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Abstract As an effective tool to show the fuzziness of

qualitative information, the probabilistic hesitant fuzzy set

(PHFS) can utilize a group of membership degrees with a

clear probability distribution to show the opinions of

decision-maker (DM). Given this merit, many probabilistic

hesitant fuzzy multi-criteria group decision-making (PHF-

MCGDM) methods have been designed. However, most of

the existing PHF-MCGDM methods have some limitations,

including the difficulty of reflecting DMs’ ambiguous and

hesitant preferences for criteria weights and the inability to

comprehensively show the impacts of DMs’ irrational

behaviors. To address these limitations, this paper develops

a novel PHF-MCGDM method that integrates the defining

interrelationships between ranked criteria (DIBR) approach

and tri-reference point (TRP) theory. First, the PHF-DIBR

approach is constructed to determine criteria weights by

fully expressing DMs’ ambiguous and hesitant preferences

for the importance of criteria. Second, the novel proba-

bilistic hesitant fuzzy correlation coefficient (NPHFCC) is

developed for deriving the weights of DMs, which reme-

dies the flaws of the existing correlation coefficients (CC).

Moreover, TRP theory is used to describe the psychologi-

cal behavior effects of DMs and derive the order of alter-

natives. Finally, the applicability of the proposed method is

validated by the case about office flooring material

selection, while the sensitivity and comparison analyses are

also conducted to further prove its advantages and

effectiveness.
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PROMETHEE

PHFPWA Probabilistic Hesitant Fuzzy Prioritized
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QUALIFLEX
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PHF-TOPSIS Probabilistic Hesitant Fuzzy TOPSIS

PHF-VIKOR Probabilistic Hesitant Fuzzy VIKOR

PHFWA Probabilistic Hesitant Fuzzy Weighted

Averaging

PHFWG Probabilistic Hesitant Fuzzy Weighted

Geometric

PIS Positive Ideal Solution

PROMETHEE Preference Ranking Organization

Method for Enrichment Evaluations

QUALIFLEX Qualitative Flexible Multiple Criteria

Method

R-DIBR Rough DIBR

SPR Single Reference Point

SQ Status Quo

TOPSIS Technique for Order of Preference by

Similarity to Ideal Solution

TRP Tri-reference Point

VIKOR VIse Kriterijumska Optimizacija I

Kompromisno Resenja

1 Introduction

Multi-criteria group decision making (MCGDM) is an

important research field in decision science. Since the

evaluation information provided by decision makers (DMs)

is usually ambiguous and uncertain in MCGDM, some

fuzzy sets have been adopted to express uncertain evalua-

tion information, including fuzzy set [1], intuitionistic

fuzzy set [2], and Pythagorean fuzzy set [3]. In actual sit-

uations, DMs may give multiple different opinions on the

same evaluation object, which cannot be handled through

the above fuzzy sets. To conquer this problem, the hesitant

fuzzy set, HFS [4] is defined, which contains multiple

membership degrees. However, HFSs assumes that the

probability of each membership degree is same. In practice,

the DM may think that the probability of each membership

degree is not necessarily the same. For example, if a DM

hesitates between two scores: 0.2 and 0.7 when evaluating

the technological level of the sustainable building material,

then his/her evaluation information can be represented by a

hesitant fuzzy element (HFE) {0.2, 0.7}. However, if the

DM prefers 0.2 to 0.7 in his/her evaluation, the HFE {0.2,

0.7} cannot fully represent such an evaluation. Afterwards,

Xu et al. [5] proposed the probabilistic hesitant fuzzy set

(PHFS), which allows DMs to provide their preference

information by using some membership degrees with

probability information. For the above example, the eval-

uation information can be expressed as a probabilistic

hesitant fuzzy element (PHFE) {0.2 (0.6), 0.7 (0.4)}, where

0.6 and 0.4 are the probabilities of 0.2 and 0.7 respectively.

Obviously, PHFSs can retain more important information

than HFSs.

Taking the advantages of PHFS, some probabilistic

hesitant fuzzy MCGDM (PHF-MCGDM) methods have

been proposed [6–13]. These methods can be divided into

three types: (1) The integrated operation-based method,

such as probabilistic hesitant fuzzy weighted averaging

(PHFWA) operator [6], probabilistic hesitant fuzzy

weighted geometric (PHFWG) operator [6] and proba-

bilistic hesitant fuzzy prioritized weighted averaging

(PHFPWA) operator [7]; (2) The utility value-based

methods, such as the technique for order of preference by

similarity to ideal solution (TOPSIS) [8], the vlsekriteri-

jumska optimizacija i kompromisno resenje in serbian

(VIKOR) [9], and the combinative distance-based assess-

ment (CODAS) [10]; (3) The outranking-based methods,

such as the elimination and choice translating reality

(ELECTRE) [11], the preference ranking organization

method for enrichment evaluations (PROMETHEE) [12],

and qualitative flexible multiple criteria method (QUALI-

FLEX) [13]. Although the three kinds of methods differ

from a mathematical perspective, they assume DMs are

completely rational when giving the corresponding evalu-

ations for each alternative. However, in real cases, DMs are

rarely completely rational and may provide evaluation

information with risk attitudes, which leads them to have

bounded rational behaviors. To address this issue, Kahne-

man et al. [14] proposed prospect theory, which sets the

standard as a reference point, and then the evaluated

objects are compared with the reference point to capture

the influence of bounded rational behavior. Some scholars

[15–17] have applied prospect theory to solve PHF-

MCGDM problems. However, prospect theory belongs to

the single reference point (SPR) theory, which has some

defects [18, 19]. For example, the three aspects that affect

the decision of a risk investor contain his\her capital status,

the target income he/she pursues, and the lower limit of the

loss he\she can bear. The prospect theory only helps this

investor handle one of the three aspects, resulting in

information loss. To overcome this shortcoming of
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prospect theory, Wang and Johnson [20] introduced the tri-

reference point (TRP) theory, which sets the status quo

(SQ), the minimum requirement (MR), and the goal

(G) reference points to depict fully the bounded rational

behavior effects. Since then, TRP theory has been widely

used to solve a variety of problems. For example, Song and

Zhu [21] used TRP theory to construct a decision model for

handling the multi-stage risk decision-making problem in

cloud model. Liang et al. [22] adopted TRP theory to solve

the agricultural project selection under q-rung orthopair

fuzzy environment. Tu et al. [23] integrated TRP and

ELECTRE III to handle urban flood resilience evaluation.

Obviously, TRP theory can describe more important

information than prospect theory. However, there are few

studies on TRP in PHF-MCGDM problems. Hence, it is

valuable to employ TRP to solve PHF-MCGDM problems.

In PHF-MCGDM, different criteria usually have dif-

ferent impacts on the decision results. In other words,

different criteria should be assigned with different weights.

To derive criteria weights, many approaches have been

designed, such as analytic hierarchy process (AHP) [24]

and best–worst method (BWM) [25]. However, AHP and

BWM have common drawbacks of numerous comparisons

and low consistency. To remedy these drawbacks, Pamucar

et al. [26] proposed a weight determination approach,

namely defining interrelationships between ranked criteria

(DIBR), which relies on the preferences of DMs about

relations between adjacent criteria to derive criteria

weights. Compared with AHP and BWM, DIBR approach

can reduce pairwise comparisons between criteria and

improve the consistency of results. However, the classical

DIBR approach uses crisp numbers to show DMs’ prefer-

ences about the importance of criteria, which cannot model

DMs’ uncertain assessments. To address this issue, many

studies have fused uncertain information with DIBR

approach. For example, Tešić et al. [27] integrated rough

set into DIBR to develop rough DIBR (R-DIBR) approach

and applied it to select an anti-tank missile system. Given

the merit of fuzzy set, Pamucar et al. [28] extended DIBR

to fuzzy environment and presented fuzzy DIBR (F-DIBR)

approach. Although these extensions of DIBR employ

fuzzy sets or rough numbers to show DMs’ preferences,

they cannot accurately show the uncertainty information.

For instance, when comparing the criteria ‘‘environment’’

with ‘‘economy’’ in sustainable building material selection,

the DM may think the relative weight of ‘‘environment’’ is

0.2 with a ten percent probability and 0.3 with a ninety

percent probability. Clearly, previous DIBR approaches

cannot handle this type of uncertain information provided

by the DM. Given that PHFSs can effectively contain

different opinions and the probability distribution of these

opinions, it is very meaningful to combine DIBR approach

with PHFSs for determining the criteria weights in

MCGDM problems.

In PHF-MCGDM, it is almost impossible to have a

homogeneous group formed by DMs whose experiences,

attitudes, and knowledge are the same. For that reason, the

effects of DMs’ opinions on the final decision should be

different, which implies that different DMs should be

assigned with different weights. Therefore, how to derive

the weights of DMs is an urgent problem for PHF-

MCGDM. The similarity-based approach [29, 30] is very

effective in determining DMs’ weights, which relies on the

similarity between DMs’ opinions and the collective

evaluation to derive DMs’ weights. Therefore, how to

measure the similarity between DMs’ opinions and the

collective evaluation is important for implementing the

similarity-based approach. In general, if one set of data is

closer to another set of data, the correlation coefficient

(CC) between them is likely to be greater. On the contrary,

the more different the two sets of data are, the smaller the

correlation coefficient will be. In other words, the CC can

reflect the approximation of the data to some extent.

Therefore, it is very effective to combine CC with the

similarity-based approach to determine DMs’ weights. The

CC has been extended to the probabilistic hesitant fuzzy

environment. For example, Song et al. [31] defined the CC

based on the mean value of PHFS, but it will be equal to

one as long as the mean values of two different PHFSs are

equal. In addition, this CC will produce invalid calculation

results when each PHFS contains only one PHFE. Subse-

quently, Liu and Guan [32] proposed a mix CC considering

the average, variance, and length ratio of PHFS, but it is

still inefficient in dealing with the situation that both two

PHFSs have only one PHFE. To avoid the shortcomings of

Song et al.’s CC and the mix CC proposed by Liu and

Guan, Zhang et al. [33] presented the CC of PHFS based on

the closeness coefficient and demonstrated the validity of

this CC by an example of an investment decision problem.

It is worth mentioning that some scholars [34] have pointed

out that the CC for HFSs should have certain degree of

hesitant rather than just a fixed value as the HFSs are

hesitant and not precise. Inspired by this, the CC between

PHFSs also should be hesitant and not just a single value.

Specifically, since there may be many possible values for

the degree of membership degree of an object in a PHFS,

the CC should describe the correlation between different

PHFSs in terms of a set of different values with their

respective probabilities. However, all the above existing

CCs for PHFS select a single value to show the correlation

between two PHFSs, which cannot reflect the hesitancy of

original data. To address this issue, the novel probabilistic

hesitant fuzzy correlation coefficient (NPHFCC) is devel-

oped in this paper to measure the correlation between two

PHFSs from the viewpoint of hesitancy, which means the
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proposed CC consists of a series of possible values and

their probabilities. In addition, the NPHFCC ensures the

calculation result is equal to one if and only if the two

PHFSs are the same, and remains valid when each PHFS

contains only one PHFE. Therefore, the NPHFCC can not

only inherit the merit of Zhang et al.’s CC, but also over-

come the flaws of previous CCs. Given this advantage of

NPHFCC, it can be combined with the similarity-based

approach to derive DMs’ weights in PHF-MCGDM prob-

lems, and provides the necessary support for the proposed

MCGDM method.

According to the aforementioned discussion, this paper

aims to propose a novel PHF-MCGDM method that can

fully describe DMs’ ambiguous and hesitant preferences

for the importance of criteria and reflect the impacts of

DMs’ irrational behaviors. The motivation for the novel

PHF-MCGDM method can be listed as follows:

(1) Most existing CCs [31–33] of PHFSs are expressed

as single values, which cannot reflect the hesitancy

of original data.

(2) The classical DIBR approach [26] adopts crisp

numbers to express the preferences of DMs about

criteria weights, which cannot deal with uncertain

information that exists in reality. Although some

previous studies [27, 28] have combined fuzzy sets

or rough numbers with DIBR, they still cannot

adequately show preferences with high uncertainty.

(3) Some existing PHF-MCGDM methods [15–17]

depict the impacts of DMs’ irrational behaviors

from SPR, which leads to information loss.

To address these key issues, the PHF-DIBR-TRP

method is designed to solve MCGDM problems. First, the

probabilistic hesitant fuzzy DIBR (PHF-DIBR) approach is

developed to determine criteria weights, which can assure

that DMs’ preferences about the importance of criteria are

adequately expressed. Second, the NPHFCC is defined to

conquer the flaws of the existing CCs and combined with

the similarity-based approaches to derive the weights of

DMs. Moreover, the expected values of alternatives are

computed to get the order of alternatives with the aid of

TRP. In the end, an example of the sustainable building

material selection is presented to prove the availability of

the proposed method, while the comparative analysis is

used to prove the merit of the proposed method. In a

summary, the contributions of this paper contain:

(1) The NPHFCC is developed to measure the correla-

tion relationship between two PHFSs from the

viewpoint of hesitancy, which is characterized by a

series of possible values with their own probabilities

to reflect the hesitancy of original data.

(2) The PHF-DIBR approach is proposed to determine

criteria weights under each DM, thus ensuring that

DMs’ ambiguous and hesitant preferences can be

adequately described. Meanwhile, the PHF-DIBR

approach reduces pairwise comparisons between

criteria and improves the consistency of results.

(3) In the procedure of the proposed method, the

expected values of alternatives are computed on

the basis of TRP theory, which can capture DMs’

psychological behavior effects in a comprehensive

way.

The framework of this paper includes: in Sect. 2, some

basic knowledge about PHFS, TRP theory and DIBR

approach are recalled. In Sect. 3, the NPHFCC is defined to

remedy the shortcoming of the existing CCs. In Sect. 4, a

novel MCGDM method is proposed on the basis of PHF-

DIBR approach and TRP theory. Section 5 presents an

application of the proposed method into an illustrative

case. Additionally, the sensitivity and comparison analyses

prove the merit of the proposed method. In Sect. 6, some

conclusions are given.

2 Preliminaries

In this section, we recall some basic knowledge of PHFS,

TRP theory and DIBR approach.

2.1 Some Concepts About PHFS

Definition 1 [5] Let X be a reference set, a PHFS is

expressed as:

H ¼ hx; hxðpÞijx 2 Xf g; ð1Þ

where hxðpÞ ¼ fckxðpkxÞjk ¼ 1; 2; . . .;#hxg is a PHFE, pkx is

the probability of membership degree ckx , and #hx is the

total number of elements ckxðpkxÞ in hxðpÞ. Additionally,

0� pkx � 1 and
P#hx

k¼1 p
k
x ¼ 1.

For convenience, we denote the set hxðpÞ ¼ fckxðpkxÞjk ¼
1; 2; . . .;#hxg as hðpÞ ¼ fckðpkÞjk ¼ 1; 2; . . .;#hg. Note
that the membership degrees in a PHFE are usually out of

order. To facilitate the calculation, all membership degrees

of the PHFE hðpÞ are arranged in an increasing order, and

ck is the kth smallest membership degree in hðpÞ.
Moreover, the complement of hðpÞ is denoted as

ðhðpÞÞc ¼ f1� ckðpkÞjk ¼ 1; 2; . . .;#hg.

Definition 2 [33] Let h1ðpÞ ¼ fck1ðpk1Þjk ¼ 1; 2; . . .;#h1g
and h2ðpÞ ¼ fck2ðpk2Þjk ¼ 1; 2; . . .;#h2g be two PHFEs.

Then, the distance measure between h1ðpÞ and h2ðpÞ is

expressed as
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dðh1ðpÞ; h2ðpÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

inf
mij2C

X#h1

i¼1

X#h2

j¼1

mijðci1 � c j2Þ
2

v
u
u
t ; ð2Þ

where C ¼ mijj
P#h2

j¼1 mij ¼ pi1;
P#h1

i¼1 mij ¼ p j
2; mij � 0;

P
j

n

¼ 1#h2
P#h1

i¼1 mij ¼ 1g.

Definition 3 [5] For a PHFE hðpÞ ¼ fckðpkÞjk ¼ 1; 2;

. . .;#hg, its score function and deviation function are

expressed as respectively

sðhðpÞÞ ¼
X#h

k¼1

pkck; ð3Þ

vðhðpÞÞ ¼
X#h

k¼1

pkðck � sðhðpÞÞ2: ð4Þ

By using Eqs. (3) and (4), the order of two PHFEs can be

obtained. For two PHFEs h1ðpÞ and h2ðpÞ, if sðh1ðpÞÞ[
sðh2ðpÞÞ, then h1ðpÞ[h2ðpÞ; if sðh1ðpÞÞ¼sðh2ðpÞÞ and

vðh1ðpÞÞ\vðh2ðpÞÞ, then h1ðpÞ[h2ðpÞ; if sðh1ðpÞÞ¼
sðh2ðpÞÞ and vðh1ðpÞÞ¼vðh2ðpÞÞ, then h1ðpÞ approxh2ðpÞ.

To decrease the complexity of aggregation and calcu-

lation, Lin et al. [35] developed a normalization algorithm

to obtain normalized probabilistic hesitant fuzzy element

(NPHFE).

Algorithm 1 [35]

Input: n PHFEs hjðpÞ ðj ¼ 1; 2; . . .; nÞ, where

hjðpÞ ¼ fckj ðpkj Þjk ¼ 1; 2; . . .;#hjg.
Output: n NPHFEs ~hjðpÞ ðj ¼ 1; 2; . . .; nÞ, where ~hjðpÞ

¼ f~ckj ð~pkÞjk ¼ 1; 2; . . .; lg.
Step1. Let k ¼ 1, sum ¼ 0 and n empty sets ~hjðpÞ ¼

fg ðj ¼ 1; 2; . . .; nÞ.
Step2. Compare the probabilities pkj of elements ckj ðj ¼

1; 2; . . .; nÞ in the kth position of each hjðpÞ, and let

~pk ¼ min
j
fpkj g.

Step3. Let j ¼ 1.

Step4. If pkj [ ~pk, then the element ckj ðpkj Þ in hjðpÞ is

divided into two elements ckj ð~pkÞ and ckj ðpkj � ~pkÞ. ckj ð~pkÞ is
the input to ~hjðpÞ, named as ~ckj ð~pkÞ, while ckj ðpkj � ~pkÞ is

used to replace the original element in the kth position of

hjðpÞ. If pkj ¼ ~pk, ckj ð~pkÞ is the input to ~hjðpÞ, named as

~ckj ð~pkÞ, while ckþ1
j ðpkþ1

j Þ is used to replace the original

element in the kth position of hjðpÞ.
Step5. If j\n, let j ¼ jþ 1 and turn to Step 4.

Otherwise, turn to the next step.

Step6. Calculate sum ¼ sumþ ~pk.
Step7. Determine that sum is smaller than or equal to 1.

If sum ¼ 1, turn to the next step; otherwise, let k ¼ kþ 1,

and return to Step 2.

Step8. Output ~hjðpÞ ðj ¼ 1; 2; . . .; nÞ as NPHFEs.
Step9. End.

Example 1 For three PHFEs h1ðpÞ ¼ f0:2 ð0:6Þ; 0:6 ð0:
4Þg, h2ðpÞ ¼ f0:3 ð0:4Þ; 0:4 ð0:6Þg and h3ðpÞ ¼ f0:5 ð1Þg,
we can use Algorithm 1 to obtain the corresponding

NPHFEs, denoted as ~h1ðpÞ ¼ f0:2 ð0:4Þ; 0:2 ð0:2Þ;
0:6 ð0:4Þg, ~h2ðpÞ ¼ f0:3 ð0:4Þ; 0:4 ð0:2Þ; 0:4 ð0:4Þg and
~h3ðpÞ ¼ f0:5 ð0:4Þ; 0:5 ð0:2Þ; 0:5 ð0:4Þg.
As can be seen from Example 1, NPHFEs do not change

the original information and ensure that the membership

degrees of the same positions of NPHFEs have same

probabilities.

Definition 4 [5, 36] For a group of PHFEs h1ðpÞ;
h2ðpÞ; . . .; hnðpÞ, in which hjðpÞ ¼ fckj ðpkj Þjk ¼ 1; 2; . . .;

#hjg for 8j 2 f1; 2; . . .; ng, and a[ 0. Then

(1) h1ðpÞ � h2ðpÞ � � � � � hnðpÞ ¼ 1�
Qn

j¼1 ð1� ~ckj Þð~pkÞjk ¼ 1;
n

2; . . .; lg,
(2) h1ðpÞ � h2ðpÞ � � � � � hnðpÞ ¼

Qn
j¼1 ~c

k
j ð~pkÞjk ¼ 1;

n

2; . . .; lg,
(3) ah1ðpÞ ¼ f1� ð1� ck1Þ

aðpk1Þjk ¼ 1; 2; . . .;#h1g,
(4) ðh1ðpÞÞa ¼ fðck1Þ

aðpk1Þjk ¼ 1; 2; . . .;#h1g.

2.2 TRP Theory

TRP theory [20] holds that people’s psychological per-

ceived values are determined by three different reference

points, including SQ, MR, and G. In TRP theory, three

points divide the psychological perceived value x into four

regions: failure (x\MR), loss (MR� x\SQ), gain

(SQ� x\G), and success (x�G) [35], while the psycho-

logical perceived values are different in four regions.

In risk decision problems, avoiding failure is the most

important thing, achieving success is the second most

important thing, and loss reduction is the third most

important thing, while obtaining gain has the least influ-

ence. Thus, DMs are risk-seeking in failure and gain

regions, while they are risk-averse in loss and success

regions. According to the above analysis, the value func-

tion of TRP is double-S shape [37], as shown in Fig. 1.

In Fig. 1, SQ is set as the coordinate origin, and VðxÞ
denotes the value function. In the first quadrant, the TRP

value function is composed of concave part of the gain and

convex part of the success. In the third quadrant, the TRP

value function is composed of concave part of the failure

and convex part of the loss. It is worth noting that the value

function of TRP in the third quadrant is more skewed than

it in the first quadrant. The reasons for the above results are

as follows: (1) if facing the failure, people are willing to

take risks for conquering failure. Analogously, when

locating in the gain region, people are willing to take risks
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for achieving goal. (2) If locating in the loss and success

region, people are afraid to face failure or fail to achieve

their goals, which makes they dislike taking risks.

2.3 DIBR Approach

To determine criteria weights, the DIBR approach is pro-

posed by Pamucar et al. [26]. This approach relies on the

preference comparisons between criteria to derive the

importance of criteria. In the following, we introduce the

process of this approach.

(a) Determine n criteria c1; c2; . . .; cn.
(b) Rank the importance of criteria according to the

DM’s preferences, and the ranking result is

c1 [ c2 [ � � � [ cn.

(c) Assess the relative importance between adjacent

criteria through the DM’s preferences, and the corre-

sponding assessments are expressed in form of a group of

crisp numbers that denote as sð1;2Þ; sð2;3Þ; . . .; sðn�1;nÞ; sð1;nÞ.
For example, the crisp number sð1;2Þ represents the value of
the weight coefficient of c1 relative to the weight coeffi-

cient of c2. Meanwhile, these crisp numbers should satisfy

the condition 0\sð1;2Þ; sð2;3Þ; . . .; sðn�1;nÞ; sð1;nÞ � 0:5.

(d) Let the weight vector of criteria be

ðw1; w2; . . .;wnÞT , in which the weight coefficient wj meets

wj � 0 and
Pn

j¼1 wj ¼ 1. Then according to the above

description, derive the relations among the weight coeffi-

cients of criteria:

w1

w2

¼
1� sð1;2Þ
sð1;2Þ

; ð5Þ

w2

w3

¼
1� sð2;3Þ
sð2;3Þ

; ð6Þ

wn�1

wn
¼

1� sðn�1;nÞ
sðn�1;nÞ

; ð7Þ

w1

wn
¼

1� sð1;nÞ
sð1;nÞ

: ð8Þ

(e) With the conditions that
Pn

j¼1 wj ¼ 1, derive criteria

weight coefficients by the following equations.

w1 ¼
1

1þ
Pn�1

s¼1

Qs

s0¼1
sðs0 ;s0þ1ÞQs

s0¼1
ð1�sðs0 ;s0þ1ÞÞ

; ð9Þ

wj0 ¼
Qj0�1

s0¼1sðs0;s0þ1Þ
Qj0�1

s0¼1 ð1�sðs0;s0þ1ÞÞ
w1

¼
Qj0�1

s0¼1sðs0;s0þ1Þ
Qj0�1

s0¼1 ð1�sðs0;s0þ1ÞÞ 1þ
Pn�1

s¼1

Qs

s0¼1
sðs0 ;s0þ1ÞQs

s0¼1
ð1�sðs0 ;s0þ1ÞÞ

� �; j0 ¼2; 3;...;n:

ð10Þ

(f) Use the derived weight coefficients w1 and wn to

determine the value s0ð1;nÞ.

s0ð1;nÞ ¼
wn

w1 þ wn
: ð11Þ

Then we can calculate the deviation between s01;n and

s1;n.

deðsð1;nÞ; s0ð1;nÞÞ ¼ 1�
minfsð1;nÞ; s0ð1;nÞg
maxfsð1;nÞ; s0ð1;nÞg

 !

: ð12Þ

deðsð1;nÞ; s0ð1;nÞÞ is used to justify whether the derived cri-

teria weight coefficients meet the preferences of DM. If

deðsð1;nÞ; s0ð1;nÞÞ � 0:1, it indicates that the preferences of

DM are satisfied. If deðsð1;nÞ; s0ð1;nÞÞ[ 0:1, the relative

relations between criteria weight coefficients need to be

adjusted.

3 The CC for PHFSs

In this section, we analyse the shortcoming of previous

CCs of PHFS, and define NPHFCC to prepare for the

construction of a decision model.

3.1 The Existing CCs and Their Drawbacks

At present, some scholars [31–33] have given the CCs of

PHFS to measure the correlation between two PHFSs,

which are shown as:

Let H1 ¼ fh1jðpÞjj ¼ 1; 2; . . .; ng and H2 ¼ fh2jðpÞjj ¼
1; 2; . . .; ng be two PHFSs on the fixed set

Fig. 1 The tri-reference point value function
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X ¼ fxjjj ¼ 1; 2; . . .; ng, in which h1jðpÞ ¼ fck1jðpk1jÞjk ¼
1; 2; . . .;#h1jg and h2jðpÞ ¼ fck2jðpk2jÞjk ¼ 1; 2; . . .;#h2jg.

(1) Song et al.’s CC [31] can be expressed as:

qSðH1; H2Þ ¼

Pn
j¼1 sðh1jðpÞÞ � 1

n

Pn
j¼1 sðh1jðpÞÞ

� �
� sðh2jðpÞÞ � 1

n

Pn

j¼1

sðh2jðpÞÞ
 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 sðh1jðpÞÞ � 1
n

Pn
j¼1 sðh1jðpÞÞ

� �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 sðh2jðpÞÞ � 1
n

Pn
j¼1 sðh2jðpÞÞ

� �2
r :

ð13Þ

(2) Liu and Guan’s mix CC [32] is defined as:

qMðH1; H2Þ ¼ a1q
SðH1; H2Þ þ a2q

VðH1; H2Þ
þ a3q

LðH1; H2Þ; ð14Þ

where qSðH1; H2Þ, qVðH1; H2Þ and qLðH1; H2Þ denote the
mean, variance and length CC respectively, and a1, a2 and
a3 are their corresponding weights that meet a1 þ a2 þ
a3 ¼ 1 and 0� a1; a2; a3 � 1. Here, qSðH1; H2Þ is calcu-
lated according to Eq. (13). The calculation formulas of

qVðH1; H2Þ and qLðH1; H2Þ are as follows:

qVðH1; H2Þ ¼
Pn

j¼1 vðh1jðpÞÞ � 1
n

Pn
j¼1 vðh1jðpÞÞ

� �
� vðh2jðpÞÞ � 1

n

Pn
j¼1 vðh2jðpÞÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 vðh1jðpÞÞ � 1
n

Pn
j¼1 vðh1jðpÞÞ

� �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 vðh2jðpÞÞ � 1
n

Pn
j¼1 vðh2jðpÞÞ

� �2
r ;

ð15Þ

qLðH1; H2Þ ¼
Pn

j¼1 1� 1
#h1j

� 1
n

Pn
j¼1 1� 1

#h1j

� �� �
� 1� 1

#h2j
� 1

n

Pn
j¼1 1� 1

#h2j

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 1� 1
#h1j

� 1
n

Pn
j¼1 1� 1

#h1j

� �� �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 1� 1
#h2j

� 1
n

Pn
j¼1 1� 1

#h2j

� �� �2
r :

ð16Þ

(3) Zhang et al.’s CC [33] is calculated as:

qZðH1; H2Þ ¼
Pn

j¼1 dðh1jðpÞ; ðh2jðpÞÞ
cÞ �

Pn
j¼1 dðh1jðpÞ; h2jðpÞÞP

j¼1 dðh1jðpÞ; ðh2jðpÞÞ
cÞ þ

Pn
j¼1 dðh1ðpÞ; h2jðpÞÞ

;

ð17Þ

where dðh1jðpÞ; ðh2jðpÞÞcÞ represents the distance measure

between h1jðpÞ and ðh2jðpÞÞc, and ðh2jðpÞÞc is the comple-

ment of h2jðpÞ.
Although the above CCs have been applied to cluster

analysis and decision problems [31–33], it sometimes

provides the counterintuitive result. Their deficiencies are

shown through the following examples.

Example 2 For two PHFSs H1 ¼ fhx1; f0:3 ð0:5Þ;
0:5 ð0:5Þgi; hx2; f0:2 ð0:2Þ; 0:3 ð0:6Þ; 0:4 ð0:2Þgig and

H2 ¼ fhx1; f0:1 ð0:5Þ; 0:7 ð0:5Þgi; hx2; f0:1 ð0:2Þ; 0:3
ð0:6Þ; 0:5 ð0:2Þgig, we apply Song et al.’s CC to obtain

qSðH1; H2Þ ¼ 1.

It is clear that H1 6¼ H2, which indicates the CC cannot

be equal to one. Therefore, the calculated result obtained

by Song et al.’s CC is unreasonable.

Example 3 For two PHFSs H3 ¼ fhx1; f0:3 ð1Þgig and

H4 ¼ fhx1; f0:9 ð1Þgig, we apply Song et al.’s CC and the

mix CC proposed by Liu and Guan to measure the corre-

lation between H3 and H4. Then we can find the term

sðh1jðpÞÞ � 1
n

Pn
j¼1 sðh1jðpÞÞ ¼ sðh2jðpÞÞ � 1

n

Pn
j¼1 sðh2jðpÞÞ

¼ 0. This causes that the Eqs. (13)–(16) are meaningless

when calculating the CC between H3 and H4. Therefore, qS

and qM are invalid when each PHFS contains only one

PHFE.

The main reason for the above drawback is that the Song

et al.’s CC and the mix CC uses statistical characterization

of data, such as mean, variance and length, to represent a

PHFS, which may lose some important information.

Additionally, when using Zhang et al.’s CC to measure

correlations among four PHFSs in Examples 2 and 3, we

can obtain qZðH1; H2Þ ¼ 0:4043 and qZðH3; H4Þ ¼ �0:5.

Although Zhang et al.’s CC can avoid the occurrence of

invalid results and counter-intuitive, it adopts a single

value to express the correlation between two PHFSs, which

cannot reflect the hesitancy of original data.

3.2 NPHFCC

According to the ideas of Liu [38] and Liao [34], we

propose the NPHFCC to overcome the drawbacks of

existing CCs, as follows:

Definition 5 Let H1 ¼ fh1jðpÞjj ¼ 1; 2; . . .; ng and H2 ¼
fh2jðpÞjj ¼ 1; 2; . . .; ng be two PHFSs on the fixed set

X ¼ fxjjj ¼ 1; 2; . . .; ng, in which h1jðpÞ ¼ fck1jðpk1jÞjk ¼
1; 2; . . .;#h1jg and h2jðpÞ ¼ fck2jðpk2jÞjk ¼ 1; 2; . . .;#h2jg.
By using Algorithm 1 to handle h11ðpÞ; h12ðpÞ; . . .;
h1nðpÞ; h21ðpÞ; h22ðpÞ; . . .; h2nðpÞ, two groups of NPHFEs

~H1 ¼ f ~h1jðpÞjj ¼ 1; 2; . . .; ng and ~H2 ¼ f ~h2jðpÞjj ¼ 1; 2;

. . .; ng are derived, in which ~h1jðpÞ ¼ f~ck1jð~pkÞjk ¼
1; 2; . . .; lg and ~h2jðpÞ ¼ f~ck2jð~pkÞjk ¼ 1; 2; . . .; lg. Then

the NPHFCC between H1 and H2 is expressed as:

qNðH1; H2Þ ¼ fCCkð~pkÞjk ¼ 1; 2; . . .; lg; ð18Þ

where

CCk¼

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

�
Xn

j¼1
min

~c2j2 ~h2jðpÞ
j~ck1j�~c2jjþ

Xn

j¼1
min

~c1j2 ~h1jðpÞ
j~ck2j�~c1jj

 !

Xn

j¼1
min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Xn

j¼1
min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Xn

j¼1
min

~c2j2 ~h2jðpÞ
j~ck1j�~c2jjþ

Xn

j¼1
min

~c1j2 ~h1jðpÞ
j~ck2j�~c1jj

 !

; k¼1; 2;...;l:

ð19Þ

Next, the score of NPHFCC is proposed to rank two

NPHFCCs.

Definition 6 Let qN ¼ fCCkð~pkÞjk ¼ 1; 2; . . .; lg be a

NPHFCC, and its score is expressed as:
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scoreðqNÞ ¼
Xl

k¼1

CCk ~pk: ð20Þ

According to the score of NPHFCC, we give a

comparison method to rank two NPHFCCs qN1 and qN2 :
(1) if scoreðqN1 Þ[ scoreðqN2 Þ, it implies qN1 is bigger than

qN2 , denoted as qN1 [ qN2 ; (2) If scoreðqN1 Þ ¼ scoreðqN2 Þ, it
implies qN1 is approximate to qN2 , denoted as qN1 	 qN2 .

According to Definition 5, the properties about

NPHFCC are as follows:

Property 1 Let H1 ¼ fh1jðpÞjj ¼ 1; 2; . . .; ng and H2 ¼
fh2jðpÞjj ¼ 1; 2; . . .; ng be two PHFSs on the fixed set

X ¼ fxjjj ¼ 1; 2; . . .; ng. Then qNðH1; H2Þ represents the

NPHFCC between H1 and H2, and it satisfies the following

five properties:

(P1) �1� scoreðqNðH1; H2ÞÞ� 1;

(P2) qNðH1; H2Þ ¼ f1 ð1Þg if and only if H1 ¼ H2;

(P3) qNðH1; H2Þ ¼ f�1 ð1Þg if and only if H1 ¼ ðH2Þc,
where ðH2Þc ¼ fðh2jðpÞÞcjj ¼ 1; 2; . . .; ng and

ðh2jðpÞÞc ¼ f1� ck2jðpk2jÞjk ¼ 1; 2; . . .;#h2jg;
(P4) qNðH1; H2Þ ¼ qNðH2; H1Þ;
(P5) qNðH1; H2Þ ¼ 0

0
ð1Þ

� �
, H1 ¼ H2 ¼ ðH2Þc.

Proof (P1) It is easy that we have

0�

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞj

Pn

j¼1

þ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�ð1�~c1jÞj
 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !�1;

�1�
�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !�0:

Then, we can obtain �1�CCk � 1ðk ¼ 1; 2; . . .;
lÞ.Thus, according to Eq. (20), we can easily derive

�1� scoreðqNðH1; H2ÞÞ� 1.

(P2) If H1 ¼ H2, we have qNðH1; H2Þ ¼ f1 ð1Þg. Con-
versely, if qNðH1; H2Þ ¼ f1 ð1Þg, we have

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !¼1:

Then we can derive

Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j � ~c2jj þ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j � ~c1jj ¼ 0:

Since j~ck1j � ~c2jj � 0 and j~ck2j � ~c1jj � 0, we can derive

~ck1j ¼ ~ck2j; k ¼ 1; 2; . . .; l; j ¼ 1; 2; . . .; n:

It implies that ~h1jðpÞ ¼ ~h2jðpÞ. Therefore we can con-

clude that H1 ¼ H2 when qNðH1; H2Þ ¼ f1 ð1Þg.
(P3) If H1 ¼ ðH2Þc, we have

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

¼

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�1þ~c1jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j1�~ck1j�ð1�~c1jÞj

 !

�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�ð1�~c1jÞjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j1�~ck1j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�1þ~c1jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j1�~ck1j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�ð1�~c1jÞjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j1�~ck1j�~c1jj
 !

¼
�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�ð1�~c1jÞjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j1�~ck1j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c1jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j1�~ck1j�~c1jj

 !

¼�1:

Therefore we can obtain qNðH1; H2Þ ¼ f�1 ð1Þg. Con-
versely, if qNðH1; H2Þ ¼ f�1 ð1Þg, we have

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !¼�1:

Then we can derive

Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j � ð1� ~c2jÞj þ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j � ð1� ~c1jÞj

¼ 0:

Since j~ck1j � ð1� ~c2jÞj � 0 and j~ck2j � ð1� ~c1jÞj� 0, we

can derive

h1jðpÞ ¼ ðh2jðpÞÞc:

Therefore we can conclude that H1 ¼ ðH2Þc when

qNðH1; H2Þ ¼ f�1 ð1Þg.
(P4) It is straightforward.

(P5) If h1jðpÞ ¼ h2jðpÞ ¼ f0:5 ð1Þg for 8j ¼ 1; 2; . . .; n,

then we can derive h1jðpÞ ¼ h2jðpÞ ¼ ðh2jðpÞÞc and

H1 ¼ H2 ¼ ðH2Þc. Therefore, there must be

Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j � ð1� ~c2jÞj þ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j � ð1� ~c1jÞj
 !

�
Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j � ~c2jj þ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j � ~c1jj
 !

¼ 0:

Subsequently, we can obtain the calculation result by

Eq. (19), as follows:

qNðH1; H2Þ ¼
0

0
ð1Þ

	 


:

Moreover, if qNðH1; H2Þ ¼ 0
0
ð1Þ

� �
, we can obtain the

simultaneous equations, as follows:
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Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

�
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

¼0;

Pn
j¼1 min

~c2j2 ~h2jðpÞ
j~ck1j�ð1�~c2jÞjþ

Pn
j¼1 min

~c1j2 ~h1jðpÞ
j~ck2j�ð1�~c1jÞj

 !

þ
Pn

j¼1 min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Pn

j¼1 min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

¼0:

8
>>>><

>>>>:

By solving above simultaneous equations, we have

Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j�ð1�~c2jÞjþ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j�ð1�~c1jÞj
 !

¼
Xn

j¼1

min
~c2j2 ~h2jðpÞ

j~ck1j�~c2jjþ
Xn

j¼1

min
~c1j2 ~h1jðpÞ

j~ck2j�~c1jj
 !

¼0:

Further, we can derive that h1jðpÞ ¼ h2jðpÞ ¼ ðh2jðpÞÞc
for 8j ¼ 1; 2; . . .; n, and H1 ¼ H2 ¼ ðH2Þc. At this point, it
can be sure that h1jðpÞ ¼ h2jðpÞ ¼ f0:5ð1Þg.

Remark 1 According to (P5), the Eq. (19) produces 0/0,

which by convention is 1. Therefore, we stipulate that

CCk ¼ 0
0
¼ 1.

The NPHFCC is used again to measure the correlation

relationships among four PHFSs in Examples 1 and 2, the

calculation results are as follows:

qNðH1; H2Þ ¼ f�0:1111 ð0:2Þ; 0 ð0:3Þ; 0:6667 ð0:2Þ;
0:8889 ð0:3Þg; qNðH3; H4Þ ¼ f�0:5 ð1Þg:

It is clearly that there are some certain gaps between H1

and H2, which means the NPHFCC is more reasonable than

Song et al.’s CC. Meanwhile, the NPHFCC can measure

the correlation between H3 and H4, which implies the

NPHFCC can handle the situation that each PHFS contains

one PHFE and remedy the flaws of Song et al.’ CC and the

mix CC proposed by Liu and Guan. Additionally, the

NPHFCC can be characterized by a series of possible

values with different probabilities instead of a single value,

which indicates it can more effectively reflect the hesitancy

of the original data than the three existing CCs.

4 The Proposed MCGDM Method Integrated
PHF-DIBR Approach and TRP Theory

To consider fully the impact of DMs’ irrational behavior

and the preferences of DMs about criteria weights, this

section proposes a new MCGDM method by integrating

PHF-DIBR, TRP, and NPHFCC. First, the PHF-DIBR

approach is developed to derive the criteria weights under

different DMs. Second, we can divide the criteria values

into four regions based on the TRP theory and determine

the individual expected value of each alternative. In addi-

tion, DMs’ weights are determined by adopting the

similarity-based approach [29, 30] and NPHFCC. Finally,

the total expected values of alternatives are calculated to

rank alternatives.

4.1 Problem Description

Suppose that a PHF-MCGDM problem involves m alter-

natives X ¼ fxiji ¼ 1; 2; . . .;mg, n criteria C ¼ fcjjj ¼
1; 2; . . .; ng, and r DMs E ¼ fekjk ¼ 1; 2; . . .; rg. Let

Mk ¼ ðhkijðpÞÞm�n be a decision matrix given by DM ek, in

which the PHFE hkijðpÞ ¼ fckijkðpkijkÞjk ¼ 1; 2; . . .;#hkijg
denotes the assessment of alternative xi with respect to the

criterion cj under the DM ek. The decision matrix Mk is

shown as:

Mk ¼ ðhkijðpÞÞm�n

¼

x1
x2
..
.

xm

hk11ðpÞ hk12ðpÞ � � � hk1nðpÞ
hk21ðpÞ hk22ðpÞ � � � hk2nðpÞ

..

. ..
. . .

. ..
.

hkm1ðpÞ hkm2ðpÞ � � � hkmnðpÞ

2

6
6
6
4

3

7
7
7
5

c1 c2 ��� cn

;

k ¼ 1; 2; . . .; r:

4.2 The Calculation of Criteria Weights Under Each

DM by PHF-DIBR Approach

In this sub-section, the PHF-DIBR approach is developed

to derive criteria weights under different DMs, and its

process is as follows:

(a) Invite DM ek ðk ¼ 1; 2; . . .; rÞ to give the order of

significances of criteria, and the rank of all criteria is

c1 [ c2 [ � � � [ cn, where ‘‘[ ’’ represents criterion

cs ðs ¼ 1; 2; . . .; n� 1Þ is more important than criterion

csþ1.

(b) Assess the relative importance between adjacent

criteria through the preferences of DM ek ðk ¼ 1; 2; . . .; rÞ,
and the corresponding assessments are expressed as a

group of PHFEs that denotes as hð1;2Þ�kðpÞ; hð2;3Þ�k

ðpÞ; . . .; hðn�1;nÞ�kðpÞ; hð1;nÞ�kðpÞ. For example, when

comparing the criterion c1 with c2, the DM ek provides a

PHFE

hð1;2Þ�kðpÞ ¼ fckð1;2Þ�kðpkð1;2Þ�kÞjk ¼ 1; 2; . . .;#hkð1;2Þg,
where the membership degree ckð1;2Þ�kð0\ckð1;2Þ�k � 0:5Þ
represents the value of the weight coefficient of c2 relative

to the weight coefficient of c1, and pkð1;2Þ�k is its corre-

sponding probability.

(c) Derive the following relations among the weight

coefficients of criteria under DM ek ðk ¼ 1; 2; . . .; rÞ
according the previous description:
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wð1Þ�k

wð2Þ�k

¼
1� cð1;2Þ�k

cð1;2Þ�k

; 8cð1;2Þ�k 2 hð1;2Þ�kðpÞ; ð21Þ

wð2Þ�k

wð3Þ�k
¼

1� cð2;3Þ�k

cð2;3Þ�k

; 8cð2;3Þ�k 2 hð2;3Þ�kðpÞ; ð22Þ

wðn�1Þ�k

wðnÞ�k
¼

1� cðn�1;nÞ�k

cðn�1;nÞ�k

; 8cðn�1;nÞ�k 2 hðn�1;nÞ�kðpÞ;

ð23Þ
wð1Þ�k

wðnÞ�k
¼

1� cð1;nÞ�k

cð1;nÞ�k

; 8cð1;nÞ�k 2 hð1;nÞ�kðpÞ; ð24Þ

where the value wðjÞ�k denotes the weight coefficient of

criterion cj, and it meets 0�wðjÞ�k � 1 and
Pn

j¼1 wðjÞ�k

¼ 1.

(d) In view of the above relations and the sum of criteria

weight coefficients is one, n PHFEs hwð1Þ�kðpÞ; hwð2Þ�k

ðpÞ; . . .; hwðnÞ�kðpÞ ðk ¼ 1; 2; . . .; rÞ are derived by the fol-

lowing Eqs. (25) and (26), where hwðjÞ�kðpÞ ðj ¼ 1; 2; . . .; nÞ
denotes the probabilistic hesitant fuzzy weight of criterion

cj under DM ek.

hwð1Þ�kðpÞ ¼
[

cð1;2Þ�kðpð1;2Þ�kÞ 2 hð1;2Þ�kðpÞ

cð2;3Þ�kðpð2;3Þ�kÞ 2 hð2;3Þ�kðpÞ

..

.

cðn�1;nÞ�kðpðn�1;nÞ�kÞ 2 hðn�1;nÞ�kðpÞ

1

1þ
Pn�1

s¼1

Qs

s0¼1
cðs0 ;s0þ1Þ�kQs

s0¼1
ð1�cðs0 ;s0þ1Þ�kÞ

Yn�1

s¼1

pðs;sþ1Þ�k

 !
8
>><

>>:

9
>>=

>>;

¼
[

cð1;2Þ�kðpð1;2Þ�kÞ 2 hð1;2Þ�kðpÞ

cð2;3Þ�kðpð2;3Þ�kÞ 2 hð2;3Þ�kðpÞ

..

.

cðn�1;nÞ�kðpðn�1;nÞ�kÞ 2 hðn�1;nÞ�kðpÞ

wð1Þ�kðpkÞ
� �

;

ð25Þ

hwðj0Þ�kðpÞ¼
[

cð1;2Þ�kðpð1;2Þ�kÞ2hð1;2Þ�kðpÞ

cð2;3Þ�kðpð2;3Þ�kÞ2hð2;3Þ�kðpÞ

..

.

cðn�1;nÞ�kðpðn�1;nÞ�kÞ2hðn�1;nÞ�kðpÞ

Qj0

s0¼1cðs0;s0þ1Þ�k

Qj0

s0¼1ð1�cðs0;s0þ1Þ�kÞ
� �

� 1þ
Pn�1

s¼1

Qs

s0¼1
cðs0 ;s0þ1Þ�kQs

s0¼1
ð1�cðs0 ;s0þ1Þ�kÞ

� �
Yn�1

s¼1

pðs;sþ1Þ�k

 !
8
>><

>>:

9
>>=

>>;

¼
[

cð1;2Þ�kðpð1;2Þ�kÞ2hð1;2Þ�kðpÞ

cð2;3Þ�kðpð2;3Þ�kÞ2hð2;3Þ�kðpÞ

..

.

cðn�1;nÞ�kðpðn�1;nÞ�kÞ2hðn�1;nÞ�kðpÞ

wðj0Þ�kðpkÞ
� �

; j0¼2;3;...;n:

ð26Þ

(e) Calculate the PHFE h0ð1;nÞ�kðpÞ by using hwð1Þ�kðpÞ
and hwðnÞ�kðpÞ, where

h0ð1;nÞ�kðpÞ
¼

S

wð1Þ�kðpð1Þ�kÞ2hwð1Þ�k
ðpÞ

wðnÞ�kðpðnÞ�kÞ2hwðnÞ�k
ðpÞ

wðnÞ�k

wð1Þ�kþwðnÞ�k
ðpkÞ

n o

ð27Þ

By employing Algorithm 1 to handle hð1;nÞ�kðpÞ and

h0ð1;nÞ�kðpÞ, two NPHFEs ~hk1nðpÞ and ~hk1nðpÞ can be derived,

in which ~hð1;nÞ�kðpÞ ¼ f~ckð1;nÞ�kð~pkkÞjk ¼ 1; 2; . . .; lkg and

~h0ð1;nÞ�kðpÞ ¼ f~c0k
ð1;nÞ�kð~pkkÞjk ¼ 1; 2; . . .; lkg. Then the

deviation between hð1;nÞ�kðpÞ and h0ð1;nÞ�kðpÞ is calculated

by the following equation.

deðhð1;nÞ�kðpÞ; h0ð1;nÞ�kðpÞÞ ¼
Xlk

k¼1

~pkk 1�
minf~ckð1;nÞ�k; ~c

0k
ð1;nÞ�kg

maxf~ckð1;nÞ�k; ~c0kð1;nÞ�kg

 !

:

ð28Þ

If deðhð1;nÞ�kðpÞ; h0ð1;nÞ�kðpÞÞ� 0:1, it indicates that the

preferences of DM ek are satisfied. If

deðhð1;nÞ�kðpÞ; h0ð1;nÞ�kðpÞÞ[ 0:1, then the relations among

criteria weight coefficients need be refined.

4.3 The Calculation of the Individual Expected

Values of Alternatives Based on TRP Theory

When adopting TRP theory in PHF-MCGDM, all criteria

should have their own three reference points. In TRP the-

ory, SQ usually represents the current level, thus it is the

mean value of all assessments under each criterion [21, 22].

Therefore SQ can be expressed as:

SQk
j ¼

1

m
�
m

i¼1
hkijðpÞ; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; r;

ð29Þ

where SQk
j denotes the SQ point of criterion cj under DM

ek.
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MR represents the minimum requirement of DMs, and is

determined by the preferences of DMs [21, 22]. By using

the score and deviation functions of PHFE, we can obtain

the rank order hk1jðpÞ; hk2jðpÞ; . . .; hkmjðpÞ. Let hkðiÞjðpÞ be the

rank of hkijðpÞ and hkðiÞjðpÞ� hkðiþ1ÞjðpÞ. Then MR point can

be calculated as:

MRk
j ¼

1

IMR
�
IMR

i¼1
hkðiÞjðpÞ; ð30Þ

where IMR ðIMR 2 f1; 2; . . .;m� 1gÞ is adjustment coeffi-

cient, and MRk
j means the MR point of criterion cj under

DM ek.

G represents the goal of a DM, namely success, which is

determined by the preferences of DMs [21, 22]. Let hkðiÞ0jðpÞ
be the other rank of hkijðpÞ and hkðiÞ0jðpÞ� hkðiþ1Þ0jðpÞ. Then G

point can be determined as:

Gk
j ¼

1

IG
�
IG

i¼1
hkðiÞ0jðpÞ; ð31Þ

where IG ðIG 2 f1; 2; . . .;m� 1gÞ is adjustment coeffi-

cient, and Gk
j denotes the G point of criterion cj under DM

ek. Notice that these three reference points are actually

PHFEs.

By comparing hkijðpÞ with three reference points, hkijðpÞ
can be divided into four regions that contain failure

(hkijðpÞ\MRk
j ), loss (MRk

j � hkijðpÞ\SQk
j ), gain

(SQk
j � hkijðpÞ\Gk

j ), and success (hkijðpÞ�Gk
j ) regions.

According to Wang and Wang [37], the psychological

perceived value function is expressed as:

VðhkijðpÞÞ ¼

FRk
ij hkijðpÞ\MRk

j ;

LRk
ij MRk

j � hkijðpÞ\SQk
j ;

GRk
ij SQk

j � hkijðpÞ\Gk
j ;

SRk
ij hkijðpÞ�Gk

j ;

8
>>><

>>>:

ð32Þ

where FRk
ij, LR

k
ij, GR

k
ij and SRk

ij denote the psychological

perceived values of four regions, respectively.

To accurately show the comparison result between hkijðpÞ
and each reference point, we give the TRP value function

of hkijðpÞ by prospect theory [14, 39], as follows:

VðhkijðpÞÞ ¼

�v1ðdðhkijðpÞ; MRk
j ÞÞ

e1 hkijðpÞ\MRk
j ;

�ðdðhkijðpÞ; MRk
j ÞÞ

h1 MRk
j � hkijðpÞ\SQk

j ;

v2ðdðhkijðpÞ; Gk
j ÞÞ

e2 SQk
j � hkijðpÞ\Gk

j ;

ðdðhkijðpÞ; Gk
j ÞÞ

h2 hkijðpÞ�Gk
j :

8
>>><

>>>:

ð33Þ

The parameters h1, h2, e1 and e2 reflect people’ risk

attitudes in different regions. In TRP theory, people’s risk

attitudes are risk-seeking when facing the failure or gain,

thus the parameters e1 and e2 should meet 0\e1\1 and

e2 [ 1. On the contrary, if locating in the loss and success

region, people’s risk attitudes are risk aversion, which

implies the parameters h1 and h2 must satisfy h1 [ 1 and

0\h2\1. In addition, the parameters v1 and v2 are loss

sensitivity coefficient and gain sensitivity coefficient

respectively. In view of the fact that people are usually

more sensitive to losses than gains, the parameters v1 and

v2 should meet v1 [ 1� v2 [ 0.

In Eq. (33), hkijðpÞ may across two or more regions. At

this point, the probabilities of hkijðpÞ to different regions can
be expressed as:

Pk
ij ¼

PðhkijðpÞ\MRk
j Þ hkijðpÞ\MRk

j ;

PðMRk
j � hkijðpÞ\SQk

j Þ MRk
j � hkijðpÞ\SQk

j ;

PðSQk
j � hkijðpÞ\Gk

j Þ SQk
j � hkijðpÞ\Gk

j ;

PðhkijðpÞ�Gk
j Þ hkijðpÞ�Gk

j :

8
>>><

>>>:

ð34Þ

Considering hkijðpÞ ¼ fckijkðpkijkÞjk ¼ 1; 2; . . .;#hkijg is a

discrete probability distribution, we use classical proba-

bility theory to determine the probabilities of hkijðpÞ to four

regions, and the result is shown as:

Pk
ij ¼

PðhkijðpÞ\MRk
j Þ ¼

P

ckijkðpkijkÞ 2 hkijðpÞ
ckijk\sðMRk

j Þ

pkijk hkijðpÞ\MRk
j ;

PðMRk
j � hkijðpÞ\SQk

j Þ ¼
P

ckijkðpkijkÞ 2 hkijðpÞ
sðMRk

j Þ� ckijk\sðSQk
j Þ

pkijk MRk
j � hkijðpÞ\SQk

j ;

PðSQk
j � hkijðpÞ\Gk

j Þ ¼¼
P

ckijkðpkijkÞ 2 hkijðpÞ
sðSQk

j Þ� ckijk\sðGk
j Þ

pkijk SQk
j � hkijðpÞ\Gk

j ;

PðhkijðpÞ�Gk
j Þ ¼

P

ckijkðpkijkÞ 2 hkijðpÞ
ckijk � sðGk

j Þ

pkijk hkijðpÞ�Gk
j :

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

ð35Þ

Then, we can define the expected value of alternative xi
with respect to criterion cj under DM ek as:

uðhkijðpÞÞ ¼ PðhkijðpÞ\MRk
j Þ � FRk

ij

þ PðMRk
j � hkijðpÞ\SQk

j Þ � LRk
ij

þ PðSQk
j � hkijðpÞ\Gk

j Þ � GRk
ij

þ PðhkijðpÞ�Gk
j Þ � SRk

ij: ð36Þ

Finally, the expected value EVk
i of alternative xi under

DM ek is determined as:

EVk
i ¼

Xn

j¼1

sðhwðjÞ�kðpÞÞ
Pn

j¼1 sðhwðjÞ�kðpÞÞ
uðhkijðpÞÞ; ð37Þ

where sðhwðjÞ�kðpÞÞ denotes the score value of probabilistic

hesitant fuzzy weight hwðjÞ�kðpÞ.
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4.4 The Calculation of Weights of DMs

In PHF-MCGDM, it is almost impossible to have a

homogeneous group of DMs with the same experiences,

attitudes, and knowledge. For that reason, the influence of

DMs’ opinions on the final decision should be different,

which means that different DMs should be assigned with

different weights. Therefore, how to derive the weights of

DMs is an urgent problem for PHF-MCGDM. The simi-

larity-based approach [29, 30] is very effective in deter-

mining DMs’ weights, which are based on the similarity of

each DM to the collective evaluation. If the similarity is

large, then the DM has a larger weight. On the contrary, a

small weight is assigned to a DM with less similarity. Thus,

we adopt the similarity-based approach and NPHFCC to

determine DMs’ weights in PHF-MCGDMmethod, and the

procedure is shown as:

(a) The collective evaluation is taken as the mean of

DMs’ evaluations, which is calculated as:

hijðpÞ ¼
1

r
�
r

k¼1
hkijðpÞ

¼ fckijðpkijÞjk ¼ 1; 2; . . .;#hijg;
ð38Þ

where hijðpÞ denotes the collective evaluation of alternative

xi under criterion cj.

(b) The NPHFCC between the collective evaluation of

alternative xi and the opinions of DM ek can be calculated

and denoted as qNki ¼ fCCk
kið~pkkiÞjk ¼ 1; 2; . . .; lkig, where

CCk
ki¼

Pn
j¼1 min

~cij2 ~hijðpÞ
j~ckijk�ð1�~cijÞjþ

Pn
j¼1 min

~cijk2 ~hijkðpÞ
j~ckij�ð1�~cijkÞj

 !

�
Pn

j¼1 min
~cij2 ~hijðpÞ

j~ckijk�~cijjþ
Pn

j¼1 min
~cijk2 ~hijkðpÞ

j~ckij�~cijkj
 !

;

Pn
j¼1 min

~cij2 ~hijðpÞ
j~ckijk�ð1�~cijÞjþ

Pn
j¼1 min

~cijk2 ~hijkðpÞ
j~ckij�ð1�~cijkÞj

 !

�
Pn

j¼1 min
~cij2 ~hijðpÞ

j~ckijk�~cijjþ
Pn

j¼1 min
~cijk2 ~hijkðpÞ

j~ckij�~cijkj
 !

:

ð39Þ

(c) The total correlation measure between DM ek and the

collective evaluation is computed as:

CMk ¼
1

m

Xm

i¼1

scoreðqNkiÞ: ð40Þ

Clearly, a larger CMk indicates that the opinions of DM

ek are more similar to the collective evaluation.

(d) Inspired by the idea of similarity-based approach, the

DMs’ weights can be computed as:

xk ¼
1þ CMkPr

k¼1 ð1þ CMkÞ
; ð41Þ

where xk is the weight of DM ek, and it meets xk � 0 and
Pr

k¼1 xk ¼ 1.

4.5 The Calculation of Total Expected Values

of Each Alternative

According to the simplest and widely known weighted sum

model, the total expected values of alternatives can be

expressed as:

EVi ¼
Xr

k¼1

xkEV
k
i ; i ¼ 1; 2; . . .;m; ð42Þ

where EVi denotes the total expected value of alternative

xi.

Then we can rank alternatives on the basis of the order

of the total expected values and select the best one.

4.6 The Procedure of the Proposed Method

Based on the above-mentioned discussions, the procedure

of the proposed method is follows as:

Stage 1. Collect DMs’ evaluation information.

Step 1.1: Determine m alternatives fxiji ¼ 1; 2; . . .;mg,
n criteria fcjjj ¼ 1; 2; . . .; ng and r DMs fekjk ¼ 1; 2;

. . .; rg.
Step 1.2: Invite DMs to give their evaluation results of

alternatives about criteria, and use PHFS to express these

assessments, thus constructing r individual decision

matrices Mk ¼ ðhkijðpÞÞm�n .

Stage 2. Determine the weights of criteria under each

DM by PHF-DIBR approach.

Step 2.1: Each DM gives the order of the importance of

criteria by significance.

Step 2.2: Each DM provides the mutual relations

between criteria weight coefficients.

Step 2.3: Calculate the probabilistic hesitant fuzzy

weights of criteria under each DM by Eqs. (21)–(26).

Step 2.4: Test whether the obtained weights of criteria

satisfy the preferences of DMs through Eqs. (27) and (28).

If the preferences of DMs are not satisfied, then turn to step

2.2. Otherwise, turn to step 3.1.

Stage 3. Calculate the expected values of alternatives

under each DM based on TRP theory.

Step 3.1: Determine three reference points of each cri-

terion under each DM by Eqs. (29)–(31).

Step 3.2: Compare the evaluation values of alternatives

with three points to calculate the TRP value in the light of

Eq. (32).

Step 3.3: Determine the probabilities of criteria values

to each region by Eqs. (33)–(35), and calculate the

expected values of alternatives about each criterion under

each DM with the help of Eq. (36).
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Step 3.4: The individual expected values of alternatives

are computed by Eq. (37).

Stage 4. Determine the weights of DMs by similarity-

based approach and the proposed NPHFCC.

Step 4.1: Calculate the collective evaluation by using

Eq. (38).

Step 4.2: Calculate the individual NPHFCC about each

alternative by employing Eq. (39).

Step 4.3: Determine DMs’ weights through Eqs. (40)

and (41).

Stage 5. Calculate the total expected values of

alternatives.

Step 5.1: Determine the total expected values of alter-

natives based on weighted sum model and Eq. (42).

Step 5.2: The order of alternatives is consistent with the

order of their total expected values.

The process of the proposed method is shown in Fig. 2.

5 An Illustrative Example

To prove the effectiveness of the proposed method, this

section adopts it to select flooring material and conducts

the comparative analyses to prove its merit.

5.1 Background of the Case

Recently, Zhengzhou Municipal People’s Government

intends to develop an office design to renovate the interior

layout of office buildings. The choice of office flooring

plays an important role in office design. This is because the

flooring can not only provide some basic functions,

including avoiding temperature fluctuations and reducing

noise, but also meet the requirements of aesthetics and

comfort [40]. This means that the choice of office flooring

must consider the social factors that affect functionality

and comfort, which inevitably increases the complexity of

office flooring selection. It is worth mentioning that glue,

paint and other materials may be added to the flooring

during the production process, which will cause the floor to

contain harmful substances such as benzene and

formaldehyde. Once these harmful substances are released

into air, they will harm human health. Therefore, office

flooring material selection should pay attention to envi-

ronmental protection [41], which also adds to the com-

plexity. Additionally, the level of technology has a deep

impact on the performance of the flooring material, such as

improving the service life of materials and promoting the

ability of materials to withstand fire and explosion, which

indicates the technology cannot be ignored in office

flooring material selection [42]. Furthermore, to save

government expenditures, the initial cost and subsequent

maintenance cost of flooring materials need to be

emphasized, which implies that office flooring materials

need to be evaluated from the perspective of economy [43].

According to the above description, it can be concluded

that the relevant evaluation criteria mainly include econ-

omy (c1), environment (c2), society (c3) and technology

(c4). Subsequently, there are a variety of flooring types that

can be identified as alternatives through market research,

such as ceramic tiles (x1), terrazzo flooring (x2), solid

hardwood flooring (x3), luxury vinyl planks (x4), bamboo

flooring (x5), and linen flooring (x6). In view of the above

complexities, the government department decides to deal

with office flooring material selection by using the scien-

tific MCGDM model. Then a group of experts that contain

government official (e1), designer (e2) and construction

worker (e3) will participate in evaluating the performances

of materials.

5.2 Solving the Case by Using the Proposed Method

The PHF-DIBR-TRP method is used in this subsection to

select the optimal suitable flooring material for office

buildings.

Stage 1. Collect the assessment information provided by

experts.

Step 1.1–1.2: Three experts evaluate six indoor floor

materials according to the four criteria, and their evaluation

results are collected through interview. In view of experts’

evaluations may be uncertain and ambiguous, all evalua-

tion results are expressed in PHFEs. Then three proba-

bilistic hesitant fuzzy decision matrices Mk ¼ ðhkijðpÞÞ6�4

ðk ¼ 1; 2; 3; i ¼ 1; 2; . . .; 6; j ¼ 1; 2; 3; 4Þ are con-

structed, as shown in Tables 1, 2, and 3.

Stage 2. Determine the weights of criteria under each

DM by PHF-DIBR approach.

Step 2.1–2.2: Through interview, all experts give the

order of criteria by significance, and provide the pairwise

comparisons about the weight coefficients of the ranked

criteria, which is displayed in Table 4.

Step 2.3: According to Table 4 and Eqs. (21)–(26), the

probabilistic hesitant fuzzy weights of criteria under dif-

ferent experts are derived and shown in Table 5.

Step 2.4: To check whether the obtained weights of

criteria satisfy the preferences of DMs, the relations

between the weights of the most and least influential cri-

teria under three experts are derived by Eq. (27), as

follows:

h0ð3;4Þ�1ðpÞ ¼ f0:0667 ð0:12Þ; 0:1000 ð0:08Þ; 0:1091
ð0:48Þ; 0:1600 ð0:32Þg;
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h0ð3;1Þ�2ðpÞ ¼ f0:2222 ð0:32Þ; 0:3000 ð0:48Þ; 0:3077
ð0:08Þ; 0:4000 ð0:12Þg;

h0ð3;2Þ�3ðpÞ ¼ f0:0999 ð0:08Þ; 0:1428 ð0:32Þ; 0:1600
ð0:12Þ; 0:2223 ð0:48Þg:

By using Eq. (28), we can calculate the deviation

between the defined and derived relations about the

weights of the most and least influential criteria under three

experts, the calculation results are as below:

Fig. 2 The flow chart of proposed method
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deðh0ð3;4Þ�1ðpÞ; hð3;4Þ�1ðpÞÞ ¼ 0:0875\0:1;

deðh0ð3;1Þ�2; hð3;1Þ�2Þ ¼ 0:0536\0:1;

deðh0ð3;2Þ�3ðpÞ; hð3;2Þ�3ðpÞÞ ¼ 0:0941\0:1:

According to the above calculation results, we can

conclude that the derived weights of criteria satisfy three

experts’ preferences.

Table 1 The decision matrix M1 from expert e1

c1 c2 c3 c4

x1 {0.3 (0.6), 0.5 (0.4)} {0.15 (0.2), 0.65 (0.5), 0.7

(0.3)}

{0.15 (0.1), 0.2 (0.2), 0.35 (0.7)} {0.15 (0.4), 0.25 (0.2), 0.3 (0.2), 0.7

(0.2)}

x2 {0.1 (0.2), 0.3 (0.8)} {0.3 (0.4), 0.5 (0.6)} {0.2 (0.2), 0.4 (0.2), 0.45 (0.2), 0.5

(0.4)}

{0.4 (0.4), 0.55 (0.2), 0.6 (0.2), 0.65

(0.2)}

x3 {0.1 (0.7), 0.5 (0.2), 0.7

(0.1)}

{0.25 (0.3), 0.4 (0.5), 0.85

(0.2)}

{0.1 (0.2), 0.3 (0.1), 0.4 (0.2), 0.7

(0.5)}

{0.1 (0.1), 0.2 (0.3), 0.5 (0.6)}

x4 {0.2 (0.2), 0.5 (0.8)} {0.15 (0.2), 0.25 (0.2), 0.6

(0.6)}

{0.25 (0.1), 0.3 (0.2), 0.7 (0.7)} {0.2 (0.2), 0.4 (0.8)}

x5 {0.7 (0.5), 0.8 (0.5)} {0.65 (0.4), 0.7 (0.2), 0.75

(0.4)}

{0.7 (0.1), 0.75 (0.9)} {0.7 (0.3), 0.8 (0.7)}

x6 {0.6 (0.8), 0.7(0.2)} {0.5 (0.2), 0.7 (0.8)} {0.2 (0.2), 0.5 (0.6), 0.7 (0.1), 0.75

(0.1)}

{0.5 (0.4), 0.6 (0.6)}

Table 2 The decision matrix M2 from expert e2

c1 c2 c3 c4

x1 {0.4 (0.3), 0.5 (0.2), 0.7 (0.5)} {0.65 (0.4), 0.7 (0.4), 0.75

(0.2)}

{0.35 (0.3), 0.4 (0.3), 0.7

(0.4)}

{0.25 (0.3), 0.3 (0.3), 0.45 (0.4)}

x2 {0.7 (0.6), 0.8 (0.2), 0.85 (0.2)} {0.7 (0.6), 0.8 (0.4)} {0.2 (0.5), 0.6 (0.5)} {0.2 (0.4), 0.6 (0.6)}

x3 {0.5 (0.5), 0.6 (0.5)} {0.6 (0.4), 0.7 (0.6)} {0.2 (0.4), 0.6 (0.6)} {0.25 (0.1), 0.3 (0.3), 0.4 (0.2), 0.5

(0.4)}

x4 {0.6 (0.4), 0.7 (0.6)} {0.6 (0.5), 0.65 (0.2), 0.75

(0.3)}

{0.4 (0.5), 0.6 (0.2), 0.75

(0.3)}

{0.45 (0.1), 0.55 (0.4), 0.6 (0.5)}

x5 {0.1 (0.2), 0.3 (0.2), 0.7 (0.2), 0.8

(0.4)}

{0.6 (0.5), 0.8 (0.5)} {0.5 (1)} {0.2 (0.3), 0.4 (0.3), 0.6 (0.4)}

x6 {0.6 (0.5), 0.65 (0.5)} {0.9 (1)} {0.2 (0.2), 0.45 (0.4), 0.65

(0.4)}

{0.2 (0.8), 0.9 (0.2)}

Table 3 The decision matrix M3 from expert e3

c1 c2 c3 c4

x1 {0.35 (0.2), 0.4 (0.5), 0.6 (0.3)} {0.35 (0.5), 0.45 (0.5)} {0.1 (0.2), 0.25 (0.4), 0.3 (0.2),

0.4 (0.2)}

{0.4 (0.5), 0.6 (0.5)}

x2 {0.4 (0.3), 0.45 (0.2), 0.6 (0.2),

0.7 (0.3)}

{0.2 (0.4), 0.4 (0.2), 0.5 (0.4)} {0.6 (0.4), 0.8 (0.6)} {0.4 (0.5), 0.7 (0.2), 0.8 (0.3)}

x3 {0.4 (0.5), 0.7 (0.5)} {0.25 (0.2), 0.3 (0.2), 0.45 (0.4),

0.5 (0.2)}

{0.5 (0.4), 0.6 (0.4), 0.8 (0.2)} {0.2 (0.2), 0.4 (0.2), 0.6 (0.6)}

x4 {0.1 (0.2), 0.4 (0.5), 0.5 (0.3)} {0.1 (0.2), 0.15 (0.1), 0.3 (0.3),

0.5 (0.4)}

{0.2 (0.1), 0.3 (0.4), 0.4 (0.2),

0.45 (0.3)}

{0.15 (0.1), 0.25 (0.1), 0.3 (0.4),

0.45 (0.4)}

x5 {0.8 (0.5), 0.85 (0.3), 0.9 (0.2)} {0.15 (0.4), 0.65 (0.6)} {0.4 (0.5), 0.6 (0.5)} {0.2 (0.1), 0.4 (0.5), 0.5 (0.4)}

x6 {0.5 (0.5), 0.8 (0.5)} {0.3 (0.2), 0.4 (0.3), 0.8 (0.5)} {0.35 (0.4), 0.7 (0.6)} {0.2 (0.2), 0.25 (0.2), 0.3 (0.4),

0.7 (0.2)}
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Stage 3. Calculate the expected values of alternative

under experts based on TRP theory.

Step 3.1: Let the adjustment coefficients be IMR ¼ IG ¼
3 [21, 22]. Then, with the aid of TRP, three reference

points of each criterion under each expert are determined

by Eqs. (29)–(31), which are displayed in Table 6.

Step 3.2–3.3: Let v1 ¼ 2:25, v2 ¼ 1, h1 ¼ e2 ¼ 1:21,

and e1 ¼ h2 ¼ 0:88 [39] are the parameter values in the

TRP value function of in Eq. (33). The criteria values are

compared with the three reference points. Then the corre-

sponding expected values of criteria values are determined

by using Eqs. (34)–(36) and shown in Table 7.

Step 3.4: By using Eq. (37) and criteria weights, the

individual expect values of alternatives are determined,

which are displayed in Table 8.

Stage 4. Determine the weights of experts.

Step 4.1: According to Eq. (38), the collective evalua-

tion is obtained and shown in Table 9.

Step 4.2: The NPHFCCs between experts’ opinions and

the collective evaluation under alternatives are determined

by using Eq. (39) and shown in Table 10.

Step 4.3: According to Table 10 and Eqs. (40) and (41),

the weights of experts can be calculated as:

x1 ¼ 0:3223; x2 ¼ 0:3076; x3 ¼ 0:3701:

Stage 5. Calculate the total expected values of

alternatives.

Step 5.1: The total expect values of alternatives are

computed with the help of Eq. (42), as follows:

EV1 ¼ �0:1002; EV2 ¼ �0:0216; EV3 ¼ �0:0888;
EV4 ¼ �0:0611; EV5 ¼ 0:0548; EV6 ¼ �0:0559:

Step 5.2: According to the total expect values, the order

of the six indoor floor materials is x5
x2
x6
x4
x3
x1.

Therefore, we can conclude that bamboo flooring (x5) is the

most suitable one.

5.3 Sensitivity Analysis

According to the proposed method, different values of

some parameters, including adjustment coefficients IMR

and IG, risk attitude coefficients h1, h2, e1 and e2, and gain–

loss sensitivity coefficients v1 and v2, may lead to different

expected values for each alternative, thus affecting the

sorting of alternatives. Therefore, this subsection calculates

the order of alternatives with different values of IMR, IG, h1,
h2, e1, e2, v1 and v2 to validate their influence on the

ranking results.

Table 4 The three experts’ preferences about the importance of criteria

Experts The order of

criteria

The mutual relations between the weight coefficients

of the ranked criteria

e1 c4 [ c2 [ c1 [ c3 c4, c2 c2, c1 c1, c3 c4, c3

{0.2 (0.2), 0.3 (0.8)} {0.3 (0.6), 0.4

(0.4)}

{0.4 (1)} {0.1 (0.7), 0.16 (0.3)}

e2 c1 [ c4 ¼ c2 [ c3 c1, c4 c4, c2 c2, c3 c1, c3

{0.3 (0.8), 0.4 (0.2)} {0.5 (1)} {0.4 (0.4), 0.5

(0.6)}

{0.2 (0.3), 0.3 (0.5),

0.4 (0.2)}

e3 c2 [ c1 [ c4 [ c3 c2, c1 c1, c4 c1, c3 c2, c3

{0.4 (1)} {0.2 (0.4), 0.3

(0.6)}

{0.4 (0.2), 0.5

(0.8)}

{0.1 (0.1), 0.15 (0.5),

0.2 (0.4)}

Table 5 The probabilistic hesitant fuzzy weights of criteria under three experts

c1 c2 c3 c4

e1 {0.0750 (0.12), 0.1059 (0.48),

0.1092 (0.08), 0.1500 (0.32)}

{0.1636 (0.08), 0.1750 (0.12),

0.2250 (0.32), 0.2470 (0.48)}

{0.0500 (0.12), 0.0706 (0.48),

0.0727 (0.08), 0.1000 (0.32)}

{0.5250 (0.32), 0.5765 (0.48),

0.6545 (0.08), 0.7000 (0.12)}

e2 {0.3334 (0.12), 0.3600 (0.08),

0.4375 (0.48), 0.4667 (0.32)}

{0.1875 (0.48), 0.2000 (0.32),

0.2222 (0.12), 0.2400 (0.08)}

{0.1333 (0.32), 0.1600 (0.08),

0.1875 (0.48), 0.2222 (0.12)}

{0.1875 (0.48), 0.2000 (0.32),

0.2222 (0.12), 0.2400 (0.08)}

e3 {0.2978 (0.48), 0.3111 (0.12),

0.3334 (0.32), 0.3429 (0.08)}

{0.4468 (0.48), 0.4667 (0.12),

0.5000 (0.32), 0.5143 (0.08)}

{0.0571 (0.08), 0.0833 (0.32),

0.0899 (0.12), 0.1277 (0.48)}

{0.0833 (0.32), 0.0857 (0.08),

0.1277 (0.48), 0.1333 (0.12)}

123

International Journal of Fuzzy Systems



5.3.1 Sensitive Analysis of the Adjustment Coefficients IMR

and IG

The adjustment coefficients IMR and IG represent the

minimum requirement and the goal of people, respectively.

In general, a larger value of IMR means the higher extent of

minimum requirement. Analogously, if IG gets a larger

value, it implies the higher goal.

To explore the impact of IG on the final decision result,

we assume that v1 ¼ 2:25, v2 ¼ 1, h1 ¼ e2 ¼ 1:21,

e1 ¼ h2 ¼ 0:88, and IMR ¼ 3. Then we set the values of IG

from 1 to 5 in increments of 1 for sensitivity analysis. The

corresponding expected values are shown in Fig. 3.

From Fig. 3, we can see that the ranking of six indoor

floor materials is always x5
x2
x6
x4
x3
x1. On the

other hand, if we let v1 ¼ 2:25, v2 ¼ 1, h1 ¼ e2 ¼ 1:21,

e1 ¼ h2 ¼ 0:88, and IG ¼ 3, the expected values of indoor

floor materials can be obtained as the values of IMR from 1

to 5 in increments of 1, which is shown in Fig. 4.

As shown in Fig. 4, we can find that

(a) When IMR ¼ 1, the ranking of six indoor floor

materials is x5
x2
x4
x1
x6
x3.

Table 6 The three reference points of each criterion under three experts

Experts Three

reference

points

c1 c2 c3 c4

e1 MR {0.1723 (0.2), 0.2388

(0.4), 0.3196 (0.1),

0.4407 (0.2), 0.5282

(0.1)}

{0.2358 (0.2), 0.2671

(0.1), 0.3196 (0.1),

0.5068 (0.4), 0.6893

(0.2)}

{0.1510 (0.1), 0.1680 (0.1),

0.3048 (0.1), 0.3838 (0.1),

0.4014 (0.1), 0.5249 (0.1),

0.5397 (0.4)}

{0.1510 (0.1), 0.1837 (0.1),

0.2583 (0.2), 0.3919 (0.2),

0.4056 (0.2), 0.5519 (0.2)}

SQ {0.3844 (0.2), 0.4541

(0.3), 0.4898 (0.1),

0.5176 (0.1), 0.5626

(0.1), 0.5831 (0.1),

0.6171 (0.1)}

{0.3677 (0.2), 0.5064

(0.1), 0.5244 (0.1),

0.6053 (0.2), 0.6171

(0.1), 0.6268 (0.1),

0.7038 (0.2)}

{0.3076 (0.1), 0.3427 (0.1),

0.4444 (0.1), 0.5458 (0.1),

0.5524 (0.1), 0.6012 (0.1),

0.6075 (0.2), 0.6395 (0.1),

0.6503 (0.1)}

{0.3832 (0.1), 0.3952 (0.1),

0.4235 (0.1), 0.4611 (0.1),

0.5519 (0.2), 0.5656 (0.2),

0.6311 (0.2)}

G {0.5421 (0.2), 0.6085

(0.3), 0.6580 (0.3),

0.6893 (0.2)}

{0.4702 (0.2), 0.6675

(0.2), 0.6842 (0.2),

0.7028 (0.1), 0.7177

(0.3)}

{0.4354 (0.1), 0.4808 (0.1),

0.5560 (0.1), 0.6653(0.5),

0.7177 (0.1), 0.7343 (0.1)}

{0.5519 (0.3), 0.6085 (0.1),

0.6698 (0.2), 0.6825 (0.2),

0.6963 (0.2)}

e2 MR {0.3537 (0.2), 0.4056

(0.1), 0.4407 (0.1),

0.5783 (0.1), 0.6698

(0.1), 0.7116 (0.4)}

{0.6174 (0.4), 0.6698

(0.1), 0.6842 (0.2),

0.7177 (0.1), 0.7343

(0.2)}

{0.2 (0.2), 0.2939 (0.2), 0.4396

(0.1), 0.5552 (0.1), 0.6174

(0.4)}

{0.2337 (0.1), 0.2511 (0.2),

0.2681 (0.1), 0.3048 (0.2),

0.3963 (0.2), 0.6982 (0.2)}

SQ {0.5153 (0.2), 0.5352

(0.1), 0.5491 (0.1),

0.6268 (0.1), 0.6771

(0.1), 0.7179 (0.2),

0.7311 (0.2)}

{0.7040 (0.4), 0.7251

(0.1), 0.7604 (0.1),

0.7761 (0.1), 0.7883

(0.1), 0.7946 (0.2)}

{0.3189 (0.2), 0.3601 (0.1),

0.3686 (0.1), 0.4375 (0.1),

0.5316 (0.1), 0.6130 (0.1),

0.6421 (0.3)}

{0.2644 (0.1), 0.2968 (0.2),

0.3373 (0.1), 0.4246 (0.1),

0.4358 (0.1), 0.5086 (0.2),

0.6525 (0.2)}

G {0.6366 (0.4), 0.6698

(0.1), 0.6842 (0.1),

0.7241 (0.2), 0.7493

(0.2)}

{0.7711 (0.5), 0.8183

(0.1), 0.8413 (0.4)}

{0.4201 (0.3), 0.4354 (0.2),

0.5068 (0.1), 0.6085 (0.1),

0.6653 (0.3)}

{0..2939 (0.1), 0.3396 (0.2),

0.4 (0.1), 0.5238 (0.1),

0.5421 (0.1), 0.6(0.4)}

e3 MR {0.2946 (0.2), 0.4 (0.1),

0.4172 (0.2), 0.4759

(0.2), 0.6085 (0.3)}

{0.1857 (0.2), 0.2192

(0.1), 0.2681 (0.1),

0.3864 (0.2), 0.4839

(0.2), 0.5 (0.2)}

{0.2440 (0.1), 0.2770 (0.1),

0.3196 (0.3), 0.4354 (0.1),

0.4482 (0.1), 0.4640 (0.1),

0.4908 (0.2)}

{0.1837 (0.1), 0.2886 (0.1),

0.3196 (0.2), 0.3351 (0.2),

0.4226 (0.2), 0.5647 (0.2)}

SQ {0.4745 (0.2), 0.5153

(0.1), 0.5223 (0.2),

0.6698 (0.2), 0.7146

(0.1), 0.7333 (0.2)}

{0.2297 (0.2), 0.2649

(0.1), 0.2883 (0.1),

0.4379 (0.1), 0.5448

(0.1), 0.5825 (0.2),

0.5891 (0.2)}

{0.3812 (0.1), 0.3948 (0.1),

0.4129 (0.2), 0.5570 (0.1),

0.5964 (0.1), 0.6010 (0.1),

0.6586 (0.2)}

{0.2658 (0.1), 0.3146 (0.1),

0.3611 (0.2), 0.4096 (0.1),

0.5084 (0.1), 0.5419 (0.1),

0.5718 (0.1), 0.6282 (0.2)}

G {0.6085 (0.5), 0.7920

(0.3), 0.8183 (0.2)}

{0.2714 (0.2), 0.3079

(0.2), 0.4851 (0.1),

0.6623 (0.5)}

{0.4934 (0.4), 0.7116 (0.4),

0.7711 (0.2)}

{0.3396 (0.2), 0.4 (0.2),

0.4759 (0.1), 0.6366 (0.2),

0.6825 (0.3)}
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(b) When IMR ¼ 2, the ranking of six indoor floor

materials is x5
x2
x4
x6
x1
x3.

(c) When IMR ¼ 3, the ranking of six indoor floor

materials is x5
x2
x6
x4
x3
x1.

(d) When IMR ¼ 4, the ranking of six indoor floor

materials is x5
x2
x6
x3
x4
x1.

(f) When IMR ¼ 5, the ranking of six indoor floor

materials is x5
x2
x6
x3
x1
x4.

To illustrate the influence of the joint changes of both

parameters IMR and IG on the final decision result, we still

set v1 ¼ 2:25, v2 ¼ 1, h1 ¼ e2 ¼ 1:21 and e1 ¼ h2 ¼ 0:88.

Then Fig. 5 shows the ranking results of six indoor floor

materials with different values of IMR and IG.

From Figs. 3, 4, and 5, we can see that the ranking

results may be different with different adjustment coeffi-

cients IMR and IG, but the first-ranked indoor floor material

is always x5. Therefore, we can conclude that the order of

six indoor floor materials may be influenced by the change

of IMR and IG. Since IMR and IG can reflect the people’s

subjective requirements, two adjustment coefficients

should be derived through questionnaire survey and

interview.

5.3.2 Sensitive Analysis of the Risk Attitude Coefficients

h1, h2, e1 and e2

The parameters h1, h2, e1 and e2 reflect people’ risk atti-

tudes in different regions. Generally, if the value of

parameter e1 is smaller, it means a higher extent of risk

seeking in failure region. On the other hand, a larger value

of e2 implies the higher extent of risk seeking in gain

region. Moreover, people’s risk attitudes are the higher

extent of risk aversion with a larger value of h1 or a smaller

value of h2. According to the above description, we will

analyze the influence of the change of any one of the four

parameters h1, h2, e1 and e2 on the final ranking result.

(1) In the case of other parameters are fixed, the values

of e1 are set from 0.1 to 1 in increments of 0.1 for sensi-

tivity analysis. Figure 6a shows the impact of different e1
values on the rankings of indoor floor materials. From

Fig. 6a, we can obtain the following results:

(a) When e1 2 f0:1; 0:2; 0:3; 0:4g, the ranking of six

indoor floor materials is x5
x6
x2
x4
x3
x1.

(b) When e1 2 f0:5; 0:6; 0:7; 0:8; 0:9g, the ranking of

six indoor floor materials is x5
x2
x6
x4
x3
x1.

(c) When e1 ¼ 1, the ranking of six indoor floor mate-

rials is x5
x2
x4
x6
x3
x1.

Table 7 The expected values

of criteria values under three

experts

Experts Alternatives c1 c2 c3 c4

e1 x1 - 0.0915 0.0412 - 0.3937 - 0.1846

x2 - 0.3184 - 0.1412 - 0.0835 0.0177

x3 - 0.1441 - 0.1785 - 0.0424 - 0.1183

x4 0.0186 0.0098 - 0.0473 - 0.1024

x5 0.1621 0.1135 0.1855 0.1730

x6 0.0292 - 0.0082 - 0.0724 - 0.0381

e2 x1 0.0284 - 0.0255 - 0.1518 - 0.1595

x2 0.0963 - 0.0110 - 0.0298 - 0.1108

x3 - 0.1921 - 0.0388 0.0335 - 0.0941

x4 - 0.0059 - 0.0441 - 0.1409 0.1449

x5 0.0364 - 0.0677 0.0693 - 0.0789

x6 - 0.0281 0.1339 - 0.0140 - 0.2497

e3 x1 - 0.1054 - 0.0870 - 0.3136 - 0.0064

x2 - 0.1102 0.0363 0.0924 - 0.0319

x3 - 0.1201 0.0056 - 0.0305 - 0.0346

x4 - 0.2485 - 0.0214 - 0.0635 - 0.1230

x5 0.1815 - 0.0992 0.0111 - 0.0061

x6 - 0.0218 - 0.1177 - 0.1511 - 0.1702

Table 8 The individual expected values of alternatives

e1 e2 e3

x1 - 0.1393 - 0.0509 - 0.1072

x2 - 0.0650 0.0118 - 0.0115

x3 - 0.1289 - 0.1031 - 0.0421

x4 - 0.0588 - 0.0066 - 0.1084

x5 0.1593 - 0.0018 0.0107

x6 - 0.0262 - 0.0378 - 0.0968
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(d) When e1 is assigned to a smaller value, the expected

values of all indoor floor materials are smaller, and the

discrimination among them is larger.

(2) In the case of other parameters are fixed, the values

of e2 are set from 1.1 to 2 in increments of 0.1 for sensi-

tivity analysis. Figure 6b shows the influence of different

e2 values on the rankings of indoor floor materials. We can

observe that the ranking of six indoor floor materials is still

x5
x2
x6
x4
x3
x1 with different values of e2.
(3) In the case of other parameters are fixed, the values

of h1 are set from 1.1 to 2 in increments of 0.1 for sensi-

tivity analysis. Figure 6c shows the effect of different h1
values on the rankings of indoor floor materials. As shown

in Fig. 6c, the ranking of six indoor floor materials is still

x5
x2
x6
x4
x3
x1 with different values of h1.

Table 9 The collective evaluation

c1 c2 c3 c4

x1 {0.3513 (0.2), 0.3684 (0.1), 0.4056

(0.2), 0.4987 (0.1), 0.5519 (0.1),

0.6085 (0.3)}

{0.4217 (0.2), 0.5698 (0.2), 0.5913

(0.1), 0.6135 (0.2), 0.6328 (0.1),

0.6545 (0.2)}

{0.2078 (0.1), 0.2236 (0.1),

0.2694 (0.1), 0.3362 (0.3),

0.4851 (0.2), 0.5109 (0.2)}

{0.2741 (0.3), 0.2906 (0.1),

0.3196 (0.1), 0.4056 (0.1),

0.4640 (0.2), 0.5959 (0.2)}

x2 {0.4549 (0.2), 0.4987 (0.1), 0.5130

(0.2), 0.5620 (0.1), 0.6174 (0.1),

0.6524 (0.1), 0.6842 (0.2)}

{0.4482 (0.4), 0.5519 (0.2), 0.6316

(0.4)}

{0.3650 (0.2), 0.4231 (0.2),

0.5552 (0.1), 0.6470 (0.1),

0.6580 (0.4)}

{0.3396 (0.4), 0.5238 (0.1),

0.6220 (0.1), 0.6366 (0.1),

0.6825 (0.1), 0.6963 (0.2)}

x3 {0.3537 (0.5), 0.5238 (0.2) 0.6085

(0.2), 0.6698 (0.1)}

{0.3919 (0.2), 0.4056 (0.1), 0.4482

(0.1), 0.5374 (0.4), 0.7177 (0.2)}

{0.2886 (0.2), 0.3458 (0.1),

0.3786 (0.1), 0.5421 (0.1),

0.6366 (0.2), 0.7116 (0.2)}

{0.1857 (0.1), 0.2348 (0.1),

0.3048 (0.2), 0.5068 (0.2),

0.5358 (0.4)}

x4 {0.3396 (0.2), 0.5068 (0.2), 0.5519

(0.3), 0.5783 (0.3)}

{0.3261 (0.2), 0.3659 (0.1), 0.4056

(0.1), 0.5180 (0.1), 0.5390 (0.1),

0.5879 (0.1), 0.6316 (0.3)}

{0.2886 (0.1), 0.33351 (0.2),

0.4987 (0.2), 0.5840 (0.2),

0.6545 (0.3)}

{0.2795 (0.1), 0.3537 (0.1),

0.4261 (0.3), 0.4482 (0.1),

0.4908 (0.4)}

x5 {0.6220 (0.2), 0.6524 (0.2), 0.7379

(0.1), 0.7920 (0.1), 0.8183 (0.2),

0.8413 (0.2)}

{0.5081 (0.4), 0.6524 (0.1), 0.7241

(0.1), 0.7404 (0.4)}

{0.5519 (0.1), 0.5783 (0.4),

0.6316 (0.5)}

{0.4231 (0.1), 0.4759 (0.2),

0.5840 (0.3), 0.6580 (0.4)}

x6 {0.5691 (0.4), 0.6963 (0.3), 0.7241

(0.2)}

{0.6729 (0.2), 0.7379 (0.3), 0.8183

(0.5)}

{0.2535 (0.2), 0.4367 (0.2),

0.5647 (0.2), 0.6256 (0.2),

0.6842 (0.1), 0.7028 (0.1)}

{0.3160 (0.2), 0.3306 (0.2),

0.3927 (0.4), 0.7711 (0.2)}

Table 10 The individual NPHFCC about each alternative

e1 e2 e3

x1 {0.0131 (0.2), 0.0493 (0.1), 0.0530 (0.1), 0.1941

(0.1), 0.4199 (0.1), 0.4565 (0.1), 0.4610 (0.1),

0.7698 (0.1), 0.7878 (0.1)}

{0.0847 (0.2), 0.1158 (0.2), 0.1192 (0.1),

0.2168 (0.1), 0.2564 (0.1), 0.3809 (0.3)}

{0.1112 (0.2), 0.1650 (0.1), 0.2547

(0.1), 0.2839 (0.1), 0.5985 (0.2),

0.6951 (0.1), 0.7246 (0.1), 0.7293

(0.1)}

x2 {- 0.2244 (0.1), - 0.1481 (0.2), - 0.1429

(0.1), - 0.0568 (0.1), 0.0211 (0.1), 0.6159 (0.2),

0.7286 (0.2)}

{- 0.1472 (0.4), 0.1189 (0.1), 0.5430

(0.2), 0.5693 (0.1), 0.6151 (0.1), 0.7455

(0.1)}

{- 0.1902 (0.1), 0.2057 (0.1), 0.2546

(0.3), 0.2933 (0.1), 0.5120 (0.1),

0.6348 (0.1), 0.6978 (0.2)}

x3 {- 0.0408 (0.1), - 0.0320 (0.1), - 0.0092 (0.1), 0

(0.1), 0.0937 (0.1), 0.1157 (0.1), 0.5293 (0.1),

0.7912 (0.1), 0.8008 (0.1), 0.8432 (0.1)}

{0.0155 (0.1), 0.0156 (0.1), 0.1856 (0.4),

0.4185 (0.1), 0.4322 (0.2), 0.4957 (0.1)}

{- 0.0491 (0.1), - 0.0467

(0.2), - 0.0208 (0.1), 0.1380 (0.2),

0.6529 (0.1), 0.6545 (0.2), 0.6733

(0.1)}

x4 {- 0.1277 (0.1), - 0.0803 (0.1), - 0.0206 (0.4),

0.2056 (0.1), 0.3850 (0.1), 0.6003 (0.1), 0.8018

(0.1)}

{- 0.4361 (0.1), - 0.2709

(0.2), - 0.2237 (0.1), - 0.1946

(0.1), - 0.0772 (0.1), - 0.0611

(0.3), - 0.0367 (0.1)}

{0.0929 (0.1), 0.1183 (0.3), 0.4143

(0.1), 0.4728 (0.1), 0.5373 (0.2),

0.5710 (0.1), 0.6656 (0.1)}

x5 {- 0.4557 (0.1), - 0.1380 (0.2), 0.3632 (0.1),

0.3839 (0.1), 0.4479 (0.1), 0.6019 (0.4)}

{- 0.1532 (0.1), - 0.0588

(0.1), - 0.0285 (0.1), 0.0262 (0.1),

0.0335 (0.1), 0.1532 (0.1), 0.4570 (0.4)}

{- 0.4031 (0.1), - 0.1228 (0.1), 0.1159

(0.2), 0.2198 (0.1), 0.3182 (0.1),

0.5871 (0.2), 0.6124 (0.2)}

x6 {- 0.6753 (0.4), - 0.4937 (0.2), 0.0159 (0.2),

0.6604 (0.1), 0.7760 (0.1)}

{- 0.3499 (0.2), - 0.1437

(0.1), - 0.1059 (0.2), - 0.0748 (0.1),

0.0126 (0.2), 0.5944 (0.2)}

{- 0.1566 (0.3), 0.3323 (0.1), 0.6333

(0.2), 0.6735 (0.2), 0.8526 (0.2)}
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(4) In the case of other parameters are fixed, the values

of h2 are set from 0.1 to 1 in increments of 0.1 for sensi-

tivity analysis. Figure 6d depicts how the change of h2
affects the rankings of indoor floor materials. From Fig. 6d,

we can see that

(a) When h2 2 f0:1; 0:2; 0:3; 0:4g, the ranking of six

indoor floor materials is x5
x2
x6
x4
x1
x3.

(b) When h2 2 f0:5; 0:6; 0:7; 0:8; 0:9g, the ranking of

six indoor floor materials is x5
x2
x6
x4
x3
x1.

(c) When h2 is assigned to a smaller value, the expected

values of all indoor floor materials are larger, and the

discrimination among them is larger.

Further, as the values of no less than two risk attitude

coefficients synchronously change, the ranking of six

indoor floor materials can be obtained and shown in

Table 11.

As we can see in Table 11 and Fig. 6, the order of x1, x3
and x5 never changed with different risk attitude coeffi-

cients, while the rankings of x2, x4 and x6 did. It indicates

the risk attitude coefficients h1, h2, e1 and e2 have an impact

on the sorting of six indoor floor materials. In view of that

h1, h2, e1 and e2 can model people’s risk attitudes, we

suggest that experimental research and questionnaire sur-

vey be used to determine these risk attitude coefficients.

5.3.3 Sensitive Analysis of the Gain–Loss Sensitivity

Coefficients v1 and v2

The parameters v1 and v2 show the people’ sensitivity for

gain and loss respectively. Generally speaking, a larger

value of v1ðv2Þ indicates the higher extent of sensitivity for

loss (gain). In the followings, we will illustrate the effect of

parameters v1 and v2 on the sorting of indoor floor mate-

rials under the conditions of h1 ¼ e2 ¼ 1:21,

e1 ¼ h2 ¼ 0:88, and IG ¼ IMR ¼ 3.

First, let the parameter v2 ¼ 1, the values of v1 are set

from 1.1 to 3 in increments of 0.1 for sensitivity analysis.

Figure 7 depicts the expected values of indoor floor

materials with different v1 values.

As shown in Fig. 7, we can find that

(a) When v1 ¼ 1:1, the ranking of six indoor floor

materials is x5
x2
x4
x1
x6
x3.

(b) When v1 2 f1:2; 1:3; 1:4; 1:5g, the ranking of six

indoor floor materials is x5
x2
x4
x6
x1
x3.

(c) When v1 2 f1:6; 1:7; 1:8g, the ranking of six indoor

floor materials is x5
x2
x4
x6
x3
x1.

(d) When v1 2 f1:9; 2; . . .; 3g, the ranking of six indoor

floor materials is x5
x2
x6
x4
x3
x1.

(f) When v1 is assigned a larger value, the expected

values of all indoor floor materials are smaller, and the

discrimination among them is larger.

On the other hand, if we let the parameter v1 ¼ 2:25, the

expected values of indoor floor materials can be obtained

as the values of v2 from 0.1 to 1 in increments of 0.1, which

is shown in Fig. 8.

According to Fig. 8, we can find that the ranking of six

indoor floor materials is always x5
x2
x6
x4
x3
x1 with

different values of v2.
Additionally, to show the impact of the changes of both

parameters v1 and v2 on the final decision result, we still set
h1 ¼ e2 ¼ 1:21 and e1 ¼ h2 ¼ 0:88, and Fig. 9 describes

the corresponding ranking results of six indoor floor

materials.

As shown in Figs. 7, 8, and 9, when parameters v1 and

v2 are assigned different values, the first-ranked and the

second-ranked indoor floor materials are x5 and x2

Fig. 3 The expected values under different IG values

Fig. 4 The expected values under different IMR values
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respectively, whereas the ranking results of other indoor

floor materials are inconsistent. Thus, v1 and v2 can affect

the final decision result. The specific values of v1 and v2
can be obtained through experimental research, question-

naire survey, and other methods.

5.4 Comparative Analysis

To demonstrate the merits of the proposed method, com-

parative analyses are conducted at three levels: criteria

weight determination method, the correlation measurement

method, and the decision-making method.

(e)The rank of (f)The rank of 

(a)The rank of (b)The rank of 

(c)The rank of (d)The rank of 

Fig. 5 The sorting results along IMR and IG change
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5.4.1 Comparative Analysis of Different DIBR Approaches

To verify the merit of PHF-DIBR approach, we compare it

with crisp DIBR [26] and F-DIBR [28] based on the

illustrative case.

At first, crisp numbers are used to represent the relations

between the weights of criteria in crisp DIBR approach.

Thus, the score values of PHFEs in Table 4 are calculated

and used as the relations in crisp DIBR approach. In F-

CIBR approach, the weight coefficients obtained from

expert estimation are transformed into fuzzy weights by

using the following Eq. (43).

w
_

j ¼ ðwðlÞ
j ; w

ðmÞ
j ; w

ðuÞ
j Þ

¼

w
ðlÞ
j ¼ min

k
fŵk

j jk ¼ 1; 2; . . .; rg

w
ðmÞ
j ¼ 1

r

Xr

k¼1
ŵk
j

w
ðuÞ
j ¼ max

k
fŵk

j jk ¼ 1; 2; . . .; rg

8
>>>><

>>>>:

;

j ¼ 1; 2; . . .; n:

ð43Þ

The triangular fuzzy number w
_

j represents the weight of

criterion cj, and ŵk
j denotes the crisp weight of criterion cj

given by DM ek.

Subsequently, the criteria weights are determined by the

three DIBR approaches and shown in Table 12.

(a)The expected values under different values (b)The expected values under different values

(c)The expected values under different values (d)The expected values under different values

Fig. 6 The expected values along one of h1, h2, e1 and e2 change
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As we can see in Table 12, the criteria weights derived

by the three DIBR approaches are different. This is because

there are some gaps between these approaches in modeling

uncertain information. The crisp DIBR approach uses crisp

numbers to express DMs’ preferences, which may reduce

the accuracy of the expression of qualitative information.

Moreover, crisp DIBR approach cannot handle the fuzzi-

ness and uncertainty of DMs’ cognition. Although F-DIBR

approach provides a way to show DMs’ fuzzy and uncer-

tain opinions, the single fuzzy number cannot consider the

hesitancy in preference expression. In contrast, PHF-DIBR

approach adopts PHFEs to show ambiguity and intangi-

bility of human qualitative judgments, and extracts the

DMs’ hesitancy in determining the preference. Thus,

compared with crisp DIBR and F-DIBR approaches, PHF-

DIBR approach is more capable of handling uncertainties.

5.4.2 Comparative Analysis of NPHFCC and the Existing

CCs of PHFS

To prove the merit of NPHFCC, we compare it with the

existing CCs of PHFS [31–33]. According to Eqs. (13),

(14), and (17) and the proposed decision-making proce-

dures in the above case, the CCs between the opinions of

experts and the collective evaluation under each alternative

are calculated and shown in Table 13, where

a1 ¼ a2 ¼ a3 ¼ 1=3.

As we can see in Table 13, Song et al.’s CC [31] of

expert e2 is very close to one for the evaluation information

of alternative x6. However, there is a relatively large gap

between the opinions of expert e2 and the collective eval-

uation under alternative x6 in the above case, which means

the CC should not be close to one. The reason for this

unreasonable result is that Song et al.’s CC uses the mean

Table 11 The ranking of six indoor floor materials with different values of risk attitude coefficients

Risk attitude coefficients Expected values Rank

e1 e2 h1 h2 x1 x2 x3 x4 x5 x6

0.1 1.21 1.21 0.1 - 0.8199 - 0.1724 - 0.6515 - 0.4675 0.2132 - 0.0418 x5
x6
x2
x4
x3
x1

0.9 1.21 1.21 0.9 - 0.0946 - 0.0207 - 0.0844 - 0.0581 0.0531 - 0.0555 x5
x2
x6
x4
x3
x1

0.88 1.1 1.1 0.88 - 0.0979 - 0.0231 - 0.0893 - 0.0631 0.0562 - 0.0611 x5
x2
x6
x4
x3
x1

0.88 1.9 1.9 0.88 - 0.1085 - 0.0171 - 0.0891 - 0.0575 0.0504 - 0.0352 x5
x2
x6
x4
x3
x1

0.1 1.1 1.1 0.1 - 0.8176 - 0.1739 - 0.6519 - 0.4695 0.2146 - 0.0470 x5
x6
x2
x4
x3
x1

0.9 1.1 1.1 0.9 - 0.0923 - 0.0222 - 0.0848 - 0.0601 0.0545 - 0.0607 x5
x2
x4
x6
x3
x1

0.1 1.9 1.9 0.1 - 0.8282 - 0.1679 - 0.6518 - 0.4640 0.2089 - 0.0211 x5
x6
x2
x4
x3
x1

0.9 1.9 1.9 0.9 - 0.1029 - 0.0163 - 0.0847 - 0.0545 0.0487 - 0.0348 x5
x2
x6
x4
x3
x1

Fig. 7 The expected values under different v1 values Fig. 8 The expected values under different v2 values
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(a)The rank of 1 1 2( [1.1,3], [0.1,1])x (b)The rank of 2 1 2( [1.1,3], [0.1,1])x

(c)The rank of 3 1 2( [1.1,3], [0.1,1])x (d)The rank of 4 1 2( [1.1,3], [0.1,1])x

(e)The rank of 5 1 2( [1.1,3], [0.1,1])x (f)The rank of 6 1 2( [1.1,3], [0.1,1])x

Fig. 9 The sorting results along v1 and v2 change
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value of information to measure the relationship, which

causes the calculation result equal to one when the mean

values of two different PHFSs are equal. In contrast,

Table 10 shows the correlation between the opinions of

expert e2 and the collective evaluation under alternative x6
is a NPHFCC{- 0.3499 (0.2), - 0.1437 (0.1), - 0.1059

(0.2), - 0.0748 (0.1), 0.0126 (0.2), 0.5944 (0.2)}, which is

consistent with the actual situation. This is because the

NPHFCC is constructed based on the closeness coefficient

between two PHFSs, which ensure the calculation result is

equal to one if and only if the two PHFSs are exactly the

same. Therefore, the NPHFCC can provide more reason-

able calculation results than Song et al.’s CC.

Additionally, as we can see from Table 13 that Liu and

Guan’s CC [32] produced invalid result when measuring

correlations between the experts’ opinions and the collec-

tive evaluation information of alternative x1. The reason for

this invalid result is that Liu and Guan’s CC adopts the

mean variance and length ratio of PHFE to measure the

correlations. Specifically, each length ratio of collective

evaluations of alternative x1 under each criterion is 0.8333,

which causes the denominator term of Eq. (16) is equal to

zero. Luckily, Table 10 shows that NPHFCC does not

produce invalid results, which implies NPHFCC can

overcome the flaw of Liu and Guan’s CC.

Moreover, Table 13 shows that the correlations between

the collective evaluations and the opinions of experts are

expressed in precise numbers when using the three existing

CCs. However, as both experts’ opinions and the collective

evaluations are PHFSs, it is not adequate to use just a

single value to represent their correlations. Fortunately, in

Table 10, the NPHFCCs between experts’ opinions and the

collective evaluations are characterized by a series of dif-

ferent values with their own probabilities. Therefore,

compared with the existing CCs [31–33], the NPHFCC can

effectively reflect the hesitancy of the original data.

5.4.3 Comparative Analysis of Single Reference Point

(SRP) and the Proposed Method

In the proposed method, TRP theory is utilized to describe

experts’ irrational behaviors. Thus, we compare the

Table 12 The criteria weights obtained by different DIBR approaches

Experts Criteria Crisp DIBR F-DIBR PHF-DIBR

e1 c1 0.1163 (0.1163, 0.2861, 0.4271) {0.0750 (0.12), 0.1059 (0.48), 0.1092 (0.08), 0.1500 (0.32)}

c2 0.2257 (0.2009, 0.2996, 0.4723) {0.1636 (0.08), 0.1750 (0.12), 0.2250 (0.32), 0.2470 (0.48)}

c3 0.0775 (0.0775, 0.1169, 0.1711) {0.0500 (0.12), 0.0706 (0.48), 0.0727 (0.08), 0.1000 (0.32)}

c4 0.5805 (0.1106, 0.2973, 0.5804) {0.5250 (0.32), 0.5765 (0.48), 0.6545 (0.08), 0.7000 (0.12)}

e2 c1 0.4271 (0.1163, 0.2861, 0.4271) {0.3334 (0.12), 0.3600 (0.08), 0.4375 (0.48), 0.4667 (0.32)}

c2 0.2009 (0.2009, 0.2996, 0.4723) {0.1875 (0.48), 0.2000 (0.32), 0.2222 (0.12), 0.2400 (0.08)}

c3 0.1711 (0.0775, 0.1169, 0.1711) {0.1333 (0.32), 0.1600 (0.08), 0.1875 (0.48), 0.2222 (0.12)}

c4 0.2009 (0.1106, 0.2973, 0.5804) {0.1875 (0.48), 0.2000 (0.32), 0.2222 (0.12), 0.2400 (0.08)}

e3 c1 0.3149 (0.1163, 0.2861, 0.4271) {0.2978 (0.48), 0.3111 (0.12), 0.3334 (0.32), 0.3429 (0.08)}

c2 0.4723 (0.2009, 0.2996, 0.4723) {0.4468 (0.48), 0.4667 (0.12), 0.5000 (0.32), 0.5143 (0.08)}

c3 0.1022 (0.0775, 0.1169, 0.1711) {0.0571 (0.08), 0.0833 (0.32), 0.0899 (0.12), 0.1277 (0.48)}

c4 0.1106 (0.1106, 0.2973, 0.5804) {0.0833 (0.32), 0.0857 (0.08), 0.1277 (0.48), 0.1333 (0.12)}

Table 13 The individual CC about alternatives by three existing CCs

Song et al.’s CC [31] Liu and Guan’s CC [32] Zhang et al.’s CC [33]

e1 e2 e3 e1 e2 e3 e1 e2 e3

x1 0.9755 0.8316 0.2457 N/A N/A N/A - 0.1285 - 0.0390 - 0.0929

x2 - 0.9921 0.6954 - 0.1373 - 0.0114 0.7056 0.2152 - 0.0825 0.0067 - 0.0130

x3 0.5476 0.6005 - 0.0140 0.5571 0.5536 0.1947 - 0.1435 - 0.1224 - 0.0167

x4 0.7511 0.3854 0.3972 0.8046 0.6548 0.3879 - 0.0735 - 0.0164 - 0.1124

x5 - 0.1555 0.3439 0.9411 0.2215 0.5091 0.7629 0.1528 0.0137 0.0078

x6 0.8001 0.9924 0.7091 0.6900 0.8623 0.0783 - 0.0391 - 0.0511 - 0.1335

N/A notes: CC cannot be calculated due to ‘‘the division by zero problem’’
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proposed method with the SRP method. The SRP method

evaluates alternatives based on a reference point. If SRP

method chooses G as the reference point, the expected

values of criteria values are calculated as:

VGðhkijðpÞÞ ¼
ðdðhkijðpÞ; Gk

j ÞÞ
h hkijðpÞ�Gk

j ;

�vðdðhkijðpÞ; Gk
j ÞÞ

e hkijðpÞ\Gk
j :

(

ð44Þ

MR can also be set as a reference point. Therefore, the

expected values of criteria values are computed as:

VMRðhkijðpÞÞ ¼
ðdðhkijðpÞ; MRk

j ÞÞ
h hkijðpÞ�MRk

j ;

�vðdðhkijðpÞ; MRk
j ÞÞ

e hkijðpÞ\MRk
j :

(

ð45Þ

When choosing SQ as the reference point, the expected

values of criteria values are expressed as:

VSQðhkijðpÞÞ ¼
ðdðhkijðpÞ; SQk

j ÞÞ
h hkijðpÞ� SQk

j ;

�vðdðhkijðpÞ; SQk
j ÞÞ

e hkijðpÞ\SQk
j :

(

ð46Þ

To be consistent with the previous case, we still assume

v ¼ 2:25, h ¼ 0:88 and e ¼ 0:88 in Eqs. (44)–(46). Then

we can get the expected values of six types of indoor floor

materials by the above three SRP methods, and the cal-

culation results are displayed in Fig. 10.

As shown in Fig. 10, the SPR methods and the proposed

method give the same optimal indoor floor material, which

proves the effectiveness of the proposed method. Mean-

while, the order of other indoor floor materials obtained by

SPR methods is not completely the same as that obtained

by the proposed method. The reason for these gaps between

SPR methods and the proposed method is that there are

some gaps in the selection of reference points. The SRP

methods choose one of SQ, MR and G as the reference

point, which would lose some of the important information

about the effects of DMs’ irrational behaviors. In contrast,

the proposed method uses three reference points to simul-

taneously reflect the influences of irrational behaviors.

Thus, the proposed method is more suitable for human

decision-making process and produces more comprehen-

sive and rational results than SRP methods.

5.4.4 Comparative Analysis of Other Decision Methods

and the Proposed Method

To validate the superiorities of our decision model, we

compare it with some existing PHF-MCGDM methods,

such as the integrated operation-based method [6], the

utility value-based method [8–10], and the outranking-

based method [11–13]. To ensure that the comparison is

reasonable, all methods employ the assessments and

weights derived by Sect. 5.2.

(1) Compared with the integrated operation-based

method

To aggregate evaluation information in PHF-MCGDM,

Zhang et al. [6] defined two operators, including PHFWA

operator and PHFWG operator, for developing the inte-

grated operation-based method. Then the integrated oper-

ation-based method is used to solve the illustrative case for

showing the merit of the proposed method.

According to the procedure of the integrated operation-

based method listed in [6], we need to obtain the criteria

collective weights. Based on experts’ weights and the

individual criteria weights, the criteria collective weights in

the above case can be determined as:

wj ¼
Xr

k¼1

sðhkj ðpÞÞPn
j¼1 sðhkj ðpÞÞ

xk; j ¼ 1; 2; . . .; n; ð47Þ

where wj denotes the collective weight of criterion cj.
Then the collective weights of criteria, PHFWA and

PHFWG are employed to integrate all experts’ assessments

Fig. 10 The expected values of six indoor floor materials by

employing four reference point methods

Table 14 The weighted score values obtained by using two

aggregation operators

PHFWA Rank PHFWG Rank

x1 0.4682 6 0.4367 4

x2 0.5401 3 0.4816 3

x3 0.4769 4 0.4350 6

x4 0.4745 5 0.4360 5

x5 0.6427 1 0.5819 1

x6 0.6028 2 0.5610 2
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under each criterion. Finally, the score function of PHFE

and the weights of experts are adopted to obtain the weight

score values of alternatives, which are listed in Table 14.

As shown in Table 14, the best indoor floor material

obtained from two aggregation operators is the same as that

from the proposed method, which means the proposed

method is valid. Meanwhile, the ranking results of the other

indoor floor materials obtained by two aggregation opera-

tors and the proposed method are inconsistent. The reason

for these gaps is as follows:

(a) The information integration method is different. The

integrated operation-based method uses PHFWA and

PHFWG operators to simply aggregate the assessments of

three experts, which leads to information loss. The pro-

posed method uses Eq. (37) to fuse the psychological

perceived values of alternatives on the three reference

points, thus it considers more useful information than two

aggregation operators.

(b) The ranking index is different. The integrated

operation-based method uses the weighted score value to

rank indoor floor materials, which ignores the influences of

DMs’ irrational behaviors. In contrast, with the aid of TRP

theory, the proposed method employs the expected values

to sort indoor floor materials, so that the impacts of irra-

tional behaviors on the final ranking result are considered.

Therefore, the proposed method can obtain more realistic

results than aggregation operators.

(2) Compared with the utility value-based method

To illustrate the advantage of the proposed method, two

kinds of utility value-based methods, namely PHF-TOPSIS

and PHF-VIKOR, are utilized to solve the illustrative case.

When adopting PHF-TOPSIS method, the relative close-

ness of alternatives depends on the distances to positive

ideal solution (PIS) and negative ideal solution (NIS)

(please refer to [8]), which is shown in Table 14. Mean-

while, three measures of alternatives, including group

utility measure, individual regret measure, and compromise

measure, are calculated by using PHF-VIKOR method

(please refer to [9]), which are also shown in Table 15.

As shown in Table 15, there are some gaps between two

utility value-based methods and the proposed method about

the ranking results. The reasons for these gaps are

explained in two ways:

(a) The selected reference points are different. Both

PHF-TOPSIS and PHF-VIKOR set PIS and NIS as two

reference points to reflect the competitiveness of alterna-

tives in the evaluation system. The proposed method

chooses three reference points according to TRP theory, so

that both the competitiveness of alternatives and DMs’

subjective requirements are considered. Therefore, com-

pared with PIS and NIS, the reference points set by the

proposed method contain more useful information.

(b) The decision context is different. Since both PHF-

TOPSIS and PHF-VIKOR simply depend on the gap of

alternatives to PIS and NIS to obtain the final ranking

result, these methods are suitable for the situation that

people are completely rational in decision. In contrast, the

proposed method can handle the situation that people are

irrational. Therefore, compared with PHF-TOPSIS and

PHF-VIKOR, the proposed method can capture the impacts

of DMs’ irrational behaviors and provide more realistic

results.

(3) Compared with the outranking-based method

To validate the superiority of the proposed method, we

compare it with two outranking-based methods, such as

PHF-ELECTRE and PHF-QUALIFLEX, by the above

illustrative case. The ranking results of alternatives (please

refer to [11, 13]) are displayed in Table 16.

Table 15 The ranking results by using PHF-TOPSIS and PHF-VIKOR

PHF-TOPSIS PHF-VIKOR

Relative closeness Rank Group utility measure Individual regret measure Compromise measure Rank

x1 0.1194 6 0.8896 0.2898 0.9474 3

x2 0.4458 3 0.5897 0.2397 0.6085 2

x3 0.2774 4 0.8772 0.2907 0.9417 3

x4 0.2517 5 0.8351 0.3084 0.9641 3

x5 0.8652 1 0.1312 0.1312 0.0000 1

x6 0.6399 2 0.4322 0.2854 0.6334 2

Table 16 The ranking results by using PHF-ELECTRE and PHF-

QUALIFLEX

Methods Ranking orders

PHF-ELECTRE x1
x5
x6
x2
x4
x3

PHF-QUALIFLEX x2
x6
x5
x4
x3
x1
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In Table 16, the order of indoor floor materials derived

from two outranking-based methods is not the same as that

derived from the proposed method. The reason for these

gaps is that the ranking method is different. Two

outranking-based methods rank alternatives by using the

preference, indifference, and incomparability relations

among six indoor floor materials, and ignore DMs’ psy-

chology and behaviors. Compared to two outranking-based

methods, the proposed method derives the order of alter-

natives by capturing the loss and gain from three reference

points. Therefore, we can conclude that the proposed

method is a useful bounded rationality behavioral decision

method and more practical than the two outranking-based

methods.

Additionally, during the process of PHF-ELECTRE, the

concordance and discordance sets should be determined by

comparing the significance of the criteria in pairs. It means

that PHF-ELECTRE generates tedious computations when

solving the MCGDM problem with a sufficiently large

number of criteria. Moreover, PHF-QUALIFLEX must

consider all possible permutations of alternatives, which

implies its computation complexity will increase with the

increase of number of alternatives. It is gratifying that the

computational cost of the proposed method does not

increase dramatically with the increase in the number of

criteria and alternatives. Therefore, compared with PHF-

QUALIFLEX and PHF-ELECTRE, the proposed method is

more time-saving and easy to handle MCGDM problems

with a large number of criteria and alternatives.

5.5 Discussion

Based on the aforementioned comparison analyses, the

proposed method has merits as follows:

(1) In the criteria weight determination procedure, the

proposed PHF-DIBR approach can take into account the

ambiguous and hesitant comparative judgments of experts

on the significances of criteria and derive criteria weights

under different experts, which is closer to practical situa-

tions. Additionally, compared with crisp DIBR and

F-DIBR approaches, PHF-DIBR approach can effectively

represent the ambiguity and intangibility of human quali-

tative judgments and extract the DMs’ hesitancy in deter-

mining preferences.

(2) In the correlation measurement methodology, the

NPHFCC developed in this paper can effectively measure

the correlation between two PHFSs and provide support for

determining the weights of experts. Moreover, compared

with the existing CCs, NPHFCC can reflect the hesitancy

of original data.

(3) In the decision-making methodology, the proposed

method computes the expected value of each alternative

based on TRP theory so as to rank alternatives, which not

only retains more useful information but also overcomes

the flaw of some existing PHF-MCGDM methods that

ignore the impacts of DMs’ psychology and irrational

behaviors on the final result.

6 Conclusions

Since the merit of PHFS in showing the uncertain infor-

mation, this paper proposes a novel PHF-MCGDM method

by integrating DIBR approach, NPHFCC, and TRP theory.

First, to remedy the flaws of the previous CC of PHFS, the

NPHFCC is defined and combined with similarity-based

approach to derive DMs’ weights. Second, PHF-DIBR

approach is designed to derive criteria weights under each

DM. The results show that the PHF-DIBR approach can

consider DMs’ ambiguous and hesitant preferences about

the importance of criteria. Finally, TRP theory is adopted

to obtain the order of alternatives, which fully shows the

effects of DMs’ irrational behaviors on the final decision

result. In addition, an illustrative example is conducted to

validate the applicability of PHF-DIBR-TRP method, and

comparative analyses are performed to prove its validity

and merit.

Although the PHF-MCGDM method proposed in this

paper has many advantages, there are still some areas

worth further research. First, some criteria may be related

to other criteria in practical applications, which is difficult

to guarantee the independence of each criterion. Therefore,

the PHF-MCGDM problem considering interactive char-

acteristics is the focus of the next work. Second, since

PHF-DIBR approach can determine the subjective weights,

it can be combined with objective weighting methods to

comprehensively assess the importance of criteria in the

future.
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