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Abstract This paper concerns the stability andnon-weighted
L2-gain analysis issues for the switched systems subject to
asynchronous switching and external disturbance. By tak-
ing full advantage of the admissible edge-dependent average
dwell time (AED-ADT) switching signal, a stability criterion
of asynchronously switched systems is proposed to achieve a
lower non-weighted L2-gain index than the existing results.
Furthermore, the dynamics of switched systems are described
by using the polynomial fuzzy model instead of the T-S
fuzzy model, which can represent a wider range of nonlin-
ear plants. For such asynchronously switched polynomial
fuzzy systems, the relaxed conditions are derived through
the membership-function-dependent (MFD) technique and
novel high-order multiple Lyapunov functions (MLFs) con-
struction method to guarantee less conservative stability and
non-weighted L2-gain results. Finally, the superiority of the
proposed approaches are verified through two simulation
examples.
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1 Introduction

Switched systems include both continuous dynamics and dis-
crete switching signal, which are widely applied in practical
applications, such as multi-agent systems [1], robot manip-
ulator systems [2], and electric vehicle energy management
systems [3]. Recently, many researchers have explored vari-
ous stability and stabilization issues of switched systems [4].

The external disturbance iswidely present in practical sys-
tems and affects the robustness of switched systems. L2-gain
can measure the impact of the disturbance on the output
of the switched systems and is another fundamental topic
closely related to system stability. For a considerable period,
only the weighted L2-gain of switched systems is guaran-
teed, such as the weighted L2-gain based on average dwell
time (ADT) switching signal in [5] and the weighted H∞
performance based on mode-dependent average dwell time
(MDADT) switching signal in [6]. However, from the prac-
tical application perspective, the weighted L2-gain with an
additional time factor is not the expected performance index.
For this reason, researchers have attempted to derive the non-
weighted L2-gain index, for instance, the results under ADT
switching signal [7] and persistent dwell time (PDT) switch-
ing signal [8]. It is worth noting that the above results did not
take into account the phenomenon of asynchronous switch-
ing.

The asynchronous switching is often encountered in prac-
tical systems [9]. Here, asynchrony refers to the delay
between the instant of subsystem switching and controller
switching due to model detection, sensor response delay,
or other reasons. Considering this practical-oriented issue,
researchers obtained non-weighted L2-gain by setting the
increment of the Lyapunov function at switching instant to
less than one, such as the widely concerned discretized Lya-
punov function in [10]. However, this approach will increase
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the complexity of the Lyapunov function. When setting the
increment greater than one, the non-weighted L2-gain of
asynchronously switched systems under ADT switching sig-
nal is guaranteed in [11]. Moreover, the non-weighted H∞
performance of event-triggered switched systems based on
MDADT switching signal was studied in [12], which got a
lower L2-gain index by incorporating the mode-dependent
switching parameters. This means that mining the switched
signal informationwill be beneficial for reducing the L2-gain
index, thereby improving the robustness of the system. Given
this, a question arises: how to employ more switching signal
information to achieve a lower non-weighted L2-gain index
for the asynchronously switched systems? This motivates us
to conduct more in-depth research.

Actually, switched systems also involve nonlinearity.
Combined with Takagi-Sugeno (T-S) fuzzy theory, the anal-
ysis and synthesis of switched T-S fuzzy systems have been
extensively studied [13–17], such as asynchronous observer-
based control [13], static output-feedback control [15], and
asynchronous filtering control [16]. Recently, the switched
polynomial fuzzy systems and positive switched polynomial
fuzzy systems were investigated in [18] and [19], respec-
tively. Compared with T-S fuzzymodel, the quantity of fuzzy
rules and structural complexity of polynomial fuzzy model
are significantly reduced. However, the stability analysis
of switched polynomial fuzzy systems under asynchronous
switching and external disturbances have yet to be studied,
and existing analysis results are conservative for this class of
system.

One conservative source is the stability conditions are
mostly independent of the membership functions. That is,
for any shape of membership functions, the stability condi-
tions are always valid. In general fuzzy systems, there are
many approaches for incorporating membership functions
into the stability analysis results, such as cross-term grouping
[20], copositivity verification relaxation [21], and piecewise
polynomial approximation [19,22]. However, the methods
in [20] and [21] require the membership functions of the
controller to be parallel distributed compensated. Further,
the approaches in [19] and [22] cannot guarantee the global
asymptotic stability of the switched polynomial fuzzy sys-
tems. At present, there is limited research on the stability
conditions of switched fuzzy systems that depend on mem-
bership functions, which is worth further exploration.

Another conservative source is the MLFs construction
method. Based on the linearmatrix inequality (LMI)method,
the stability analysis results of asynchronously switched T-S
fuzzy systems can be obtained by the quadratic MLFs [23]
or the time-scheduled MLFs [24]. It is worth noting that
the positive-definite matrices in these MLFs are constant,
which is relatively conservative for the stability conditions
of switched polynomial fuzzy systems.Meanwhile, the poly-
nomial Lyapunov function is usually a rational fraction in

general polynomial fuzzy systems [25], so it is not a radially
unbounded function, and the corresponding K∞ function
cannot be found. To address this dilemma, the high-order
MLFs are proposed for the switched polynomial fuzzy sys-
tems in [18], which can obtain the analysis results through
a two-step procedure. However, the switched systems in
[18] are synchronized and do not consider external distur-
bances. For the asynchronously switched polynomial fuzzy
systems with external disturbances, the high-order MLFs
constructed in [18] cannot handle the problem of the deriva-
tive of positive-definite polynomialmatrices.How to propose
a novel high-order MLF construction method is a challenge.

In this paper, based on the AED-ADT switching signal
[26], a lower non-weighted L2-gain index is guaranteed,
which can incorporate the admissible transition edge infor-
mation into the results.Next, the dynamics of asynchronously
switched systems are described by the polynomial fuzzy
model to represent a wider plant. Then, for such switched
polynomial fuzzy systems, the analysis results are relaxed by
the proposed MFD conditions and novel high-order MLFs
construction method. The main contributions are outlined
below.

(1) The non-weighted L2-gain index of asynchronously
switched systems is obtained by employing the AED-
ADT switching signal, which can obtain a lower index
than the results based on ADT and MDADT switching
signals [11,12].

(2) The asynchronously switched systems are described by
the polynomial fuzzymodel for the first time,which helps
to reduce the number of fuzzy rules and structural com-
plexity.

(3) For the asynchronously switched polynomial fuzzy sys-
tems, a novel high-order MLFs construction method and
theMFDconditions are proposed,which reduces the con-
servativeness of stability and L2-gain analysis results.

The subsequent sections are arranged as follows. Section2
gives the preliminaries. Section3 gives the non-weighted
L2-gain index for the asynchronously switched systems and
the relaxed conditions for the asynchronously switched poly-
nomial fuzzy systems. Section 4 provides two simulation
examples to validate the developed method. Section5 draws
a conclusion.

Notations:Z+ represents the set of positive integers. In×m

and 0n×m are the identity matrix and zero matrix, respec-
tively. A class K∞ function refers to it being continuous,
unbounded, strictly increasing.A sum-of-square (SOS) poly-
nomial s(x) refers to s(x) ≥ 0, and there exists arbitrary
polynomial si (x), such that s(x) = ∑k

i=1 si (x)
2. Define S

as a set containing arbitrary SOS polynomials. L2[0,∞)

denotes the space of square-integrable functions. In addition,
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Fig. 1 The system diagram of asynchronously switched systems

an underline symbol, such as N = {1, ..., N }, represents a
finite ordered set.

2 Preliminaries

This section presents the concept of asynchronously switched
systems with AED-ADT switching signals and their form
described by polynomial fuzzy models. The system diagram
is shown in Fig. 1.

2.1 Asynchronously Switched Systems with AED-ADT
Switching Signal

Considering the switched systems as follows

{
ẋ(t) = fσ(t)(x(t),u(t),w(t)),
y(t) = gσ(t)(x(t)),

(1)

where x(t) ∈ �n , y(t) ∈ �ϑ , andu(t) ∈ �m are system state,
controlled output, and controlled input, respectively; w(t) ∈
�v is an external disturbance which belongs to L2[0,∞).
The time-dependent switching signal σ(t) : [0,∞) → N
satisfies the AED-ADT property, as shown in the following
definition.

Definition 1 (see [26]) For a switching signal σ(t), define
Nσ
q,p(t, s) as the number of switches from the qth subsys-

tem to the pth subsystem in the interval [t, s), and define
Tq,p(t, s) as the total running times of the pth subsystem.
Here, the pth subsystem is switched from the qth subsys-
tem, ∀q, p ∈ N × N . Thus, the switching signal σ(t) has
an AED-ADT τq,p if there exist positive numbers N 0

q,p (the
edge-dependent chatter bound) and τq,p such that

Nσ
q,p(t, s) ≤ N 0

q,p + Tq,p(t, s)

τq,p
. (2)

Asynchronous switching means there is a delay between
the switching time of the subsystem and the controller. With-
out loss of generality, assuming the switching sequence of
the subsystem satisfies t0 < t1 < · · · < tπ < tπ+1 < · · · <

+∞. The switching time of the controller has a delay τπ

relative to the subsystem switching. The delay τπ = t̂π − tπ
and satisfies 0 < τπ < tπ+1 − tπ ,∀π ∈ Z

+. Furthermore,
assuming the switched system switches from the qth sub-
system to the pth subsystem at time tπ , i.e., σ(tπ−1) = q
and σ(tπ ) = p, ∀q 	= p ∈ N , p ∈ N . The dynamics of
asynchronously switched systems are defined as follows:

{
ẋ(t) = f p(x(t),uq(t),w(t)),
y(t) = gp(x(t)).

(3)

Remark 1 The control objective for the asynchronously
switched system (3) is to obtain the stability criterion to
guarantee the system is globally uniformly asymptotically
stable (GUAS) with a lower non-weighted L2-gain index by
employing AED-ADT switching signal information.

2.2 Asynchronously Switched Polynomial Fuzzy
Systems

In the following analysis, we will omit the time t associated
with variables such as x(t), u(t), and w(t). Based on the
Taylor series or sector nonlinearity approach [27], polyno-
mial fuzzy models can describe the dynamics of switched
systems (1). The fuzzy rules of the pth switched polynomial
fuzzy subsystem are

Rule Ri
p : IF l1(x) is Li

p1, · · · and θ (x) is Li
pθ

THEN ẋ = Api (x)x + Bpi (x)u + Cpi (x)w,

y = Dpi (x)x, i ∈ n p, p ∈ N , (4)

where n p is the number of IF-THEN fuzzy rules; Li
pς , ς∈ θ

is the fuzzy set; Api (x), Bpi (x), Cpi (x), and Dpi (x) are the
given polynomial matrices with appropriate dimensions.

The dynamics of switched polynomial fuzzy systems is
defined as

ẋ =
n p∑

i=1

ωpi (x)
(
Api (x)x + Bpi (x)u + Cpi (x)w

)
, (5)

y =
n p∑

i=1

ωpi (x)Dpi (x)x, (6)

whereωpi (x) =
θ∏

ς=1
μLi

pς
(lς (x))/

n p∑

k=1

θ∏

ς=1
μLk

pς
(lς (x)) is the

normalized membership grade.
Next, to achieve higher design flexibility, the switched

polynomial fuzzy controller is designed using the IPM con-
cept. The fuzzy rules of the controller corresponding to the
pth switched polynomial fuzzy subsystem are
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Rule R j
p : IF f1(x) is F

j
p1, · · · and fυ(x) is F j

pυ

THEN u = Kpj (x)x, j ∈ rp, p ∈ N , (7)

where rp is the number of IF-THEN fuzzy rules; F j
pι, ι ∈ υ

is the fuzzy set; Kpj (x) are the polynomial matrices to be
determined. Then, the switched polynomial fuzzy controller
can be obtained as

u =
rp∑

j=1

mpj (x)Kpj (x)x, (8)

where mpj (x) =
υ∏

ι=1
μ
F j
pι
( fι(x))/

rp∑

k=1

υ∏

ι=1
μFk

pι
( fι(x)) is the

normalized membership grade.
From (3), (5), (6), and (8), we can get the asynchronously

switched polynomial fuzzy systems as follows

ẋ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n p∑

i=1

rq∑

j=1
ωpi (x)mqj (x)

(
(Api (x) + Bpi (x)Kq j (x))x

+Cpi (x)w
)

t ∈ [tπ , t̂π ),
n p∑

i=1

rp∑

j=1
ωpi (x)mpj (x)

(
(Api (x) + Bpi (x)Kpj (x))x

+Cpi (x)w
)

t ∈ [t̂π , tπ+1),

(9)

y =
n p∑

i=1

ωpi (x)Dpi (x)x. (10)

Remark 2 The control objective for the asynchronously
switched polynomial fuzzy systems (9)–(10) is to obtain the
relaxed conditions and corresponding controllers based on
the stability criterion in Remark 1, such that the system is
GUAS with a non-weighted L2-gain index.

3 Main Results

In this section, Theorem 1 is proposed for asynchronously
switched systems to obtain a lower L2-gain index. Theorem
2 and Theorem 3 are proposed for asynchronously switched
polynomial fuzzy systems to achieve relaxed stability and
L2-gain analysis results. The graphical demonstration of the
approaches and their relationship is shown in Fig. 2.

3.1 Non-weighted L2-Gain of Asynchronously Switched
Systems with AED-ADT Switching Signal

Theorem 1 Consider the asynchronously switched systems
(3), and letαp > 0,βp > 0,μ[q,p] > 1, and γp > 0,∀q, p ∈
N , q 	= p be given constants. If there exist continuously
differentiable functions Vσ̂ (t) and two class K∞ functions
k p1 , k

p
2 such that

Plants:

Conditions:

Objective:
A lower non-weighted

-gain index

Asynchronously switched

polynomial Fuzzy systems

Asynchronously

switched systems

Theorem1
(AED-ADT switching

signal)

Theorem2
(Boundary

of MFs)

Theorem3
(High-order

MLFs)

Relaxed stability and non-

weighted -gain conditions
2L 2L

Fig. 2 The proposed approaches and their relationship diagram

k p1 (‖x‖) ≤ Vp(x) ≤ k p2 (‖x‖), (11)

for ∀(σ̂ (tπ ) = q, σ̂ (t̂π ) = p) ∈ N × N, denoting �(t) =
yT y − γpwTw,

V̇q(x) ≤ βpVq(x) − �(t) t ∈ T↑(tπ , tπ+1), (12)

V̇p(x) ≤ −αpVp(x) − �(t) t ∈ T↓(tπ , tπ+1), (13)

and for ∀(σ̂ (t̂−π ) = q, σ̂ (t̂π ) = p) ∈ N × N,

Vp(x(t̂π )) ≤ μ[q,p]Vq(x(t̂π )), (14)

then, for any switching signal with AED-ADT

τq,p > τ ∗
q,p = η(q,p)

αp
, (15)

the asynchronously switched system is GUAS and has a non-
weighted L2-gain index no greater than

γ =
√

αm

−ξm
e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γm, (16)

whereγm =max
p∈N {γp},αm=max

p∈N {αp}, ξm = max
q,p∈N ,q 	=p

{−αp+
η(q,p)
τq,p

}, η(q,p) = (αp + βp)Tm + lnμ[q,p] and Tm =
max

∀π∈Z+{T↑(tπ , tπ+1)}.

Proof At first, assuming that the switching signal of the con-
troller is denoted as σ̂ (t) = σ(t − τπ ),∀π ∈ Z

+. The
switched subsystem switches from the qth subsystem to the
pth subsystem at time tπ . The controller switches at time t̂π ,
which satisfies tπ < t̂π < tπ+1. Then, it can be obtained that
σ̂ (t̂π−1) = σ̂ (tπ ) = σ̂ (t̂−π ) = q and σ̂ (t̂π ) = p.

For concise notation, let T↑(tπ , tπ+1) denote the
unmatched interval [tπ , t̂π ), and T↓(tπ , tπ+1) represent the
matched interval [t̂π , tπ+1). T↑(t − ς) represents the total
length of the intervalswhere the Lyapunov function increases
in the interval [ς, t), andT↓(t−ς) represents the length of the
intervalswhere the Lyapunov function decreases. Inspired by
[28], the MLFs are dependent on the switching signal of the
controller σ̂ (t), i.e., Vσ̂ (t) : �n → �, as shown in Fig. 3.
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Fig. 3 The MLFs that depend on the switching signal of the controller

When t ∈ [t̂π , tπ+1),∀π ∈ Z
+, by integrating (13), we

have

Vσ̂ (t)(x) ≤ e−ασ̂ (t̂π )(t−t̂π )Vσ̂ (t̂π )(x(t̂π )) −
∫ t

t̂π
e−ασ̂ (t̂π )(t−ς)

�(ς)dς

≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )(t−t̂π )Vσ̂ (t̂−π )(x(t̂π ))

−
∫ t

t̂π
e−ασ̂ (t̂π )(t−ς)

�(ς)dς

≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )(t−t̂π )

(

eβσ̂ (t̂π )(t̂π −tπ )Vσ̂ (tπ )(x(tπ ))

−
∫ t̂π

tπ
eβσ̂(t̂π )(t̂π −ς)

�(ς)dς

)

−
∫ t

t̂π
e−ασ̂ (t̂π )(t−ς)

�(ς)dς

= μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )T↓(t−tπ )+βσ̂(t̂π )T↑(t−tπ )Vσ̂ (tπ )(x(tπ ))

− μ[σ̂ (t̂−π ),σ̂ (t̂π )]
∫ t̂π

tπ
e−ασ̂(t̂π )(t−t̂π )+βσ̂(t̂π )(t̂π −ς)

�(ς)dς

−
∫ t

t̂π
e−ασ̂ (t̂π )(t−ς)

�(ς)dς

≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )T↓(t−tπ )+βσ̂(t̂π )T↑(t−tπ )Vσ̂ (tπ )(x(tπ ))

−
∫ t̂π

tπ
e−ασ̂(t̂π )(t−t̂π )+βσ̂(t̂π )(t̂π −ς)

�(ς)dς

−
∫ t

t̂π
e−ασ̂ (t̂π )(t−ς)

�(ς)dς

= μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )T↓(t−tπ )+βσ̂(t̂π )T↑(t−tπ )Vσ̂ (tπ )(x(tπ ))

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂(t̂π )T↑(t−ς)

�(ς)dς. (17)

When t ∈ [tπ , t̂π ),∀π ∈ Z
+, by integrating (12), one can

obtain

Vσ̂ (t)(x) ≤ eβσ̂ (t̂π )(t−tπ )Vσ̂ (tπ )(x(tπ )) −
∫ t

tπ
eβσ̂(t̂π )(t−ς)

�(ς)dς

= e−ασ̂(t̂π )T↓(t−tπ )+βσ̂ (t̂π )T↑(t−tπ )Vσ̂ (tπ )(x(tπ ))

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂ (t̂π )T↑(t−ς)

�(ς)dς

≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂(t̂π )T↓(t−tπ )+βσ̂ (t̂π )T↑(t−tπ )Vσ̂ (tπ )(x(tπ ))

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂ (t̂π )T↑(t−ς)

�(ς)dς. (18)

Combining (17) and (18), for t ∈ [tπ , tπ+1),∀π ∈ Z
+,

one can obtain

Vσ̂ (t)(x) ≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂(t̂π )T↓(t−tπ )+βσ̂ (t̂π )T↑(t−tπ )Vσ̂ (t−π )(x(t

−
π ))

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂ (t̂π )T↑(t−ς)�(ς)dς

≤ μ[σ̂ (t̂−π ),σ̂ (t̂π )]e
−ασ̂ (t̂π )T↓(t−tπ )+βσ̂(t̂π )T↑(t−tπ )

(
μ[σ̂ (t̂−π−1),σ̂ (t̂π−1)]

× e
−ασ̂(t̂π−1)T↓(tπ −tπ−1)+βσ̂ (t̂π−1)T↑(tπ −tπ−1)Vσ̂ (tπ−1)(x(tπ−1))

−
∫ tπ

tπ−1

e
−ασ̂(t̂π−1)T↓(tπ −ς)+βσ̂(t̂π−1)T↑(tπ −ς)

�(ς)dς
)

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂ (t̂π )T↑(t−ς)�(ς)dς

≤ μ[σ̂ (t̂π−1),σ̂ (t̂π )] · · ·μ[σ̂ (t̂0),σ̂ (t̂1)]e
−ασ̂ (t̂π )T↓(t−tπ )+βσ̂(t̂π )T↑(t−tπ ) · · ·

× e−ασ̂(t̂0)T↓(t1−t0)+βσ̂ (t̂0)T↑(t1−t0)Vσ̂ (t0)(x(t0))

− μ[σ̂ (t̂π−1),σ̂ (t̂π )] · · ·μ[σ̂ (t̂1),σ̂ (t̂2)]e
−ασ̂(t̂π )T↓(t−tπ )+βσ̂ (t̂π )T↑(t−tπ ) · · ·

× e−ασ̂(t̂1)T↓(t2−t1)+βσ̂ (t̂1)T↑(t2−t1)

×
∫ t1

t0
e−ασ̂(t0)T↓(t1−ς)+βσ̂(t0)T↑(t1−ς)

�(ς)dς

− · · · − μ[σ̂ (t̂π−1),σ̂ (t̂π )]e
−ασ̂(t̂π )T↓(t−tπ )+βσ̂ (t̂π )T↑(t−tπ )

×
∫ tπ

tπ−1

e
−ασ̂(t̂π−1)T↓(tπ −ς)+βσ̂(t̂π−1)T↑(tπ −ς)

�(ς)dς

−
∫ t

tπ
e−ασ̂ (t̂π )T↓(t−ς)+βσ̂ (t̂π )T↑(t−ς)�(ς)dς

= e−ασ̂(t̂π )T↓(tπ ,t)+βσ̂ (t̂π )T↑(tπ ,t)

×
π−1∏

ι=0

μ[σ̂ (t̂ι),σ̂ (t̂ι+1)]e
−ασ̂(t̂ι)T↓(tι,tι+1)+βσ̂(t̂ι)T↑(tι,tι+1)Vσ̂ (t0)(x(t0))

−
∫ t

t0

π−1∏

q 	=p,q=0

π−1∏

p=0

(
μ[σ̂ (t̂ p),σ̂ (t̂ p+1)]

)Nσ
q,p(ς,t)

× e
−ασ̂(t̂ p )(T↓q,p(ς,t))+βσ̂(t̂ p )T↑q,p(ς,t)

�(ς)dς

= e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(0,t) lnμ[q,p]−αpT↓q,p(0,t)+βpT↑q,p(0,t)

Vσ̂ (t0)(x(t0))

−
∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]−αp(T↓q,p(ς,t))+βpT↑q,p(ς,t)

�(ς)dς,

(19)

whereT↑q,p(ς, t) andT↓q,p(ς, t) are the total unmatched and
matched interval of pth subsystem during the interval [ς, t).
Here, the pth subsystem is switched from the qth subsystem,
∀q, p ∈ N × N .

DenotingTm = max
∀π∈Z+{T↑(tπ , tπ+1)} and η(q,p) = (αp+

βp)Tm + lnμ[q,p]. When w ≡ 0, applying (2) to (19), we
have

Vσ̂ (t)(x) ≤ e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(0,t) lnμ[q,p]+(αp+βp)TmNσ

q,p(0,t)−αp(t−t0)

× Vσ̂ (t0)(x(t0))

≤ e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p+(−αp+ η(q,p)
τq,p

)(t−t0)

Vσ̂ (t0)(x(t0)).
(20)
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If the AED-ADT switching signal satisfies (15), i.e.,
−αp + η(q,p)

τq,p
< 0, Vσ̂ (t)(x) approach to 0 as t → +∞.

Therefore, we can obtain the asynchronously switched sys-
tem is GUAS with the aid of (11).

When w 	= 0, from (19), we obtain

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]−αp(T↓q,p(ς,t))+βpT↑q,p(ς,t)

y(ς)T y(ς)dς

≤ γ 2
p

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]−αp(T↓q,p(ς,t))+βpT↑q,p(ς,t)

w(ς)Tw(ς)dς. (21)

For the left side of (21), we obtain

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]−αp(T↓q,p(ς,t))+βpT↑q,p(ς,t)

y(ς)T y(ς)dς

≥
∫ t

t0
e−αm(t−ς)y(ς)T y(ς)dς, (22)

where αm = max
p∈N {αp}.

For the right side of (21), we obtain

γ 2
p

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]−αp(T↓q,p(ς,t))+βpT↑q,p(ς,t)

w(ς)Tw(ς)dς

≤ γ 2
p

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
Nσ
q,p(ς,t) lnμ[q,p]+(αp+βp)TmNσ

q,p(ς,t)−αpTq,p(ς,t)

w(ς)Tw(ς)dς

= e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ t

t0
e

∑

p∈N
∑

q 	=p,q∈N
(−αp+ η(q,p)

τq,p
)Tq,p(ς,t)

w(ς)Tw(ς)dς

≤ e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ t

t0
eξm(t−ς)w(ς)Tw(ς)dς, (23)

where ξm = max
q,p∈N ,q 	=p

{−αp + η(q,p)
τq,p

}.
Adding (22) and (23) to (21), we obtain

∫ t

t0
e−αm(t−ς)y(ς)T y(ς)dς ≤ e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ t

t0
eξm(t−ς)w(ς)Tw(ς)dς. (24)

Integrating (24) for t from t0 to +∞, one can obtain

∫ +∞

t0

∫ t

t0
e−αm(t−ς)y(ς)T y(ς)dςdt

≤ e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ +∞

t0

∫ t

t0
eξm(t−ς)w(ς)Tw(ς)dςdt .

(25)

This is equivalent to

∫ +∞

t0

∫ +∞

ς

e−αm(t−ς)y(ς)T y(ς)dtdς

≤ e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ +∞

t0

∫ +∞

ς

eξm(t−ς)w(ς)Tw(ς)dtdς.

(26)

Thus, one can obtain

1

αm

∫ +∞

t0
y(ς)T y(ς)dς ≤ 1

−ξm
e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γ 2
p

∫ +∞

t0
w(ς)Tw(ς)dς. (27)

That is

∫ +∞

t0
y(ς)T y(ς)dς ≤ γ 2

∫ +∞

t0
w(ς)Tw(ς)dς, (28)

where γ =
√

αm−ξm
e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γm, γm = max{γp}.
This completes the proof. ��

Remark 3 The comparison between the non-weighted L2-
gain index obtained in this paper and existing results is shown
in Table 1.

When η(q,p) = ηp, τq,p = τp,
∑

p∈N N 0
q,p = N0p, the

non-weighted L2-gain based on AED-ADT switching signal
equals the one based on MDADT switching signal. Simi-
larly, the non-weighted L2-gain based on ADT switching
signals can be seen as a special case of the non-weighted L2-
gain based on MDADT switching signals. Thus, the derived
non-weighted L2-gain in this paper is more general than the
results in [11] and [12]. That is, more switching signal infor-
mation can be employed to achieve a lower L2-gain index
for asynchronously switched systems. Physically speaking,
a lower non-weighted L2-gain index has more general anti-
disturbance capacity and enhanced robustness to variations
in external disturbance.

3.2 MFD Conditions of Asynchronously Switched
Polynomial Fuzzy Systems

Theorem 2 Consider the asynchronously switched polyno-
mial fuzzy systems (9)–(10), and let μ[q,p] > 1, βp > 0,
αp > 0 and γp > 0, ∀q 	= p, q, p ∈ N be given constants.
Defining the symmetric constant matricesQp ∈ �n×n, arbi-
trary polynomialmatricesXpj (x) ∈ �m×n, slack polynomial
matrices R1pqi j (x), R1pqi j (x), q 	= p, q, p ∈ N , i ∈
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Table 1 Comparison of
non-weighted L2-gain index
based on different switching
signals

Theorem Switching signal Non-weighted L2-gain index

Theorem 2 in [11] ADT
√

α
−(−α+η/τ)

eηN0γm

Theorem 2 in [12] MDADT

√

αm−ξm
e

∑

p∈
ηp N0p

γm

Theorem 1 AED-ADT

√

αm−ξm
e

∑

p∈N
∑

q 	=p,q∈N
η(q,p)N0

q,p

γm

n p, j ∈ rq and R2pi j (x), R2pi j (x), p ∈ N , i ∈ n p, j ∈ rp,
if there exist feasible solutions to the following conditions:

�T
(
Qp − ϕ1I

)
� ∈ S ∀p, (29)

�T
(
R1pqi j (x) − ϕ2(x)I

)
� ∈ S ∀q 	= p, i, j, (30)

�T
(
R1pqi j (x) − ϕ3(x)I

)
� ∈ S ∀q 	= p, i, j, (31)

�T
(
R2pi j (x) − ϕ4(x)I

)
� ∈ S ∀p, i, j, (32)

�T
(
R2pi j (x) − ϕ5(x)I

)
� ∈ S ∀p, i, j, (33)

− �T
(
�̃1pqi j (x) + R1pqi j (x) − R

1pqi j
(x)

+
n p∑

r=1

rq∑

s=1

(γ pqrsR1pqrs(x)

− γ
pqrs

R1pqrs(x)) + ϕ6(x)I
)
� ∈ S ∀q 	= p, i, j, (34)

− �T
(
�̃2pi j (x) + R2pi j (x) − R2pi j (x)

+
n p∑

r=1

rp∑

s=1

(γ prsR2prs(x) − γ
prs

R2prs(x)) + ϕ7(x)I
)
�

∈ S ∀p, i, j, (35)

− �T
(
Qq − μ[q,p]Qp + ϕ8I

)
�∈ S ∀q 	= p, (36)

where � is an arbitrary vector independent ofxwith appropri-
ate dimensions; ϕ1, and ϕ8 are predefined positive constants;
ϕ2(x), ϕ3(x), ϕ4(x), ϕ5(x), ϕ6(x), and ϕ7(x) are predefined
positive scalar polynomials;

�̃1pqi j (x) =
⎡

⎣
Z̃1pqi j (x) Cpi (x) QqDpi (x)T

∗ −γ 2
p I 0

∗ ∗ −I

⎤

⎦ ; (37)

�̃2pi j (x) =
⎡

⎣
Z̃2pi j (x) Cpi (x) QpDpi (x)T

∗ −γ 2
p I 0

∗ ∗ −I

⎤

⎦ ; (38)

Z̃1pqi j (x) = −βpQq + Api (x)Qq + Bpi (x)Xq j (x) +
(Api (x)Qq)

T + (Bpi (x)Xq j (x))T ; Z̃2pi j (x) = αpQp +
Api (x)Qp+Bpi (x)Xpj (x)+(Api (x)Qp)

T+(Bpi (x)Xpj (x))T .
Then, for any switching signal with AED-ADT τq,p (15),

the asynchronously switched polynomial fuzzy systems (9)–
(10)withw ≡ 0 areGUAS and have a non-weighted L2-gain
index no greater than γ (16). The feedback gains in (8) are
given by Kpj (x) = Xpj (x)Q−1

p .

Proof The MLFs candidate is proposed as

Vp(x) = xTQ−1
p x, ∀σ̂ (t) = p ∈ N , (39)

where Qp = QT
p > 0. The MLFs candidate is both radially

unbounded and positive-definite, i.e., the condition (29) can
ensure that (11) in Theorem 1 holds.

Next, denoting Xq j (x) = Kq j (x)Qq , from (9), (10), and
(12), we have

V̇q(x) − βpVq(x) + �(t)

= ẋTQ−1
q x + xTQ−1

q ẋ − βpxTQ−1
q x + �(t)

=
n p∑

i=1

rq∑

j=1

ωpi (x)mqj (x)
(

(
(Api (x) + Bpi (x)Kq j (x))x

+ Cpi (x)w
)TQ−1

q x

+ xTQ−1
q

(
(Api (x) + Bpi (x)Kq j (x))x + Cpi (x)w

)

− βpxTQ−1
q x

+ (
Dpi (x)x

)T (
Dpi (x)x

) − γ 2
pw

Tw
)

=
n p∑

i=1

rq∑

j=1

ωpi (x)mqj (x)θq T�1pqi jθq , (40)

where

�1pqi j (x) =

⎡

⎢
⎢
⎣

Api (x)Qq + Bpi (x)Xq j (x) + QqApi (x)T

+(Bpi (x)Xq j (x))T − βpQq

+(Dpi (x)Qq )
TDpi (x)Qq

Cpi (x)

∗ −γ 2
p I

⎤

⎥
⎥
⎦

∀q 	= p, q, p ∈ N , i ∈ n p, j ∈ rq and θq =
[(Q−1

q x)T wT ]T .
Todealwith the non-convex term (Dpi (x)Qq)

TDpi (x)Qq ,
using the Schur complement, one can obtain �̃1pqi j (x) as
represented in (37).

Considering γ
pqi j

as the lower bounds of ωpi (x)mqj (x)
and γ pqi j as the upper bounds of ωpi (x)mqj (x), we have
γ
pqi j

≤ ωpi (x)mqj (x) ≤ γ pqi j . Further, by defining slack

polynomial matrices R1pqi j (x) and R1pqi j (x), we can get

(
γ pqi j − ωpi (x)mqj (x)

)
R1pqi j (x) ≥ 0, (41)
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(
ωpi (x)mqj (x) − γ

pqi j

)
R1pqi j (x) ≥ 0. (42)

Denoting ζq = [(Q−1
q x)T wT Iϑ×1]T , adding (41) and

(42) to (40), we have

V̇q(x) − βpVq(x) + �(t)

≤
n p∑

i=1

rq∑

j=1

ωpi (x)mqj (x)ζq T �̃1pqi j (x)ζq

+
n p∑

i=1

rq∑

j=1

(
γ pqi j − ωpi (x)mqj (x)

)

× ζq
TR1pqi j (x)ζq +

n p∑

i=1

rq∑

j=1

(
ωpi (x)mqj (x) − γ

pqi j

)

ζq
TR1pqi j (x)ζq

=
n p∑

i=1

rq∑

j=1

ωpi (x)mqj (x)ζq T
(
�̃1pqi j (x)

+ R1pqi j (x) − R1pqi j (x)

+
n p∑

r=1

rq∑

s=1

(γ pqrsR1pqrs(x) − γ
pqrs

R1pqrs(x))
)
ζq . (43)

Then, it can be seen that if (30)–(34) holds, (12) in Theo-
rem 1 can be guaranteed.

Following similar manipulation as (40)–(43), and denot-
ing Xpj (x) = Kpj (x)Qp, from (9), (10), and (13), one can
obtain

V̇p(x) + αpVp(x) + �(t)

≤
n p∑

i=1

rp∑

j=1

ωpi (x)mpj (x)ζpT (�̃2pi j (x) + R2pi j (x) − R2pi j (x)

+
n p∑

r=1

rp∑

s=1

(γ prsR2prs(x) − γ
prs

R2prs(x)))ζp, (44)

where ζp = [(Q−1
p x)T wT Iϑ×1]T and �̃2pi j is repre-

sented by (38). Thus, one can conclude that (30)–(33) and
(35) guarantee (13) in Theorem 1 holds.

Moreover, from (14) and (39), we obtain

Vp(x(t̂π )) − μ[q,p]Vq(x(t̂π ))

= x(t̂π )TQ−1
p x(t̂π ) − μ[q,p]x(t̂π )TQ−1

q x(t̂π )

= x(t̂π )T
(
Q−1

p − μ[q,p]Q−1
q

)
x(t̂π ). (45)

By Schur complement, we have

[−μ[q,p]Q−1
q I

∗ −Qp

]

≤ 0. (46)

Using Schur complement again, we can get (46) is equiv-
alent to

−Qp − IT (−μ[q,p]Qq
−1)−1I ≤ 0. (47)

Thus, one can conclude that (36) guarantees (14) in The-
orem 1. ��
Remark 4 The controller gains can be set as polynomial
matrices rather than constant matrices in Theorem 2. When
the order of controller gain is set to 0, and the slack polyno-
mial matricesR1pqi j (x),R1pqi j (x) are removed, the derived
conditions are consistent with the LMI-based conditions in
[11] and [12]. Therefore, by setting polynomial controller
gains and introducingmore information ofmembership func-
tions, the feasible solutions for the conditions can be obtained
by tighter given constants μ[q,p], βp, αp and γp in Theorem
2, which conduces to reduce the L2-gain index.

3.3 Relaxed Conditions of Asynchronously Switched
Polynomial Fuzzy Systems Based on High-Order
MLFs

In the above subsection, Theorem 2 is derived from quadratic
MLFs. This subsection proposes high-order MLFs to
obtain tighter switching signal parameters to improve anti-
interference performance. The high-order MLFs refer to the
positive-definitematrices ofMLFs in polynomial form.How-
ever, a challenge is how to handle the derivative of the poly-
nomial matrices. For example, setting Vp(x) = xTQp(x)x,
thus, the problematic term that need to handle is xT Q̇p(x)x =
xT (

n∑

k=1

∂Qp(x)
∂xk

((Ak
pi (x) +Bk

pi (x)Kpj (x))x + Ck
pi (x)w))x.

Here, xT ∂Qp(x)
∂xk

Ck
pi (x)wx and xT ∂Qp(x)

∂xk
Bk
pi (x)Kpj (x)x are

non-convex terms. To tackle this problem, we introduce the
concept of homogeneous polynomial function as below.

Definition 2 (see [29]) If a polynomial function V (z) :
�n → � satisfies the identity V (εz) = εdV (z),∀ε ≥ 0,
then V (z) is considered as a homogeneous polynomial func-
tion of order d.

Based on the Euler’s homogeneity, V (z) has the property

V (z) = 1

d(d − 1)
zT�zzV (z)z, (48)

where �zzV (z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2V (z)
∂z21

∂2V (z)
∂z1∂z2

. . .
∂2V (z)
∂z1∂zn

∂2V (z)
∂z2∂z1

∂2V (z)
∂z22

. . .
∂2V (z)
∂z2∂zn

...
...

. . .
...

∂2V (z)
∂zn∂z1

∂2V (z)
∂zn∂z2

. . .
∂2V (z)

∂z2n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the Hes-

sian matrix. Besides, the derivative of homogeneous poly-
nomial function V (z) has the following property V̇ (z) =
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1
2(d−1) (ż

T�zzV (z)z+zT�zzV (z)ż).Byemploying the prop-
erty of homogeneous polynomials, the proposed high-order
MLFs candidate are constructed as

Vp(x) = V 1
p (x) + V 2

p (x) + · · · + V�
p (x)

= xT
�∑

π=1

1

dπ (dπ − 1)
Pπ
p (x)x,

= xTPp(x)x, (49)

where dπ is the order of V π
p (x).

Remark 5 The high-orderMLFs designed in this paper com-
prise homogeneous polynomial functions of different orders,
which can be regarded as an extension of the quadraticMLFs.
More importantly, the high-orderMLFs can avoid generating
non-convex terms xT Q̇p(x)x by using Euler’s homogeneity
property.

Theorem 3 Consider the asynchronously switched polyno-
mial fuzzy systems (9)–(10), and let μ[q,p] > 1, βp > 0,
αp > 0 and γp > 0 for ∀q 	= p, q, p ∈ N be
given constants. Defining the symmetric polynomial matri-
ces Pπ

p (x), p ∈ N , π ∈ � , slack polynomial matrices

R3pqi j (x), R3pqi j (x), q 	= p, q, p ∈ N , i ∈ n p, j ∈ rq

andR4pi j (x),R4pi j (x), p ∈ N , i ∈ n p, j ∈ rp, if there exist
feasible solutions to the following conditions:

�T
(
Pp(x) − ϕ9(x)I

)
�∈ S ∀p, (50)

�T
(
R3pqi j (x) − ϕ10(x)I

)
�∈ S ∀q 	= p, i, j, (51)

�T
(
R3pqi j (x) − ϕ11(x)I

)
�∈ S ∀q 	= p, i, j, (52)

�T
(
R4pi j (x) − ϕ12(x)I

)
�∈ S ∀p, i, j, (53)

�T
(
R4pi j (x) − ϕ13(x)I

)
�∈ S ∀p, i, j, (54)

− �T
(
�3pqi j (x) + R3pqi j (x) − R

3pqi j
(x)

+
n p∑

r=1

rq∑

s=1

(γ pqrsR3pqrs(x)

− γ
pqrs

R3pqrs(x)) + ϕ14(x)I
)
�∈ S ∀q 	= p, i, j,

(55)

− �T
(
�4pi j (x) + R4pi j (x) − R4pi j (x)

+
n p∑

r=1

rp∑

s=1

(γ prsR4prs(x)

− γ
prs

R4prs(x)) + ϕ15(x)I
)
�∈ S ∀p, i, j, (56)

− �T
(
Pp(x) − μ[q,p]Pq(x) + ϕ16(x)I

)
�∈ S ∀q 	= p,

(57)

where � is an arbitrary vector independent of x with appro-
priate dimensions; ϕ9(x), ϕ10(x), ϕ11(x), ϕ12(x), ϕ13(x),

ϕ14(x), ϕ15(x), and ϕ16(x) are predefined positive-definite
scalar polynomials;

�3pqi j =
[
Z3pqi j Cpi (x)

∗ −γ 2
p I

]

, ∀q 	= p, i, j; (58)

�4pqi j =
[
Z4pqi j Cpi (x)

∗ −γ 2
p I

]

, ∀q 	= p, i, j; (59)

Z3pqi j = Mq(x)Api (x) + Mq(x)Bpi (x)Kq j (x) + Api (x)T

Mq(x) + (Bpi (x)Kq j (x))T

×Mq(x)−βpPq(x)+Dpi (x)TDpi (x);Z4pqi j = Mp(x)Api

(x) + Mp(x)Bpi (x)Kpj (x)
+Api (x)TMp(x) +(Bpi (x)Kpj (x))TMp(x) + αpPp(x) +
Dpi (x)TDpi (x); Mp(x) =

�∑

π=1

1
2(dπ−1)P

π
p (x) and Pp(x) =

�∑

π=1

1
dπ (dπ−1)P

π
p (x).

Then, for any switching signal with AED-ADT τq,p

(15), with the given controller Kpj (x), the asynchronously
switched polynomial fuzzy systems (9)–(10) with w ≡ 0 are
GUAS and have a non-weighted L2-gain index no greater
than γ (16).

Proof The high-order MLFs candidate is shown in (49).
WhenPp(x) > 0,wecanget theMLFscandidate is both radi-
ally unbounded and positive-definite. Thus, one can obtain
(50) holds, which means (11) in Theorem 1 can be guaran-
teed.

Next, denoteMq(x) =
�∑

π=1

1
2(dπ−1)P

π
q (x), from (9), (10),

and (12), one can obtain

V̇q(x) − βpVq(x) + �(t)

= ẋTMq(x)x + xTMq(x)ẋ − βpxTPq(x)x + �(t)

=
n p∑

i=1

rq∑

j=1

ωpi (x)mqj (x)ξq T�3pqi j (x)ξq , (60)

where ξq = [xT wT ]T and �3pqi j is represented in (58).
Referring to themathematicalmethod of introducing slack

matrices R1pqi j (x) and R1pqi j (x) in Theorem 2, conditions
(51)–(55) can be obtained, thus ensuring that (12) inTheorem
1 holds. Similarly, the process of obtaining (56) was omitted
due to page limitations. Therefore, one can conclude that
(51)–(54) and (56) guarantee (13) in Theorem 1 holds.

Moreover, from (14) and (49), we have

Vp(x(t̂π )) − μ[q,p]Vq(x(t̂π ))

= x(t̂π )T (Pp(x) − μ[q,p]Pq(x))x(t̂π ) ≤ 0. (61)

Thus, condition (57) can ensure that (14) in Theorem 1
holds. ��
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Remark 6 The high-order MLFs based on the property of
homogeneous function can deal with the problem of deriving
the non-convex term xT Q̇p(x)x. Thus, higher order Lya-
punov functions can be incorporated into the conditions to
obtain the L2-gain index. However, it is worth noting that
Theorem 3 still includes bilinear terms. An algorithm is pro-
posed to obtain the controller with a lower L2-gain index as
follows:

Algorithm: Design of the controller with a lower L2-gain index

Input: μ[q,p], αp, βp, γp and Tm.
Step 1: Chooseμ[q,p] as large as possible, e.g.,μ[q,p] > 10. Choose
αp and βp as small as possible, e.g., βp < 1 and αp < 1. Let γp = 1
and Tm = 1 without loss of generality.
Step 2: Get the solution from the conditions (29)–(36) of Theorem
2.
Step 3: If no solution is found, terminate this algorithm. If a solution
can be found, then reduce μ[q,p] and increase αp, βp and go to step
2 until a solution cannot be found.
Step 4: With the feasibleμ[q,p], αp , βp andKpj (x) obtained in Step
3, get the solution from the conditions (50)–(57) of Theorem 3.
Step 5: Reduce μ[q,p] and increase αp, βp , go to step 4 until a
solution cannot be found, then, the iteration stops. Get the smaller
μ[q,p] and largerαp, βp , and calculate the L2-gain indexγ according
to (16).
Output: The controller gainsKpj (x) and the non-weighted L2-gain
index γ .

Remark 7 Compared to the Theorem in [11], [12], and [19],
Theorem 3 is based on high-order MLFs and can search for
feasible solutions on a larger scale. In addition, by utilizing
the properties of homogeneous polynomial functions, it can
handle the non-convex terms from the derivative of P(x),
whereas the high-order MLFs in [18] cannot deal with them.
The relaxed analysis results can reduce the L2-gain index,
improving the anti-disturbance capability. The comparison
between the proposed and existing methods is presented in
Table 2.

4 Simulation Example

In this section, we provide two simulation examples to vali-
date the advantages of the developed approach.

4.1 Asynchronously Switched Polynomial Fuzzy
Systems

In the simulation example, we set three scenarios to validate
the advantages of the developed approach.

(1) The difference between the switched polynomial fuzzy
model and switched T-S fuzzy model. Ta
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(2) The difference between the non-weighted L2-gain based
on AED-ADT switching signal and the results in [12]
based on MDADT switching signal.

(3) The effect ofmembership function information and high-
order MLFs on the stability results and non-weighted
L2-gain performance index of asynchronously switched
polynomial fuzzy systems.

Consider an asynchronously switched polynomial fuzzy
system with three subsystems, as shown below.

A11(x1) =
[−0.2 − 0.2x21 0.5

0.1 −1 + 0.2x21

]

,

A12(x1) =
[−0.1 − 0.6x21 0.2

0.2 −0.5 + 0.3x21

]

,

B11 =
[
1
2

]

,B12 =
[
2
4

]

,C11 =
[
0.2
0.1

]

,C12 =
[
0.5
0.2

]

,

D11 = [0.2, 0.2],D12 = [0.1, 0.3],
A21(x1) =

[
0.2 − 0.2x21 −0.8

0.5 1 + 0.2x21

]

,

A22(x1) =
[
0.4 − 0.2x21 −1.2

0.6 1.5 + 0.4x21

]

,

B21 =
[
2
1

]

,B22 =
[
3
2

]

,C21 =
[
0.5
1

]

,C22 =
[
1
1.2

]

,

D21 = [−0.1, 0.2],D22 = [−0.2, 0.2],
A31(x1) =

[
0.2 − 0.4x21 −1

1.2 1 + 0.2x21

]

,

A32(x1) =
[
0.3 − 0.2x21 −1

1.5 2 + 0.1x21

]

,

B31 =
[
1
1.6

]

,B32 =
[
1
1.6

]

,C31 =
[
0.5
1

]

,C32 =
[
0.5
1.6

]

,

D31 = [0.2, 0.4],D32 = [0.2, 0.2].

We select the membership functions of the switched poly-
nomial fuzzy systems as ω11(x1) = ω21(x1) = ω31(x1) =

1

(1+ex1 )e−x21 /10
and ω12(x1) = ω22(x1) = ω32(x1) = 1 −

1

(1+ex1 )e−x21 /10
. According to the IPM design concept, we set

the membership functions of the controller as m11(x1) =
m21(x1) = m31(x1) = 1.

For the first scenario, it should be pointed out that
when transferring a switched polynomial fuzzy model into
a switched T-S fuzzy model, it is necessary to assume in
advance the operating domain of the system state, for exam-
ple, x1 ∈ [−c, c]. For the nonlinear term x21 in the switched
polynomial fuzzy model, by using sector nonlinearity tech-
nique, it can be obtained that the switched subsystem 1 as
follows:

A11(x1) =
[−0.2 0.5

0.1 −1

]

,

A12(x1) =
[−0.2 − 0.2c2 0.5

0.1 −1 + 0.2c2

]

,

Table 3 Comparison of different stability criteria

Case Criteria Switching signal

1 Theorem 2 in [12] MDADT

2 Theorem 2 in this paper AED-ADT

A13(x1) =
[−0.1 0.2

0.2 −0.5

]

,

A14(x1) =
[−0.1 − 0.6c2 0.2

0.2 −0.5 + 0.3c2

]

,

stop

B11(x1) = B12(x1) =
[
1
2

]

,B13(x1) = B14(x1) =
[
2
4

]

,

C11(x1) = C12(x1) =
[
0.2
0.1

]

,C13(x1) = C14(x1) =
[
0.5
0.2

]

,

D11 = D12 = [0.2 0.2] ,D13 = D14 = [0.1 0.3] .

Switched T-S fuzzy subsystems 2 and 3 are similar to
subsystem 1, omitted here due to page limitations. Set Tm =
1, γp = 1, βp = 0.7, p ∈ {1, 2, 3}, ϕ1 = ϕ2(x) = ϕ3(x) =
ϕ4(x) = ϕ5(x) = ϕ6(x) = ϕ7(x) = ϕ8 = 1 × 10−3, Qp(x)
as constant matrices. Further, for the polynomial matrices
Xpj (x), we set their order as 0 and 2 in x1. For the polynomial
matricesR1pqi j (x),R1pqi j (x),R2pi j (x) andR2pi j (x),we set
their order as 2 in x1. By using the Theorem 2, we only get
c = 3.2, whichmeans the switched T-S fuzzy systems is only
stable in the operating domain of {x1| − 3.2 ≤ x1 ≤ 3.2}.
In addition, it can be seen that the number of fuzzy rules
for switched polynomial fuzzy models is 6, and the number
of fuzzy rules for switched T-S fuzzy models is 12. This
result indicates the advantage of switched polynomial fuzzy
systems, which is the ability to ensure global stability and
decrease the number of fuzzy rules.

For the second scenario, we make Table 3 to study the
differencebetween thenon-weighted L2-gain basedonAED-
ADT and MDADT switching signal.

For case 1, the LMI toolbox was used in [12] to solve
the conditions, thus, the controller gains can only be set
as constant matrices. However, feasible solutions cannot
be obtained. To make a fair comparison, we use the SOS-
TOOLs toolbox to solve the conditions in [12], and set the
controller gains to polynomial matrices. Besides, we set
the same condition parameters as in the first scenario. The
upper and lower boundary values of membership functions
ωpi (x)mqj (x) are γ pq11 = 0.6655, γ pq21 = 1, γ

pq11
= 0

andγ
pq21

= 0.3345 forq 	= p, q, p ∈ {1, 2, 3}.Meanwhile,
the upper and lower boundary values of membership func-
tionsωpi (x)mpj (x) are γ p11 = 0.6655, γ p21 = 1, γ

p11
= 0

and γ
p21

= 0.3345 for ∀p = {1, 2, 3}. By utilizing the con-
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Table 4 Bounds on dwell time and controllers gains under different
cases

Case Bounds on dwell time and controller gains

1

μ1 = 3.8; μ2 = 3.2; μ3 = 4.0;
α1 ≤ 0.4; α2 ≤ 1.7; α3 ≤ 1.9;
τ ∗
1 = 6.0875; τ ∗

2 = 2.0960; τ ∗
3 = 2.0980;

K11(x1) = [−0.3x21 − 0.79,−2.5x21 − 6.6];
K21(x1) = [0.85x21 + 1.9,−4.7x21 − 13.0];
K31(x1) = [0.7x21 + 4.3,−2.6x21 − 18.0].

2

μ[3,1] = 3.0; μ[2,1] = 2.9; μ[3,2] = 1.6;
μ[1,2] = 3.2; μ[2,3] = 1.9; μ[1,3] = 4.0;
α1 ≤ 0.4; α2 ≤ 1.7; α3 ≤ 1.9;
τ ∗
3,1 = 5.4965; τ ∗

2,1 = 5.4118; τ ∗
3,2 = 1.6882;

τ ∗
1,2 = 2.0960; τ ∗

2,3 = 1.7062; τ ∗
1,3 = 2.0980;

K11(x1) = [−0.25x21 − 0.61,−2.1x21 − 5.3];
K21(x1) = [0.64x21 + 1.3,−3.4x21 − 9.4];
K31(x1) = [0.58x21 + 3.6,−2.3x21 − 16.0].

ditions in [12] and this paper, Table 4 shows the obtained
bounds on dwell time and controller gains.

From Table 4, one can see that the bounds on the AED-
ADT switching signal are lower than those on the MDADT
switching signal, meaning a more general set of admis-
sible switching signal is obtained in this paper than the
results in [12]. To verify these results, assuming one pos-
sible switching signal is periodic, such as, σ(t) ∈ {1 →
2 → 3 → 1 → 2 → 3 → · · · }. For fair comparison,
we set the same specific implementation switching signal
for case 1 and case 2, which is τ1 = τ3,1 = 6.1875, τ2 =
τ1,2 = 2.1960 and τ3 = τ2,3 = 2.1980. The asynchronous
delay is τπ = 1,∀π ∈ Z

+. Setting
∑3

p=1 N
0
p = 1 (specifi-

cally, N 0
3 = 1) and

∑3
p=1

∑3
q 	=p,q=1 N

0
q,p = 1 (specifically,

N 0
3,1 = 1), by (16) in Theorem 1, the non-weighted L2-gain

under MDADT switching signal and AED-ADT switching
signal are γmda = 15.84 and γ = 6.35, respectively. This
indicates that the non-weighted L2-gain based on the AED-
ADT switching signal is smaller compared to that based on
the MDADT switching signal.

In fact, the AED-ADT switching signal can be selected
smaller, for example, τ3,1 = 5.5965, τ1,2 = 2.1960, and
τ2,3 = 2.7062. With the given switching signal, the asyn-
chronously switched polynomial fuzzy system with w(t) ≡
0 is GUAS, shown in Fig. 4. Further, consider an exter-
nal disturbance w(t) = 0.5cos(2π t)e−0.5t , the disturbance
and system output of asynchronously switched systems are
shown in Fig. 5. However, the approaches in [12] cannot
guarantee the corresponding analysis results under the same
switching signal.

For the third scenario, we make Table 5 to illustrate the
effect of boundary information of membership functions and
polynomial MLFs on the stability and non-weighted L2-gain
analysis results.

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1

2

3

Fig. 4 The state response of asynchronous switched polynomial fuzzy
system with AED-ADT switching signal and initial point [1, 1]
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w(t)
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0.6

0.7

0.8

0.9

Fig. 5 Disturbance and system output of asynchronously switched
polynomial fuzzy systems with the AED-ADT switching signal

Table 5 Different Settings of polynomialMLFs and boundary ofmem-
bership functions

Case Theorem Order Boundary Information

3 2 2 none

4 2 2 γ
pqi j

γ pqi j γ
pi j

γ pi j

5 3 4 none

6 3 4 γ
pqi j

γ pqi j γ
pi j

γ pi j

For the polynomial MLFs of order 4, we set P1
p(x) as

matrices of order 0 andP2
p(x) asmatrices of order 2.Theother

matrices and parameters are set the same as in the second
scenario for a fair comparison of cases 3-6. By utilizing The-
orem 2 and Theorem 3, Table 6 shows the obtained bounds
on dwell time and non-weighted L2-gain performance index.

From Table 6, the bounds on AED-ADT decrease with
the increase of the order of polynomial MLFs and the intro-
duction of membership function information, indicating that
the conservativeness of analysis results is correspondingly
reduced. The implemented AED-ADT switching signal is
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Table 6 Bounds on dwell time and non-weighted L2-gain under dif-
ferent cases

Case Index Bounds on dwell time

3 8.01

μ[3,1] = 3.8; μ[2,1] = 3.8; μ[3,2] = 1.8;
μ[1,2] = 3.2; μ[2,3] = 2.3; μ[1,3] = 4.0;
α1 ≤ 0.4; α2 ≤ 1.7; α3 ≤ 1.9;
τ ∗
3,1 = 6.0875; τ ∗

2,1 = 6.0875; τ ∗
3,2 = 1.7575;

τ ∗
1,2 = 2.0960; τ ∗

2,3 = 1.8068; τ ∗
1,3 = 2.0980.

6.35

μ[3,1] = 3.0; μ[2,1] = 2.9; μ[3,2] = 1.6;
μ[1,2] = 3.2; μ[2,3] = 1.9; μ[1,3] = 4.0;
α1 ≤ 0.4; α2 ≤ 1.7; α3 ≤ 1.9;
τ ∗
3,1 = 5.4965; τ ∗

2,1 = 5.4118; τ ∗
3,2 = 1.6882;

τ ∗
1,2 = 2.0960; τ ∗

2,3 = 1.7062; τ ∗
1,3 = 2.0980.

5 4.97

μ[3,1] = 2.2; μ[2,1] = 2.4; μ[3,2] = 1.4;
μ[1,2] = 3.0; μ[2,3] = 1.9; μ[1,3] = 3.7;
α1 ≤ 0.4; α2 ≤ 1.9; α3 ≤ 2.2;
τ ∗
3,1 = 4.7211; τ ∗

2,1 = 4.9387; τ ∗
3,2 = 1.5455;

τ ∗
1,2 = 1.9466; τ ∗

2,3 = 1.6099; τ ∗
1,3 = 1.9129.

6 4.74

μ[3,1] = 2.0; μ[2,1] = 2.4; μ[3,2] = 1.4;
μ[1,2] = 3.0; μ[2,3] = 1.9; μ[1,3] = 3.6;
α1 ≤ 0.4; α2 ≤ 1.9; α3 ≤ 2.2;
τ ∗
3,1 = 4.4829; τ ∗

2,1 = 4.9387; τ ∗
3,2 = 1.5455;

τ ∗
1,2 = 1.9466; τ ∗

2,3 = 1.6099; τ ∗
1,3 = 1.9004.

selected as τ3,1 = 6.1875, τ1,2 = 2.1960, and τ2,3 = 1.9068.
The asynchronous delay is τπ = 1,∀π ∈ Z

+. Setting∑3
p=1

∑3
q 	=p,q=1 N

0
q,p = 1 (specifically, N 0

3,1 = 1) for all
cases, by (16) in Theorem 1, the non-weighted L2-gain per-
formance index is shown in Table 6. We can get that the
L2-gain index of case 6 is the smallest among all cases for
the same given AED-ADT switching signal.

Furthermore, we selected the bounds on the dwell time
of case 4 and case 6 of Table 6 as the switching signals.
It should be pointed out that as mentioned in Remark 6, the
controller feedback gainsKpj (x) need to be given in advance
in Theorem 3. To ensure a fair comparison, the correspond-
ing controller in Theorem 3 is obtained from Theorem 2.
The system state response based on the provided AED-ADT
switching signal and controllers is shown in Fig. 6.

From Fig. 6, one can observe that the amplitude fluctu-
ation of the system state response obtained from Theorem
3 is smaller than that obtained from Theorem 2, which
will provide designers with greater flexibility and space to
improve system performance. Therefore, as the order of the
polynomial MFLs increases and the membership function
information is incorporated, it can decrease the non-weighted
L2-gain index and improve anti-disturbance performance.

In addition, we check the attenuation of polynomialMLFs
to further verify the results. The positive-definite matrices of
case 6 can be obtained by Theorem 3 as

P1(x1) = 103 ×
[

0.38x21 + 0.58 −0.03x21 + 4.70
−0.03x21 + 4.70 2.10x21 + 3.90

]

,

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6 State response of asynchronously switched polynomial fuzzy
systems by using Theorems 2 and 3 for the same initial points [1, 1]
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continuous
discontinuous
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Fig. 7 The multiple Lyapunov functions with a zoomed detail around
the interval [6,14]

P2(x1) = 103 ×
[

0.49x21 + 0.71 −0.87x21 − 1.80
−0.87x21 − 1.80 3.00x21 + 8.40

]

,

P3(x1) = 103 ×
[

0.58x21 + 1.20 −1.00x21 − 2.40
−1.00x21 − 2.40 3.10x21 + 7.70

]

.

We set the switching sequence of the controller as σ̂ (t) =
{4.48, 6.42, 8.04, 12.52, 14.47, 16.08, · · · } and the switch-
ing sequence of the subsystem as σ(t) = σ̂ (t) − 1. The
obtained multiple Lyapunov functions candidate is shown in
Fig. 7.

From Fig. 7, we can get that the MLFs approach 0 as
t → ∞. Meanwhile, from the zoomed details around the
interval [6, 14], it can be seen that the MLFs candidate is
continuous at the switching instant of the polynomial fuzzy
model and discontinuous at the controller switching instant,
which is consistent with the setting of the MLFs in Theorem
1. Based on the above results, the designed MLFs candidate
that relies on the switching signal of the controller is capable
of guaranteeing that the switched polynomial fuzzy system
is GUAS with a non-weighted L2-gain performance index.
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Table 7 Different modes of parameters M and J

Mode Parameter M Parameter J

1 1 1

2 1.5 2

3 2 2.5

4.2 Single-Link Robot Arm System

A practical single-link robot arm system in [30] is studied
using the proposed technique. The dynamics of single-link
robot arm system is described by

ψ̈(t) = −MgL

J
sin(ψ(t)) − D(ψ(t))

J
ψ̇(t) + 1

J
u(t)

+ 1

J
w(t), (62)

where M is the mass; J is the moment of inertia. L is the
length of the arm; g is the acceleration of gravity; ψ(t) is
the angle position of the arm; ψ̇(t) is the angular velocity;
D(ψ(t)) = c0+c1ψ(t)2 is the coefficient of viscous friction;
u(t) is the control input; w(t) is the external disturbance.
Herein, we set g = 9.81, L = 0.5, c0 = 2, c1 = 1.1.
Besides, M and J are set according to the three different
modes in the table below.

Denoting ψ , ψ̇ as x1, x2, respectively, we have x =
[x1, x2]T and the state-space form of the single-link robot
arm system as follows:

ẋ1 = x2, (63)

ẋ2 = −Mσ gL

Jσ
sin(x1) − c0 + c1x21

Jσ
x2 + 1

Jσ
u + 1

Jσ
w,

(64)

where σ ∈ {1, 2, 3}.
Considering that the system is working in x1 ∈

[−179.4270◦ 179.4270◦]. For the nonlinear term sin(x1)
in the switched first mode, we have sin(x1) = μL1

11
(x1)x1 +

μL1
12

(x1)εx1, where ε = 0.01/π , μL1
11

(x1) ≥ 0, μL1
12

(x1) ≥
0, andμL1

11
(x1)+μL1

12
(x1) = 1. The dynamics of single-link

robot arm system can be described by a 2-rule polynomial
fuzzy model as below:

Rule R1
1: IF x1 is about 0◦, THEN

ẋ = A11(x1)x + B11u + C11w,

y = D11x.

Rule R2
1: IF x1 is about ±π , THEN

ẋ = A12(x1)x + B12u + C12w,

y = D12x.

A11(x1) =
[

0 1
−4.9 −2 − 1.1x21

]

,

A12(x1) =
[

0 1
−0.016 −2 − 1.1x21

]

,

B11(x1) = B12(x1) = C11(x1) = C12(x1) =
[
0
1

]

,

D11 = [1 0] ,D12 = [1 0] .

Similarly, the switched subsystem 2 and subsystem 3 can
be represented as follows.

A21(x1) =
[

0 1
−3.7 −1 − 0.6x21

]

,

A22(x1) =
[

0 1
−0.012 −1 − 0.6x21

]

,

B21(x1) = B22(x1) = C21(x1) = C22(x1) =
[

0
0.5

]

,

D21 = [1 0] ,D22 = [1 0] ,

A31(x1) =
[

0 1
−3.9 −0.8 − 0.4x21

]

,

A32(x1) =
[

0 1
−0.012 −0.8 − 0.4x21

]

,

B31(x1) = B32(x1) = C31(x1) = C32(x1) =
[

0
0.4

]

,

D31 = [1 0] ,D32 = [1 0] .

Themembership functions of single-link robot armsystem

are w11(x1) = w21(x1) = w31(x1) =
{

sin(x1)−εx1
x1(1−ε)

, x1 	= 0
1, x1 = 0

and w12(x1) = w22(x1) = w32(x1)1 − w11(x1).
Next, choose ϕ1 = ϕ2(x) = ϕ3(x) = ϕ4(x) = ϕ5(x) =

ϕ6(x) = ϕ7(x) = ϕ8 = 1 × 10−3, Qp(x) as constant matri-
ces. For the polynomial matrices Xpj (x), we set their order
as 0 and 2 in x1. For the polynomial matrices R1pqi j (x),
R1pqi j (x), R2pi j (x), and R2pi j (x), we set their order as 0,
2, and 4 in x1. By utilizing the Theorem 2, the obtained con-
trollers are K11(x1) = [−61.0x21 − 344.0,−7.9x21 − 45.0];
K21(x1) = [−56.0x21 − 244.0,−7.8x21 − 36.0]; K31(x1) =
[−49.0x21 − 211.0,−7.1x21 − 36.0]. The following table
shows the bounds on dwell time by different theorems.

To verify the results, we select the bounds on dwell time
as the switching signal and set asynchronous delay τπ = 0.1.
The system state response by using Theorem 2 and Theorem
3 is shown in Fig. 8.

Further, consider an external disturbance w(t) =
0.5cos(2π t)e−0.5t , the disturbance and system output of
single-link arm system are shown in Fig. 9.

From Figs. 8 and 9, it can be seen that the single-link
robot arm system can be described using such a switched

123



Z. Bao et al. ; Relaxed Stability and Non-weighted L2-Gain Analysis...

Table 8 Bounds on dwell time
and non-weighted L2-gain
under different theorems

Theorem L2-gain Bounds on dwell time

Theorem 2 in [12] none none

Theorem 2 8.5

μ[3,1] = 3.0; μ[2,1] = 3.0; μ[3,2] = 2.0;
μ[1,2] = 2.0; μ[2,3] = 1.5; μ[1,3] = 1.5;
α1 ≤ 9; α2 ≤ 9; α3 ≤ 10;
τ ∗
3,1 = 0.2332; τ ∗

2,1 = 0.2332; τ ∗
3,2 = 0.1881;

τ ∗
1,2 = 0.1881; τ ∗

2,3 = 0.1505; τ ∗
1,3 = 0.1505.

Theorem 3 6.1

μ[3,1] = 1.1; μ[2,1] = 1.1; μ[3,2] = 1.3;
μ[1,2] = 1.3; μ[2,3] = 1.2; μ[1,3] = 1.2;
α1 ≤ 17; α2 ≤ 18; α3 ≤ 14;
τ ∗
3,1 = 0.1115; τ ∗

2,1 = 0.1115; τ ∗
3,2 = 0.1201;

τ ∗
1,2 = 0.1201; τ ∗

2,3 = 0.1202; τ ∗
1,3 = 0.1202.
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Fig. 8 State response of single-link robot arm system by using Theo-
rem 2 and Theorem 3 for the same initial points [3, 3]
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Fig. 9 Disturbance and system output of single-link robot arm system

polynomial fuzzy model and achieve stability and L2-gain
analysis.

5 Conclusion

This paper investigates the stability and L2-gain analysis of
the asynchronously switched systems described by polyno-

mial fuzzymodels. To achieve the stability and non-weighted
L2-gain performance of asynchronously switched systems,
stability criteria based on AED-ADT switching signal is pro-
posed, which can achieve a more general anti-disturbance
performance compared to existing results based on ADT and
MDADT. For the switched polynomial fuzzy systems, the
SOS-based stability and L2-gain conditions are obtained by
utilizing the boundary information of membership functions
and novel high-order MLFs, which is helpful in achieving
less conservative results compared with the conventional
LMI-based conditions. Finally, the effectiveness of devel-
oped approaches was demonstrated through two simulation
examples. In future works, the optimization algorithms can
be further studied to reduce the constraints of conditions
brought by the high-orderMLFs.Moreover, output-feedback
and observer-based feedback controllers can be designed for
more practical switched systems.
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