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Abstract This paper is part of the increasing interest

regarding the application of interval type-3 fuzzy logic in

real-world problems, where a better handling of uncertainty

can be useful in achieving enhanced results. The main

contribution of this paper is the proposal of new methods,

such as Interval Type-3 Reduction and a practical way for

modeling Interval Type-3 Membership Functions, based on

the Footprint of Uncertainty (FOU) and Core of Uncer-

tainty (COU) concepts, which reduce the gap between the

theory and the practical implementation of Mamdani

Interval Type-3 Fuzzy Systems. The main aim of the paper

is not proving the superiority of Interval Type-3 Fuzzy

Systems but providing a framework and a comprehensive

illustration of the theory concepts to help future research

work in developing optimization methodologies and new

applications for this kind of systems, as well as finding

their potential applicability, which can result from their

ability in handling more complex uncertainty. Simulation

results with two illustrative application examples show the

potential of the presented approach in achieving an effi-

cient implementation of Interval type-3 fuzzy systems.

Keywords Interval type-3 fuzzy logic � Type-2 fuzzy

systems � Type reduction

1 Introduction

Recently, there has been an increasing interest in Type-3

Fuzzy Inference Systems (T3 FISs), which are systems that

can handle problems with higher complexity, due to mul-

tiple uncertainty sources, when compared with respect to

Type-2 Fuzzy Inference Systems (T2 FISs). The main type-

3 concepts are like type-2, but the utilization of these

systems in real problems faces significant challenges. This

is because these systems demand a higher computational

effort and may not be suitable for many programming

environments in achieving real-time execution, for exam-

ple in control applications which is one of the most suc-

cessful application areas of fuzzy logic.

Many authors have obtained interesting results and

advantages with the implementation of T3 FISs. For

example, in [1] the authors successfully implemented type-

3 fuzzy controllers for non-linear plants, in [2] the authors

propose an approach for forecasting the COVID-19 based

on the principles of interval type-3 fuzzy sets and a

mathematical tool known as the fractal dimension, in [3]

the authors propose an computer-aided system for material

surface quality control based on type-3 fuzzy logic (T3

FL), in [4] the authors propose a practical way to compute

type-3 fuzzy systems in Simulink for robotics, in [5] the

authors improve the performance of a metaheuristic algo-

rithm aided with an expert system based on interval type-3

fuzzy logic, in [6] the authors propose a neuro-fuzzy con-

troller which demonstrates robustness for non-linear plants,

and finally in [7] the authors propose an approach of non-

singleton system for fault detection in a flowmeter system

applied in gas industry.

However, there is a need to enhance the computational

efficiency and reduce the complexity of this kind of sys-

tems, which limit their implementation in a wider range of
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applications and in this way, we can truly explore the

potential of T3 FISs.

Therefore, the focus of this paper is the contribution of a

framework for the investigation and future applications of

T3 FISs. The focus of this paper is on Mamdani Interval

Type-3 Fuzzy Inference Systems (IT3 FISs), through the

presentation of a novel approach for IT3 FISs, explaining

the core concepts and illustrating with examples the suit-

ability of the systems for problem solving. Some of the

explained concepts are related to the IT3 FIS architecture,

such as the mathematical expression of different kinds of

IT3 Membership Functions and a way to propose new

functions, the relation between GT2 FISs and IT3 FISs, and

a proposed approach for Type-3 Reduction, which is a

novelty for this kind of systems.

The paper starts by recalling the concepts about Type-2

Fuzzy Sets and T2 FISs in Sect. 2 and based on the recent

advances in Type-3 Fuzzy Sets expands the concepts of T2

FISs to an understandable IT3 FIS approach (presented in

Sect. 3). We are presenting in Sect. 4, for example, diverse

kinds of Interval Type-3 Membership Functions (IT3 MFs),

the structure of IT3 FISs including Interval Type-3

Reduction, and two examples of engineering applications.

Finally, the conclusions are presented in Sect. 5.

2 Fuzzy Logic Background

Type-1 Fuzzy Logic was proposed as an alternative for

achieving computing with words [8], offering the capa-

bility to create systems that contain the empirical knowl-

edge of an expert and use them to compute decisions in the

real world. However, this kind of systems are very versatile

and can also be part of machine learning strategies, the

most common are the neuro-fuzzy systems, for example the

Adaptive Neuro-Fuzzy Inference System (ANFIS), which

has been applied in different areas of engineering and

science as [9–13].

On the other hand, Type-2 Fuzzy Logic emerged as an

evolution of Type-1 Fuzzy Logic by handling not only

vagueness but also the uncertainty in real problems [14].

This interesting concept of uncertainty allows to increase

the robustness of Fuzzy Systems and to improve their

performance for different applications. Some of these

applications of Type-2 Fuzzy Logic are the following: in

[15] the authors improve two metaheuristics by adapting

their parameters based on expert knowledge implemented

by Type-2 Fuzzy Systems, in [16] the authors implement

an Interval Type-2 Fuzzy System in charge of controlling a

hybrid autonomous vehicle, in [17] the authors proposed

the application of controllers, based on Type-2 Fuzzy

Logic, for robotics applied on agriculture, in [18] is pre-

sented the approach of fuzzy systems for cruise control

applied on intelligent vehicles, in [19] the authors propose

an interesting approach for time series prediction and

chaotic synchronization called wavelet interval type-2

Takagi–Sugeno–Kang which is a derivation of neuro-fuzzy

systems, in [20] the authors apply type-2 neuro-fuzzy

systems in power management as a controllers for power-

electronic systems, in [21] the authors apply interval type-2

fuzzy logic for fault diagnosis of gas turbines, in [22] the

authors propose to perform the tracking control of hyper-

sonic vehicle based on systems which contain type-2 fuzzy

logic, and in [23] the authors propose a fuzzy logic model

to evaluate the risk of earthquake hazard based on a rapid

visual inspection.

In the following sections, the core concepts that are the

basis of the proposals of this paper are presented, aiming to

reduce the gap between the theoretical IT3 FISs and the

real-world applications.

2.1 Footprint of Uncertainty and Core

of Uncertainty

The Footprint of Uncertainty (FOU) and the Core of

Uncertainty (COU) [24] are concepts directly related to

Type-2 Fuzzy sets, but in the present paper are used to

represent Interval Type-3 Membership Functions as are

explained in following sections. The expressions of these

concepts are illustrated in Eqs. (1) and (2), as follows:

FOUðAiiÞ ¼ x; uð Þ 2 X � 0; 1½ �f gjlAiiðx; uÞ[ 0f g ð1Þ

COUðAiiÞ ¼ x; uð Þ 2 X � 0; 1½ �f gjlAii x; uð Þ ¼ 1f g: ð2Þ

Beyond the theoretical expression, the FOU and the

COU are collections of points, the FOU is the collection of

the bases of every embedded secondary membership

function in Generalized Type-2 Membership functions, and

the COU is the collection of the cores of the same func-

tions. In the a-plane approximation of GT2 Membership

Functions, both collections (of the FOU and COU) can be

viewed as a-planes, with a = 0 and a = 1, respectively.

2.2 Mamdani Type-n Fuzzy Inference Systems

Probably one of the most applied kinds of Fuzzy Logic

Systems are the Mamdani Fuzzy Inference Systems (FISs)

[25], and this also applies for the different kinds of Fuzzy
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Logic, including Type-2 Fuzzy Logic. Figure 1 illustrates

the architecture of these systems.

This section presents an overview of the theoretical

perspective applicable to the family of fuzzy set (type-

n fuzzy sets).

The core of this kind of systems is the inference and the

modus ponens logical structure is used; starting from this

concept the mathematical perspective of Mamdani Fuzzy

Inference Systems can be explained, and the general

expression of this inference structure is expressed in (3):

R1 : IF x1 is F
1
1 and. . .xi is F

1
i and. . .xn is F

1
n

THEN y1 is G
1
1. . .yj is G

1
j . . .; ym is G1

m

. . .
Rk : IFx1 is F

k
1 and . . .xi is F

k
i and. . .xn is F

k
n

THEN y1 is G
k
1. . .yj is G

k
j . . .; ym is Gk

m

. . .
Rr : IF x1 is F

r
1 and. . .xi is F

r
i and. . .xn is F

r
n

THENy1 is G
r
1. . .yj is G

r
j . . .; ym is Gr

m

; ð3Þ

where ( i ¼ 1. . .n) is the number of inputs, (j ¼ 1. . .m) is
the number of outputs, and (k ¼ 1. . .r) is the number of

rules. Based on this, Fki is the type-n Fuzzy Set related to

the kth rule and ith input, and Gk
j is the type-n Fuzzy Set

related to the kth rule consequent and the jth output.

According to [26], the rule’s expression can be simplified

as is expressed in (4):

Ak ¼ F11 � . . .F1i � . . .F1n
Rk : Ak ! Gr

m

: ð4Þ

However, in practice, it is necessary to work with the

membership functions of the Fuzzy Sets, as can be seen in

Fig. 1; the first step is the fuzzification, and the resulting of

this computation is lFn xnð Þ which is the type-n membership

degree of the nth fuzzy set.

This concept can be directly related to the inference

observing the expression to estimate the membership

degree of the system rules; this expression can be seen in

(5) as follows:

lRk
j
ðxÞ ¼

Yn

i¼0

lFknðxnÞ
" #zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{/kðxÞ

Y
lGk

j
ðyjÞ; ð5Þ

where /kðxÞ is known as the firing strength of the rule and

lRk x; yj
� �

is also known as the knowledge of the kth rule

for the jth output. This rule knowledge is a type-n mem-

bership function, and according to modus ponens, the

knowledge of the system can be aggregated with s-norm

operators; this expression can be found in (6) as follows:

lBj
x; yj
� �

¼
ar

k¼0

lRk
j
x; yj
� �

; ð6Þ

where lBj
x; yj
� �

is the aggregated knowledge of the system

and is a type-n membership function.

So, from (4) to (6) the knowledge base and inference are

covered , and finally for the defuzzifier stage, considering a

type-n membership function, it is necessary to perform a

type reduction; this reduction variate depends on the type

of the system but can be expressed as a family of functions

which transform a type-n membership function into crisp

outputs (7).

byj ¼ typeReductionðyj; lBj
x; yj
� �

Þ: ð7Þ

2.3 Advances in Type-3 Fuzzy Logic

On the other hand, the recent proposal of fuzzy logic is T3

FL that supplies a better model of uncertainty. Some key

concepts which allow the development of this approach

were introduced in [27], specifically the concept of type-n,

and in recent years gained notoriety as can be noted, for

example, in [6], where the authors apply successfully the

IT3 Fuzzy Logic in adaptive controllers with high com-

plexity. In addition, in [28] the authors propose a new

methodology for design IT3 Non-Singleton Fuzzy Systems

and demonstrate the capability of their model in a complex

application, and in [29] the authors prove the effectivity of

IT3 Fuzzy Logic Controllers in power management in a

solar energy system.

Fig. 2 Type-3 Membership Function
Fig. 1 Mamdani Fuzzy Inference System architecture
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Many details of T3 FL theory are explained in a deeper

fashion in [26], where the authors summarize the most

recent advances.

The definition of Type-3 Fuzzy Set is expressed in (8)

and an example can be seen in Fig. 2.

Að3Þ ¼ x; uð Þ; lAð3Þ x; u; vð Þ
� ���x 2 X; u 2 U � 0; 1½ �; v 2 V � 0; 1½ �

� �
:

ð8Þ

Another way to explain of Type-3 Fuzzy Sets (T3 FSs)

is by seeing the evolution of Fuzzy Numbers, remembering

that these Fuzzy Numbers can also be represented by

membership degree and are the result of evaluating a

membership function (MF). So, the fuzzy numbers are the

core of the inference and finally the computation of the

FISs. Figure 3 summarizes the evolution of Fuzzy Num-

bers according to their uncertainty modeling.

As can be seen, the membership degree of a Type-1 MF

is a singleton value; however, for an IT2 MF the mem-

bership degree is an interval, for GT2 MFs the membership

degree is Type-1 MFs, and finally for IT3 MFs the mem-

bership degree is an IT2 MF.

This implies some considerations for the construction of

a Fuzzy Inference System architecture based on IT3 Fuzzy

Logic. In the next section, a method for implementing IT3

Fuzzy Inference Systems (IT3 FISs) is presented.

3 Interval Type-3 Fuzzy Inference Systems

In this section, a comprehensive approach to Interval Type-

3 Mamdani Fuzzy Inference Systems (IT3 FISs) is pre-

sented, which includes an approach for building Interval

Type-3 Membership Functions (IT3 MFs) from the FOU

and COU, and additionally an approach for Interval Type-3

Reduction was proposed.

However, starting from the architecture of the systems,

in an analogous form to IT2 FISs [30] that are approxi-

mated with two type-1 fuzzy systems, IT3FISs can be

Fig. 3 The evolution of fuzzy numbers
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approximated by two separate GT2 FISs, and this is illus-

trated in Fig. 4.

In the following sections, we are presenting some details

about this architecture based on concepts of Type-1 and

Type-2 Fuzzy Logic.

3.1 Interval Type-3 Membership Functions

This section presents the proposed approach for building

IT3 MFs from the COU and FOU concepts, and the

objective of this approach is to provide an efficient and

clear strategy for expressing this kind of functions.

The approach consists of handling families of IT3 MFs

based on the kind of secondary membership function; this

is from the perspective of zSlices [31].

There are some possible families which are an example

of the proposal of this journal.

3.1.1 Based on Gaussian MFs with uncertainty in r

The first family of IT3 MFs proposed is composed of

embedded IT2 Gaussian MF with uncertainty in r, this
function is widely used in the realm of IT2 FISs, and its

graphical representation can be seen in Fig. 5.

As can be noted, this function is symmetric, and the core

of the function is a single point, meaning that this family of

IT3 MFs requires that the FOU and the COU fit the

following requisites; the FOU must be an interval and the

COU the midpoint of the FOU.

The general equation for this family of IT3 MFs is

expressed in (9) as follows:

IT3GaussS2 u; xð Þ ¼ lt3 u; xð Þ ¼ e

�1
2

u�lCOU xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1
2ð Þ l

FOU
xð Þ�lCOU xð Þð Þ2

ln 0:001ð Þ

	 
s

1þvð Þ

0
BBBB@

1
CCCCA

2

l
t3

u; xð Þ ¼ e

�1
2

u�lCOU xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1
2ð Þ l

FOU
xð Þ�lCOU xð Þð Þ2

ln 0:001ð Þ

	 
s
1�vð Þ

0
BBBB@

1
CCCCA

2

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

;

ð9Þ

where lt3 u; xð Þ and l
t3
u; xð Þ composed the upper and lower

boundaries of the embedded IT2 MFs which conform the

IT3 MF, and v 2 ½0; 1� is the uncertainty in r.
Based on these concepts, two examples of IT3 MFs

members of this family are presented. Both examples are

summarized in Table 1.

As can be noted, it is very simple to propose IT3 MFs

functions by the definition of FOU and COU, in this case

following the restrictions for this family of functions.

3.1.2 Based on Triangular MFs with Uncertainty

in the Spread

This family of IT3 MFs is composed of embedded trian-

gular IT2 MFs with uncertainty in the spread; the graphical

illustration of a zSlide of this family can be seen in Fig. 6.

As can be noted, this function requires that the FOU be

an interval, but the COU not necessarily must be the

midpoint of the FOU, so, this family of IT3 MFs is more

flexible than the first family presented.

On the other hand, the general expression of this family

of IT3 MF is (10).

IT3 TriangularSðxÞ ¼

lt3 u; xð Þ ¼

u� lCOUðxÞ
lCOU xð Þ � ðl

FOU

xð Þ � s1Þ
; ðl

FOU

xð Þ � s1Þ\u� lCOUðxÞ;

lFOU xð Þ þ s2ð Þ � u

lFOU xð Þ þ s2ð Þ � lCOUðxÞ
; lCOUðxÞ\u\ðlFOU xð Þ þ s2Þ

8
>>>>><

>>>>>:

l
t3
u; xð Þ ¼

u� lCOUðxÞ
lCOU xð Þ � ðl

FOU

xð Þ þ s1Þ
; ðl

FOU

xð Þ þ s1Þ\u� lCOUðxÞ;

lFOU xð Þ � s2ð Þ � u

lFOU xð Þ � s2ð Þ � lCOUðxÞ
; lCOUðxÞ\u\ðlFOU xð Þ � s2Þ

8
>>>>><

>>>>>:

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð10Þ

where lt3 u; xð Þ and l
t3
u; xð Þ composed the upper and lower

boundaries of the embedded IT2 MFs which conform the

IT3 MF, and ½s1; s2� generate the uncertainty in the spread.

Based on these concepts, two examples of IT3 MFs

members of this family are presented. Both examples are

summarized in Table 2.

Fig. 4 Interval Type-3 Fuzzy Inference System architecture

Fig. 5 Gaussian with uncertainty in sigma
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As can be noted, the example proposed for this family of

IT3 MFs has the same FOU and COU as the first family,

but the resultant MF is significantly different; this is

because the uncertainty is handled in a different way.

Regarding the inference, the process is not complex

because the same concepts explained in Sect. 2 in Eqs. (4)

to (6) are applied. However, the main challenge is now the

Type-3 Reduction process.

3.2 Interval Type-3 Reduction and Defuzzification

In this section, the proposed approach for Interval Type-3

reduction is addressed. To explain the proposed approach

clearly, the following example (Fig. 7) of this kind of

systems is presented. It is important to note that for this

proposed approach the a-plane representation is used.

Here the color of the membership functions (Fig. 7)

stands for the relationship between antecedent and conse-

quents (The system rules). The process for computing

fuzzy inference starts with the fuzzification, and for this

Fig. 6 Triangular membership function with uncertainty in the

spread

Table 1 Examples of IT3 GaussianS2 MFs

Example 1 Example 2

lFOU xð Þ ¼ e
�1

2
x�c
r1

� �2

l
FOU

xð Þ ¼ e
�1

2
x�c
r2

� �2

lCOUðxÞ ¼
lFOU xð Þ þ l

FOU
xð Þ

2

lFOU xð Þ ¼

x� a1
b� a1

; a1\x\b

c1 � x

c1 � b
; b\x\c1

8
><

>:

l
FOU

xð Þ ¼

x� a2
b� a2

; a2\x\b

c2 � x

c2 � b
; b\x\c1

8
><

>:

lCOUðxÞ ¼
lFOU xð Þ þ l

FOU
xð Þ

2
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Fig. 7 IT3 FISs example

Table 2 Examples of IT3 Triangular MFs

Example 1 Example 2

lFOU xð Þ ¼ e
�1

2
x�c
r1

� �2

l
FOU

xð Þ ¼ e
�1

2
x�c
r2

� �2

lCOUðxÞ ¼
lFOU xð Þ þ l

FOU
xð Þ

2

lFOU xð Þ ¼

x� a1
b� a1

; a1\x\b

c1 � x

c1 � b
; b\x\c1

8
><

>:

l
FOU

xð Þ ¼

x� a2
b� a2

; a2\x\b

c2 � x

c2 � b
; b\x\c1

8
><

>:

lCOUðxÞ ¼
lFOU xð Þ þ l

FOU
xð Þ

2
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example the system is evaluated with a value of 0.2, and

the result can be seen in Fig. 8.

As can be seen in Fig. 8, the result of fuzzification in

IT3 FISs is IT2 MFs, and in this figure the number of a-
plane is 10 for a better appreciation; however, this number

can be increased for a better approximation. An example

with 100 a-planes is illustrated in Fig. 9.

Based on this, membership degrees can be performed (6)

obtaining lBj
x; yj
� �

which is the aggregated knowledge of

the system for the jth output and is the input for the type-

reduction algorithm.

Figure 10 illustrates the result of the inference

(lBj
x; yj
� �

) and the result of the inference of the analogous

system based on Generalized Type-2 Fuzzy Sets.

As can be seen, the difference between IT3 FIS and GT2

FIS lBj
x; yj
� �

) is the type of embedded secondary mem-

bership functions; for IT3 FIS the embedded functions are

IT2 MFs and for GT2 FIS the embedded functions are T1

MFs.

On the other hand, considering the perspective of IT3

MFS as a combination of two upper and lower GT2 MFs,

the GT2 type reduction and interval type-3 reduction are

illustrated in Fig. 11.

Based on these methodologies, Fig. 12 illustrates the

result of the earlier example after the computation of the

Interval Type-2 Reduction of every a-plane.
In this example, the difference between both type

reductions can be seen; the IT3 FIS requires an additional

Fig. 8 IT3 Fuzzification results (10 a-planes)
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Fig. 9 IT3 Fuzzification results (100 a-planes)

Interval Type-3 General Type-2

Fig. 10 Examples of output fuzzy sets
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Fig. 11 a-Plane type reduction

Interval Type-3 General Type-2

Fig. 12 Output before a-plane type reduction
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Fig. 13 IT3 FISs control surface

Fig. 14 Pixel neighborhood

Fig. 15 Fuzzy sets

Table 3 Computational

complexity comparison of types

of FISs

Step Interval type-2 Generalized type-2 Interval type-3

Fuzzification 2T1 að2T1Þ 2að2T1Þ
Inference 2T1 að2T1Þ 2að2T1Þ
Defuzzification 2ðN � T1Þ 2a N � T1ð Þ þ T1 4a N � T1ð Þ þ 2aðN � T1Þ
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IT2 type reduction and GT2 FIS requires the a-plane
aggregation.

Computing the proposed methodology of IT3 FISs for

every point in the input domain, the result can be appre-

ciated in Fig. 13.

3.3 Computational Complexity

This section reviews the variations of the different types of

FISs regarding the computational complexity of these

systems using as unit the computational complexity of the

simpler FIS which is the Type-1 FISs.

Table 3 summarizes this analysis separating the varia-

tions of FISs in the common steps.

Considering that the number of iterations of the type-

reduction algorithm depends on the algorithm and the

aimed relative error, the evolution of the FISs implies more

and more computational effort for achieving a better

approximation to the theoretical model, for example, more

a-planes. The process whose complexity is more affected

by the evolution of FISs is the defuzzification; while the

increase in other steps is simple, the increase of compu-

tational effort for defuzzification is affected by more

variables.

Fig. 16 Sphere edge results
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4 Illustrative Application Examples

In this section, two illustrative application examples of

Interval Type-3 Mamdani Fuzzy Inference System are

presented. In this case, the aim is to demonstrate the

applicability of this kind of systems, but currently without

performing parameter optimization.

4.1 Fuzzy Edge Detection

Based on the type-2 fuzzy system developed by the authors

in [32], an Interval Type-3 Fuzzy Edge detector version is

proposed as follows. The fuzzy edge detector must find the

edges of a given image. In this case, an image is repre-

sented by the pixels.

Based on a pixel neighborhood, the inputs for the

inference system and the fuzzy sets are proposed. Fig-

ure 14 illustrates the features selected from the pixel

neighborhood.

The approximate gradients are expressed in Eq. (10):

D1 ¼ jI2� I8j D2 ¼ jI4� I6j
D3 ¼ jI3� I7j D4 ¼ jI1� I9j : ð10Þ

Figure 15 illustrates how to build the corresponding

fuzzy sets.

For the inference, six fuzzy rules related to the previous

IT2 FS are proposed; Eq. (11) expresses these rules.

Fig. 17 Chart edge results
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Fig. 18 Controller IT3 fuzzy sets
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if ðD1 is minÞ and ðD2 is maxÞ and ðD3 is maxÞ and
ðD4 is maxÞ then Y is Edge

if ðD1 is maxÞ and ðD2 is minÞ and ðD3 is maxÞ and
ðD4 is maxÞ then Y is Edge

if ðD1 is maxÞ and ðD2 is maxÞ and ðD3 is minÞ and
ðD4 is minÞ then Y is E d ge

if ðD1 is maxÞ and ðD2 is maxÞ and ðD3 is minÞ and
ðD4 is maxÞ then Y is Edge

if ðD1 is maxÞ and ðD2 is maxÞ and
ðD3 is maxÞ and ðD4 is minÞ then Y is Edge

if ðD1 is maxÞ and ðD2 is maxÞ and ðD3 is maxÞ and
ðD4 is maxÞ then Y is Edge

:

ð11Þ

Some examples of the results of the implementation of

the resulting system are shown as follows. Figure 16

illustrates the edges found for the sphere benchmark image.

Figure 17 illustrates the edge results for the chart image.

As can be noted, the proposed fuzzy system performs

the edge detection successfully for both examples;

however, the system can be optimized for applying on

noisy images.

4.2 DC Motor Controller

Another natural application for the explained systems is in

fuzzy control. In this case, we are presenting an example

based on the controller presented in [33]. The controlled

plant in this example is a DC motor; in the reference, the

authors analyze the effect of the uncertainty in the per-

formance. However, in this paper, the focus is on showing

the usability of these type-3 systems on known problems.

The graphical representation of the fuzzy sets is illus-

trated in Fig. 18.

The rules proposed for this fuzzy system are expressed

in Table 4.

Based on the proposed fuzzy sets and rules, the control

surface generated can be appreciated in Fig. 19.

The result of this controller in the plant is plotted in

Fig. 20 with a reference of 1.0 for 1 s of simulation.

Table 4 Base of rules Error Change of

error

Delta voltage

If Negative & Very negative Then Very

negative

If Negative & Zero Then Very

negative

If Negative & Very positive Then Negative

If Zero & Very negative Then Positive

If Zero & Very positive Then Negative

If Zero & Very positive Then Negative

If Positive & Very negative Then Positive

If Positive & Zero Then Very positive

If Positive & Very positive Then Very positive

If Zero & Zero Then Zero

If Negative & Negative Then Very

negative

If Zero & Negative Then Positive

If Positive & Negative Then Very positive

If Positive & Positive Then Very positive

If Zero & Positive Then Negative

If Negative & Positive Then Very

negative
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The plant response in Fig. 20 is good when compared

with the ones obtained in [33].

5 Conclusions

In conclusion, this paper has presented the core concepts

about Mamdani IT3 FISs based on the previous concepts of

T2 FIS and the recent advances in IT3 Fuzzy Sets. This

kind of systems requires significantly more computational

effort when compared with respect to their predecessors,

but in the presented illustrative application examples we

can witness the applicability of the theory in real problems.

The paper did not have the intention, at this moment, of

demonstrating the superiority of the T3 FL over the Type-

2, but the intention was to clarify and propose new con-

cepts that provide a framework for allowing more inves-

tigation in the area. New type-3 MFs have been proposed

that can be defined and parameterized in a simple way. In

addition, a new type-3 reduction method was proposed that

can reduce computational cost for real applications. As can

be inferred from the theory, the uncertainty handling is

more complex, but it is more powerful and would provide

an efficient tool for exploring their potential for real-world

applications. For future work, we are planning to test the

proposed concepts in diverse decision-making problems in

Fig. 19 Control surface
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areas such as control, robotics, monitoring and diagnosis,

and others.

Data availability Not applicable.

References

1. Amador-Angulo, L., Castillo, O., Castro, J.R., Melin, P.: A new

approach for interval Type-3 fuzzy control of nonlinear plants.

Int. J. Fuzzy Syst. 25, 1624–1642 (2023). https://doi.org/10.1007/

s40815-023-01470-9

2. Castillo, O., Castro, J.R., Melin, P.: Forecasting the COVID-19

with interval Type-3 fuzzy logic and the fractal dimension. Int.

J. Fuzzy Syst. 25, 182–197 (2023). https://doi.org/10.1007/

s40815-022-01351-7

3. Castillo, O., Melin, P.: Interval Type-3 fuzzy decision-making in

material surface quality control. In: Jabeen, S.D., Ali, J., Castillo,

O. (eds.) Soft Computing and Optimization, pp. 157–169.

Springer, Singapore (2022)

4. Huang, H., Xu, H., Chen, F., Zhang, C., Mohammadzadeh, A.:

An applied type-3 fuzzy logic system: practical Matlab Simulink

and M-Files for robotic, control, and modeling applications.

Symmetry. 15, 475 (2023). https://doi.org/10.3390/sym15020475

5. Peraza, C., Castillo, O., Melin, P., Castro, J.R., Yoon, J.H., Geem,

Z.W.: A Type-3 fuzzy parameter adjustment in harmony search

for the parameterization of fuzzy controllers. Int. J. Fuzzy Syst.

(2023). https://doi.org/10.1007/s40815-023-01499-w

6. Taghieh, A., Mohammadzadeh, A., Zhang, C., Rathinasamy, S.,

Bekiros, S.: A novel adaptive interval type-3 neuro-fuzzy robust

controller for nonlinear complex dynamical systems with inherent

uncertainties. Nonlinear Dyn. 111, 411–425 (2023). https://doi.

org/10.1007/s11071-022-07867-9

7. Wang, J., Tavoosi, J., Mohammadzadeh, A., Mobayen, S., Asad,

J.H., Assawinchaichote, W., Vu, M.T., Skruch, P.: Non-singleton

Type-3 fuzzy approach for flowmeter fault detection: experi-

mental study in a gas industry. Sensors. 21, 7419 (2021). https://

doi.org/10.3390/s21217419

8. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans.

Fuzzy Syst. 4, 103–111 (1996). https://doi.org/10.1109/91.

493904

9. Bilgundi, S.K., Sachin, R., Pradeepa, H., Nagesh, H.B., Likith

Kumar, M.V.: Grid power quality enhancement using an ANFIS

optimized PI controller for DG. Prot. Control Mod. Power Syst. 7,
1–14 (2022). https://doi.org/10.1186/s41601-022-00225-2

10. El-Hasnony, I.M., Barakat, S.I., Mostafa, R.R.: Optimized

ANFIS model using hybrid metaheuristic algorithms for Parkin-

son’s disease prediction in IoT environment. IEEE Access. 8,
119252–119270 (2020). https://doi.org/10.1109/ACCESS.2020.

3005614

11. Muralikumar, K., Ponnambalam, P.: Comparison of fuzzy and

ANFIS controllers for asymmetrical 31-level cascaded inverter

with super imposed carrier PWM technique. IEEE Access. 9,
82630–82646 (2021). https://doi.org/10.1109/ACCESS.2021.

3086674

12. Pournazarian, B., Sangrody, R., Saeedian, M., Gomis-Bellmunt,

O., Pouresmaeil, E.: Enhancing microgrid small-signal stability

and reactive power sharing using ANFIS-tuned virtual induc-

tances. IEEE Access. 9, 104915–104926 (2021). https://doi.org/

10.1109/ACCESS.2021.3100248

13. Vargas, O.S., De LeónAldaco, S.E., Alquicira, J.A., Vela-Valdés,
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