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Abstract In the paper, a dynamic surface-based adaptive

fuzzy fixed-time fault-tolerant control scheme is developed

for nonstrict feedback nonlinear systems with non-affine

faults. Firstly, the computational complexity is reduced by

adopting dynamic surface control technique, and unknown

nonlinear functions are approximated with the help of

fuzzy logic systems. Secondly, non-affine faults involving

system states and controller output are taken into account

and treated by transforming it into nonlinear in the

unknown parameters. Then, under the framework of fixed-

time stability, a novel adaptive fuzzy fault-tolerant control

strategy is designed so that the closed-loop system is semi-

globally practically fixed-time stable. Finally, a numerical

simulation and a model simulation are given to demon-

strate the effectiveness of the proposed control scheme.

Keywords Nonlinear system � Fault-tolerant control �
Fixed-time stability � Fuzzy logic systems � Non-affine
faults

1 Introduction

In the past few decades, backstepping-based adaptive

control has become one of the most popular design meth-

ods to deal with nonlinear systems and has obtained many

very meaningful results [1, 2]. To give a few examples,

with the help of the backstepping-based adaptive neural

network technique, [3] solves the asymptotic tracking

control problem of high-order fully actuated systems.

Based on the research in Zhao et al. [3], a fuzzy state

observer is introduced for nonstrict nonlinear systems in [4]

to address the unmeasurable state problem and the alge-

braic loop problem. Since the backstepping method

requires repeated differentiation of the virtual controller,

the above literatures [3, 4] inevitably have the phenomenon

of ‘‘complexity explosion’’ as the order of the system

increases. To solve this problem, dynamic surface control

technology is used in Wang et al. [5] to successfully reduce

the complexity of n-order nonstrict feedback system in the

controller design process. In Singh et al. [6], flight path

angle of the aircraft is controlled asymptotically for a class

of nonstrict feedback system by employing robust back-

stepping dynamic surface control. Further [7] combines the

adaptive dynamic surface method with the gain suppress-

ing inequality technique to solve the predefined tracking

control problem of stochastic systems. Although the

adaptive dynamic surface control method has a certain

degree of robustness to resist external uncertainties,

unfortunately, it cannot solve the system dynamics caused

by the actuator failure.

In practical engineering, due to the complexity of the

working environment and the limitation of the material

itself, the actuator will inevitably fail. The existence of

faults can seriously damage the system performance and

cause adverse effects on economy. Therefore, designing a
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reasonable fault-tolerant control scheme to reduce the

impact of faults on the system meets the needs of social

development. In terms of practical applications, for the

supersonic tailless aircraft subject to actuator faults, [8]

develops a fault-tolerant scheme based on reconfiguration

control allocation. Nevertheless, for the spacecraft attitude

control system with actuator faults, [9] presents a fault-

tolerant scheme based on iterative learning observer. In

addition, compared with the active fault-tolerant control

used in Cong et al. [8, 9], the passive fault-tolerant control

scheme is adopted in Shi et al. [10] for the three-phase

machine system, which speeds up system response. In

terms of theoretical research, for polynomial fuzzy systems

with linear actuator faults, [11] develops a polynomial

adaptive fuzzy observer to estimate actuator faults. How-

ever, for high-order nonlinear system with non-affine

nonlinear faults, [12] constructs a new adaptive fuzzy fault-

tolerant controller based on the high-order fully actuated

systems theory. Considering that multi-agent systems are

vulnerable to malicious attacks during communication,

[13] proposes an adaptive collaborative fault-tolerant con-

trol scheme based on distributed sliding mode observer.

The above literatures only focus on the steady-state per-

formance of the system. In fact, the convergence rate is

also an important factor affecting the industrial production.

Therefore, it is necessary to develop a control scheme that

considers both stability and convergence rate.

The fixed-time control can take into account both the

steady-state performance and the convergence rate of the

system. Compared with the finite-time control, it gets rid of

the dependence on the initial conditions. In recent years,

fixed-time control has received great attention and has been

applied in many fields, such as aerospace field [14, 15],

robotics field [16, 17], automotive field [14, 18, 19] studies

the fixed-time attitude tracking control problem of space-

craft with prescribed performance, and designs a prescribed

performance tracking controller based on disturbance

observer. [15] further considers the impact of actuator

failures on spacecraft based on the findings of [14]. Zhou

et al. [16] designed a neural network fixed-time slide mode

trajectory controller to adjust the desired angular positions

of rigid-flexible coupled robotic mechanisms for the rigid-

flexible coupled robotic mechanisms with large beam

deflections. To guarantee the transient and steady-state

performance of uncertain robotic manipulators within fixed

time, an approximate continuous fixed-time terminal slid-

ing mode control with prescribed performance is developed

in Sai et al. [17]. Jia et al. [18, 19] studied the adaptive

fixed-time control problem of active suspension systems

with actuator faults and active suspension systems with

time-varying displacement constraints, respectively.

Based on the above paper’s inspiration, this paper

mainly studies the adaptive fuzzy fixed-time fault-tolerant

control problem for nonstrict feedback nonlinear systems

with non-affine faults. Based on the dynamic surface

technique, an adaptive fuzzy fixed-time fault-tolerant

controller is constructed. The controller can ensure that the

tracking error converges to the small neighborhood near

the origin regardless of whether the fault exists. The main

contributions are as follows:

(1) For nonlinear systems with actuator failures, an

adaptive fuzzy passive fault-tolerant control

scheme based on fixed time is proposed. Compared

with the active fault-tolerant control scheme in Sha

et al. [20], the passive fault-tolerant control strategy

proposed is simpler and the response speed is faster.

More to the point, the combination of passive fault-

tolerant control and fixed-time stability theory

ensures the stability and tracking accuracy of the

system while retaining the original advantages of

passive fault-tolerance.

(2) Non-affine nonlinear faults causing actuator failure

are considered. Different from linear faults in Yang

et al. [21, 22], non-affine nonlinear faults are more

common in industry. By giving the upper bound of

the undivided term composed by the unknown

function and the unknown fault function, using the

approximation characteristics of fuzzy logic systems

(FLSs), the fault-tolerant control problem considered

in this paper is reduced to dealing with the unknown

bounding function problem.

(3) In this paper, a more representative nonlinear system

with nonstrict feedback structure is considered and

the approximation performance of fuzzy logic is

used to deal with the nonlinear functions containing

all state variables in the system. In addition, the

introduction of dynamic surface control technology

not only solves the problem of ‘‘complexity explo-

sion’’ in Ha et al. [23], but also avoid the calculation

of partial derivatives.

The rest of this paper is organized as follows. Section 2

gives the preliminaries, which are used in the design of the

fixed-time fault-tolerant tracking controller. The control

strategy and stability analysis are completed in Sect. 3.

Section 4 uses two simulations as examples to verify the

effectiveness of the proposed scheme. In the end, the

conclusion is given in detail in Sect. 5.

2 Problem Statement and Preliminaries

In order to meet the design requirements of the fault-tol-

erant tracking controller, a nonlinear system model is

given, which has nonstrict feedback form and non-affine

fault term.
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_x1 ¼ x2 þ f 1ðxÞ
..
.

_xi ¼ xiþ1 þ f iðxÞ
..
.

_xn ¼ uþ f nðxÞ þ fðt � T0Þsðx; uÞ
y ¼ x1

8
>>>>>>>>>><

>>>>>>>>>>:

; ð1Þ

where x ¼ ½x1; x2; . . .; xn� 2 Rn, u 2 R, and y 2 R stand for

the state vector, input, and output of system (1), respec-

tively. Given a desired tracking signal yr, system output y

can track desired output yr well under the action of the

developed fault-tolerant tracking controller, and the track-

ing error is denoted as e and e ¼ y� yr. f iðxÞ denotes the
smooth nonlinear function, which is unknown in this paper.

Some unknown changes may occur due to existing faults in

the system, represented by sðx; uÞ, where sðx; uÞ 2 R. fðt �
T0Þ refers to the homologous time profile of the fault that

occurs at some unknown time T0 and can be described by

the following two cases:

Case 1: If t\T0 is satisfied, fðt � T0Þ can be written as

fðt � T0Þ ¼ 0 : ð2Þ

Case 2: If t > T0 is satisfied, fðt � T0Þ can be written as

fðt � T0Þ ¼ 1� e�.ðt�T0Þ ; ð3Þ

where . is a non-negative constant that represents the

corresponding evolution rate caused by unknown faults.

This paper employs the passive fault-tolerant control

scheme based on fixed-time to offset the effects and

changes of system non-dynamics caused by faults. Non-

affine nonlinear faults involving system state and controller

output are considered. When the value of . is relatively

small, the fault type of the system is an incipient fault. On

the contrary, when the value of . is pretty large, the fault

type of the system is an abrupt fault. The passive fault-

tolerant control scheme does not require the fault identifi-

cation and isolation unit, but only evaluates the fault level

by designing the corresponding adaptive law. The adaptive

law feeds the evaluation results back to the fault-tolerant

controller. Then, under the action of fault-tolerant con-

troller, the effects and changes of system non-dynamics

caused by faults are weakened.

The following two assumptions are given, which are

essential to solving such problems in order to successfully

design the controller for a plant with non-affine faults.

Assumption 1 In system (1), the reference signal yrðtÞ
and its corresponding first-order time derivative _yrðtÞ and

second-order time derivative €yrðtÞ are all bounded and

known.

Assumption 2 Given an unknown non-negative function
�hðx; uÞ, such that it satisfies the following equation:

j f nðxÞ þ fðt � T0Þsðx; uÞ j6 �hðx; uÞ ð4Þ

Remark 1 Assumption 1 only restricts yrðtÞ, _yrðtÞ, and
€yrðtÞ, but does not astrict the remaining n-order time

derivatives, where n is an integer greater than 2. The strict

constraints on the previous reference signals yrðtÞ are

relaxed and the computational complexity is reduced.

Assumption 2 treats the term f nðxÞ and the term fðt �
T0Þsðx; uÞ as a whole, called h(x, u). Meanwhile, h(x, u)

satisfies the condition j hðx; uÞ j6 �hðx; uÞ. The ultimate

purpose of Assumption 1 and Assumption 2 is to simplify

the calculation process and reduce the computational

complexity. For similar assumptions, see [24–26] for

detail.

In order to successfully complete the design task of the

fault-tolerant tracking controller, some related Lemmas are

introduced.

Lemma 1 (Young’s inequality [27]) For 8ðx; yÞ 2 R2, the

following inequality holds:

xy 6
#m

m
j x jm þ 1

n#n
j y jn; ð5Þ

where #[ 0, m[ 1, n[ 1. At the same time, in order for

(5) to hold, m and n must also satisfy ðm� 1Þðn� 1Þ ¼ 1.

Lemma 2 [28] Consider fl [ 0, the following inequalities

hold:
�
Xn

l¼1

fl

�p

6

Xn

l¼1

fl
p
6 n1�p

�
Xn

l¼1

fl

�p

; ð6Þ

n1�q

�
Xn

l¼1

fl

�q

6

Xn

l¼1

fl
q
6

�
Xn

l¼1

fl

�q

; ð7Þ

where 0\p 6 1, q > 1.

Lemma 3 [29] Suppose V(x) satisfies the following con-

ditions: (1) V(x) is a positive definite function; (2) _VðxÞ is a
negative definite function. If any solution x(t) of the plant

(1) satisfies _VðxÞ 6 �sVjðxÞ � tV iðxÞ, then the system (1)

is globally stable in fixed-time, and the setting-time T of

the plant (1) is T 6 Tmax ¼ 1=ðsð1� jÞÞ þ 1=ðtði� 1ÞÞ.
If x(t) satisfies _VðxÞ 6 �sVjðxÞ � tV iðxÞ þW , then the

system (1) is practically stable in fixed-time, and the set-

ting-time T is T 6 Tmax ¼ 1=ðsgð1� jÞÞþ 1=ðtgði� 1ÞÞ.
In the above inequality, s, t, j, i, g, and W all denote

constants, and satisfy s[ 0, t[ 0, 0\j\1, i[ 1,

0\g\1, and W [ 0, respectively.
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Proof See [30–32] for the proof of Lemma 3.

In this paper, the approximation performance of FLSs is

needed to deal with unknown nonlinear functions f in the

plant (1), and then be applied to dynamic surface control

technique to design the desired controller. FLSs can be

divided into four parts: knowledge base, fuzzifier, fuzzy

inference engine, and defuzzifier. The knowledge base of

FLSs is composed of a set of If-Then rules, as follows:

!k: If vk1 is W1 and vk2 is W2 and... and vkn is Wn,then y is

Uk, k ¼ 1; 2; . . .; n. Here, v ¼ ½v1; v2; . . .; vn�T represents

the input vector of FLSs, y refers to the output of FLSs.

lWk
i ðviÞ and lUiðviÞ are defined on fuzzy sets Wk

i and Ui,

respectively. lWk
i ðviÞ and lUiðviÞ are called membership

functions. N denotes the number of rules. Therefore, the

output expression of FLSs can be written in the following

form:

yðvÞ ¼
PN

k¼1 #k

Qn
i¼1 lW

k
i ðviÞ

PN
k¼1

�
Qn

i¼1 lU
iðviÞ

� ; ð8Þ

where #k ¼ max y 2 lUkðyÞ, - ¼ ½#1; #2; . . .; #N �T ¼
½-1;-2; . . .;-N �T . The basis functions are defined as

ukðvÞ ¼
Qn

i¼1 lW
k
i ðviÞ

PN
k¼1

�
Qn

i¼1 lU
iðvÞ

� : ð9Þ

Let uðvÞ ¼ ½u1ðvÞ;u2ðvÞ; . . .;uNðvÞ�, one can get

yðvÞ ¼ -TuðvÞ: ð10Þ

Lemma 4 [33] Suppose there exists an unknown nonlin-

ear function f that is smooth and defined on the complete

set P. FLSs can be expressed in the following form:

sup
v2P

j f ðvÞ � -�TuðvÞ j6 � ; ð11Þ

where -�T stands for the ideal weight vector, � is the

approximation error, which is a constant and satisfies

�[ 0. It is worth noting that the smaller � is, the higher the

approximation accuracy of FLSs is.

The unknown nonlinear function fiðvÞ; i ¼ 1; 2; . . .; n is

expressed as the following form according to the content of

Lemma 4.

fiðv j -Þ ¼ -T
i uðvÞ : ð12Þ

Then the ideal weight vector -� and approximation error �

can be expressed as

-�
i ¼ arg min

-i2Pi

f sup
vi2Pi

j fiðv j -iÞ � fiðvÞ jg : ð13Þ

�i ¼ fiðvÞ � fiðv j -�
i Þ ; ð14Þ

-�, -̂ , and ~- are defined as the corresponding ideal weight

vector, estimation vector, and estimation error, respec-

tively. Meanwhile, the relationship among the three is

~- ¼ -� � -̂.

3 Control Strategy and Stability Analysis

In this section, the design work of the controller is exe-

cuted. The paper uses dynamic surface technique to con-

struct the controller, with its coordinate transformation as

follows: e1 ¼ y� yr, ei ¼ xi � xi, gi ¼ xi � ai�1,

i ¼ 2; . . .; n. Different from the backstepping method, the

dynamic surface method employed in this paper uses xi

instead of _ai�1 in each step so that simple algebraic oper-

ations replaced the original complex differential opera-

tions, simplifying the derivation process of the controller.

3.1 Control Strategy

Step 1: According to the above coordinate transformations

and the plant (1), we can get the following formula:

_e1 ¼ e2 þ g2 þ a1 þ f1ðxÞ � _yr : ð15Þ

Since f1ðxÞ is an unknown nonlinear function, it can be

approximated by FLSs. According to formulas (12), (14),

and ~-1 ¼ -�
1 � -̂1, we can get f1ðxÞ ¼ �1 þ ~-T

1u1ðxÞþ
-̂T

1u1ðxÞ. Therefore, (15) can be rewritten as

_e1 ¼ e2 þ g2 þ a1 þ �1 þ ~-T
1u1ðxÞ þ -̂T

1u1ðxÞ � _yr :

ð16Þ

Considering the Lyapunov function V1 ¼ 1
2
e21 þ 1

2r1
~-T
1 ~-1,

its time derivative can be obtained

_V1 ¼ e1ðe2 þ g2 þ a1 þ �1 þ ~-T
1u1ðxÞ

þ -̂T
1u1ðxÞ � _yrÞ �

1

r1
~-T
1
_̂-1

: ð17Þ

Using Young’s inequality to deal with terms e1g2 and e1�1,

the time derivative _V1 of V1 can be rewritten

_V1 6 e1ð�A2;1e
2q�1
1 þ A2;1e

2q�1
1

þ e1 þ e2 þ a1 � _yr þ -̂T
1u1ðxÞÞ

þ 1

2
g22 þ

1

2
�21 þ ~-T

1 ð�
1

r1
_̂-1 þ e1u1ðxÞÞ

: ð18Þ

At this point, the virtual controller a1 and the adaptive law
_̂-1 are deduced

a1 ¼ �A1;1e
2p�1
1 � A2;1e

2q�1
1 � -̂T

1u1ðxÞ � e1 þ _yr ; ð19Þ

_̂-1 ¼ r1e1u1ðxÞ � R1-̂1 ; ð20Þ
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where A1;1, A2;1, p, q, R1 , and r1 are all design parameters

that simultaneously satisfy A1;1;A2;1;R1; r1 [ 0, 0\p\1,

q[ 1.

By inserting the virtual controller a1 and the adaptive

law _̂-1 into (18), the final form of _V1 can be written as

_V1 6 e1e2 � A1;1e
2p
1 � A2;1e

2q
1 þ R1

r1
~-T
1 -̂1

þ 1

2
�21 þ

1

2
g22

: ð21Þ

In order to avoid the ‘‘complex explosion’’ problem, a first-

order linear filter of the following form is introduced

d2 _x2 þ x2 ¼ a1 ; ð22Þ

where x2ð0Þ ¼ a1ð0Þ and d2 [ 0 is constant.

Substituting g2 ¼ x2 � a1 into (22), _x2 ¼ � g2
d2

can be

obtained after simplifying. Due to _g2 ¼ _x2 � _a1, one can

deduce

_g2 ¼ � g2
d2

þ Q2 ; ð23Þ

where Q2 ¼ � _a1 ¼ ð2p� 1ÞA1;1e
2p�2
1 þ ð2q�

1ÞA2;1e
2q�2
1 þ _e1 � €yrþ _̂-T

1u1ðx1Þ þ -̂T
1
ou1ðx1Þ
ox1

_x1;.

Remark 2 The traditional backstepping method requires

repeated differentiation of the virtual controller at each

step, therefore, as the system order increases, the compu-

tational workload will grow exponentially. It is shown that

when the system order is greater than 3, the actual con-

troller structure will be extremely complex in the back-

stepping recursive process [34, 35]. The dynamic surface

technique introduces a first-order filter based on the tradi-

tional backstepping method to replace the first-order

derivative of the virtual controller so that simple algebraic

operations replaced the original complex differential

operations. When the system order is relatively low, the

complexity of the two methods is not obvious. With the

increase of the order, the advantage of dynamic surface

technique in reducing the computation redundancy

becomes more obvious. Swaroop et al. [36] give a more

detailed comparison of the two methods.

Step i (2 6 i 6 n� 1): According to the coordinate

transformation of the i-th step and system (1), the following

equation can be obtained:

_ei ¼ eiþ1 þ giþ1 þ ai þ �i þ ~-T
i uiðxÞ þ -̂T

i uiðxÞ � _xi ;

ð24Þ

where �i [ 0 is the approximation error of FLSs.

Choose the Lyapunov function candidate with ri [ 0

Vi ¼ Vi�1 þ
1

2
e2i þ

1

2
g2i þ

1

2ri
~-T
i ~-i : ð25Þ

It follows from (24) and (25) that

_Vi ¼ _Vi�1 þ eiðeiþ1 þ giþ1 þ ai þ �i � _xi þ ~-T
i uiðxÞ

þ -̂T
i uiðxÞÞ þ gið�

gi
di
þ QiÞ �

1

ri
~-T
i
_̂-i

:

ð26Þ

According to Lemma 1, the following inequalities hold

eigiþ1 6
1

2
e2i þ

1

2
g2iþ1

; ð27Þ

ei�i 6
1

2
e2i þ

1

2
�2i ; ð28Þ

giQi 6
1

2k
g2i Q

2
i þ

1

2
k ; ð29Þ

where k[ 0.

Substituting (27), (28), and (29) into (26) produces

_Vi ¼ _Vi�1 � ei�1ei �
1

2
g2i þ eiðei�1 þ eiþ1

þ ai � _xi þ ei þ -̂T
i uiðxÞÞ

� g2i ð
1

di
� 1

2k
Q2

i �
1

2
Þ þ 1

2
�2i þ

1

2
k

þ 1

2
g2iþ1 þ ~-T

i ð�
1

ri
_̂-i þ eiuiðxÞÞ

: ð30Þ

Therefore, the virtual controller ai and the adaptive law _̂-i

are constructed

ai ¼ �A1;ie
2p�1
i � A2;ie

2q�1
i � -̂T

i uiðxÞ � ei�1 � ei þ _xi ;

ð31Þ
_̂-i ¼ rieiuiðxÞ � Ri-̂i ; ð32Þ

where A1;i and A2;i are design parameters that simultane-

ously satisfy A1;i [ 0, A2;i [ 0.

Substituting the above two equations into (30), _Vi can be

written as

_Vi 6 eieiþ1 �
Xi

j¼1

A1;je
2p
j �

Xi

j¼1

A2;je
2q
j �

Xi

j¼2

g2j

� 1

dj
� 1

2k
Q2

j

� 1

2

�
þ
Xi

j¼1

1

2
�j þ

Xi

j¼1

Rj

rj
~-T
j -̂j þ

1

2
g2iþ1 þ

i� 1

2
k

:

ð33Þ

Construct the filter according to the method in step 1

diþ1 _xiþ1 þ xiþ1 ¼ ai ; ð34Þ

where xiþ1ð0Þ ¼ aið0Þ and diþ1 [ 0 is constant.
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Substituting giþ1 ¼ xiþ1 � ai into (34), _xiþ1 ¼ � giþ1

diþ1

can be obtained after simplifying. Due to _giþ1 ¼ _xiþ1 � _ai,
one can deduce

_giþ1 ¼ � giþ1

diþ1

þ Qiþ1 ; ð35Þ

where Qiþ1 ¼ � _ai ¼ ð2p� 1ÞA1;ie
2p�2
i þ ð2q�

1ÞA2;ie
2q�2
i þ _ei�1 þ _eiþ _̂-T

i uiðxiÞ þ -̂T
i
ouiðxiÞ
oxi

_xi þ gi
di
.

Step n: In the light of coordinate transformations and

nonlinear system (1), _en can be written as

_en ¼ uþ fnðxÞ þ fðt � T0Þsðx; uÞ � _xn : ð36Þ

Define the following augmented Lyapunov function with

rn [ 0 as

Vn ¼ Vn�1 þ
1

2
e2n þ

1

2
g2n þ

1

2rn
~-T
n ~-n : ð37Þ

Combining (36) and (37) gets the time derivative _Vn of Vn

_Vn ¼ _Vn�1 þ enðuþ fnðxÞ þ fðt � T0Þsðx; uÞ

� _xnÞ þ gnð�
gn
dn

þ QnÞ �
1

rn
~-T
n
_̂-n

: ð38Þ

According to (38), fðt � T0Þsðx; uÞ is the failure encoun-

tered by the system, sðx; uÞ represents the non-affine non-

linear fault function involving system state and controller

output and fðt � T0Þ refers to the homologous time profile

of the fault that occurs at some unknown time. In order to

improve the fault-tolerance of the system and ensure the

normal operation of the system, it is necessary to use the

idea of fault-tolerance to design the controller and the

adaptive law. The noteworthy point is that this paper is

based on the idea of passive fault-tolerance, the adaptive

law is designed to replace the fault detection and isolation

module. The adaptive law evaluates the fault level and

feeds the evaluation results back to the fault-tolerant con-

troller. Then, under the action of fault-tolerant controller,

the effects and changes of system non-dynamics caused by

faults are weakened.

In order to design an adaptive law and a controller with

fault-tolerance, the following processes are required.

Consider fnðxÞ and fðt � T0Þsðx; uÞ as a whole, and use

the knowledge of Assumption 2 to deal with the faults, that

is

enðfnðxÞ þ fðt � T0Þsðx; uÞÞ 6j en jj �hðx; uÞ j : ð39Þ

The final result is obtained by using Young’s inequality

j en jj �hðx; uÞ j6 1

2b
e2n

�h2ðx; uÞ þ 1

2
b : ð40Þ

Let hðx; uÞ ¼ 1
2b en

�h2ðx; uÞ, and use FLSs to process h(x, u),

the following inequality holds

j en jj �hðx; uÞ j 6 enhðx; uÞ þ
1

2
b

6 enð�n þ ~-T
nunðxÞ þ -̂T

nunðxÞÞ þ
1

2
b

;

ð41Þ

where b[ 0 and �n [ 0 are the design parameter and the

approximation error of FLSs.

At this point, fault handling is complete.

Using Young’s inequality deals with the term en�n and

the term gnQn

en�n 6
1

2
e2n þ

1

2
�2n ; ð42Þ

gnQn 6
1

2k
g2nQ

2
n þ

1

2
k : ð43Þ

Substituting (39), (41), (42), and (43) into (38), the fol-

lowing inequality is derived:

_Vn 6
_Vn�1 � en�1en �

1

2
g2n þ enðuþ -̂T

nunðxÞ þ
1

2
en

� en�1 � _xnÞ � g2nð
1

dn
� 1

2k
Q2

n �
1

2
Þ þ 1

2
�2n þ

1

2
k

þ 1

2
bþ ~-T

n ð�
1

rn
_̂-n þ enunðxÞÞ

:

ð44Þ

So the required actual controller u and adaptive law _̂-n are

obtained

u ¼ �A1;ne
2p�1
n � A2;ne

2q�1
n � -̂T

nunðxÞ � en�1 �
1

2
en þ _xn ;

ð45Þ
_̂-n ¼ rnenunðxÞ � Rn-̂n ; ð46Þ

where A1;n and A2;n are design parameters that simultane-

ously satisfy A1;n [ 0, A2;n [ 0.

Substituting (45) and (46) into (44), _Vn can be rewritten

as

_Vn 6 �
Xn

j¼1

A1;je
2p
j �

Xn

j¼1

A2;je
2q
j þ

Xn

j¼1

1

2
�j

þ
Xn

j¼1

Rj

rj
~-T
j -̂j

�
Xn

j¼2

g2j

� 1

dj
� 1

2k
Q2

j �
1

2

�
þ n� 1

2
k þ 1

2
b

: ð47Þ

Based on the above discussions, the block diagram of the

design procedure for the proposed controller is shown in

Fig. 1.

Remark 3 The most significant parts of fault-tolerant

control policies in this paper are the design of the fixed-

time fault-tolerant controller. The non-affine nonlinear
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faults involving system state and controller output are

transformed into compound nonlinear function which can

be approximated by fuzzy logic systems. Based on the

dynamic surface technique and Lyapunov fixed-time sta-

bility criterion, the adaptive fuzzy fixed-time controller and

the adaptive law are designed, where the adaptive law is

used to estimate the fault level and feed the results back to

the fault-tolerant controller, which performs control actions

to weaken the influence of faults on the system.

3.2 Stability Analysis

According to the design process in Part 3.1, the following

theorem is summarized.

Theorem 1 Consider the uncertain nonlinear plant (1)

subjected to actuator faults that belong to the non-affine

fault type. The dynamic surface control technique com-

bined with the backstepping method avoids the repeated

derivation of the virtual controller ai, where

i ¼ 1; 2; . . .; n� 1. Under Assumptions 1� 2, the fault-

tolerant controller (45), with the intermediate virtual

controllers (19), (31), and adaptive laws (20), (32), and

(46) guarantee that all the signals in the closed-loop sys-

tem are semi-globally uniformly ultimately bounded in

probability. The output y of the control system can track

the desired signal yr with a high enough accuracy.

The proof of Theorem 1 is as follows.

Proof To make the above control scheme meet the

fixed-time stability condition of Lemma 3, we need to do

the following processing for (47).

First of all, the term
Pn

j¼1
Rj

rj
~-T
j -̂j is handled. According

to ~- ¼ -� � -̂ and Young’s inequality, ~-T -̂ ¼ ~-Tð-� �
~-Þ is deduced, and then the following inequality holds

Xn

j¼1

Rj

rj
~-T
j -̂j 6

Xn

j¼1

Rj

2rj
-�T

j -�
j �

Xn

j¼1

Rj

2rj
~-T
j ~-j : ð48Þ

Replacing the term
Pn

j¼1
Rj

rj
~-T
j -̂j in (47) with (48) has

_Vn 6�
Xn

j¼1

A1;je
2p
j �

Xn

j¼1

A2;je
2q
j �

Xn

j¼1

Rj

2rj
~-T
j ~-j þ

n� 1

2
k þ 1

2
b

�
Xn

j¼2

g2j

� 1

dj
� 1

2k
Q2

j �
1

2

�

þ
Xn

j¼1

Rj

2rj
-�T

j -�
j þ

Xn

j¼1

1

2
�j

: ð49Þ

Let a ¼ minfA1;1; . . .;A1;n;A2;1; . . .;A2;n;
1
d2
� Q2

2

2k � 1
2
; . . .;

1
dn
� Q2

n

2k � 1
2
; R1

2
; . . .; Rn

2
g; and W1 ¼

Pn
j¼1

Rj

2rj
-�T

j -�
jþ

Pn
j¼1

1
2
�j þ n�1

2
k þ 1

2
b, the inequality (49) can be simplified

into the following form

_Vn 6 �a
Xn

j¼1

e2pj � a
Xn

j¼1

e2qj

� a
Xn

j¼2

g2j � a
Xn

j¼1

1

rj
~-T
j ~-j þW1

: ð50Þ

Second, use Lemma 2 to deal with terms a
Pn

j¼1 e
2p
j and

a
Pn

j¼1 e
2q
j

a
Xn

j¼1

e2pj ¼ 2pa
Xn

j¼1

�
e2j
2

�p

> 2pa

�
Xn

j¼1

e2j
2

�p

; ð51Þ

a
Xn

j¼1

e2qj ¼ 2qa
Xn

j¼1

�
e2j
2

�q

> 2pn1�qa

�
Xn

j¼1

e2j
2

�q

: ð52Þ

Substituting (51) and (52) into (50) gives

Fig. 1 The block diagram of the design procedure for the proposed

controller
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_Vn 6� 2pa

�
Xn

j¼1

e2j
2

�p

� 2pn1�qa

�
Xn

j¼1

e2j
2

�q

� a

�
Xn

j¼2

1

2
g2j

�p

� a
Xn

j¼2

�
1

2
g2j

�q

� a

�
Xn

j¼1

1

2rj
~-T
j ~-j

�p

� a
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

þ a

�
Xn

j¼1

1

2rj
~-T
j ~-j

�p

þ a

�
Xn

j¼2

1

2
g2j

�p

þ a
Xn

j¼2

�
1

2
g2j

�q

� a
Xn

j¼2

1

2
g2j

þ a
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� a
Xn

j¼1

1

2rj
~-T
j ~-j

� a
Xn

j¼2

1

2
g2j � a

Xn

j¼1

1

2rj
~-T
j ~-j þW1

:

ð53Þ

In the light of Young’s Inequality, one get
�
Pn

j¼2
1
2
g2j

�p

6 ð1� pÞpð
p

1�pÞ þ
Pn

j¼2
1
2
g2j and

�
Pn

j¼1
1
2rj

~-T
j ~-j

�p

6 ð1� pÞpð
p

1�pÞ þ
Pn

j¼1
1
2rj

~-T
j ~-j.

Therefore, (53) can be rewritten as

_Vn 6� c

�
Xn

j¼1

e2j
2

�p

� c

�
Xn

j¼1

e2j
2

�q

� c

�
Xn

j¼2

1

2
g2j

�p

� c

�
Xn

j¼1

1

2rj
~-T
j ~-j

�p

� c

�
Xn

j¼1

1

2rj
~-T
j ~-j

�q

� c

�
Xn

j¼2

1

2
g2j

�q

þ c
Xn

j¼2

�
1

2
g2j

�q

� c
Xn

j¼2

1

2
g2j

þ c
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� c
Xn

j¼1

1

2rj
~-T
j ~-j þW2

;

ð54Þ

where c ¼ minf2pa; 2qn1�qa; ag and

W2 ¼ 2ð1� pÞpð
p

1�pÞ þW1.

If the conditions q[ 1 is met, it can be divided into four

situations to discuss.

Case 1: If ~-T
j ~-j\2rj and g2j\2, the following

inequality holds

c
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� c
Xn

j¼1

1

2rj
~-T
j ~-j\0 ; ð55Þ

c
Xn

j¼2

�
1

2
g2j

�q

� c
Xn

j¼2

1

2
g2j\0 : ð56Þ

At this point, combining Lemma 2, (56) can be rewritten as

_Vn 6� 31�qc

�
Xn

j¼1

e2j
2
þ
Xn

j¼2

1

2
g2j þ

Xn

j¼1

1

2rj
~-T
j ~-j

�q

� c

�
Xn

j¼1

e2j
2
þ
Xn

j¼2

1

2
g2j þ

Xn

j¼1

1

2rj
~-T
j ~-j

�p

þW2

6� CVp
n � SVq

n þW2

:

ð57Þ

Case 2: If ~-T
j ~-j\2rj and g2j [ 2, the following inequality

holds

c
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� c
Xn

j¼1

1

2rj
~-T
j ~-j\0 ; ð58Þ

c
Xn

j¼2

�
1

2
g2j

�q

� c
Xn

j¼2

1

2
g2j [ 0 : ð59Þ

At this point, (56) can be rewritten as

_Vn 6 �CVp
n � SVq

n þW3 : ð60Þ

Case 3: If ~-T
j ~-j [ 2rj and g2j\2, the following inequality

holds

c
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� c
Xn

j¼1

1

2rj
~-T
j ~-j [ 0 : ð61Þ

c
Xn

j¼2

�
1

2
g2j

�q

� c
Xn

j¼2

1

2
g2j\0 : ð62Þ

In the same way,

_Vn 6 �CVp
n � SVq

n þW4 : ð63Þ

Case 4: If ~-T
j ~-j [ 2rj and g2j [ 2, the following inequality

holds

c
Xn

j¼1

�
1

2rj
~-T
j ~-j

�q

� c
Xn

j¼1

1

2rj
~-T
j ~-j [ 0 ; ð64Þ

c
Xn

j¼2

�
1

2
g2j

�q

� c
Xn

j¼2

1

2
g2j [ 0 : ð65Þ

Similarly,

_Vn 6 �CVp
n � SVq

n þW5 ; ð66Þ
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where C ¼ c, S ¼ 31�qc, W3 ¼ W2 þ c
Pn

j¼2�
1
2
g2j

�q

� c
Pn

j¼2
1
2
g2j , W4 ¼ W2 þ c

Pn
j¼1

�
1
2rj

~-T
j ~-j

�q

�

c
Pn

j¼1
1
2rj

~-T
j ~-j, and W5 ¼ W2 þ c

Pn
j¼1

�
1
2rj

~-T
j ~-j

�q

�

c
Pn

j¼1
1
2rj

~-T
j ~-jþ c

Pn
j¼2

�
1
2
g2j

�q

� c
Pn

j¼2
1
2
g2j .

Therefore, based on the above analysis, it is clear that

the proposed control scheme satisfies Lemma 3 and The-

orem 1 holds.

Remark 4 The control performance of the system

depends on many design parameters. It can be seen from

the stability analysis that the parameters A1;i, A2;i, ri, and Ri

can adjust the convergence error and convergence accuracy

at the same time. By selecting larger A2;i, smaller Ri as well

as appropriate A1;i, ri, the convergence speed can be

improved and the final error can be reduced. In addition,

the exponents p and q determine the boundary of the

convergence time and influence the convergence accuracy.

Choosing suitable exponents can reduce the convergence

time and improve the convergence accuracy.

4 Simulation Studies

Two simulation examples are used to verify the effective-

ness of the above designed fault-tolerant control scheme.

Example 1 (Numerical Simulation): Consider the fol-

lowing second-order nonstrict nonlinear systems with non-

affine faults

_x1 ¼ x2 þ f1ðxÞ
_x2 ¼ uþ f2ðxÞ þ fðt � T0Þsðx; uÞ
y ¼ x1

8
<

:
; ð67Þ

where f1ðxÞ ¼ 0, f2ðxÞ ¼ x2sinðx1Þe�ð1þ2x1x2Þ. We assume

that the ideal reference signal is yr ¼ 0:5sinðtÞ. The

approximation error of the system is e ¼ y� yr. In this

paper, we consider two types of faults: incipient fault and

abrupt fault. From formulas (2) and (3), it can be seen that

fðt � T0Þ ¼ 0; ðT0\10Þ and

fðt � T0Þ ¼ 1� e�.ðt�T0Þ; ðT0 > 10Þ, where T0 is the time

of the fault occurred. If . is a bounded constant (this

simulation assumes . ¼ 23), the fault considered is an

incipient fault. If . approaches infinity, the fault considered

is abrupt fault. The fault function is defined as

sðx; uÞ ¼ 5ðx1x2 þ sinðuÞÞ þ 10.

In the simulation study, fuzzy if-then rules are chosen as

follows:

!1: if x11 is W1
1 and x12 is W1

2, then y is U1;

!2: if x21 is W2
1 and x22 is W2

2, then y is U2;

!3: if x31 is W3
1 and x32 is W3

2, then y is U3;

!4: if x41 is W4
1 and x42 is W4

2, then y is U4;

!5: if x51 is W5
1 and x52 is W5

2, then y is U5;

where fuzzy sets are chosen as W1
1 ¼ ðNLÞ, W1

2 ¼ ðNLÞ,
W2

1 ¼ ðNSÞ, W2
2 ¼ ðNSÞ, W3

1 ¼ ðZEÞ, W3
2 ¼ ðZEÞ,

W4
1 ¼ ðPSÞ, W4

2 ¼ ðPSÞ, W5
1 ¼ ðPLÞ, W5

2 ¼ ðPLÞ, which are

defined over the interval ½�2; 2� for variables xk1 and xk2,

respectively. NL, NS, ZE, PS and PL denote negative large,

negative small, zero, positive small, positive large,

respectively. Their center points are selected as �2, �1, 0,

1, 2, respectively. The fuzzy membership functions for

each fuzzy set are chosen as Gaussian-shaped membership

functions, and they are given as follows:

lWk
i ðxki Þ¼exp

�

�ðxki þ3�kÞ2

42

�

i¼1;2 k¼1;2;3;4;5:

ð68Þ

According to the controller design flow in Sect. 3, the

fixed-time fault-tolerant controllers and adaptive laws

designed for the second-order system (67) are shown

below.

a1 ¼ �A1;1e
2p�1
1 � A2;1e

2q�1
1 � 1

2
e1 þ _yr; ð69Þ

u ¼ �A1;2e
2p�1
2 � A2;2e

2q�1
2 � 1

2
e2 � e1 � -̂T

2u2ðx2Þ þ _x;

ð70Þ
_̂h1 ¼ 0 ; ð71Þ

_̂h2 ¼ r2e2u2ðx2Þ � R2-̂2 : ð72Þ

In order to make the simulation results more convincing,

we compare the adaptive fuzzy fixed-time fault-tolerant

controller proposed in this paper with the adaptive fuzzy

finite-time fault-tolerant controller under the condition that

the considered system and related parameters are consis-

tent. The relevant parameters are chosen as A1;1 ¼ 1,

A2;1 ¼ 50, A1;2 ¼ 30, A2;2 ¼ 100, p ¼ 0:9, q ¼ 1:5, r2 ¼ 2,

R2 ¼ 0:5, d2 ¼ 0:01. We choose 0.3 and �0:1 as the initial

conditions of state variables x1 and x2. The initial value

ĥð0Þ of ĥ is set to ½0; 0; 0; 0; 0�T . The above parameter

values are used whether the system suffers from the

incipient fault or the abrupt fault. The simulation results are

presented in Figs. 2 and 3. Figure 2 shows the simulation

comparison results of the two scheme when the system

suffers from the incipient fault. Figure 2a is the state

variable trajectories of the system under the control of the

two schemes. The tracking errors of the system are shown

in Fig. 2b. Figure 2c and d displays the output trajectories

of the system and the waveforms of the controller under

two schemes, respectively. Figure 3 shows the simulation
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comparing results of the two scheme when the system

suffers from the abrupt fault. Correspondingly, Fig. 3a–d

represents the state variable trajectories, tracking error

trajectories, system output trajectories, and controller

waveforms for the considered system under the control of

the two schemes, respectively.

From Figs. 2 and 3, it is clear that the fixed-time fault-

tolerant control scheme proposed in this paper is superior

to the finite-time fault-tolerant control scheme both in

terms of convergence speed and control accuracy. When

the fault does not occur, the difference is not significant in

tracking accuracy between the fixed-time fault-tolerant

control scheme and the finite-time fault-tolerant control

scheme. When the fault occurs, the tracking accuracy of the

system under the fixed-time fault-tolerant control

scheme decreases but still meets the requirements of the

system. However, the tracking accuracy of the system

under the finite-time fault-tolerant control scheme shows

the phenomenon of divergence as time increased.

Example 2 (Model Simulation): With reference to the

robotic manipulator system proposed in Wang et al. [37],

we verify the control effect of the control strategy proposed

above. The dynamic equation of the robotic manipulator

system is shown as follows:

D€qþ B _qþMgl sinðqÞ ¼ s

Mm _sþ Hms ¼ u� Km _q

�

; ð73Þ

where the physical significance of q, _q and €q are the angle,

angular velocity and angular acceleration of the link,

respectively. The rotation inertia of the servo motor, the

mass of the link, the gravitational acceleration, and the
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Fig. 2 a Comparison trajectories of x1 and x2 under incipient fault, b comparison trajectories of y and yr under incipient fault, c comparison

trajectories of e1 under incipient fault, d Comparison trajectories of u under incipient fault
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damping coefficient are represented by the letters D, M, g,

and B, respectively. l is the length from the axis of joint to

the mass center. s denotes the torque produced by the

motor, u is the voltage applied to the motor or control

input.Mm, Hm, and Km refer to the armature inductance, the

armature resistance, and the back electromotive force

coefficient, respectively. According to [37], the values of

the above physical parameters are given, that is, D ¼ 1 Kg

m2, B ¼ 1 N/(m/s), Mgl ¼ 1, Mm ¼ 0:1H, Hm ¼ 1X,
Km ¼ 0:2Nm=A. The purpose of this simulation is to make

the moving trajectory of the robotic manipulator track the

given reference trajectory in fixed-time under the control of

the designed controller and control the tracking error

within a small neighborhood near the origin. The given

reference trajectory is yr ¼ 0:5sinðtÞ.

In view of the system studied in this paper, we introduce

the non-affine nonlinear fault into the third-order nonlinear

system, so (73) can be rewritten as

_x1 ¼ x2
_x2 ¼ x3 � x2 � sinðx1Þ
_x3 ¼ 10u� 2x2 � 10x3 þ fðt � T0Þsðx; uÞ
y ¼ x1

8
>><

>>:

ð74Þ

where x1 ¼ q, x2 ¼ _q, x3 ¼ €q, fðt � T0Þsðx; uÞ is the fault

item.

According to (2) and (3), we select the fault time

T0 ¼ 10s. At the same time, if the fault type is incipient

fault, . ¼ 8 is selected, and if the fault type is abrupt fault,

. ¼ þ1 is selected. The non-affine nonlinear fault func-

tion is uniformly constructed as s ¼ x1x2x3 þ sinðuÞ þ 5.
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For the target system (74), the actual controller and

adaptive law are obtained as follows referring to the design

process in Sect. 3.1.

u ¼ �A1;3e
2p�1
3 � A2;3e

2q�1
3 � 1

2
e3 � e2 � -̂T

3u3 þ _x ;

ð75Þ
_̂h3 ¼ r3e3u3 � R3-̂3 : ð76Þ

In the simulation, the same initial conditions are used, i.e.,

xð0Þ ¼ ½0:3;�0:2; 1�. For the controlled system with

incipient fault, the relevant design parameters are selected

as A1;1 ¼ 0:5, A2;1 ¼ 1, A1;2 ¼ 0:5, A2;2 ¼ 1, A1;3 ¼ 1,

A2;3 ¼ 20, p ¼ 0:99, q ¼ 1:01, r2 ¼ 2, r3 ¼ 2, R2 ¼ 1,

R3 ¼ 0:8. Similarly, for the controlled system with abrupt

fault, the relevant design parameters are selected as

A1;1 ¼ 0:05, A2;1 ¼ 1, A1;2 ¼ 1, A2;2 ¼ 1, A1;3 ¼ 1,

A2;3 ¼ 20, p ¼ 0:85, q ¼ 1:3, r2 ¼ 2, r3 ¼ 2, R2 ¼ 1,

R3 ¼ 0:6. The simulation results are shown in Fig. 4.

Specifically, Fig. 4a shows the trajectory of the angle,

angular velocity, and angular acceleration of the robotic

manipulator system with time. Figure 4b shows the track-

ing error of the robotic manipulator system with the

incipient fault and the abrupt fault. Figure 4c is the track-

ing of the actual output of the system to the given reference

output under the schemes proposed, corresponding to

Fig. 4b. Figure 4d shows the controller response waveform

when the system is subjected to the abrupt fault and the

incipient fault under the scheme proposed in this paper.
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In order to further verify the effectiveness of the pro-

posed scheme, the fixed-time fault-tolerant controller based

on adaptive fuzzy constructed in this paper is compared

with the fuzzy-free PID controller, where PID controller

parameters for the robotic manipulator system with the

incipient fault are selected as Kp ¼ 2, Ki ¼ 0:23, Kd ¼ 0:6

and PID controller parameters for the robotic manipulator

system with the abrupt fault are selected as Kp ¼ 2:6,

Ki ¼ 0:47, Kd ¼ 0:55. The comparison results are shown in

Fig. 5. Top: comparison results of the system under

incipient fault, and Bottom: comparison results of the

system under abrupt fault. Specifically, Fig. 5a shows the

tracking error under the proposed scheme and the tracking

error under the fuzzy-free PID control scheme. Obviously,

the scheme proposed in this paper can well ensure the

convergence of tracking error, even if the system starts to

suffer the impact of actuator fault in the 10s, the tracking

performance is not significantly affected. However, since

the fuzzy-free PID controller is too sensitive to the

parameters, the tracking accuracy will drift obviously and

diverge with the increase of time after being disturbed by

the actuator fault. Figure 5b shows the tracking of the

actual output of the system to the given reference output

under the two schemes.

According to the simulation results of Example 1 and

Example 2, we can easily get the following conclusions:

(1) All the variables involved are bounded;

(2) The proposed fixed-time fault-tolerant control

scheme is less affected by faults, which not only

ensures the semi-global practical fixed-time stability

of the system but also makes the tracking error

converge to a small neighborhood near the origin.

5 Conclusion

This paper solves the fixed-time fault-tolerant control

problem for nonstrict feedback nonlinear systems with

actuator faults by using dynamic surface control technique,

adaptive fuzzy technique, and fixed-time stability theory.

The fusion of fixed-time control and fault-tolerant control

maintains the stability of the controlled system when the

actuator fault occurs. The complexity explosion caused by

the traditional backstepping method is also mitigated by the

introduction of a first-order filter. Meanwhile, the unknown

drift term in the system and the non-dynamic effects and

changes caused by faults are offset by the application of

adaptive fuzzy technique. Finally, the effectiveness of the

proposed controller is verified by two simulations. In view

of the pursuit of the optimal system performance index

while completing the specified tasks and reducing costs in

actual production, exploring the optimal control scheme in

the sense of fixed-time will be our next research plan.
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