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Abstract ELECTRE TRI-C is a method for sorting prob-

lems with imprecise evaluations and stable criteria weights,

typically for a single decision-maker. While some exten-

sions have addressed uncertain criteria weights and

outranking functions using hesitant fuzzy sets (HFS) and

interval type 2 trapezoidal fuzzy numbers (IT2TrfN), there

is a gap in handling situations where multiple decision-

makers provide uncertain information. This paper presents

an extension of the ELECTRE TRI-C method incorporat-

ing a stochastic framework to model HFS and IT2TrfN,

thereby accommodating subjective judgments from multi-

ple decision-makers. The extended method was validated

by sorting 49 projects based on their criticality in a

Brazilian electrical power company, involving three deci-

sion-makers. The application shows strong correlations in

project rankings among decision-makers, but with some

exceptions. However, significant variations in acceptability

ratings for sorting among decision-makers lead to

notable error dispersion, highlighting differences between

ranking and sorting outcomes. The key contributions of our

approach are as follows: (1) Integration of subjective

judgments from multiple decision-makers using IT2TrFN

and Monte Carlo Simulation for constructing outranking

functions; (2) Aggregation of preferences from multiple

decision-makers using HFS; (3) Stochastic processing of

both quantitative and qualitative criteria; (4) Integration of

linear equations to represent weight constraints; and (5)

Introduction of a novel visualization method for compre-

hensive analysis of stochastic results, enhancing robustness

analysis. The proposal’s advantages over alternative

methods are also highlighted.

Keywords Group decision � ELECTRE TRI-C � Hesitant
fuzzy sets � Interval type 2 trapezoidal fuzzy number �
Robustness analysis

1 Introduction

The multi-criteria decision-making/analysis (MCDM/A)

field faces challenges in sorting decision problems, par-

ticularly when handling uncertainty from multiple deci-

sion-makers’ inputs [1]. Despite available methods like

ELECTRE TRI, Flowsort, TODIM-FSE, and others,

effectively managing uncertainty remains a persistent

challenge [2–8]. Decision-makers, information sources,

and evaluation processes often convey varying levels of

uncertainty due to factors, such as subjective judgments,

conflicting preferences, and incomplete data.

ELECTRE TRI, an MCDM/A framework renowned for

their efficacy in sorting tasks with imprecise evaluations by

employing predefined membership functions known as
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outranking functions to represent categories, stands out as a

prominent family of methods [2, 9]. Within this frame-

work, ELECTRE TRI-C offers a single decision-maker

(DM) sorting approach, utilizing deterministic outranking

functions to model central reference alternatives repre-

senting categories [9]. This method ranks among the top

five cited methods in the literature on multi-criteria sorting

[1].

Extensions of ELECTRE TRI methods incorporate

fuzzy sets to handle uncertain evaluations and weights,

including fuzzy sets, interval-valued fuzzy sets, interval-

valued intuitionistic fuzzy sets, and intuitionistic fuzzy

numbers [10–14]. Notably, these extensions have addres-

sed hesitant fuzzy sets (HFS) and interval type 2 trape-

zoidal fuzzy numbers (IT2TrFN) [15–18]. HFS is

particularly suitable for modeling discrete uncertainty,

often arising from judgments related to a limited number of

decision-makers [19]. Interval Type 2 Triangular Fuzzy

Numbers (IT2TrFN) are well suited for modeling uncertain

or ill-defined membership functions, especially when built

from information provided by a single decision-maker

[20, 21]. However, existing extensions of these methods

primarily focus on either HFS or IT2TrFN [16, 17], leaving

a significant gap in simultaneously addressing both

alongside accommodating quantitative and qualitative cri-

teria. Meanwhile, stochastic methods such as SMAA-TRI

tackle uncertainty, geared toward quantitative criteria, but

it is not well suited for situations involving group decision-

making and qualitative criteria [22, 23]. Hence, there arises

a necessity for hybrid MCDM/A approaches that can

effectively handle uncertainty in both data and preferences,

accommodating qualitative and quantitative criteria, as

well as multiple decision-makers [24–26].

In this study, we introduce a novel extension of the

ELECTRE TRI-C method aimed at handling uncertainties

and subjective judgments from multiple decision-makers

(DMs). We define a fictitious ‘‘Supra Decision-Maker’’

(SDM) to aggregate information from the DMs. Essen-

tially, IT2TrFN are employed to model uncertainty in

outranking functions, which are utilized for constructing

central reference alternatives’ membership functions. HFS

are employed to aggregate the outranking functions of

individual DMs into the outranking function of the SDM.

The parameters of the outranking function and criteria

weights are randomized, encapsulating the entire method in

a constructive process that iterates for a predefined number

of rounds. We introduce a novel visualization method that

facilitates comprehensive analysis of stochastic results,

thereby enhancing robustness analysis. To the best of our

knowledge, there is currently no extension of ELECTRE

TRI-C that simultaneously incorporates IT2TrFN, HFS,

and stochastic wrapping features. Our approach represents

a novel integration of these techniques, offering a

comprehensive solution for multi-criteria decision-making

under uncertainty.

We apply this method to address a sorting problem

within a Brazilian electrical power company. Energy-re-

lated decision-making involves considering technical,

economic, social/political, and environmental criteria,

leading to the application of MCDM/A methods in various

contexts [24, 25, 27–30]. Hybrid fuzzy MCDA approaches

are common due to the inherent uncertainties in data and

preferences [24, 25], often necessitating sensitivity analysis

for adjusting criteria weights [31]. Despite their lesser

prevalence, adaptations incorporating hesitant fuzzy sets

and Interval Type 2 Fuzzy Numbers (IT2TrFNs) for

uncertainty modeling have been proposed [32–37]. Sorting

problems also play a role in hybrid approaches for classi-

fication and selection [38], while potential opportunities for

using outranking-based methods have also been identified

[29].

The paper is structured as follows: Sect. 2 discusses

related literature, Sect. 3 presents our proposed approach,

Sect. 4 illustrates its application in the Brazilian company,

Sect. 5 evaluates its advantages and limitations, and Sect. 6

concludes with future research suggestions.

2 Related Work

Practitioners and researchers have devoted significant

attention to the ELECTRE TRI family of sorting methods,

categorizing alternatives using predefined upper and lower

reference alternatives (ELECTRE TRI-B, ELECTRE TRI-

nB) [39], or central reference alternatives (ELECTRE TRI-

C, ELECTRE TRI-nC) [40]. These methods involve

comparing alternatives to predefined boundaries or central

references using an outranking function, which is essen-

tially a fuzzy set defined by precise preference thresholds,

and precise criteria weights. Hence, ELECTRE does not

inherently incorporate uncertainty associated with these

parameters and preferences [2].

The use of hesitant fuzzy sets (HFS) in decision-making

offers a versatile approach for handling uncertainty and

ambiguity. Unlike traditional fuzzy sets, HFS allows

decision-makers to express multiple membership degrees

for each element, capturing varying levels of uncertainty or

conflicting opinions [19]. In extensions of ELECTRE,

hesitant fuzzy sets (HFS) facilitate the aggregation of

decision-makers’ preferences, offering a comprehensive

representation of the decision-making process [41]. Inter-

val type 2 fuzzy sets (IT2FS), instead, expand upon tradi-

tional fuzzy sets by introducing uncertainty regarding the

membership functions themselves [42]. In IT2FS, the dis-

course universe characteristic parameters of membership

functions can be represented as intervals rather than precise
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values, allowing decision-makers to account for uncer-

tainty in both membership degrees and the shape/location

of the membership functions. By complementing hesitant

fuzzy sets (HFS) and interval type 2 fuzzy sets (IT2FS),

uncertainty in criteria weights, alternative evaluations, and

threshold parameters can be effectively modeled, thereby

enhancing decision-making by capturing and managing

inherent vagueness and ambiguity.

In Table 1, we summarize and structure the reviewed

literature regardingHFS and IT2FS extensions of ELECTRE

methods, namely the ELECTRE TRI-C method. Reference

[54] extends the ELECTRE III ranking method by modeling

the criteria weights, the assessment of alternatives with

respect to criteria, and the thresholds usingGaussian Interval

Type 2 fuzzy sets (GIT2FSs). Reference [43] proposes an

approach where each decision-maker (DM) utilizes an

extension of ELECTRE TRI-B, with individual decisions

aggregated using group intuitionistic fuzzy credibility indi-

ces to compute the final group consensus. Reference [44]

proposes the use of trapezoidal fuzzy numbers (TrFNs) in

ELECTRE TRI-C to manage uncertain parameters and

determine the membership degree of alternatives to cate-

gories, reducing the proliferation of fuzzy numbers required

for evaluations. Reference [16] advocates for using HFS to

model DMs’ judgments regarding alternatives and criteria

weights. Reference [17] proposes a TrFN adaptation of

outranking functions in ELECTRE TRI-C, followed by HFS

processing, particularly in contexts involving several DMs.

These extensions are deterministic, implying sensitivity and/

or robustness analysis as a post-processing activity.

ELECTRE methods have also integrated HFS [45–47].

References [48, 49] present a modified ELECTRE-I method

for ranking and selecting the best alternative in renewable

energy and manufacturing problems, relying on multiple

decision-makers providing hesitant fuzzy sets to evaluate

alternatives. Reference [50] develops an m-polar HFS

adaptation of ELECTRE-I for selecting the best option when

evaluations exhibit hesitancy. HFS can also model uncertain

judgments, while interval type 2 fuzzy sets (IT2FS)

effectively capture subjective threshold parameters [51, 52].

Extensions implementing interval type 2 trapezoidal fuzzy

numbers (IT2TrFN) demonstrate their utility in modeling

uncertainty in outranking functions [18, 20, 21, 53].

Existing extensions of the ELECTRE TRI-C method

typically focus on either HFS or iIT2TrFN, lacking inte-

gration of both alongside quantitative and qualitative crite-

ria. A gap exists for a methodology that combines HFS and

IT2TrFNwithin ELECTRE TRI-C, while also incorporating

stochastic parameter modeling to enhance robustness anal-

ysis. In addition, although stochastic approaches like

SMAA-TRI address uncertainty [22, 23], they primarily

handle quantitative criteria. Monte Carlo simulation offers

an opportunity to address this gap by optimizing stochastic

parameters [55] or analyzing robustness of solutions [56],

while HFS and IT2TrFN into ELECTRE TRI-C improve

decision analysis in group contexts.

Hence, there is a notable gap in the literature regarding

an extension of ELECTRE TRI-C that integrates IT2TrFN,

HFS, and stochastic wrapping features simultaneously.

3 Extending ELECTRE TRI-C

3.1 Overall Approach

This novel approach extends ELECTRE TRI-C by intro-

ducing a stochastic framework to model uncertain HFS and

IT2TrfN in contexts with multiple decision-makers. Illus-

trated in Fig. 1, it also involves a fictitious ‘‘Supra Deci-

sion-Maker’’ (SDM) for whom information from the DMs

is aggregated.

Firstly, the process begins by defining the sorting problem,

including identifying the group of DMs, alternatives, criteria,

categories, and initial values of imprecision parameters (pj,

qj), and criteria weights (wj) for ELECTRE TRI-C. Sec-

ondly, membership functions (lj) representing the central

reference actions within categories are constructed for each

DM and criterion, utilizing imprecision parameters. Thirdly,

Table 1 Fuzzy set/number extensions of ELECTRE methods

Reference Key points

[43] Extension of ELECTRE TRI-B for individual results and intuitionistic fuzzy credibility indices for group consensus

[44] Usage of trapezoidal fuzzy numbers (TrFNs) in ELECTRE TRI-C to handle outranking functions

[17] TrFN adaptation of outranking functions in ELECTRE TRI-C, followed by HFS processing for several DMs

[16, 41, 45–47] Extension of ELECTRE methods to consider HFS

[48, 49] Modification of ELECTRE-I method based on hesitant fuzzy sets provided by DMs

[50] m-polar HFS adaptation of ELECTRE-I for selecting best option with hesitancy in evaluations

[51, 52] Use of HFS for modeling uncertain judgments

Suggestion of using Interval Type 2 Fuzzy Sets (IT2FS) for better modeling of outranking functions

[18, 20, 21, 53, 54] Implementation of Interval Type 2 Trapezoidal Fuzzy Numbers (IT2TrFN) in extensions of ELECTRE methods
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the ELECTRETRI-Cmethod is applied for eachDMand the

SDM. Fourth, the process continues until a predefined

number of iterations is reached. Fifth, if additional rounds are

needed, imprecision parameters and weights are random-

ized, and ITsTrFNs are updated accordingly. Sixth, if the

stochastic rounds are completed, sorting acceptability indi-

ces are computed, and results are visualized. Finally, con-

clusions are drawn based on the results from both DMs and

the SDM, leading to a final recommendation.

In the following sections, ELECTRE TRI-C and the

main techniques and process for the proposed extension are

briefly described.

3.2 ELECTRE TRI-C

ELECTRE TRI-C is a multi-criteria sorting method that

compares actions to central reference actions representing

predefined categories [9]. Each category is associated with

a single central reference action. We define sets of cardinal

numbers M ¼ f1; . . .;mg, N ¼ f1; . . .; ng, D ¼ f1; . . .;Kg,
and Z ¼ f1; 2; . . .;Hg. Let A ¼ fai j i 2 Mg represent the

set of actions to be categorized, B ¼ fbh j h 2 Zg the set of

central reference actions, with each bh representing a cat-

egory Ch, and F ¼ fgj j j 2 Ng the family of criteria used

to evaluate each action. In ELECTRE methods, the

outranking relation, indicating ‘‘b is at least as good as a,’’

can be assessed for each criterion using the partial direct

concordance index cjðb; aÞ:

cjðb; aÞ ¼

0 if gjðaÞ � gjðbÞ[ pj;

1 if gjðaÞ � gjðbÞ� qj;

gjðbÞ � gjðaÞ þ pj
pj � qj

otherwise ;

:

8
>>><

>>>:

ð1Þ

where pj; qj are two imprecision parameters called the

direct preference threshold and the direct indifference

threshold, respectively [2]. Whenever inverse thresholds

p0j; q
0
j can be defined [57], a partial inverse concordance

index, which considers the inverse thresholds, may be

defined as

cinvjða; bÞ ¼

0 if gjðbÞ � gjðaÞ[ p0j;

1 if gjðbÞ � gjðaÞ� q0j;

gjðaÞ � gjðbÞ þ p0j
p0j � q0j

otherwise :

:

8
>>>><

>>>>:

ð2Þ

The partial direct and inverse concordance indices allow to

compute the global concordance indices:

rDðbh; aÞ ¼
Xm

j¼1

wjcjðbh; aÞ; ; ð3Þ

Fig. 1 Group decision sorting approach
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rIða; bhÞ ¼
Xm

j¼1

wjcinvjða; bhÞ: : ð4Þ

Thus, two assignment rules can be defined [44]:

1. Descending Rule. Let k 2 ½0:5; 1� be a minimum

credibility level. Decrease h from H þ 1 until the first

t such that rIða; btÞ� k:

(a) If t ¼ H þ 1, assign a to CH .

(b) If t ¼ 0, assign a to C1.

(c) For 0\t\H þ 1, if minfrIða; btÞ; rDðbt; aÞg[
minfrIða; btþ1Þ; rDðbtþ1; aÞg then assign a to Ct;

otherwise, assign a to Ctþ1.

2. Ascending Rule. Let k 2 ½0:5; 1� be a minimum cred-

ibility level. Increase h from 0 until the first t such that

rDðbt; aÞ� k:

(a) If t ¼ 1, assign a to C1.

(b) If t ¼ H þ 1, assign a to CH .

(c) For 0\t\H þ 1, if minfrIða; btÞ; rDðbt; aÞg[
minfrIða; bt�1Þ; rDðbt�1; aÞg, then assign a to

Ct; otherwise, assign a to Ct�1.

3.3 Hesitant Fuzzy Sets

HFS is particularly suitable for modeling discrete uncer-

tainty, often arising from judgments related to a limited

number of decision-makers [19]. HFS facilitate the

aggregation of decision-makers’ preferences, offering a

comprehensive representation of the decision-making pro-

cess [41]. Let X be a reference set. A hesitant fuzzy set

(HFS) H on X is defined in terms of a function hHðxÞ,
expressed as H ¼ fhx; hHðxÞi j x 2 Xg, that returns a sub-

set [0, 1] when it is applied to X.

hHðxÞ ¼ fc j c 2 ½0; 1�g is a set of some different values

in [0, 1] where c represents the possible membership

degree of the element x 2 X to H. hHðxÞ is called a hesitant

fuzzy element (HFE), a basic unit of HFS.

As an example, let us consider X ¼ fx1; x2g to be a set

such that hHðx1Þ ¼ f0:3; 0:2g and hHðx2Þ ¼ f0:1; 0:3; 0:4g,
then an HFS can be written as follows: H ¼ fhx1; f0:3;
0:2gi; hx2; f0:1; 0:3; 0:4gig.

For an HFE h, a function sðhÞ ¼ 1
lh

P
c2h c is called the

score function of h, where lh is the number of elements in

h. In addition, for h1 and h2, if sðh1Þ[ sðh2Þ ) h1�h2
(superior) and sðh1Þ ¼ sðh2Þ ) h1 � h2 (indifferent).

3.4 Interval Type 2 Trapezoidal Fuzzy Numbers

Interval type 2 fuzzy sets (IT2FS) expand upon traditional

fuzzy sets by introducing uncertainty regarding the mem-

bership functions themselves [42]. In IT2FS, membership

functions are represented as intervals rather than precise

values, allowing decision-makers to account for uncer-

tainty in both membership degrees and the shape/location

of the membership functions.

Let X denotes a finite non-empty set and Int([0, 1]) rep-

resents the set of all closed subintervals of [0, 1]. Amapping

I : X ! Intð½0; 1�Þ is referred to as an Interval Type 2 Fuzzy
Set (IT2FS) on X [20]. If I(x) is a traditional Trapezoidal

Fuzzy Number (TrFN) defined on the closed and bounded

interval [0, 1] and then I is termed as a traditional Interval

Type 2 Trapezoidal Fuzzy Number (IT2TrFn) on X [58].

In a traditional IT2TrFN, uncertainty is characterized by

two non-negative TrFNs, illustrated in Fig. 2, where lUj
and lLj represent the upper and lower TrFNs, respectively

[52]. The second-order uncertainty corresponds to the

hatched area between these TrFNs, defined as the footprint

of uncertainty (FOU) [53].

Discrete fuzzy numbers (DFNs) [59] can be utilized for cri-

teria assessed using qualitative scales. In this context, a discrete

membership function is defined as a set M ¼ ðx1; l1Þ;
ðx2; l2Þ; . . .; ðxr; lrÞ, where xi and li (for i ¼ 1; 2; . . .; r)

represent the grade on the qualitative scale and the mem-

bership degree, respectively, assigned by a decision-maker

to an alternative with such an evaluation. Consequently, the

footprint of uncertainty (FOU) can be depicted by intervals

of the form ½l; �l�, as illustrated in Fig. 3. In this figure, the set
of blue bullets represents the upper membership function,

while the red bullets depict the lower membership function.

3.5 Stochastic Modeling

SMAA-TRI is amulti-criteria sortingmethod [60]which has

been applied in different problems [61–64] and where some

elements can be used in our approach. This method allows to

analyze the stability of solutions built by the sorting process

whenever the ELECTRE parameters are modeled by

stochastic variables. Therefore, let us consider the criteria

weights w ¼ ðwjÞ1	m are modeled by stochastic variables.

The same process may be applied to model pj; qj; p
0
j; q

0
j. This

can be done by defining intervals where these variables can

Fig. 2 Example of upper and lower fuzzy sets in a IT2TrFN
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be generated. For instance, in Fig. 2, the interval ½a1; b1�may

be used to generate the pj values in cases of quantitative

criteria. Equally, intervals ½l; �l� in Fig. 3 may be used to

generate stochastic variables that help to define discrete

fuzzy numbers, in cases of qualitative criteria.

A sorting acceptability index phi describes the share of

possible parameter values that an alternative iði ¼ 1; . . .; nÞ
has to be assigned to a category Ch. This index is in the

range [0, 1]. A value 0 indicates that there is no evidence

that i does belong to the category Ch and 1 means that the

action surely belongs to that category. This index is com-

puted by Monte Carlo Simulation (MCS), used to generate

the primary membership functions in the FOU areas,

modeling the intra DMs subjectivity. Note that this process

also allows to perform robustness analysis, avoiding the

necessity to run post-process sensitivity analysis, as pro-

posed by other approaches [52].

3.6 Group and Individual Credibility Indices

Let us denote a set of DMsD ¼ fDM1;DM2; . . .;DMKg and
a fictitious ‘‘Supra Decision-Maker’’ (SDM)who is intended

to ‘‘aggregate’’ the individual information coming from the

otherDMs. Let b 2 B and a 2 A such that for eachDMk (k=1,

..., K) and gj, the following fuzzy number is defined:

lkj ða; bÞ ¼ minfckj ðb; aÞ; cinvkj ða; bÞg: ð5Þ

that can be interpreted as a fuzzy indifference relation, constructed

fromtwooutrankingrelations[65].Note thatckj ðb; aÞ; cinvkj ða; bÞ
may be generated by construction of membership functions

inside the FOU areas, both in quantitative and qualitative

criteria (see, for instance, the red dashed lines in Fig. 2).

Thus, let us define the following HFEs:

hdirjðbh; aÞ ¼fckj ðbh; aÞ j k ¼ 1; . . .;Kg; ; ð6Þ

hinvjða; bhÞ ¼fcinvkj ða; bhÞ j k ¼ 1; . . .;Kg: : ð7Þ

For each DM k, the individual credibility indices are

computed as follows:

rkDðbh; aÞ ¼
Xm

j¼1

wk
j c

k
j ðbh; aÞ; ; ð8Þ

rkI ða; bhÞ ¼
Xm

j¼1

wk
j cinv

k
j ða; bhÞ: : ð9Þ

Instead, at the SDM level, the credibility indices are

computed as follows:

rDðbh; aÞ ¼
Xm

j¼1

wjsdirjðbh; aÞ; ; ð10Þ

rIða; bhÞ ¼
Xm

j¼1

wjsinvjða; bhÞ; ; ð11Þ

where wj � 0;
Pn

j¼1 wj ¼ 1 is a set of weights that the set of

DMs accept to correctly represent the importance of the

criteria. Functions sdirjðbh; aÞ and sinvjða; bhÞ are HFS

computed by aggregating hdirjðbh; aÞ and hinvjða; bhÞ,
respectively. For instance, the max score function may be

considered (Reference [66] provides other kinds of

aggregation):

sdirjðbh; aÞ ¼ max
K

fckj ðbh; aÞg;

sinvjða; bhÞ ¼ max
K

fcinvkj ðbh; aÞg:
: ð12Þ

In which follows, this approach is applied to a real

problem.

4 Application

4.1 Defining the Problem

In a study presented in [67], a Brazilian electrical power

company undertook the sorting of 49 projects based on

their criticality, defined as the level of specialized resour-

ces, time, and strategic involvement that the company

could allocate to each project. The decision-making pro-

cess involved several stakeholders: the PMO manager

(DM1) held the responsibility of making the final decisions

regarding project allocation, while two experienced project

managers (DM2 and DM3) assisted in the analysis.

The criteria family comprises

• g1: Project Complexity, which increaseswith the project’s

budget and the number of departments involved.

• g2: Resources, measuring the number of task hours

required for project completion.

• g3: Expected rate of development, assessing the

urgency in project development and implementation.

Fig. 3 Example of FOU in discrete criteria
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• g4: Contribution to the achievement of organizational

strategy.

• g5: Technological level involved in project development.

Table 2 presents the criteria, scales, and weights deter-

mined by the three DMs involved in the process [67]. It is

worth noting that the SDM weights could be derived from

the information in this table by utilizing a hesitant average

score function [47].

Theevaluations of eachproject are presented inTable3.Three

categories are defined according to [67]: C1 for non-critical

projects, C2 for critical projects, and C3 for very critical

projects. Additionally, a senior manager assisted in defining

the three reference alternatives, as depicted in the table.

4.2 Building Outranking Functions

To establish the outranking functions, the gjðbhÞ values are
extracted from the central reference actions, for instance,

from information in Table 3. For each DM k and bh, we

need the parameters contributing to the construction of the

direct and inverse outranking functions helping to build the

membership function for a category h in a criterion j.

In a previous study [67], the DMs were not available

when our approach began development. Thus, parameters

are defined based on the type of criterion, distinguishing

two cases:

Table 2 Criteria, scales, and weights

Criterion Weight Verbal scale Scale

DM1 DM2 DM3

g1 0.20 0.15 0.30 High 4

Medium 3

Low 2

Very low 1

g2 0.20 0.15 0.25 Man-hours

g3 0.20 0.20 0.15 Urgent 5

Critical 4

Competitive 3

Regular 2

Low 1

g4 0.30 0.15 0.15 Very high 4

High 3

Medium 2

Low 1

g5 0.10 0.35 0.15 High 4

Medium 3

Low 2

Negligible 1

Table 3 Evaluation of projects and central reference actions

Project g1 g2 g3 g4 g5

1 2 640 2 3 2

2 3 480 2 2 1

3 3 640 1 3 2

4 1 720 2 2 2

5 1 160 3 3 2

6 2 160 2 3 2

7 3 620 2 1 2

8 2 640 1 2 1

9 1 320 2 3 3

10 2 320 2 3 2

11 2 160 3 3 1

12 1 160 1 1 2

13 2 640 3 3 2

14 2 240 3 3 2

15 1 160 2 2 1

16 1 160 2 3 1

17 3 320 3 2 1

18 3 640 2 3 1

19 3 960 2 3 2

20 1 160 2 2 2

21 2 640 2 2 2

22 1 160 2 2 3

23 3 1280 1 2 2

24 1 320 3 2 2

25 2 160 1 2 2

26 1 160 2 2 1

27 2 1280 1 3 2

28 3 640 2 2 2

29 2 800 1 2 2

30 2 160 3 2 2

31 2 160 1 2 1

32 3 320 1 2 2

33 2 240 2 3 1

34 2 320 2 2 1

35 1 120 2 3 1

36 2 160 1 3 1

37 2 3200 1 2 1

38 2 3200 1 2 1

39 2 960 1 2 1

40 2 3840 1 2 1

41 2 2880 1 2 1

42 1 1200 3 2 1

43 1 1200 3 2 1

44 3 7680 4 3 3

45 1 2400 3 2 1

46 3 5760 4 3 1
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g2 : We define m2 as the mean average and rm2 as the

standard deviation of the set of differences

between evaluations on this criterion (see [17] for

a detailed explanation). Then, a crisp value p2 ¼
r2 is initially set. The other thresholds are set as

p2 ¼ p02; p2 ¼ 2q2; p
0
2 ¼ 2q02. For SDM, we define

pSDM2 ¼ maxk2f1;2;3g p
k
2. Thus, the expression in

Eq. (12) can be applied at runtime.

Other : Membership functions are defined in Table 4. For

instance, if an alternative is evaluatedwith a score of

2 on criterion g1, DM1 would judge that the

credibility of this alternative belonging toC1 equals

0.3. These Discrete Fuzzy Numbers (DFNs) may be

elicited through an interactive process with the DM

or by another method (see, for instance, [68]).

4.3 Updating Parameters

For each parameter, a stochastic variable uniformly dis-

tributed within a closed interval is considered. Random

values for each parameter are then generated, and Monte

Carlo Simulation (MCS) is applied. Two cases are

distinguished:

g2 : A random preference threshold is defined by the

stochastic variable

np2 �Uðr2 � wkm2; r2 þ wkm2Þ, where wk 2
0:8; 0:9; 1:0 is a scaling factor that depends on DM

k 2 f1; 2; 3g. The other thresholds are directly set

by the equations p2 ¼ p02; p2 ¼ 2q2; p
0
2 ¼ 2q02. For

SDM, we define pSDM2 ¼ maxk2f1;2;3g p
k
2. Thus, the

expression in Eq. (12) can be applied at runtime

for each simulation round.

Other : To simulate FOU areas, intervals of 0.1 point above

and below a given membership degree in Table 4 are

defined. For example, for criterion g1 and DM1,

when the score 2 is considered, a stochastic variable

nl �Uð0:2; 0:4Þ is defined. For each criterion, only
the extreme scale grades and the ones having a

membership degree equal to 1 are fixed, without

uncertainty. All other grades follow the uncertainty

rule mentioned here. The hesitant SDM

membership degrees are constructed at runtime.

Weights are generated as stochastic variables uniformly

distributed, U(0, 1), constrained by linear equations

reflecting their preferences, as summarized in Table 5.

Table 3 continued

Project g1 g2 g3 g4 g5

47 3 2880 4 3 1

48 2 7680 3 3 1

49 1 7680 3 3 1

b1 1 300 2 1 1

b2 2 2000 3 2 2

b3 3 5000 4 3 3

Table 4 Membership degrees

of categories for qualitative

criteria

g Scale C1 C2 C3

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

g1 1 1 1 1 0.1 0.1 0.2 0 0 0

2 0.3 0.2 0.1 1 1 1 0.1 0.1 0.2

3 0 0 0 0.3 0.4 0.1 1 1 1

4 0 0 0 0 0 0 1 1 1

g3 1 1 1 1 0 0 0 0 0 0

2 1 1 1 0.3 0.5 0.4 0.1 0.1 0.1

3 0.3 0.3 0.2 1 1 1 0.7 0.3 0.4

4 0 0 0 0.3 0.3 0.3 1 1 1

5 0 0 0 0 0 0 1 1 1

g4 1 1 1 1 0.3 0.1 0.1 0 0 0

2 0.2 0.2 0.2 1 1 1 0.3 0.1 0.2

3 0 0 0 0.2 0.2 0.3 1 1 1

4 0 0 0 0 0 0 1 1 1

g5 1 1 1 1 0.3 0.3 0.1 0 0 0

2 0.6 0.5 0.4 1 1 1 0.3 0.1 0.2

3 0.2 0.1 0 0.3 0.4 0.1 1 1 1

4 0 0 0 0 0 0 1 1 1
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4.4 Applying ELECTRE TRI-C and Results

We conduct simulations using a Python implementation of

the method outlined in Sect. 4.3, generating 3000 param-

eter instances for each decision-maker (DM) and the Supra

Decision-Maker (SDM). Table 6 displays the results, with

darker shades indicating higher acceptability. For each

project, the acceptability levels for every DM and SDM, on

each category are shown. Strongly highlighted cells have

acceptability values equal to or greater than 0.75.

It seems that DM1 predominantly assigns most projects

between C2 and C3, with high acceptability values (indi-

cated by strong red cells). Conversely, DM2, DM3, and the

SDM assign most projects to C1 and C2. Notably, the C3

category is sparsely populated in DM2.

As the criteria weights are independently computed for

each decision-maker, the projects assigned by the SDMdonot

necessarily reflect the ‘‘mean assignment’’ among the DMs.

Therefore, itwas anticipated that SDMassignmentswould not

be closely aligned with those of the individual DMs.

4.5 Drawing Up Conclusions

To summarize the results and further elaborate conclusions,

we calculate two measures: the median acceptability value

and the dispersion error across the three decision-makers

and the SDM for each alternative in the three categories.

Figure 4 provides a more comprehensive view of the

classification than Table 6, displaying error bars for each

project’s acceptability indices. For example, consider the

error bar of project P49 in category C1, where the median

acceptability level among the decision-makers is 0.64, with

upper and lower bounds of 0.74 and 0.0, respectively. In

category C2, the median value is 0.33, while in C3 it is 0.0.

This figure allows for a clearer observation of the disper-

sion of decision-makers’ preferences for each project and

category.

A smaller error bar indicates that, based on the decision-

makers’ preferences, a project is consistently assigned by

all four decision-makers. This is evident in projects P32,

P29, and P28, which have strong arguments for being

assigned to C2. For projects where ambiguity remains high,

a closer analysis is necessary. Therefore, the higher the

median value and the narrower the error bar, the clearer the

project’s assignment to a category.

A very high median value allows to identify where most

of projects are assigned. This is the case, for example, of

projects P44;P41;P40;P39;P38;P37;P34. Note that, despite

of the long error bar, projects P46;P47 are assigned to C3,

mainly due to the very low median values in the other

categories. This a thumb rule to achieve conclusions. For

instance, P48;P45;P43;P42 assignments can be discerned

using the rule. However, ambiguity can be also found on

some cases: P24;P22;P19;P18;P9;P5;P4;P3, where two

categories could be chosen as assignment. Thus, these

measures (error bar and median) provide a tool for drawing

up conclusions, but also to identify ambiguous cases where

an in-depth analysis could be necessary.

In Table 7, the Kendall Tau correlation among the

acceptability levels across the 49 projects for each deci-

sion-maker (DM) and category is presented.

It is worth noting that, except for the correlations

between DM1 and DM2 and between DM2 and DM3 in

category C2, the correlations are statistically significant. A

high or significant value of Kendall Tau indicates a strong

ordinal relationship, but the relationship between the

variables could be more complex than a simple linear one.

Even if the project orderings are similar for two DMs, the

acceptability values for one DM could differ significantly

from those of another. This discrepancy is why the dis-

persion error across the three decision-makers for each

alternative in the three categories may be very high in some

cases, as observed in Fig. 4. The average dispersion error

reaches 0.54, 0.60, and 0.24 for C1, C2, and C3, respec-

tively. In other words, the ranking results can be very

different from the outcomes generated in the sorting

process.

Findings from this application reveal (1) Strong corre-

lation among acceptability levels for different projects

across decision-makers and categories, except in specific

cases; (2) Varied acceptability ratings among decision-

makers despite similar project rankings, leading to high

Table 5 Weight restrictions DM1 DM2

w4 �wj; j 6¼ 4 w3 �wj; j ¼ 1; 2; 4

w5 �wj; j 6¼ 5 (13) w5 �wj; j 6¼ 5 (14)

wj 2 ½0; 1�; j ¼ 1; 2; 3; 4; 5 wj 2 ½0; 1�; j ¼ 1; 2; 3; 4; 5

DM3 Supra DM

w1 �wj; j 6¼ 4 w1 �wj; j 6¼ 1

w2 �wj; j ¼ 3; 4; 5 (15) w3 �wj; j ¼ 2; 4; 5 (16)

wj 2 ½0; 1�; j ¼ 1; 2; 3; 4; 5 wj 2 ½0; 1�; j ¼ 1; 2; 3; 4; 5
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error dispersion across them; (3) Discrepancies attributed

to differences in membership functions, their positions

across criteria axes, and constraints on criteria weights; (4)

Imposing weight constraints may lead to information

anomalies, a concern for future research; and (5) The

crucial role of membership function extraction in fuzzy

representation.

5 Discussion

Membership functions are essential in fuzzy representation,

serving as the basis of fuzzy set theory. However, their

extraction is context dependent, leading to evaluation

complexities. Various strategies have been proposed in the

literature for the extraction and analysis of fuzzy sets [69].

Table 6 Sorting acceptability indices of projects
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Some of these include selecting different shaped functions

(such as Gaussian, triangular, trapezoidal, linear, and sig-

moidal) [70, 71], extracting membership functions from

expert information [69], optimizing membership function

parameters for specific problems [72], or extracting fuzzy

membership functions where data are available [73].

Therefore, we anticipate a need for future research to refine

the definition of membership functions in the construction

of IT2 fuzzy numbers for decision-makers, distinct from

trapezoidal or triangular fuzzy sets.

In our application, the method automatically generates

the 45 outranking functions required for application and

Fig. 4 Stochastic classification of projects
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computation of credibility indices in each round, a signif-

icant advantage over other fuzzy set extensions of ELEC-

TRE methods that require elicitation of 245 HFSs [16, 17].

However, a limitation may arise if decision-makers are

unavailable to provide information for building the

outranking functions, highlighting a potential area for

further research, particularly in energy-related companies

involved in intensive project evaluation, development, and

monitoring activities. Future research may explore methods

for automatically extracting HFS and IT2TrFN when pro-

ject lifecycle data are available [73].

The discrepancy between the ranking correlation and

sorting outcomes could be explained by the fact that the

outranking functions defined in the criteria for the three

DMs may be similar, but they are positioned differently

along the criteria axis, and the criteria weights are not

significantly different among the DMs. This could be

intensified by restrictions on the criteria weights, which

could steer the admissible set of weights toward areas

where ‘‘information anomalies’’ may appear [74]. An

information anomaly is the phenomenon whereby addi-

tional information on the criteria weights, through the

imposition of a constraint, might lead to a worse approxi-

mation of true preferences, also excluding weight vari-

ability. Future research should be conducted to analyze the

specific effects of weight restrictions on the sorting pro-

cess, considering the possibility of information anomalies.

Recently, authors have highlighted the complementarity

of fuzzy sets, outranking relations, and stochastic analysis

as a means to consider both uncertainty and sensitivity/

robustness analysis [75–77]. Generally, these approaches

are grounded in the stochastic modeling of standard or

interval type 2 fuzzy sets (IT2FS). Several authors have

applied Monte Carlo Simulation in contexts where IT2FS

is used for modeling uncertainty [56]. However, to our

knowledge, the only existing ELECTRE method capable of

accommodating stochastic threshold modeling, even with

deterministic scores, is SMAA-TRI [22], an extension of

ELECTRE TRI-B. We have drawn inspiration from the

rationale of SMAA-TRI to develop our approach. Our

methodology, compared to SMAA-TRI, introduces an

ELECTRE TRI-C extension tailored for group decision-

making, accommodating both quantitative and qualitative

criteria, and complex weight relations through linear

equations. To the best of our knowledge, no ELECTRE

TRI extension incorporating HFS and IT2TrFN has been

published to date, enabling the modeling of intra- and inter-

DM uncertainty in our approach. In our opinion, an

approach worth considering to future enhancement of our

methodology, as proposed by [55], involves utilizing the

Simulated Annealing metaheuristic. This method aims to

approximate the optimal distance between a given alter-

native, represented by an IT2FS, and a reference point

(central reference action).

The application of our approach to a problem within a

Brazilian electrical power company showcases its adapt-

ability to group decision-making with minimal effort

compared to alternatives. In previous work, [78] used

PROMSORT, a deterministic method based on PRO-

METHEE, for project sorting [79]. PROMSORT assigns

alternatives to categories using predefined limits and pair-

wise comparisons. Unlike our approach, PROMSORT

lacks robustness analysis and uses deterministic parame-

ters, requiring additional post-processing. However, in this

method, some alternatives assigned to the categories may

serve as reference actions. This suggests that our approach

could be utilized to extend ELECTRE TRI-nc, a method in

which n alternatives may represent a category [80]. In such

a scenario, future research should consider extracting and/

or constructing multiple IT2TrFNs for a given category

from information provided by the DMs.

Graphical visualization techniques are highly beneficial

for comprehending and identifying solutions in choice,

ranking, or sorting problems [81]. Recently, scholars have

emphasized the importance of evaluating the effectiveness

of graphical visualizations when integrated into MCDM/A

methods. Reference [82] investigate how using ad hoc

visual tools enhance managerial judgment and decision-

making. Reference [83] utilize eye-tracking experiments to

offer analysts insights into the application of graphical

visualization within the FITradeoff method. Reference [84]

assesses the reliability of interactive visualization tools for

healthcare data analytics and medical diagnosis, addressing

ambiguities from multiple expert opinions. Reference [85]

combine the VIKOR method with dependency nested

rings, qualifier radar charts, and scatter graphs to offer

decision-makers insights in contexts with a high number of

alternatives. Reference [86] propose that future research

Table 7 Kendall Tau

correlation of acceptability

levels

C1 C2 C3

Category DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

DM1 0.33** 0.84** �0.33 0.26** 0.29* 0.29*

DM2 0.33** 0.20 0.32*

DM3

*: p\0:05; **: p\0:01
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could explore novel visualization paradigms for enhance

transparency and flexibility of visualization tools. There-

fore, future research is necessary to assess the effectiveness

of the proposed graphical visualization in facilitating the

decision-making process.

6 Conclusion

This paper introduces an innovative extension of the

ELECTRE TRI-C method tailored to accommodate

uncertain information and subjective judgments from

multiple decision-makers. At the core of this approach lies

a stochastic wrapper that incorporates a constructive pro-

cedure for generating outranking functions, catering to both

quantitative and qualitative criteria. Therefore, robustness

analysis is seamlessly integrated within the process, dis-

tinguishing it from other methodologies where such anal-

yses are conducted post MCDM/A processing.

The key contributions of our approach are as follows:

(1) Enabling the construction of both continuous and dis-

crete outranking functions by integrating the subjective

judgments of multiple decision-makers using Interval Type

2 fuzzy numbers (IT2TrFN) and Monte Carlo Simulation.

(2) Aggregating this data using HFS to simulate a supra-

decision-maker, thereby enhancing decision-making accu-

racy. (3) Offering flexibility for stochastic processing of

both quantitative and qualitative criteria, facilitating robust

decision-making in uncertain environments. (4) Integrating

stochastic weights and linear equations to effectively rep-

resent constraints between them. (5) Introducing a novel

visualization method that provides a holistic view of the

stochastic results obtained from the group of decision-

makers, aiding in insightful analysis.

Applied within a Brazilian electrical power company

tasked with categorizing projects into three distinct groups,

our approach proves useful to company managers by

showcasing how projects are classified individually by each

decision-maker and collectively by the entire group, as

represented by a supra-decision-maker. This allows man-

agers to identify projects assigned to each category and

recognize candidate projects where ambiguity persists,

furnishing decision-makers with actionable insights.

Findings in this application are as follows: (1) Signifi-

cant correlation is observed among project rankings across

various DMs, except for specific cases. (2) Despite similar

project rankings, sorting acceptability ratings may signifi-

cantly differ among DMs, resulting in high error dispersion

across them for each alternative in different categories. (3)

Discrepancies in sorting results could be attributed to dif-

ferences in outranking functions position across each cri-

terion axis. (4) Imposing weight constraints could lead to

information anomalies, where additional information might

result in very similar or overlapping weight spaces, which

is a research concern for our future work. (5) IT2TrFN

extraction is crucial in fuzzy representation, thus the

availability of DMs information for constructing outrank-

ing functions could lead to the early detection of similar-

ities, but this needs future research.

Future research could delve into methods for extracting/

building HFS and IT2TrFN from expert opinions and

available data. Additionally, further investigation should be

conducted to analyze the specific effects of weight

restrictions on the sorting process, taking into account the

potential presence of information anomalies. An approach

worth considering for enhancing our methodology in future

involves using methods to approximate the optimal dis-

tance between a given alternative, represented by an

IT2FS, and a reference point (central reference action). We

think that our approach could be utilized to extend methods

as ELECTRE TRI-nc where n alternatives may represent a

category. Finally, further research is necessary to assess the

effectiveness of the proposed graphical visualization in

facilitating the decision-making process.
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