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Abstract We consider active scalar equations ∂tθ + ∇ · (u θ) = 0, where u = T [θ ]
is a divergence-free velocity field, and T is a Fourier multiplier operator with symbol
m. We prove that when m is not an odd function of frequency, there are nontrivial,
compactly supported solutions weak solutions, with Hölder regularity C1/9−

t,x . In fact,
every integral conserving scalar field can be approximated in D′ by such solutions,
and these weak solutions may be obtained from arbitrary initial data. We also show
that when the multiplier m is odd, weak limits of solutions are solutions, so that the
h-principle for odd active scalars may not be expected.

Keywords Active scalar equations · h-principle · Convex integration ·
Onsager conjecture

1 Introduction

The present paper is concerned with existence, nonuniqueness and results of h-
principle type for Hölder continuous, weak solutions to inviscidactive scalar equations
with a divergence free drift velocity. These equations have the form

∂tθ + ∂l(θu
l) = 0

ul = T l [θ ]
∂lu

l = 0.

(1.1)
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The operator T l [·] defining the drift velocity ul in (1.1) is represented in frequency
space by a multiplier

ûl(ξ) = ̂T l [θ ](ξ) = ml(ξ)θ̂(ξ). (1.2)

We assume that ml(ξ) is defined on the whole frequency space as a tempered distribu-
tion and is homogeneous of degree 0 so that T l is an operator of order 0. The multiplier
must satisfy ml(−ξ) = ml(ξ) so that the drift-velocity ul is real-valued whenever the
scalar θ is real-valued, and we assume that ml(ξ) is smooth away from the origin. The
requirement that ul is divergence free corresponds to the requirement that ml(ξ) takes
values perpendicular to the frequency vector ξ , i.e. ξ · m(ξ) = 0 for ξ �= 0.

Active scalar equations arise from the full Navier–Stokes, Euler, or magneto-
hydrodynamic equations in a number of physical regimes, such as stratification, rapid
rotation, hydrostatic, and geostrophic balance. Physically motivated examples include:

1. The surface quasi-geostrophic (SQG) equation [17,30]. Here

m(ξ) = i〈−ξ2, ξ1〉|ξ |−1

is an odd symbol, bounded and smooth on the unit sphere. The SQG equation
belongs to a general class of active scalar equations (with odd constitutive law T )
satisfied by the vorticity of a generalized two-dimensional Euler equation on a Lie
algebra (á la Arnold [1]) with a specific inner product [43] (see also [47] for a
more recent account).

2. The incompressible porous media (IPM) equation with velocity given by Darcy’s
law [5,20]. Here

m(ξ) = 〈ξ1ξ2,−ξ2
1 〉|ξ |−2

is an even symbol, bounded and smooth on the unit sphere. Note that the IPM equa-
tion has a three-dimensional analogue, with symbol m(ξ) = 〈ξ1ξ3, ξ2ξ3,−ξ2

1 −
ξ2

2 〉|ξ |−2, which is again even. Our proof applies to this three-dimensional case as
well, cf. Remark 1 below.

3. The magneto-geostrophic (MG) equation [27,38,39]. This is a three-dimensional
active scalar equation, with symbol given by

m(ξ) =
〈

ξ2ξ3|ξ |2 + ξ1ξ
2
2 ξ3,−ξ1ξ3|ξ |2 + ξ3

2 ξ3,−ξ2
2 (ξ2

1 + ξ2
2 )

〉

(ξ2
3 |ξ |2 + ξ4

2 )−1

for all ξ ∈ Z
3∗ with ξ3 �= 0, and by m(ξ1, ξ2, 0) = 0. The symbol of the MG equa-

tion is even and zero-order homogenous, but as opposed to the previous examples,
it is not bounded. This unboundedness may be seen by evaluating the symbol on a
parabola m(ζ 2, ζ, 1), and passing |ζ | → ∞. Nonetheless, the proof in our paper
still applies to the MG equations as we only require smoothness in a neighborhood
of finitely many points, cf. Remark 2 below.
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Remarkably, from the mathematical point of view these scalar equations retain
some of the same essential difficulties of the full fluid equations. In particular, the
global well-posedness for the 2D SQG and IPM equations remains open, in analogy
to the 3D Euler equations. More relevant for this paper, the regularity class in which
the conservation of the energy ‖θ‖2

L2 may be established for weak solutions of (1.1),
is Hölder continuity with exponent 1/3, as for 3D Euler. However, due to their more
rigid geometry (e.g. no known analogue for Beltrami flows), their non-local nature,
and the presence of infinitely many conservation laws (the L p norms of θ , for any
p ≥ 1), the construction of weak solutions that fail to conserve energy appears to be
more restrictive than for 3D Euler.

The pair (θ, ul) is called a weak solution of (1.1) if the equations (1.1) are satisfied
on R × T

2 in the sense of distributions. When (θ, ul) are continuous, it is equivalent
to require the balance laws

d

dt

∫

�

θ(t, x)dx =
∫

∂�

θ u(t, x) · n dσ,

∫

∂�

u(t, x) · n dσ = 0

to be satisfied as continuous functions of time for all subdomains � with smooth
boundary and inward unit normal n. The definition of weak solution implies immedi-
ately that the integral

∫

T2 θ(t, x) dx is a conserved quantity, but this definition does
not immediately imply the other conservation laws that hold for classical solutions
(see also [3,4] for comparisons with other notions of non-classical solutions for the
Euler equations).

The study of weak solutions in fluid dynamics, including those which fail to con-
serve energy, is natural in the context of turbulent flows. The power spectrum predicted
by Kolmogorov [36] implies that solutions which arise in the inviscid limit of the 3D
Navier–Stokes equations have Hölder 1/3 regularity on average, and in particular are
not classical. Such flows are expected to exhibit anomalous dissipation of energy,
rather than conserving energy. The exponent 1/3 is the same regularity threshold
conjectured by Onsager [42] to be critical for energy conservation in the 3D Euler
equations (see [2,25,44] for recent reviews). For power spectra in active scalar turbu-
lence, we refer to Kraichnan [37] and Constantin [13,14].

Our first main result, Theorem 1.1, shows that if the symbol of the multiplier ml(ξ)

is not an odd function of ξ for ξ �= 0, there exist nontrivial, space-periodic solutions in
two dimensions with compact support in time, having any Hölder regularity θ ∈ Cα

t,x

with α < 1/9. In contrast, the energy
∫ |θ |2(t, x)dx is a conserved quantity for solu-

tions with Hölder regularity above α > 1/3 and for classical solutions the quantity θ2

obeys a continuity equation with drift velocity ul = T l [θ ], whereas both these prop-
erties clearly fail for our solutions. This result gives the first proof of nonuniqueness
of continuous weak solutions for any active scalar equation of this type.

Theorem 1.1 (Weak Solutions to Active Scalar equations) Consider the active scalar
equation (1.1) with divergence free drift velocity, and assume that the multiplier ml(ξ)

defining the operator T l is not an odd function of ξ for ξ �= 0. Let α < 1/9 and let I be
an open interval. Then there exist nontrivial solutions to (1.1) with Hölder regularity
θ, ul ∈ Cα

t,x (R × T
2) which are identically 0 outside of I × T

2.
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Moreover, if f : R×T
2 → R is a smooth scalar function with compact support on

I × T
2 which satisfies the conservation law d

dt

∫

T2 f (t, x) dx = 0, then there exists
a sequence of weak solutions θn : R × T

2 → R to (1.1) in the above regularity class
such that θn converges to f in the L∞ weak-* topology, and each θn has compact
support in I × T

2.

The above result builds upon the recent works by Córdoba, Faraco, Gancedo [21],
Shvydkoy [45], and Székelyhidi [46] which establish the non-uniqueness of L∞

t,x weak
solutions to the IPM equations and active scalar equations with even symbolsm. These
previous works are based on a variant of the method of convex integration introduced
for the Euler equations in [22] that provides an effective and elegant approach to
producing bounded solutions, but which faces a major obstruction to producing con-
tinuous solutions. For the Euler equations, this obstruction was overcome in [11,23,26]
to produce continuous and Cα solutions on T

2 and T
3. A crucial idea to overcome this

obstruction is a key cancellation coming from the use of special families of station-
ary, plane wave solutions which allows for the control of interference terms between
different waves in the construction. For 3D Euler, these solutions are Beltrami flows
(eigenfunctions of the curl operator), while for 2D Euler they are rotated gradients of
Laplace eigenfunctions.

There is an obstruction to generalizing these ideas to obtain continuous solutions
to active scalar equations, which is that analogous families of stationary, plane wave
solutions do not exist in general for active scalar equations. Furthermore, as we explain
more precisely in Section 2.1, there is a sense in which no analogous cancellation is
ever available under the assumptions of Theorem 1.1. The same difficulty has also
prohibited this approach from generalizing to the Euler equations in higher dimensions,
even though similar results in principle could be expected to hold in any dimension.
(The conservation of energy for regularity above 1/3 holds in any dimension, and the
approach of [22] for constructing L∞

t,x solutions applies in any dimension.)
The main idea that forms the starting point of our work is a new, more general,

mechanism for obtaining the cancellation of interference terms in the construction,
which arises without any special Ansatz in the construction. Our observation is that
the interference terms which arise when an individual wave interacts with itself must
always cancel thanks to the divergence free structure of the equation, even though we
lack a general method for controlling the interference between waves which oscillate
in different directions. This observation opens the door to a serial iteration scheme
based on one-dimensional oscillations, as in the original scheme of Nash [40]. The
same observation applies to both the Euler equations and to general active scalar
equations regardless of the dimension (c.f. Remark 1). Our proof therefore gives a
new approach to constructing continuous and Cα weak solutions to these equations
that is independent of the use of Beltrami flows or the analogue.

Although the regularity obtained in Theorem 1.1 is strictly worse than the results
which have been obtained for the Euler equations, the exponent 1/9 is the best result
we can hope to obtain from our method. For the Euler equations, solutions in the class
C1/5−
t,x were constructed in [31], with another proof given by Buckmaster, De Lellis

and Székelyhidi [7]. The construction in [7] has recently been refined in [8] to give
continuous solutions in the class L1

t C
1/3−
x , improving significantly a result of Buck-
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master [6]. A main obstruction to higher regularity faced by all of these works and
also the present paper is the presence of anomalously sharp time cutoffs. These cutoffs
lead to bounds on advective derivatives which are inferior to the bounds that hold for
solutions with higher regularity, cf. [32, Sec. 9] and [34, Sec. 1.1.3]. In our case, we
face an additional loss of regularity which comes from our inability to eliminate more
than one component of the error in a given stage of the iteration. The same obstruction
to regularity arises for the isometric embedding equation [18]. For active scalars, we
must deal with both obstructions at the same time, and improving on either one seems
to be a difficult problem.

Our approach to proving Theorem 1.1 also yields the following result, which shows
that our construction can realize arbitrary smooth initial data.

Theorem 1.2 Let I = (−T, T ) be a finite open interval containing the origin, let
α < 1/9 and let (θ(0), ul(0)) be a smooth solution to (1.1) on I × T

2. Then there exists

a global, weak solution (θ, ul) to (1.1) in the class (θ, ul) ∈ Cα
t,x (R × T

2) which
coincides with (θ(0), ul(0)) on the time interval

θ(t, x) = θ(0)(t, x) (t, x) ∈ (−T/2, T/2) × T
2

and which coincides with a constant

θ(t, x) = θ̄

for (t, x) /∈ (−4T/5, 4T/5) × T
2.

To the best of our knowledge, Theorem 1.2 gives the first proof of global existence
of weak solutions for (1.1) with multipliersm which are not odd, from arbitrary smooth
initial data [21]. The global existence of weak solutions appears to be only known for
odd symbols [9,43], or for patch-type initial datum in the IPM equations [19]. Thus, in
view of the known existence result for odd multipliers, we show that all active scalar
equations with smooth constitutive law have global in time weak solutions (see also
Remark 2).

Our method of construction demonstrates not only the existence of weak solutions,
but also the abundance and flexibility of solutions in the class C1/9−ε

t,x . This point is
emphasized by the following result of “h-principle” type, which follows from Theo-
rem 1.1, and completely characterizes the weak-* closure of these solutions in L∞.
The result illustrates that, within this regularity class, the conservation of the integral
is the only source of rigidity for solutions to the equations that is stable in the weak-*
topology1. We refer to [12,24] for more on h-principles for fluid equations.

Corollary 1.1 (h-principle for Active Scalar Equations) Consider the 2D active
scalar equation (1.1) as in the hypotheses of Theorem 1.1, with multiplier m that
is not odd. Then for any α < 1/9 and for any open interval I , the closure in the

1 One must be cautious that Corollary 1.1 below does not assert that integral-conserving L∞ functions can
be approximated by a weak-* convergent sequence of solutions as in the statement of Theorem 1.1. Such
a statement would be false, since the functions f obtained as weak-* limits of sequences will also inherit

time regularity of the type ∂t f ∈ L∞
t W−1,p

x from the equation (1.1).
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weak-* topology on L∞(I × T
2) of the set of Cα

t,x solutions to (1.1) with compact
support in I × T

2 is equal to the space of real-valued f ∈ L∞(I × T
2) which satisfy

the conservation law
∫

T2 f (t, x)dx = 0 as a distribution in time.

While Theorems 1.1-1.2 and Corollary 1.1 illustrate an utter lack of rigidity for
multipliers which are not odd, we find a much more rigid situation for weak solutions
in the case of odd multipliers. The following result implies that, when the multiplier
is odd, every weak limit of solutions in L∞

t,x must also be a solution to the same active
scalar equation, in stark contrast to Theorem 1.1 and Corollary 1.1. This theorem
generalizes the statement at the end of [24] concerning weak rigidity for SQG, and
makes precise the assumptions necessary for this rigidity.

Theorem 1.3 (Weak Rigidity for Active Scalars with Odd Multipliers) Consider the
active scalar equation (1.1) in any dimension, with divergence free drift velocity, and
assume that the multiplier ml(ξ) defining the operator T l is an odd function of ξ for
ξ �= 0. Suppose that f = limn θn is a weak limit of solutions to (1.1) in L p(I ; L2(Td)),
for some p > 2. Then f (t, x) must be a weak solution to (1.1).

We note that the L p time integrability condition on θn is by no means restrictive.
Indeed, due to the incompressible transport nature of (1.1), weak solutions constructed
via smooth approximations (e.g. vanishing viscosity) are in fact bounded, or even
weakly continuous in time.

The proof of Theorem 1.3 is based on the approach of [43], where global L∞
t L2

x
weak solutions of the SQG equations are constructed. The main idea is that odd
multipliers m induce a certain commutator structure in the nonlinear term, which
yields the necessary compactness. In fact, the oddness of m implies that the equations
are well-posed, even if the operator T l is not of degree 0 (see [9]), and in such cases
the oddness appears to be necessary [28,29].

In addition to the weak rigidity of Theorem 1.3, in the following theorem we show
that every active scalar equation in 2D with odd symbol has a Hamiltonian that is
conserved for solutions in the class L3

t,x .

Theorem 1.4 (Conservation of the Hamiltonian for Active Scalars with Odd Multi-
pliers) Consider the active scalar equation (1.1) in two dimensions with divergence
free drift velocity and odd multiplier as in Theorem 1.3. Define the operator

L = (−
)−1(∇ · T⊥) = (−
)−1/2(R2T
1 − R1T

2) (1.3)

where Ri is the i th Riesz transform. The fact thatm is odd, implies that L is self-adjoint.
Define the Hamiltonian

H(t) =
∫

T2
θ(t, x)Lθ(t, x)dx . (1.4)

Then, if θ is a solution to (1.1) in the class θ ∈ L3
t,x , the function H(t) is constant in

time.
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We note that due to the transport structure of (1.1), solutions which are obtained by
smooth approximations, such as viscosity approximations, Galerkin truncations, etc,
will automatically lie in L∞

t,x , and thus also in L3
t,x .

Theorem 1.3 precludes any results such as Theorems 1.1-1.2 from holding in the
case of the SQG equation, in which case L = (−
)−1/2 and we obtain the conservation
of the H−1/2 norm for solutions in L3

t,x . Note however that in general the operator L
need not be coercive, as is the case when m vanishes somewhere on the unit sphere.
We refer to [43,47] for an exposition of how the quantity H(t) serves as a Hamiltonian
for the equation.

We conclude our introduction by remarking on how our method extends to higher
dimensions, and to the case of multipliers which are not smooth.

Remark 1 (Higher Dimensions) Our proof generalizes to active scalar equations in
arbitrary dimensions (c.f. Section 3.2 for the relevant modifications). In this case,
however, there are two further restrictions. First of all, the regularity we obtain becomes
worse as the dimension increases. The same type of loss (for essentially the same
reason, see Section 2.2.1 below) is also seen in the case of the isometric embedding
equations [18]. Second, we cannot obtain our result for all smooth multipliers whose
symbols are not odd, and we require a nondegeneracy condition on the even part of
the multiplier.

The precise result we obtain is the following:

Theorem 1.5 (Multi-dimensional Case) Consider the active scalar equation (1.1)
with divergence free drift velocity on T

d . Assume also that the image of the even part
of the multiplier contains d vectors

A(i) = m(ξ (i)) + m(−ξ (i)), i = 1, 2, . . . , d (1.5)

such that the vectors A(1), . . . , A(d) spanR
d . ThenTheorems 1.1-1.2 andCorollary 1.1

hold as stated, but with the condition α < 1
9 on the Hölder exponent being replaced

by

α <
1

1 + 4d
.

Theorem 1.5 applies in particular to the 3D IPM equation, and in that case yields
weak solutions with Hölder regularity α < 1/13. Note also that Theorem 1.5
generalizes the two dimensional case of Theorem 1.1. Namely, if the even part
m(ξ (1)) + m(−ξ (1)) �= 0 is nonzero at a single point, it follows already from incom-
pressibility (i.e. the condition m(ξ) · ξ = 0) that the span of the image of the even part
of m has dimension at least 2.

The assumption (1.5) in Theorem 1.5 arises quickly from the proof and turns out to
be necessary for the conclusion of Theorem 1.1. That is to say, when the assumption
(1.5) fails, there are in general additional constraints on weak limits of solutions
besides the conservation of the mean value. In the case where the multiplier is even,
such constraints arise from the conservation of the integrals
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d

dt

∫

Tn
θ(t, x)�(x)dx = 0

for functions � whose gradients take values perpendicular to the image of the multi-
plier. More generally, we have the following theorem which can be applied to every
multiplier that fails to satisfy (1.5):

Theorem 1.6 (Constraints on Weak Limits of Degenerate Multipliers) Consider the
active scalar equation (1.1) on a torus T

n of any dimension and suppose that the
image of the even part of the multiplier lies in a hyperplane perpendicular to some
nonzero vector ξ(0) ∈ ̂Tn in the dual lattice. Then there exists a smooth function of
compact support f ∈ C∞

0 (R×T
n) which is real-valued and satisfies the conservation

law
∫

Tn f (t, x)dx = 0 such that f cannot be realized as a weak-* limit in L∞ of any
sequence of bounded weak solutions to (1.1).

The proof of Theorem 1.6 draws on the proof of weak compactness in Theorem 1.3.
One can compare condition (1.5) to criteria for having a large �-convex hull in the
theory of differential inclusions (e.g. [22,35,46]).

Remark 2 (Non-smooth Symbols) In view of the example of the MG equation, it
is important to remark that our proof applies also to multipliers which are not
smooth. In fact, the only regularity condition we require in our proof is that the
multiplier should be smooth in a neighborhood of the points ξ (1), ξ (2), . . . , ξ (d)

and −ξ (1),−ξ (2), . . . ,−ξ (d) appearing in (1.5). Thus Theorem 1.5 applies to the
MG equation, if we take for example the points ξ (1) = 〈1, 0, 1〉, ξ (2) = 〈0, 1, 1〉,
ξ (3) = 〈1, 1, 1〉.

1.1 Difficulties and New Ideas

The proof of Theorem 1.5 contains a number of new ideas in the method of convex
integration, which we summarize before we begin the proof.

As stated earlier in the Introduction, our main idea is a new mechanism for obtaining
cancellations in interference terms between overlapping waves. This allows us to get
around the lack of Beltrami flows, or their analogues, as the type of cancellation
given by such flows is entirely unavailable in our setting (cf. Section 2.2). This idea
gives a new and general approach to constructing continuous weak solutions2 which
generalizes also to Euler. The idea is based on the observation that self-interference
terms vanish automatically thanks to the incompressible nature of the equation.

The above idea opens the door to a multi-stage iteration scheme based on one-
dimensional oscillations, as in the original scheme of Nash for isometric embeddings
applied in [18,40]. This type of scheme had previously appeared unavailable in the
setting of the Euler equations (see [26, Section 1.3, Comment 2]). On the other hand,
while implementing a scheme exactly of this type now appears to be possible, it also

2 We note, however, this idea alone obtains a lesser Hölder regularity compared to the Beltrami flow
approach to Euler.
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appears to be relatively complicated, requiring the addition of several iterations of
waves (each with their own time, length scale and frequency parameters) before the
error improves in the C0 norm. We manage to avoid these complications by defining
a space of approximate solutions by a compound scalar stress equation. This concept
allows us to obtain a C0 improvement after only one iteration, which simplifies the
iteration and gives estimates which are much closer to the bounds familiar from the
case of Euler.

The main new technical difficulty in obtaining continuous solutions to active scalar
equations lies in how to deal with the integral operator in the equation which determines
the drift velocityul = T l [θ ]. The whole construction is based on high frequency, plane-
wave type corrections of the form eiλξI (t,x)θI (t, x), and it is necessary to understand
very precisely how adding such waves will affect the drift velocity. Furthermore,
the convex integration schemes for producing Hölder continuous Euler flows all use
heavily C0 type estimates on all error terms. From this point of view, the failure of C0

boundedness of T l suggests some serious trouble.
Our main technical device for addressing this difficulty is a “Microlocal Lemma”

(Lemma 4.1). This lemma makes precise how a convolution operator behaves to lead-
ing order like a multiplication operator when given a high-frequency plane wave input,
allowing for the use of nonlinear phase functions. In the case of the operator T l , rep-
resented on the Fourier side by the multiplier ml(ξ), our lemma gives a statement of
the form

ul = T l [eiλξ(x)θ(x)] = eiλξ(x)(θml (∇ξ(x)) + δul)

and gives an explicit formula for the error term δul (which also allows us to esti-
mate its spatial and advective derivatives). We expect that this technique should be of
independent interest for other applications.

To address the lack of C0 boundedness of T l , our proof makes additional use of the
frequency localization in the construction, which allows for the effective application of
the Microlocal Lemma. A number of other simplifications in the argument arise from
the use of frequency localized waves. For instance, many error terms can be estimated
in a simpler way than in previous works, and we remove the need for nonstationary
phase arguments in solving the relevant elliptic equations.

In connection with our space of approximate solutions, we introduce a family of
estimates we call compound frequency energy levels. These estimates generalize to
active scalars the frequency energy levels introduced in [31]. These bounds have the
key feature that they carry C0 type estimates for derivatives of the drift velocity along
the iteration. Otherwise, the lack of C0 boundedness of T l would prohibit us from
deducing these estimates from the bounds on the scalar field.

1.2 Outline of the Paper

The overall strategy for the construction is outlined in Section 2. The bulk of the
paper then consists of proving the “Main Lemma”, Lemma 3, which is stated in
Section 3. After the statement of the Main Lemma, Section 4 is devoted to the proof
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2 Page 10 of 77 P. Isett, V. Vicol

of a “Microlocal Lemma”, which is one of the main technical tools in the paper.
Sections 5-8 are then devoted to proving Lemma 3.

In Section 9, we explain how the Main Lemma implies the results stated in Theo-
rem 1.1 and Corollary 1.1. Section 11 provides an outline of how Theorem 1.2 also
follows from the same Lemma. The modifications used to prove Theorem 1.5 regarding
higher dimensions are explained in Section 3.2.

Sections 12 and 13 are devoted to the rigidity properties of weak solutions in the
case of odd multipliers. In Section 12, we give a proof of Theorem 1.3 on the rigidity
of solutions under weak limits when the multiplier is odd. Section 13 is then devoted
to the proof of Theorem 1.4 on the conservation of the Hamiltonian for active scalars
with odd multipliers in dimension 2.

The last Section 14 is devoted to proving Theorem 1.6, which shows that the nonde-
generacy condition in Theorem 1.5 is necessary in general for the weak limit statement
of Theorem 1.1 to apply in higher dimensions. In Section 15 we give a conclusion to
the paper and state some open questions.

1.3 Notation

We use the Einstein summation convention of summing over indices which are
repeated. We take the convention that vectors are written with upper indices, whereas
covectors are written with lower indices; thus, for a vector field ul and function ξ , we
write u · ∇ξ = ul∂lξ and div u = ∂lul .

We use the notation X � Y to indicate an inequalities X ≤ Y which have not been
proven, but will be proven later on in the course of the argument. We sometimes refer
to such inequalities as “goals”.

2 Basic Technical Outline

In this Section, we give a technical outline of the main ideas of the construction which
includes a list of the important error terms and provides a comparison to the cases of
the Euler and isometric embedding equations. This section provides the basic ideas to
motivate the statement of the Main Lemma of Section 3.

We will perform the construction in a space of approximate solutions to the active
scalar equation which we now define.

We say that (θ, ul , Rl) satisfy the scalar-stress equation if

{

∂tθ + ∂l(θu
l) = ∂l R

l

ul = T l(θ)
(2.1)

This system is the analogue for active scalar equations of the Euler–Reynolds system
introduced in [26] for the Euler equations. Here Rl is a vector field on T

2 that we
call the “stress field” (by analogy with the stress tensor R jl in the Euler–Reynolds
equations) which measures the error by which θ fails to solve the active scalar equation.
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Recall that the operator

T l [θ ] =
∫

R2
Kl(h)θ(x − h)dh

is a convolution operator with a real-valued kernel Kl which is homogenous of degree
−2 as a distribution. The corresponding Fourier multiplier

ml(ξ) = K̂ l(ξ) (2.2)

is homogeneous of degree 0, satisfies ml(−ξ) = ml(ξ), and we assume that ml(ξ)

is smooth on |ξ | = 1 (and therefore smooth away from the origin). To ensure that
ul = T l [θ ] satisfies the divergence free condition ∂lul = 0, we require that

m(ξ) · ξ = 0 (2.3)

At a high level, the basic idea of the convex integration construction is to start with a
given solution (θ, ul , Rl) to (2.1), and proceed to add a (high-frequency) correction
� to the scalar field θ , so that the corrected scalar field and drift velocity

θ1 = θ + �, ul1 = ul +Ul , Ul = T l [�] (2.4)

satisfy the scalar stress equation (2.1) with a new stress field Rl
1 that is significantly

smaller than the original stress field Rl . These corrections are added in an iteration to
obtain a sequence of solutions to (2.1)

(θ(k), u
l
(k), R

l
(k))

such that Rl
(k) → 0 as the number of iterations k tends to infinity. From dimensional

analysis and experience with the isometric embedding and Euler equations, we expect
an estimate ‖�(k)‖C0 ≤ C‖R(k)‖1/2

C0 for the size of the corrections, so that we will
obtain continuous solutions in the limit provided ‖R(k)‖C0 tends to 0 at a reasonable
rate3. On the other hand, the C1 norms of the corrections ‖∇�(k)‖C0 will diverge
as the frequencies in the iteration grow to infinity, and we prove convergence of
the iteration in Hölder spaces by interpolating between the bounds for ‖�(k)‖C0 and
‖∇�(k)‖C0 after the construction has been optimized to reduce the stress field ‖R(k)‖C0

at the most efficient rate possible. Although this description explains how the scheme
works at a high level, we must study the equation and the scheme in much more
detail before it is clear that there is any hope of reducing the stress field Rl in this
manner.

3 In our case, the error will converge to zero exponentially fast: ‖R(k)‖C0 ≤ C1e
−C2k for some constants

C1,C2 > 0.
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As in [31], we will consider corrections built from rapidly oscillating “plane waves”
where we allow for phase functions ξI and amplitudes θI which depend on space and
time

� =
∑

I

�I (2.5)

�I = eiλξI (θI + δθI ) (2.6)

The amplitude θI and the phase functions ξI are scalar functions of our choice, which
vary slowly compared to the frequency parameter λ. The term δθI is a small correction
term which will be made precise later. Each wave �I has a conjugate wave � Ī = �I

with opposite phase function ξ Ī = −ξI and amplitude θ Ī = θ̄I so that the overall
correction is real valued.

We now proceed to calculate the equation satisfied by the corrected scalar field
θ1 = θ +�. This requires us to calculate the new drift velocity ul1 = T l [θ1] = ul+Ul ,
where Ul = T l [�]. Our main tool for this calculation is a Microlocal Lemma, which
in this case guarantees that each wave �I gives rise to a velocity field

Ul
I = T l [�I ] = eiλξI (ulI + δulI ) (2.7)

ulI = ml (∇ξI ) θI (2.8)

with amplitude determined by the Fourier multiplier ml(ξ) in the definition of T l .
The amplitude ulI thus has the size comparable to θI , while the term δuI is a small

correction of the same order as δθI . Thus, given a highly oscillatory input such as
�I = eiλξI θI , the operator T l behaves to leading order like a multiplication operator
on the amplitude. (For our purposes, the simplest way to achieve equation (2.7) will
be to use phase functions defined on the whole torus T

2, but this will not be a serious
restriction.)

From the Ansatz (2.5) and equation (2.1), we see that the corrected scalar field
θ1 = θ + � satisfies the equation

∂tθ1 + ∂l(u
l
1θ1) = ∂t� + ∂l(u

l�) + ∂l(U
lθ) + ∂l(U

l� + Rl) (2.9)

We now expand � and U into individual waves using (2.5) to derive

∂tθ1 + ∂l(u
l
1θ1) = ∂t� + ∂l(u

l�) + ∂l(U
lθ) (2.10)

+
∑

J �= Ī

∂l(U
l
J�I ) + ∂l(

∑

I

Ul
I� Ī + Rl) (2.11)

Our goal is to design the correction � so that the forcing terms on the right hand side of
(2.10)-(2.11) can be represented in divergence form ∂l Rl

1 for a vector field Rl
1 which

is significantly smaller in C0 than the previous error Rl .
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2.1 The Stress Term

Our first goal is to cancel out the term Rl appearing in the rightmost term of (2.11),
which is the only term in equations (2.10)-(2.11) that has low frequency. We expand
this term using (2.7)-(2.8) as

∑

I

Ul
I� Ī + Rl = 1

2

∑

I

(Ul
I� Ī +Ul

Ī
�I ) + Rl

≈ 1

2

∑

I

(ulI θ Ī + ul
Ī
θI ) + Rl

= 1

2

∑

I

|θI |2(ml (∇ξI ) + ml (−∇ξI )) + Rl (2.12)

= 1

2

∑

I

|θI |2(ml (∇ξI ) + ml (∇ξI )) + Rl (2.13)

where the error terms are lower order, involving δθI and δulI . Here we can see already
why we are restricted to multipliers ml(·) which are not odd. Namely, for an odd
multiplier ml(−ξ) = −ml(ξ), the high frequency interactions fail to leave a nontrivial
low frequency part. In other words, the obstruction is that we lack a high-low frequency
cascade.

We therefore assume now that the multiplier ml is not odd. Together with the
divergence free property ξlml(ξ) = 0 and the degree zero homogeneity of the symbol
ml(·), this condition implies that there are linearly independent vectors in the image
of the even part of the multiplier

Al = ml(ξ (1)) + ml(−ξ (1)), Bl = ml(ξ (2)) + ml(−ξ (2)) (2.14)

where ξ (1), ξ (2) ∈ Z
2 = ̂T

2 are nonzero frequencies with integer entries.
At this point, since we now have two vectors Al and Bl in the image of the

even part of ml that are linearly independent, there is some hope to get the terms
in (2.12) to cancel out. Namely, one should first make sure that the phase gradients
∇ξI are perturbations of the directions ξ (1), ξ (2) so that each wave yields a velocity
field taking values in the direction (ml(∇ξI ) + ml(−∇ξI ) ≈ Al or in the direction
(ml(∇ξI ) + ml(−∇ξI ) ≈ Bl . One would then like to choose coefficients θI so that
terms |θI |2(ml(∇ξI )+ml(−∇ξI )) in (2.12) form the appropriate linear combinations
of Al and Bl needed to cancel out Rl .

However, there is an immediate difficulty in implementing the above approach.
Namely, although we know that Al and Bl are linearly independent, it may not be
case that Rl can be written as a linear combination of Al and Bl with non-negative
coefficients |θI |2. To get around this difficulty, we take advantage of a degree of
freedom which already played an important role in the arguments of [21] and [45].
Namely, observe that we do not need to solve the equation (2.12) exactly, but need
only ensure that (2.12) is divergence free. This freedom allows us to subtract from
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(2.11) any vector field e(t)δl which is constant in space and depends only on time.
Therefore the equation we actually solve is more similar to

1

2

∑

I

|θI |2(ml(∇ξI ) + ml (∇ξI )
) = e(t)δl − Rl

ε (2.15)

where Rl
ε is a regularized version of Rl and δl is a constant vector field. If we choose

δl = Al + Bl and make sure that e(t) is bounded below by, say, e(t) ≥ 100‖Rε‖C0 on
the support of Rε , then the coefficients |θI |2 solving (2.15) can be guaranteed to be non-
negative. Observe also that the equation (2.15) leads to the bounds‖θI ‖C0 ≤ C‖Rε‖1/2

C0

for the amplitudes.
The role played by the function e(t)δl is the same as the role played by the low

frequency part of the pressure correction in the scheme for Euler [31, Section 7.3].
This device in some way appears to limit our proof to the periodic setting.

2.2 The High Frequency Interference Terms

Controlling the interference terms between high frequency waves is a fundamental
difficulty in convex integration. In our case, the interference terms require solving the
elliptic equation

∂l R
l
H =

∑

J �= Ī

∂l(U
l
J�I ) =

∑

J �= Ī

U l
J ∂l�I (2.16)

= 1

2

∑

J �= Ī

(Ul
J ∂l�I +Ul

I ∂l�J ) (2.17)

To leading order, these terms have the form

∂l R
l
H = 1

2
(iλ)

∑

J �= Ī

eiλ(ξI+ξJ )(ulJ ∂lξI θI + ulI ∂lξJ θJ ) + . . . (2.18)

= 1

2
(iλ)

∑

J �= Ī

eiλ(ξI+ξJ )θI θJ (m
l (∇ξJ ) ∂lξI + ml (∇ξI ) ∂lξJ ) + . . . (2.19)

We expect to a gain a factor of λ−1 while inverting the divergence in (2.18); however,
solving (2.18) leads in principle to a solution Rl

H of size ‖RH‖C0 ≤ ‖∑

I |θI |2‖C0 ≤
‖R‖C0 , which is not even an improvement on the size of the previous error Rl . These
terms therefore seem to already prohibit the construction of continuous solutions by
convex integration. The same difficulty also arises for the Euler equations.

For the Euler equations, the key idea introduced in [26] which made it possible to
handle high frequency interference terms similar to (2.18) was to construct the high
frequency building blocks using a family of stationary solutions to the Euler equations
known as Beltrami flows. Specifically, the basic building blocks in the construction
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[26] are constructed using vector fields of the form Bleik·x where Bl is a constant vector
amplitude, k · x is a linear phase function, and we have (ik) × Bl = |k|Bl so that the
expression Bleik·x is an eigenfunction of curl and hence a stationary solution to Euler.
The idea of using Beltrami flows was adapted in [31] to building blocks VI = eiλξI vI
with nonlinear phase functions ξI by imposing a “microlocal Beltrami flow” condition
that (i∇ξI ) × vI = |∇ξI |vI pointwise. Viewed from this latter approach, the role of
the Beltrami flow condition is to ensure that the leading term in (2.19) cancels out.

For the active scalar equations we consider here, such a family of stationary solu-
tions is not available, and moreover we do not have any method to control interference
terms between waves which oscillate in distinct directions. For instance, suppose that
the multiplier ml(ξ) is even, and suppose that ξ1, ξ2 ∈ R̂

2 are linearly independent
frequencies for which the terms in (2.19) cancel

m(ξ1) · ξ2 ± m(ξ2) · ξ1 = 0

It then follows from the conditions m(ξ1) · ξ1 = 0,m(ξ2) · ξ2 = 0 that both m(ξ1)

and m(ξ2) must be equal to 0. More generally, one can show that the even part of the
multiplier must vanish when applied to both frequencies

ml (ξ1) + ml (−ξ1) = ml (ξ2) + ml (−ξ2) = 0

if we assume that all of the interference terms in (2.19) cancel. This vanishing of
the even part would prohibit any nontrivial contribution to (2.12). In contrast, in the
case of the surface quasigeostraphic equation where the drift velocity is given by
u = ∇⊥(−
)−1/2θ , the set of Laplace eigenfunctions provides a large family of
high frequency, stationary solutions. However, in this case the multiplier m(ξ) =
i〈−ξ2, ξ1〉|ξ |−1 is odd and we have already seen that such multipliers are out of reach
of our method.

Our main observation which allows us to handle these terms is the fact that the
interference terms which arise when an individual wave interacts with itself always
vanish to leading order from the structure of the equations. Namely, if we look at a
single index J = I , then from the divergence free condition for the symbolm(ξ)·ξ = 0
we see that the leading term in (2.19) gives no contribution

(ml (∇ξI ) ∂lξI + ml (∇ξI ) ∂lξI ) = 0

Therefore, while we lack a method to control interference terms between waves which
oscillate in different directions, we can still pursue an approach where in each step of
the iteration we use corrections � containing waves which oscillate in only a single
direction and thus do not interfere with each other.

2.2.1 Comparison with the Euler and Isometric Embedding Equations

In this Section, we remark on how our observation also gives a new approach to
building weak solutions to the Euler equations which is independent of Beltrami
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flows, and explain why we expect a loss of regularity by comparing to analogous
considerations in the case of the isometric embedding equations.

Our observation of vanishing self-interference terms applies in the case of the Euler
equations as well. For the Euler equations, an individual wave is a velocity field which
takes the form VI = eiλξI (vI + δvI ), and we require that the amplitude takes values
in vI ∈ 〈∇ξI 〉⊥ in order to ensure the divergence free condition for VI . In this case,
the high frequency interference terms between an individual wave and itself have the
form

V j
I ∂ j V

l
I = (iλ)e2iλξI v

j
I ∂ jξI v

l
I + lower order terms (2.20)

Observe that the requirement vI · ∇ξI = 0 forces the the main contribution to cancel.
Thus, the method we apply here in principle generalizes to give a new approach to
producing Hölder continuous weak solutions to the Euler equations which entirely
avoids the use of Beltrami flows and applies in arbitrary dimensions. Our observation
appears to be quite natural in that the key cancellation we exploit comes immediately
from the structure of the equations themselves without imposing any particular Ansatz
in the construction. On the other hand, in contrast to the use of Beltrami flows for Euler,
we are restricted here to removing one component of the error at a time during the
iteration, which ultimately results in a loss of regularity in the solutions obtained from
the construction.

The reason we expect to lose regularity from the restriction of removing one com-
ponent of the error each stage comes from experience with the isometric embedding
equations from the work of Conti, De Lellis and Székelyhidi [18]. For these equations,
there is currently no method available for controlling the relevant interference terms
between high frequency waves for embeddings of codimension 1, and this obstruction
leads to a loss of regularity for the solutions obtained through convex integration.
Namely, without a method to control interference terms between distinct waves, it is
only possible to eliminate a single, rank one component of the metric error in each
step of the iteration from the addition of a single wave. Consequently, it is necessary
to increase the frequencies of the waves multiple times before any C0 improvement
in the metric error can be realized, which leads to a loss of regularity. In contrast, the
use of Beltrami flows for the Euler equations allows for the addition of waves which
oscillate at the same frequency level in several different directions, and the stress error
can be made smaller inC0 after only one step of the iteration. Since our scheme suffers
from the same deficiency as in the case of isometric embeddings (that is, we cannot
use waves at equal frequency levels which oscillate in multiple directions), it turns out
that our scheme is limited to a Hölder exponent which is inferior to the exponent 1/5
achieved for the Euler equations.

The restriction to eliminating a single component of the error in each step of the
iteration also threatens to make our proof considerably more complicated than the
scheme used for Euler. While we are unable to avoid the loss of regularity, we are at
least able to keep the overall complexity of the argument to be essentially no more
complicated than the scheme used for Euler. This simplification is accomplished by
introducing a new technique, which we explain in the following Section.
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2.3 Reducing the Steps in the Iteration

From the discussion in Section 2.2.1, we can now consider a serial convex integration
scheme wherein we cannot reduce the size of the error term Rl until we have added
a series of two corrections

θ1 = θ + �(1) + �(2) (2.21)

Following the original scheme of Nash [40] in the isometric embedding problem, we
should first decompose Rl into components as

Rl = cA A
l + cB B

l

where Al and Bl are linearly independent vectors in the image of ml(ξ) + ml(−ξ)

defined in (2.14). The first correction �(1) to θ should oscillate in the ξ (1) direction
in order to eliminate the Al component of the error Rl by the method described in
Section 2.1. Then, the second correction �(2) should have an even larger frequency
than �(1), but the same amplitude |�(1)| ∼ |�(2)| ∼ |R|1/2, since its purpose is to
eliminate the Bl component of the error Rl . Thus, one stage of the convex integration
is completed after two steps, where each step involves eliminating one component of
the error, and the error Rl is smaller in C0 only at the end of the stage.

It appears that such a serial convex integration scheme should be possible for active
scalar equations and should lead to the same Hölder exponent 1/9 that we achieve here.
On the other hand, such a serial proof seems to be somewhat complicated compared
to the “one-step” scheme used for Euler or to the case of the isometric embedding
equations. In our case, a serial proof would involve treating a larger number of error
terms having unfamiliar estimates, and optimizing a larger number of time, frequency
and length scale parameters. We avoid these additional complexities by making a
simple observation that allows us to reduce the C0 norm of the error in a single step
of the iteration rather than several. It turns out that this idea also causes most of the
terms in the construction to obey estimates which are familiar from experience with
the Euler equations, amounting to an overall more transparent proof.

Our observation which allows us to reduce the error in every stage of the iteration
and thereby simplify our proof is the following. First, note that the addition of the first
correction �(1) results in a remaining error Rl

(1) of the form

Rl
(1) = cB B

l + Rl
E (2.22)

where Rl
E is much smaller than the original error Rl , whereas the term |cB Bl | ∼ |Rl |

has the same size. Rather than using the second correction �(2) to eliminate the term
cB Bl as discussed previously, we observe that we can simultaneously get rid of the
Bl component of the small term Rl

E , thus leaving an error of the form

Rl
1 = cA A

l + Rl
J (2.23)
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where cA Al is the remaining Al component of Rl
E , and the term Rl

J is an even smaller
error term. For our next correction, we can repeat the same idea and eliminate the Al

component of (2.23), leaving an error of the form (2.22). Continuing in this way, we
see that each correction now causes an improvement in the size of the error in the C0

topology, just as in the situation for Euler.
The above discussion has been based on the hope that we can really eliminate the

Al and Bl components of the error, which is not entirely justified at this point. In
fact, there are some further difficulties which stand in our way before this task can be
accomplished which will become more clear as we specify the construction. One such
difficulty is the appearance of low frequency interference terms.

2.4 Low Frequency Interference Terms

It turns out that the most straightforward approach to the construction based on the ideas
Section 2.2 gives rise to certain interference terms of low to intermediate frequency
which apparently prohibit the success of our scheme. Thus, while the idea introduced in
Section 2.2 allows us to control the high frequency interference terms in a sactifactory
manner, we must incorporate one additional idea into the construction before our
scheme can handle every type of error term which arises.

The ideas in Section 2.2 suggest that a natural approach to the construction is to
use waves of the form �I = eiλξI (θI + δθI ) where the phase functions ξI oscillate
in the direction ±ξ (1) (or ±ξ (2)) in the sense that the gradients remain close to their
common initial values

∇ξI ≈ ±ξ (1) (2.24)

For an index I , let us write f (I ) ∈ {±} to denote the sign appearing in (2.24).
According to Section 2.2, we have a method to ensure that high frequency nonlinear

interference terms obey good bounds. Thus, every interaction term of the form

∂l(�IU
l
J + �JU

l
I ) (2.25)

which arises between waves of the same sign f (I ) = f (J ) ∈ {±} can be handled by
our method, as these terms are all of high frequency.

A new difficulty arises when we consider interference terms between waves of
opposite signs f (I ) = − f (J ), which we call “Low-Frequency Interference Terms”.
In this case, the terms of the form �IUl

J + �JUl
I as in (2.25) can be expressed to

leading order as

�IU
l
J + �JU

l
I ≈ eiλ(ξI+ξJ )(θI u

l
J + θJ u

l
I ) (2.26)

When we consider indices with opposite signs f (I ) = − f (J ), the term (2.26) cannot
be viewed as a high frequency error term. In the worst case it may even be true that
∇(ξI + ξJ ) = 0 thanks to the initial conditions satisfying (2.24).
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It turns out that having low frequency interference terms of the form (2.26) prevents
us from solving the quadratic equation to determine the amplitudes θI . To see this
difficulty, note that the left hand side of the equation analogous to (2.15), which
includes all low frequency interactions, would have to include terms of the form

∑

I,J
f (I )=+, f (J )=−

�IU
l
J + �JU

l
I =

∑

I,J
f (I )= f (J )=+

eiλ(ξI−ξJ )
(

θI θ̄J + θJ θ̄I
)

Al + . . .

(2.27)

Remarkably, the right hand side of (2.27) appears to obey all the estimates we would
require for obtaining solutions with Hölder regularity 1/9−, despite the appearance of
the parameter λ. The problem is that the right hand side of (2.27) must remain bounded
from 0 in order to solve the quadratic equation for the amplitudes. On the other hand,
there is no way to preclude the possibility that the series (2.27) cancels completely at
points (t, x) on which the amplitudes θI (t, x) and θJ (t, x) have essentially the same
size, due to the presence of the oscillating factors eiλ(ξI−ξJ ) in the cross terms arising
from distinct indices J �= I .

At first sight, this difficulty would seem to completely prevent us even from achiev-
ing continuous solutions, as we are left with no way to obtain a C0 improvement in
the size of the error on the regions where distinct indices interact. We overcome this
obstruction by making one more adjustment to the construction. Roughly speaking,
our idea is to allow the condition (2.24) to be satisfied by “half” the waves in our
construction, whereas the other “half” of the waves in the construction involve phase
functions with initial data satisfying

∇ξI ≈ ±10ξ (1) (2.28)

Furthermore, we ensure that every nonlinear interaction which takes place between
nonconjugate waves involves one wave satisfying (2.24), and a second wave satisfy-
ing (2.28). In this way, every interference term of the form (2.26) is actually a high
frequency error term. Moreover, every wave oscillates in a direction essentially par-
allel to ξ (1), so that the idea of Section 2.2 still applies to treat these high frequency
interference terms.

With these ideas in hand, we are now ready to proceed with the formal construction
in detail, beginning with the statement of the Main Lemma.

3 The Main Lemma

In order to state the main lemma, let us recall that we have fixed once and for all a
choice of linearly independent vectors

Al = ml(ξ (1)) + ml(−ξ (1)), Bl = ml(ξ (2)) + ml(−ξ (2)) (3.1)
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where ξ (1), ξ (2) ∈ Z
2 = ̂T

2 are nonzero (integral) frequencies. The existence of these
vectors is guaranteed by the condition that ml(ξ) is not odd, and the orthogonality
condition ξlml(ξ) = 0.

Definition 3.1 For a constant vector Al , we say that (θ, ul , cA, Rl
J ) satisfy the Com-

pound Scalar-Stress equation (with vector Al ) if

{

∂tθ + ∂l(θu
l) = ∂l(cA A

l + Rl
J )

ul = T l (θ)
(3.2)

In this case, we will refer to the tuple (θ, ul , cA, Rl
J ) as a compound scalar-stress

field.

For a solution to the compound scalar-stress equation (2.1), we define compound
frequency-energy levels to be the following

Definition 3.2 Let L ≥ 1 be a fixed integer. Let � ≥ 2, and let ev , eR and eJ be
positive numbers with eJ ≤ eR ≤ ev . We say that (θ, ul , cA, Rl

J ) have frequency
and energy levels below (�, ev, eR, eJ ) to order L in C0 if (θ, ul , cA, Rl

J ) solve the
system (3.2) and satisfy the bounds

||∇ku||C0 + ‖∇kθ‖C0 ≤ �ke1/2
v k = 1, . . . , L (3.3)

‖∇k (∂t + u · ∇) u‖C0 ≤ �k+1ev k = 0, . . . , L − 1 (3.4)

||∇kcA||C0 ≤ �keR k = 0, . . . , L (3.5)

||∇k (∂t + u · ∇) cA||C0 ≤ �k+1e1/2
v eR k = 0, . . . , L − 1 (3.6)

||∇k RJ ||C0 ≤ �keJ k = 0, . . . , L (3.7)

||∇k (∂t + u · ∇) RJ ||C0 ≤ �k+1e1/2
v eJ k = 0, . . . , L − 1 (3.8)

Here ∇ refers only to derivatives in the spatial variables.

Note that we assume bounds (3.3)-(3.4) on the drift velocity ul which do not in gen-
eral follow from the corresponding bounds on (θ, cA, Rl

J ) and the transport equation
(3.2). We assume these bounds on ul in order to avoid logarithmic losses in our esti-
mates which would arise otherwise from the lack of C0 boundedness of the operator
ul = T lθ defining the velocity.

We now state the Main Lemma of the paper, which summarizes the result of one
step of the convex integration procedure. The statement of this lemma involves two
constants: K0 ≥ 1 (specified in Line (5.30) of the construction) and K1 ≥ 1 (deter-
mined in Line (5.25) of the construction, see also Section 8.1). These constants K0
and K1 depend only on the operator T l in the statement of the Main Theorem.

Lemma 3.1 (The Main Lemma) Suppose that L ≥ 2 and let K , M ≥ 4 be non-
negative numbers such that K ≥ K0. There is a constant C depending only on L, K ,
M and the operator T l such that the following holds:
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Let (θ, ul , cA, Rl
J ) be any solution of the compound scalar-stress system whose

compound frequency and energy levels are below (�, ev, eR, eJ ) to order L in C0,
and let I ⊆ R be a nonempty closed interval such that

supp RJ ∪ supp cA ⊆ I × T
2 (3.9)

Define the time-scale τ̂ = �−1e−1/2
v , and let

e(t) : R → R≥0

be any non-negative function for which the lower bound

e(t) ≥ KeR for all t ∈ I ± τ̂ (3.10)

is satisfied in a τ̂ -neighborhood of the interval I , and whose square root satisfies the
estimates

|| d
r

dtr
e1/2||C0 ≤ M

(

�e1/2
v

)r
e1/2
R , 0 ≤ r ≤ 2 (3.11)

Now let N be any positive number obeying the bound

N ≥
(

ev

eR

)3/2

(3.12)

and define the dimensionless parameter b =
(

e1/2
v

e1/2
R N

)1/2

.

Then there exists a solution (θ1, ul1, cB, Rl
1) of the form θ1 = θ + �, u1 = u + U

to the Compound Scalar-Stress Equation (3.2) with vector Bl whose frequency and
energy levels are below

(�′, e′
v, e

′
R, e′

J ) =
(

CN�, eR, K1eJ ,
e1/4
v e3/4

R

N 1/2

)

=
⎛

⎝CN�, eR, K1eJ ,

(

e1/2
v

e1/2
R N

)1/2

eR

⎞

⎠

=
(

CN�, eR, K1eJ , b−1 e
1/2
v e1/2

R

N

)

(3.13)

to order L in C0, and whose stress fields R1 and cB are supported in

supp cB ∪ supp R1 ⊆ supp e × T
2 (3.14)
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The correction� = θ1−θ is of the form� = ∇·W. This correction and the correction
to the velocity field Ul = T l [�] can be guaranteed to obey the bounds

||�||C0 + ‖Ul‖C0+ ≤ Ce1/2
R (3.15)

‖∇�‖C0 + ‖∇U‖C0 ≤ CN�e1/2
R (3.16)

‖(∂t + u j∂ j )�‖C0 + ‖(∂t + u j∂ j )U‖C0 ≤ Cb−1�e1/2
v e1/2

R (3.17)

||W ||C0 ≤ C�−1N−1e1/2
R (3.18)

‖∇W‖C0 ≤ Ce1/2
R (3.19)

||(∂t + u j∂ j )W ||C0 ≤ Cb−1N−1e1/2
v e1/2

R (3.20)

The energy increment from the correction is prescribed up to errors bounded by

∣

∣

∣

∣

∫

T2

|�|2
2

(t, x)dx −
∫

T2
e(t)dx

∣

∣

∣

∣

≤ 1

2

∫

T2
e(t)dx + eR

N
(3.21)

and the incremental energy variation satisfies an estimate

∣

∣

∣

∣

d

dt

∫

T2
|�|2(t, x)dx

∣

∣

∣

∣

≤ Cb−1�e1/2
v eR (3.22)

uniformly in time. Finally, the space-time support of the correction � is contained in
supp e × T

2.

3.1 Remarks About the Main Lemma

The overall structure of Lemma 3.1 is based on the Main Lemma of [31, Lemma 10.1].
The most important difference in our Lemma lies in the difference in the definition
of the compound frequency energy levels. The bounds implicit in (3.13), which state
the rate at which we are able to reduce the stress error, are the most essential point the
main lemma and dictate the regularity of the solutions we obtain. Another noticeable
difference between Lemma 3.1 compared to the Lemmas [31, Lemma 10.1] and [34,
Lemma 4.1] is that the estimate (3.21) gives us worse control over the increment
of energy. In those Lemmas, the term 1

2

∫

T2 e(t)dx is not present, and the error in
prescribing the energy increment is of size O(N−1).

This weaker estimate on the energy increment is still sufficient for the applications
considered in those papers. In [31] and [34], the same estimate is applied to prove
the nontriviality of solutions, by proving that the energy strictly increases during the
iteration at each fixed time slice on which the corrections are nontrivial. The same
statement can be obtained here, although in our case the nontriviality of solutions
follows already from the weak-* approximation statement in Theorem 1.1. In [34], it
was shown that a localized version of the estimate (3.21) can be combined with the
bounds (3.18)-(3.19) to prove that that the construction necessarily results in solutions
which fail to have any kind of improved C1/5+ε

x (B) local regularity (or even local
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W 1/5+ε,1 regularity) on every open ball B and every time slice contained in the support
of the iteration (see [34, Theorem 1.2] for a precise statement). This lack of higher
regularity is an automatic consequence of the construction, as the same proof shows
the failure of local regularity above C1/5−ε

x regularity for the earlier constructions
of C1/5−ε

t,x solutions in [23,31]. The same result applies in our setting by the same
proof, using the estimates (3.18)-(3.19) and the localized version of (3.21). Namely,
our solutions in dimension 2 fail to belong to C1/9+ε

x (B) on every open ball B and
every time slice contained in the support of the iteration, and in dimension d fail to
have any local regularity C1/(1+4d)+ε

x (B) in a similar way.

3.2 Modifications for the Higher Dimensional Case

In this subsection we make some remarks about how to modify our proof to apply in
higher dimensions.

In order to prove Theorem 1.5 regarding the case of higher dimensions, the relevant
Main Lemma has a slightly different formulation, as one must modify the definitions
of the compound scalar stress equation and the compound frequency energy levels.
In the case of dimension d, we assume given a linearly independent set of vectors
A(1), . . . , A(d) in the image of the even part of the multiplier. A typical solution to the
Compound Scalar Stress equation will then be a solution to the equation

∂tθ + ∂l(θu
l) = ∂l(cA,(1)A

l
(1) + . . . + cA,(d−1)A

l
(d−1) + Rl

J )

ul = T l(θ)
(3.23)

A single step of the iteration will remove the A(1) component of the error, giving a
solution θ1 and a new error of the form

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cA,(2)A

l
(2) + . . . + cA,(d−1)A

l
(d−1) + cA,(d)A

l
(d) + Rl

J,1)

(3.24)

ul1 = T l(θ1) (3.25)

At the step above (or even earlier when writing (3.23)) we can absorb the
A(2), . . . , A(d−1) components of RJ,1 into the other terms. (To say it in a slightly
different way, one can assume from the start in writing (3.23) that RJ is a multiple of
A(d) by absorbing the other components of RJ into the other terms.)

The Definition 3.2 of compound frequency energy levels now should include d + 1
different energy levels ev ≥ eR,[1] ≥ . . . ≥ eR,[d−1] ≥ eJ . The Main Lemma then
takes as an input a compound scalar stress field with given frequency energy levels
and outputs another scalar stress field with compound frequency energy levels

(

�, ev, eR,[1], . . . , eR,[d−1], eJ
)

�→ (

CN�, eR,[1], K1eR,[2], . . . , K1eR,[d−1], K1eJ , e
′
J

)

(3.26)
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e′
J =

(

e1/2
v

e1/2
R,[1]N

)1/2

eR,[1] (3.27)

as in (3.13). All the bounds of the Main Lemma then hold with eR replaced by eR,[1],
since we are eliminating the first and largest component of the error, and leaving the
other terms for the next stages.

The proof of the Main Lemma is then performed similarly as below, but naturally
involves more terms and notation. The Main Lemma is applied to prove Theorem 1.5
in a similar way as is done in Section 9 below, where one maintains a constant ratio of
the consecutive energy levels with size bounded by ev

eR,[1] ,
eR,[i]

eR,[i+1] ≤ K1
Z . The difference

in the iteration then is the choice of N(k) ∼ Z (4d+1)/2 instead of (9.14) at later stages
k. Comparing the growth of frequencies �(k) ∼ Z (4d+1)k/2 to the decay in energy

levels e1/2
R,[1],(k) ∼ Z−k/2 as in (9.26), we obtain Hölder regularity up to 1

(4d+1)
as

stated in Theorem 1.5.
In the next Sections 4-8, we give the proof of the Main Lemma. In the following

Sections 9-11, we then explain how the Main Lemma can be used to deduce Theo-
rems 1.1-1.2.

4 The Microlocal Lemma

The following Lemma will be used heavily in the construction in order to control the
output of a convolution operator applied to a highly oscillatory input. The Lemma
allows us to show that, to leading order, a convolution operator simply behaves like a
multiplication operator when it is applied to a high frequency input with a nonlinear
phase function.

In all of our applications, the kernel K (h) below will be a Schwartz function essen-
tially supported on length scales of order |h| ∼ λ−1 for large λ. We normalize the
Fourier transform of a function K : R

2 → C to be

K̂ (ξ) =
∫

R2
e−iξ ·hK (h)dh

Lemma 4.1 (Microlocal Lemma) Suppose that

T [�](x) =
∫

R2
�(x − h)K (h)dh

is a convolution operator acting on functions� : T
2 → C, with a kernel K : R

2 → C

in the Schwartz class. Let ξ : T
2 → R and θ : T

2 → C be smooth, periodic functions
and λ ∈ Z be an integer. Then for any input of the form

� = eiλξ(x)θ(x)
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we have the formula

T [�](x) = eiλξ(x)
(

θ(x)K̂ (λ∇ξ(x)) + δ[T�](x)
)

(4.1)

where the error in the amplitude term has the explicit form

δ[T�](x) =
∫ 1

0
dr

d

dr

∫

R2
e−iλ∇ξ(x)·hei Z(r,x,h)θ(x − rh)K (h)dh

Z(r, x, h) = rλ
∫ 1

0
hahb∂a∂bξ(x − sh)(1 − s)ds

(4.2)

Proof Observe that

e−iλξ(x)T [�](x) =
∫

R2
eiλ(ξ(x−h)−ξ(x))θ(x − h)K (h)dh (4.3)

By Taylor expanding, we express

ξ(x − h) − ξ(x) = −∇ξ(x) · h +
∫ 1

0
hahb∂a∂bξ(x − sh)(1 − s)ds (4.4)

In our applications, the kernel K is localized to small values of |h| ∼ λ−1 for large λ,
so we view the second term in (4.4) as a small error. Similarly, we think of θ(x − h)

as a perturbation of θ(x), which motivates us to express the right hand side of (4.3) as

e−iλξ(x)T [�](x) =
∫

R2
e−iλ∇ξ(x)·hθ(x)K (h)dh + δ[T�](x), (4.5)

where δ[T�](x) is expressed in (4.2). The proof concludes by recognizing that θ(x)
can be factored out of the integral in (4.5), which gives formula (4.1). ��
Remark 3 We remark that the same method applied here to prove Lemma 4.1 can also
be iterated to obtain a higher order expansion of T [�](x) involving only the functions
θ(x), ∇ξ(x) and their derivatives evaluated at the point x

δ[T θ ](x) = −i ∂aθ(x)∂a K̂ (λ∇ξ(x)) − 1

2
iλ θ(x)∂a∂bξ(x)∂a∂b K̂ (λ∇ξ(x)) + . . .

(4.6)

To obtain this further expansion, one modifies the function Z defined in (4.2) to have
an additional factor of r in the argument of the phase function

Z(r, x, h) = rλ
∫ 1

0
hahb∂a∂bξ(x − rsh)(1 − s)ds
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The expansion (4.6) is then obtained by Taylor expansion in the variable r via inte-
gration by parts. We do not take this approach here because it does not improve our
estimates, and results in some more complicated formulas.

5 The Construction

We now give a detailed description of the construction. We start by obtaining a com-
plete list of the error terms.

Suppose that we are in the setting of Lemma 3.1. Thus, we have a solution
(θ, u, cA, RJ ) to the compound scalar-stress equation with vector Al = ml(ξ (1)) +
ml(−ξ (1)) as in (2.14)

⎧

⎨

⎩

∂tθ + ∂l

(

θul
)

= ∂l

(

cA A
l + Rl

J

)

ul = T l [θ ]
(5.1)

whose frequency-energy levels are below (�, ev, eR, eJ ). After adding a correction
� to the scalar field, the corrected scalar θ1 = θ + � and drift velocity ul1 = ul +Ul ,
Ul = T l [�] satisfy the system

∂tθ1 + ∂l(θ1u
l
1) = ∂t� + ∂l(u

l�) + ∂l(θU
l) + ∂l(�Ul + cA A

l + Rl
J ) (5.2)

As a preliminary step, it is necessary to define suitable regularizations (θε, uε, c̃A, Rε)

of (θ, u, cA, RJ ). The purpose of these regularizations is to ensure that only the “low
frequency parts” of the given (θ, u, cA, RJ ) will influence the building blocks of the
construction. These mollifications give rise to an error term

Rl
M = (ul − ulε)� + (θ − θε)U

l + (cA − c̃A) Al + (Rl
J − Rl

ε) (5.3)

Our goal is to design a correction � for the scalar field θ so that the corrected scalar
θ1 = θ+� and drift velocity ul1 = ul+Ul satisfy the compound scalar-stress equation
with vector Bl = ml(ξ (2)) + ml(−ξ (2)) as in (2.14)

{

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cB B

l + Rl
1)

ul1 = T l [θ1]
(5.4)

whose compound frequency energy levels are bounded as in Lemma 3.1.

5.1 The Shape of the Corrections

Our correction is a sum of individual waves

� =
∑

I

�I (5.5)
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�I = eiλξI (θI + δθI ) (5.6)

where we are free to specify the amplitudes θI and the phase function ξI . The parameter
λ is a large frequency parameter of the form

λ = BλN� (5.7)

where Bλ is a very large constant associated to λ which is chosen at the end of the
argument. (For technical reasons, we will require that λ ∈ Z+ is a positive integer, so
Bλ will really have some dependence on N�, but will nonetheless be bounded, and
should be thought of as a constant.) The term δθI in (5.6) is a small correction term
which is present to ensure that the wave �I has compact support in frequency space.
We will specify δθI later, but it is important to remark that

‖δθI ‖C0 → 0, as λ → ∞

Each wave �I has a conjugate wave � Ī = �I with an opposite phase function
ξ Ī = −ξI and amplitude θ Ī = θ̄I so that the overall correction is real-valued. We will
choose the amplitudes θI = θ̄I to be real-valued as well.

The index I for the wave�I consists of two parts I = (k, f ) ∈ Z×{±}. The discrete
index k ∈ Z specifies the support of the wave �I = �(k, f ) in time. Specifically, the
support of �(k, f ) will be contained in the time interval [(k − 2

3 )τ, (k + 2
3 )τ ] where τ

is a time scale parameter that will be chosen during the iteration. The index f ∈ {±}
is a sign which specifies the direction of oscillation of the wave �(k, f ).

The phase functions ξI are solutions to the transport equation

(∂t + ulε∂l)ξI = 0

ξI (t (I ), x) = ξ̂I (x)
(5.8)

The amplitudes θI will be supported on a small time interval during which the phase
functions remain close to their initial data. The initial data ξ̂I for the phase function
ξI = ξ(k, f ) is chosen at the time t (I ) = kτ depending on the index I = (k, f )

ξ̂I (x) = ξ̂(k,±)(x) = ±10[k]ξ (1) · x (5.9)

where [k] ∈ {0, 1} is equal to 0 when k is even and is equal to 1 when k is odd. In
particular, we have

∇ ξ̂I = ±10[k]ξ (1), [k] ∈ {0, 1}

Our individual waves are localized in frequency and take the form

�I = P I≈λ[eiλξI θI ] (5.10)
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The operators P I≈λ in (5.10) restrict to frequencies of order λ in a neighborhood of
λ∇ ξ̂I . To be explicit, let η̂≈1(ξ) be a bump function supported on frequencies

η̂≈1(ξ) ∈ C∞
c

(

B|ξ (1)|/2(ξ
(1))

)

which has the property that

η̂≈1(ξ) = 1, if |ξ − ξ (1)| ≤ 1

4
|ξ (1)|

We then define a frequency cutoff supported on high frequencies of order λ by rescaling
and reflection

η̂I≈λ(ξ) = η̂≈1(±10−[k]λ−1ξ).

Then P I≈λ is given explicitly by a Fourier multiplier

̂P I≈λF(ξ) = η̂I≈λ(ξ)F̂(ξ).

Including this “projection operator” P I≈λ guarantees that all the corrections (5.10)

have frequency support in the ball |ξ − (λ∇ ξ̂I )| ≤ λ
|∇ ξ̂I |

2 , and in particular have
integral 0. Having compact support in frequency space will allow us to easily control
the resulting increment to the velocity field, which is obtained by applying another
Fourier multiplier.

By the Microlocal Lemma 4.1, it is possible to write the wave (5.10) in the form
(5.6) with an explicit remainder δθI , since we have

�I = P I≈λ[eiλξI θI ] = eiλξI (θI η̂
I≈λ (λ∇ξI ) + δθI )

= eiλξI (θI + δθI ) (5.11)

provided that the phase gradient is sufficiently close to its initial value

|∇ξI − ∇ ξ̂I | � |∇ ξ̂I |
4

(5.12)

We will verify that inequality (5.12) is satisfied when the parameter lifespan parameter
τ is chosen.

Applying the Microlocal Lemma 4.1 again, we can also calculate the resulting
correction to the drift velocity.

Ul
I := T l [�I ] (5.13)

T l P I≈λ[eiλξI θI ] = eiλξI (θI K̂
l (λ∇ξI ) η̂I≈λ (λ∇ξI ) + δulI ) (5.14)

Ul
I = eiλξI (θI m

l (∇ξI ) + δulI ) (5.15)
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Therefore, once we have verified (5.12), we have

Ul
I = eiλξI (ulI + δulI ) (5.16)

ulI = θI m
l (∇ξI ) (5.17)

with an explicit error term δulI given by Lemma 4.1.

5.2 Choosing the Amplitudes

According to Section 5.1, we can now decompose the remaining error terms in Equa-
tion (5.2) as follows

∂tθ1 + ∂l

(

θ1u
l
1

)

= ∂t� + ∂l(u
l
ε�) + ∂l(θεU

l) (5.18)

+ ∂l [
∑

I

�IU
l
Ī
+ c̃A A

l + Rl
ε] (5.19)

+
∑

J �= Ī

∂l(�IU
l
J ) (5.20)

+ ∂l R
l
M (5.21)

The term Rl
M comes from the regularizations in Equation (5.3).

The first objective of the correction is to eliminate the term (5.19), which is the only
low frequency term that arises. However, since we consider oscillations in essentially
only one direction ∇ξI ≈ ±10[k]ξ (1), we will only able to eliminate the Al component
of (5.19).

We begin by expanding the low frequency part of the interactions in line (5.19) as

∑

I

(�IU
l
Ī
) = 1

2

∑

I

(�IU
l
Ī
+ � Ī U

l
I )

=
∑

I∈I+
θI θ̄I (m

l( − ∇ξI ) + ml(∇ξI
)) + Lower Order Terms (5.22)

=
∑

I∈I+
|θI |2(ml( − ∇ ξ̂I

) + ml(∇ ξ̂I
)

) + Lower Order Terms (5.23)

=
∑

I∈I+
|θI |2Al + Lower Order Terms (5.24)

We will give a complete list of the lower order terms below after we have chosen the
amplitudes θI .

We wish to choose the amplitudes θI so that the main term in (5.24) cancels with
the Al component of the other terms in line (5.19). We achieve this cancellation in two
steps. First, we decompose Rε into components

Rl
ε = cJ A

l + cB B
l (5.25)

123



2 Page 30 of 77 P. Isett, V. Vicol

We also subtract a constant vector field ∂l(e(t)Al) = 0 from line (5.19), which leads
us to impose to an equation

∑

I∈I+
|θI |2Al = e(t)Al + c̃A A

l + cJ A
l (5.26)

= e(t)(1 + ε)Al (5.27)

ε = c̃A + cJ
e(t)

(5.28)

for the amplitudes θI . In this way, the amplitudes θI are chosen to eliminate the Al

component of the low frequency part of the stress Rl
ε .

It will be important for our construction that the term ε is smaller than the constant
1 in the (1 + ε) term in (5.27). From the lower bound e(t) ≥ KeR assumed in (3.10),
we can obtain an upper bound

‖ε‖C0 ≤ Z

K
(5.29)

on the size of the term (5.28), where Z is a constant depending only on the vectors Al

and Bl . Now, provided K ≥ K0 = 2Z , we have

‖ε‖C0 ≤ 1

2
(5.30)

A subtle point here is that the bound (5.29) does not follow immediately from (3.10).
Namely, we must also check that the same lower bound remains true on the set

e(t) ≥ KeR for all (t, x) ∈ supp (c̃A + cJ ) , (5.31)

which is slightly larger than the supports of the given RJ and cA due to a regularization
in time in the definitions of c̃A, cJ . Thus, the estimates (5.29)-(5.30) are guaranteed
only after (5.31) has been verified, which is accomplished in Line (6.17) below when
we choose the mollifying parameters. We now assume that (5.29)-(5.30) hold in order
to finish defining the construction.

From Equation (5.27), we are led to choose amplitudes of the form

θI = e1/2(t)ηk(t)γ, I = (k, f ) (5.32)

γ = (1 + ε)1/2 (5.33)

The functions

ηk(t) = η

(

t − kτ

τ

)
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are elements of a rescaled partition of unity in time

∑

u∈Z
η2(t − u) = 1

which we use to patch together local solutions of Equation (5.27). Our choice of ηk
ensures that each amplitude θ(k, f ) has support in a time interval [kτ − 2τ

3 , kτ + 2τ
3 ]

of duration 4τ
3 . The coefficient γ ensures that (5.27) is satisfied, and γ is assured to

be well-defined by the bound (5.30).
To express the remaining error terms in a compact way, let us introduce the notation

θ̃I = θI + δθI , ũlI = ulI + δulI

Thus, �I = eiλξI θ̃I and Ul
I = eiλξI ũlI .

Having chosen θI , we can now expand the error term in (5.19) as follows

∑

I

�IU
l
Ī
+ c̃A A

l + Rl
ε = cB B

l + Rl
S (5.34)

Rl
S =

∑

I

(�IU
l
Ī
) −

∑

I∈I+
|θI |2Al (5.35)

We now expand

(�IU
l
Ī
+ � Ī U

l
I ) = θ̃I ũ

l
Ī
+ θ̃ Ī ũ

l
I

= |θI |2(ml( − ∇ ξ̂I
) + ml(∇ ξ̂I )) + Rl

SI,1 + Rl
SI,2

Rl
SI,1 = |θI |2[

(

ml(−∇ξI )−ml( − ∇ ξ̂I
))+(ml(∇ξI )−ml(∇ ξ̂I

)

)]
Rl
SI,2 = δθI ũ

l
Ī
+ θ̃I δu

l
Ī
− δθI δu

l
Ī
+ δθ Ī ũ

l
I + θ̃ Ī δu

l
I − δθ Ī δu

l
I

which gives

Rl
S =

∑

I

(Rl
SI,1 + Rl

SI,2) (5.36)

Note that, at any given time t , at most four indices I contribute to the sum in (5.36).

5.3 The Remaining Error Terms

In Sections 5.1-5.2 we have defined the construction up to the specification of a few
parameters. Our result is that the corrected field θ1 = θ + � and drift velocity ul1 =
ul +Ul satisfy Equation (5.4) with cB defined in line (5.25), and

R1 = RT + RL + RH + RM + RS (5.37)
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The terms RM RS are defined in (5.3) and (5.36). We now rewrite the remaining terms
in Equations (5.18)-(5.20) using the fact that the velocity fields appearing in these
equations are divergence free.

The transport term RT is obtained by solving

∂l R
l
T =

(

∂t + ulε∂l
)

� (5.38)

=
∑

I

eiλξI
(

∂t + ulε∂l
)

θ̃I (5.39)

Here the term where the derivative hits the phase functions vanishes according to
equation (5.8). Formula (5.39) suggests that the transport term has frequency λ, so
we expect to gain a factor λ−1 in solving equation (5.38). In fact, we will choose our
mollification uε to be a frequency-localized version of u so that together with (5.10),
the term (5.38) is literally supported on frequencies of size λ

3 ≤ |ξ | ≤ 20λ. Hence,
there is a frequency localizing operator P≈λ satisfying

(

∂t + ulε∂l
)

� = P≈λ [(∂t + uε · ∇) �]

This frequency localization property allows us to simply define

Rl
T = ∂ l
−1P≈λ [(∂t + uε · ∇) �] (5.40)

In particular, we obtain the bound

‖RT ‖C0 ≤ λ−1‖ (∂t + uε · ∇) �‖C0 (5.41)

The terms remaining from (5.18) and (5.20) are the High-Low term

∂l R
l
L = Ul∂lθε (5.42)

=
∑

I

eiλξI ũ j
I ∂ jθε (5.43)

and the high frequency interference terms

∂l R
l
H =

∑

J �= Ī

U l
J ∂l�I (5.44)

The frequency cutoffs in our definitions of θε,UI and �I ensure both of these terms
have Fourier support in frequencies λ

3 ≤ |ξ | ≤ 40λ. Here it is important that we have
localized the frequency support each �I and Ul

I to a limited range of angles. As a
consequence,

Ul∂lθε = P≈λ[Ul∂lθε]
Ul

J ∂l�I = P≈λ[Ul
J ∂l�I ]
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for some frequency projection operator P≈λ, and we can define

Rl
L = ∂ l
−1P≈λ[U j∂ jθε] (5.45)

Rl
H =

∑

J �= Ī

∂ l
−1P≈λ[Ul
J ∂l�I ] (5.46)

Now that we have written down the error terms (5.37), we must observe that each of
these terms can be made small. For the transport term Rl

T , the estimate (5.41) ensures
that RT is small once λ is chosen sufficiently large, and the same type of estimate
can be used to control the High-Low term RL . The high-frequency interference terms
require a more careful treatment.

Let us focus on an individual term in the sum.

Ul
J ∂l�I = eiλ(ξI+ξJ )((iλ)ũlJ ∂lξI θ̃I + ũlJ ∂l θ̃I ) (5.47)

We expand this term as

Ul
J ∂l�I = (iλ) eiλ(ξI+ξJ )(θJm

l (∇ξJ ) + δulJ )∂lξI θ̃I (5.48)

If we regard the phase gradients ∇ξI ≈ ∇ ξ̂I as perturbations of their initial values,
the main term in (5.48) vanishes

ml
(

∇ ξ̂J

)

∂l ξ̂I = ml(±∇ ξ̂I )∂l ξ̂I = 0

from the degree zero homogeneity of m(ξ) and the identity m(ξ) · ξ = 0.
The terms which remain are all lower order

1

(iλ)
Ul

J ∂l�I = eiλ(ξI+ξJ )θJ θ̃I (m
l (∇ξJ ) − ml(∇ ξ̂J

)

)∂lξI (5.49)

+ eiλ(ξI+ξJ )θJ θ̃I m
l(∇ ξ̂J )(∂lξI − ∂l ξ̂I ) (5.50)

+ eiλ(ξI+ξJ )δulJ ∂lξI θ̃I (5.51)

The terms (5.49), (5.50) are made small by choosing the lifespan parameter τ to be
small, while the term (5.51) is made small once λ is chosen sufficiently large (see
Section 6.1). The high-frequency term RH itself is then controlled by the estimate

‖RH‖C0 ≤ C

λ
‖
∑

J �= Ī

U l
J ∂l�I‖C0

from the formula (5.46). This calculation concludes our list of the error terms (5.37).
What remains is to specify the parameters in the construction, prove estimates for the
elements of the construction and finally to check that the estimates stated in Lemma 3.1
are satisfied.
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6 Specifying Parameters and the Mollification Term

To initialize the argument, we must specify how we regularize the given solution
(θ, u, cA, Rl) to the compound scalar-stress equation. In this section, we specify how
these regularizations are defined. Because the flow map of the regularized velocity is
used to define the regularizations of cA and Rl , it is necessary to start with the defini-
nition of the regularized velocity. After the regularizations of cA and Rl are defined,
we are able to verify the lower bound (5.31) which had been assumed previously to
guarantee a well-defined construction.

To obtain the regularized scalar field θε and drift velocity uε , we take low frequency
projections in the spatial variables with length scale parameters εθ and εu

θε = P2≤qθ, where 2−q = εθ (6.1)

uε = P2≤qu, where 2−q = εu (6.2)

The reason for the double mollification in equation (6.2) will become apparent during
the commutator estimates of Section 7. The operator is given by rescaling a Fourier
multiplier

P̂≤χ F(ξ) = η̂

(

ξ

2χ

)

F̂(ξ)

where η̂(ξ) is a smooth function with compact support in |ξ | ≤ 2 that is equal to 1 on
|ξ | ≤ 1.

By well-known estimates for convolutions with mollifiers satisfying vanishing
moment conditions (see [31] Section 14), we have

‖θ − θε‖C0 ≤ CLεaθ ‖∇aθ‖C0 (6.3)

‖u − uε‖C0 ≤ CLεau‖∇au‖C0 (6.4)

We want to choose the length scales εθ and εu as large as possible while ensuring that
the mollification term Rl

M in (5.3) is acceptably small. The main terms in (5.3) where
these mollification errors appear are

Rl
M,θ =

∑

I

(θ − θε) e
iλξI ulI (6.5)

Rl
M,u =

∑

I

eiλξI θI (u
l − ulε) (6.6)

Logically, the terms (6.5) and (6.6) are not well-defined until we have specified how
to define uε . However, from the expressions (5.32) and (5.17) and the bound (3.11)
we have an a priori estimate

‖RM,θ‖C0 + ‖RM,u‖C0 ≤ Ae1/2
R

(‖θ − θε‖C0 + ‖u − uε‖C0
)

(6.7)
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for A a constant depending only on the parameter M in Lemma 3.1.
Using (6.3)-(6.4) for a = L and the bound (3.3), we can choose parameters of the

form

εθ = εu = 1

B
N−1/L�−1 (6.8)

Here B is some large constant depending on A in (6.7) chosen to assure that

‖RM,θ‖C0 + ‖RM,u‖C0 ≤ e1/2
v e1/2

R

1000N
(6.9)

The estimate (6.9) is stronger than what we require for Lemma 3.1. Rather, estimate
(6.9) is the type of bound one requires to obtain solutions with regularity 1/3− (see
[31] Section 13).

Observe that the parameter choice (6.8) is exactly the choice of parameter taken in
[31] Section 15 up to a constant. We will therefore in many cases be able to refer to
the estimates of [31] without repeating the proofs.

Having defined θε and uε , we can now define our regularizations c̃A and Rl
ε of cA

and Rl
J .

Following [31], we define these regularizations using the coarse scale flow �s

associated to ∂t + uε · ∇, whose definition we now recall.

Definition 6.1 We define the coarse scale flow �s(t, x) : R × R × T
2 → R × T

2 to
be the unique solution to the ODE

d

ds
�0

s (t, x) = 1

d

ds
�

j
s (t, x) = u j

ε (�s(t, x)), j = 1, 2

�0(t, x) = (t, x)

We can now define our regularizations for cA and RJ . First, we mollify both cA
and Rl

J in space to define

cA,εx = ηεx ∗ cA (6.10)

Rεx = ηεx ∗ RJ (6.11)

We then use the coarse scale flow �s and a smooth function ηεt (s) supported in |s| ≤ εt
with integral

∫

ηεt (s)ds = 1 to average in time and form

c̃A(t, x) =
∫

cA,εx (�s(t, x))ηεt (s)ds (6.12)

Rl
ε(t, x) =

∫

Rεx (�s(t, x))ηεt (s)ds (6.13)

123



2 Page 36 of 77 P. Isett, V. Vicol

In this way, the values of Rε(t, x) and c̃A(t, x) are obtained by averaging cA and Rl
J

over an εx -neighborhood of a time 2εt flow line through (t, x).
To estimate c̃A and Rl

ε , we recall that both cA and RJ satisfy the estimates

||∇kcA||C0 +
(

eR
eJ

)

‖∇k RJ‖ ≤ 2�keR k = 0, . . . , L (6.14)

||∇k(∂t + u · ∇)cA||C0 +
(

eR
eJ

)

||∇k(∂t + u · ∇)RJ ||C0 ≤ 2�k+1e1/2
v eR k = 0, . . . , L − 1 (6.15)

coming from the compound frequency-energy levels of Definition 3.2.
Since the bounds (6.14)-(6.15) coincide with the bounds for the tensor R jl in [31],

we can draw from the results of that paper to control Rl
ε and c̃A.

Following Section 18.3 of [31], we choose length and time scales of the form

εx = 1

B
N−1/L�−1, εt = 1

B
(N�)−1e−1/2

R (6.16)

We choose B ≥ 1 large enough to bound the terms

‖(c̃A − cA)Al‖C0 + ‖Rl
J − Rl

ε‖C0 ≤ e1/2
v e1/2

R

100N
(6.17)

which appear in the list of error terms from mollification of Equation (5.3).
Note that the choice of parameters (6.16) is the same as the choice made in [31,

Section 18.3], and therefore leads to the same bounds

‖∇k
(

D̄

∂t

)r

c̃A‖C0

≤ Ck�
keR(�e1/2

v )(r≥1)(N�e1/2
R )(r≥2)N (k+1−L)+/L

‖∇k
(

D̄

∂t

)r

RJ‖C0 + ‖∇k
(

D̄

∂t

)r

cJ‖C0

≤ Ck�
keJ

(

�e1/2
v

)(r≥1) (

N�e1/2
R

)(r≥2)

N (k+1−L)+/L

(6.18)

where we use the notation (r ≥ m) = χ[m,∞)(r) and we restrict to 0 ≤ r ≤ 2. The
fact we are using here is that cA obeys the same estimates as the stress R jl in [31], and
the terms RJ and cJ satisfy even better bounds. The details of the proof are carried
out in [31, Section 18].

A crucial point here is that (6.18) contains estimates on second order advective
derivatives, even though our assumed bounds (3.6), (3.8) on cA and RJ contain only
information regarding first order advective derivatives. The ability to obtain this esti-
mate comes from the fact that the advective derivative D̄

∂t commutes with its own flow
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�s , and thus commutes with the averaging along the flow. This observation allows us
to integrate by parts in

D̄

∂t
Rl

ε(t, x) =
∫

D̄

∂t
Rεx (�s(t, x))ηεt (s)ds (6.19)

= −
∫

Rεx (�s(t, x))η
′
εt
(s)ds (6.20)

This computation explains why the cost of the second advective derivative in (6.18)
is exactly a factor of ε−1

t for the choice of parameter (6.16). We refer to [31, Sec-
tion 18.6.1] and to [33, Section 12.1] for two different proofs of identity (6.19).

Having defined c̃A and Rε , we are now able to verify the lower bound (5.31) on
the energy profile, which had been assumed previously in many of the formulas in our
construction. From the assumption (3.9) that supp cA ∪ supp RJ ⊆ I × T

2, we have
by construction that

supp c̃A ∪ supp Rε ∪ supp cJ ⊆ I ± εt × T
2

Since we assumed the lower bound (3.10) for e(t) on the interval I ± �−1e−1/2
v ,

it suffices to check that εt < �−1e−1/2
v . This inequality follows from the definition

(6.16) of εt and the inequality N ≥
(

ev
eR

)1/2
, which follows from condition (3.12).

At this point, the only term that remains to be estimated in the mollification term

Rl
M = Rl

M,θ + Rl
M,u + (cA − c̃A) Al + (Rl

J − Rl
ε) + Rl

M ′ (6.21)is given by

Rl
M ′ =

∑

I

eiλξI (ul − ulε)δθI +
∑

I

eiλξI (θ − θε) δulI (6.22)

This term will be estimated when we choose the parameter λ at the end of the argument.

6.1 The Choice of Lifespan Parameter and the Limiting Error Terms

The present Section is devoted to choosing the lifespan parameter τ . Here we motivate
the choice of τ by comparing the estimates that will be satisfied by the main error terms
and optimizing. However, we warn the reader that the estimates stated in this Section
have not yet been established, but will follow from the bounds of Section 7 below.

The lifespan parameter τ determines the length of time during which an amplitude

θI = e1/2(t)η

(

t − t (I )

τ

)

γ (6.23)

is allowed to remain nonzero. The parameter τ is chosen to be small so that the
gradients of the phase functions, which satisfy the transport equation

(∂t + u j
ε ∂ j )∂

lξI = −∂ lu j
ε ∂ jξI , (6.24)
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remain close to their initial values ∇ξI ≈ ∇ ξ̂I . More precisely, equation (6.24) with
initial data ξI (t (I ), x) = ξ̂I (x) leads to a bound of the form

|∇ξI (�s(t (I ), x)) − ∇ ξ̂I (x)| ≤ AeA�e1/2
v τ (�e1/2

v )τ, |s| ≤ τ (6.25)

where �e1/2
v is an upper bound on ‖∇uε‖C0 ≤ �e1/2

v , cf. Lemma 7.3 below.
In our case, we require that τ ≤ �−1e−1/2

v , so that the estimate (6.25) becomes

‖∇ξI − ∇ ξ̂I ‖C0 ≤ A(�e1/2
v )τ (6.26)

Here, there are two main error terms which require the choice of a sharp time cutoff
in order to control. The first such term, which is familiar from the case of the Euler
equations, is the set of high-frequency interference terms in (5.46)

Rl
H =

∑

J �= Ī

∂ l
−1P≈λ[U j
J ∂ j�I ] (6.27)

Recall from (5.49)-(5.51) that each term in the series (6.27) can be expressed to leading
order as

1

(iλ)
Ul

J ∂l�I = eiλ(ξI+ξJ )θJ θ̃I (m
l (∇ξJ ) − ml(∇ ξ̂J

)

)∂lξI (6.28)

+ eiλ(ξI+ξJ )θJ θ̃I m
l(∇ ξ̂J )(∂lξI − ∂l ξ̂I ) (6.29)

+ lower order terms (6.30)

Formula (6.27) leads to the bound

‖RH‖C0 ≤ A

λ
‖
∑

J �= Ī

U j
J ∂ j�I‖C0

≤ Amax
I

‖θI ‖2
C0(‖ml (∇ξI ) − ml(∇ ξ̂I )‖C0 + ‖∇ξI − ∇ ξ̂I‖C0)

+ Lower order terms

≤ AeR max
I

‖∇ξI − ∇ ξ̂I‖C0 + Lower order terms (6.31)

≤ AeR(�e1/2
v τ ) + Lower order terms (6.32)

where the constant A changes from line to line. The error term (6.32) is made small
by choosing the lifespan parameter τ to be small compared to the natural time scale
�−1e−1/2

v of the coarse scale velocity uε . The other terms in (6.32) are lower order in
the sense that they can be made small by a suitable choice of λ.

The price we pay by introducing sharp cutoffs is a worse bound on the transport
term.

Rl
T = ∂ l
−1P≈λ[(∂t + uε · ∇)�] (6.33)
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(∂t + uε · ∇)� =
∑

I

eiλξI (∂t + uε · ∇)θI + Lower order terms (6.34)

The time cutoffs appear in the formula (6.23) for the amplitude, and give rise to a term
of size

‖(∂t + uε · ∇)�‖C0 = Aτ−1e1/2
R + Lower order terms (6.35)

which leads in turn from the definition (5.7) of λ. to a bound on the transport term

‖RT ‖C0 ≤ Aλ−1‖(∂t + uε · ∇)�‖C0 (6.36)

≤ AB−1
λ (N�)−1τ−1e1/2

R + Lower order terms (6.37)

We therefore choose

τ = B−1/2
λ

(

e1/2
v

e1/2
R N

)1/2

�−1e−1/2
v (6.38)

in order to optimize between the estimates for the leading term in (6.32) and (6.37).
This choice leads to the C0 estimate

‖R1‖C0 �
(

e1/2
v

e1/2
R N

)1/2
e1/2
v e1/2

R

N
(6.39)

stated in Lemma 3.1, and ultimately to the regularity 1/9−.
Unlike the case of the Euler equations, there is also a second error term which

requires sharp time cutoffs to make small in our present scheme, namely the Stress
term RS appearing in (5.36). It turns out that this term also satisfies the same estimate
(6.32), and consequently will be among the largest error terms, having size (6.39)
after the above choice of τ . The reason that we see this extra term compared to the
case of Euler is that the method we have used here to solve the quadratic equation
(5.26) requires the phase gradients ∇ξI to remain very close to their initial values
∇ξI ≈ ∇ ξ̂I to within an error much smaller than O(1). In the case of Euler, the
equation analogous to (2.15) can be solved using nonlinear phase functions in a way
which allows for the phase gradients to depart from their initial values by an error
of size ‖∇ξI − ∇ ξ̂I‖C0 = O(1) (see [31, Section 7.3]). Ideally, one would hope to
solve equation (2.15) in a similar manner to avoid generating error terms such as these
which require sharp time cutoffs to treat as above.

We now turn our attention to obtaining estimates for the terms in the construction.
In particular, we need to establish the estimates (6.32) and (6.37) precisely, and also
to estimate the other error terms. The proof is concluded by choosing the constant Bλ

in (5.7) to be sufficiently large so that the inequality (6.39) holds as stated, without
any implicit constant factor.
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7 Basic Estimates for the Construction

Lemma 7.1 (Coarse Scale Flow Estimates) Let L ≥ 2 be an integeras in Lemma 3.1.
The mollified velocity field uε defined in (6.2) obeys the estimates

‖∇kuε‖C0 ≤ Ck�
ke1/2

v N (k−L)+/L , k ≥ 1, (7.1)

‖∇k(∂t + uε · ∇)uε‖C0 ≤ Ck�
k+1evN

(k+1−L)+/L , k ≥ 0 (7.2)

for some universal positive constants Ck.

Proof For k ≤ L , we see that (7.1) holds in view of the iterative assumption (3.3).
For k > L , there is an additional cost of ε

(k−L)+
u = (B−1N 1/L�)(k−L)+ , where we

have used the choice of εu in (6.8).
In order to prove (7.2), we recall that u j

ε = P2≤qu
j , where 2−q = εu = B−1N 1/L�.

We then have

P2≤q (∂t u + u · ∇u) = (∂t uε + uε · ∇uε) − Qε(u, u), (7.3)

where

Q j
ε (u, u) = uiε∂i u

j
ε − P2≤q(u

i∂i u
j ) (7.4)

= [P2≤qu
i∂i , P≤q ](P≤qu

j ) + P≤q([ui∂i , P≤q ]u j )

− P≤q((u
i − P2≤qu

i )∂i (P≤qu
j )). (7.5)

The estimate

‖Qε(u, u)‖C0 ≤ Cεu�
2ev ≤ CN−1/L�ev (7.6)

follows from (7.5) precisely as in [31, Section 16], by appealing to (3.3). The decom-
position (7.5) of the quadratic commutator term is convenient since it allows one to
estimate without additional complications the higher order derivatives ∇k Qε(u, u).
Derivatives up to order L − 1 each introduce a factor of �, while past that order the
derivatives fall on the mollifier P≤q and the cost per derivative is a constant multiple
of �N 1/L . Combining with

‖∇k P2≤q

(

∂t u
j + ui∂i u

j
)

‖C0 ≤ Ck�
k+1evN

(k+1−L)+/L (7.7)

which follows from the definition of q and (3.4), the proof of (7.2) is completed. ��
Lemma 7.2 (Commutator Estimates) Let D ≥ 1 and let Q be a convolution operator

Q f (x) =
∫

R2
f (x − h)q(h)dh

whose kernel q satisfies the estimates
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‖ |h|a |∇bq|(h) ‖L1(R2) ≤ λb−a (7.8)

for some λ ≥ N�, and all 0 ≤ a ≤ b ≤ D. Then the commutator
[

D̄
∂t , Q

]

=
[∂t + uε · ∇, Q] satisfies the estimates

∥

∥

∥

∥

∇k
[

D̄

∂t
, Q

]∥

∥

∥

∥

≤ Ck�e1/2
v λk, 0 ≤ k ≤ D − 1

as a bounded operator on C0(R × T
2).

Proof For f ∈ C0 we have that

∣

∣

∣

∣

[

D̄

∂t
, Q

]

f (x)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

R2

(

u j
ε (x) − u j

ε (x − h)
)

∂ j f (x − h)q(h)dh

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R2

∫ 1

0
∂au

j
ε (x − sh)ds f (x − h)ha∂ j q(h)dh

∣

∣

∣

∣

≤ ‖ f ‖C0‖∇uε‖C0‖|h||∇q|‖L1 ≤ C‖ f ‖C0�e1/2
v (7.9)

by appealing to (7.1) with k = 1, and (7.8) with k = 1. This gives the proof of the
Lemma when k = 0. For 1 ≤ k ≤ D−1, we appeal to the Leibniz rule, the assumption
(7.8) on q, the bound (7.1) on uε , and the condition that λ ≥ N�. For instance,

∣

∣

∣

∣

[

D̄

∂t
, Q

]

f (x)

∣

∣

∣

∣

≤ C‖ f ‖C0

(

‖∇2uε‖C0‖|h||∇q|‖L1 + ‖∇uε‖C0‖|h||∇2q|‖L1

)

≤ C‖ f ‖C0

(

�2e1/2
v + �e1/2

v λ
)

≤ C‖ f ‖C0�e1/2
v λ (7.10)

is the desired bound when k = 1. The remaining cases 2 ≤ k ≤ D − 1 are treated
similarly. ��

In fact, the above lemma will only be applied to operators Q for which λ is given
as in (5.7).

Lemma 7.3 (Transport Estimates) Let L ≥ 2, and denote by D̄
∂t the convective deriv-

ative associated to the flow uε . The phase gradients ∇ξI obey the bound

‖∇k
(

D̄

∂t

)r

∇ξI‖C0 ≤ Ck�
k(�e1/2

v )r N (k+(r−1)++1−L)+/L (7.11)

for all k ≥ 1 and r ∈ {0, 1, 2}. Moreover, the same bound holds if ∇k( D̄
∂t )

r is replaced
by D(k,r), where the latter is defined by

D(k,r) = ∇k1

(

D̄

∂t

)r1

∇k2

(

D̄

∂t

)r2

∇k3 , (7.12)

123



2 Page 42 of 77 P. Isett, V. Vicol

with k1 + k2 + k3 = k, ki ≥ 0, r1 + r2 = r , and ri ≥ 0.
We also have the estimate

|∇ξI (�s(t, x)) − ∇ ξ̂I (x)| ≤ Cb, |s| ≤ τ

b = B−1/2
λ

(

e1/2
v

e1/2
R N

)1/2

= τ�e1/2
v (7.13)

where �s is the coarse scale flow defined in 6.1, and τ is specified as in line (6.38).

Proof In order to establish (7.11) for r = 0, one appeals to (6.24), and obtains

(∂t + u j
ε ∂ j )∇k∂ lξI = −∇k(∂ lu j

ε ∂ jξI ) + [u j
ε ∂ j ,∇k]∂ lξI . (7.14)

The bound for r = 0 then follows from the Grönwall inequality in the above identity,
estimate (7.1), and the choice for τ in (6.38). Similarly, from

∇k(∂t + u j
ε ∂ j )∂

lξI = −∇k(∂ lu j
ε ∂ jξI ) (7.15)

and (3.3) we obtain the estimate (7.11) with r = 1.
Lastly, in order to obtain the desired estimate when r = 2 we note that

(

D̄

∂t

)2

∂ lξI = (∂t + uiε∂i )
2∂ lξI = −(∂t + uiε∂i )(∂

lu j
ε ∂ jξI ) (7.16)

= −∂ jξI (∂t + uiε∂i )(∂
lu j

ε ) − ∂ lu j
ε (∂t + uiε∂i )(∂ jξI ) (7.17)

= −∂ jξI ∂
l(∂t + uiε∂i )u

j
ε + 2∂ lu j

ε ∂ j u
i
ε∂iξI . (7.18)

In particular, it is important that the second convective derivative of ∇ξI only depends
on a single convective derivative of uε . By appealing to Lemma 7.1, from (7.18) we
obtain that

‖
(

D̄

∂t

)2

∇ξI‖C0 ≤ C�2ev. (7.19)

The bound (7.11) with r = 2 and k ≥ 1, similarly follows from (7.18), the Leibniz
rule, Lemma 7.1, and estimate (7.11) with r = 0.

The estimate (7.13) follows from the bound (7.11) with k = 0 and r = 1, from the
calculation

|∇ξI (�s(t, x)) − ∇ ξ̂I (x)| ≤
∫ s

0

∣

∣

∣

D̄

∂t
∇ξI (�σ (t, x))

∣

∣

∣dσ

≤ C |s|�e1/2
v ≤ Cb, if |s| ≤ τ

��
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Lemma 7.4 (Principal Amplitude estimates) Let L ≥ 2 and τ be defined in (6.38).
Then the principal parts of the scalar amplitude θI , and the velocity amplitude uI ,
obey the bounds

‖D(k,r)θI ‖C0 + ‖D(k,r)uI ‖C0 ≤ Ck�
ke1/2

R τ−r N (k+1−L)+/L (7.20)

for all k ≥ 0 and r ∈ {0, 1, 2}, for some suitable universal constants Ck > 0.

Proof First, we note that in view of (5.17) we have ulI = θI ml(∇ξI ). Since the
multiplier m is smooth outside the origin and in view of Lemma 7.3 we have bounds
for the derivatives of ∇ξI , the bound on uI follows from that on θI , up to possibly
increasing the constant CK by a constant factor.

From (5.28) and (5.32) we recall that

θI = η

(

t − kτ

τ

)

e(t)1/2γ = η

(

t − kτ

τ

)

e(t)1/2 (1 + ε)1/2 (7.21)

where ε = (c̃A + cJ )/e(t). Using (6.18), the lower bound e(t) ≥ K0eR and (5.30),
we obtain the following estimates for ε and γ = (1 + ε)1/2

‖∇k
(

D̄

∂t

)r

ε‖C0 + ‖∇k
(

D̄

∂t

)r

γ ‖C0

≤ Ck�
keR

(

�e1/2
v

)(r≥1) (

N�e1/2
R

)(r≥2)

N (k+1−L)+/L . (7.22)

The bounds for spatial derivatives of θI now follow from (7.22) since the other terms
η
( t−kτ

τ

)

and e1/2(t) do not depend on x . Lemma 7.4 requires us also to show that
that each advective derivative up to order 2 costs at most Cτ−1 per derivative. For the
time cutoff and the function e1/2(t) in (7.21), the cost of τ−1 follows by definition for
the time cutoff and by (3.11) for e1/2(t) using the inequality �e1/2

v ≤ τ−1 from the
choice of τ in Section 6.1. For the other terms, the estimate (7.22) tells us that the first
advective derivative costs �e1/2

v ≤ τ−1, and taking two advective derivatives costs

∣

∣

∣

∣

D̄2

∂t2

∣

∣

∣

∣

≤ C(�e1/2
v )(N�e1/2

R ) = CN�2e1/2
v e1/2

R = Cτ−2

from the choice of τ in (6.38). The bounds for the spatial derivatives then follow from
the pattern in (7.22). ��
Lemma 7.5 (Amplitude correction estimates) Under the hypotheses of Lemma 7.4,
the corrections δθI and δulI to the scalar amplitude and the velocity amplitude obey
the bounds

‖D(k,r)δθI‖C0 + ‖D(k,r)δuI ‖C0 ≤ Ck B
−1
λ N−1�ke1/2

R τ−r N (k+2−L)+/L (7.23)

for all k ≥ 0 and r ∈ {0, 1, 2}, for some suitable universal constants Ck > 0.

123



2 Page 44 of 77 P. Isett, V. Vicol

Proof These estimates are obtained by explicitly differentiating the formulas for δθI
and δulI coming from the Microlocal Lemma, Lemma 4.1. Here we carry out the
calculation for the case of δθI , since the term δulI can be treated in the same way.
Recall that

�I = P I≈λ(e
iλξI θI ) = eiλξI (θI + δθI )

Applying Lemma 4.1 with K (h) = ηI≈λ(h), we have the following formula for δθI

δθI = δθI,1 − δθI,2

δθI,1 =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z(r,x,h)(iλ)

×
[∫ 1

0
hahb∂a∂bξI (x − sh)(1 − s)ds

]

θI (x − rh)ηI≈λ(h)dh (7.24)

δθI,2 =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z(r,x,h)∂aθI (x − rh)haηI≈λ(h)dh (7.25)

with Z(r, x, h) = rλ
∫ 1

0 hahb∂a∂bξ(x − sh)(1 − s)ds and where ηI≈λ is defined after
line (5.10). In particular, recall that the kernel ηI≈λ(h) = 102[k]λ2η≈1(±10[k]λh) is
constructed by rescaling a Schwartz kernel by a factor λ, and therefore satisfies the
estimates

‖|h|mηI≈λ‖L1
h

≤ Cmλ−m (7.26)

Combining the estimate (7.26) with the bounds of Lemma 7.4 and Lemma 7.3 gives
the C0 estimate for ∇kδθI .

Proving estimates for advective derivatives of δθI is tedious, but straightforward.
To ease notation let us write Z(r, x, h) = rλhahbZab where

Zab = Zab(t, x, h) =
∫ 1

0
∂a∂bξI (x − sh)(1 − s)ds

We will sketch one example and estimate the advective derivative of the term in (7.24).

(∂t + uε · ∇)δθI,1(t, x) = −iT(1) + iT(2) + T(3) + T(4) (7.27)

T(1) =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z (iλ)hahbZabθI (x − rh)
D̄

∂t
∂cξI (x)λh

cηI≈λ(h)dh

(7.28)

T(2) =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z (iλ)hahbZabθI (x − rh)r

(

∂t + uiε(x)
∂

∂xi

)

× Zabλh
ahbηI≈λ(h)dh (7.29)
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T(3) =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z (iλ)hahb
(

∂t+uiε(x)
∂

∂xi

)

ZabθI (x−rh)ηI≈λ(h)dh

(7.30)

T(4) =
∫ 1

0
dr

∫

e−iλ∇ξI (x)·hei Z (iλ)hahbZab

(

∂t+uiε(x)
∂

∂xi

)

θI (x−rh)ηI≈λ(h)dh

(7.31)

The pattern we observe in (7.28)-(7.31) is that the cost of the first advective derivative
is given by �e1/2

v for every term. This cost is most clear for the term (7.28). The
advective derivative brings down one term of size

‖ D̄

∂t
∇ξI ‖C0 ≤ C�e1/2

v

and also introduces the factor λhc. The λ and the h cancel out in terms of the estimate,
since we gain a λ−1 when we apply the bound

‖hahbhcηI≈λ(h)‖L1
h

≤ Cλ−3

for the kernel, which comes from scaling.
The terms (7.29)-(7.31) require one more trick, which is to approximate the

value of uiε(x) with the nearby point in the integral. For example, for the term
(

∂t + uiε(x)
∂

∂xi

)

θI (x − rh) in (7.31) we write

(

∂t + uiε(x)
∂

∂xi

)

θI (x−rh) = D̄

∂t
θI (x−rh)+(uiε(x)−uiε(x−rh))∂iθI (x − rh)

(7.32)

The cost of �e1/2
v for the advective derivative on θI follows from Lemma 7.4. For the

latter term, we write

(uiε(x) − uiε(x − rh))∂iθI (x − rh) = −r
∫ 1

0
∂cu

i
ε(x − σrh)dσ ∂iθI (x − rh)hc

(7.33)

The term where ∂cuiε appears accounts for the cost of ‖∇uε‖C0 ≤ �e1/2
v . The deriva-

tive hitting θI costs a factor of �, but this factor is regained by the factor hc that has
appeared, which gains a λ−1 when combined with the kernel as usual. Repeating this
observation many times for each one of (7.29)-(7.31), one obtains the first advective
derivative bound in (7.23). We omit the details.

One also has to take a second advective derivative in order to prove (7.23), giving
rise to another long series of terms which obey the correct bounds. We omit the proof
of this estimate also, but we remark that one can avoid using these bounds during
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the course of the proof. The only applications of these bounds are in Section 8.3 for
a lower order part of the advective derivative of the transport term, and in this case
one can substitute second order commutator estimates as in Lemma 7.2, which are
somewhat less tedious to write down. ��
Corollary 7.1 The bounds (7.20) of Lemma 7.4 hold also for θ̃I = θI + δθI and for
ũlI = ulI + δulI .

7.1 Estimates for the Corrections to the Scalar Field and Drift Velocity

In this Subection, we obtain estimates for the corrections � and Ul = T l [�] to the
scalar field and drift velocity. These bounds confirm that the estimates (3.15)-(3.20)
of Lemma 3.1 are satisfied. As with the previous Lemmas 7.1-7.5 and our choices of
parameters, the results we obtain in this section are familiar from [31, Section 22.1].
In our setting, these estimates turn out to be a bit easier to check thanks to our use of
frequency localizing projections.

Proposition 7.1 Under the hypotheses of Lemma 7.4, the corrections �I and Ul
I to

the scalar field and the drift velocity satisfy

‖D(k,r)�I‖C0 + ‖D(k,r)UI‖C0 ≤ Ck(BλN�)kτ−r e1/2
R (7.34)

for 0 ≤ r ≤ 2.

Proof We outline the proof of (7.34) for �I , as the velocity field UI can be treated in
the same way. Here we recall again that

�I = P I≈λ[eiλξI θI ] = eiλξI θ̃I

For r = 0, the estimates for ∇k�I follow from the bound ‖θI ‖C0 ≤ Ce1/2
R , and the

definition of λ. To estimate the advective derivatives, we write

D̄

∂t
�I = eiλξI

D̄

∂t
θ̃I (7.35)

D̄2

∂t2 �I = eiλξI
D̄2

∂t2 θ̃I (7.36)

The bounds (7.34) now follow from the bounds of Lemma 7.3 and Corollary 7.1. The
main terms in the estimates for spatial derivatives arise in every case when the deriv-
atives fall on eiλξI . Alternatively, one can obtain the same bounds using commutator
estimates such as those of Lemma 7.2 extended to second order commutators. Note
that this latter approach avoids using the second advective derivative estimates proven
in Lemma 7.5. ��

Lemma 3.1 also requires bounds on a vector field Wl satisfying div W = �. To
define Wl , first recall that the corrections

�I = P I≈λ(e
iλξI θI )
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are frequency localized, which allows us to invert the divergence using the standard
Helmholtz solution

Wl
I = ∂ l
−1P I≈λ(e

iλξI θI ) (7.37)

With this definition, we have � = div W for Wl = ∑

I W
l
I . The bounds (3.18)-(3.20)

of Lemma 3.1 now follow from Lemma 7.4 and a suitable rescaling of Lemma 7.2 by
writing

(∂t + uε · ∇)WI =
[

D̄

∂t
, ∂ l
−1P I≈λ

]

(eiλξI θI ) + ∂ l
−1P I≈λ(e
iλξI

D̄

∂t
θI ) (7.38)

and differentiating in space.

7.2 Prescribing the Energy Increment

We conclude this Section by verifying the estimates (3.21) and (3.22) for prescribing
the energy increment. To obtain the estimate (3.21), let t ∈ R and write

∫

T2
|�|2(t, x)dx =

∑

I,J

∫

�I · �J (t, x)dx (7.39)

For indices J �= Ī which are not conjugate to each other, the product �I · �J is
localized at frequency ≈ λ, and in particular has integral 0. The only remaining terms
are

∫

T2
|�|2(t, x)dx =

∑

I

∫

|�I |2(t, x)dx

|�I |2 = |θI + δθI |2 = |θI |2 + 2δθI θI + δθ2
I

The terms involving δθI can all be estimated using Lemma 7.5 and Lemma 7.4.

∑

I

∣

∣

∣

∫

T2
2θI δθI + (δθI )

2dx
∣

∣

∣ ≤ C
eR
BλN

The main terms are then given by

∑

I

∫

T2
|θI |2(t, x)dx =

∑

I

∫

η2
k (t)e(t)γ

2dx

= 2
∫

e(t)γ 2dx

= 2
∫

T2
e(t)(1 + ε)dx
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The bound (3.21) now follows from (5.30) provided Bλ is sufficiently large.
In order to obtain the estimate (3.22), we differentiate (7.39) with respect to t , and

use the fact that the coarse scale velocity field uε is divergence free

d

dt

∫

T2
|�|2(t, x)dx =

∑

I,J

∫

T2
(∂t + uε · ∇)�I · �J (t, x)dx

At this point, we again observe that the terms (∂t + uε · ∇)�I · �J are localized in
frequency space at frequencies of order λ for all nonconjugate indices J �= Ī . These
terms therefore integrate to 0 and we are left with

d

dt

∫

T2
|�|2(t, x)dx =

∑

I

∫

T2
(∂t + uε · ∇)|�I |2(t, x)dx

=
∑

I

∫

T2
(∂t + uε · ∇)|θ̃I |2dx

The bound (3.22) now follows from Corollary 7.1.

7.3 Checking Frequency Energy Levels for the Scalar Field and Drift Velocity

The statement (3.13) in Lemma 3.1 requires us to prove that the new scalar field and
drift velocity θ1 = θ + �, ul1 = ul + Ul satisfy the bounds (3.3)-(3.4) for the new
compound frequency energy levels (�′, e′

v, e
′
R, e′

J ) = (CN�, eR, K1eJ , e′
J ) with

e′
J =

(

e1/2
v

e1/2
R N

)1/2

eR

The bounds in (3.3) already follow from the arguments in [31, Section 22], as the
scalar field θ and drift velocity ul both share the same estimates as the coarse scale
velocity vl in that paper, and the corrections � and Ul both share the same estimates
at the corrections V l in that paper. The only new point here is how we establish the
bound

‖(∂t + u1 · ∇)u1‖C0 �
(

�′e′
v

) = CN�eR (7.40)

This estimate, which is quadratic in the velocity, is analogous to the bound for the
pressure gradient in the case of Euler.

The idea is to use the assumed bound (3.4) and write

(∂t u1 + u1 · ∇)u1 = (∂t u + u · ∇u) +U · ∇u + (∂t + u · ∇)U +U · ∇U (7.41)

In the case of Euler, the first term (∂t u + u · ∇u) can be bounded using the Euler–
Reynolds equations. In our case, though, the bound (7.40) on the advective derivative
cannot be obtained from commuting the operator T l with the compound scalar stress
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equation due to the lack of C0 boundedness of T l , and arguments involving frequency
truncations still give logarithmic losses.

The idea is that we have already assumed the bound ‖(∂t u + u · ∇u)‖C0 ≤ �ev , so

that (7.40) follows from the condition N ≥
(

ev
eR

)

. Also, further advective derivatives

can be estimated at a cost smaller than N� per derivative up to order L − 1, giving
(3.4) for this term. The proof of (3.4) for the other two terms is the same as in [31,
Section 22]. The main idea is to write (∂t + u · ∇) = (∂t + uε · ∇) + (u − uε) · ∇, and
then to apply the relevant bounds established earlier on in Sections 6-7.

8 Estimates for the New Stress

In this Section, we conclude the proof of Lemma 3.1 by establishing estimates for
the error terms contributing to the new stress field which were derived in Section 5.3.
Recall from that section that the new scalar field θ1 = θ +� and the new drift velocity
ul1 = ul +Ul satisfy the compound scalar stress equation

{

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cB B

l + Rl
1)

ul1 = T l [θ1]
(8.1)

The function cB is defined in (5.25), and the new stress field has the form

R1 = RT + RL + RH + RM + RS (8.2)

as in (5.37). For these error terms, the Main Lemma requires us to show that the
bounds of Definition 3.2 are satisfied for the compound frequency energy levels
(�′, e′

v, e
′
R, e′

J ) specified in (3.13). Our starting point will be to prove the C0 esti-
mates

‖cB‖C0 � K1eJ (8.3)

‖R1‖C0 � e′
J (8.4)

e′
J =

(

e1/2
v

e1/2
R N

)1/2

eR (8.5)

We will obtain these bounds in Section 8.1, at which point we will finally specify the
large constant Bλ appearing in line (5.7) where λ is defined.

Once the C0 estimates are established and Bλ is chosen, the bounds on spatial
derivatives

‖∇kcB‖C0 � C(N�)k K1eJ k = 0, . . . , L (8.6)

‖∇k R1‖C0 � C(N�)ke′
J , k = 0, . . . , L (8.7)
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will be clear, and we will also need to verify the estimates for the advective derivatives

‖∇k (∂t + u1 · ∇) cB‖C0 � C (N�)k
(

N�e1/2
R

)

K1eJ (8.8)

‖∇k (∂t + u1 · ∇) R1‖C0 � C (N�)k
(

N�e1/2
R

)

e′
J

k = 0, . . . , L − 1 (8.9)

These bounds will be checked in Sections 8.2 and 8.3, which will conclude the proof
of Lemma 3.1.

8.1 The C0 Bounds

In this Section, we establish theC0 bounds (8.3)-(8.4). The bound (8.4) will be obtained
only after the constant Bλ of line (5.7) is chosen sufficiently large.

First, observe that the estimate (8.3) for cB follows immediately from line (5.25)
where cB is defined, and the bound ‖Rε‖C0 ≤ ‖RJ‖C0 . Note that the constant K1
depends only on the operator T l .

It now remains to estimate the stress terms appearing in (8.2). We estimate each of
these in turn.

The Mollification Term Rl
M . We recall from (5.3) and (6.21) that

Rl
M = (ul − ulε)� + (θ − θε)U

l + (cA − c̃A) Al + (Rl
J − Rl

ε) (8.10)

= Rl
M,θ + Rl

M,u + (cA − c̃A) Al + (Rl
J − Rl

ε) + Rl
M ′ . (8.11)

Note that by the choice of B, from (6.9) and (6.17) we have that

‖RM,θ‖C0 + ‖RM,u‖C0 + ‖ (cA − c̃A) Al‖C0 + ‖(Rl
J − Rl

ε)‖C0 ≤ e1/2
v e1/2

R

50N

= 1

50
(
e1/2
v

e1/2
R N

)eR (8.12)

The factor

(

e1/2
v

e1/2
R N

)

is less than 1, so this estimate is more than enough to achieve the

bound (8.4).
To estimate the remaining term

Rl
M ′ =

∑

I

eiλξI (ul − ulε)δθI +
∑

I

eiλξI (θ − θε) δulI (8.13)

recall the estimates

‖(ul − ulε)‖C0 + ‖ (θ − θε) ‖C0 ≤ e1/2
v

N
≤ e1/2

v (8.14)
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‖δθI ‖C0 + ‖δulI ‖C0 ≤ C
e1/2
R

BλN
(8.15)

from Section 6 and Lemma 7.5 (in fact the estimates for the terms (θ −θε) and (u−uε)

are even better). Note also that, at any given time t , at most four indices I contribute
to the sum in (8.13).

For sufficiently large values of Bλ, we therefore obtain

‖Rl
M ′ ‖C0 ≤ 1

50

e1/2
v e1/2

R

N

which is sufficient for (8.4).

The Stress Term RS . To estimate RS , let us recall from (5.36) that we can express

Rl
S =

∑

I

(Rl
SI,1 + Rl

SI,2) (8.16)

Rl
SI,1 = |θI |2[(ml(−∇ξI ) − ml(−∇ ξ̂I )) + (ml (∇ξI ) − ml

(

∇ ξ̂I

)

)] (8.17)

Rl
SI,2 = δθI ũ

l
Ī
+ θ̃I δu

l
Ī
− δθI δu

l
Ī
+ δθ Ī ũ

l
I + θ̃ Ī δu

l
I − δθ Ī δu

l
I (8.18)

The estimates of Lemma 7.4, Lemma 7.5 and Corollary 7.1 give

‖RSI,2‖C0 ≤ C

BλN
eR

At any given time t , as most 4 terms of the form RSI,2 are nonzero, which allows us
to obtain the estimate

‖
∑

I

|RSI,2|‖C0 ≤ e1/2
v e1/2

R

500N

which is sufficient for (8.4), by taking the value of Bλ sufficiently large.
We estimate the terms in (8.17) using (7.13) and Lemma 7.4, in order to obtain the

bound

‖Rl
SI,1‖C0 ≤ C

B1/2
λ

(

e1/2
v

e1/2
R N

)1/2

eR

By choosing the constant Bλ sufficiently large, we obtain the bound

‖
∑

I

|Rl
SI,1|‖C0 ≤ 1

1000
e′
J (8.19)

where e′
J , as defined in (8.4), is our goal for the size of the new stress term Rl

1.
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For the next stress terms, RL and RT , we use that they are frequency localized
between two constant multiples of λ, and thus we can appeal to the estimate

‖∇
−1P≈λ‖C0→C0 ≤ Cλ−1 = C

N Bλ

. (8.20)

The High-Low Term RL . We recall from (5.45) that

Rl
L = ∂ l
−1P≈λ[U j∂ jθε]

and thus

‖RL‖C0 ≤ ‖∇
−1P≈λ‖C0→C0‖U j‖C0‖∂ jθε‖C0 ≤ C

N Bλ

e1/2
R e1/2

v

holds, upon appealing to (8.20). Choosing Bλ sufficiently large, we see that

‖RL‖C0 ≤ 1

1000

e1/2
v e1/2

R

N

which is sufficient for (8.4) to be satisfied.

The Transport Term RT . We use (5.40) to recall that

RT = ∂ l
−1P≈λ

[

D̄

∂t
�

]

.

Thus, from (8.20) and (7.34) we obtain

‖RT ‖C0 ≤ C

λ
τ−1e1/2

R

= C

BλN�
B1/2

λ

(

e1/2
v

e1/2
R N

)−1/2

�e1/2
v e1/2

R

= C

B1/2
λ

(

e1/2
v

e1/2
R N

)1/2

eR

in view of the choice of τ in (6.38). Choosing Bλ sufficiently large immediately shows
that

‖RT ‖C0 ≤ 1

1000
e′
J

holds.

123



Hölder Continuous Solutions of Active Scalar Equations Page 53 of 77 2

The High-Frequency Interference Term RH . To conclude the C0 stress estimates
we recall from (5.46) and (5.49)-(5.51) that

RH =
∑

J �= Ī

iλ∂ l
−1P≈λ

[

eiλ(ξI+ξJ )(θJ θ̃I (m
l(∇ξJ ) − ml(∇ ξ̂J ))∂lξI

+ θI θ̃Jm
l
(

∇ ξ̂J

)

(∂lξI − ∂l ξ̂I ) + δulJ ∂lξI θ̃I )
]

.

From (8.20) we thus obtain

‖RH‖C0 ≤ CAeR
(

�e1/2
v τ

)

+ C

BλN
eR

≤ CA

B1/2
λ

(

e1/2
v

e1/2
R N

)1/2

eR + C

BλN
eR .

For all sufficiently large choices of Bλ, we finally have the estimate

‖RH‖C0 ≤ 1

1000
e′
J

This error term is the last one, so the estimate (8.4) will finally be satisfied for any
sufficiently large choice of Bλ ≥ Bλ. The only restriction now is that λ = BλN� in
(5.7) must be a positive integer. Since we assume � ≥ 2 in Definition 3.2 and N ≥ 1,
an appropriate choice of Bλ exists in the interval Bλ ∈ [Bλ, 2Bλ]. Our construction is
now fully specified once such a value is chosen.

8.2 Spatial Derivative Bounds

First we claim that

‖∇kcB‖C0 ≤ Ck(N�)k K1eJ

For this purpose, recall the definition (5.25) and the bound (6.18). This above estimate
holds since we have already verified the C0 estimate (8.3), and each spatial derivatives
costs no more than a factor

|∇| ≤ CN�.

The stress terms RT , RL , and RH each are contain a frequency localizing operator
P≈λ, so that again, each spatial derivative costs at most CN�, since the constant Bλ

has now been fixed, in the previous subsection.
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The term Rl
M is treated in the same fashion as the mollified stress term in [31,

Section 25.1]. The main ideas is that comparing the bound

‖u − uε‖C0 ≤ e1/2
v

N

which had been used to establish (8.12) in Section 6, to the estimate

‖∇u‖C0 + ‖∇uε‖C0 ≤ C�e1/2
v

we notice the cost is at most CN� upon taking a spatial derivative.
The Rl

S stress is treated by writing Rl
S = ∑

I (R
l
SI,1 + Rl

SI,2). The estimate for
RSI,2 follows from the bounds established in Lemmas 7.4–(7.5). To treat RSI,1 we
need to observe that the spatial derivative costs at most N� when it is applied to the
difference ∇ξI − ∇ ξ̂I . Comparing the bounds of Lemma 7.3 and (7.13)

‖∇ξI − ∇ ξ̂I‖C0 ≤
(

e1/2
v

e1/2
R N

)1/2

‖∇2ξI‖C0 ≤ C�

gives a cost of |∇| ≤ CN 1/2�, which is smaller than the threshold N�. All further
derivatives of this term cost at most CN 1/2� according to Lemma 7.3.

8.3 Advective Derivative Bounds

We now proceed to establish the advective derivative bounds (8.8)-(8.9) for the new
frequency energy levels, which is more subtle than the spatial derivative estimates due
to the improved regularity of the advective derivative. As observed in [31, Proposi-
tion 24.1 and Proposition 24.2], note that it suffices to check the bounds for the coarse
scale advective derivative D̄

∂t = ∂t + uε · ∇ after we write

∂t + u1 · ∇ = (∂t + uε · ∇) + (u − uε) · ∇ +U · ∇.

Having established spatial derivative estimates on all our error terms, the bounds for
the two error spatial derivative terms follow from the results of Section 8.2, the already
established estimates on spatial derivatives for ‖∇k(u − uε)‖C0 which follow from
(6.4), and the bounds on ‖∇kU‖C0 , which follow from Propositon 7.1.

Since each term has been estimated already in C0 by the energy level e′
J , our goal

at this point is to check that the advective derivative never costs any more than

∣

∣

∣

D̄

∂t

∣

∣

∣ � CN�e1/2
R (8.21)

compared the estimates that were used to obtain the C0 bound.
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For most terms, the advective derivative costs τ−1, so it is useful to observe that
our goal is also implied by a bound of the type

∣

∣

∣

D̄

∂t

∣

∣

∣ ≤ Cτ−1 (8.22)

from the fact that τ−1 ≤ N�e1/2
R . For terms involving the difference between the

phase gradients and their initial values, the following Lemma stating the cost of dif-
ferentiating ∇ξI − ∇ ξ̂I is helpful

Lemma 8.1 For k ≥ 0 and 0 ≤ r ≤ 2, we have the following bounds

‖∇k
(

D̄

∂t

)r

(∇ξI − ∇ ξ̂I )‖C0 ≤ Ck(N�)kτ−r b (8.23)

b = B−1/2
λ

(

e1/2
v

e1/2
R N

)1/2

(8.24)

Lemma 8.1 follows from Lemma 7.3 after checking the relationships of the para-
meters using the condition N ≥ ev

eR
.

Corollary 8.1 The bounds in Lemma 8.1 hold also for

ml (∇ξI ) − ml
(

∇ ξ̂I

)

=
(

∇ξI − ∇ ξ̂I

)

∫ 1

0
∂am

l
(

(1 − σ)∇ ξ̂I + σ∇ξI

)

dσ

With these bounds in hand, we can now quickly verify (8.21).

The Term cB . The term cB inherits the estimates for Rε from its definition in (5.25).
These bounds are no worse than the bounds stated for RJ in (6.18) as long as one takes
no more than 2 advective derivatives and no more than L total spatial or advective
derivatives (see [31, Section 18]). As a consequence, we obtain (8.8).

The Mollification Term Rl
M . The mollification term (8.11) is handled in the same

way as in [31, Sections 25.1, 25.2]. Among these estimates, the most subtle are the
terms

(u − uε)� + (θ − θε)U

For the purposes of proving our result and the main theorem in [31], these terms can
be estimated separately as

∥

∥

∥

∥

(

D̄

∂t
u − D̄

∂t
uε

)

�

∥

∥

∥

∥

C0
≤ C

(∥

∥

∥

∥

D̄

∂t
u

∥

∥

∥

∥

C0
+

∥

∥

∥

∥

D̄

∂t
uε

∥

∥

∥

∥

C0

)

‖�‖C0

at the cost of requiring the condition N ≥
(

ev
eR

)3/2
. However, as discussed in [31,

Section 25.1], it appears that a scheme aimed at proving 1/3 regularity might require
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this term to be estimated more delicately. A more delicate commutator estimate would

allow us to require instead that N ≥
(

ev
eR

)

.

The Stress Term RS For the term RS , the cost (8.21) is obtained for every term
appearing in (8.16) using the estimates of Lemmas 7.4-7.5 and Corollary 7.1 for the
amplitudes, and using Lemma 8.1 and Corollary 8.1 for the terms involving differences
of phase gradients.

The Terms RT , RL and RH The commutator estimates of Lemma 7.2 and the use of
frequency localized waves make it especially simple to estimate the terms obtained
by solving the divergence equation. We list these terms here.

D̄

∂t
Rl
T =

[

D̄

∂t
, ∂ l
−1P≈λ

] [

D̄

∂t
�

]

+ ∂ l
−1P≈λ

[

D̄2

∂t2 �

]

(8.25)

D̄

∂t
Rl
L =

[

D̄

∂t
, ∂ l
−1P≈λ

]

[

U j∂ jθε

]

+ ∂ l
−1P≈λ

D̄

∂t

[

U j∂ jθε

]

(8.26)

D̄

∂t
Rl
H =

∑

J �= Ī

[

D̄

∂t
, ∂ l
−1P≈λ

]

rH,I J + ∂ l
−1P≈λ

D̄

∂t
rH,I J (8.27)

rH,I J = (iλ)eiλ(ξI+ξJ )
(

θJ θ̃I (m
l(∇ξJ ) − ml(∇ ξ̂J ))∂lξI

)

(8.28)

+ (iλ) eiλ(ξI+ξJ )
(

θJ θ̃I m
l(∇ ξ̂J )(∂lξI − ∂l ξ̂I ) + δulJ ∂lξI θ̃I

)

. (8.29)

Combining Lemma 7.2 with Corollary 8.1 and all the bounds of Section 7, we obtain
a cost of (8.22) (and therefore (8.21)) for the advective derivative. Further spatial
derivatives cost at most CN� as all the terms are in fact localized to frequencies of
order λ.

This estimate concludes the proof of the Main Lemma.

9 Proof of the Main Theorem

In this Section, we explain how Theorem 1.1 can be deduced from the Main Lemma,
Lemma 3.1. More specifically, the Theorem we establish directly is the following:

Theorem 9.1 As in the hypotheses of Theorem 1.1, let α < 1/9, let ε > 0 be given,
and let f : R × T

2 → R be any smooth function of compact support

supp f ⊆ I × T
2

for which the integral

∫

T2
f (t, x)dx = 0, t ∈ R (9.1)

remains constant in time. Then there exists a function θ : R × T
2 → R with the

following properties:
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1. θ satisfies the Active Scalar Equation (1.1) in the sense of distributions.
2. The scalar field θ and the drift velocity ul = T l [θ ] both belong to the Hölder class

θ, ul ∈ Cα
t,x

3. θ is supported in the time interval

supp θ ⊆ Iε × T
2, (9.2)

where Iε = [a0 − ε, b0 + ε] is an ε-neighborhood of the interval I = [a0, b0]
4. θ satisfies a uniform estimate

‖θ‖C0 ≤ C (9.3)

with C depending only on f .
5. For any smooth function φ : R × T

2 → C, we have

∣

∣

∣

∣

∫

R×T2
(θ − f )φ dtdx

∣

∣

∣

∣

≤ Cε‖∇φ‖L1
t,x (Iε×T2) (9.4)

for some constant C depending on f .

Theorem 1.1 follows from Theorem 9.1 by a straightforward argument that is
implicit in Section 10 below.

Our starting point is the observation that the function f can be viewed as a solution
to the scalar-stress equation

∂t f + ∂l

(

f ul
)

= ∂l R
l

ul = T l [ f ] (9.5)

R j = ∂ j
−1
[

∂t f + ∂l

(

f ul
)]

(9.6)

thanks to the condition
∫

T2
∂t f dx = d

dt

∫

T2
f (t, x)dx = 0.

Furthermore, the functions ( f, ul , Rl) in (9.5) are all smooth functions on R×T
2 with

support contained in a finite time interval I×T
2. In particular, the scalar function θ(0) =

f can be viewed as part of a smooth, compactly supported solution ( f, ul , cA, Rl) to
the compound scalar stress equation (3.2) with cA = 0.

Our proof of Theorem 9.1 will be completed once we prove the following Claim.

Claim 9.1 Under the assumptions of Theorem 9.1, there exists a sequence sequence
of scalar-stress fields (θ(k), ul(k), cA,(k), Rl

J,(k)) satisfying the following properties.

1. For even indices k = 0, 2, 4, . . ., (θ(k), ul(k), cA,(k), Rl
J,(k)) solves the Com-

pound Scalar-Stress Equation (3.2) with vector Al , whereas for odd indices
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k = 1, 3, 5, . . ., (θ(k), ul(k), cA,(k), Rl
J,(k)) solves the Compound Scalar-Stress

Equation (3.2) with vector Bl . Here Al and Bl are defined as in (3.1).
2. We have ‖cA,(k)‖C0 + ‖RJ,(k)‖C0 → 0 as k → ∞
3. The sequences θ(k), ul(k) are Cauchy in C0

t,x with uniform bounds on ‖θ(k)‖C0 ,

‖u(k)‖C0 depending only on f .
4. The sequences θ(k), ul(k) are also Cauchy in C

α
t,x .

5. We have supp θ(k) ⊆ Iε × T
2 for all k.

6. The estimate (9.4) holds for θ(k) uniformly in k.

The scalar stress fields described in Claim 9.1 will be constructed by iteration of
Lemma 3.1.

9.1 The Base Case

To initialize the construction, we set θ(0) = f , ul(0) = T l [ f ], cA,(0) = 0, and RJ,(0) as

in (9.6). We define I(0) to be the smallest closed inerval such that supp f ⊆ I(0) × T
2.

We set

eJ,(0) = ‖RJ,(0)‖C0 .

In order to be consistent with the iteration rules (9.8)-(9.11) below and to maintain the
inequality ev ≥ eR ≥ eJ during the iteration, we take

ev,(0) = eR,(0) = K1eJ,(0)

where K1 is the constant in Lemma 3.1. Now let � be a sufficiently large constant
such that the bounds of Definition 3.2 hold with L = 2 for the frequency energy levels
(�, ev, eR, eJ ) = (�, K1eJ,(0), K1eJ,(0), eJ,(0)).

We will choose our initial frequency level �(0) to be even larger than the parameter
�. More specifically, �(0) will take the form

�(0) = Y� (9.7)

Here Y ≥ 1 is a large parameter whose purpose will ultimately be to make sure that the
time interval containing the support of the solution will be small without disturbing
the required C0 estimate. In terms of the construction, choosing the parameter Y to
be large will imply that we perform the iteration with a large frequency parameter λ

and a small lifespan parameter τ when we iterate the Main Lemma.

9.2 Choice of Parameters for k ≥ 1

We will proceed with the proof by iteration of the Main Lemma, which requires us to
specify a sequence of frequency energy levels (�(k), ev,(k), eR,(k), eJ,(k)), a sequence
of functions e(k)(t) prescribing the energy increment, a sequence of intervals I(k) con-
taining the support of the compound scalar-stress fields, and a sequence of frequency
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growth factors N(k) ≥ 2. The present section is devoted to choosing these parameters,
and studying how these parameters grow or decay during the iteration.

We will choose our frequency energy levels so that the following iteration rules
hold for all k ≥ 0:

ev,(k+1) = eR,(k) (9.8)

eR,(k+1) = K1eJ,(k) (9.9)

eJ,(k+1) = eJ,(k)
Z

(9.10)

�(k+1) = C0N(k)�(k) (9.11)

The parameter Z will be chosen in the proof to be a large constant satisfying Z ≥
K1 ≥ 1. From (9.8)-(9.10) and the choices of Section 9.1, the energy levels decay
exponentially according to the following pattern:

(ev, eR, eJ )(0) = (K1eJ,(0), K1eJ,(0), eJ,(0))

(ev, eR, eJ )(1) =
(

K1eJ,(0), K1eJ,(0),
1

Z
eJ,(0)

)

(ev, eR, eJ )(k) =
(

K1

Zk−2 eJ,(0),
K1

Zk−1 eJ,(0),
1

Zk
eJ,(0)

)

, k ≥ 2

(9.12)

The constantC0 in (9.11) is the constantC appearing in line (3.13) of the Main Lemma.
Thus, C0 will depend on how we construct our energy increment functions e(k)(t),
which will be specified momentarily. According to the bound of line (3.13), we have
that

eJ,(k+1) =
(

e1/2
v,(k)

e1/2
R,(k)N(k)

)1/2

eR,(k) (9.13)

The iteration rules (9.8)-(9.10) are therefore achieved by taking

N(k) =
(

ev,(k)

eR,(k)

)1/2 (

eR,(k)

eJ,(k)

)2

Z2 (9.14)

More specifically, recalling (9.12),

N(0) = K 2
1 Z

2, N(1) = K 2
1 Z

4, N(k) = K 2
1 Z

9/2, k ≥ 2. (9.15)

As we always have
(

ev,(k)
eR,(k)

)3/2 ≤ Z3/2 ≤ N , the assumption of line (3.12) is always

satisfied, so this choice of N(k) is admissible. With this choice, iteration of (9.11)
results in exponential growth of the frequency levels

Z2k�(0) ≤ �(k) ≤ Ck
0 K

2k
1 Z (9/2)k�(0) (9.16)
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for all k ≥ 0.
We will now specify how our sequence of energy functions e(k)(t) and time intervals

I(k) will be chosen, beginning with stage k = 0. Define

τ̂(k) = �−1
(k)e

−1/2
v,(k) (9.17)

to be the natural time scale associated to these frequency energy levels. Let I(0) be
the time interval containing the support of the initial scalar-stress field. Let ηε(t) be a
standard, non-negative mollifying kernel in one variable, with support in |t | ≤ ε. The
initial energy function e(0)(t) is required to satisfy the lower bound e(0)(t) ≥ K0eR,(0)

on the time interval I(0) ± τ̂(0) according to (3.10), and must have a square root e1/2
(0) (t)

which satisfies bounds of the form (3.11). We construct e(0)(t) by mollifying the
characteristic function of I(0) according to the formula

e1/2
(0) (t) = (2K0)

1/2e1/2
R,(0) ητ̂ ∗ χI(0)±3τ̂ (t) (9.18)

With this choice, the lower bound (3.10) and the bounds (3.11) are satisfied with
K = K0 and with M being some absolute constant which arises from differentiating
the mollifier. Having constructed e(0)(t), we can apply Lemma 3.1 to obtain a solution
(θ(1), ul(1), cA,(1), Rl

J,(1)) to the Compound Scalar-Stress equation with vector Bl with

support in the interval I(1) × T
2, I(1) = I(0) ± 4τ̂(0).

We now iterate this procedure to form a sequence of scalar stress fields
(θ(k), ul(k), cA,(k), Rl

J,(k)) whose compound frequency energy levels obey the rules

-(9.8)-(9.11) by choosing N(k) = Z9/2 according to (9.15). We define

e1/2
(k) (t) = (2K0)

1/2e1/2
J,(k) ητ̂ ∗ χI(k)±3τ̂ (t)

so that the bounds on e1/2
(k) are consistent with the bounds on (9.18), and Lemma 3.1

applies with the same constant M . According to Lemma 3.1, the time intervals con-
taining the support of the scalar stress fields support grow according to the rule

I(k+1) = I(k) ± (

4τ̂k
)

(9.19)

In (9.19) and below, we use the notation I ± δ to denote the δ-neighborhood of an
interval I . In other words, I ± δ = [a − δ, b + δ] if I = [a, b]. During this iteration,
the vector in the scalar-stress equation alternates between Al and Bl as in Property 1
of Claim 9.1.

We have now defined our iteration up to the choice of the parameters Y and Z . We
will choose these parameters in the following Subsection to ensure that the properties
listed in Claim 9.1 are all satisfied.
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9.3 Verifying Claim 9.1

We now verify that the properties in Claim 9.1 hold for sufficiently large values of Y
and Z .

Property 1 This property follows immediately from the construction.

Property 2 To check that the error terms converge uniformly to 0, we observe that

‖RJ,(k)‖C0 ≤ eJ,(k) = Z−keJ,(0)

from (9.12), and the same type of estimate holds for ‖cA,(k+1)‖C0 . Thus, both terms
composing the stress error converge uniformly to 0.

Property 3 Here we verify that the sequence θ(n), ul(n) is Cauchy in C0. Recall that,
for n ≥ 1 we have

θ(n) = θ(0) +
n−1
∑

k=0

�(k), ul(n) = ul(0) +
n−1
∑

k=0

U(k) (9.20)

where the properties of �(k) and Ul
(k) are as described in Lemma 3.1. The functions

θ(0) and ul(0) are smooth with compact support, and are therefore uniformly bounded.
Our estimates for the corrections have the form

‖�(k)‖C0 + ‖U(k)‖C0 ≤ Ce1/2
R,(k) (9.21)

From (9.12), the bounds eR,(k) decays exponentially in k for any choice of Z ≥ 2, and
both series in (9.20) therefore converge uniformly. In particular, as θ(0) = f , we have

‖θ(k)‖C0 + ‖u(k)‖C0 ≤ ‖ f ‖C0 + Ce1/2
R,(0), k ≥ 0 (9.22)

where C is proportional to the constant in Lemma 3.1. In particular, the bound (9.22)
depends only on f , and does not depend on our choices of parameters Y and Z .

Property 4 We now verify that the series (9.20) also converges in Cα
t,x once Z is

chosen large enough. We claim that the bounds from Lemma 3.1 give

‖∇�(k)‖C0 + ‖∇U(k)‖C0 + ‖∂t�(k)‖C0 + ‖∂tU(k)‖C0 ≤ CN(k)�(k)e
1/2
R,(k) (9.23)

The bounds on ‖∇�(k)‖C0 + ‖∇U(k)‖C0 follow directly from Lemma 3.1. We obtain
the same bound for the time derivatives by writing

∂t�(k) = −u(k) · ∇�(k) + (∂t + u(k) · ∇)�(k) (9.24)

and similarly for U(k). As we have shown in (9.22) that the sequence ‖u(k)‖C0 is
uniformly bounded by some constant, we have that the terms −u(k) · ∇�(k) and
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−u(k) · ∇U(k) both obey the estimate (9.23). Lemma 3.1 also supplies the following
bound on the advective derivative:

‖ (

∂t + u(k) · ∇)

�(k)‖C0 + ‖ (

∂t + u(k) · ∇)

U(k)‖C0 ≤ Cb−1/2
(k) �(k)e

1/2
v,(k)e

1/2
R,(k)

b(k) = N−1
(k) (e

1/2
v,(k)/e

1/2
R,(k))

Note that the parameter N(k) = K 2
1 Z

9/2 and the ratio
e1/2
v,(k)

e1/2
R,(k)

= Z1/2 are both inde-

pendent of k once k ≥ 2, while ev,(k) = K 2
1 Z

−(k−2)eJ,(0) decays to 0 exponentially.
Thus, the estimate for the advective derivative is even better than the bound (9.23).
From (9.24) we now conclude that (9.23) holds for the time derivative as well.

Interpolation of (9.23) and (9.21) gives

‖�(k)‖Cα
t,x

+ ‖U(k)‖Cα
t,x

≤ C[N(k)�(k)]αe1/2
R,(k) (9.25)

Applying (9.16) and (9.15), we have

‖�(k)‖Cα
t,x

+ ‖U(k)‖Cα
t,x

≤ CZ ,K1,C0

(

Cα
0 K

2α
1 Z

(

9
2 α− 1

2

)

)k (

�α
(0)e

1/2
R,(0)

)

(9.26)

As we have assumed α < 1/9, we can take Z large enough depending on α, K1 and
C0 so that

Z

(

9
2 α− 1

2

)

< (K 2α
1 Cα

0 )−1 (9.27)

Under this assumption, the right hand side of (9.26) tends to 0 exponentially fast as
k → ∞, and it follows that the series (9.20) converges in Cα

t,x .

Property 5 To bound the support of θ(k), recall that supp θ(k) ⊆ I(k), where I(0) is the
smallest time interval containing the support of f , and the intervals I(k) grow according
to the rule (9.19). As a consequence, we have (in terms of the notation introduced in
(9.19))

I(k) ⊆ I(0) ± T, k = 0, 1, 2, . . .

T = 4
∞
∑

k=0

τ̂(k) = 4
∞
∑

k=0

�−1
(k)e

−1/2
v,(k)

We recall now that ev,(0) = ev,(1) = ev,(2) = K1eJ,(0) while ev,(k) decays exponen-
tially as (9.12) for k ≥ 2. We also recall the lower bound in (9.16) to obtain

T ≤ 4�−1
(0)e

−1/2
J,(0)

(

2 + 1

1 − (C0Z5/2)−1

)

(9.28)
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Recalling the definition (9.7) of �(0), and noting that C0 ≥ 2 and Z ≥ 1, we have

T ≤ 8Y−1�
−1

e−1/2
J,(0) (9.29)

Property 5 is satisfied for the ε > 0 given in (5) once Y is chosen sufficiently large to
ensure T < ε.

Property 6 For a smooth test function φ with compact support, we have

∫

R×T2
(θ − f )φ(t, x)dtdx =

∫

R×T2
(θ − θ(0))φ(t, x)dtdx (9.30)

=
∞
∑

k=0

∫

�(k)φ(t, x)dtdx (9.31)

According to Lemma 3.1, we can write the corrections in divergence form �(k) =
∂lW l

(k) for some vector fields Wl
(k) obeying the estimates (3.18)-(3.20). Integrating by

parts, we have

∞
∑

k=0

∫

�(k)φ(t, x)dtdx = −
∞
∑

k=0

∫

Wl
(k)∂lφ(t, x)dtdx (9.32)

Recalling (9.12), (9.16) and the definition (9.7) of �(0), we obtain

∣

∣

∣

∫

R×T2
(θ − f ) φ (t, x) dtdx

∣

∣

∣ ≤
∞
∑

k=0

‖W(k)‖C0‖∇φ‖L1
t,x(Iε×T2) (9.33)

≤ C

( ∞
∑

k=0

1

N(k)�(k)
e1/2
R,(k)

)

‖∇φ‖L1
t,x(Iε×T2) (9.34)

=
( ∞
∑

k=0

C0

�(k+1)

e1/2
R,(k)

)

‖∇φ‖L1
t,x(Iε×T2) (9.35)

≤ C
C0

�(1)

e1/2
R,(0)‖∇φ‖L1

t,x(Iε×T2) (9.36)

≤ C
1

Z2 �−1
(0)e

1/2
J,(0)‖∇φ‖L1

t,x(Iε×T2) (9.37)

≤ C
1

Z2Y
�

−1
e1/2
J,(0)‖∇φ‖L1

t,x(Iε×T2) (9.38)

where C0 above denotes the constant in the Main Lemma. Taking Y (or alternatively
Z ) to be large enough depending on C , � and eJ,(0), we obtain (9.4). This choice
concludes the proof of Theorem 9.1.
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10 Proof of Corollary 1.1

In this Section, we explain how Theorem 1.1 (or alternatively Theorem 9.1) can be
applied to prove Corollary 1.1, which characterizes the closure of compactly supported
solutions to the active scalar equations in the space L∞ endowed with the weak-*
topology.

Proof of Corollary 1.1 As in the statement of Theorem 1.1, consider an Active Scalar
Equation (1.1) with a smooth multiplier that is not odd. Let I ⊆ R be a nonempty,
finite, open interval. Let α < 1/9 and let S ⊆ L∞ denote the set of all weak solutions
(θ, ul) to the Active Scalar equation (1.1) which have compact support in I × T

2,
and which belong to the Hölder class (θ, ul) ∈ Cα

t,x . Let S denote the closure of S in
L∞ with respect to the weak-* topology. Corollary 1.1 asserts that S is equal to the
space of f ∈ L∞(I × T

2) which satisfy the conservation law
∫

f (t, x)dx = 0 as
a distribution in the variable t . In other words, we assume that for every smooth test
function η(t) : I → R with compact support, we have

∫

I×T2
η(t) f (t, x)dtdx = 0 (10.1)

First, observe that any f ∈ L∞ which belongs to S must satisfy (10.1) for all such η(t),
since the integration against η(t) is continuous with respect to the weak-* topology, and
because equality (10.1) is satisfied by all of the elements (θ, ul) ∈ S. This conservation
law is proven for each (θ, ul) ∈ S by writing the test function in (10.1) as η =
η̃ + (η − η̃), where η̃ is a smooth function whose support is disjoint support from that
of (θ, ul) that satisfies

∫

I
η̃(t)dt =

∫

I
η(t)dt

This condition allows us to write η− η̃ = d
dt h(t), where h(t) is smooth and compactly

supported in I . The definition of weak solution for (1.1) then implies

∫

I×T2
η(t)θ(t, x)dtdx =

∫

I×T2
η̃(t)θ(t, x)dtdx +

∫

I×T2
(η − η̃)(t)θ(t, x)dtdx

=
∫

∂

∂t
h(t)θ(t, x)dtdx

= −
∫

ul
∂

∂xl
h(t) θ(t, x)dtdx = 0

We now show conversely that every f ∈ L∞ satisfying (10.1) belongs to S. Let us
assume by contradiction that f /∈ S. By definition of the weak-* topology, there exists
a finite collection {η1, . . . , ηm} ⊆ L1(I × T

2) and δ > 0 such that for all θ ∈ S the
lower bound

∣

∣

∣

∫

( f (t, x) − θ(t, x))η j (t, x)dtdx
∣

∣

∣ ≥ δ (10.2)
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holds for at least one η j ∈ {η1, . . . , ηm}.
Let f̃ ∈ L∞(I × T

2) be a smooth function of compact support with ‖ f̃ ‖L∞ ≤
‖ f ‖L∞ such that property (10.1) holds for f̃ and for all such η j , and we have the
bound

∣

∣

∣

∫

( f (t, x) − f̃ (t, x))η j (t, x)dtdx
∣

∣

∣ ≤ δ/4 (10.3)

Such a function f̃ can be constructed by first applying a smooth cutoff in time to
restrict to a compact subset of I × T

2, and then convolving with a mollifier in time
and space, noting that both operations preserve the property (10.1) without enlarging
the L∞ norm. Inequality (10.3) is established by duality, as the adjoint cutoff and
mollifier operations converge strongly in L1 when applied to each η j . We choose the
mollification in such a way that the support of f̃ remains inside a time interval Ĩ
strictly smaller than I with Ĩ ± τ ⊆ I for some τ > 0.

Now apply4 Theorem 9.1 for the function f̃ with ε = 1/n to obtain a sequence
(θn, uln) ∈ S such that the bound ‖θn‖L∞ ≤ A holds uniformly, and (9.4) holds for f̃
with ε = 1/n. We assume here that n ≥ τ−1 is large enough to ensure (θn, uln) have
compact support in I ×T

2 thanks to the compact support of f̃ and (9.2). Now let η̃ j be
smooth functions of compact support in I×T

2 with ‖η j −η̃ j‖L1(I×T2) ≤ δ
5(‖ f ‖L∞+A)

.
We obtain an upper bound on the left hand side of (10.2)

∣

∣

∣

∫

( f (t, x) − θn(t, x))η j (t, x)dtdx
∣

∣

∣ ≤ δ

4
+

∣

∣

∣

∫

( f̃ − θn)η j dtdx
∣

∣

∣

≤ δ

4
+ δ

5
+

∣

∣

∣

∫

( f̃ − θn)η̃ j dtdx
∣

∣

∣

≤ δ

4
+ δ

5
+ 1

n
‖∇η̃ j‖L1

t,x

Taking n large enough contradicts inequality (10.2) and concludes the proof. ��

11 Proof of Theorem 1.2

In this section, we outline how Lemma 3.1 can also be applied to yield Theorem 1.2.
The proof follows an idea of [31, Section 12]. The same argument below also shows
that one can glue any two solutions which have the same integral.5

Let θ be a smooth solution of (1.1) on (−T, T ) × T
2, with multiplier ml which is

not odd. Let θ̄ = 1
|T2|

∫

T2 θ(0, x)dx be the average value of θ , which is conserved by

θ along the flow. Let ψ(t) be a smooth cutoff function, equal to 1 on |t | ≤ 5T
8 and

equal to 0 for |t | ≥ 6T
8 = 3T

4 .
Now consider the scalar field θ(0)(t, x) = ψ(t)θ(t, x)+(1−ψ(t))θ̄ . Then θ(0) is an

integral-conserving scalar field (i.e.
∫

T2 ∂tθ(0)dx = d
dt

∫

T2 θ(0)dx = 0), and therefore

4 At this point, Theorem 1.1 would also suffice.
5 This observation is due to Sung-Jin Oh [41].
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solves the scalar stress equation

∂tθ(0) + ∂l(θ(0)T
l [θ(0)]) = ∂l R

l (11.1)

R j = ∂ j
−1[∂tθ(0) + ∂l(θ(0)T
l [θ(0)])] (11.2)

Note also that, because both θ and θ̄ are solutions to (1.1), the support of Rl is contained
in the support of ψ ′(t), namely

supp Rl(t, x) ⊆ {5T

8
≤ |t | ≤ 6T

8
} × T

2

Repeating the argument of Sections 9.1-9.3, we can now iterate Lemma 3.1 to obtain
a sequence of solutions θ(k) to the compound scalar stress equation, such that

supp
(

θ(k) − θ(0)

) ⊆ {T
2

≤ |t | ≤ 4T

5
} × T

2

for all indices k ≥ 0, and such that θ(k) → θ̃ converge in Cα
t,x to a solution of (1.1).

At this point, the main difference in the argument is that we choose energy functions
e(k)(t) which are supported within pairs of intervals containing a small neighborhood
of { 5T

8 ≤ |t | ≤ 6T
8 }. (In fact, the argument is simpler at this point because we do

not need to achieve a weak approximation, and hence there is no need to introduce
the parameter Y .) As we can take this intervals of support to form an arbitrarily small
neighborhood of { 5T

8 ≤ |t | ≤ 6T
8 }, we can keep the support of the iteration contained

within { T2 ≤ |t | ≤ 4T
5 }, and thereby obtain Theorem 1.2.

12 Proof of Weak Rigidity for Odd Active Scalars

In this section we give the proof of Theorem 1.3. Let θ ∈ {θn}n≥0 be a weak solution
to (1.1), with associated velocity field ul = T l [θ ]. Also let φ ∈ D(I × T

d) be a fixed
test function. The proof of the theorem is based on the following computation. For
each fixed time t , let

Nt [θ, φ] =
∫

Td
θ(t, x) ul(t, x) ∂lφ(t, x) dx (12.1)

denote the nonlinear term integrated over the time t slice. Since T l is given by a
Fourier multiplier, it commutes with differentiation, and upon integrating by parts
several times we obtain
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Nt [θ, φ] =
∫

Td
∂k
−1∂kθ ∂ j T l [
−1∂ jθ ] ∂lφ dx

= −
∫

Td

−1∂kθ ∂k∂ j T l [
−1∂ jθ ] ∂lφ dx

−
∫

Td

−1∂kθ ∂ j T l [
−1∂ jθ ] ∂k∂lφ dx

=
∫

T2
∂k


−1∂ jθ ∂kT l [
−1∂ jθ ] ∂lφ dx

+
∫

Td

−1∂kθ ∂kT l [
−1∂ jθ ] ∂ j∂lφ dx

−
∫

Td

−1∂kθ ∂ j T l [
−1∂ jθ ] ∂k∂lφ dx

= −
∫

Td

−1∂ jθ ∂ j T

l [θ ] ∂lφ dx

−
∫

Td

−1∂ jθ ∂kT l [
−1∂ jθ ] ∂k∂lφ dx

+
∫

Td

−1∂kθ ∂kT l [
−1∂ jθ ] ∂ j∂lφ dx

−
∫

Td

−1∂kθ ∂ j T l [
−1∂ jθ ] ∂k∂lφ dx . (12.2)

At this stage we use that the Fourier multiplier ml(ξ) is odd in ξ , which implies that
∂ j T l , given by the Fourier multiplier iξ jml(ξ) which is even in ξ , is self-adjoint in
L2(Td). We may thus write

∫

Td

−1∂ jθ ∂ j T

l [θ ] ∂lφ dx

=
∫

Td
θ ∂ j T

l [
−1∂ jθ ∂lφ] dx

=
∫

Td
θ ∂ j T

l [
−1∂ jθ ] ∂lφ dx

+
∫

Td
θ(∂ j T

l [
−1∂ jθ ∂lφ] − ∂ j T
l [
−1∂ jθ ] ∂lφ)dx

= Nt [θ, φ] +
∫

Td
θ [∂ j T

l , ∂lφ]
−1∂ jθ dx . (12.3)

Combining (12.2) and (12.3) we arrive at

2Nt [θ, φ] = −
∫

Td
θ [∂ j T

l , ∂lφ]
−1∂ jθ dx

−
∫

Td

−1∂ jθ ∂kT l [
−1∂ jθ ] ∂k∂lφ dx
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+
∫

Td

−1∂kθ ∂kT l [
−1∂ jθ ] ∂ j∂lφ dx

−
∫

Td

−1∂kθ ∂ j T l [
−1∂ jθ ] ∂k∂lφ dx . (12.4)

From the Hölder inequality, and the bounds

‖∇T
−1∇η‖L2 ≤ C‖η‖L2 , for η ∈ L2(Td) (12.5)

‖[∇T l , ∂lφ
]

η‖L2 ≤ C‖η‖L2‖φ‖Hd/2+2+ε , for η ∈ Ḣ1(Td) (12.6)

we thus obtain from (12.4) that

|Nt [θ, φ]| ≤ C‖θ(t, ·)‖L2‖
−1∇θ(t, ·)‖L2‖φ(t, ·)‖Hd/2+2+ε (12.7)

for any ε > 0. The above estimate is a manifestation of the compactness inherent in
Nt in the spatial variables.

Since we have only assumed θ ∈ L p(I ; L2(Td)), compactness in the time variable
must come from the active scalar equation. Below we give two essentially equivalent
approaches to obtaining this compactness. The first proof is based on a variant of
the Arzelà-Ascoli principle due to Aubin-Lions. The second proof is a more direct
argument in the spirit of [32], using Littlewood-Paley theory to extract regularity in
time.

Time Compactness via Aubin–Lions Compactness Lemma. At this stage we notice
that for any weak solution θ ∈ L p(I ; L2(Td)) of (1.1), and any index j , we have we
have that

∂t (

−1∂ jθ) = 
−1∂ j∂l(θ T l [θ ]) (12.8)

holds in the sense of distributions, and thus for any s > d/2, we have

‖∂t (
−1∂ jθ)‖L p/2(I ;H−s (Td )) = ‖
−1∂ j∂l(θ T l [θ ])‖L p/2(I ;H−s (Td ))

≤ C‖
−1∂ j∂l(θ T l [θ ])‖L p/2(I ;L1(Td ))

≤ C‖θ‖2
L p(I ;L2(Td ))

(12.9)

in view of the compact embedding of Ws,1(Td) ⊂ L2(Td), for functions of zero mean
on T

d .
Now assume that

θn ⇀ f ∈ L p(I ; L2(Td)
)

(12.10)

for some p > 2. The convergence of the mean

∫

Td
θn dx →

∫

Td
f dx in D′(I )

123



Hölder Continuous Solutions of Active Scalar Equations Page 69 of 77 2

is immediate. In view of the Sobolev embedding and (12.9), by (12.10) we have that


−1∇θn is uniformly bounded in L p(I ; H1(Td)
)

(12.11)

∂t
(


−1∇θn
)

is uniformly bounded in L p/2(I ; H−s(Td)
)

, (12.12)

where s > d/2. Therefore, applying the Aubin-Lions compactness lemma (see
e.g. [15, Lemma 8.4]), we obtain that there is a subsequence {θn j } such that


−1∇θn j → 
−1∇ f ∈ L p(I ; L2(Td)
)

, (12.13)

i.e. the convergence is strong. To conclude, we integrate (12.4) in time, use (12.7) and
(12.13), and obtain that

∫

I

∫

Td
θn j T l [θn j

]

∂lφdxdt →
∫

I

∫

Td
f T l [ f ] ∂lφdxdt

for any test function φ, since the product of a strong and a weak limit is a weak limit.
The convergence holds in fact along any subsequence n j → ∞, and therefore holds
also along the original sequence.

Time Compactness via Littlewood–Paley Theory. We now give a more direct proof
which illustrates the usefulness of Littlewood-Paley theory in extracting time regular-
ity.

Let us use the notation P≤I θ , PI θ and P[a,b]θ denote the standard, Littlewood-Paley
projection operators. Thus,

P̂≤I θ(ξ) = η(2−I ξ)θ̂(ξ), I = 0, 1, 2, . . .

is a truncation of θ̂ to frequencies of order supp P̂≤I θ ⊆ {|ξ | ≤ 2I+1}, η is a smooth
cutoff supported in |ξ | ≤ 2 with η(ξ) = 1 for |ξ | ≤ 5/4. We let PI = P≤I − P≤I−1

denote the Littlewood-Paley piece which occupies frequencies supp P̂I θ ⊆ {2I−1 ≤
|ξ | ≤ 2I+1}. We use the notation P[a,b] = ∑

a≤I≤b PI .
Now let φ ∈ C∞

0 (I × T
d) be a smooth test function, and let θn be a sequence of

solutions to (1.1) converging weakly to θn ⇀ f in L p(I ; L2(Td)) for some p > 2 as
in (12.10). Let N = ∫

R
Nt [θ, φ]dt = ∫

R

∫

Td θul∂lφ dxdt denote the full nonlinear
term.

We claim that N [θn, φ] → N [ f, φ]. To simplify the calculation, a simple approx-
imation argument allows us to assume that that φ̂ has compact support in supp φ̂ ⊆
{|ξ | ≤ 2r−1} for some r ≥ 0. In this case, for all θ ∈ {θn}n≥0, we decompose the
nonlinear term (12.1) into dyadic frequency increments

N [θ, φ] = N [P≤rθ, φ] +
∞
∑

I=r+1

δNI [θ, φ] (12.14)

δNI [θ, φ] = N [P≤I+1θ, φ] − N [P≤I θ, φ] (12.15)
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=
∫

R

∫

Td
PI+1θ P≤I+1u

l∂lφdxdt

+
∫

R

∫

Td
P≤I θ PI+1u

l∂lφdxdt (12.16)

=
∫

R

∫

Td
PI+1θ P[I−r,I+r ]ul∂lφdxdt

+
∫

R

∫

Td
P[I−r,I+r ]θ PI+1u

l∂lφdxdt. (12.17)

In the last line we took advantage of the compact support of φ̂ for convenience. Using
the commutator formulation (12.4), each δNI decomposes into several terms of the
type

δNI [θ, φ] =
∫

R

∫

Td

−1∂k PI+1θ ∂kT l

[


−1∂ j P[I−r,I+r ]θ
]

∂ j∂lφ dxdt

+ other similar terms

From (12.6) and ‖
−1∇PI θ‖L2
x

≤ C2−I ‖θ‖L2
x
, each δNI is bounded by

|δNI [θ, φ]| ≤ Cφ2−I ‖θ‖2
L2
t,x

(12.18)

for some constant Cφ depending on φ.
We now show that the weak convergence (12.10) can in fact be upgraded to uniform

convergence for each dyadic piece PI θn → PI f , which implies the convergence
of each term δNI [θn, φ] → δNI [ f, φ]. The uniform convergence is obtained by
compactness. We start with the bounds

‖PI θn‖L p
t L∞

x
+ ‖∇PI θ

n‖L p
t L∞

x
≤ CI‖θn‖L p

t L2
x

Applying PI to (1.1), the equation ∂t PI θ = −∂l PI [θul ] gives regularity in time

‖∂t PI θn‖L p/2
t L∞

x
≤ CI‖θn‖2

L p
t L2

x

As we have assumed p > 2 and uniform in n bounds on ‖θn‖2
L p
t L2

x
from (12.10), it

follows by Sobolev embedding that the sequence PI θn for each I is Hölder contin-
uous in time and space, uniformly in n. By Arzelà-Ascoli, there exists a uniformly
convergent subsequence PI θn j for each I . From the weak convergence (12.10), we
have uniform convergence of PI θn → PI f on any subsequence, which implies that
the original sequence PI θn → PI f converges uniformly.

It now follows that δNI [θn, φ] → δNI [ f, φ] for each index I and that
N [P≤rθ

n, φ] → N [P≤r f, φ]. We also have the estimate (12.18), so the convergence
of N [θn, φ] → N [ f, φ] follows from the dominated convergence theorem applied to
(12.14).
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We remark that the same two arguments can be upgraded to prove compactness
of solutions when we only assume weak convergence in L p

t H
s
x for some p > 2 and

s > −1/2. The main difference involves using the commutator formulation (12.4) to
obtain an estimate for the time derivative from the lower regularity in space.

13 Conservation of the Hamiltonian for Odd Active Scalars

In this Section we give the proof of Theorem 1.4. Recall that the symbol of the Fourier
multiplier L defined in (1.3), which defines the Hamiltonian is given by

L̂(ξ) = |ξ |−2 (iξ2m1(ξ) − iξ1m2(ξ)) (13.1)

with the convention that L̂(0) = 0. Since we are in two spatial dimensions and
ξ · m(ξ) = 0 for all nonzero vectors ξ , automatically we must have that

m(ξ) = iξ⊥|ξ |−1�(ξ) (13.2)

for some even, zero-order homogenous, smooth on the unit sphere, real-valued scalar
function �(ξ). The fact that �(ξ) ∈ R follows from the fact that �(ξ) = �(−ξ) = �(ξ).
In the case of the SQG equation, �(ξ) = 1.

In summary, we have that

L̂(ξ) = |ξ |−1�(ξ) (13.3)

which reiterates that L is a self-adjoint operator, which is smoothing of degree −1
when �(ξ) is nonvanishing on the unit sphere. The Hamiltonian then is

H(t) =
∫

T2
θ(t, x)Lθ(t, x)dx (13.4)

or equivalently, in view of Plancherel’s theorem,

H(t) =
∑

k∈Z2∗

|θ̂ (t, k)|2|k|−1�(k). (13.5)

Let φε = ε−2φ(x/ε) be a standard mollifier on T
2, and denote

·ε = · ∗ φε, ·ε,ε = · ∗ φε ∗ φε.

The conservation of the Hamiltonian H for solutions of (1.1) is implied by estab-
lishing that d

dt H(t) = 0 as a distribution in t . Namely, we show that

lim
ε→0

∫

R

∫

T2
η′(t)θε(t, x)Lθε(t, x)dxdt = 0 (13.6)
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holds for every smooth function η(t) which is supported in I . Note that since mollifi-
cation ∗φε is given by a Fourier multiplier, it commutes with L .

Considering the test function η(t)Lθε,ε in the weak formulation of (1.1), we arrive
at

∫

R

∫

T2
θ∂t (ηLθε,ε)dxdt +

∫

R

∫

T2
θul∂l(ηLθε,ε)dxdt = 0, (13.7)

for every ε > 0. Strictly speaking, the above test function is not smooth in time,
but this restriction can be ignored after a time mollification argument, as in the proof
of [33, Theorem 2.2]. The first term in (13.7) may now be rewritten as

∫

R

∫

T2
θ∂t (ηLθε,ε)dxdt =

∫

R

∫

T2
θε∂t (ηLθε) dxdt

=
∫

R

∫

T2
θεη

′Lθεdxdt +
∫

R

∫

T2
θεηL∂tθεdxdt

=
∫

R

∫

T2
θεη

′Lθεdxdt +
∫

R

∫

T2
Lθεη∂tθεdxdt

=
∫

R

∫

T2
θεη

′Lθεdxdt −
∫

R

∫

T2
∂t

(

Lθε,εη
)

θdxdt.

(13.8)

Combining the above with (13.7) we see that establishing (13.6) is equivalent to
establishing

lim
ε→0

∫

R

η

∫

T2

(

θul
)

ε
∂l Lθεdxdt = 0. (13.9)

for ul = T l [θ ].
Up to this point, we have presented the proof of conservation of H(t) analogously

to the proof of energy conservation for Euler in the Onsager critical Besov space
L3
t B

3
1/3,c(N)

of [10], but the remaining analysis turns out to be less subtle. In particular,
there is no need for a quadratic commutator estimate as in [16] (and the mollification
above could also be simpler).

To proceed, we view the cubic term on the left hand side of (13.9) as the diagonal
part of a family of trilinear operators

Qε[θ(1), θ(2), θ(3)] =
∫

R

η

∫

T2
(θ(1)T

l [θ(2)])ε(∂l Lθ(3))εdxdt (13.10)

In this notation, equation (13.9) asks to show limε→0 Qε[θ, θ, θ ] = 0 for all θ ∈ L3
t,x .

Observe first that the operators Qε satisfy the bound

|Qε[θ(1), θ(2), θ(3)]| ≤ ‖θ(1)‖L3
t,x

· ‖T [θ(2)]‖L3
t,x

· ‖∇L[θ(3)]‖L3
t,x

≤ C‖θ(1)‖L3
t,x

· ‖θ(2)‖L3
t,x

· ‖θ(3)‖L3
t,x

(13.11)
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This bound follows from the fact that both operators T and

∇L = ∇(−
)−1/2(R2T
1 − R1T

2) (13.12)

are bounded as operators from L3
x to itself, thanks to the smoothness and degree 0

homogeneity of m.
Because the operators Qε are trilinear, and the bound (13.11) they satisfy is uniform

in ε, it suffices to prove (13.9) under the additional assumption that θ is smooth with
compact support by the density of such functions in L3

t,x . Assuming now that θ is
smooth, we may pass ε to 0 in (13.9), and it remains to show that

∫

R

η

∫

T2
θT l [θ ]∂l Lθdxdt = 0.

At this stage we recall that

ul = T l [θ ] =
(

∂ l
)⊥

Lθ, (13.13)

which may be seen on the Fourier side from (13.2) and (13.3). As a result, we have

∫

T2
θul ∂l Lθdx =

∫

T2
θ
(

∂ l
)⊥

Lθ ∂l Lθdx = 0 (13.14)

which concludes the proof.

14 Constraints on Weak Limits of Degenerate Active Scalars in Higher
Dimensions

In this Section, we give a proof of Theorem 1.6, which shows that the nondegeneracy
condition in Theorem 1.5 is necessary for the weak limit statement of Theorem 1.1.

In this section, we assume that there is a nonzero frequency ξ(0) ∈ ̂Tn \ {0} = Z
n∗

in the dual lattice such that the image of the even part of the multiplier is contained in

{

m(ξ) + m(−ξ) | ξ ∈ ̂Rn
} ⊆ 〈ξ(0)〉⊥ (14.1)

In this case, we have the following restriction on weak limits of solutions to the active
scalar equation, which bears resemblance to a new conservation law.

Lemma 14.1 Consider the active scalar equation (1.1) on I × T
n and suppose that

the image of the even part of the multiplier is contained in the hyperplane (14.1). Let
T l

0 denote the Fourier multiplier with symbol

̂T l
0 [θ ](ξ) = 1

2

(

ml(ξ) − ml (−ξ)
)

θ̂ (ξ )
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Suppose that φ ∈ C∞
0 (I × T

n) has the property that its spatial gradient takes values
in the direction ξ(0)

∇φ(t, x) ∈ 〈ξ(0)〉 (14.2)

Suppose that f ∈ L∞(I × T
n) can be realized as a weak-* limit θ(k) ⇀ f in L∞ of

some sequence of solutions θ(k) to (1.1). Then

∫

I×Tn
f ∂tφ + f T l

0 [ f ]∂lφdxdt = 0 (14.3)

Proof Consider the sequence of solutions θ(k) to (1.1) converging to f in the L∞
weak-* topology. Decompose the operator T l as T l = T l

0 + T l
e , where the term T l

e of
the operator is the Fourier multiplier with symbol

T̂ l
e [θ ](ξ) = 1

2

(

ml(ξ) + ml(−ξ)
)

θ̂ (ξ ) (14.4)

By equation (1.1), we have for all indices k that

∫

I×Tn
(θ(k)∂tφ + θ(k)T

l
0 [θ(k)]∂lφ)dxdt = −

∫

I×Tn
θ(k)T

l
e [θ(k)]∂lφdxdt = 0

by the condition (14.1). By the proof of Theorem 1.3, the nonlinear term is continuous
with respect to weak-* limits in L∞ when restricted to active scalar fields, giving (14.3).
To make this conclusion, it is important to note that, in the proof of compactness for
the nonlinear term, it was not important that the operator in the nonlinear term was
identical to the operator appearing in the active scalar equation. The proof used only the
oddness of the multiplier in the nonlinear term, and certain time regularity estimates
from the active scalar equation coming from the boundedness properties of the operator
in the equation. ��
Assuming that the hyperplane containing the image of the even part of m is in the dual
lattice ξ(0) ∈ ̂Tn , it is now not so hard to design a test function φ obeying (14.2) and
an integral-conserving function f which fails to satisfy (14.3). As a first attempt, we
can let ζ(t) be a smooth cutoff in time, and take

φ(t, x) = ζ(t) cos
(

ξ(0) · x) (14.5)

f (t, x) = ζ ′(t) cos
(

ξ(0) · x) (14.6)

Then (14.2) is satisfied, and we also have

∫

f (t, x)∂tφ(t, x)dxdt =
∫

(

ζ ′(t)
)2 cos2 (

ξ(0) · x) dxdt > 0 (14.7)

is strictly positive.
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The positivity of (14.7) does not necessarily imply the failure of (14.3). However,
if the equality (14.3) holds for this function f , then (14.3) cannot hold for the function
2 f , because the linear term (which is positive by (14.7)) scales linearly, whereas the
quadratic term scales quadratically. Thus, at least one of f or 2 f fails to satisfy (14.3),
and we have Theorem 1.6.

15 Concluding Discussion

Active scalar equations arise naturally in fluid dynamics in several asymptotic regimes,
and as model equations for the full fluid systems. The problem of constructing active
scalar fields for which the energy ‖θ‖L2

x
fails to be conserved is a natural generalization

of Onsager’s conjecture for the Euler equations. This problem, however, encounters
several additional difficulties when compared to Euler. Most importantly, a suitable
analogue of Beltrami flows, which provide an essential ingredient for obtaining regu-
larity up to 1/5 in the case of Euler, are unavailable.

For active scalars with multipliers that are not odd, we obtain nonuniqueness of
weak solutions and even h-principles among integral-conserving functions for weak
solutions with Hölder regularity up to 1/9 (Theorem 1.1, Theorem 1.2, and Corol-
lary 1.1). Our proof is based on the observation that the interference terms which arise
due to self-interactions between individual waves must vanish to leading order. This
observation allows for an approach in the spirit of the isometric embedding equa-
tions, where we eliminate one component of the error in each stage of the iteration
using one-dimensional oscillations. Our observation is general, and applies in arbitrary
dimensions even to the case of the Euler equations, giving a new approach to solutions
in that case as well. However, our inability to remove more than one component of
the error leads to further losses in regularity.

These results however should not be expected for multipliers which are odd. For odd
symbols, the Hamiltonian is conserved at the level of θ ∈ L3

t,x (Theorem 1.4), and the
nonlinearity exhibits a weak rigidity which makes it impossible to obtain an h-principle
type result (Theorem 1.3). In higher dimensions, the presence of conservation laws
and other rigidity properties of weak solutions can even be sensitive to more subtle
algebraic properties of the multiplier, and our method applies in a generality which is
essentially optimal (Theorems 1.5, 1.6).

Several related questions remain open. Part of our proof does not apply to the
nonperiodic setting and some new idea could be required to produce nonperiodic
solutions (currently even L∞

t,x solutions have not been constructed in this case). Other
significant questions include

1. In the case of SQG, exhibit a weak solution θ ∈ L p
t L

2
x , that does not conserve

energy.
2. In the case of SQG, exhibit a weak solution θ ∈ C0

x,t that does not conserve energy,
but does conserve the Hamiltonian.

3. In the case of IPM, or more generally for not odd symbols, exhibit weak solutions
θ ∈ Cα

t,x , with α ∈ (1/9, 1/3) that do not conserve energy.

We believe that answering these questions may shed some light into the field of two
dimensional turbulence.
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Finally, further sharpening approaches which do not rely on the use of Beltrami
flows may be found useful in resolving Onsager’s conjecture. The current approaches
introduce anomalous time scales in the construction which are incompatible with
the time regularity bounds held by more regular solutions. Although our construction
shares in this deficiency, the cancellation of self-interference terms that lies at the heart
of our proof is a general observation that arises from the structure of the equations
and remains available even at longer time scales. It is important to investigate whether
further, more dynamical methods of construction can be developed.
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