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Abstract Takagi–Sugeno (T–S) fuzzy model is an effec-

tive technology for describing complex nonlinear industrial

processes and dynamic systems with unmeasurable

parameters. However, to stabilize this type of system,

feedback linearization techniques and complex adaptive

schemes usually need to be adopted. This paper focuses on

the stabilization of uncertain fractional-order (FO) systems

with unmeasurable states, external disturbances, and time

delays, where certain ‘‘IF-THEN’’ rules based on an FO T–

S model are proposed to describe FO systems. A new FO

H1 performance model is established to provide stabi-

lization sufficient conditions. A fuzzy observer is imple-

mented to reconstruct system states, and a feedback

controller is established to stabilize the integrated system.

Benefiting from a continuous frequency distribution model,

the stabilization can be discussed through integer-order

stabilization theories, and several stabilization conditions

are obtained. Moreover, the proposed control approach

avoids the usage of feedback linearization techniques,

which effectively reduces the computational complexity.

Apart from theoretical analysis, through a numerical

experiment, the feasibility of derived results is verified.

Keywords Fractional-order system � Takagi–Sugeno

fuzzy model � Frequency distributed model � Time delay �
Fuzzy observer

1 Introduction

Recently, fractional calculus has been broadly investigated

because of its unique heritability and memorability in

system modeling and controlling, and has been used in

many fields, such as bioengineering, physics, economics,

and electronics [1–4]. Compared with integer-order sys-

tems, it can be found that nonlinear systems described by

fractional calculus are more consistent with real dynamic

systems. Consequently, stabilization of fractional-order

nonlinear systems (FONSs) has been a research hotspot

[5–8], and researchers have provided different control

methods, including Takagi–Sugeno (T–S) fuzzy control

[9–11], sliding mode control [12, 13], neural network

control [14, 15], adaptive fuzzy control [16, 17], sampling

control [18, 19], and backstepping control [20, 21]. It is

well known that with the help of ‘‘IF-THEN’’ rules, some

FONSs can be described through a fractional-order (FO)

T–S fuzzy model. The main characteristic of this model is

linearizing the local of complex nonlinear systems, and the

whole system can be obtained through ‘‘mixed’’ linear

subsystems. Compared with ordinary fuzzy systems, T–S

systems usually has fewer fuzzy rules, and some interesting

consequences have been reported recently, e.g., Refs.

[10, 22, 23]. An FO T–S fuzzy model was obtained to

precisely approximate unknown dynamics systems in [22].

A switched fuzzy control for FONSs was introduced by T–

S fuzzy models in [23]. Adaptive T–S fuzzy schemes for

FONSs were discussed in [10]. However, one of the basic

assumptions in above works is that system states are

measurable.

In fact, because of sensor faults and the objective exis-

tence of measurement errors in practical systems, usually,

only part of states are available. In addition, there exist

some states that are hard to be measured directly, such as
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the temperature of the combustion furnace and wind speed.

A common method to deal with this problem is designing

an observer, whose main advantages include saving the

cost of sensors, improving the accuracy of output values,

and providing a good window to observe system states. For

FONSs with unmeasurable states, some interesting works

have been reported, e.g., Refs. [10, 24, 25]. T–S fuzzy

tracking control of FONSs based on an observer was

introduced in [24]. An adaptive T–S fuzzy scheme for

uncertain FONSs was considered in [10]. A predefined

finite time impulsive observer for chaotic FONSs was

designed in [25]. Unfortunately, the prevalent time delays

are not considered in the above literature.

Note that time delays can result in system instability and

performance deterioration in actual application. So, it is a

challenging but meaningful work to study the stabilization

of FO delayed systems, and some interesting results have

been reported [26–31]. A direct Lyapunov–Krasovskii

function was proposed for FO time-delay systems in

[26, 27]. A new Lyapunov–Krasovskii functional was

established for FO time-varying delay systems in [28].

Stability analysis of FO time-delay systems was obtained

by Lyapunov–Krasovskii functions and linear matrix

inequalities in [29]. Stable sufficient conditions for an FO

time-delay interconnected system were provided by cal-

culating linear matrix inequality (LMI) in [30]. The posi-

tivity and stability of FO systems with time delays were

verified in [31]. However, in the above literature, it is often

necessary to solve some complex linear programming

problems to design feedback controllers, which may have

no solution or cannot be optimally solved [32, 33]. How to

simplify the computation is worth further investigation.

Inspired by the above analysis, this article presents a

new T–S fuzzy control method with FO H1 performance,

which effectively solves the stabilization problem of

FONSs with time delays, unmeasurable states, and boun-

ded external disturbances. This method not only imple-

ments a fuzzy observer to reconstruct system states but also

proposes a new FO H1 performance model to guarantee

the observer’s performance. In addition, it is proven that

systems are stable when the FO H1 performance is

decreased to the prescribed attenuation level by utilizing a

frequency distribution model. The main contributions of

this article are given as follows: (1) A new FO H1 per-

formance model is proposed, which can avoid solving a

traditional nonlinear Hamilton–Jacobi partial differential

equation. It is also shown that even the FO H1 tracking

performance is decreased to a prescribed attenuation level,

the system is stable. In addition, to obtain the stabilization

condition, only a simple LMI needs to be solved, which

effectively reduces the computational complexity com-

pared with related works, e.g., Refs. [30, 34]; (2) By

introducing an FO H1 performance model, a fuzzy

observer is designed to reconstruct unmeasurable states,

which can improve the accuracy of the output and provide

a good window to observe system states; (3) Based on a

frequency distribution model, an indirect Lyapunov stabi-

lization condition is derived.

The frame of the article is arranged below. In Sect. 2, a

T–S fuzzy model of FONSs is introduced, and some basic

lemmas and concepts are provided. In Sect. 3, the main

results are introduced, in which the performance analysis of

a fuzzy observer is proposed in Sect. 3.1, and the stabi-

lization of FONSs with time delays, unmeasurable states,

and bounded external disturbances is analyzed in Sect. 3.2.

Section 4 verifies the efficacy and feasibility of the control

scheme by a simulation example. Finally, Sect. 5 con-

cludes the article.

Throughout the article, some notations must be pre-

sented in advance. Rn denotes n-dimension vector space.

Rn�m represents the space of matrices with n row and m

column. Rþ is the set of nonnegative real numbers. Cð�Þ
represents the Gamma function. The exponent ‘‘T’’ denotes

the rank transformation of a vector or matrix. For a matrix

A ¼ ½aij� 2 Rn�m means that A is a nonnegative matrix,

denoted by A � 0ðA�0Þ, i.e., aij � 0ðaij [ 0Þ, and

½A�ij ¼ aij. Particularly, for A ¼ ½aij� 2 Rn�n is a Metzler

matrix if aij � 0 holds for all i 6¼ j.

2 Problem Description and Preliminaries

2.1 Fractional-Order Calculus

In this section, to facilitate subsequent theoretical analysis,

some fractional definitions and related lemmas need

introduced first for system modeling, controller design, and

stabilization analysis.

Definition 1 [29] The fractional integral of a continuous

hðtÞ is given by

I c
t hðtÞ ¼

1

CðcÞ

Z t

0

ðt � �hÞc�1hð�hÞd�h;

where c 2 ð0; 1Þ.

Definition 2 [29] The c-th Caputo fractional derivative is

Dc
tuðtÞ ¼

1

Cð1 � cÞ

Z t

0

u0ðtÞ
ðt � rÞc dr; ð1Þ

where c 2 ð0; 1Þ.
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Definition 3 [29] The Mittage–Leffler function is

Ea;bðkÞ ¼
Xþ1

i¼0

ki

Cðia þ bÞ ; ð2Þ

with k 2 C, and a; b� 0.

Lemma 1 [35] Supposing V(t) is a continuous function,

one has

1

2
Dc
�
VTðtÞVðtÞ

�
	VTðtÞDcVðtÞ: ð3Þ

Lemma 2 [35] By considering the frequency distributed

model, an FONS Dcdð#Þ ¼ f ðd; #Þ with c 2 ð0; 1Þ can be

represented as

o‘ðb; #Þ
o#

¼ �b‘ðb; #Þ þ f ðd; #Þ;

dð#Þ ¼
Z 1

0

jcðbÞ‘ðb; #Þdb;

8>><
>>:

ð4Þ

with jcðbÞ being a weighting function satisfying

jcðbÞ ¼ sinðcpÞ
bcp .

2.2 Problem Description

In this section, a T–S fuzzy model is introduced, which is

described by fuzzy ‘‘IF-THEN’’ rules. A type of T–S time-

delay FONSs are considered, whose fuzzy rule is expressed

as

Plant rule l :

IF l1ðtÞ is Fl1 and . . . and lGðtÞ is FlG, THEN

DcxðtÞ ¼ AlxðtÞ þ Aldxðt � dlðtÞÞ þ BluðtÞ þ HxðtÞ;

yðtÞ ¼ ClxðtÞ þ Cldxðt � dlðtÞÞ þ JxðtÞ; l ¼ 1; 2; . . .; L;

xðrÞ ¼ wðrÞ; r 2 ½�s; 0�;

8>><
>>:

ð5Þ

with c 2 ð0; 1Þ, t 2 Rþ, x ¼ ½x1; x2; . . .; xn�T 2 Rn being the

unmeasurable state vector, y ¼ ½y1; y2; . . .; yq�T 2 Rq being

the measurable output, x ¼ ½x1;x2; . . .;xn�T 2 Rn being a

bounded external disturbance, u ¼ ½u1; u2; . . .; um�T 2 Rm

being the control input, lg being a premise variable, Flg

being a fuzzy membership function, g ¼ 1; . . .;G, G being

the number of membership functions, l ¼ 1; . . .; L, L being

the number of rules, Al 2 Rn�n, Ald 2 Rn�n, Bl 2 Rn�m,

Cl 2 Rq�n, Cld 2 Rq�n, H 2 Rn�n , and J 2 Rq�n being

constant matrices, dlðtÞ being a bounded time delay which

satisfies the following Assumption 1. In the following, l ¼
1; 2; . . .; L if the range of l is not specified.

Assumption 1 Time delays dlðtÞ satisfies 0\dlðtÞ\s for

a known positive constant s, and the initial condition

wðrÞ 2 ½�s; 0� is a known continuous function.

Using the T–S fuzzy method to ‘‘mix’’ multiple FO

linear systems, one has

DcxðtÞ ¼
PL

l¼1 mlðlðtÞÞ
h
AlxðtÞ þ Aldxðt � dlðtÞÞ þ BluðtÞ þ HxðtÞ

i
PL

l¼1 mlðlðtÞÞ

¼
XL

l¼1

�hlðlðtÞÞ
�

AlxðtÞ þ Aldxðt � dlðtÞÞ þ BluðtÞ þ HxðtÞ
�
;

ð6Þ

and

yðtÞ ¼
PL

l¼1 mlðlðtÞÞ
h
ClxðtÞ þ Cldxðt � dlðtÞÞ þ JxðtÞ

i
PL

l¼1 mlðlðtÞÞ

¼
XL

l¼1

�hlðlðtÞÞ
�

ClxðtÞ þ Cldxðt � dlðtÞÞ þ JxðtÞ
�
;

ð7Þ

where �hlðlÞ ¼ mlðlÞPL

l¼1
mlðlÞ

, mlðlÞ ¼
QG

g¼1 FlgðlgÞ, FlgðlgÞ is

the membership degree, in which lg belongs to Flg.

Moreover, it holds mlðlÞ� 0,
PL

l¼1 mlðlÞ[ 0 for all t, and

as a result �hlðlÞ� 0, in which
PL

l¼1 �hlðlÞ ¼ 1.

The objective of this article is to provide a feedback

controller that satisfies an FO H1 performance and

achieves the stabilization of the system (6). To accomplish

this purpose, a new FO H1 performance model is pro-

posed, and several stabilization sufficient conditions are

provided.

The following FO H1 performance related to x(t) is

given as follows:

0I
c
tf

h
xTðtÞQxðtÞ

i
	 xTð0ÞPxð0Þ þ q2

0I
c
tf

h
xTðtÞxðtÞ

i
;

ð8Þ

with Q 2 Rn�n;P 2 Rn�n being two positive matrixes, q
being the prescribed attenuation level, and tf being the

terminal time of control.

Note that system states are unmeasurable, they can be

reconstructed through the following observer.

Observer rule l :

IF l1ðtÞ is Fl1 and � � � and lGðtÞ is FlG, THEN
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Dcx̂ðtÞ ¼ Alx̂ðtÞ þ Aldx̂ðt � dlðtÞÞ þ BluðtÞ þ LlðyðtÞ � ŷðtÞÞ;

ŷðtÞ ¼ Clx̂ðtÞ þ Cldx̂ðt � dlðtÞÞ;

(

ð9Þ

with x̂ðtÞ being the observation of x(t), Ll being an observer

gain for the lth rule.

Then, consider the whole fuzzy observer, one has

Dcx̂ðtÞ ¼
XL

l¼1

�hlðlðtÞÞ
�

Alx̂ðtÞ þ Aldx̂ðt � dlðtÞÞ

þ BluðtÞ þ LlðyðtÞ � ŷðtÞÞ
�
:

ð10Þ

In addition, a feedback controller is provided through the

parallel distributed compensation (PDC) method.

Control rule j :

IF ljðtÞ is Fj1 and . . . and lGðtÞ is FjG, THEN

uðtÞ ¼ Kjx̂ðtÞ; j ¼ 1; 2; . . .; L ð11Þ

with Kj being a control gain.

The whole fuzzy feedback controller is

uðtÞ ¼
XL

j¼1

�hjðlÞKjx̂ðtÞ: ð12Þ

Remark 1 A traditional integer-order H1 performance

model was proposed in [24]. Compared with this model,

the considered system (8) generalizes the integer-order

research result to an FO case and considers the effect of

time delays, which is a new mathematical tool with wider

application and is expected to exhibit better performance.

If dlðtÞ ¼ 0, the same conclusion can be obtained by the

proposed model. If dlðtÞ[ 0, values of time delays do not

influence final results. The performance of the fuzzy

observer (10) is only dependent on its internal matrices. In

this case, it is difficult to directly find control gains Kj and

observer gains Ll, which will be designed later.

3 Main Results

3.1 Performance Analysis of the Fuzzy Observer

The stabilization analysis of observation errors is intro-

duced to ensure the fuzzy observer performance superior-

ity, as shown in Fig. 1. In addition, for simplicity and

convenience, the time variable t will be omitted in some

subsequent functions.

The observation error is defined as

eðtÞ ¼ xðtÞ � x̂ðtÞ: ð13Þ

By differentiating (13), according to (6) and (10), one has

DceðtÞ ¼ DcxðtÞ � Dcx̂ðtÞ

¼
XL

l¼1

�hl

�
AlxðtÞ � Alx̂ðtÞ þ Aldxðt � dlÞ

� Aldx̂ðt � dlÞ þ HxðtÞ � LlClðxðtÞ � x̂ðtÞÞ

� LlCldðxðt � dlÞ � x̂ðt � dlÞÞ � LlJxðtÞ
�

¼
XL

l¼1

�hl

�
ðAl � LlClÞeðtÞ þ ðAld � LlCldÞeðt � dlÞ

þ ðH � LlJÞxðtÞ
�
:

ð14Þ

Defining Al1 ¼ Al � LlCl 2 Rn�n, Al2 ¼ Ald � LlCld 2
Rn�n, and El ¼ H � LlJ 2 Rn�n, one obtains

DceðtÞ ¼
XL

l¼1

�hl

�
Al1eðtÞ þ Al2eðt � dlÞ þ ElxðtÞ

�
: ð15Þ

In this paper, the Lyapunov method is utilized to stabilize

the system (6). The following theorem indicates the main

results.

Theorem 1 For the FONS (15) with time delays, if there

exist two positive matrices P; S[ 0 such that

Q þ AT
l1P þ PAl1 þ

1

q2
PElE

T
l P þ PAl2S�1AT

l2P þ KS\0;

ð16Þ

then the FO H1 performance of observer errors e(t) is

decreased to a specified q2, i.e.,

0I
c
tf

h
eTðtÞQeðtÞ

i
	 eTð0ÞPeð0Þ þ q2

0I
c
tf

h
xTðtÞxðtÞ

i
:

ð17Þ

Proof: By integrating (13), one can obtain

0I
c
tf
½eT Qe� ¼ 0 I c

tf

h
ðx � x̂ÞT Qðx � x̂Þ

i
; ð18Þ

where tf � 0.

If the observation error is 0 and tf ¼ 0, one has

0I
c
tf
½eT Qe� ¼ eTð0ÞPeð0Þ þ q2

0I
c
tf
½xTx�: ð19Þ

Otherwise,
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0I
c
tf

�
eT Qe

�

¼ eTð0ÞPeð0Þ � eTðtf ÞPeðtf Þ þ 0 I
c
tf

h
eT Qe þ 0 Dc

tf
ðeT PeÞ

i

	 eTð0ÞPeð0Þ þ 0 I
c
tf

h
eT Qe þ 0 Dc

tf
ðeT PeÞ

i

¼ eTð0ÞPeð0Þ þ 0 I
c
tf

�
eT Qe þ

XL

l¼1

�hl

h
ðAl1eÞT Pe

þ ðAl2eðt � dlÞÞT Pe þ ðElxÞT Pe þ eT PAl1e

þ eT PAl2eðt � dlÞ þ eT PElx� q2xTx

� 1

q2
eT PElE

T
l Pe þ q2xTxþ 1

q2
eT PElE

T
l Pe

i	

¼ eTð0ÞPeð0Þ þ 0 I
c
tf

�
eT Qe þ

XL

l¼1

�hl

h
eT AT

l1Pe þ eT PAl1e

þ eTðt � dlÞAT
l2Pe þ eT PAl2eðt � dlÞ þ

1

q2
eT PElE

T
l Pe

�
 

1

q
ET

l Pe � qx

!T 
1

q
ET

l Pe � qx

!
þ q2xTx

i	

	 eTð0ÞPeð0Þ þ 0 I
c
tf

�
eT Qe þ

XL

l¼1

�hl

h
eT AT

l1Pe þ eT PAl1e

þ q2xTxþ 1

q2
eT PElE

T
l Pe þ 2eT PAl2eðt � dlÞ

i	

	 eTð0ÞPeð0Þ þ 0 I
c
tf

XL

l¼1

�hl

�
eT



AT
l1P þ PAl1 þ

1

q2
PElE

T
l P

þ PAl2S�1AT
l2P þ Q

�
e þ eTðt � dlÞSeðt � dlÞ þ q2xTx

�
:

When eðtÞ ¼ 0, the observation objective is completed.

Otherwise, there exists a constant K [ 1, such that

eTðt � dlÞSeðt � dlÞ\KeTðtÞSeðtÞ: ð20Þ

From (20), one can obtain

0I
c
tf

h
eT Qe

i
\eTð0ÞPeð0Þ þ 0 I

c
tf

XL

l¼1

�hl

�
eTðQT

þ AT
l1P þ PAl1 þ

1

q2
PElE

T
l P

þ PAl2S�1AT
l2P þ KSÞe þ q2xTx

�
:

If (16) holds, one has

0I
c
tf

h
eTðtÞQeðtÞ

i
\eTð0ÞPeð0Þ þ q2

0I
c
tf

h
xTðtÞxðtÞ

i
:

ð21Þ

To sum up, the FO H1 performance (17) holds, which is

guaranteed to the specified q2. That completes the proof.�

In addition, the design thought of the proposed

scheme is summarized in Fig. 2.

Remark 2 According to [10], from a view of energy

point, the influence of all bounded external disturbances on

the state vector should be decreased to a specified standard

q2. To achieve this goal, the general practice is utilizing an

Fig. 1 The structure of the proposed T–S fuzzy system
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adaptive law to adjust fuzzy systems and a control

scheme to weaken the influence of external interference.

Different from the above method, the FO H1 performance

with a fuzzy observer is considered for all bounded inputs,

which can avoid complex updating rules of the adaptive

law and effectively reduce the influence of bounded

external disturbances.

Remark 3 Note that the fuzzy observer (10) is designed to

reconstruct unmeasurable states, which can improve the

accuracy of output values. The performance of the fuzzy

observer is excellent enough through the stabilization

analysis of e(t). Furthermore, to receive excellent control

performance, control problems can be converted into the

minimized sum of squares problems by utilizing the FO

H1 performance model. However, it should be pointed out

that this model can only simplify the calculation, but it

inevitably needs to solve a simple linear matrix inequality

problem (LMIP).

3.2 Stabilization Analysis

In the subsection, the stabilization analysis for FONSs with

unmeasurable states, bounded external disturbances, and

time delays is given. Obviously, stabilization of the system

(5) can be achieved by equivalently discussing the system

(6).

Through the suitable fuzzy observer (10), the system (6)

is reconstructed as

Dcx̂ðtÞ ¼
XL

l¼1

�hl

�
Alx̂ðtÞ þ Aldx̂ðt � dlÞ þ BluðtÞ þ LlJxðtÞ

�
:

ð22Þ

Based on the PDC in [36, 37], by using the controller (12),

it follows from (22) that

Dcx̂ðtÞ ¼
XL

l¼1

XL

j¼1

�hl�hj

�
Alx̂ðtÞ þ Aldx̂ðt � dlÞ þ BlKjx̂ðtÞ þ LlJxðtÞ

�
;

¼
XL

l¼1

XL

j¼1

�hl�hj

�
ðAl þ BlKjÞx̂ðtÞ þ Aldx̂ðt � dlÞ þ LlJxðtÞ

�
:

ð23Þ

Defining Blj ¼ Al þ BlKj 2 Rn�n, Fl ¼ LlJ 2 Rn�n, the

system (23) is expressed as

Dcx̂ðtÞ ¼
XL

l¼1

XL

j¼1

�hl�hj

�
Bljx̂ðtÞ þ Aldx̂ðt � dlÞ þ FlxðtÞ

�
:

ð24Þ

Based on the above stabilization condition of FONSs,

Theorem 2 is proved in a similar way.

Theorem 2 For the FONS (24) with time delays, if there

exist two positive matrices P0; S0 [ 0 such that

Q þ BT
ljP0 þ P0Blj þ

1

q2
P0FlF

T
l P0

þ P0AldS�1
0 AT

ldP0 þ KS0\0;

ð25Þ

then the FO H1 performance of states x̂ is decreased to a

specified q2, i.e.,

0I
c
tf

�
x̂TðtÞQx̂ðtÞ

�
	 x̂Tð0ÞP0x̂ð0Þ þ q2

0I
c
tf

�
xTðtÞxðtÞ

�
;

ð26Þ

with 0\c\1.

Proof: Using the similar method as Theorem 1,

if the state x̂ðtÞ ¼ 0 or tf ¼ 0, one has

0I
c
tf

�
x̂TðtÞQx̂ðtÞ

�
¼ x̂Tð0ÞP0x̂ð0Þ þ q2

0I
c
tf

�
xTðtÞxðtÞ

�
:

Otherwise,

0I
c
tf

h
x̂T Qx̂

i
¼ x̂Tð0ÞP0x̂ðoÞ � x̂Tðtf ÞP0x̂ðtf Þ

þ 0 I
c
tf

h
x̂T Qx̂ þ 0 Dc

tf

�
x̂T P0x̂

�i

	 x̂Tð0ÞP0x̂ð0Þ þ 0 I
c
tf

h
x̂T Qx̂ þ 0 Dc

tf

�
x̂T P0x̂

�i

¼ x̂Tð0ÞP0x̂ð0Þ þ 0 I
c
tf

h
x̂T Qx̂ þ Dc

tf
x̂T P0x̂ þ x̂T P0Dc

tf
x̂
i

	 x̂Tð0ÞP0x̂ð0Þ þ 0 I
c
tf

�
x̂T Qx̂ þ

XL

l¼1

XL

j¼1

�hl�hj

h
x̂T BT

ljP0x̂

þ x̂T P0Bljx̂ þ q2xTxþ 1

q2
x̂T P0FlF

T
l P0x̂

þ 2x̂T P0Aldx̂ðt � dlÞ
i	

\x̂Tð0ÞP0x̂ð0Þ þ 0 I
c
tf

�XL

l¼1

XL

j¼1

�hl�hj

h
x̂TðQ þ BT

ljP0 þ P0Blj

þ 1

q2
P0FlF

T
l P0 þ P0AldS�1

0 AT
ldP0 þ KS0Þx̂ þ q2xTx

i	
:

From (25), one can obtain

0I
c
tf

�
x̂T Qx̂

�
\x̂Tð0ÞP0x̂ð0Þ þ q2

0I
c
tf

�
xTx

�
:

Considering all cases, the FO H1 performance (26) holds,

which is decreased to the specified q2. This proof is

finished. �

According to the preceding derivation, the system (24)

is stable. In addition, noting that the system (24) contains

external disturbances, a simple closed-loop system

Dcx̂ðtÞ ¼
XL

l¼1

XL

j¼1

�hl�hj

h
Bljx̂ðtÞ þ Aldx̂ðt � dlÞ

i
ð27Þ

is considered.
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According to the preceding derivation, the following

conclusion can be reached.

Theorem 3 If the system (24) satisfies the FO H1 per-

formance (26), then the closed-loop system (27) is

quadratically stable.

Proof: From (4), the following frequency distribution

model is used to reconstruct the system (27), one can

obtain

ozx1

ot
¼ �x1zx1

þ fd;

x̂ðtÞ ¼
Z 1

0

zx1
dx1;

8>><
>>:

ð28Þ

where

fd ¼ Dcx̂ðtÞ ¼
PL

l¼1

PL
j¼1 �hl�hj

h
Bljx̂ðtÞ þ Aldx̂ðt � dlÞ

i
.

Defining the Lyapunov function as

V1ðtÞ ¼
Z 1

0

zT
x1

P1zx1
dx1; ð29Þ

with P1 being a weighting matrix.

By differentiating (29), one has

_V1ðtÞ ¼
Z 1

0



� x1zT

x1
þ f T

d

�
P1zx1

dx1

þ
Z 1

0

zT
x1

P1ð�x1zx1
þ fdÞdx1

¼ �
Z 1

0

x1zT
x1

P1zx1
dx1 þ f T

d P1

Z 1

0

zx1
dx1

�
Z 1

0

zT
x1

P1x1zx1
dx1 þ

Z 1

0

zT
x1

dx1P1fd

¼ �2

Z 1

0

x1zT
x1

P1zx1
dx1 þ f T

d P1x̂ðtÞ þ x̂TðtÞP1fd:

ð30Þ

Substituting fd ¼ Dcx̂ðtÞ into (30) yields

_V1ðtÞ\Dcx̂TðtÞP1x̂ðtÞ þ x̂TðtÞP1Dcx̂ðtÞ

¼
XL

l¼1

XL

j¼1

�hl�hjx̂
TðtÞ

h
BT

ljP1 þ P1Blj

þ P1AldS�1AT
ldP1 þ KS

i
x̂ðtÞ:

ð31Þ

From Theorem 2, one has

_V1ðtÞ\0: ð32Þ

Then the closed-loop system (27) is quadratically stable.

This proof is finished. �

Obviously, if the matrix inequality (25) holds and
_V1ðtÞ\0, the system (6) is stable.

Fig. 2 Design procedures
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Remark 4 The Lyapunov function is a serviceable theo-

retical instrument for solving stabilization problems.

However, for some complex systems, it is challenging to

discover suitable Lyapunov functions, which makes the

effectiveness of Lyapunov theories worse. Note that the

system (27) is a complex polynomial, which will increase

the computational complexity when designing Lyapunov

functions directly. Therefore, FONS (27) can be trans-

formed into a simple integer-order system (28) by the

frequency distribution model, which is helpful for theo-

retical analysis.

Remark 5 Theorems 1 and 2 about the FO H1 perfor-

mance can stabilize any FONSs with unmeasurable states,

bounded external disturbances, and time delays. Compared

with some related literature, such as [38–40], this FO H1
performance design can avoid the calculation of nonlinear

partial differential equations, and apply to more complex

FO systems. Moreover, the stabilization of the closed-loop

system (27) without external perturbations can be achieved

through a suitable Lyapunov function in Theorem 3.

4 Simulation Results

Next, a numerical simulation example is proposed to verify

the effectiveness of the control strategy.

Considering the following FO time-delay T–S fuzzy

system,

DcxðtÞ ¼
X4

l¼1

�hlðlÞ
h
AlxðtÞ þ Aldxðt � dlÞ þ BluðtÞ þ HxðtÞ

i
;

yðtÞ ¼
X4

l¼1

�hlðlÞ
h
ClxðtÞ þ Cldxðt � dlÞ þ JxðtÞ

i
; l ¼ 1; 2; . . .; 4;

8>>>>><
>>>>>:

ð33Þ

where fuzzy rules are given by

Rule 1: IF x1ðtÞ is F1
1ðx1ðtÞÞ;

Rule 2: IF x1ðtÞ is F1
2ðx1ðtÞÞ;

Rule 3: IF x1ðtÞ is F1
3ðx1ðtÞÞ;

Rule 4: IF x1ðtÞ is F1
4ðx1ðtÞÞ;

THEN,

DcxðtÞ ¼ AlxðtÞ þ Aldxðt � dlÞ þ BluðtÞ þ HxðtÞ;

yðtÞ ¼ ClxðtÞ þ Cldxðt � dlÞ þ JxðtÞ; l ¼ 1; 2; . . .; 4;

(

ð34Þ

with n ¼ 3, m ¼ 3, q ¼ 3, x ¼ ½x1; x2; x3�T being the state

vector, y ¼ ½y1; y2; y3�T being the output of the system, u ¼
½u1; u2; u3�T being the control input, F1

l being a fuzzy

membership function. Al 2 R3�3, Ald 2 R3�3, Bl 2 R3�3,

Cl 2 R3�3, Cld 2 R3�3, H 2 R3�3 , and J 2 R3�3, external

disturbances x1ðtÞ ¼ 0:1 sin 2t, x2ðtÞ ¼ 0:1 cos 2t, x3ðtÞ ¼

0:1 cos 2t , and the bounded time delay dlðtÞ ¼ 2cos2t. In

the following, l ¼ 1; . . .; 4 if the range of l is not specified.

To convenience the design, trigonometric membership

functions are supplied in fuzzy rules, as shown in Fig. 3a.

Note that the state x(t) is unmeasurable, it can be

reconstructed through the fuzzy observer (10). Observer

gains are found as L1 ¼ 0:8, L2 ¼ 15, L3 ¼ 18, L4 ¼ 20.

The trajectory of xiðtÞ and x̂iðtÞ is shown in Fig. 3b–d.

Next, based on Theorems 2 and 3, the stabilization of

the system (34) can be achieved. First, matrices Al and Ald

are chosen as

A1 ¼
�0:82 0:44 � 1:06

�1:16 � 0:41 0:4

�0:11 � 0:34 � 0:44

2
64

3
75;

A2 ¼
�0:14 � 0:35 0:45

0:16 � 0:43 � 1:04

�0:44 � 0:52 0:14

2
64

3
75;

A3 ¼
0:35 0:80 � 2:16

�1:43 � 0:48 � 1:46

0:03 0:05 � 0:08

2
64

3
75;

A4 ¼
�1:50 � 1:43 0:39

�0:11 � 1:02 � 0:43

0:55 0:31 0:42

2
64

3
75:

A1d ¼
0:47 0:41 0:84

0:69 0:80 0:54

0:03 0:68 0:02

2
64

3
75;

A2d ¼
0:73 0:64 0:54

0:82 0:63 0:06

0:56 0:28 0:59

2
64

3
75;

A3d ¼
0:02 0:08 0:20

0:16 0:71 0:84

0:03 0:58 0:02

2
64

3
75;A4d ¼

0:32 0:68 0:33

0:27 0:07 0:53

0:65 0:37 0:59

2
64

3
75:

Matrices Bl are given as

B1 ¼
0:64 0:54 0:38

0:16 0:15 0:84

0:58 0:10 0:23

2
64

3
75;B2 ¼

0:47 0:14 0:78

0:01 0:29 0:84

0:64 0:58 0:43

2
64

3
75;

B3 ¼
0:02 0:73 0:13

0:03 0:14 0:71

0:14 0:70 0:24

2
64

3
75;B4 ¼

0:18 0:56 0:47

0:24 0:24 0:43

0:50 0:72 0:80

2
64

3
75:

The values of all elements of Cl and Cld are in the range

of [0, 1], and the matrix formed by randomly selected

values is as
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C1 ¼
0:18 0:28 0:05

0:65 0:46 0:43

0:65 0:07 0:67

2
64

3
75;C2 ¼

0:83 0:36 0:06

0:02 0:01 0:69

0:46 0:23 0:21

2
64

3
75;

C3 ¼
0:42 0:16 0:64

0:16 0:55 0:35

0:50 0:58 0:08

2
64

3
75;C4 ¼

0:12 0:72 0:07

0:81 0:43 0:34

0:05 0:89 0:10

2
64

3
75:

C1d ¼
0:8619 0:7173 0:2998

0:0046 0:7687 0:1599

0:6749 0:0844 0:7001

2
64

3
75;

C2d ¼
0:3314 0:1638 0:7693

0:8106 0:1455 0:4797

0:1818 0:1361 0:4499

2
64

3
75;

C3d ¼
0:0450 0:2510 0:0760

0:7530 0:4132 0:1399

0:5221 0:3018 0:0233

2
64

3
75;

C4d ¼
0:1839 0:0497 0:3909

0:1400 0:8027 0:3893

0:3173 0:8448 0:2377

2
64

3
75:

In this simulation example, the control gain Kj is shown in

Table 1. Therefore, the system (34) is stable through the

condition (26) in Theorem 2, which can be observed in

Fig. 4a and b. Obviously, trajectories of x(t) and y(t) con-

verge to zero asymptotically, which shows that the control

method is effective. The time responses of x1ðtÞ; x2ðtÞ; x3ðtÞ
are plotted in Fig. 4a, and the time responses of

y1ðtÞ; y2ðtÞ; y3ðtÞ are plotted in Fig. 4b. Figure 5a shows the

time response of the controller (12), which shows that the

control performance is superior.

Furthermore, we compare the performance of the pro-

posed feedback controller (12) with the controller in [28].

For the fairness of comparison, the controller in [28] also

selects the same control gain kj in Table 1. Therefore, we

compare the performance of different controllers in Fig. 5,

which explicitly shows that the designed feedback con-

troller (12) has better control performance with less energy

loss. Simultaneously, it is obvious that trajectories of

x(t) and y(t) converge to zero faster by using the proposed

feedback controller (12), which is shown in Fig. 4.

Note that the system (34) contains external disturbances,

a closed-loop system is expressed as
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Fig. 3 Simulation results: a Fuzzy membership functions for x1ðtÞ; b The trajectory of x1ðtÞ and x̂1ðtÞ; c The trajectory of x2ðtÞ and x̂2ðtÞ; d The

trajectory of x3ðtÞ and x̂3ðtÞ
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Table 1 Simulation results for

LMIP in [37]
Variable Value Variable Value

K1 1:7135 1:8560 2:6011

1:8560 20:1034 2:8173

2:6011 2:8173 3:9483

2
4

3
5 K2 0:0013 0:0615 0:0493

0:0615 0:2569 0:2238

0:0493 0:2238 0:1735

2
4

3
5

K3 0:0003 0:0023 0:0062

0:0023 0:0001 0:0049

0:0062 0:0049 0:0167

2
4

3
5 K4 1:7135 1:8560 2:6011

1:8560 20:1034 2:8173

2:6011 2:8173 3:9483

2
4

3
5

P1 1:6311 1:7668 2:4760

1:7668 19:1366 2:6819

2:4760 2:6819 3:7584

2
4

3
5 P2 0:0095 0:0617 0:0495

0:0617 0:2738 0:2321

0:0495 0:2321 0:1721

2
4

3
5

P3 0:0006 0:0024 0:0067

0:0024 0:0034 0:0061

0:0067 0:0061 0:0124

2
4

3
5 P4 1:9926 3:9886 4:0611

3:9886 9:7662 1:3525

4:0611 1:3525 2:4604

2
4

3
5

S1 9:0037 6:6236 4:1293

6:6236 1:0511 1:0581

4:1293 1:0581 9:3841

2
4

3
5 S2 1:3953 1:4387 1:0452

1:4387 1:2999 6:0448

1:0452 6:0448 1:2730

2
4

3
5

S3 3:6540 2:1339 4:0927

2:1339 3:6624 1:2655

4:0927 1:2655 3:5528

2
4

3
5 S4 4:5774 3:2474 1:0618

3:2474 4:2465 4:6875

1:0618 4:6875 5:3815

2
4

3
5

0 2 4 6 8 10 12 14 16 18 20
Time(second)

-0.5

0

0.5

1

1.5

S
ta

te
s

(a)

0 2 4 6 8 10 12 14 16 18 20
Time(second)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
ut

pu
ts

(b)

0 2 4 6 8 10 12 14 16 18 20
Time(second)

-1

-0.5

0

0.5

1

1.5

2

S
ta

te
s

(c)

0 2 4 6 8 10 12 14 16 18 20
Time(second)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
ut

pu
ts

(d)

Fig. 4 Simulation results: a State variables x1ðtÞ, x2ðtÞ, and x3ðtÞ; b Output y1ðtÞ, y2ðtÞ, and y3ðtÞ; c State variables x1ðtÞ, x2ðtÞ, and x3ðtÞ in [28];

d Output y1ðtÞ, y2ðtÞ, and y3ðtÞ in [28]

123

Y. Liu, X. Zhang: Stabilization of Fractional-Order T–S Fuzzy Systems... 1309



DcxðtÞ ¼ AlxðtÞ þ Aldxðt � dlÞ þ BluðtÞ: ð35Þ

Based on Theorem 3, to verify that the system (35) is

quadratic stable, a sufficient condition must be satisfied,

which is similar to the condition (25). The sufficient con-

dition for the stabilization analysis is that there exist two

positive matrices P 2 R3�3 and S 2 R3�3 such that

AT
l P þ PAl þ PAldS�1AT

ldP þ KS\0: ð36Þ

The inequality in (36) is transformed to the following

LMIP by the Schur complements,

AT
l P þ PAl þ KS PAld

AT
ldP � S

" #
\0: ð37Þ

To solve (37), the LMI optimization instrument is used for

LMIP in [41], and the result is shown in Table 1. Based on

the previous experimental data, Theorem 3 can be verified.

Simulation results ensure the internal stabilization of the

model and its boundedness.

5 Conclusions

In this article, the stabilization analysis of FONSs with

time delays, unmeasurable states, and bounded external

perturbations has been discussed by utilizing the T–S fuzzy

method. Several sufficient stabilization conditions are

proposed by introducing an FO H1 performance model

and a frequency distribution model. It is shown that the

effect of uncertain parameters and time delays is solved

through a new FO H1 performance model. It is also proven

that the frequency distribution model can use the integer-

order stabilization theory to stabilize FO systems, which

effectively reduces the computational complexity. More-

over, an observer is implemented to reconstruct unmea-

surable states, and a fuzzy feedback controller is

established to satisfy the FO H1 performance and stabilize

the system. The advantage of the design scheme is that the

method avoids the use of feedback linearization techniques

and complex adaptive schemes, which is a simple and

systematic stabilization analysis algorithm. To sum up, it is

an open question to consider the stabilization of FO real

systems with uncertainties. Furthermore, how to establish

sufficient conditions for the c-passivity of FONSs is also an

important content of further research.
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6. Efe, M.Ö.: Fractional fuzzy adaptive sliding-mode control of a

2-DOF direct-drive robot arm. IEEE Trans. Syst, Man Cybern. B

(Cybern.) 38(6), 1561–1570 (2008)

7. Zhou, Y., Wang, H., Liu, H.: Generalized function projective

synchronization of incommensurate fractional-order chaotic sys-

tems with inputs saturation. Int. J. Fuzzy Syst. 21, 823–836

(2019)

0 2 4 6 8 10 12 14 16 18 20
Time(second)

-10

-5

0

5
in
pu

ts

(a)

0 2 4 6 8 10 12 14 16 18 20
Time(second)

-10

-8

-6

-4

-2

0

2

4

in
pu

ts

(b)

Fig. 5 Simulation results: a State feedback controller u(t) by (12); b State feedback controller u(t) in [28]

123

1310 International Journal of Fuzzy Systems, Vol. 26, No. 4, June 2024



8. Gegov, A.E., Frank, P.M.: Hierarchical fuzzy control of multi-

variable systems. Fuzzy Sets Syst. 72(3), 299–310 (1995)

9. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its

applications to modeling and control. IEEE Trans. Syst. Man

Cybern. 1, 116–132 (1985)

10. Mirzajani, S., Aghababa, M.P., Heydari, A.: Adaptive T–S fuzzy

control design for fractional-order systems with parametric uncer-

tainty and input constraint. Fuzzy Sets Syst. 365, 22–39 (2019)

11. Kavikumar, R., Ma, Y.K., Ren, Y., Anthoni, S.M., et al.: Observer-

based H1 repetitive control for fractional-order interval type-2

TS fuzzy systems. IEEE Access 6, 49828–49837 (2018)

12. Bai, J., Wen, G., Rahmani, A., Yu, Y.: Distributed consensus tracking

for the fractional-order multi-agent systems based on the sliding mode

control method. Neurocomputing 235, 210–216 (2017)

13. Lin, T.C., Lee, T.Y.: Chaos synchronization of uncertain frac-

tional-order chaotic systems with time delay based on adaptive

fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4),

623–635 (2011)

14. Zhang, H., Zeng, Z.: Synchronization of nonidentical neural

networks with unknown parameters and diffusion effects via

robust adaptive control techniques. IEEE Trans. Cybern. 51(2),

660–672 (2019)

15. Tan, L.N., Cong, T.P., Cong, D.P.: Neural network observers and

sensorless robust optimal control for partially unknown PMSM

with disturbances and saturating voltages. IEEE Trans. Power

Electron. 36(10), 12045–12056 (2021)

16. Liu, H., Pan, Y., Cao, J.: Composite learning adaptive dynamic

surface control of fractional-order nonlinear systems. IEEE

Trans. Cybern. 50(6), 2557–2567 (2019)

17. Li, Z., Gao, L., Chen, W., Xu, Y.: Distributed adaptive cooper-

ative tracking of uncertain nonlinear fractional-order multi-agent

systems. IEEE/CAA J. Autom. Sin. 7(1), 292–300 (2019)

18. Seuret, A.: A novel stability analysis of linear systems under

asynchronous samplings. Automatica 48(1), 177–182 (2012)

19. Zeng, H.-B., Teo, K.L., He, Y.: A new looped-functional for

stability analysis of sampled-data systems. Automatica 82,

328–331 (2017)

20. Liu, H., Pan, Y., Cao, J., Wang, H., Zhou, Y.: Adaptive neural

network backstepping control of fractional-order nonlinear sys-

tems with actuator faults. IEEE Trans. Neural Netw. Learn. Syst.

31(12), 5166–5177 (2020)

21. Sakthivel, R., Raajananthini, K., Kwon, O., Mohanapriya, S.:

Estimation and disturbance rejection performance for fractional

order fuzzy systems. ISA Trans. 92, 65–74 (2019)

22. Zheng, Y., Nian, Y., Wang, D.: Controlling fractional order chaotic

systems based on Takagi–Sugeno fuzzy model and adaptive

adjustment mechanism. Phys. Lett. A 375(2), 125–129 (2010)

23. Wang, X., Park, J.H., She, K., Zhong, S., Shi, L.: Stabilization of

chaotic systems with T–S fuzzy model and nonuniform sampling:

a switched fuzzy control approach. IEEE Trans. Fuzzy Syst.

27(6), 1263–1271 (2018)

24. Tseng, C.-S., Chen, B.-S., Uang, H.-J.: Fuzzy tracking control

design for nonlinear dynamic systems via T–S fuzzy model. IEEE

Trans. Fuzzy Syst. 9(3), 381–392 (2001)

25. Djennoune, S., Bettayeb, M., Al Saggaf, U.M.: Impulsive

observer with predetermined finite convergence time for syn-

chronization of fractional-order chaotic systems based on Tak-

agi–Sugeno fuzzy model. Nonlinear Dyn. 98, 1331–1354 (2019)

26. Sajewski, Ł.: Decentralized stabilization of descriptor fractional

positive continuous-time linear systems with delays. In: 2017

22nd International Conference on Methods and Models in

Automation and Robotics (MMAR), pp. 482–487. IEEE (2017)

27. Kaczorek, T.: Stabilization of fractional positive continuous-time

linear systems with delays in sectors of left half complex plane by

state-feedbacks. Control Cybern. 39(3), 783–795 (2010)

28. Mahmoudabadi, P., Tavakoli-Kakhki, M.: Improved stability

criteria for nonlinear fractional order fuzzy systems with time-

varying delay. Soft Comput. 26(9), 4215–4226 (2022)

29. Shen, J., Lam, J.: Stability and performance analysis for positive

fractional-order systems with time-varying delays. IEEE Trans.

Autom. Control 61(9), 2676–2681 (2015)

30. Li, Y., Li, J.: Decentralized stabilization of fractional order TS

fuzzy interconnected systems with multiple time delays. J. Intell.

Fuzzy Syst. 30(1), 319–331 (2016)

31. Liu, H., Pan, Y., Cao, J., Zhou, Y., Wang, H.: Positivity and

stability analysis for fractional-order delayed systems: a T–S

fuzzy model approach. IEEE Trans. Fuzzy Syst. 29(4), 927–939

(2020)

32. Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller.

I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

33. Palm, R., Driankov, D., Hellendoorn, H.: Model Based Fuzzy

Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy Con-

trollers. Springer Science & Business Media, Berlin (1997)

34. Bai, Z., Li, S., Liu, H.: Composite observer-based adaptive event-

triggered backstepping control for fractional-order nonlinear

systems with input constraints. Math. Methods Appl. Sci. 46,

16415–16433 (2022)

35. Trigeassou, J.-C., Maamri, N., Sabatier, J., Oustaloup, A.: A

Lyapunov approach to the stability of fractional differential

equations. Signal Process. 91(3), 437–445 (2011)

36. Ma, X.-J., Sun, Z.-Q., He, Y.-Y.: Analysis and design of fuzzy

controller and fuzzy observer. IEEE Trans. Fuzzy Syst. 6(1),

41–51 (1998)

37. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy

observers: relaxed stability conditions and LMI-based designs.

IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

38. Cao, Y.-Y., Frank, P.M.: Analysis and synthesis of nonlinear

time-delay systems via fuzzy control approach. IEEE Trans.

Fuzzy Syst. 8(2), 200–211 (2000)

39. Hua, C., Wu, S., Guan, X.: Stabilization of T–S fuzzy system

with time delay under sampled-data control using a new looped-

functional. IEEE Trans. Fuzzy Syst. 28(2), 400–407 (2019)

40. Gassara, H., Hajjaji, A.E., Chaabane, M.: Robust H1 control for

T–S fuzzy systems with time-varying delay. Int. J. Syst. Sci.

41(12), 1481–1491 (2010)

41. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI

control toolbox. In: Proceedings of 1994 33rd IEEE Conference

on Decision and Control, vol. 3, pp. 2038–2041. IEEE (1994)

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

123

Y. Liu, X. Zhang: Stabilization of Fractional-Order T–S Fuzzy Systems... 1311



YiYu Liu is pursuing her Mas-

ter’s degree with the School of

Mathematics and Physics,

Guangxi Minzu University,

Nanning, China, from 2021. Her

research interests include adap-

tive fuzzy control, T–S fuzzy

control, and fractional-order

control technology.

Xiulan Zhang has received her

B.S. degree in Physics from

Southwest Jiaotong University,

Chengdu, China in 2007. She is

currently pursuing her Ph.D.

degree in Mechanics with Nan-

jing University of Aeronautics

and Astronautics, Nanjing,

China. Since 2023, she is

working as an Associate Pro-

fessor in Guangxi Minzu

University, Nanning 530006,

China. She is the author of more

than 20 articles. Her research

interests include stability analy-

sis, nonlinear system, fractional-order system, and neural networks.

123

1312 International Journal of Fuzzy Systems, Vol. 26, No. 4, June 2024


	Stabilization of Fractional-Order T--S Fuzzy Systems with Time Delays via an H_\infty Performance Model
	Abstract
	Introduction
	Problem Description and Preliminaries
	Fractional-Order Calculus
	Problem Description

	Main Results
	Performance Analysis of the Fuzzy Observer
	Stabilization Analysis

	Simulation Results
	Conclusions
	Data availability
	References




