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Abstract This paper investigates the problem of feedback

control for a class of affine T–S fuzzy models using piece-

wise Lyapunov functions. Although a large number of

works on the issue have been published, several crucial

problems still remain open. First, the paper shows what

problems arise when using the affine T–S fuzzy model to

design a controller, and in turn by employing the S-pro-

cedure, what kind of quadratic inequalities are required to

help solve the resulting LMIs. It turns out that by parti-

tioning the state space into certain cells based on the

information of the antecedents of fuzzy rules, the required

quadratic inequalities can be formularised. Taking advan-

tage of the cell partition, a fuzzy controller is proposed

using piece-wise Lyapunov functions, in which ensuing

problems such as continuity functions used in the piece-

wise Lyapunov functions and control input chattering also

are addressed. Finally, examples are provided to illustrate

the effectiveness of the proposed approach.

Keywords Affine T–S fuzzy model � Partition � Piece-wise
Lyapunov function � LMIs � S-procedure

1 Introduction

With the stability of the system in mind, the Takagi–

Sugeno (T–S) model is widely employed in fuzzy control

systems. The model describes system dynamics in the

manner of state space equations with fuzzy rules. On the

basis of the model, a rule-based feedback controller can be

designed; and all parameters pertinent to the controller are

obtained by solving certain linear matrix inequalities

(LMIs) [1].

Alternatively, as an extension of the T–S fuzzy model,

the so-called affine T–S fuzzy model, which possesses

additional affine terms, is known to be more capable of

describing the plant of the system [2, 3]. The more preci-

sion a model has the better it is in terms of control per-

formance to be expected, therefore, instead of the regular

T–S fuzzy model, we focus on the affine T–S fuzzy model

in this paper.

One of the main reasons why we focus on this model is

because the traditional control design approach for the T–S

fuzzy model, which involves solving certain LMIs to

determine the relevant parameters, cannot be applied to this

case due to the presence of additional affine terms in the

model. This has been demonstrated in earlier works such as

[2, 3], where system stability conditions are formulated as

bilinear matrix inequalities (BMIs) that are eventually

converted into iterative LMIs (ILMIs). However, in some

cases, this process can be highly conservative. In recent

years, a large number of theoretical results have appeared

for control designs based on the affine T–S fuzzy model

[4–21]. All the recent works give the system stability

conditions in the manner of LMIs. Although at first glance,

the works dress different issues in the context of the affine

T–S fuzzy model with uncertainties, such as output feed-

back control [5–8, 10–16, 18–20], filtering design

[4, 9, 14, 17, 21], time-varying delay [8–10, 12], the way to

treat the affine terms is the same. That is, after augmenting

the system states where 1 is viewed as one of the states so

that the affine terms can be involved in the system matrices

of the state space equations just like the regular T–S fuzzy

model, the control design approach based on the T–S fuzzy
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model is applied, where the S-procedure [22] with some

inequalities is used to relax the conservativeness of the

resulting LMIs. It is worth noting that when viewing 1 as

one of the system states, because the derivative of 1 is zero

and it is not influenced at any rate by whatever control

input, the structure of the augmented state space equations

is kind of special, though it looks like the regular one. As a

result, when using the control design approach based on the

regular T–S fuzzy model to design controllers for this

augmented system, the resulting LMIs, as we will make it

clear in this paper, are innately infeasible unless we

introduce some quadratic inequalities with certain proper-

ties by using the S-procedure. Therefore, the aforemen-

tioned reason when introducing S-procedure in the existing

works should be a necessity for the feasibility of the

resulting LMIs rather than relaxing their conservativeness.

It is crucial to note that in the case of affine T–S fuzzy

models, not all quadratic inequalities can help us solve the

final LMIs when using the S-procedure. The inequalities

involved must possess certain properties. Despite this

requirement, we found that all of the existing works barely

manage to meet it. This means that some quadratic

inequalities involved in the S-procedure fail to overcome

the necessary requirements.

Recently, some works such as [23, 24], by locating the

position of the local sub-system in state space through

checking the information of the antecedent part of each

fuzzy rule, the resulting region away from the origin could

yield a quadratic inequality possessing the properties we

need; however, the one-size-fits-all quadratic inequality

worked at cost of a stringent assumption. Our previous

works [25, 26], partitioned the state space in accordance

with the corner points of the membership functions of the

fuzzy rules into cells, and found that the cells away from

the origin possess certain attributes that could be taken

advantage of to guarantee preferable quadratic inequalities.

However, the controller design was based on a common

quadratic Lyapunov function (CQLF), which tends to be

conservative in many cases, particularly when it comes to

highly nonlinear complex systems.

The conservativeness in CQLF can be reduced by con-

sidering continuous piecewise quadratic Lyapunov func-

tions (PQLF) [27, 28]. Among existing works, by

employing the Filippov solutions a (possibly discontinu-

ous) PQLF is introduced [29, 30], in which certain condi-

tions for the partition boundaries must be satisfied. In [31],

a PQLF was proposed on the basis of iteratively refining

partitions. The work [32] constructs system stability con-

ditions through PQLFs in form of BMIs. In view of the

affine T–S fuzzy model in which the local system infor-

mation is stipulated in the antecedent part of the corre-

sponding fuzzy rule, the approach [33, 34] to PQLFs, as the

works in [4–21], is widely used. Based on the information

provided by the antecedent parts of the the affine T–S fuzzy

model, the whole state space is partitioned into certain

cells. Then cell-wise Lyapunov functions, that is a kind of

PQLFs, are introduced to synthesize the controller with

certain LMIs to guarantee the asymptotic stability of the

closed-loop system. In doing so, the so-called continuity

functions that are involved in the PQLFs must be found in

advance to ensure the continuity of the PQLFs when the

system state traverses between cells. Among the continu-

ous functions, the ones of cells containing the origin are

different from the others of the cells away from the origin.

Although the work [34] provides a general way of

obtaining the continuity functions for the latter, how to

obtain the ones for the former simultaneously remains an

open question, which is the reason why in the mentioned

existing works they are just slightly citing the work [34]

and not elaborating any further when it comes to the con-

tinuity functions.

Encouraged by the issues mentioned above, in this

paper, without any extra terms such as uncertainties and

time-varying delay et cetera, a pure affine T–S fuzzy model

is considered in order to provide a clear methodology of

controller design based on the PQLFs in the context of the

model.

In this paper, first, we show what problems are behind

there when using the affine T–S fuzzy model to design a

controller and what kind of quadratic inequalities we need

when using the S-procedure to help us solve the resulting

LMIs. Then, after partitioning the state space into cells, we

find that cells away from the origin possess certain attri-

butes that can be used to form the required quadratic

inequalities when using the S-procedure. In a controller

based on the PQLFs, a way of obtaining the necessary two

kinds of continuity functions is also provided. This is

because the controller based on the PQLFs eventually leads

to a cell-based controller, which implies that when the state

traverse between cells, the chattering phenomenon in

control input occurs. It is clear that such a chattering

phenomenon in control input is undesirable in a control

system, though the works mentioned above pay no atten-

tion to it. Therefore, the smoothing of control input

between cells is also discussed after controller design.

Finally, the effectiveness of the controller and the

smoothing method are demonstrated in simulations.

Therefore, besides the approach of controller design, the

main contributions of this paper are threefold. The first

contribution of the paper is the method of how to find and

form the required quadratic inequalities when using the

S-procedure to help solve the resulting LMIs by parti-

tioning the state space into certain cells. The second one is

to provide a way of obtaining the two kinds of continuity

functions used in the piece-wise Lyapunov functions

simultaneously. The way to prevent the chattering
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phenomenon in control input is the third contribution of

this paper.

Throughout the paper � is used to denote either the

symmetrical elements of a matrix, or the transpose of the

sum of the previous terms in an expression.

2 Problem Statement

Consider a continuous non-linear system that can be

expressed by the following affine T–S fuzzy model:

Rule i : If x1 is Ni
1 and . . .xn is Ni

n; then

_x ¼ Aix þ Biu þ ai;
ð1Þ

where x ¼ ½x1; x2; . . .; xn�T 2 Rn denotes the state, and

Ni
j ðl ¼ 1; 2; . . .; nrÞ, denotes the fuzzy sets corresponding

to xj of the i-th fuzzy rule, u 2 Rm, denotes the control

input, ðAi; ai;BiÞ, denote the local system and ai is the

affine term, Accordingly, the overall affine T–S fuzzy

model is given below:

_x ¼
Xnr

i¼1

ai

�
Aix þ Biu þ ai

�
; ð2Þ

where aiðxÞ ¼ xiðxÞPnr

i¼1
xiðxÞ

� 0 that is called firing level of i-th

rule in this paper, xiðxÞ ¼
Qn

j¼1 N
i
jðxÞ.

Compared to the regular T–S fuzzy model, in the model

above there are extra affine terms ai, and such a model is

referred to as affine T–S fuzzy model in this paper. It has

been shown that the inclusion of the affine terms increases

the approximation capabilities of the model [3].

To see what problem arises when using such an affine

T–S fuzzy model to design a controller, let us consider the

following PDC controller:

u ¼
Xnr

i¼1

aiFix; ð3Þ

where Fi 2 Rn�m are the control gains to be determined.

Then, the closed-loop control system becomes

_x ¼
Xnr

i¼1

Xnr

j¼1

aiaj

�
ðAi þ BiFjÞx þ ai

�
: ð4Þ

The system stability can be investigated by using Lya-

punov stability theory. Defining following Lyapunov

function candidate:

V ¼ xT Px; ð5Þ

where P ¼ PT [ 0, the system (4) will be asymptotically

stable so long as _V\0.

Computing the time derivative V along the trajectory of

(4), we have

_V ¼ _xT Px þ xT P _x

¼
Xnr

i¼1

Xnr

j¼1

aiaj

x

1

� �
PðAi þ BiFjÞ þ ð�Þ Pai

� 0

� �
x

1

� �
;

ð6Þ

from which a condition maintaining _V\0 can be obtained:

x

1

� �T PðAi þ BiFjÞ þ ð�Þ Pai

� 0

� �
x

1

� �
\0: ð7Þ

Defining

�x ¼
x

1

� �
; �P ¼

P 0

0 p

� �
; �Fj ¼ Fj 0½ �;

�Ai ¼
Ai ai

0 0

� �
; �Bi ¼

Bi

0

� �
;

where p[ 0, thus (7) is rewritten as

�xT �Pð �Ai þ �Bi
�FjÞ þ ð�Þ

� �
�x\0; ð8Þ

which will hold as long as

�Pð �Ai þ �Bi
�FjÞ þ ð�Þ\0: ð9Þ

Pre- and post-multiplying above inequality by �Q ¼ �P
�1

where

�P
�1 ¼ P�1 0

0 1=p

� �
¼:

Q 0

0 q

� �
; ð10Þ

we obtain its equivalent form in the form of LMIs:

Hij\0; ð11Þ

where Hij ¼ �Ai
�Q þ �Bi

�Mj þ ð�Þ, �Mj ¼ �Fj
�Q. Looking into

the details of Hij, we have

Hij ¼
AiQ þ BiMj þ ð�Þ aiq

� 0

� �
: ð12Þ

It is known that for an LMI to be feasible all its principle

minors must be less than zero. However, as shown in (12),

due to the existence of the 0 on the diagonal, the LMI in

(11) is definitely infeasible.

On the other hand, (11) is eventually a condition for

maintaining

�xTHij �x\0: ð13Þ

Therefore to this end, if we can manage to find a quadratic

inequality such as

�xT X �x\0; ð14Þ

where X ¼ XT ,
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X ¼
X1 X2

� X3

� �
; X3 [ 0; ð15Þ

then, by using the S-procedure, the inequality in (13) is

transferred to

�xTHij �x\s�xT X �x; ð16Þ

where 8s[ 0, which leads to

Hij � sX\0; ð17Þ

specifically,

A
ð1Þ
ij þ ð�Þ � sX1 A

ð2Þ
ij � sX2

� � sX3

" #
\0: ð18Þ

At this stage, it is easy to verify that the 0 on the diagonal

in (12) is replaced by �sX3 that is negative definite owing

to X3 ¼ XT
3 [ 0.

However, how to find such quadratic inequalities is still

an open question, which will be discussed in the next

section.

3 Fuzzy Partition

In this paper the state space is split into certain cells based

on the antecedents of the fuzzy rules [33]. Let fSigIs

i¼1 be a

cell denoting a polyhedral partition of Rn with Is ¼ Pn
i¼1nxi

being the finite number of the cells, where nxi
is the number

of partitions on xi. Let K(i) be the set of indexes (rule

numbers) of the subsystems within the cell of Si such that

such
PKðiÞ

j¼1 aj ¼ 1, where aj is the firing level of j-th rule.

Let I ¼ f1; 2; . . .Isg, and divide it further into two cate-

gories: one is I 0, that includes cells that do not have affine

terms, and the other is I1, that includes the remaining cells.

It is evident that the origin is in a cell in I0, and all cells in

I1 are away from the origin.

Therefore, based on the partition, the system (2) can be

rewritten as

_x ¼
X

k2I

X

i2KðkÞ
tkai Aix þ Biu þ aið Þ; ð19Þ

where
PKðkÞ

i¼1 ai ¼ 1, and

tk ¼
1; �x 2 Sk

0; �x 62 Sk:

�
ð20Þ

To begin with, let us consider an affine T–S fuzzy model,

in which there is only one variable, x1 in its antecedents.

Focusing on the cell Sk where k 2 I1, let the cell be

defined by the section ðl1k; r1kÞ, that is, l1k\x1\r1k. As

k 2 I1, the signs of both l1k and r1k are the same, which

means that l1k � r1k [ 0 all of the time. In addition, we have

ðx1 � l1kÞðx1 � r1kÞ\0; ð21Þ

which leads to

x21 � ðl1k þ r1kÞx1 þ l1kr1k\0; ð22Þ

equivalently

�xTW1k �x\0; ð23Þ

where

W1k ¼

1 0 . . . 0 � l1k þ r1k

2
� 0 . . . 0 0

..

. ..
. . .

. ..
. ..

.

� � . . . 0 0

� � . . . � l1kr1k

2
666666664

3
777777775

: ð24Þ

We see that the bottom right corner is always positive, this

makes it a favourable inequality as we guarantee a negative

value on the diagonal of the LMI whenever k 2 I1.

Next, let us consider the case, where, besides x1, there is

another variable x2 in the antecedents of the fuzzy rules,

and the support is x2 2 ðl2k; r2kÞ, then we have

ðx2 � l2kÞðx2 � r2kÞ\0: ð25Þ

Therefore, inequalities (21) and (25) yield

�xTW2k �x\0 ð26Þ

with

W2k ¼

1 0 0 . . . 0 � l1k þ r1k

2

� 0 0 . . . 0 � l2k þ r2k

2

..

. ..
. ..

. . .
. ..

. ..
.

� � 0 . . . 0 0

� � � . . . 1 0

� � � . . . �
X2

i¼1

likrik

2
6666666666666664

3
7777777777777775

; ð27Þ

where the bottom right corner, is positive again owing to

l2k � r2k [ 0.

Generalizing the inequality for an arbitrary number of

variables in the antecedents of the fuzzy rules, and for any

cell Sk where k 2 I1 we can always obtain the following

quadratic inequality:
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�xTWk �x\0; ð28Þ

with

Wk ¼

1 0 . . . 0 � l1k þ r1k

2

� 1 . . . 0 � l2k þ r2k

2

..

. ..
. . .

. ..
. ..

.

� � . . . 1 � lnk þ rnk

2

� � . . . �
Xn

i¼1

likrik

2
666666666666664

3
777777777777775

; ð29Þ

and
Pn

i¼l likrik [ 0. It can be noted that the inequality (28)

only holds if x 2 Sk, which will be used in the control

designs in the next section.

As long as a cell is away from the origin, there is one

inequality like (21) for each variable in the antecedent of

the fuzzy rules. However, it is not necessary to involve all

the inequalities in the final Wk in (29) in the case ofPn
i¼1 likrik � 0. For example, let us consider cell S2 in

Fig. 1. We have two inequalities:

ðx1 � l12Þðx1 � r12Þ\0;

ðx2 � l22Þðx2 � r22Þ\0;

where l12 ¼ �2; r12 ¼ �1; l22 ¼ �2, and r22 ¼ 2. If we

involve both the two inequalities in W2, then
P2

i¼1 li2ri2

would be ð�2Þ � ð�1Þ þ ð�2Þ � 2 ¼ �2 which is not posi-

tive as required. Therefore, in this case only the first

inequality will be involved in the final W2:

W2 ¼
1 0 � l12 þ r12

2
� 0 0

� � l12 � r12

2
664

3
775:

In summary, the procedure of the partition and obtaining

the required quadratic inequalities are given as follows.

Step 1: On the basis of the antecedents of the fuzzy

rules, partition the state space into certain

cells such that the sum of the related firing

levels is 1 at each cell;

Step 2: Using ðxp � lpkÞðxp � rpkÞ\0 where xp is one

of variables to form the k-th cell and xp 2
ðlpk; rpkÞ to establish the quadratic inequality

(28) for the k-th cell;

Step 3: Check if the term at the bottom right corner of

Wk is greater than zero; if not, remove

pertinent contents in Wk related to variables

xp such that lpkrpk\0 to guarantee the term at

the bottom right corner of Wk is greater than

zero.

4 Control System Design

Under the fuzzy partition described above, the system (2) is

equal to (19), which means the system behaviour in each

cell Sk is irrelevant to the rest of the cells. In other words, a

controller working in a cell Sk will not have influence over

any of the others, which encourages us to design cell-based

controllers. First, let us provide the following lemma.

Lemma 1 Given compatible matrices A, Q, LMI

AQþQAT\0; ð30Þ

where Q ¼ QT [ 0, is equivalent to LMI

AX 1 þ ð�Þ Q� XT
1 þAX 2

� � X 2 þ ð�Þ

" #
\0; ð31Þ

where X 1 and X 2 are free parameters with compatible

dimensions.

Proof By the elimination procedure for matrix variables

[22], for a given G, X and V with compatible dimensions,

the following inequalities are equivalent:

G þ XT V þ VT X\0; ð32Þ

~V
T
G ~V\0; ð33Þ

where ~V is the orthogonal complement of V, that is,

V ~V ¼ 0. Setting

V ¼ AT �I
	 


; ~V ¼
I

AT

� �
; ð34Þ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

Fig. 1 Partition example
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G ¼
0 Q

Q 0

� �
; X ¼ X 1 X 2½ �; ð35Þ

it follows that

~V
T
G ~V ¼ AQþQAT : ð36Þ

Furthermore, substituting G, X and V in (34) and (35) into

(33), it leads to (31). This completes the proof. h

Then, with the asymptotic stability of the origin in mind,

the following assumption is made:

Assumption 1 The affine terms ai ¼ 0 in cells Sk where

k 2 I0.

Therefore, we have

_x ¼
X

k2I0

X

i2KðkÞ
tkai Aix þ Biuð Þ: ð37Þ

For the convenience of description, we provide the fol-

lowing definition:

nk ¼
n þ 1 for k 2 I 1

n for k 2 I 0

�
: ð38Þ

4.1 Controller Design

On the basis of the partition, we design controllers for cells

Sk:

u ¼ �Gk �x ð39Þ

where �Gk ¼ ½Gk gk� 2 Rm�nk is to be determined,

Gk 2 Rm�n, which means �Gk ¼ Gk for k 2 I 0. Therefore

the closed-loop system becomes:

_�x ¼
Xnr

i¼1

aið �Ai þ �Bi
�GkÞ�x ð40Þ

which is reduced to _x ¼
Pnr

i¼1 aiðAi þ BiGkÞx for k 2 I 0.

Now, a piecewise Lyapunov function candidate is then

given as:

VkðxÞ ¼ �xT �Pk �x; ð41Þ

where

�Pk ¼ �F
T
k P �Fk; ð42Þ

P ¼ PT 2 Rp�p is positive definite with

p ¼
Pn

i¼1 nxi
þ 1ð Þ þ n, and �Fk ¼ ½Fk fk� 2 Rp�nk with

Fk 2 Rp�n satisfying

�Fi �x ¼ �Fj �x; x 2 Si \ Sj ð43Þ

which is called the continuity function. It is constructed in

order to guarantee the Lyapunov functions (41) are con-

tinuous across the cell boundaries [33]. It is clear that the

Lyapunov function (41) becomes VkðxÞ ¼ xT Pkx, where

Pk ¼ FT
k PFk, for k 2 I 0.

As for the continuity functions �Fk, it is clear that they

are not unique for cells Sk, which means �Fk, if constructed

in a different way can have different forms including the

dimension of p, where p� n þ 1. Some works [33, 34]

provides a systematic way to construct �Fk satisfying (43) in

accordance with the corner points of the membership

functions in the antecedents of the fuzzy rules. However,

this method does not guarantee that fk ¼ 0 for k 2 I0; and

a practical extension is given in Appendix A.

Although �Pk, as a whole, is square and can be made

invertible, it is of no use solving the whole �Pk in the final

LMIs, as in doing so we cannot maintain the relation in

(43); in other words, the structure in (43) must be retained

in the final LMIs; to meet this end, apart from P, �Fk is

necessary to be square and invertible:

��Fk ¼ F0k
�Fk½ � 2 Rp�p ð44Þ

where F0k 2 Rp�ðp�nkÞ are free parameters such that

rank( ��FkÞ ¼ p. Then we have

��Fi��x ¼ ��Fj��x; ��x ¼
x0 	 0

�x

� �
2 Rp ð45Þ

where x0 2 Rp�nk is a newly added auxiliary state vector

chosen by

_x0 ¼ �kx0; k[ 0: ð46Þ

From (40) and (46), we have an augmented system:

_��x ¼
Xnr

i¼1

ai
��Aik��x ð47Þ

where

��Aik ¼
�kI 0

0 �Ai þ �Bi
�Gk

� �

in which �Ai; �Bi and �Gk become Ai;Bi and Gk, respectively

for k 2 I0. It is clear that the system (40) is stable as long

as the system (47) is. Therefore, now we focus on this

augmented system.

Thus, by using (45), the Lyapunov function (41)

becomes:

VkðxÞ ¼ ��xT ��Pk��x; ð48Þ

where

��Pk ¼ ��F
T
k P ��Fk: ð49Þ

Taking the derivative on the trajectory of (47), we get the

asymptotic stability condition:
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��A
T
ik
��Pk þ ��Pk

��Aik\0 ð50Þ

which is equivalent to

��Aik
��Qk þ ��Qk

��A
T
ik\0 ð51Þ

where

��Qk ¼ ��Pk
�1 ¼ ��F

�1
k P�1 ��F

�T
k ¼: LkQLT

k [ 0: ð52Þ

It is worth noting that not only ��Pk as a whole is invertible

but also each of the elements within such as ��Fk is also

invertible.

Now by applying Lemma 1 to (51), we have

��AikX 1k þ ð�Þ ��Qk � X T
1k þ ��AikX 2k

� � X 2k þ ð�Þ

" #
\0 ð53Þ

Defining X 1k 2 Rp�p and X 2k 2 Rp�p as follows [5]:

X 1k ¼
X
ð1Þ
1k X

ð2Þ
1k

0 X
ð3Þ
1k

" #
; X 2k ¼

X
ð1Þ
2k X

ð2Þ
2k

0 dX
ð3Þ
1k

" #
ð54Þ

where X
ð1Þ
1k 2 Rðp�nkÞ�ðp�nkÞ, X

ð2Þ
1k 2 Rðp�nkÞ�nk ,

X
ð3Þ
1k 2 Rnk�nk , X

ð1Þ
2k 2 Rðp�nkÞ�ðp�nkÞ, X

ð2Þ
2k 2 Rðp�nkÞ�nk and d

is scalar, (53) becomes following LMIs:

A
ð1Þ
ik þ ð�Þ LkQLT

k � XT
1k þA

ð2Þ
ik

� � X 2k � XT
2k

" #
\0 ð55Þ

where

A
ð1Þ
ik ¼

�kX
ð1Þ
1k � kX

ð2Þ
1k

� �AiX
ð3Þ
1k þ �Bi

�Mk

" #
ð56Þ

A
ð2Þ
ik ¼

�kX
ð1Þ
2k � kX

ð2Þ
2k

� �AiX
ð3Þ
2k þ d �Bi

�Mk

" #
ð57Þ

and �Mk ¼ �GkX
ð3Þ
1k .

However, the LMIs (55) are still structurally infeasible

for k 2 I 1, because certain diagonal block of the bottom

right corner of A
ð1Þ
ik , which is on the diagonal of the LMIs,

is zero. As shown in the preceding section, each of cells for

k 2 I1 contains a favourable quadratic inequality (28) that

helps us solve the LMIs (55). As a result, by using S-

procedure as in (17), A
ð1Þ
ik of (55) is replaced as:

A
ð1Þ
ik ¼

�kX
ð1Þ
1k 0

� �AiX
ð3Þ
1k þ �Bi

�Mk � sWk

" #
ð58Þ

where 8s[ 0.

To summarise, we have the following theorem.

Theorem 1 Given the affine T–S fuzzy model (2), the state

space is partitioned to be a collection of cells fSigi2I ,

where
PKðiÞ

m¼1 am ¼ 1 with K(i) being the set of the rule

numbers associated with the cell. Further dividing I into

I0 and I 1, where I 0 denotes the index set of cell indexes

that contain the origin and I1 does not, each of cells Sk for

k 2 I1 contains a quadratic inequality (28). For all of the

cells, with continuity functions �Fk ¼ ½Fk fk� 2 Rp�nk with

Fk 2 Rp�n subject to (43), and some given scalars k[ 0

and d, if there exists matrix Q ¼ QT 2 Rp�p, matrices �Gk ¼
½Gk gk� 2 Rm�nk with Gk 2 Rm�n in each of the cells,

X
ð1Þ
1k ; X

ð1Þ
2k 2 Rðp�nkÞ�ðp�nkÞ, X

ð2Þ
1k ; X

ð2Þ
2k 2 Rðp�nkÞ�nk ,

X
ð3Þ
1k 2 Rnk�nk , and Mk 2 Rm�nk , such that LMI s[ 0, LMIs

(52), where matrices Lk are the inverses of ��Fk defined in

(45), along with LMIs (55) with (57) and

ð56Þ for k 2 I 0;

:ð58Þ for k 2 I1

are held, then controller given in (39) with �Gk ¼
�MkðXð3Þ

1k Þ
�1

guarantees the closed-loop system (40) under

Assumption 1, is to be asymptotically stable. h

Remark 1 Although the piecewise Lyapunov functions

(cell-wise precisely) �Pk are used, they depend on the

common matrix P. Nevertheless, �Pk is to be expected to be

found easier than in the regular case such as P in (7).

Remark 2 In order to expand �Fk to square matrices ��Fk in

(44), it is necessary to insert some prescribed matrices F0k,

which may have much influence over the feasibility of

LMIs in Theorem 1.

4.2 Preventing Chattering Phenomenon

Whilst the piece-wise Lyapunov function is continuous when

the state travels from one cell to another thanks to the conti-

nuity functions, the cell-based controllermay cause chattering

between cells. It is clear that the chattering phenomenon in a

control system should be best avoided. Therefore, in this

section we consider how to transfer the proposed controller to

one that such a phenomenon does not occur.

To convey the idea clearly, let us consider a simple case

where there is only one antecedent variable x1 in the affine

T–S fuzzy model. Now, we suppose that, as shown in (a) of

Fig. 2, the triangular membership function Ni is used to

define the fuzzy set in the antecedent part of the i-th fuzzy

rule. At the corner point di at which Niðx1Þ ¼ 1, the space

is divided into two cells Si�1 on the left side and Si on the

other side, which means

(Fact 1:) both controllers �Gi�1 �x, and �Gi �x can stabilise

all sub-systems corresponding with the fuzzy rules with

indexes defined in Kði � 1Þ, and K(i), respectively.

Furthermore, as long as the fuzzy partition is performed
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at such a corner point like di, the rule index i is definitely

included in both Kði � 1Þ and K(i); therefore,

(Fact 2:) both controllers �Gi�1 �x, and �Gi �x can stabilise

the sub-system corresponding with i-th rule. For

simplicity, let us say the system is _�x ¼ �Ai �x þ �Biu.

Now let us approximate the fuzzy set Niþ1, as shown in

Fig. 2, by moving its left corner point from di to di þ e
where e[ 0 is to make small neighbourhood such that in

which only the firing level of i-th rule is not zero. There-

fore, considering the facts 1 and 2, in the neighbourhood

½di di þ e� the whole system behaviour is determined by
_�x ¼ �Ai �x þ �Biu, which can be stabilised by either controller
�Gi�1 �x or �Gi �x.

On the other hand, the discontinuity between the two

controllers, ð �Gi�1 � �GiÞ�x, can be prevented by introducing

a controller u ¼ ðai�1
�Gi�1 þ ai

�GiÞ�x where ai�1 þ ai ¼ 1,

which means the closed-loop system

_x ¼
Xi

j¼i�1

ai
�Ai þ �Bi

�Gj

� �
�x ð59Þ

must be stable. A condition of the asymptotic stability is

that there exists a compatible symmetric P[ 0 such that

P �Ai þ P �Bi
�Gj\0 where j ¼ i � 1; i.

Consequently, the discontinuity of the controllers

between cells Si�1 and Si can be prevented by introducing

a controller in the neighbourhood as follows:

If x1 is Hi�1; then u ¼ �Gi�1 �x

If x1 is Hi; then u ¼ �Gi �x

�
ð60Þ

where the fuzzy sets Hi�1 and Hi are defined as in Fig. 3,

subject to that there is a P ¼ PT [ 0 such that

P �Ai þ P �Bi
�Gj þ ð�Þ � s/\0; ð61Þ

where j ¼ i � 1; i, 8s[ 0, and

/ ¼
1 0

2di þ e
2

� 0 0

� � diðdi þ eÞ

2

664

3

775: ð62Þ

When it comes to the trapezoidal membership functions

as shown in (a) of Fig. 4, a similar neighbourhood of di

inside Si can be established. As a result, by using the fuzzy

sets Hi�1 and Hi shown in (b) of Fig. 4, the two rules in

(60) are able to smooth the control input between the two

cells.

5 Simulation Examples

In order to demonstrate the effectiveness of our proposed

controller, we apply it to two systems. The first one is the

inverted pendulum system, in which the approach of

obtaining an affine T–S fuzzy model by using the Taylor

series expansion is shown. The second one is an affine T–S

fuzzy model with two antecedent variables of fuzzy rules.

5.1 Inverted Pendulum on a Cart

A pendulum is mounted on top of a vehicle, where the

bottom of the pendulum is connected via a pivot and a mass

is attached to the top. The goal is to keep the pendulum

from falling over by moving the vehicle below.

Fig. 2 Smoothing control input with triangular membership functions

Fig. 3 Fuzzy sets smoothing control inputs between cells
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The dynamics of the system can be described by the

following non-linear equations:

Im
€h ¼ Fvl sin h� Fhl cos h

Fv � mg ¼ �mlð€h sin hþ _h
2
cos hÞ

Fh ¼ m€y þ mlð€h cos h� _h
2
sin hÞ

u � Fh ¼ M €y

ð63Þ

where h is the angular position of the pendulum in relation

to the equilibrium point, 2l the length of the pendulum, m

the mass of the pendulum, y the position of the vehicle, M

the mass of the vehicle, Fv the vertical force at the pivot, Fh

the horizontal force, Im ¼ 1
m l2 is the moment of inertia of

the pendulum, g ¼ 9:81m=s2 the gravity constant, and

finally the control input u is the driving force of the vehicle.

Defining xT ¼ ½h _h� we can obtain the following

dynamic equations:

_x1 ¼ x2

_x2 ¼ f ðx; uÞ
ð64Þ

where

f ðx; uÞ ¼ g sinðx1Þ � amlx22 sinð2x1Þ=2� a cosðx1Þu
4l=3� aml cos2ðx1Þ

and a ¼ 1
mþM. In order to linearize the system and obtain an

affine T–S fuzzy model, we employ the Taylor series

expansion. Expanding f into the Taylor series around the

equilibrium points ðxe; ueÞ

_x2 ¼ f ðxe; ueÞ þ aeðx � xeÞ þ beðu � ueÞ
¼ aex þ beu � ðaexe þ beueÞ

ð65Þ

where

ae ¼
of

oxT

��� x ¼ xe

u ¼ ue

; be ¼
of

ou

��� x ¼ xe

u ¼ ue

ð66Þ

and ðxe; ueÞ is an operating point chosen so that

f ðxe; ueÞ ¼ 0, and the higher-order terms in the Taylor

series expansion are ignored. Therefore, the system can be

linearized around ðxe; ueÞ

_x ¼
0 1

ae

� �
x þ

0

be

� �
u þ

0

�ðaexe þ beueÞ

� �
: ð67Þ

Using the operating points listed in Table 1 we obtain

the following affine T–S fuzzy model:

Ri :If x1 is Ni, then _x ¼ Aix þ Biu þ ai;

where Ni (i ¼ 1
 5) are fuzzy sets whose membership

functions are shown in Fig. 5,

A1 ¼
0 1

421:2865 0

� �
¼ A5; B1 ¼

0

�0:0052

� �
¼ B5

A2 ¼
0 1

22:4745 0

� �
¼ A4; B2 ¼

0

�0:1147

� �
¼ B4

A3 ¼
0 1

17:2941 0

� �
; B3 ¼

0

�0:1765

� �
; a3 ¼

0

0

� �

a1 ¼
0

632:3559

� �
¼ �a5; a2 ¼

0

6:4142

� �
¼ �a4:

With the range of x1 ¼ ½�88; þ88� � p=180, we can par-

tition the state space into the following cells

Fig. 4 Smoothing control input with trapezoidal membership functions

Table 1 Operating points

xeð1Þ xeð2Þ ue

�88 � p=180 0 �2:8064� 103

�45 � p=180 0 �98:0000

0 � p=180 0 0

45 � p=180 0 98.0000

88 � p=180 0 2:8064� 103
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S1 ¼ ½�88 � 45� � p=180
S2 ¼ ½�45 � 5� � p=180
S3 ¼ ½�5 5� � p=180
S4 ¼ ½5 45� � p=180
S5 ¼ ½45 88� � p=180:

Therefore we also have

Kð1Þ ¼ f1; 2g; Kð2Þ ¼ f2; 3g;
Kð3Þ ¼ f3g; Kð4Þ ¼ f3; 4g;
Kð5Þ ¼ f4; 5g;
I1 ¼ f1; 2; 4; 5g; I0 ¼ f3g;

for which, it can be verified that
PKðlÞ

m¼1 am ¼ 1.

By a similar approach as in the works [33, 34], we can

obtain continuity matrices �Fk 2 R18�3 (k ¼ 1
 5), which

are not all shown here for the sake of space but �F1 
 �F3 just

for example. It is easy to confirm that �F1 �x ¼ �F2 �x, and
�F2 �x ¼ �F3 �x.

�F1 ¼

�1:3325 0 � 1:0465

1:3325 0 2:0465

0 0 0

11:4592 0 0

0 0 0

0 0 0

1:0000 0 0

0 1:0000 0

2

66666666666664

3

77777777777775

�F2 ¼

0 0 0

�1:4324 0 � 0:1250

1:4324 0 1:1250

11:4592 0 0

0 0 0

0 0 0

1:0000 0 0

0 1:0000 0

2
66666666666664

3
77777777777775

�F3 ¼

0 0 0

0 0 0

�11:4592 0 0

11:4592 0 0

0 0 0

1:0000 0 0

0 1:0000 0

2

666666666664

3

777777777775

;

In addition, F0k in (44) are made by random numbers as

long as rank( ��FkÞ ¼ 8. Consequently, the control gains �Gk

for each cell are obtained:

�G1 ¼ 103 � 2:3036 0:1526 0:7043½ �
�G2 ¼ 103 � 1:9464 0:1717 �0:8217½ �
�G3 ¼ 103 � 2:6065 0:2085 0½ �
�G4 ¼ 103 � 1:9464 0:1717 0:8217½ �
�G5 ¼ 103 � 2:3036 0:1526 �0:7043½ �:

Setting the initial state x0 ¼ ½�70 0�T � p=180, k ¼ 0:1,

and d ¼ 2 we obtain the simulation results shown in

Figs. 14 and 15. We can see from Fig. 6 that both x1 and

x2 converge to 0 by the control effort shown in Fig. 7. The

controller is basically cell-wise, which means the controller

input is discontinuous when the state traverse from one cell

to another.

In order to prevent the input from the discontinuity, let

us us the idea given in Sect. 4.2, and transfer the cell-wise

controller into the following fuzzy controller:

Ri : If x1 is Hi, then u ¼ �Gi �x ð68Þ

where i ¼ 1
 5, Hi are fuzzy sets whose membership

functions are shown in Fig. 8 where e ¼ 3 � p=180.
The control performance is shown in Figs. 9 and 10.

Compared to Fig. 7, it is clear that the discontinuity in

control input is no longer existing.

Some level surfaces of the computed Lyapunov func-

tions are shown in Fig. 11.

5.2 An Affine System

Consider an affine system that is described by the follow-

ing affine T–S fuzzy model [35]:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 The membership functions on x1 in the inverted pendulum

system
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Ri : If x1 is Ni
1 and x2 is Ni

2, then

_x ¼ Aix þ Biu þ ai;

where i ¼ 1
 9, Ni
j ðj ¼ 1; 2Þ are fuzzy sets whose mem-

bership functions are shown in Fig. 12, and

A1 ¼
�7 � 7:7

7 6:3

� �
;A2 ¼

�1 � 2

2 � 8

� �
¼ A3 ¼ A5 ¼ A8;

A4 ¼
�10 � 11

10 9

� �
¼ A7;A6 ¼

�10 � 10

10 5

� �
;

A9 ¼
�14 � 14

14 7

� �
;Bi 	

0

1

� �
;

a1 ¼
0

�2

� �
¼ a7; a3 ¼

0

2

� �
;

a2 ¼
0

0

� �
¼ a4 ¼ a5 ¼ a6 ¼ a8 ¼ a9;

Then, based on these membership functions the state-

space is partitioned into 9 cells Sk ðk ¼ 1
 9Þ that is

shown in Fig. 13. Therefore, we have

Kð1Þ ¼ f1; 2; 4; 5g; Kð2Þ ¼ f2; 5g; Kð3Þ ¼ f2; 3; 5; 6g;
Kð4Þ ¼ f4; 5g; Kð5Þ ¼ f5g; Kð6Þ ¼ f5; 6g;
Kð7Þ ¼ f4; 5; 7; 8g; Kð8Þ ¼ f5; 8g; Kð9Þ ¼ f5; 6; 8; 9g;
I1 ¼ f1; 2; 3; 4; 6; 7; 8; 9g; I0 ¼ f5g;

where I0 denotes the cells near the origin, and I1 denotes

those away from it. It can be verified that
PKðkÞ

j¼1 aj ¼ 1 for

any cell Sk,

As in the first example, we can obtain continuity

matrices �Fk 2 R12�3 (k ¼ 1
 9), which are not all shown

here for the sake of space but �F1 
 �F3 and �F5 just for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

2

Fig. 6 The transient response of state x by the cell-based controller
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Fig. 7 The behaviour of the cell-based controller u
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Fig. 8 The membership functions on x1 in the fuzzy controller
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Fig. 9 The transient response of state x by the fuzzy controller (68)
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example. It is easy to confirm that �F1 �x ¼ �F2 �x, �F2 �x ¼ �F3 �x

and �F2 �x ¼ �F5 �x.

�F1 ¼

�1 0 � 1

1 0 2

1 0 0

0 0 0

0 � 1 � 1

0 1 2

0 1 0

0 0 0

1 0 0

0 1 0

2
6666666666666666664

3
7777777777777777775

; �F2 ¼

�1 0 � 1

1 0 2

1 0 0

0 0 0

0 0 0

0 � 1 0

0 1 0

0 0 0

1 0 0

0 1 0

2
6666666666666666664

3
7777777777777777775

;

�F3 ¼

�1 0 � 1

1 0 2

1 0 0

0 0 0

0 0 0

0 � 1 0

0 � 1 2

0 1 � 1

1 0 0

0 1 0

2

6666666666666666664

3

7777777777777777775

; �F5 ¼

0 0 0

�1 0 0

1 0 0

0 0 0

0 0 0

0 � 1 0

0 1 0

0 0 0

1 0 0

0 1 0

2

6666666666666666664

3

7777777777777777775

:

In addition, F0k in (44) are made by random numbers as

long as rank( ��FkÞ ¼ 12. Consequently, the control gains �Gk

for each cell are obtained:
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Fig. 10 The behaviour of the fuzzy controller u in (68)
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Fig. 11 Level surfaces of the Lyapunov functions
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Fig. 12 The membership functions on x1 and x2 in the affine system
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Fig. 13 Fuzzy partition
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�G1 ¼ �1:5654 �5:9374 �0:6439½ �;
�G2 ¼ �0:5472 2:3723 0:1353½ �;
�G3 ¼ �6:0847 �6:9501 �2:2955½ �;
�G4 ¼ �2:6395 �2:5735 0:0814½ �;
�G5 ¼ �0:7340 2:2792 0½ �;
�G6 ¼ �1:5053 0:2986 �0:1354½ �;
�G7 ¼ �2:5281 �2:3450 0:3628½ �;
�G8 ¼ �0:5574 2:3934 �0:1341½ �;
�G9 ¼ �11:5225 �9:3201 1:4113½ �:

Setting the initial state x0 ¼ ½�3 4�T , k ¼ 0:1, and d ¼ 2

we obtain the simulation results shown in Figs. 14 and 15.

We can see from Fig. 14 that both x1 and x2 converge to 0

by the control effort shown in Fig. 15. The controller is

basically cell-wise, which means, as shown in the close-up

of the inset, the controller input is discontinuous when the

state traverse from one cell to another.

In order to prevent the input from the discontinuity,

again let us employ the idea shown in Sect. 4.2, and make

some neighbourhoods as in Fig. 16.

As a result, the cell-wise controller can be transferred

into the following fuzzy controller:

Ri : If x1 is Hi
1 and x2 is Hi

2, then u ¼ �Gi �x;

where i ¼ 1
 9, Hi
j ðj ¼ 1; 2Þ are fuzzy sets whose mem-

bership functions are shown in Fig. 17.

Setting e ¼ 0:3, the control performance is shown in

Figs. 18 and 19. Although the transient response of state

x is almost the same as in Fig. 14, the discontinuity in

control input is no longer existing.
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Fig. 14 The transient response of state x by the cell-based controller
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Fig. 15 The behaviour of the cell-based controller u in (39)
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Fig. 16 Newly inserted neighbourhoods between cells
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Fig. 17 The membership functions on x1 and x2 in the fuzzy

controller

123

1042 International Journal of Fuzzy Systems, Vol. 26, No. 3, April 2024



Some level surfaces of the computed Lyapunov func-

tions are shown in Fig. 20.

6 Conclusion

In this paper, the problem of feedback control for a class of

affine T–S fuzzy models using piece-wise Lyapunov

functions has been investigated. In designing a controller

based on the affine T–S fuzzy model, this paper has first

made clear that the resulting LMIs are in fact innately

infeasible. To overcome the problem, it is shown that some

quadratic inequalities with certain properties are necessary

to be involved by using the S-procedure. Then, by parti-

tioning the state space into certain cells, the required

quadratic inequalities are obtained. Along with the pro-

posed feedback controller using the piece-wise Lyapunov

functions, the issue to obtain the continuity functions

involved in the piece-wise Lyapunov functions has also

been addressed. In particular, in order to prevent the

chattering phenomenon in control input when the state

traverses between cells, neighbourhoods inserted between

cells have been proven effective as shown in the

simulations.

In the piece-wise Lyapunov functions, there is still a

common positive definite matrix that exists within the

continuity functions. The presence of the common positive

definite matrix within could hinder the ability of relaxing

the conservatism of the piece-wise Lyapunov functions,

which will be explored further as one of our future tasks. In

addition, the results established in the paper are based on

continuous time, its discrete time version also needed to be

done in due course.

Appendix

Continuity Matrix

The way to construct the continuity matrices is based on

the existing works works [33, 34]. Without loss of gener-

ality, let us consider there are two antecedent variables x1
and x2, and cell Sk is corresponding to the i-th partition on

x1 and j-th partition on x2.

�Fk ¼
�FiC1

�FjC2

I 0

2
64

3
75 2 Rp�3; ð69Þ

where k ¼ ði � 1Þ � nx2 þ j, p ¼
P2

i¼1 nxi
þ 1ð Þ þ n,

C1 ¼
1 0 0

0 0 1

� �
; C2 ¼

0 1 0

0 0 1

� �
; ð70Þ
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Fig. 18 The transient response of state x by the fuzzy controller
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Fig. 19 The behaviour of the fuzzy controller u in (39)
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Fig. 20 Level surfaces of the Lyapunov functions
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and the last row may be removed if the resulting �Fk are of

full column rank, and subsequently p ¼
P2

i¼1 nxi
þ 1ð Þ in

this case. In the following, constructing �Fi ¼ ½Fi f i� is

given, while �Fj can be obtained in the same manner.

Let v ¼ ½v1; . . .; vnx1
þ1� be corner points on x1, which

means there are nx1 partitions on xi, and Si ¼ ½vi; viþ1�
(i ¼ 1; . . .; nx1 ).

Step 1: Let �Fi be a ðnx1 þ 1Þ-by-2 zero matrix, and

E ¼
vi viþ1

1 1

� �
;

Step 2: replace i-th and ði þ 1Þ-th rows of �Fi by E�1.

However, f i in �Fi cannot be guaranteed to be zero for Si for

i 2 I0. Therefore, we modify �Fi for i 2 I0, and subse-

quently others related to the modification. Let �FiðjÞ, and
�Fiðj; kÞ be the j-th row, and the element in row j, column k

of �Fi, respectively.

Step 1: Calculate:

r ¼ �Fi�1ði; 1Þ � vi þ �Fi�1ði; 2Þð Þ=vi ¼ 1=vi;

l ¼ �Fiþ1ði þ 1; 1Þ � viþ1 þ �Fiþ1ði þ 1; 2Þð Þ=viþ1

¼ 1=viþ1;

Step 2: Update �Fi:

FiðiÞ ¼ ½r 0�; Fiði þ 1Þ ¼ ½l 0�;

Step 3: Update �F1 
 �Fi�1:

�Fjði þ 1Þ ¼ ½l 0�; forj ¼ 1
 i � 1;

Step 4: Update �Fiþ1 
 �Fnx1
:

�FjðiÞ ¼ ½r 0�; forj ¼ i þ 1
 nx1 :
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