). The projections PCk (	), PC′
k (	)

and Pk0 Pω
	0

Q<k0+2	 are disposable

(i.e., has a Schwarz kernel of L1
t,x norm � 1), hence they are bounded in all functions

spaces under consideration. Moreover, from the definitions in [19, Section 3], it is
clear that

‖ηϕ‖X ≤ ‖η‖L∞
t,x
‖ϕ‖X ,

for X = Sstr
k , L2

t L∞
x , N E , and PW±

ω (	). For every sign ± and cap ω′ ∈ �	0−5 with
ω′ ⊆ ω, we also have

‖ϕ‖PW±
ω (	0)

≤ ‖ϕ‖PW±
ω′ (	0−5).
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Recalling the definition of the Sω
k (	) norm [19, Eq. (8)], we see that

‖Pk0 Pω
	 Q<k+2	(S≤ j0−30ηPk2ϕ)‖Sω

k0
(	0)

� ‖η‖L∞
t,x

∑
ω′⊆ω

‖Pk2 Pω′
	0−5 Q<k2+2	0+10ϕ‖Sω′

k2
(	0−5)

.

We square sum this bound in ω ∈ �	0 . Note that if we replace Q<k2+2	0+10 by
Q<k2+2	0−10, then the last factor is controlled by the Sang

k2,k2+	0−5 norm of Pk2ϕ. For

the resulting error, we use the embedding X
0, 1

2
1 ⊆ Sω′

k (	) and estimate

( ∑
ω∈�	

‖Pk Pω
	 Qk+2	−C≤·<k+2	+Cϕ‖2

Sω′
k (	)

) 1
2

�C ‖Pk Qk+2	−C≤·<k+2	+Cϕ‖
X

0, 1
2

1

�C ‖Pkϕ‖
X

0, 1
2∞
,

and apply this inequality to k = k2, 	 = 	0 − 5 and C = 10. The lemma follows. ��

7.2 Gauge Transformation Estimate

Here we establish Lemma 6.10. This is carried out in two steps. The first one deals
with the algebra type property for the space Ŷ:

Lemma 7.2 The space Ŷ is an algebra,

‖χ1χ2‖Ŷ � ‖χ1‖Ŷ‖χ2‖Ŷ , (7.2)

Further, for any F of class C6(R) with F(0) = 0 we have the Moser type estimate

‖F(χ)‖Ŷ � (‖χ‖Ŷ + ‖χ‖2
Ŷ )(1 + ‖χ‖4

L∞
t,x

), (7.3)

Proof The main step of the proof is to establish the result for a component of the Ŷ
norm, namely the 	1L∞

t Ḣ2
x norm. We begin with a simple observation, namely that

by Bernstein’s inequality we have

‖χ‖L∞
t,x

� ‖χ‖	1 L∞
t Ḣ2

x

This is the only place where the 	1 summation is used. The bound (7.2) for the 	1L∞
t Ḣ2

x
norm is now an application of the standard Littlewood–Paley trichotomy, which in
effect yields the stronger bound

‖χ1χ2‖	1 L∞
t Ḣ2

x
� ‖χ1‖	1 L∞

t Ḣ2
x
‖χ2‖L∞

t,x
+ ‖χ1‖L∞

t,x
‖χ2‖	1 L∞

t Ḣ2
x

A similar bound can be proved for the Y 2,2 norm in an analogous manner.
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To estimate F(χ) we use a continuous Littlewood–Paley theory decomposition,

1 =
∫ ∞

−∞
Pk dk, P< j =

∫ j

−∞
Pk dk

where χ is a continuous dyadic frequency parameter. See e.g. [39] for a similar argu-
ment. Representing χ as

χ =
∫ ∞

−∞
Pkχ dk,

for F(χ) we have the similar representation

F(χ) = F(0) +
∫ ∞

−∞
F ′(P<kχ)Pkχ dk

which is easily seen to converge in L∞
t,x . Now it suffices to estimate the nonlinear term

in L∞
t,x ,

‖∂ N
x F ′(P<kχ)‖L∞

t,x
� 2−Nk(1 + ‖χ‖3

L∞
t,x

), N = 0, 1, 2, 3.

Then the integrand satisfies the bound

‖∂ N
x F ′(P<kχ)Pkχ‖L∞

t L2
x

� 2(2−N )k‖Pkχ‖L∞
t Ḣ2

x

After dyadic integration in k this yields the bound

‖F(χ)‖	1 L∞
t Ḣ2

x
� ‖χ‖	1 L∞

t Ḣ2
x
(1 + ‖χ‖3

L∞
t,x

) (7.4)

which is the 	1L∞
t Ḣ2

x counterpart of (7.3).
To also estimate the Y 2,2 norm of F(χ) we differentiate twice,

∂2
x,t F(χ) = ∂2

x,tχ F ′(χ) + ∂x,tχ∂x,tχ F ′′(χ) (7.5)

We need to estimate the terms on the right in L2
t Ḣ

1
2

x . We have the Bernstein type
bounds

‖F ′(χ) − F ′(0)‖L∞
t,x∩L∞

t Ẇ 1,4
x

� ‖F(χ)‖	1 L∞
t Ḣ2

x

and similarly for F ′′(χ), where the norm on the right is further estimated as in (7.4).

Also we control ∂2
x,tχ in L2

t Ḣ
1
2

x , as well as

‖∂x,tχ‖
L4Ẇ

3
4 ,4

x

� ‖∂2
x,tχ‖

1
2

L2
t Ḣ

1
2

x

‖χ‖L∞
t,x
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Hence for the first term on the right in (7.5) it remains to establish the bound

‖ f G‖L2
t Ḣ s

x
� ‖ f ‖L2

t Ḣ s
x
‖G‖L∞

t,x∩L∞
t Ẇ 1,4

x
, s = 1

2
.

But this follows by interpolation from the s = 0 and s = 1 cases, which are straight-
forward.

Similarly, for the second term on the right in (7.5) we need to establish the bound

‖ f1 f2G‖
L2

t Ḣ
1
2

x

� ‖ f1‖
L4Ẇ

3
4 ,4

x

‖ f1‖
L4Ẇ

3
4 ,4

x

‖G‖L∞
t,x∩L∞

t Ẇ 1,4
x

.

which is again a simple exercise which is left for the reader. ��

The second step deals with the stability of the S1 space with respect to multiplication
by Ŷ . Before we state it, we begin with a dyadic decomposition of the Y n,2 norms which
will be used repeatedly in the sequel. Precisely, for N = 0, 1, 2, . . ., the following
square summability estimate holds:

( ∑
	

22N	‖S	χ‖2
Y 0,2

) 1
2

+
(∑

k, j

(2Nk + 2N j )2‖Pk Tjχ‖2
Y 0,2

) 1
2

� ‖χ‖Y N ,2 . (7.6)

Lemma 7.3 The following estimate holds:

‖χϕ‖S1 � ‖χ‖Ŷ‖ϕ‖S1 . (7.7)

Proof We begin by splitting

χϕ =
∑
k0

Pk0 Q≤k0+25(χϕ) +
∑
k0

Pk0 Q>k0+25(χϕ) (7.8)

Step 1. Contribution of
∑

k0
Pk0 Q≤k0+25(χϕ). In this step, we will show

‖
∑
k0

Pk0 Q≤k0+25(χϕ)‖S1 � ‖χ‖Y 2,2∩L∞
t,x
‖ϕ‖S1 . (7.9)

We need different arguments for different parts of the S1 norm. The common strat-
egy, however, is to divide into two cases, one in which χ has a high space-time
frequency and the other in which χ has very low space-time frequency.

In the former case, we will rely on the following simple lemma:
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Lemma 7.4 Let j0 ≤ k0 + 30.

(1) For 	 > k0 − 5, we have

2k0 2
1
2 j0‖Pk0 Q j0(S	χ Pk2ϕ)‖L2

t,x

� 2
1
2 ( j0−k0)2

3
2 (k0−	)2

1
2 (k2−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

),

(7.10)

and the left-hand side of (7.11) is vacuous unless k2 ≤ 	 + 10.
(2) If 	 ≤ k0 − 5, we have instead

2k0 2
1
2 j0‖Pk0 Q j0(S	χ Pk2ϕ)‖L2

t,x
� 2

1
2 ( j0−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

).

(7.11)

Moreover, the left-hand side of (7.11) is vacuous unless k2 ∈ [k0 − 5, k0 + 5].

Proof The claims regarding the range of k2 are clear. We estimate the left-hand side
of (7.10) by

� 2k0 2
1
2 j0‖S	χ‖

L2
t L

8
3
x

‖Pk2ϕ‖L∞
t L8

x

� 2
1
2 (k2−	)2

1
2 ( j0−	)2k0−	(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

).

For (7.11), we estimate

� 2k0 2
1
2 j0‖S	χ‖L2

t L∞
x
‖Pk2ϕ‖L∞

t L2
x

� 2
1
2 ( j0−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

).

��

We now proceed to treat each constituent of the S1 norm.

Case 1.1. Sstr
k part of S1. Here we prove

( ∑
k0

22k0‖Pk0 Q≤k0+25(χϕ)‖2
Sstr

k0

) 1
2

� ‖χ‖Y 2,2∩L∞
t,x
‖ϕ‖S1 . (7.12)

We split the summand on the left-hand side as follows:

2k0‖Pk0 Q≤k0+25(χϕ)‖Sstr
k0

�
∑

	>k0−5

2k0‖Pk0 Q≤k0+25(S	χϕ)‖Sstr
k0

+ 2k0‖Pk0 Q≤k0+25(S≤k0−5χϕ)‖Sstr
k0

.

(7.13)

123



(4 + 1)-d MKG at energy regularity Page 61 of 70 2

For the first term on the right-hand side, we use the embedding Pk0(X
0, 1

2
1 ) ⊆ Sstr

k0
and Lemma 7.4 to estimate

�
∑

	>k0−5

∑
j0≤k0+25

2k0 2
1
2 j0‖Pk0 Q j0(S	χϕ)‖L2

t,x

�
∑

	>k0−5

∑
j0≤k0+25

∑
k2≤	+10

2
1
2 ( j0−k0)2

3
2 (k0−	)2

1
2 (k2−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

)

� ‖ϕ‖S1

∑
	>k0−5

2
3
2 (k0−	) 22	‖S	χ‖Y 0,2

which is square summable in k0, thanks to (7.6).
For the second term in (7.13), we can freely replace ϕ by P[k0−5,k0+5]ϕ. Then

removing Pk0 Q≤k0+25, which is disposable, and using Hölder with S≤k0−5χ ∈ L∞
t,x ,

we see that

2k0‖Pk0 Q≤k0+25(S≤k0−5χϕ)‖Sstr
k0

�
∑

k2∈[k0−5,k0+5]
‖χ‖L∞

t,x
2k2‖Pk2ϕ‖Sstr

k2
,

which is acceptable.

Case 1.2. X
0, 1

2∞ part of S1. We prove

( ∑
k0

22k0‖Pk0 Q≤k0+25(χϕ)‖2

X
0, 1

2∞

) 1
2

� ‖χ‖Y 2,2∩L∞
t,x
‖ϕ‖S1 . (7.14)

The summand on the left-hand side is bounded by

sup
j0≤k0+25

2k0 2
1
2 j0‖Pk0 Q j0(χϕ)‖L2

t,x

� sup
j0≤k0+25

2k0
∑

	>k0−5

2
1
2 j0‖Pk0 Q j0(S	χϕ)‖L2

t,x

+ sup
j0≤k0+25

2k0
∑

	∈[ j0−30,k0−5]
2

1
2 j0‖Pk0 Q j0(S	χϕ)‖L2

t,x
(7.15)

+ sup
j0≤k0+25

2k0 2
1
2 j0‖Pk0 Q j0(S≤ j0−30χϕ)‖L2

t,x

Let j0 ≤ k0 + 25. Using Lemma 7.4 and proceeding as in Case 1.1, the first term
can be bounded by
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2k0
∑

	>k0−5

2
1
2 j0‖Pk0 Q j0(S	χϕ)‖L2

t,x

�
∑

	>k0−5

∑
k2≤	+10

2
1
2 ( j0−k0)2

3
2 (k0−	)2

1
2 (k2−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

)

� 2
1
2 ( j0−k0)‖ϕ‖S1

∑
	>k0−5

2
3
2 (k0−	) 22	‖S	χ‖Y 0,2 ,

which is 	2 summable in k0 thanks to (7.6).
For the second term in (7.15), we can replace ϕ by P[k0−5,k0−5]ϕ. Then we estimate

2k0
∑

	∈[ j0−30,k0−5]
2

1
2 j0‖Pk0 Q j0(S	χϕ)‖L2

t,x

�
∑

	∈[ j0−30,k0−5]

∑
k2∈[k0−5,k0+5]

2
1
2 ( j0−	)(22	‖S	χ‖Y 0,2)(2k2‖Pk2ϕ‖Sk2

)

� ‖χ‖Y 2,2

∑
k2∈[k0−5,k0+5]

(2k2‖Pk2ϕ‖Sk2
),

which is acceptable.
For the third term in (7.15), we can replace ϕ by P[k0−5,k0−5]Q[ j0−5, j0+5]ϕ. There-

fore

2k0 2
1
2 j0‖Pk0 Q j0(S≤ j0−5χϕ)‖L2

t,x

� ‖χ‖L∞
t,x

∑
k2∈[k0−5,k0+5]

∑
j2∈[ j0−5, j0+5]

2k2 2
1
2 j2‖Pk2 Q j2ϕ‖L2

t,x

which is acceptable.

Case 1.3. Sang
k, j part of S1. Here we prove

( ∑
k0

22k0 sup
j0<k0

‖Pk0 Q< j0(χϕ)‖2
Sang

k0, j0

) 1
2

� ‖χ‖Y 2,2∩L∞
t,x
‖ϕ‖S1 . (7.16)

Fix k0 and j0 < k0. As before, we split

2k0‖Pk0 Q< j0(χϕ)‖Sang
k0, j0

�
∑

	>k0+5

2k0‖Pk0 Q< j0(S	χϕ)‖Sang
k0, j0

+
∑

	∈[ j0−30,k0−5]
2k0‖Pk0 Q< j0(S	χϕ)‖Sang

k0, j0

+2k0‖Pk0 Q< j0(S< j0−30χϕ)‖Sang
k0, j0
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Using the embedding Pk0 Q< j0(X
0, 1

2
1 ) ⊆ Sang

k0, j0
, the first two terms can be treated

by proceeding as in Case 1.2. On the other hand, for the third term, we use Lemma
7.1 to estimate

sup
j0

2k0‖Pk0 Q< j0(S< j0−20χϕ)‖Sang
k0, j0

� ‖χ‖L∞
t,x

∑
k2∈[k0−5,k0+5]

2k2‖Pk2ϕ‖Sk2
,

which is square summable in k0, proving (7.16).

Step 2. Contribution of
∑

k0
Pk0 Q>k0+25(χϕ). When the output is away from the

cone, the X norm dominates the whole S1 norm. To see this, let k0 ∈ Z. As Pk0(X
0, 1

2
1 ) ⊆

Sk0 , we have

‖∂t,x Pk0 Q>k0+25(ηϕ)‖Sk0
�

∑
j0>k0+25

2
3
2 j0‖Pk0 Q j0(ηϕ)‖L2

t,x

�
∑

j0>k0+25

2
1
2 (k0− j0)‖Pk0 Q j0(ηϕ)‖X

� ‖Pk0 Q>k0+20(ηϕ)‖X .

Thus by L2 almost orthogonality,

∥∥∥∥∥∥
∑
k0

Pk0 Q>k0+25(ηϕ)

∥∥∥∥∥∥
2

S1

�
∑
k0

‖Pk0 Q>k0+20(ηϕ)‖2
X . (7.17)

To conclude the proof of (7.7), it remains to estimate the right-hand side of (7.17).
This is the content of Lemma 7.5 below. ��
Lemma 7.5 The following estimate holds.

(∑
k0

‖Pk0 Q>k0+20(χϕ)‖2
X

) 1
2

� ‖χ‖Ŷ‖ϕ‖S1 . (7.18)

Proof Since the spaces have different regularity in space and time, we will need to
divide into cases depending on both the space and time frequency configurations. We
begin with the standard Littlewood–Paley trichotomy in the spatial Fourier variable:

Pk0 Q>k0+20(χϕ) = Pk0 Q>k0+20(χ<k0+10ϕ[k0−5,k0+20])
+ Pk0 Q>k0+20(χ[k0−5,k0+5]ϕ<k0−5)

+
∑

k1≥k0+10

∑
k2∈[k1−5,k1+5]

Pk0 Q>k0+20(χk1ϕk2).

In each case we will further divide into cases, which will essentially correspond to
doing another round of Littlewood–Paley trichotomy in the temporal Fourier variable.
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Case 1. (LH) interaction. Here we treat the contribution of

Pk0 Q j0(χ≤k0+10ϕ[k0−5,k0+20])

We divide further into two sub-cases, depending on the temporal frequency of χ≤k0+10.

Case 1.1 χ has high temporal frequency, j1 > j0 − 20. Recalling that X is an L2
t,x

based norm, by orthogonality it suffices to estimate

∥∥∥ ∑
k2∈[k0−5,k0+20]

‖Pk0 Q j0(T> j0−20χ≤k0+10ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.19)

We estimate each summand as follows:

‖Pk0 Q j0(T> j0−20χ≤k0+10 ϕk2)‖X

�
∑

k1≤k0+10

∑
j1> j0−20

22 j0 2− 1
2 k0‖Tj1χk1‖L2

t L∞
x
‖ϕk2‖L∞

t L2
x

�
∑

k1≤k0+10

∑
j1> j0−20

22( j0− j1)2
3
2 (k1−k0)(22 j1‖Tj1χk1‖Y 0,2)(2k2‖ϕk2‖Sk2

)

We now sum up k2 ∈ [k0 − 5, k0 + 20] and take the 	2
k0, j0

( j0 > k0 + 20) summation.
Then (7.19) is estimated by

� ‖ϕ‖S1

∥∥∥ ∑
k1≤k0+10

∑
j1≥ j0−20

22( j0− j1)2
3
2 (k1−k0)(22 j1‖Tj1χk1‖Y 0,2)

∥∥∥
	2

k0, j0
( j0>k0+20)

which in turn is bounded by � ‖ϕ‖S1‖χ‖Y 2,2 thanks to (7.6).

Case 1.2 χ has low temporal frequency, j1 ≤ j0 − 20. It suffices to bound

∥∥∥ ∑
k2∈[k0−5,k0+20]

‖Pk0 Q j0(T≤ j0−20χ≤k0+10ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.20)

By the restrictions on the Fourier supports of inputs and the output, we can freely
replace ϕk2 by

∑
j2∈[ j0−C, j0+C] Q j2ϕk2 . Thus throwing away Pk0 Q j0 , estimating

T≤ j0−20χ≤k0+10 in L∞
t,x and Q j2ϕk2 in L2

t,x , we can estimate the summand in (7.20)
by

‖Pk0 Q j0(T≤ j0−20χ≤k0+10ϕk2)‖X �
∑

j2∈[ j0−C, j0+C]
‖χ‖L∞

t,x
‖Q j2ϕk2‖X

Summing it up, we obtain (7.20) � ‖χ‖L∞
t,x
‖ϕ‖X as desired.

Case 2. (HL) interaction. Here we treat the contribution of

Pk0 Q j0(χ[k0−5,k0+5]ϕ<k0−5)
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As in the previous case, we divide into two sub-cases.

Case 2.1 χ has high temporal frequency, j1 > j0 − 20. As in the previous case, we
need to consider∥∥∥ ∑

k1∈[k0−5,k0+5]

∑
k2<k0−5

‖Pk0 Q j0(T> j0−20χk1ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.21)

Disposing Pk0 Q j0 and using Hölder, we estimate each summand as

‖Pk0 Q j0 (T> j0−20χk1ϕk2 )‖X �
∑

j1> j0−20

22 j0 2− 1
2 k0‖Tj1χk1‖L2

t,x
‖ϕk2‖L∞

t,x

�
∑

j1> j0−20

22( j0− j1)2k2−k0 (22 j1‖Tj1χk1‖Y 0,2 )(2k2‖ϕk2‖Sk2
)

Thanks to the high-low gain 2k2−k0 , this can be summed up in 	2
k0, j0

( j0 > k0 + 20)

using (7.6). We conclude (7.21) � ‖χ‖Y 2,2‖ϕ‖S1 , as desired.

Case 2.2 χ has low temporal frequency, j1 ≤ j0 − 20. We consider

∥∥∥ ∑
k1∈[k0−5,k0+5]

∑
k2<k0−5

‖Pk0 Q j0(T≤ j0−20χk1ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.22)

In this case, we can replace ϕk2 by
∑

j2∈[ j0−C, j0+C] Q j2ϕk2 , thanks to the restrictions
on the Fourier supports. Then as before, we estimate

‖Pk0 Q j0(T≤ j0−20χk1ϕk2)‖X

�
∑

j2∈[ j0−C, j0+C]
22 j0 2− 1

2 k0‖T≤ j0−20χk1‖L∞
t L2

x
‖Q j2ϕk2‖L2

t L∞
x

�
∑

j2∈[ j0−C, j0+C]
2

5
2 (k2−k0)(22k1‖χk1‖L∞

t L2
x
)‖Q j2ϕk2‖X

Thanks again to the high-low gain 2
5
2 (k2−k0) this is again summable, and we obtain

(7.22) � ‖χ‖L∞
t Ḣ2

x
‖ϕ‖X .

Case 3. (HH) interaction. Here we treat the contribution of

Pk0 Q j0(χk1ϕk2)

where |k1 − k2| ≤ 5, k1 ≥ k0 + 10.

Case 3.1 χ has high spatial frequency, k1 > j0 − 20. We first consider

∥∥∥ ∑
k1> j0−20

∑
k2∈[k1−5,k1+5]

‖Pk0 Q j0(χk1ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.23)
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Throwing away Q j0 , applying Bernstein in space and using Hölder, we estimate each
summand by

‖Pk0 Q j0(χk1ϕk2)‖X � 22 j0 2
3
2 k0‖χk1ϕk2‖L2

t L1
x

� 22( j0−k1)2
3
2 (k0−k1)(22k1‖χk1‖Y 0,2)(2k2‖ϕk2‖Sk2

)

Using (7.6) and the square summability of 2k2‖ϕk2‖Sk2
, the last expression can be

summed up in the 	1 sense over {(k0, j0, k1, k2) : j0 > k0 + 20, k1 > j0 − 20, |k1 −
k2| ≤ 5} and be estimated by � ‖χ‖Y 2,2‖ϕ‖S1 .

Case 3.2 χ has high temporal frequency, k1 ≤ j0 − 20, j1 > j0 − 20. Next, we
estimate∥∥∥ ∑

k1∈[k0−5, j0−20]

∑
k2∈[k1−5,k1+5]

‖Pk0 Q j0(T> j0−20χk1ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.24)

Throwing away Q j0 , applying Bernstein in space and using Hölder, we have

‖Pk0 Q j0(T> j0−20χk1ϕk2)‖X

�
∑

j1> j0−20

22 j0 2
3
2 k0‖Tj1χk1ϕk2‖L2

t L1
x

�
∑

j1> j0−20

22( j0− j1)2
3
2 (k0−k1)(22 j1‖Tj1χk1‖Y 0,2)(2k2‖ϕk2‖Sk2

)

Using the triangle inequality to pull out k1, k2 summations out of 	2
k0, j0

( j0 > k0 +20)

and performing the latter summation, we estimate (7.24) by

�
∑
k1

∑
k2∈[k1−5,k1+5]

⎛
⎝ ∑

j1>k1−20

24 j1‖Tj1χk1‖2
Y 0,2

⎞
⎠

1
2

(2k2‖ϕk2‖Sk2
),

which is estimated by � ‖χ‖Y 2,2‖ϕ‖S1 using (7.6) and the square summability of
2k2‖ϕk2‖Sk2

.

Case 3.3 χ is close to frequency origin, k1 ≤ j0 − 20, j1 ≤ j0 − 20. In this case,
we estimate∥∥∥ ∑

k1∈[k0−5, j0−20]

∑
k2∈[k1−5,k1+5]

‖Pk0 Q j0(T≤ j0−20χk1ϕk2)‖X

∥∥∥
	2

k0, j0
( j0>k0+20)

(7.25)

As before, the restrictions on the Fourier supports allow us to replace ϕk2 by the
expression

∑
j2∈[ j0−C, j0+C] Q j2ϕk2 . Throwing away Q j0 , applying Bernstein and

using Hölder (and furthermore the fact that T≤ j0−20 is bounded in L∞
t L2

x ), the sum-
mand in (7.25) is estimated by
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‖Pk0 Q j0(T≤ j0−20χk1ϕk2)‖X �
∑

j2∈[ j0−C, j0+C]
2

3
2 (k0−k1)(22k1‖χk1‖L∞

t L2
x
)‖Q j2ϕk2‖X .

The last expression can be summed up using (7.6) and 	2
k2, j2

summability of
‖Q j2ϕk2‖X , leading to (7.25) � ‖χ‖L∞

t Ḣ2
x
‖ϕ‖X as desired.

7.3 Cutoff Estimates

In this subsection, we prove Lemmas 6.11 and 6.14.

We begin with a brief discussion on Ḃ
5
2 ,2
1 , which basically plays the role of the

space of smooth cutoffs. Recall that Ḃ
5
2 ,2
1 is an atomic space, whose atoms satisfy

η = S[	−1,	+1]η and 2
5
2 	‖η‖L2

t,x
≤ 1 for some 	 ∈ Z. Note that the following 	1

summability estimate holds:

∑
	

2
5
2 	‖S	η‖L2

t,x
+

∑
	

22	‖S	η‖L∞
t L2

x
+ ‖η‖L∞

t,x
� ‖η‖

Ḃ
5
2 ,2

1

(7.26)

Note furthermore that

Ḃ
5
2 ,2
1 ⊆ Ḣ

5
2

t,x ∩ 	1C0
t Ḣ2

x ⊆ Ŷ (7.27)

which follows easily from Bernstein’s inequality.
We first establish Lemma 6.11. By the definition of restriction spaces, it suffices to

prove the following global statement.

Lemma 7.6 The following estimate holds for X = Y 1, S1, Ŷ or Y .

‖ηϕ‖X (R1+4) � ‖η‖
Ḃ

5
2 ,2

1 (R1+4)

‖ϕ‖X (R1+4). (7.28)

Proof Before we begin, note that the following cutoff estimates hold:

‖ηϕ‖Y 1,2 � ‖η‖
Ḃ

5
2 ,2

1

‖ϕ‖Y 1,2 , (7.29)

‖ηϕ‖	1Y 2,2 � ‖η‖
Ḃ

5
2 ,2

1

‖ϕ‖	1Y 2,2 . (7.30)

Indeed, both estimates can be proved in a similar manner as (7.2); we omit the details.
With (7.29) and (7.30) in our hand, we proceed to the proof of (7.28).

Case 1: X = Y 1. Recall that Y 1 = Y 1,2 ∩ Y 1,∞. The desired estimate for the Y 1,2

norm of ηϕ follows from (7.29); thus it remains to bound ‖ηϕ‖Y 1,∞ . By the Leibniz
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rule, Hölder, Ḣ1
x ⊆ L4

x Sobolev and (7.26), we have

‖∂t,x (ηϕ)‖Y 0,∞ � ‖η∂t,xϕ‖L∞
t L2

x
+ ‖∂t,xηϕ‖L∞

t L2
x

� (‖∂t,xη‖L∞
t L4

x
+ ‖η‖L∞

t,x
)(‖∂t,xϕ‖L∞

t L2
x
+ ‖ϕ‖L∞

t L4
x
)

� ‖η‖
B

5
2 ,2

1

‖ϕ‖Y 1 ,

which completes the proof in this case.

Cases 2 & 3: X = S1 or Ŷ . These cases are immediate consequences of (7.2), (7.7)
and the embedding (7.27).

Case 4: X = Y . Recall that Y = 	1Y 2,2 ∩ 	1Y 2,∞. For the 	1Y 2,2 norm of ηϕ, we
use (7.30). In order to bound the 	1Y 2,∞ norm of ηϕ, we first use the Leibniz rule to
compute

∂t (ηϕ) = ∂tηϕ + η∂tϕ, ∂2
t (ηϕ) = ∂2

t ηϕ + 2∂tη∂tϕ + η∂2
t ϕ.

By the embedding Ḃ
N+ 1

2 ,2
1 ⊆ 	1C0 Ḣ N

x and the definition of the space 	1Y 2,∞, we

have ∂
(N )
t η, ∂

(N )
t ϕ ∈ 	1C0

t Ḣ2−N
x for N = 0, 1, 2. Thus the desired estimate is easily

obtained using the standard Littlewood–Paley trichotomy; we leave the details to the
reader. ��

Finally, we give a proof of Lemma 6.14. Extending η and ϕ to the whole space in

such a way that η ∈ Ḃ
5
2 ,2
1 (R×R

4) and ϕ ∈ Ŷ(R×R
4), it suffices to consider the case

I = R. Thus Lemma 6.14 would follow once we establish the following statement.

Lemma 7.7 Let η ∈ Ḃ
5
2 ,2
1 (R1+4) and ϕ ∈ Ŷ(R1+4). Let χ := (−�)−1(η�ϕ)(t) be

given as convolution with the Newton potential. Then we have

‖χ‖Ŷ � ‖η‖
Ḃ

5
2 ,2

1

‖ϕ‖Ŷ . (7.31)

Proof From the embedding (7.27), it easily follows that η�ϕ ∈ 	1C0
t L2

x (R × R
4)

with
‖η�ϕ‖	1 L∞

t L2
x

� ‖η‖	1 L∞
t Ḣ2

x
‖�ϕ‖	1 L∞

t Ḣ2
x

� ‖η‖
Ḃ

5
2 ,2

1

‖ϕ‖Ŷ .

Therefore, the estimate for ‖χ‖	1 L∞
t Ḣ2

x
in the Ŷ norm in (7.31) follows. It remains to

establish the estimate for the Y 2,2 norm in (7.31); for this we will show that

‖χ‖Y 2,2 � ‖η‖
Ḃ

5
2 ,2

1

‖ϕ‖Y 2,2 (7.32)

The left-hand side is equivalent to ‖∂2
x,t (η�ϕ)‖

L2
t Ḣ

− 3
2

x

. We apply the Leibniz rule to

write

∂2
x,t (η�ϕ) = ∂2

x,tη�ϕ + ∂x,tη∂x,t�ϕ + η∂2
x,t�ϕ
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We can estimate

‖�ϕ‖
L2

t Ḣ
1
2

x

+ ‖∂x,t�ϕ‖
L2

t Ḣ
− 1

2
x

+ ‖∂2
x,t�ϕ‖

L2
t Ḣ

− 3
2

x

� ‖ϕ‖Y 2,2

and, by the trace theorem,

‖∂2
x,tη‖L∞

t L2
x
+ ‖∂x,tη‖L∞

t Ḣ1
x
+ ‖η‖L∞

t 	1 Ḣ2
x

� ‖η‖
Ḃ

5
2 ,2

1

Hence it remains to establish the fixed time multiplicative estimates

Ḣ
1
2

x × L2
x → Ḣ

− 3
2

x , Ḣ
− 1

2
x × Ḣ1

x → Ḣ
− 3

2
x , Ḣ

− 3
2

x × 	1 Ḣ2
x → Ḣ

− 3
2

x

These in turn are easily obtained using the standard Littlewood–Paley trichotomy. ��
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