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Abstract The acquisition of decision rules in multi-intu-

itionistic fuzzy decision information systems is both chal-

lenging and important. To address this issue, it is necessary

to combine decision rules from various systems to obtain a

more reliable decision rule. Additionally, the use of three-

way decisions can help determine the optimal decision

value. In this research article, we explore the decision

problems of multi-intuitionistic fuzzy decision information

systems by utilizing the D-S evidence theory and three-way

decisions. We start by providing an overview of the belief

structure of intuitionistic fuzzy sets. Then, we propose a

fused mass function of decision rules that assists in

obtaining satisfactory or optimal decision value sets

through three-way decisions. To facilitate the fusion of

decision value sets, we present an algorithm that effec-

tively integrates them. Furthermore, we provide examples

to illustrate the algorithm and demonstrate the effective-

ness and efficiency of our proposed approach.

Keywords D-S evidence theory � Three-way decision �
Mass function � Decision rule fusion

1 Introduction

Atanassov’s intuitionistic fuzzy set (IFS) [1] is a valuable

tool for managing uncertainty and imprecision in infor-

mation and knowledge. It surpasses traditional fuzzy sets

by incorporating both membership and non-membership

degrees, offering a more expressive framework. Numerous

researchers have investigated the properties and operations

of IFSs, leading to the development of various approaches

for approximating IFSs using rough sets [2–5]. Despite

these advancements, some previously proposed models for

IFS approximation have limitations in maintaining the

essential properties of IFSs, making them imperfect. Con-

sequently, idealized approximation models preserving the

properties of IFSs have been introduced in the literature

[6–8]. Moreover, various models have gained popularity

for different scenarios, such as handling arbitrary intu-

itionistic fuzzy (IF) binary relations, infinite universes of

discourse [9, 10], and variable precision [11]. These

models have been extensively quantified to measure

degrees of uncertainty [12] and to discuss system reduction

and decision-making processes [13] in intuitionistic fuzzy

approximation spaces. In this paper, we concentrate on the

development and application of IF rough sets, which have

demonstrated significant potential in various fields.

Decision rules (DRs) play a pivotal role in decision-

making and can be derived from various theories, such as

multiple attribute decision (MAD) [14–16] and rough set
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theory [17]. While MAD focuses on identifying the optimal

decision maker, rough set theory considers objects with

similarity relations as a single class to determine the best

decision values. Our research proposes that determining the

optimal decision value for an object is the key factor in

decision-making. Objects with similarity relations exhibit

consistent values and performance for the same attribute,

making them suitable for constructing information granules

to enhance decision-making accuracy. Therefore, rough set

methods are our preferred approach for addressing decision

problems. However, traditional rough set theory only cap-

tures DRs from individual IF information systems (IFISs),

while in practice, we often encounter situations where we

need to extract underlying information and knowledge from

multiple IFISs (MIFISs). Moreover, decision values for each

object in different IF decision information systems (IFDISs)

may vary, necessitating the fusion of DRs from multiple

IFDISs (MIFDISs) to obtain an integrated decision value. In

the process of decision synthesis, we need to tackle two

primary challenges: Firstly, determining the uncertainty

measure of each object with respect to different decision

values in the fused IFDIS. Secondly, selecting suitable de-

cision values (or value sets) for each object using the

uncertainty measure. Our study aims to tackle these chal-

lenges and offer an efficient approach for decision-making

using rough set-based DRs for MIFDISs.

Various techniques exist to handle uncertainty in DRs

across multiple information systems. One approach is the

employment of the MAD technique, which has been

investigated by Liang, Mu and Xu [14, 18, 19]. Another

method involves the use of the D-S evidence theory, as

introduced by Dempster and Shafer [20, 21]. This theory

enables the treatment of both uncertainty and conflicting

evidence [22, 23], a capability absent in previous fusion

operators utilized with fuzzy sets and MADs. The D-S

evidence theory is grounded in concepts such as focal

element sets, mass functions, belief functions, and plausi-

bility functions, which structure the basic belief system

[24–26]. By integrating rough set theory, the belief and

plausibility functions can function as probabilistic models

for lower and upper approximations [27–31]. The D-S

evidence theory offers a comprehensive framework for

combining different types and sources of knowledge, as

well as amalgamating cumulative evidence with prior

opinions [32–35]. Its applications extend across informa-

tion fusion, knowledge discovery, and decision-making

domains [36–41]. An important aspect of fusing informa-

tion in multiple integrated decision information systems is

the establishment of all focal elements [42–44]. Through

the utilization of an information fusion technique based on

the focal element set, it becomes feasible to streamline

fuzzy information systems and IFISs [9, 45–48]. This

strategy can lead to a more accurate fused mass function of

decision rules in MIFDISs compared to utilizing a single

system. As a result, a new mass function fusion rule is

suggested to effectively manage conflicting evidence and

derive a fused mass function of decision rules in MIFDISs.

Currently, decision-making methods often face chal-

lenges when dealing with MIFDISs that have different

attribute sets. However, the combination of fused mass

functions and the three-way decision theory can effectively

address this problem. The three-way decision theory,

introduced by Yao in 2010 [49], divides objects into three

categories: acceptance, rejection, and non-commitment,

allowing for the identification of optimal strategies from

multiple decision values [50, 51]. These three categories

align with Pawlak’s rough sets, which have been widely

discussed in the context of three-way decisions in different

decision-theoretic rough sets [30, 31]. Several scholars

have discussed three-way decisions in different decision-

theoretic rough sets [52–54], particularly in IF environ-

ments [15, 18, 55–57]. In MIFDISs, the construction of a

suitable fused uncertainty measure can determine the fused

decision value sets and facilitate information extraction. By

establishing rules for acceptance, rejection, and non-com-

mitment, valuable information can be mined from MIF-

DISs. This paper proposes the use of mass function for

fused DRs as a replacement for the conditional probability

function of each object in three-way decisions, as the

probability function of DRs cannot be directly obtained or

calculated easily. Consequently, this study focuses on the

DR fusion and the selection of optimal fused decision

values in MIFDISs.

This paper focuses on decision-making in MIFDISs.

Section 2 reviews IF ðI ; T Þ approximation spaces, belief

and plausibility functions. Section 3 introduces a mass

function proposed for all DRs within the same IFDIS. Sec-

tion 4 examines fusedmass functions ofDRs by employing a

suitable inclusion degree of two IFSs. Section 5 develops

two types of three-way decision models suitable for fused

DRs. Subsequently, the algorithm for determining the opti-

mal fused decision value set of each object of MIFDISs is

proposed by combining the fused mass functions of DRs and

the three-way decisions. The feasibility of the method is

demonstrated through examples. Finally, Sect. 6 summa-

rizes the key findings of this paper.

2 Basic Concepts

2.1 The IF Approximation Space

Firstly, we review intuitionistic fuzzy (IF) ðI ; T Þ approx-
imation operators defined in [10].

Denote L� ¼ fðx1; x2Þ 2 ½0; 1� � ½0; 1� : x1 þ x2 � 1g.
An IF relation � L� on L� is: 8ðx1; x2Þ; ðy1; y2Þ 2 L�,
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ðx1; x2Þ� L� ðy1; y2Þ , x1 � y1 and x2 � y2:

The pair ðL�; � L� Þ is a complete lattice with the greatest

element 1L� ¼ ð1; 0Þ and the smallest element 0L� ¼ ð0; 1Þ.
And for all ðx1; x2Þ 2 L�, we define lðx1;x2Þ ¼ x1, cðx1;x2Þ ¼ x2.

Suppose U is a nonempty and finite object set, called the

universe of discourse.

Definition 2.1 [1] An intuitionistic fuzzy set (IFS) A on U

is defined as

A ¼ fhx; lAðxÞ; cAðxÞi : x 2 Ug;

where the map lA : U ! ½0; 1� is called the membership

degree of x to A (namely lAðxÞ), and cA : U ! ½0; 1� is
called the non-membership degree of x to A (namely

cAðxÞ), respectively, and ðlAðxÞ; cAðxÞÞ 2 L� for each

x 2 U. The family of all IFSs of U is denoted by IF ðUÞ.

A fuzzy set A ¼ fhx; lAðxÞi : x 2 Ug can be identified

by the IFS fhx;lAðxÞ; 1� lAðxÞi : x 2 Ug. The basic

operations of IFSs on IFðUÞ are listed in [1].

We introduce two special IFSs: (IF singleton set)

1fyg ¼ fhx; l1fyg ðxÞ; c1fyg ðxÞi : x 2 U} for y 2 U as follows:

l1fyg ðxÞ ¼
1; if x ¼ y;

0; if x 6¼ y:

�
c1fyg ðxÞ ¼

0; if x ¼ y;

1; if x 6¼ y:

�

(IFconstant set) If ða; bÞ 2 L�, then ðda; bÞ is an IF constant set,
and ðda; bÞðxÞ ¼ ða; bÞ, 8x 2 U. In the following, the prop-

erties of an IF approximation space (IFAS) will be reviewed.

As stated in [9], an IF relation (IFR) R on U is an IFS of

U � U, namely, R is given by

R ¼ fhðx; yÞ; lRðx; yÞ; cRðx; yÞi : ðx; yÞ 2 U � Ug;

where lR : U � U ! ½0; 1� and cR : U � U ! ½0; 1� satisfy
ðlRðx; yÞ; cRðx; yÞÞ 2 L�, 8ðx; yÞ 2 U � U. We denote the

set of all IFRs on U by IFRðU � UÞ. Then 8x 2 U, R(x) is

an IF class generated by x, where RðxÞðyÞ ¼ ðlR
ðx; yÞ; cRðx; yÞÞ, 8y 2 U.

(Special types of IFRs) Let R 2 IFRðU � UÞ and T be

an IF t-norm on L�, S be an IF t-conorm on L�. We say R is

1. Serial if _y2URðx; yÞ ¼ 1L� ; 8x 2 U:

2. Reflexive if Rðx; xÞ ¼ 1L� ; 8x 2 U:

3. Symmetric if Rðx; yÞ ¼ Rðy; xÞ; 8ðx; yÞ 2 U � U:

4. T -transitive if

_y2UT ðRðx; yÞ;Rðy; zÞÞ� L�Rðx; zÞ; 8ðx; zÞ 2 U � U.

5. T -equivalent if R is a reflexive, symmetric, and T -

transitive IFR.

Definition 2.2 SupposeU is a nonempty object set and R is

an IFR on U, then the pair (U, R) is referred to as an IFAS.

Definition 2.3 [9] Suppose (U, R) is an IFAS and T (I ) is

a continuous IF t-norm (IF implicator, respectively) on L�.

A 2 IFðUÞ, the T �upper and I�lower approximations of

A denoted by R
T ðAÞ and RI ðAÞ, respectively, w.r.t. (U, R)

are two IFSs of U and are, respectively, defined as follows:

R
T ðAÞðxÞ ¼

_
y2U

T ðRðx; yÞ;AðyÞÞ; x 2 U; ð1Þ

RI ðAÞðxÞ ¼
^
y2U

IðRðx; yÞ;AðyÞÞ; x 2 U: ð2Þ

The operators R
T
and RI : IFðUÞ ! IF ðUÞ are, respec-

tively, referred to as the T �upper and I�lower IF approx-

imation operators of (U, R). The pair ðRI ðAÞ;R
TðAÞÞ is

called the ðI ; T Þ-IF rough set of A w.r.t. (U, R).

Theorem 2.1 [58] Suppose (U, R) is an IFAS, T and I

are IF t-norm and IF S-implicator based on an IF t-conorm

S, respectively, and 	N is a standard IF negator. If T and

S are dual w.r.t. 	N , then

1. RIðAÞ ¼ 	NR
T ð	NAÞ, 8A 2 IF ðUÞ;

2. RT ðAÞ ¼ 	NRI ð	NAÞ, 8A 2 IF ðUÞ.

In [10], the properties of T �upper and I�lower IF

rough approximation operators, defined by Eq.(1) and

Eq. (2), and the properties of IF binary relations are listed.

2.2 The IF Belief Structure of an IFS

Because the IF probability (IFP) of an IFS serves as the

basis for the mass function, we firstly review the definition

of IFP of an IFS as defined in [43], and then introduce the

belief structure of an IFS.

Let ðU;XÞ be a measurable space, P be a normal

probability measure on ðU;XÞ, i.e. PðxÞ[ 0, 8x 2 U, then

ðU;X;PÞ is a normal probability space [43].

Definition 2.4 [43] Let U be a nonempty and finite set. If

P is the probability function of crisp sets of U, then an IFP

P� is defined as: 8A 2 IFðUÞ,

P�ðAÞ ¼
X
x2U

ðð1� cAðxÞÞ2 � ð1� lAðxÞ � cAðxÞÞ2ÞPðxÞ:

Definition 2.5 [43] Let U be a nonempty and finite set, an

IF set function m : IFðUÞ ! ½0; 1� is referred to as a basic

probability assignment function (also called mass function)

if it satisfies axioms (M1) and (M2):

(M1) mð;Þ ¼ 0;

(M2)
P

A2IF ðUÞ
mðAÞ ¼ 1.

Suppose R is an IF reflexive binary relation on U, (U, R)

is an IFAS, M ¼ fRðxÞ : x 2 Ug.
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Theorem 2.2 [43] Let U ¼ fx1; x2; . . .; xng be a nonempty

and finite universe of discourse, R be an IF reflexive binary

relation on U. 8A 2 IFðUÞ, define

mRðAÞ ¼

P
fx2U:A¼RðxÞg

P�ð1xÞ; A 2 M;

0; otherwise.

8<
:

Then mR is a mass function. M is the focal element set.

Definition 2.6 [43] Assume (U, R) is a reflexive IFAS, P

is a probability function on U. Then 8X 2 IFðUÞ,
BeIRðXÞ ¼ P�ðRI ðXÞÞ;
PlaTR ðXÞ ¼ P�ðRT ðXÞÞ:

BeIR is a belief function, and PlaTR is a plausibility function.

Theorem 2.3 [43] Suppose (U, R) is a reflexive IFAS, P is

a probability function on U. Then we have: 8A 2 IF ðUÞ,
BeIRðAÞ ¼

X
F2M

mRðFÞðð1� cIðF
AÞÞ2 � ð1� lIðF
AÞ � cIðF
AÞÞ2Þ;

PlaTR ðAÞ ¼
X
F2M

mRðFÞðð1� cT ðF\AÞÞ2 � ð1� lT ðF\AÞ � cT ðF\AÞÞ2Þ:

Where IðF 
 AÞ ¼
V

y2U IðFðyÞ;AðyÞÞ and T ðF \ AÞ ¼W
y2U T ðFðyÞ;AðyÞÞ.

Let ðx1; x2Þ 2 L� and

jðx1; x2Þj ¼ ð1� x2Þ2 � ð1� x1 � x2Þ2;

then

BeIRðAÞ ¼
X
F2M

mRðFÞjIðF 
 AÞj;

PlaTR ðAÞ ¼
X
F2M

mRðFÞjT ðF \ AÞj:

Definition 2.7 Assume A;B 2 IF ðUÞ, denote

rðA;BÞ ¼
jjA \ Bjj
jjBjj ; jjBjj 6¼ 0;

1; otherwise.

8<
:

where jjAjj ¼
P

x2UðlAðxÞ
2þð1�cAðxÞÞ2Þ

2jUj , and |U| is the cardinal

number of U, 8A 2 IF ðUÞ. Then rðA;BÞ is called the

inclusion degree of A and B on IF ðUÞ.

By this definition, the following results can be easily

obtained. 0� jjAjj � 1, 8A 2 IF ðUÞ, jj dð1; 0Þjj ¼ 1, jj cð0;
1Þjj ¼ 0, where dð1; 0ÞðxÞ ¼ ð1; 0Þ and dð0; 1ÞðxÞ ¼ ð0; 1Þ,
8x 2 U. 8A;B;C 2 IFðUÞ, (1) if B 
 A, then rðA;BÞ ¼ 1,

(2) if A 
 B 
 C, then rðA;CÞ� rðA;BÞ, (3) if A 
 B, then

rðA;CÞ� rðB;CÞ. Thus rðA;BÞ satisfies the concept of the
inclusion degree, which is introduced in [59]. rðA; ðd1; 0ÞÞ
represents the degree of inclusion of Awith respect to dð1; 0Þ.

Note: The fused quasi-probability function fR is also

applicable to a reflexive IFR R, that is, if the belief function

is BeIR and the plausibility function is PlaTR , we can define

an fR, 8A 2 IF ðUÞ,

fRðAÞ ¼ BeIRðAÞ þ rðA; ðd1; 0ÞÞðPlaTR ðAÞ � BeIRðAÞÞ:

fR is a quasi-probability function with respect to an IFR R.

Definition 2.8 Assume R is a reflexive IFR on U.

8A;B 2 IF ðUÞ, if fRðBÞ 6¼ 0, then

fRðAjBÞ ¼
fRðA \ BÞ
fRðBÞ

:

fRðAjBÞ is a conditional uncertaintymeasure ofA givenB, we

call it a conditional quasi-probability function of A given B.

Example 2.1 Let U ¼ fx1; x2; x3g, A ¼ ð0:7;0:2Þ
x1

þ ð0:3;0:5Þ
x2

þ ð0:9;0Þ
x3

, BeRðAÞ ¼ 1
3
, PlaðBÞ ¼ 2

3
, B ¼ ð0:3;0:7Þ

x1
þ ð0:2;0:6Þ

x2
þ

ð0:9;0Þ
x3

, BeRðBÞ ¼ 1
6
, PlaðAÞ ¼ 1

3
, then

fRðAÞ ¼
1

3
þ 0:49þ 0:64þ 0:09þ 0:25þ 0:81þ 1

6�
2

3
� 1

3

�
¼ 1

3
þ 0:38� 1

3
¼ 0:52:

And fRðBjAÞ ¼ fRðA\BÞ
fRðAÞ ¼

1
6
þ0:09þ0:09þ0:04þ0:16þ0:81þ1

6
�1

6

0:52 ¼ 0:44.

Proposition 2.4 Assume R is a reflexive IFR on U. fR
satisfies the following properties: 8A;B 2 IF ðUÞ,

1. fRð;Þ ¼ 0,

2. fRðUÞ ¼ 1,

3. 0� fRðAÞ� 1,

4. If A 
 B, then fRðAÞ� fRðBÞ,
5. If A0

1 6¼ ; and BeRðAÞ 6¼ PlaRðAÞ, then fRðAÞ 6¼ 0,

6. If fRðBÞ 6¼ 0, then fRðð;ÞjBÞ ¼ 0, fRðUjBÞ ¼ 1,

7. If fRðBÞ 6¼ 0, then 0� fRðAjBÞ� 1,

8. If fRðBÞ 6¼ 0, B 
 A, then fRðAjBÞ ¼ 1.

Proof These proofs are quite straightforward. h

3 The Mass Function of Decision Rules in IF
Decision Information Systems

Let I ¼ ðU;At; dÞ be an IF decision information system

(IFDIS, in short) built by a professor, where At ¼ faj : j ¼
1; . . .; jAtjg represents a set of conditional attributes, R,

induced by At, denotes a reflexive and symmetric IFR

(known as similarity IFR) on U, d represents a decision

attributes with a value range Vd. Hence, we can denote the

antecedent of a possible decision rule (DR, in short) for an

element x as gvðxÞ ¼
VjAtj

j¼1ðaj; ajðxÞÞ ! ðd; vÞ, where

AtðxÞ ¼
VjAtj

j¼1ðaj; ajðxÞÞ represents the conjunction of con-

ditional attribute aj 2 At, and (d, v) represents its

consequent.
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Even though every decision rule is derived from an

object (or a class of objects) in U, the probability assign-

ment for every DR should not be 0. To overcome this

limitation, the IF quasi-probability function of each object,

considered as a weakened probability function, is utilized

to establish a mass function for each decision rule At(x).

And there is no relation between this measure and decision

value v. In addition, each DR with a different decision

value is associated with its confidence level. The confi-

dence level of each possible DR can be defined by utilizing

the IF similarity classes generated by R as follows.

Definition 3.1 Let (U, At, d) be a nonempty and finite

IFDIS, P� the probability on U. For given A;B 2 IFðUÞ,
we define the inclusion degree of A with respect to B,

DðA=BÞ ¼

P
y2U

jjðAðyÞ ^ BðyÞÞjjP�ðyÞ
P
y2U

jjAðyÞjjP�ðyÞ ;
X
y2U

jjAðyÞjjP�ðyÞ 6¼ 0;

0; otherwise.

:

8>>>><
>>>>:

where jjðx1; x2Þjj ¼ x2
1
þð1�x2Þ2

2
(ðx1; x2Þ is an IF number).

Proposition 3.1 Suppose (U, At, d) is a nonempty and

finite IFDIS, and P� is a probability on U. For given

A;B 2 IFðUÞ, then

1. 0�DðA=BÞ� 1;

2. If A 
 B, DðA=BÞ ¼ 1;

3. If A 
 C, DðB=AÞ�DðB=CÞ.

Proof These proofs are quite straightforward. h

Definition 3.2 Let (U, At, d) be a nonempty and finite

IFDIS, P� a probability on U, R a similarity IFR on U

induced by At. For given x 2 U, 8v 2 Vd, we define

cvðRðxÞÞ ¼

Dðdv=RðxÞÞP
v2Vd

Dðdv=RðxÞÞ
;

X
v2Vd

Dðdv=RðxÞÞ 6¼ 0;

0; otherwise.

:

8>><
>>:

Then cvðRðxÞÞ reflects the confidence level of the DR gvðxÞ.

Where dvðyÞ ¼
ð1; 0Þ; dðyÞ ¼ v
ð0; 1Þ; dðyÞ 6¼ v

�
and RðxÞðyÞ ¼ Rðx; yÞ,

8x; y 2 U.

Dðdv=RðxÞÞ is also regarded as a conditional probability

of R(x) for given decision value v.

We can also define the confidence level c:vðRðxÞÞ of the
DR of x for decision value :v as

c:vðRðxÞÞ ¼ 1� cvðRðxÞÞ:

In the following, we construct the belief structure of an

IFDIS by the quasi-probability function and the confidence

level. From the DR view, for given v 2 Vd, 8x 2 U, R(x) is

a focal element.

Definition 3.3 Assume (U, At, d) is a nonempty and finite

IFDIS, R is a similarity IFR on U induced by At. Given

v 2 Vd, m is a mass function for the DRs, M ¼ fRðxÞ : x 2
Ug is the set of focal elements, then A 2 IF ðUÞ,

mðA; vÞ ¼

P
fFj2M: Fj¼Ag

f ðFjÞcvðFjÞ
P

fFj2Mg
f ðFjÞcvðFjÞ

;A 2 M;

0; otherwise:

:

8>>>><
>>>>:

Similarly, for decision value :v, suppose

DRðx;:vÞ ¼ AtðxÞ ! ðd;:vÞ, then

mðA;:vÞ ¼

P
fFj2M: Fj¼Ag

f ðFjÞc:vðFjÞ
P
Fj2M

f ðFjÞc:vðFjÞ
;A 2 M;

0; otherwise:

8>>><
>>>:

By R is a similarity IFR on U, then ; 62 M, then

mð;; vÞ ¼ 0 and mð;;:vÞ ¼ 0. Moreover,
P

A2IFðUÞ
mðA; vÞ ¼

P
A2M

P
fFj2M: Fj¼Ag

f ðFjÞcvðFjÞP
Fj2M

f ðFjÞcvðFjÞ
¼ 1 and

P
A2IFðUÞ

mðA;:vÞ ¼ 1. Thus

we can construct two mass functions for DRs AtðxÞ !
ðd; vÞ and AtðxÞ ! ðd;:vÞ about v 2 Vd.

Example 3.1 Suppose U ¼ fx1; x2; x3g, Rðx1Þ ¼ Rðx2Þ
¼ ð1;0Þ

x1
þ ð1;0Þ

x2
þ ð0:3:0:5Þ

x3
, Rðx3Þ ¼ ð0:3;0:7Þ

x1
þ ð0:3;0:6Þ

x2
þ ð1;0Þ

x3
,

dðx1Þ ¼ 1, dðx2Þ ¼ 2, dðx3Þ ¼ 2, P�ðx1Þ ¼ P�ðx2Þ ¼ P�

ðx3Þ ¼ 1
3
.

Then f ðRðx1ÞÞ ¼ 2
3
, f ðRðx3ÞÞ ¼ 1

3
. For different decision

values, c1ðRðx1ÞÞ ¼ 1
1:585 ¼ 0:63, c2ðRðx1ÞÞ ¼ 0:585

1:585 ¼ 0:37.

c1ðRðx3ÞÞ ¼ 0:09
0:653 ¼ 0:138, c2ðRðx3ÞÞ ¼ 0:563

0:653 ¼ 7
9
¼ 0:862.

Thus, M ¼ fRðx1Þ;Rðx3Þg, mðRðx1Þ; 1Þ ¼
2
3
�0:63

2
3
�0:63þ1

3
�0:138

¼ 0:9 and mðRðx3Þ; 1Þ ¼
1
3
�0:138

2
3
�0:63þ1

3
�0:138

¼ 0:1. mðRðx1Þ;:1Þ

¼
2
3
�0:37

2
3
�0:37þ1

3
�0:862

¼ 0:462 and mðRðx3Þ;:1Þ ¼ 0:538.

4 The Fused Mass Function of Decision Rules

For the same set of objects, different professors may offer

different evaluations, leading to distinct information sys-

tems and decision rules for each object. This means that the

multi-information system contains the same set of objects.

Therefore, it is crucial to address the fusion method of

these information systems before integrating decision rules.

In this section, we introduce a fuzzy information fusion
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approach for IF information systems. Suppose U is a finite

set of objects, Ri is a reflexive IFR induced by the infor-

mation system given by the i-th professor.

Definition 4.1 Assume U ¼ fx1; x2; . . .; xng, R ¼
fR1;R2; . . .;Rng is a set of reflexive IFRs on U. We call

ðU;RÞ a MIFAS.

According to Sect. 2, we can acquire the IF information

granules constructed by R1; . . .;Rn and an IF mass function

mRi
for every IFDIS. Now our goal is to obtain a new fused

mass function using fmR1
; . . .;mRn

g, that can generate a

new IFDIS based on the set of all focal elements in the

fused information system.

LetMi be the set of all focal elements ofmRi
w.r.t. Ri. We

denote an element of Mi as Fij, where the subscript j repre-

sents the j�th element of the i�th set of focal elements, thus

denoted as ji. The set f
Tn

i¼1fFiji 2 Mig : ð
Tn

i¼1fFiji 2
MigÞ01 ¼ ;g represents the conflict evidence set, where

A0
1 ¼ fx 2 U : AðxÞ ¼ ð1; 0Þg. Each focal element of the

fused mass functionm� is affected differently by the conflict
evidences. To quantify the influence of conflict evidences,

we introduce a novel inclusion degree of two IFSs. This

inclusion degree reflects the impact of conflict evidences on

each focal element of the fused mass function m�.
The inclusion degree can be utilized to adjust the fused IF

mass function, allowing us to allocate and manage conflict

evidences effectively. Denote M ¼ f
T

ifFiji 2 Mig :

ð
T

ifFiji 2 MigÞ01 6¼ ;g, which is the fused focal element set.

Definition 4.2 Assume ðU;RiÞ is an IF decision system. If

fFiji 2 Mi : i ¼ 1; . . .; ng (fFiji 2 Mig, in short) satisfies

ð
Tn

i¼1fFiji 2 MigÞ01 ¼ ;, then for each A 2 M, the signifi-

cance degree of A to fFiji 2 Mig is defined as

SðA; fFiji 2 MigÞ ¼ rðA; fFiji 2 MigÞP
Ak2MR

rðAk; fFiji 2 MigÞ
;

where rðA; fFiji 2 MigÞ ¼
Pn
i¼1

rðA;FijiÞ.

Example 4.1 Let U ¼ fa; b; cg, R ¼ fR1;R2g, M1 ¼
fR1ðaÞ ¼ fha; 1; 0i; hb; 0:8; 0:1i; hc; 0:2; 0:6ig;

R1ðbÞ¼fha;1;0i;hb;1;0i;hc;0;1ig;R1ðcÞ¼fha;0:2;0:8i;
hb; 0:4; 0:4i; hc; 1; 0igg, M2 ¼ fR2ðaÞ ¼ fha; 1; 0i; hb; 0; 1i;
hc; 0:2; 0:6ig; R2ðbÞ ¼ fha; 0:7; 0:1i; hb; 1; 0i; hc; 0:7; 0:2ig;
R2ðcÞ ¼ fha; 0; 0:8i;hb; 0:7; 0:1i; hc; 1; 0igg.

M¼fA1¼fha;1;0i;hb;0;1i;hc;0:2;0:6ig;A2¼fha;0:7;0:1i;
hb;1;0i;hc;0;1ig;A3¼fha;0;0:8i;hb;0:4;0:4i;hc;1;0ig;

A4 ¼ fha; 1; 0i; hb; 0; 1i; hc; 0; 1igg.
ðR1ðaÞ \ R2ðbÞÞ01 ¼ ;ðR1ðaÞ \ R2ðbÞÞ01 ¼ ;,
ðR1ðaÞ \ R2ðcÞÞ01 ¼ ;, ðR1ðbÞ \ R2 ðcÞÞ01 ¼ ;, ðR1ðcÞ \
R2ðaÞÞ01 ¼ ; and ðR1ðcÞ \ R2ðbÞÞ01 ¼ ;.

For decision value 1, if m1
DðR1ðaÞ; 1Þ ¼ 1

6
,

m1
DðR1ðbÞ; 1Þ ¼ 1

3
, m1

DðR1ðcÞ; 1Þ ¼ 1
2
. m2

DðR2ðaÞ; 1Þ ¼ 1
5
,

m2
DðR2ðbÞ; 1Þ ¼ 1

5
, m2

DðR2ðcÞ; 1Þ ¼ 3
5
. We have rðA1; fR1

ðaÞ;R2ðbÞgÞ ¼ rðA1;R1ðaÞÞ þ rðA1;R2ðbÞÞ ¼ 0:94. Thus,
rðA1; fR1ðaÞ;R2ðbÞgÞ ¼ 0:94; rðA2; fR1ðaÞ;R2ðbÞgÞ ¼ 1:5;
rðA3; fR1ðaÞ;R2ðbÞgÞ ¼ 0:59; rðA4; fR1ðaÞ;R2ðbÞgÞ ¼ 0:84:
rðA1; fR1ðaÞ;R2ðcÞgÞ ¼ 0:67; rðA2; fR1ðaÞ;R2ðcÞgÞ ¼ 1:15;
rðA3; fR1ðaÞ;R2ðcÞgÞ ¼ 0:97; rðA4; fR1ðaÞ;R2ðcÞgÞ ¼ 0:56:
rðA1; fR1ðbÞ;R2ðcÞgÞ ¼ 0:57; rðA2; fR1ðbÞ;R2ðcÞgÞ ¼ 1:23;
rðA3; fR1ðbÞ;R2ðcÞgÞ ¼ 0:91; rðA4; fR1ðbÞ;R2ðcÞgÞ ¼ 0:51:
rðA1; fR1ðcÞ;R2ðaÞgÞ ¼ 1:11; rðA2; fR1ðcÞ;R2ðaÞgÞ ¼ 0:82;
rðA3; fR1ðcÞ;R2ðaÞgÞ ¼ 1:09; rðA4; fR1ðcÞ;R2ðaÞgÞ ¼ 0:94:
rðA1; fR1ðcÞ;R2ðbÞgÞ ¼ 0:45; rðA2; fR1ðcÞ;R2ðbÞgÞ ¼ 0:98;
rðA3; fR1ðcÞ;R2ðbÞgÞ ¼ 1:38; rðA4; fR1ðcÞ;R2ðbÞgÞ ¼ 0:32:
SðA1; fR1ðaÞ;R2ðbÞgÞ ¼ 0:24; SðA2; fR1ðaÞ;R2ðbÞgÞ ¼ 0:39;
SðA3; fR1ðaÞ;R2ðbÞgÞ ¼ 0:15; SðA4; fR1ðaÞ;R2ðbÞgÞ ¼ 0:22:
SðA1; fR1ðaÞ;R2ðcÞgÞ ¼ 0:2; SðA2; fR1ðaÞ;R2ðcÞgÞ ¼ 0:34;
SðA3; fR1ðaÞ;R2ðcÞgÞ ¼ 0:29; SðA4; fR1ðaÞ;R2ðcÞgÞ ¼ 0:17:
SðA1; fR1ðbÞ;R2ðcÞgÞ ¼ 0:18; SðA2; fR1ðbÞ;R2ðcÞgÞ ¼ 0:38;
SðA3; fR1ðbÞ;R2ðcÞgÞ ¼ 0:28; SðA4; fR1ðbÞ;R2ðcÞgÞ ¼ 0:16:
SðA1; fR1ðcÞ;R2ðaÞgÞ ¼ 0:28; SðA2; fR1ðcÞ;R2ðaÞgÞ ¼ 0:21;
SðA3; fR1ðcÞ;R2ðaÞgÞ ¼ 0:27; SðA4; fR1ðcÞ;R2ðaÞgÞ ¼ 0:24:
SðA1; fR1ðcÞ;R2ðbÞgÞ ¼ 0:145; SðA2; fR1ðcÞ;R2ðbÞgÞ ¼ 0:315;
SðA3; fR1ðcÞ;R2ðbÞgÞ ¼ 0:44; SðA4; fR1ðcÞ;R2ðbÞgÞ ¼ 0:10:

When encountering multiple DRs regarding an object, it

is essential to synthetically consider an ultimate DR.

Therefore, we aim to fuse all DRs regarding the same

object using the Dempster-Shafer (D-S) evidence theory.

Initially, let Ati ¼ faij : j ¼ 1; . . .; jAtijg denote a set of

conditional attributes, Ri be the relation induced by Ati, d

indicate the decision attribute, Vd describe the value range

of the decision attribute d. The assumption is that the value

ranges for the decision attribute are the same for every

system being considered. 8v 2 Vd, all possible fused DRs

w.r.t. v can be expressed as Gv ¼ fgvð
V
xikÞ ¼

V
i
ð
V

aij2Ati
ðaij;

aijðxikÞÞÞ ! ðd; vÞ : ð
T

i¼1 RiðxikÞÞ
0
1 6¼ ;; xik 2 Ug, which

can be regarded as a targeted combination of all DRs in

every similar IFDS. Similarly, we can obtain all possible

fused DRs w.r.t. :v expressed as :Gv ¼ fg:vð
V
xikÞ ¼

V
i
ð
V

aij2Ati

ðaij; aijðxikÞÞÞ ! ðd;:vÞ : ð
T

i¼1 RiðxikÞÞ01 6¼ ;; xik 2 Ug.
Especially, the antecedent of the fused DR gvð

V
xikÞ and

g:vð
V
xikÞ is denoted by gð

V
xikÞ. If x1k ¼ . . . ¼ xnk ¼ x,

x 2 U, then gvð
V
xikÞ can be abbreviated as gvðxÞ, and

g:vð
V
xikÞ as g:vðxÞ.

In the following, we improve the method to compute the

fused mass function of the DR.

Every DR can be induced by an object in an IFDIS, thus

Mi ¼ fRiðxÞ : x 2 Ug, and M ¼ f
Tn
i¼1

RiðxikÞ : ð
Tn
i¼1

RiðxikÞÞ
0
1

6¼ ;; xik 2 Ug. 8A 2 IFðUÞ, if A 2 M, which is related to

the fused DR gvð
V
xikÞ for every decision value v 2 Vd,

thus m�ð
Tn
i¼1

RiðxikÞ; vÞ ¼ m�ðA; vÞ, then define
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m�ðA; vÞ

¼

Y
Tn

i¼1
Riðxik Þ¼A

miðRiðxikÞ; vÞ

þ
X

ð
Tn

i¼1
Riðxik ÞÞ

0
1¼;

SðA; fRiðxikgÞ
Yn
i¼1

miðRiðxikÞ; vÞ; A ¼
\n
i¼1

RiðxikÞ 2 M;

0; else.

:

8>>>>>>>>><
>>>>>>>>>:

For :v, 8A 2 IFðUÞ, we have

m�ðA;:vÞ

¼

Y
Tn

i¼1
Riðxik Þ¼A

miðRiðxikÞ;:vÞ

þ
X

ð
Tn

i¼1
Riðxik ÞÞ

0
1¼;

SðA;fRiðxikgÞ
Yn
i¼1

miðRiðxikÞ;:vÞ;A¼
Tn
i¼1

RiðxikÞ2M;

0; else.

8>>>>>>>>><
>>>>>>>>>:

For given v 2 Vd, m
� is a fused mass function of DRs,

which can be proven easily.

Example 4.2 (Following Example 4.1) For A1 2 MR, we

compute

m�ðA1; 1Þ ¼m1ðR1ðaÞ; 1Þ � m2ðR2ðaÞ; 1Þ

þ
X

ð
Tn

i¼1
Riðxik ÞÞ

0
1¼;

SðA; fRiðxikgÞ
Yn
i¼1

miðRiðxikÞ; 1Þ

¼ 1

6
� 1

5
þ SðA1; fR1ðaÞ;R2ðbÞgÞm1ðR1ðaÞ; 1Þ � m2ðR2ðbÞ; 1Þ

þ SðA1; fR1ðaÞ;R2ðcÞgÞm1ðR1ðaÞ; 1Þ � m2ðR2ðcÞ; 1Þ

þ SðA1; fR1ðbÞ;R2ðcÞgÞm1ðR1ðbÞ; 1Þ � m2ðR2ðcÞ; 1Þ

þ SðA1; fR1ðcÞ;R2ðaÞgÞm1ðR1ðcÞ; 1Þ � m2ðR2ðaÞ; 1Þ

þ SðA1; fR1ðcÞ;R2ðbÞgÞm1ðR1ðcÞ; 1Þ � m2ðR2ðbÞ; 1Þ

¼ 1

30
þ 0:24� 1

30
þ 0:2� 1

10
þ 0:18� 1

5
þ 0:28� 1

10

þ 0:145� 1

10
¼ 0:14:

In the same way, we have m�ðA2; 1Þ ¼ 0:24, m�ðA3; 1Þ
¼ 0:46, m�ðA4; 1Þ ¼ 0:16.

Thus, we can give the basic probability function for

every possible DR.

5 The Decision-Making of MIFDISs

In this section, we employ three-way decisions to discuss

decision value selection problems. For v 2 Vd, the state set

of decision value v is Xv ¼ fv;:vg. The set of actions is

given by fP;B;Ng, where, P represents an action of

accepting the decision value v for object x, resulting in the

decision x 2 POSðvÞ, B represents an action of further

investigating the decision value of x, classifying

x 2 BNDðvÞ, and N represents an action of rejecting the

decision value v for the object x, leading to the decision

x 2 NEGðvÞ.
kPP, kBP and kNP denote IF loss degrees with IF numbers

incurred by taking actions of P, B and N respectively,

when the decision value is v. Similarly, kPN , kBN and kNN
denote IF loss degrees with IF numbers incurred by taking

actions of P, B and N respectively, when the decision

value is :v, where k�� ¼ ðlk�� ; ck�� Þ (� ¼ P;B;N). IfT
RiðxikÞ 2 M, then we can use every

V
xik and all v 2 Vd

to construct all possible fused DRs. We can not directly

obtain the conditional probability of possible fused DRs.

So in three-way decisions, we replace the conditional

probability by the fused mass function m�ð
Tn

i¼1 RiðxikÞ; vÞ
or m�ð

Tn
i¼1 RiðxikÞ;:vÞ of DRs.

For possible fused DR gvð
V
xikÞs, Rðsjgvð

V
xikÞÞðs ¼

P;B;NÞ is a DR expected loss function.

The expected loss Rð�jgvð
V
xikÞÞð� ¼ P;B;NÞ associated

with taking individual action is expressed as

RðPjgvð
V
xikÞÞ ¼ m�ð

Tn
i¼1

RiðxikÞ; vÞkPP _�m�ð
Tn
i¼1

RiðxikÞ;:vÞkPN ,

RðBjgvð
V
xikÞÞ ¼ m�ð

Tn
i¼1

RiðxikÞ; vÞkBP _�m�ð
Tn
i¼1

RiðxikÞ;:vÞkBN ,

RðNjgvð
V
xikÞÞ ¼ m�ð

Tn
i¼1

RiðxikÞ; vÞkNP _�m�ð
Tn
i¼1

Riðxik Þ;:vÞkNN ,

where r � ðx; yÞ ¼ ðx; yÞ � r ¼ ð1� ð1� xÞr; yrÞ, r 2 R

and r� 0, and ðx1; y1Þ _�ðx2; y2Þ ¼ ðx1 þ x2 � x1x2; y1y2Þ,
ðx1; y1Þ; ðx2; y2Þ 2 L� [18].

5.1 Three-Way Decisions of MIFDISs Based

on the Intuitionistic Fuzzy Relarion

We aim to minimize the value of the total loss function. As

the IF relation � L� only meets the conditions of a partial

order, we can only provide a satisfactory, albeit possibly

suboptimal, decision value using the following approach.

By considering a reasonable kind of loss functions with

condition (C0):

1[ lkNP [ lkBP [ lkPP [ 0; 1[ ckPP [ ckBP [ ckNP [ 0;

1[ lkPN [ lkBN [ lkNN � 0; 1� ckNN [ ckBN [ ckPN [ 0;

we have

RðPjgvð
^

xikÞÞ ¼ð1� ð1� lkPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞ

ð1� lkPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ
;

ðckPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞðckPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ
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RðBjgvð
^

xikÞÞ ¼ ð1� ð1� lkBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ
;

ðckBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞðckBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ

RðNjgvð
^

xikÞÞ ¼ ð1� ð1� lkNPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞ

ð1� lkNN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ
;

ðckNPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞðckNN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ

Thus, the expected losses RðPjgvð
V
xikÞÞ ¼ ðlP; cPÞ,

RðBjgvð
V
xikÞÞ ¼ ðlB; cBÞ and RðNjgvð

V
xikÞÞ ¼ ðlN ; cNÞ

are IF numbers.

If
T
RiðxikÞ 2 M, under condition (C0), we define the

following decision value rules, which can give a satisfac-

tory decision value.

(P1) If lP � lB, cP � cB and lP � lN , cP � cN , decide
gð
V
xikÞ 2 POSðvÞ;

(N1) If lN � lP, cN � cP and lN � lB, cN � cB, decide
gð
V
xikÞ 2 NEGðvÞ;

(B1) If gð
V
xikÞ 62 POSðvÞ and gð

V
xikÞ 62 NEGðvÞ, then

we decide gð
V
xikÞ 2 BNDðvÞ.

Suppose 1
1 ¼ 0, under condition (C0), we simplify the

decision value rules (P1)-(N1). For (P1), the first condition,

lP � lB , 1� ð1� lkPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

� 1� ð1� lkBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

,ð1� lkPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

� ð1� lkBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

,m�ð
\n
i¼1

RiðxikÞ; vÞ logð1� lkPPÞ þ m�ð
\n
i¼1

RiðxikÞ;:vÞ logð1� lkPN Þ�

m�ð
\n
i¼1

RiðxikÞ; vÞ logð1� lkBPÞ þ m�ð
\n
i¼1

RiðxikÞ;:vÞ logð1� lkBN Þ

,m�ð
\n
i¼1

RiðxikÞ; vÞ logð1� lkPPÞ � m�ð
\n
i¼1

RiðxikÞ; vÞ logðð1� lkBPÞ�

m�ð
\n
i¼1

RiðxikÞ;:vÞ logð1� lkBN Þ � m�ð
\n
i¼1

RiðxikÞ;:vÞ logð1� lkPN Þ

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

logð1� lkBN Þ � logð1� lkPN Þ
logð1� lkPPÞ � logð1� lkBPÞ

; m�ð
Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0;

m�ð
Tn
i¼1

RiðxikÞ; vÞðlogð1� lkPPÞ � logð1� lkBPÞÞ� 0; m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>><
>>>>>>>:

,

m�ð
Tn
i¼1

Riðxik Þ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

logð1� lkBN Þ � logð1� lkPN Þ
logð1� lkPPÞ � logð1� lkBPÞ

; m�ð
Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0;

ð
1� lkPP
1� lkBP

Þ
m�ð

Tn
i¼1

Riðxik Þ;vÞ � 1; m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

where log r is an abbreviation of log10 r, r 2 R.

cP � cB ,c
m�ð

Tn
i¼1

Riðxik Þ;vÞ

kPP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kPN
� c

m�ð
Tn
i¼1

Riðxik Þ;vÞ

kBP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kBN

,m�ð
\n
i¼1

Riðxik Þ; vÞ log ckPP þ m�ð
\n
i¼1

RiðxikÞ;:vÞ log ckPN

�m�ð
\n
i¼1

Riðxik Þ; vÞ logðckBPÞ þ m�ð
\n
i¼1

RiðxikÞ;:vÞ logðckBN Þ

,m�ð
\n
i¼1

Riðxik Þ; vÞ log ckPP � m�ð
\n
i¼1

RiðxikÞ; vÞ log ckBP

�m�ð
\n
i¼1

Riðxik Þ;:vÞ log ckBN � m�ð
\n
i¼1

RiðxikÞ;:vÞ log ckPN Þ

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

log ckBN � log ckPN
log ckPP � log ckBP

;m�ð
\n
i¼1

RiðxikÞ;:vÞ 6¼ 0;

m�ð
Tn
i¼1

RiðxikÞ; vÞðlog ckPP � log ckBPÞ� 0;

m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

log ckBN � log ckPN
log ckPP � log ckBP

;m�ð
\n
i¼1

RiðxikÞ;:vÞ 6¼ 0;

ð
ckPP
ckBP

Þ
m�ð

Tn
i¼1

Riðxik Þ;vÞ � 1; m�ð
\n
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

Because when m�ð
Tn

i¼1 RiðxikÞ;:vÞ ¼ 0, m�ð
Tn

i¼1 RiðxikÞ;
vÞðlogð1� lkPPÞ � logð1� lkBPÞÞ� 0 and m�ð

Tn
i¼1 RiðxikÞ;

vÞðlog ckPP � log ckBPÞ� 0 always hold, in this case lP � lB
and cP � cB. Similarly, we also have lP � lN and cP � cN .
So, when m�ð

Tn
i¼1 RiðxikÞ;:vÞ ¼ 0, gð

V
xikÞ 2 POSðvÞ.

When m�ð
Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0,

lP � lN ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

logð1� lkNN Þ � logð1� lkPN Þ
logð1� lkPPÞ � logð1� lkNPÞ

;

cP � cN ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

log ckNN � log ckPN
log ckPP � log ckNP

:

For (N1), we conclude: m�ð
T
RiðxikÞ;:vÞ 6¼ 0,

lN � lP ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

logð1� lkPN Þ � logð1� lkNN Þ
logð1� lkNPÞ � logð1� lkPPÞ

;

cN � cP ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

log ckPN � log ckNN
log ckNP � log ckPP

:
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And lN � lB ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

logð1� lkBN Þ � logð1� lkNN Þ
logð1� lkNPÞ � logð1� lkBPÞ

;

cN � cB ,
m�ð

Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
�

log ckBN � log ckNN
log ckNP � log ckBP

:

Thus,
T
RiðxikÞ 2 M, under condition (C0), the decision

value rules ðP1Þ � ðN1Þ can be re-expressed as:

If m�ð
Tn

i¼1 RiðxikÞ;:vÞ ¼ 0, then gð
V
xikÞ 2 POSðvÞ,

else

(P2) If
m�ð

Tn

i¼1
Riðxik Þ;vÞ

m�ð
Tn

i¼1
Riðxik Þ;:vÞ

� maxflogð1�lkBN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkBP Þ

;
log ckBN�log ckPN
log ckPP�log ckBP

g

and m�ð
Tn

i¼1
Riðxik Þ;vÞ

m�ð
Tn

i¼1
Riðxik Þ;:vÞ

� maxflogð1�lkNN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkNP Þ

;
log ckNN�log ckPN
log ckPP�log ckNP

g,

then gð
V
xikÞ 2 POSðvÞ;

(N2) If
m�ð

Tn

i¼1
Riðxik Þ;vÞ

m�ð
Tn

i¼1
Riðxik Þ;:vÞ

� minflogð1�lkNN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkNP Þ

;
log ckNN�log ckPN
log ckPP�log ckNP

g

and m�ð
Tn

i¼1
Riðxik Þ;vÞ

m�ð
Tn

i¼1
Riðxik Þ;:vÞ

� minflogð1�lkNN Þ�logð1�lkBN Þ
logð1�lkBP Þ�logð1�lkNP Þ

;
log ckNN�log ckBN
log ckBP�log ckNP

g,

then gð
V
xikÞ 2 NEGðvÞ.

(B2) If gð
V
xikÞ 62 POSðvÞ and gð

V
xikÞ 62 NEGðvÞ, then

we decide gð
V
xikÞ 2 BNDðvÞ.

Let

a1 ¼ maxfaPB ¼ logð1�lkBN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkBP Þ

; bPB ¼ log ckBN�log ckPN
log ckPP�log ckBP

g,

b1 ¼ maxfaPN ¼ logð1�lkNN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkNP Þ

; bPN ¼ log ckNN�log ckPN
log ckPP�log ckNP

g,

a2 ¼ minfaPN ¼ logð1�lkNN Þ�logð1�lkPN Þ
logð1�lkPP Þ�logð1�lkNP Þ

; bPN ¼ log ckNN�log ckPN
log ckPP�log ckNP

g,

b2 ¼ minfaNB ¼ logð1�lkNN Þ�logð1�lkBN Þ
logð1�lkBP Þ�logð1�lkNP Þ

; bNB ¼ log ckNN�log ckBN
log ckBP�log ckNP

g.
If maxfa1; b1g[ minfa2; b2g, the decision value rules

(P2)-(N2) can concisely be re-expressed as follows:

(P2) If m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0 or
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ

[ maxfa1; b1g, then gð
V
xikÞ 2 POSðvÞ;

(B2) If
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
� maxfa1; b1g, and

m�ð
Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ

� minfa2; b2g, then gð
V
xikÞ 2 BNDðvÞ;

(N2) If
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
\minfa2; b2g, then gð

V
xikÞ 2

NEGðvÞ.
Therefore, if

T
RiðxikÞ 2 M, maxfa1; b1g ¼ min

fa2; b2g, the decision value rules (P2)-(N2) can be con-

cisely re-expressed as:

(P2) If m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0 or
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ

[ maxfa1; b1g, then gð
V
xikÞ 2 POSðvÞ;

(B2) If
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
¼ maxfa1; b1g, then gð

V
xikÞ 2

BNDðvÞ;

(N2) If
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
\minfa2; b2g, then gð

V
xikÞ 2

NEGðvÞ.
In this case, for v 2 Vd , we can give one satisfactory

decision value by using the above decision value rules. In

the following, we want to improve decision value rules by

improving the order method.

5.2 Three-Way Decisions Based on the Compromise

Rule

The estimation of the loss function involves both mem-

bership degree and non-membership degree. As � L� is a

partial order relation, it is possible that some loss function

values cannot be compared directly. However, we can use a

compromise rule to transform a partial order set into a total

order set and facilitate three-way decisions. To achieve

this, we define a compromise function E as follows:

ðx; yÞ 2 L�,
Eðx; yÞ ¼ qxþ ð1� qÞð1� yÞ, q 2 ½0; 1�.

EðRðPjgvð
V
xikÞÞ ¼ qð1� ð1� lkPPÞ

m�ð
Tn
i¼1

Riðxik Þ;vÞ ð1�

lkPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ þ ð1� qÞ

ð1� ðckPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞðckPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ,

EðRðBjgvð
V
xikÞÞ ¼ qð1� ð1� lkBPÞ

m�ð
Tn
i¼1

Riðxik Þ;vÞð1�

lkBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ þ ð1� qÞð1� ðckBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞ

ðckBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ,

EðRðNjgvð
V
xikÞÞ ¼ qð1� ð1� lkNPÞ

m�ð
Tn
i¼1

Riðxik Þ;vÞð1�

lkNN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ þ ð1� qÞð1� ðckNPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞ

ðckNN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞÞ.
Notice: EðRðPjgvð

V
xikÞÞ, EðRðBjgvð

V
xikÞÞ and

EðRðNjgvð
V
xikÞÞ are real numbers. So, in this case, we can

utilize the total order � for operations.

If
T
RiðxikÞ 2 M, under condition (C0), we define the

following decision value rules:

ðP0Þ If EðRðPjgvð
V
xikÞÞ�EðRðBjgvð

V
xikÞÞ and

EðRðPjgvð
V
xikÞÞ�EðRðNjgvð

V
xikÞÞ, decide gð

V
xikÞ 2

POSðvÞ;
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ðB0Þ If EðRðBjgvð
V
xikÞÞ\EðRðPjgvð

V
xikÞÞ and EðRðBj

gvð
V
xikÞÞ\EðRðNjgvð

V
xikÞÞ, decide gð

V
xikÞ 2 BNDðvÞ;

ðN 0Þ If EðRðNjgvð
V
xikÞÞ�EðRðPjgvð

V
xikÞÞ and EðR

ðNjgvð
V
xikÞÞ�EðRðBjgvð

V
xikÞÞ, decide gð

V
xikÞ 2 NEG

ðvÞ.

Special case 1: When q ¼ 1, we only need to consider

the membership degree. Suppose 1
1 ¼ 0, under condition

(C0), the decision value rules ðP0Þ � ðN 0Þ can be simplified.

For the rule ðP0Þ, the first condition is described as:

EðRðPjgvð
^

xikÞÞ�EðRðBjgvð
^

xikÞÞ

, 1� ð1� lkPPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkPN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

� 1� ð1� lkBPÞ
m�ð

Tn
i¼1

Riðxik Þ;vÞð1� lkBN Þ
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

, lP � lB

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
� aPB; m�ð

Tn
i¼1 RiðxikÞ;:vÞ 6¼ 0;

ð
1� lkPP
1� lkBP

Þm
�ð
Tn

i¼1
Riðxik Þ;vÞ � 1; m�ð

Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>><
>>>>>>>:

EðRðPjgvð
^

xikÞÞ�EðRðNjgvð
^

xikÞÞ

, lP � lN

,

m�ð
Tn

i¼1 RiðxikÞ; vÞ
m�ð

Tn
i¼1 RiðxikÞ;:vÞ

� aPN ; m�ð
Tn

i¼1 RiðxikÞ;:vÞ 6¼ 0;

ð
1� lkPP
1� lkNP

Þm
�ð
Tn

i¼1
Riðxik Þ;vÞ � 1; m�ð

Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>><
>>>:

Since ð1�lkPP
1�lkBP

Þm
�ð
Tn

i¼1
Riðxik Þ;vÞ � 1 and ð1�lkPP

1�lkNP
Þm

�
ð
Tn

i¼1

RiðxikÞ; vÞ� 1 always hold, thus when

m�ð
Tn

i¼1 RiðxikÞ;:vÞ ¼ 0, then gð
V
xikÞ 2 PosðvÞ.

When m�ð
Tn

i¼1 RiðxikÞ;:vÞ 6¼ 0, for N 0,

EðRðNjgvð
V
xikÞÞ�EðRðPjgvð

V
xik ÞÞ ,

m�ð
Tn

i¼1 RiðxikÞ; vÞ
m�ð

Tn
i¼1 Riðxik Þ;:vÞ

� aPN ;

EðRðNjgvð
V
xikÞÞ�EðRðBjgvð

V
xik ÞÞ ,

m�ð
Tn

i¼1 RiðxikÞ; vÞ
m�ð

Tn
i¼1 Riðxik Þ;:vÞ

� aBN ;

For B0,

EðRðBjgvð
V
xikÞÞ\EðRðPjgvð

V
xikÞÞ ,

m�ð
Tn

i¼1 RiðxikÞ; vÞ
m�ð

Tn
i¼1 RiðxikÞ;:vÞ

\aPB;

EðRðBjgvð
V
xikÞÞ\EðRðNjgvð

V
xik ÞÞ ,

m�ð
Tn

i¼1 RiðxikÞ; vÞ
m�ð

Tn
i¼1 Riðxik Þ;:vÞ

[ aBN ;

Therefore, if aPB [ aNB, the decision value rules can be

concisely re-expressed as:

ðP10Þ If m�ð
Tn

i¼1 RðxikÞ;:vÞ ¼ 0 or
m�ð

Tn

i¼1
Rðxik Þ;vÞ

m�ð
Tn
i¼1

Rðxik Þ;:vÞ
[

maxfaPB; aPNg, then gð
V
xikÞ 2 POSðvÞ;

ðB10Þ If minfaBN ; aPNg�
m�ð

Tn

i¼1
Rðxik Þ;vÞ

m�ð
Tn

i¼1
Rðxik Þ;:vÞ

�maxfaPB;

aPNg, then gð
V
xikÞ 2 BNDðvÞ;

ðN10Þ If
m�ð

Tn

i¼1
Rðxik Þ;vÞ

m�ð
Tn

i¼1
Riðxik Þ;:vÞ

\minfaBN ; aPNg, then gð
V
xikÞ

2 NEGðvÞ.

Special case 2:When q ¼ 0,we just need to take the non-

membership degree into account. Under condition (C0), for

the rule ðP0Þ, we describe the first condition as follows:

EðRðPjgvð
^

xikÞÞ�EðRðBjgvð
^

xikÞÞ

, 1� c
m�ð

Tn
i¼1

Riðxik Þ;vÞ

kPP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kPN
� 1� c

m�ð
Tn
i¼1

Riðxik Þ;vÞ

kBP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kBN

, c
m�ð

Tn
i¼1

Riðxik Þ;vÞ

kPP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kPN
� c

m�ð
Tn
i¼1

Riðxik Þ;vÞ

kBP
c
m�ð

Tn
i¼1

Riðxik Þ;:vÞ

kBN

, cP � cB

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
� bBP; m�ð

Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0;

ð
ckPP
ckBP

Þ
m�ð

Tn
i¼1

Riðxik Þ;vÞ � 1; m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>>><
>>>>>>>>:

EðRðPjgvð
V
xik ÞÞ�EðRðNjgvð

V
xik ÞÞ

, cP � cN

,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
� bPN ; m�ð

Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0;

ð
1� lkPP
1� lkNP

Þ
m�ð

Tn
i¼1

Riðxik Þ;vÞ � 1; m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0:

8>>>>>>>><
>>>>>>>>:

Since ð1�lkPP
1�lkBP

Þm
�ð
Tn

i¼1
Riðxik Þ;vÞ � 1 and ð1�lkPP

1�lkNP
Þ

m�ð
Tn

i¼1
Riðxik Þ;vÞ � 1 always hold, thus when

m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0, then gð
V
xikÞ 2 PosðvÞ.

When m�ð
Tn
i¼1

RiðxikÞ;:vÞ 6¼ 0, for ðN 0Þ,

EðRðNjgvð
V
xikÞÞ�EðRðPjgvð

V
xikÞÞ ,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
� bPN ;

EðRðNjgvð
V
xikÞÞ�EðRðBjgvð

V
xikÞÞ ,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
� bNB:

For ðB0Þ,

EðRðBjgvð
V
xikÞÞ\EðRðPjgvð

V
xikÞÞ ,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
\bPB;

EðRðBjgvð
V
xikÞÞ\EðRðNjgvð

V
xikÞÞ ,

m�ð
Tn
i¼1

RiðxikÞ; vÞ

m�ð
Tn
i¼1

RiðxikÞ;:vÞ
[ bBN :
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Therefore, if bPB [ bNB, the decision value rules can be

concisely re-expressed as:

ðP20Þ If m�ð
Tn
i¼1

RiðxikÞ;:vÞ ¼ 0 or
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ

[maxfbPB; bPNg, then gð
V
xikÞ 2 POSðvÞ;

ðB20Þ If minfbBN ; bPNg�
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
�maxfbPB;

bPNg, then gð
V
xikÞ 2 BNDðvÞ;

ðN20Þ If
m�ð

Tn
i¼1

Riðxik Þ;vÞ

m�ð
Tn
i¼1

Riðxik Þ;:vÞ
\minfbBN ; bPNg, then gð

V
xikÞ 2 NEGðvÞ.

By the above analyses, we find that these two special

cases of three-way decisions are the degradation forms of

three-way decisions of MIFDISs based on the IF relation.

5.3 Acquisition Algorithm of the Fused Decision

Value Set for DRs

The fused decision value set can be calculated by utilizing

the satisfactory decision value of three-way decision

methods of MIFDISs proposed in subsection 5.1, as

demonstrated in the following algorithm (the algorithm of

the fused decision value set with respected to subsec-

tion 5.2 can be similarly given).

Algorithm 1 The fused decision value set

These methods are applicable to handle complete IF

decision information systems, where the same set of

objects is considered, even if the attribute sets may differ.

These attribute sets can generate different reflexive binary

relations. And the probability of each object is not 0.

Because an IFDIS may be inconsistent, and even the fusion

system of multiple inconsistent IFDISs can still be incon-

sistent, leading to generate reasonable inconsistent DRs.

And the satisfactory fused decision value set relies on the

IF numbers k�� (� ¼ P;B;N). In some cases, it is possible

that certain objects do not belong to any POS(v), 8v 2 Vd,

which means that we cannot obtain the satisfactory fused

decision value sets for these objects. In these situations, we

can adjust IF numbers k�� so that each object is at least

belong in the acceptance region of some decision value.

And, in Algorithm 1, if x1k ¼ . . . ¼ xnk ¼ x, then Dð
V
xikÞ

denotes as D(x), 8x 2 U.

Of course, for different forms of three-way decisions of

MIFDISs, there are different algorithms. In these algo-

rithms, only Step 3, Step 5 and Step 6 are different. For the

case of the compromise rule, in Step 3, we need to compute

thresholds aPB; aPN ; aNB; bPB; bPN ; bNB. Step 5 and Step 6

are the operations for decision value rules, so we only need

to adjust specific operations to the cases of ðP0Þ, ðB0Þ and
ðN 0Þ.
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5.4 Example Analyses

Use the following examples to demonstrate this algorithm.

Firstly, demonstrate the calculation of various metrics in

Step 1 using Examples 5.1 and 5.2.

Example 5.1 Suppose U ¼ fx1; x2; . . .; x6g is an universe

of discourse, At1 ¼ fa1; a2; a3g is an attribute set, d1 is a

multi-valued decision attribute, the decision table is as

follows (Table 1).

Let PðxiÞ ¼ 1
6
, 8x 2 U. And

lRðxi; xjÞ ¼ 1
3

P3
k¼1ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlak ðxiÞ�lak ðxjÞÞ

2þðcak ðxiÞ�cak ðxjÞÞ
2

2

q
Þ;

cRðxi; xjÞ ¼ 1
3

P3
k¼1ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�jlak ðxiÞ�lak ðxjÞjÞ

2þð1�jcak ðxiÞ�cak ðxjÞjÞ
2

2

q
Þ.

For this decision information system, we can compute

an IFR R1 as follows (Table 2).

Thus we can compute the confidence level of every DR

as follows: for object x1, we have

c1
0

1 ðR1ðx1Þ ¼
1þ 0:652þð1�0:35Þ2

2

2
¼ 0:71 , c

10

2 ðR1ðx1Þ ¼

0:762þð1�0:23Þ2
2

þ0:552þð1�0:42Þ2
2

2
¼ 0:45,

c1
0
3 ðR1ðx1Þ ¼

0:532þð1�0:47Þ2
2

þ0:42þð1�0:57Þ2
2

2
¼ 0:229, then

c11ðR1ðx1Þ ¼ 0:71
0:71þ0:45þ0:229 ¼ 0:51,

c12ðR1ðx1Þ ¼ 0:32, c13ðR1ðx1Þ ¼ 0:17.

Thus for :1, we have

c:11 ðR1ðx1ÞÞ ¼ 0:49; c:21 ðR1ðx1ÞÞ ¼ 0:68; c:31 ðR1ðx1ÞÞ ¼ 0:83:

Similarly, for object x2, we have

c11ðR1ðx2ÞÞ ¼ 0:33; c12ðR1ðx2ÞÞ ¼ 0:51; c13ðR1ðx2ÞÞ ¼ 0:16;
c1:1ðR1ðx2ÞÞ ¼ 0:67; c1:2ðR1ðx2Þ ¼ 0:49; c1:3ðR1ðx2Þ ¼ 0:84:

For object x3, we have

c11ðR1ðx3ÞÞ ¼ 0:27; c12ðR1ðx3ÞÞ ¼ 0:21; c13ðR1ðx3ÞÞ ¼ 0:52;
c1:1ðR1ðx3ÞÞ ¼ 0:73; c1:2ðR1ðx3ÞÞ ¼ 0:79; c1:3ðR1ðx3ÞÞ ¼ 0:48:

For object x4, we have

c11ðR1ðx4ÞÞ ¼ 0:23; c12ðR1ðx4ÞÞ ¼ 0:53; c13ðR1ðx4ÞÞ ¼ 0:24;
c1:1ðR1ðx4ÞÞ ¼ 0:77; c1:2ðR1ðx4ÞÞ ¼ 0:47; c1:3ðR1ðx4ÞÞ ¼ 0:76:

For object x5, we have

c11ðR1ðx5ÞÞ ¼ 0:22; c12ðR1ðx5ÞÞ ¼ 0:14; c13ðR1ðx5ÞÞ ¼ 0:64;
c1:1ðR1ðx5ÞÞ ¼ 0:78; c1:2ðR1ðx5ÞÞ ¼ 0:86; c1:3ðR1ðx5ÞÞ ¼ 0:36:

For object x6, we have

c11ðR1ðx6ÞÞ ¼ 0:43; c12ðR1ðx6ÞÞ ¼ 0:26; c13ðR1ðx6ÞÞ ¼ 0:31;
c1:1ðR1ðx6ÞÞ ¼ 0:57; c1:2ðR1ðx6ÞÞ ¼ 0:74; c1:3ðR1ðx6ÞÞ ¼ 0:69:

And we can also obtain the IF belief function and the IF

plausibility function, which are defined in Definition 2.6

and Tðða1; b1Þ; ða2; b2ÞÞ ¼ ða1 ^ a2; b1 _ b2Þ, Iðða1; b1Þ;

ða2; b2ÞÞ ¼ ðb1 _ a2; a1 ^ b2Þ, thus 8xi 2 U, we can further

calculate to get fR1
ðR1ðxiÞÞ.

For object x1, by BeðR1ðx1ÞÞ ¼ 0:22, PlaðR1ðx1ÞÞ
¼ 0:58, we have

fR1
ðR1ðx1ÞÞ ¼ BeðR1ðx1ÞÞ þ rðR1ðx1Þ; ðd1; 0ÞÞðPlaðR1ðx1ÞÞ � BeðR1ðx1ÞÞÞ ¼ 0:39.

Similarly, we have fR1
ðR1ðx2ÞÞ ¼ 0:44, fR1

ðR1ðx3ÞÞ ¼
0:46, fR1

ðR1ðx4ÞÞ ¼ 0:46, fR1
ðR1ðx5ÞÞ ¼ 0:4, fR1

ðR1ðx6ÞÞ
¼ 0:51.

Using the quasi-probability function and the confidence

level of DRs, the probability of every DR based on the D-S

evidence theory can be obtained, that is, the mass function

of DRs can be obtained. Thus for decision value 1,

m1ðR1ðx1Þ; 1Þ ¼ 0:41�0:51
0:41�0:51þ0:44�0:33þ0:47�0:27þ0:46�0:23þ0:4�0:22þ0:51�0:43 ¼ 0:23:

Similarly, we have m1ðR1ðx2Þ; 1Þ ¼ 0:16, m1ðR1ðx3Þ; 1Þ
¼ 0:14, m1ðR1ðx4Þ; 1Þ ¼ 0:12, m1ðR1ðx5Þ; 1Þ ¼ 0:1, m1ðR1

ðx6Þ; 1Þ ¼ 0:25.

For decision value :1, we have
m1ðR1ðx1Þ;:1Þ ¼ 0:1; m1ðR1ðx2Þ;:1Þ ¼ 0:17; m1ðR1ðx3Þ;:1Þ ¼ 0:19;
m1ðR1ðx4Þ;:1Þ ¼ 0:2; m1ðR1ðx5Þ;:1Þ ¼ 0:18; m1ðR1ðx6Þ;:1Þ ¼ 0:16:

For decision value 2, we have
m1ðR1ðx1Þ; 2Þ ¼ 0:14; m1ðR1ðx2Þ; 2Þ ¼ 0:25; m1ðR1ðx3Þ; 2Þ ¼ 0:11;
m1ðR1ðx4Þ; 2Þ ¼ 0:27; m1ðR1ðx5Þ; 2Þ ¼ 0:09; m1ðR1ðx6Þ; 2Þ ¼ 0:14:

For decision value :2, we have
m1ðR1ðx1Þ;:2Þ ¼ 0:15; m1ðR1ðx2Þ;:2Þ ¼ 0:12; m1ðR1ðx3Þ;:2Þ ¼ 0:21;
m1ðR1ðx4Þ;:2Þ ¼ 0:12; m1ðR1ðx5Þ;:2Þ ¼ 0:18; m1ðR1ðx6Þ;:2Þ ¼ 0:22:

For decision value 3, we have
m1ðR1ðx1Þ; 3Þ ¼ 0:07; m1ðR1ðx2Þ; 3Þ ¼ 0:08; m1ðR1ðx3Þ; 3Þ ¼ 0:27;
m1ðR1ðx4Þ; 3Þ ¼ 0:13; m1ðR1ðx5Þ; 3Þ ¼ 0:27; m1ðR1ðx6Þ; 3Þ ¼ 0:18:

For decision value :3, we have
m1ðR1ðx1Þ;:3Þ ¼ 0:18; m1ðR1ðx2Þ;:3Þ ¼ 0:21; m1ðR1ðx3Þ;:3Þ ¼ 0:12;
m1ðR1ðx4Þ;:3Þ ¼ 0:2; m1ðR1ðx5Þ;:3Þ ¼ 0:09; m1ðR1ðx6Þ;:3Þ ¼ 0:2:

Example 5.2 (Following Example 4.1) There are another

IFDIS ðU;At2; d2Þ, where At2 ¼ fa4; a5; a6g is an attribute

set, d2 is a multi-valued decision attribute, the second

decision table is as follows (Table 3):

Let PðxiÞ ¼ 1
6
, 8x 2 U.

Table 1 IFDIS 1

a1 a2 a3 d1

x1 (0.6, 0.3) (1, 0) (0, 1) 1

x2 (0.9, 0) (0.8, 0.2) (0.1, 0.7) 2

x3 (0.4, 0.5) (0.6, 0.2) (0.9, 0.1) 3

x4 (1, 0) (0.4, 0.4) (0.3, 0.4) 2

x5 (0.3, 0.4) (0.3, 0.4) (1, 0) 3

x6 (0.2, 0.6) (0.8, 0.2) (0.5, 0.5) 1
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For this information system, we can compute the IFR R2

as follows (Table 4):

Thus we can compute the confidence level of every DR

as follows: for object x1, we have

c21ðR2ðx1ÞÞ ¼ 0:33; c22ðR2ðx1ÞÞ ¼ 0:56; c23ðR2ðx1ÞÞ ¼ 0:11;
c2:1ðR2ðx1ÞÞ ¼ 0:67; c2:2ðR2ðx1ÞÞ ¼ 0:44; c2:3ðR2ðx1ÞÞ ¼ 0:89:

Similarly, for object x2, we have

c21ðR2ðx2ÞÞ ¼ 0:32; c22ðR2ðx2ÞÞ ¼ 0:57; c23ðR2ðx2ÞÞ ¼ 0:11;
c2:1ðR2ðx2ÞÞ ¼ 0:68; c2:2ðR2ðx2ÞÞ ¼ 0:43; c2:3ðR2ðx2ÞÞ ¼ 0:89:

For object x3, we have

c21ðR2ðx3ÞÞ ¼ 0:22; c22ðR2ðx3ÞÞ ¼ 0:1; c23ðR2ðx3ÞÞ ¼ 0:68;
c2:1ðR2ðx3ÞÞ ¼ 0:78; c2:2ðR2ðx3ÞÞ ¼ 0:9; c2:3ðR2ðx3ÞÞ ¼ 0:32:

For object x4, we have

c21ðR2ðx4ÞÞ ¼ 0:22; c22ðR2ðx4ÞÞ ¼ 0:1; c23ðR2ðx4ÞÞ ¼ 0:68;
c2:1ðR2ðx4ÞÞ ¼ 0:78; c2:2ðR2ðx4ÞÞ ¼ 0:9; c2:3ðR2ðx4ÞÞ ¼ 0:32:

For object x5, we have

c21ðR2ðx5ÞÞ ¼ 0:35; c22ðR2ðx5ÞÞ ¼ 0:32; c23ðR2ðx5ÞÞ ¼ 0:33;
c2:1ðR2ðx5ÞÞ ¼ 0:65; c2:2ðR2ðx5ÞÞ ¼ 0:68; c2:3ðR2ðx5ÞÞ ¼ 0:67:

For object x6, we have

c21ðR2ðx6ÞÞ ¼ 0:52; c22ðR2ðx6ÞÞ ¼ 0:14; c23ðR2ðx6ÞÞ ¼ 0:34;
c2:1ðR2ðx6ÞÞ ¼ 0:48; c2:2ðR2ðx6ÞÞ ¼ 0:86; c2:3ðR2ðx6ÞÞ ¼ 0:66:

And, we have the focal element set fR2ðx1Þ;R2ðx2Þ;R2

ðx3Þ ¼ R2ðx4Þ;R2ðx5Þ;R2ðx6Þg, then
fR2

ðR2ðx1ÞÞ ¼ 0:35, fR2
ðR2ðx2ÞÞ ¼ 0:35, fR2

ðR2ðx3ÞÞ ¼ fR2

ðR2ðx4ÞÞ ¼ 0:32, fR2
ðR2ðx5ÞÞ ¼ 0:34, fR2

ðR2ðx6ÞÞ ¼ 0:35.

Then, the possible fused DR set is fDR2ðx1; vÞ;DR2

ðx2; vÞ;DR2ðx3; vÞ ¼ DR2ðx4; vÞ;DR2ðx5; vÞ;

DR2ðx6; vÞ; 8v 2 Vd2g, and the DR IF mass functions

are:
m2ðR2ðx1Þ; 1Þ ¼ 0:17; m2ðR2ðx2Þ; 1Þ ¼ 0:17; m2ðR2ðx3Þ; 1Þ ¼ 0:21;
m2ðR2ðx5Þ; 1Þ ¼ 0:18; m2ðR2ðx6Þ; 1Þ ¼ 0:27:

For decision value :1, we have
m2ðR2ðx1Þ;:1Þ ¼ 0:17; m2ðR2ðx2Þ;:1Þ ¼ 0:18; m2ðR2ðx3Þ;:1Þ ¼ 0:37;
m2ðR2ðx5Þ;:1Þ ¼ 0:16; m2ðR2ðx6Þ;:1Þ ¼ 0:12:

For decision value 2, we have
m2ðR2ðx1Þ; 2Þ ¼ 0:31; m2ðR2ðx2Þ; 2Þ ¼ 0:32; m2ðR2ðx3Þ; 2Þ ¼ 0:11;
m2ðR2ðx5Þ; 2Þ ¼ 0:18; m2ðR2ðx6Þ; 2Þ ¼ 0:08:

For decision value :2, we have
m2ðR2ðx1Þ;:2Þ ¼ 0:11; m2ðR2ðx2Þ;:2Þ ¼ 0:11; m2ðR2ðx3Þ;:2Þ ¼ 0:41;
m2ðR2ðx5Þ;:2Þ ¼ 0:16; m2ðR2ðx6Þ;:2Þ ¼ 0:21:

For decision value 3, we have
m2ðR2ðx1Þ; 3Þ ¼ 0:05; m2ðR2ðx2Þ; 3Þ ¼ 0:05; m2ðR2ðx3Þ; 3Þ ¼ 0:59;
m2ðR2ðx5Þ; 3Þ ¼ 0:15; m2ðR2ðx6Þ; 3Þ ¼ 0:16:

For decision value :3, we have
m2ðR2ðx1Þ;:3Þ ¼ 0:24; m2ðR2ðx2Þ;:3Þ ¼ 0:24; m2ðR2ðx3Þ;:3Þ ¼ 0:16;
m2ðR2ðx5Þ;:3Þ ¼ 0:18; m2ðR2ðx6Þ;:3Þ ¼ 0:18:

Furthermore, we consider the fused mass function of

DRs and the selection of optimal decision values using

three-way decisions.

Example 5.3 (Following Example 5.1 and 5.2) Step 2:

Thus M ¼ fR1ðx1Þ \ R2ðx1Þ;R1ðx2Þ \ R2ðx2Þ;R1ðx3Þ \ R2ðx3Þ
¼ R1ðx3Þ \ R2ðx4Þ;R1ðx4Þ \ R2ðx3Þ ¼ R1ðx4Þ \ R2ðx4Þ;R1

ðx5Þ \ R2ðx5Þ;R1ðx6Þ \ R2ðx6Þg, we then obtain the fused

mass function of DRs:

m�ðR1ðx1Þ \ R2ðx1Þ; 1Þ ¼
Y2
i¼1

miðRiðx1Þ; 1Þþ

X
T2

i¼1
fðR1ðx1k1 Þ\R2ðx2k2 ÞÞ

0
1¼;

SðR1ðx1Þ \ R2ðx1Þ;

ffR1ðx1k1Þ;R2ðx2k2ÞggÞ
Y2
i¼1

miðRiðxikiÞ; 1Þ ¼ 0:174

Similarly, we have m�ðR1ðx2Þ \ R2ðx2Þ; 1Þ ¼ 0:16.

By DRðx3; 1Þ ¼ DRðx3
V
x4; 1Þ, we only need to com-

pute m�ðR1ðx3Þ \ R2ðx3Þ; 1Þ, thus m�ðR1ðx3Þ \ R2ðx3Þ; 1Þ
¼ 0:152. By DRðx4; 1Þ ¼ DRðx4

V
x3; 1Þ, we only need to

compute m�ðR1ðx4Þ \ R2ðx4Þ; 1Þ, thus m�ðR1ðx4Þ \

Table 2 IFR of IFDIS 1 R1 x1 x2 x3 x4 x5 x6

x1 (1, 0) (0.76, 0.23) (0.53, 0.46) (0.55, 0.42) (0.4, 0.57) (0.65, 0.35)

x2 (0.76, 0.23) (1, 0) (0.55, 0.43) (0.79, 0.2) (0.43, 0.53) (0.68, 0.31)

x3 (0.53, 0.46) (0.55, 0.43) (1, 0) (0.59, 0.39) (0.85, 0.15) (0.77, 0.21)

x4 (0.55, 0.42) (0.79, 0.2) (0.59, 0.39) (1, 0) (0.6, 0.37) (0.6, 0.37)

x5 (0.4, 0.57) (0.43, 0.53) (0.85, 0.15) (0.6, 0.37) (1, 0) (0.65, 0.33)

x6 (0.65, 0.35) (0.68, 0.31) (0.77, 0.21) (0.6, 0.37) (0.65, 0.33) (1, 0)

Table 3 IFDIS 2

a4 a5 a6 d2

x1 (1,0) (0.1,0.7) (0.3,0.4) 1

x2 (1,0) (0.1,0.7) (0.4,0.4) 2

x3 (0,0.9) (1,0) (0.2,0.8) 3

x4 (0,0.9) (1,0) (0.2,0.8) 3

x5 (0.5,0.5) (0,0.9) (1,0) 3

x6 (0.5,0.5) (1,0) (1,0) 1
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R2ðx4Þ; 1Þ ¼ 0:146. m�ðR1ðx5Þ \ R2ðx5Þ; 1Þ ¼ 0:142,

m�ðR1ðx6Þ \ R2ðx6Þ; 1Þ ¼ 0:226.

Similarly, for decision value :1, we have

m�ðR1ðx1Þ \ R2ðx1Þ;:1Þ ¼ 0:143;m�ðR1ðx2Þ \ R2ðx2Þ;:1Þ ¼
0:159;m�ðR1ðx3Þ \ R2ðx3Þ;:1Þ ¼ 0:192;m�ðR1ðx4Þ \ R2

ðx4Þ;:1Þ ¼ 0:193;m�ðR1ðx5Þ \ R2ðx5Þ;:1Þ ¼ 0:148;

m�ðR1Þðx6 \ R2ðx6Þ;:1Þ ¼ 0:165:

For decision value 2, we have
m�ðR1ðx1Þ \ R2ðx1Þ; 2Þ ¼ 0:204; m�ðR1ðx2Þ \ R2ðx2Þ; 2Þ ¼ 0:24; m�ðR1ðx3Þ \ R2ðx3Þ; 2Þ ¼ 0:12;
m�ðR1ðx4Þ \ R2ðx4Þ; 2Þ ¼ 0:141; m�ðR1ðx5Þ \ R2ðx5Þ; 2Þ ¼ 0:136; m�ðR1ðx6Þ \ R2ðx6Þ; 2Þ ¼ 0:159:

For decision value :2, we have
m�ðR1ðx1Þ \ R2ðx1Þ;:2Þ ¼ 0:134; m�ðR1ðx2Þ \ R2ðx2Þ;:2Þ ¼ 0:131; m�ðR1ðx3Þ \ R2ðx3Þ;:2Þ ¼ 0:215;
m�ðR1ðx4Þ \ R2ðx4Þ;:2Þ ¼ 0:173; m�ðR1ðx5Þ \ R2ðx5Þ;:2Þ ¼ 0:15; m�ðR1ðx6Þ \ R2ðx6Þ;:2Þ ¼ 0:197:

For decision value 3, we have
m�

DðR1ðx1Þ \ R2ðx1Þ; 3Þ ¼ 0:099; m�
DðR1ðx2Þ \ R2ðx2Þ; 3Þ ¼ 0:1; m�

DðR1ðx3Þ \ R2ðx3Þ; 3Þ ¼ 0:288;
m�

DðR1ðx4Þ \ R2ðx4Þ; 3Þ ¼ 0:192; m�
DðR1ðx5Þ \ R2ðx5Þ; 3Þ ¼ 0:153; m�

DðR1ðx6Þ \ R2ðx6Þ; 3Þ ¼ 0:168:

For decision value :3, we have
m�

DðR1ðx1Þ \ R2ðx1Þ;:3Þ ¼ 0:191; m�
DðR1ðx2Þ \ R2ðx2Þ;:3Þ ¼ 0:198; m�

DðR1ðx3Þ \ R2ðx3Þ;:3Þ ¼ 0:134;
m�

DðR1ðx4Þ \ R2ðx4Þ;:3Þ ¼ 0:149; m�
DðR1ðx5Þ \ R2ðx5Þ;:3Þ ¼ 0:139; m�

DðR1ðx6Þ \ R2ðx6Þ;:3Þ ¼ 0:189:

In Example 5.3, we have used Step 2 of Algorithm 1 to

obtain the fused IF mass functions of DRs as above. In the

following, we discuss how to get the optimal decision value

set according to Step 3- Step 7 of Algorithm 1.

Example 5.4 (Following Example 5.3) Step 3: If

kPP ¼ ð0:1; 0:9Þ, kBP ¼ ð0:65; 0:3Þ, kNP ¼ ð0:85; 0:1Þ,
kNN ¼ ð0; 1Þ, kBN ¼ ð0:5; 0:4Þ, kPN ¼ ð0:8; 0:15Þ.

Then we have a1 ¼ maxfaPB ¼ 0:97; bPB ¼ 0:89g
¼ 0:97, b1 ¼ maxfaPN ¼ 0:9; bPN ¼ 0:86g ¼ 0:9, a2 ¼
minfaPN ¼ 0:9; bPN ¼ 0:86g ¼ 0:86, b2 ¼ minfaNB ¼ 0:

82; bNB ¼ 0:83g ¼ 0:82. Thus maxfa1; b1g[minfa2; b2g.

By m�ð
T2
i¼1

RiðxikÞ;:vÞ 6¼ 0, then turn to Step 5. Thus,

according to Step 5, we can give the optimal decision value

of every object.

For decision value 1, we have

m�ðR1ðx1Þ \ R2ðx1Þ; 1Þ
m�ðR1ðx1Þ \ R2ðx1Þ;:1Þ

¼ 0:174

0:143
¼ 1:216;

m�ðR1ðx2Þ \ R2ðx2Þ; 1Þ
m�ðR1ðx2Þ \ R2ðx2Þ;:1Þ

¼ 0:16

0:59
¼ 1:006;

m�ðR1ðx3Þ \ R2ðx3Þ; 1Þ
m�ðR1ðx3Þ \ R2ðx3Þ;:1Þ

¼ 0:13

0:185
¼ 0:794

m�ðR1ðx4Þ \ R2ðx4Þ; 1Þ
m�ðR1ðx4Þ \ R2ðx4Þ;:1Þ

¼ 0:115

0:19
¼ 0:754;

m�ðR1ðx5Þ \ R2ðx5Þ; 1Þ
m�ðR1ðx5Þ \ R2ðx5Þ;:1Þ

¼ 0:135

0:17
¼ 0:963;

m�ðR1ðx6Þ \ R2ðx6Þ; 1Þ
m�ðR1ðx6Þ \ R2ðx6Þ;:1Þ

¼ 0:265

0:145
¼ 1:369;

by
m�ðR1ðx1Þ\R2ðx1Þ;1Þ
m�ðR1ðx1Þ\R2ðx1Þ;:1Þ [maxfa1; b1g, we have dvðx1Þ ¼

POSð1Þ. Thus, we conclude dvðx1Þ ¼ POSð1Þ, dvðx2Þ ¼
POSð1Þ,dvðx3Þ ¼ NEGð1Þ, dvðx4Þ ¼ NEGð1Þ, dvðx5Þ ¼
BND ð1Þ, dvðx6Þ ¼ POSð1Þ.

For decision value 2, we have
m�ðR1ðx1Þ\R2ðx1Þ;2Þ
m�ðR1ðx1Þ\R2ðx1Þ;:2Þ ¼

0:204
0:134 ¼ 1:524, m�ðR1ðx2Þ\R2ðx2Þ;2Þ

m�ðR1ðx2Þ\R2ðx2Þ;:2Þ

¼ 0:24
0:131 ¼ 1:83, m�ðR1ðx3Þ\R2ðx3Þ;2Þ

m�ðR1ðx3Þ\R2ðx3Þ;:2Þ ¼
0:12
0:215 ¼ 0:555,

m�ðR1ðx4Þ\R2ðx4Þ;2Þ
m�ðR1ðx4Þ\R2ðx4Þ;:2Þ ¼

0:142
0:173 ¼ 0:82, m�ðR1ðx5Þ\R2ðx5Þ;2Þ

m�ðR1ðx5Þ\R2ðx5Þ;:2Þ ¼
0:136
0:15 ¼ 0:905, m�ðR1ðx6Þ\R2ðx6Þ;2Þ

m�ðR1ðx6Þ\R2ðx6Þ;:2Þ ¼ 0:806,

thus we conclude dvðx1Þ ¼ fPOSð1Þ;POSð2Þg; dvðx2Þ
¼ fPOSð1Þ;POSð2Þg, dvðx3Þ ¼ fNEGð1Þ;NEGð2Þg, dv

ðx4Þ ¼ fNEGð1Þ;NEGð2Þg, dvðx5Þ ¼ fBNDð1Þ;BNDð2Þg,
dvðx6Þ ¼ fPOSð1Þ;NEGð2Þg.
For decision value 3, we have
m�ðR1ðx1Þ\R2ðx1Þ;3Þ
m�ðR1ðx1Þ\R2ðx1Þ;:3Þ ¼

0:099
0:191 ¼ 0:52, m�ðR1ðx2Þ\R2ðx2Þ;3Þ

m�ðR1ðx2Þ\R2ðx2Þ;:3Þ ¼
0:1

0:198 ¼ 0:5, m�ðR1ðx3Þ\R2ðx3Þ;3Þ
m�ðR1ðx3Þ\R2ðx3Þ;:3Þ ¼

0:288
0:134 ¼ 2:15,

m�ðR1ðx4Þ\R2ðx4Þ;3Þ
m�ðR1ðx4Þ\R2ðx4Þ;:3Þ ¼

0:192
0:148 ¼ 1:3, m�ðR1ðx5Þ\R2ðx5Þ;3Þ

m�ðR1ðx5Þ\R2ðx5Þ;:3Þ ¼
0:153
0:139

¼ 1:1, m�ðR1ðx6Þ\R2ðx6Þ;3Þ
m�ðR1ðx6Þ\R2ðx6Þ;:3Þ ¼

0:168
0:189 ¼ 0:889,

thus we conclude that

dvðx1Þ ¼ fPOSð1Þ;POSð2Þ;NEGð3Þg,
dvðx2Þ ¼ fPOSð1Þ;POSð2Þ;NEGð3Þg,
dvðx3Þ ¼ fNEGð1Þ;NEGð2Þ;POSð3Þg,
dvðx4Þ ¼ fNEGð1Þ;NEGð2Þ;POSð3Þg,

Table 5 Comparison table of satisfactory decision value sets

object SDVSIFDIS1 SDVSIFDIS2 SDVSMIFDIS

x1 1 1,2 1,2

x2 1,2 2 1,2

x3, x3 ^ x4 3 3 3

x4, x4 ^ x3 2 3 3

x5 3 - 3

x6 1 1 1

Table 4 IFR of IFDIS 2 R2 x1 x2 x3 x4 x5 x6

x1 (1,0) (0.98,0.02) (0.32,0.65) (0.32,0.65) (0.59,0.39) (0.37,0.6)

x2 (0.98,0.02) (1,0) (0.31,0.67) (0.31,0.67) (0.61,0.38) (0.39,0.59)

x3 (0.32,0.65) (0.31,0.67) (1,0) (1,0) (0.27,0.73) (0.58,0.42)

x4 (0.32,0.65) (0.31,0.67) (1,0) (1,0) (0.27,0.73) (0.58,0.42)

x5 (0.59,0.39) (0.61,0.38) (0.27,0.73) (0.27,0.73) (1,0) (0.68,0.31)

x6 (0.37,0.6) (0.39,0.59) (0.58,0.42) (0.58,0.42) (0.68,0.31) (1,0)
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dvðx5Þ ¼ fBNDð1Þ;BNDð2Þ;POSð3Þg,
dvðx6Þ ¼ fPOSð1Þ;NEGð2Þ;BNDð3Þg.

Thus, comprehensively considering these two IFDISs,

we know the satisfactory fused decision value set generated

by x1 is Dðx1Þ ¼ f1; 2g, generated by x2 is Dðx2Þ ¼ f1; 2g,
generated by x3 is Dðx3Þ ¼ f3g, generated by x4 is

Dðx4Þ ¼ f3g, generated by x5 is Dðx5Þ ¼ f3g, generated
by x6 is Dðx6Þ ¼ f1g.

From this example, we find that there are two satisfac-

tory DRs generated by using object x1, that is,

ða1; ð0:6; 0:3ÞÞ ^ ða2; ð1; 0ÞÞ ^ ða3; ð0; 1ÞÞ ^ ða4; ð1; 0ÞÞ^
ða5; ð0:1; 0:7ÞÞ ^ ða6; ð0:3; 0:4ÞÞ ! ðd; 1Þ and ða1; ð0:6; 0:
3ÞÞ ^ ða2; ð1; 0ÞÞ ^ ða3; ð0; 1ÞÞ ^ ða4; ð1; 0ÞÞ ^ ða5; ð0:1; 0:
7ÞÞ ^ ða6; ð0:3; 0:4ÞÞ ! ðd; 2Þ.

The satisfactory decision value set (SDVS) of all objects

of IFDIS 1 in Example 5.1 and IFDIS 2 in Example 5.2 are

studied according to their respective mass functions, and

compared with the case of MIFDIS, as shown in Table 5.

For three-way decisions based on the compromise rule,

when q ¼ 1, by maxfaPB; aPNg ¼ aPB ¼ 0:97, minfaNB;
aPNg ¼ aNB ¼ 0:82, so the fused decision value set of

every object in this case is the same to the satisfactory

fused decision value set in Example 5.4. However, when

q ¼ 0, we have maxfbPB; bPNg ¼ 0:89, minfbNB; bPNg ¼
0:83, thus,

dvðx1Þ ¼ fPOSð1Þ;POSð2Þ;NEGð3Þg,
dvðx2Þ ¼ fPOSð1Þ;POSð2Þ;NEGð3Þg,

dvðx3Þ ¼ fNEGð1Þ;NEGð2Þ;POSð3Þg,
dvðx4Þ ¼ ffNEGð1Þ;NEGð2Þ;POSð3Þg,

dvðx5Þ ¼ fPOSð1Þ;POSð2Þ;POSð3Þg,
dvðx6Þ ¼ fPOSð1Þ;NEGð2Þ;BNDð3Þg.

Thus the fused decision value set of x5 is

Dðx5Þ ¼ f1; 2; 3g, which is different from the satisfactory

fused decision value set of x5 in Example 5.4.

To provide a clearer representation of the satisfactory

decision sets for all objects, the ratios of mass functions of

different objects are depicted in blue, red, and gray lines

under IFDIS 1, IFDIS 2, and MIFDIS, as shown in Figs. 1,

2 and 3. In Figs. 1, 2 and 3, the horizontal axis represents 6

objects, while the vertical axis represents the ratio m of the

mass function corresponding to a given decision value 1, 2,

or 3. These figures also allow us to determine the satis-

factory decision sets of each object in the three IFDIFs with

varying loss functions.

Comparative analysis reveals that when the values of m

of both the first and second IFDISs are small, the values of

m in MIFDIS are also small; when the values of m in both

systems are large, the values of m in MIFDIS tend to be

large as well; when one system has a large value and the

other has a small value, the fused value of m typically fall

in between.

Fig. 1 ratio of mass functions of IFDISs for d ¼ 1

Fig. 2 ratio of mass functions of IFDISs for d ¼ 2

Fig. 3 ratio of mass functions of IFDISs for d ¼ 3

Table 6 Decision values on U

U x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

d1 1 2 1 3 1 3 2 1 3 2

d2 2 1 2 3 2 1 1 3 2 1
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Table 7 IF relation on IFDIS 1 R1 x1 x2 x3 x4 x5

x1 (1,0) (0.79, 0.2) (0.67, 0.29) (0.84, 0.12) (0.7, 0.28)

x2 (0.79, 0.2) (1, 0) (0.69, 0.24) (0.73, 0.22) (0.7, 0.28)

x3 (0.67, 0.29) (0.69, 0.24) (1, 0) (0.74, 0.25) (0.64, 0.33)

x4 (0.84, 0.12) (0.73, 0.22) (0.74, 0.25) (1, 0) (0.62, 0.33)

x5 (0.7, 0.28) (0.7, 0.28) (0.64, 0.33) (0.62, 0.33) (1, 0)

x6 (0.68, 0.3) (0.72, 0.23) (0.86, 0.12) (0.71, 0.27) (0.73, 0.24)

x7 (0.53, 0.42) (0.6, 0.35) (0.57, 0.42) (0.58, 0.36) (0.6, 0.38)

x8 (0.67, 0.29) (0.68, 0.24) (1, 0) (0.74, 0.25) (0.64, 0.33)

x9 (0.75, 0.23) (0.69,0.25) (0.57, 0.4) (0.64, 0.3) (0.62, 0.38)

x10 (0.74, 0.23) (0.74,0.22) (0.57,0.41) (0.69, 0.27) (0.63, 0.35)

x6 x7 x8 x9 x10

x1 (0.68, 0.3) (0.53, 0.42) (0.67, 0.29) (0.75, 0.23) (0.74, 0.23)

x2 (0.72, 0.23) (0.6, 0.35) (0.68, 0.24) (0.69, 0.25) (0.74, 0.22)

x3 (0.86, 0.12) (0.57, 0.42) (1, 0) (0.57, 0.4) (0.57, 0.41)

x4 (0.71, 0.27) (0.58, 0.36) (0.74, 0.25) (0.64, 0.3) (0.69, 0.27)

x5 (0.73, 0.24) (0.6, 0.38) (0.64, 0.33) (0.62, 0.38) (0.63, 0.35)

x6 (1,0) (0.63, 0.36) (0.86, 0.12) (0.61, 0.37) (0.59, 0.39)

x7 (0.63, 0.36) (1,0) (0.57, 0.42) (0.52, 0.44) (0.74, 0.21)

x8 (0.86, 0.12) (0.57, 0.42) (1, 0) (0.57, 0.4) (0.57, 0.41)

x9 (0.61, 0.37) (0.52, 0.44) (0.57, 0.4) (1, 0) (0.75, 0.23)

x10 (0.59, 0.39) (0.74, 0.21) (0.57, 0.41) (0.75, 0.23) (1, 0)

Table 8 IF relation on IFDIS 2

R2 x1 x2 x3 x4 x5

x1 (1,0) (0.65,0.24) (1,0) (0.59,0.33) (0.58,0.3)

x2 (0.65,0.24) (1,0) (0.65,0.24) (0.62,0.33) (0.61,0.34)

x3 (1,0) (0.65,0.24) (1,0) (0.59,0.33) (0.58,0.3)

x4 (0.59,0.33) (0.62,0.33) (0.43,0.33) (1,0) (0.8,0.19)

x5 (0.58,0.3) (0.61,0.34) (0.58,0.3) (0.79,0.19) (1,0)

x6 (0.85,0.14) (0.61,0.3) (0.85,0.14) (0.51,0.44) (0.59,0.35)

x7 (0.67,0.26) (0.72,0.21) (0.67,0.26) (0.72,0.26) (0.68,0.28)

x8 (0.71,0.18) (0.88,0.1) (0.71,0.18) (0.69,0.3) (0.65,0.34)

x9 (0.65,0.33) (0.59,0.35) (0.65,0.33) (0.68,0.28) (0.73,0.21)

x10 (0.85,0.14) (0.61,0.3) (0.85,0.14) (0.51,0.44) (0.59,0.35)

x6 x7 x8 x9 x10

x1 (0.85,0.14) (0.67,0.26) (0.71,0.18) (0.65,0.33) (0.85,0.14)

x2 (0.61,0.3) (0.72,0.21) (0.88,0.1) (0.59,0.35) (0.61,0.3)

x3 (0.85,0.14) (0.67,0.26) (0.71,0.18) (0.65,0.33) (0.85,0.14)

x4 (0.51,0.44) (0.72,0.26) (0.69,0.3) (0.68,0.28) (0.51,0.44)

x5 (0.59,0.35) (0.68,0.28) (0.65,0.34) (0.73,0.21) (0.59,0.35)

x6 (1,0) (0.67,0.26) (0.65,0.26) (0.66,0.33) (1,0)

x7 (0.67,0.26) (1,0) (0.72,0.21) (0.65,0.32) (0.67,0.26)

x8 (0.65,0.26) (0.72,0.21) (1,0) (0.6,0.35) (0.65,0.26)

x9 (0.53,0.33) (0.65,0.32) (0.6,0.35) (1,0) (0.66,0.33)

x10 (1,0) (0.67,0.26) (0.65,0.26) (0.66,0.33) (1,0)
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In some cases, the number of possible fusion decision

rules generated can exceed the number of elements, as

demonstrated in the following example.

Example 5.5 Let U ¼ fx1; x2; . . .; x10g, R1 and R2 are two

IFRs onU, d ¼ f1; 2; 3g,PðfxigÞ ¼ 1
10
. Then ðU;R1; d1Þ and

ðU;R2; d2Þ are two IFDISs, as shown in Tables 6, 7 and 8.

In order to give the satisfactory decision sets of all objects

more clearly, when kPP ¼ ð0:1; 0:9Þ, kBP ¼ ð0:65; 0:3Þ,
kNP ¼ ð0:85; 0:1Þ, kNN ¼ ð0; 1Þ, kBN ¼ ð0:5; 0:4Þ, kPN ¼
ð0:8; 0:15Þ, we also can give the satisfactory decision sets of
each object in three IFDIFs as the following Table 9.

To provide a clearer representation of the satisfactory

decision sets for all objects, the ratios of mass functions of

different objects are depicted in blue, red, and gray lines

under IFDIS 1, IFDIS 2, and MIFDIS, as shown in Figs. 4,

5 and 6. In Figs. 4, 5 and 6, the horizontal axis represents

10 objects, while the vertical axis represents the ratio m of

the mass function corresponding to a given decision value

1, 2, or 3. These figures also allow us to determine the

satisfactory decision sets of each object in the three IFDIFs

with varying loss functions.

In these three figures, We can conclude,

(1) As lkPP increases and lkPN increases, and lkBN
decreases and lkBP decreases, aPB monotonically does not

decrease. In this case, a1 does not necessarily decrease, but

the positive region does not increase.

(2) As lkPP increases and lkPN increases, and lkNN
decreases and lkNP decreases, aPN monotonically does not

decrease. In this case, b1 and a2 do not necessarily

decrease, thus the positive region does not increase, and the

negative region does not decrease.

(3) As lkBP increases and lkBN increases, and lkNN
decreases and lkNP decreases, aNB monotonically does not

decrease. In this case, b2 does not necessarily decrease, but

the negative region does not decrease.

(4) As ckPP increases and ckPN increases, and ckBN
decreases and ckBP decreases, bPB monotonically does not

increase. In this case, a1 does not necessarily increase, but

the positive region does not decrease.

Table 9 Comparison table of satisfactory decision value sets

object SDVSIFDIS1 SDVSIFDIS2 SDVSMIFDIS

x1 1, 3 1, 2 1, 2, 3

x1 ^ x3 – – 1, 2, 3

x2 2 1, 3 1, 2, 3

x3; x8 ^ x3 1 1, 2 1

x3 ^ x1; x8 ^ x1 – – 3

x4 3 3 1,3

x5 1 2, 3 2,3

x6 1, 3 1, 2 2,3

x6 ^ x10 – – 1, 2, 3

x7 2 1, 3 1

x8; x3 ^ x8 1 3 2, 3

x9 3 2 2, 3

x10 2 1, 2 2

x10 ^ x6 – – 2

Fig. 4 ratio of mass functions of IFDISs for d ¼ 1

Fig. 5 ratio of mass functions of IFDISs for d ¼ 2

Fig. 6 ratio of mass functions of IFDISs for d ¼ 3
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(5) As ckPP increases and ckPN increases, and ckNN
decreases and ckNP decreases, bPN monotonically does not

increase. In this case, a2 and b1 do not necessarily increase,

thus the positive region does not decrease, and the negative

region does not increase.

(6) As ckBP increases and ckBN increases, and ckNN
decreases and ckNP decreases, aNB monotonically does not

increase. In this case, b2 does not necessarily increase, but

the negative region does not increase.

Thus, for different values of loss functions, we can get

the fused satisfactory decision sets of each object shown in

Table 10.

From Table 10, it can be observed that the selected results

of satisfactory decision sets for fused decision values corre-

spond to the analysis of the impact of changes in loss function

values on positive domain changes of decision values.

In the following, we compare the satisfactory decision

sets of each object based on the IF relation and the com-

promise rule, as shown in Table 11.

The analysis above demonstrates that for some loss

functions, the satisfactory decision sets of each object from

the three different partial orders are identical, indicating

insensitivity of the loss function to these partial orders.

However, in certain cases, the satisfactory decision sets of

each object corresponding to the three partial orders can

Table 10 Comparison table of

satisfactory decision value sets

with different loss functions

objects x1 x2 x3; x4 x5 x6 x7 x8 x9 x10

kPP ¼ ð0:1; 0:9Þ, kBP ¼ ð0:65; 0:3Þ
kNP ¼ ð0:85; 0:1Þ,kNN ¼ ð0; 1Þ
kBN ¼ ð0:5; 0:4Þ, kPN ¼ ð0:8; 0:15Þ 1, 2, 3 1, 2, 3 1 1, 3 2, 3 2, 3 1 2, 3 2, 3 2

kPP ¼ ð0:1; 0:9Þ, kBP ¼ ð0:65; 0:3Þ
kNP ¼ ð0:84; 0:1Þ,kNN ¼ ð0; 1Þ
kBN ¼ ð0:5; 0:4Þ, kPN ¼ ð0:805; 0:15Þ 2 3 1 1, 3 3 2, 3 1 2 2, 3 2

kPP ¼ ð0:14; 0:8Þ, kBP ¼ ð0:65; 0:3Þ
kNP ¼ ð0:85; 0:1Þ,kNN ¼ ð0; 1Þ
kBN ¼ ð0:5; 0:4Þ, kPN ¼ ð0:8; 0:15Þ 2 3 1 1, 3 3 2, 3 1 2 2, 3 2

kPP ¼ ð0:1; 0:9Þ, kBP ¼ ð0:65; 0:3Þ
kNP ¼ ð0:85; 0:1Þ,kNN ¼ ð0; 1Þ
kBN ¼ ð0:55; 0:45Þ, kPN ¼ ð0:8; 0:15Þ 2 3 1 1, 3 3 2, 3 1 2 2, 3 2

Table 11 Comparison table of satisfactory decision value sets with different orders

object kPP ¼ ð0:1; 0:7Þ kBP ¼ ð0:6; 0:25Þ kNP ¼ ð0:8; 0:2Þ kPP ¼ ð0:145; 0:685Þ kBP ¼ ð0:61; 0:25Þ kNP ¼ ð0:799; 0:201Þ
kNN ¼ ð0:1; 0:7Þ kBN ¼ ð0:55; 0:4Þ kPN ¼ ð0:8; 0:2Þ kNN ¼ ð0:124; 0:69Þ kBN ¼ ð0:55; 0:45Þ kPN ¼ ð0:79; 0:209Þ
SDVSIFR SDVSCRq¼1 SDVSCRq¼0 SDVSIFR SDVSCRq¼1 SDVSCRq¼0

x1 2 2 2 1, 2 2 1, 2, 3

x2 3 3 3 2, 3 3 1, 2, 3

x3 1 1 1 1 1 1

x4 1,3 1, 3 1, 3 1, 3 1, 3 1, 3

x5 3 3 3 2, 3 3 2, 3

x6 2,3 2, 3 2, 3 2, 3 2, 3 2, 3

x7 1 1 1 1 1 1

x8 2 2 2 2 2 2, 3

x9 2,3 2, 3 2, 3 2, 3 2, 3 2, 3

x10 2 2 2 2 2 2

Fig. 7 ratio of mass functions of IFDISs for d ¼ 1
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vary, suggesting sensitivity of the loss function to these

partial orders. Therefore, by utilizing the monotonicity of

loss functions, we can adjust the values of the six loss

functions to better align with specific requirements.

Moreover, in this example, it is observed that the elements

in the positive region of the IF relation are included in the

positive region of the CO when q ¼ 0. Similarly, the ele-

ments in the positive region of the CO when q ¼ 1 are

encompassed within the positive region of the IF relation.

5.5 Data Analyses

We apply our proposed method based on the IF relation to

analyze the satisfactory decision sets for each object in the

Computer Hardware dataset from the UCI repository. This

dataset consists of 209 objects with 10 attributes. Initially,

we conduct data preprocessing by identifying and remov-

ing data with significantly deviated values considered as

noise. Subsequently, we select the initial 200 objects and

divide them into two groups to establish two information

systems, with objects sorted from 1 to 100 within each

system. As the first two attributes are deemed unsuit-

able for IFS construction, we exclude these attributes and

focus on the remaining eight for our analysis. The values of

the remaining eight attributes are normalized to ascertain

their membership degrees. Next, we use random methods

within Excel software to calculate the non-membership

degrees of IF numbers. It is ensured that the sum of

membership and non-membership degrees is greater than

or equal to 0.5. Finally, decision values ranging from 1 to 5

are randomly assigned to each object.

Firstly, let the probability of every object is 1
100

,

kPP ¼ ð0:1; 0:8Þ, kBP ¼ ð0:65; 0:3Þ, kNP ¼ ð0:85; 0:1Þ;
kNN ¼ ð0:1; 0:9Þ, kBN ¼ ð0:5; 0:4Þ, kPN ¼ ð0:8; 0:15Þ. The
calculations show trends in the changes of the values of m

for IFDIS 1, IFDIS 2, and MIFDIS as illustrated in Figs. 7,

8, 9, 10 and 11.

The horizontal axis in the figure represents 100 objects,

while the vertical axis represents the ratio m of the mass

functions corresponding to decision values 1� 5. The blue

line represents the curve of the values taken by m in the

first IFDIS, the orange line represents the curve of the

values taken by m in the second IFDIS, and the gray line

represents the curve of the values taken by m in the MIF-

DIS. Because the non-membership degrees of conditional

attributes and decision values in these systems are

Fig. 8 ratio of mass functions of IFDISs for d ¼ 2

Fig. 9 ratio of mass functions of IFDISs for d ¼ 3

Fig. 10 ratio of mass functions of IFDISs for d ¼ 4

Fig. 11 ratio of mass functions of IFDISs for d ¼ 5
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randomly generated, then objects with completely identical

values are seldom encountered, and the values of m in each

information system oscillates around 1. Upon comparing

and analyzing the IFDISs of 100 objects, it becomes evi-

dent that the values of m in MIFDIS also tend to fluctuate

around 1. Furthermore, the trends observed in the varia-

tions of the values of m in MIFDIS generally align with

those in Example 5.4 and Example 5.5. From the above

figure, it can be observed that the use of conflict evidence

fusion rules may lead to situations in MIFDIS where some

values of m exceed or fall below the values of m in the two

original IFDISs. This does not hinder the identification of

satisfactory decision sets for each object using the three-

way decision method. Therefore, we can use Fig. 12 to

illustrate the satisfactory decision sets for IFDIS 1, IFDIS

2, and MIFDIS.

In Fig. 12, the vertical axis represents different decision

values, while the horizontal axis indicates the quantity of

objects corresponding to each value where satisfactory

decisions are made. The quantity of objects corresponding to

each value in IFDIS 1 is shown in gray, in IFDIS 2 in orange,

and in theMIFDIS in blue. The graph shows that the number

of objects in the fused system typically falls between those of

the original two IFDISs. Additionally, due to significant

inconsistencies in the original information systems, the fused

system also exhibits notable inconsistencies.

6 Conclusion

This paper provides a comprehensive study of decision-

making in multi-information fuzzy decision information

systems (MIFDISs). Firstly, the definitions of belief

structures of the D-S evidence theory in IFASs are

reviewed. Next, a fused mass function is defined to capture

the influence of conflicting evidence, taking into account

the inclusion degree of two IFSs and utilizing basic IF

information granules as focal objects. The IF information

granules specific to MIFDISs are then introduced. Fol-

lowing this, a fused mass function of decision rules is

proposed, and the fused decision value sets of all objects

are determined through innovative three-way decisions

based on the fused mass functions of decision rules. In

future research, the reduction of multi-information systems

will be further explored.
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