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Abstract Atanassov intuitionistic fuzzy set (AIFS)-based

C-means algorithms are successful in clustering uncertain

or vague real-world datasets. The AIFS-based clustering

algorithms are classified into adaptive class and non-

adaptive class. An algorithm from the adaptive class

computes its feature weight distribution with the help of the

given dataset. On the other side, the algorithm belonging to

the non-adaptive class mostly computes the feature weight

distribution by employing an equally likely approach. The

guarantee to reach up to the mark clustering performance is

missing within this approach. Simultaneously, the perfor-

mance gets deteriorated if the datasets showcase noises/

irrelevant features. The irrelevant features in the datasets

add to the computational cost. So, a feature reduction-

equipped clustering algorithm called uni-weighted intu-

itionistic fuzzy C-means (uW-IFCM) is introduced in the

paper. Moreover, the probabilistic weights-based adaptive

clustering algorithm, namely bi-weighted probabilistic

intuitionistic fuzzy C-means (bW-PIFCM) is proposed

under the AIFS environment. The parametric analysis for

uW-IFCM is provided to comprehend and compare its

performance with bW-PIFCM, PIFCM, IFCM, and FCM

algorithms. Here, an intuitionistic data fuzzification tech-

nique transforms the real-valued dataset into AIFS dataset,

therefore bW-PIFCM and uW-IFCM algorithms cluster the

real-valued datasets. The research proposal of Yang and

Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2),

817–835] motivates us to introduce a feature reduction-

equipped uW-IFCM algorithm. We have considered syn-

thetic datasets and some UCI machine learning datasets for

the experimental study of uW-IFCM and bW-PIFCM. The

efficacy and the precision of proposed algorithms are tested

in terms of some popular benchmark indexes as well.

Keywords Atanassov intuitionisitic fuzzy set (AIFS) �
Intuitionistic fuzzy C-means � Feature reduction � PIFCM

1 Introduction

In the paper, we explore multi-dimensional/multi-featured

datasets with the help of clustering. Some of the well-

known procedures of clustering are subspace clustering

(see [1, 2]), density-based clustering [3], fuzzy clustering

[4], and hierarchical clustering [5]. Fuzzy C-means (FCM)

[6] is an example of a fuzzy partitional clustering tech-

nique, and its functioning has been widely observed over

multiple types of real-world multi-dimensional datasets.

The variants of FCM obtained in the purview of other

fuzzy sets are known as intuitionistic fuzzy C-means

(IFCM) [7], interval type-2 fuzzy C-means [8, 9], rough

fuzzy C-means [10, 11], and hesitant fuzzy k-means [12].

The FCM algorithm uses Euclidean distance measure.

Researchers exploited measures like Mahalanobis distance

in place of the Euclidean distance measure to obtain

clusters that are not spherical (see [13]). Further such
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distance-based variants of FCM are found less sensitive

towards noises and outliers (see [14]). The weighted fuzzy

C-mean clustering algorithms are successful in satisfactory

clustering of the multi-dimensional/multi-featured datasets

(see [15–18]). The weighted FCM assigns an appropriate

role to each feature in a multi-featured dataset during its

clustering. It involves a feature weight learning technique

that decides the role of each feature (see [19–23]). A fea-

ture weight learning technique is proposed in [20] based on

the gradient descent procedure. For an efficient clustering

of the multi-dimensional datasets, an entropy-based weight

learning technique is proposed by the [21]. Some of the

recent studies on feature learning are [24, 25, 17, 26, 27,

28, 29], and [30].

The AIFS proposed by [31] is an effective tool to model

the ambiguity and uncertainty present within real-world

phenomena. The ambiguity and uncertainty present in the

multi-dimensional datasets motivate us to cluster them

under the AIFS environment using the hesitancy compo-

nent of the AIFS. An AIFS-based clustering algorithm

efficiently solves the problems of various fields discussed

by [32–38]. [34] proposes a clustering technique for image

representations, whereas medical image segmentation is

done by an entropy-based technique (see [32]). [33]

extends the clustering technique of [32] to cope with the

issues of noise/outliers by selecting neighborhood pixels

from different regions of the magnetic resonance imaging

for its tuning. The natural extension of the FCM under the

AIFS environment is the IFCM algorithm [7], which is

further studied by [38]. It is improvised for the noisy

medical image segmentation while using the rough set

theory (see [39]).

During the clustering of a multi-dimensional/featured

dataset, FCM and IFCM assign equal importance to each

dimension/feature. Moreover, the derivation of FCM/IFCM

or their variants involves calculus-based optimization. It is

observed that many of these variants are using weighted

Euclidean distance measure. Here, we categorize these

variants on the basis of an equally likely approach as fol-

lows: (1) In the IFCM variants (see [32, 33, 34, 40, 36,

37]), an equally likely approach is used, that is, all the

components of Euclidean distance are assigned same

weight. (2) There are some variants (see [41, 39]) in which

unequal weights are allocated to the components of

Euclidean distance in contrast to the equally likely

approach. Moreover, the variants of the FCM employing an

equally likely approach traverse their distance along a

circular path, whereas the IFCM counterparts compute

distances along spherical paths. A single weighing expo-

nent is sufficient to control those distance measures which

track along a circular or spherical/hyper-spherical path.

Now, if variants of FCM/IFCM do not employ an equally

likely approach, then elliptical/ellipsoidal path-based dis-

tances are measured. To monitor an ellipsoidal path, three

independent weighing exponents are exploited, here, the

same path is monitored using a weighing exponent con-

taining two variables. We show that the improvisation of

the clustering algorithm depends on the computation of an

accurate feature weight distribution. The clustering algo-

rithms discussed in the paper are either uni-parametric, bi-

parametric, tri-parametric, or quad-parametric (see

Table 2). Let us discuss the major contributions of the

paper:

• An equally likely approach often fails in the dealing of

a multi-dimensional/featured dataset because all fea-

tures of the dataset are not equally relevant. To address

this problem, we have proposed two clustering tech-

niques: (1) a singly weighted data-driven algorithm

called uni-weighted intuitionistic fuzzy C-means (uW-

IFCM), (2) two variables-based weight triplets intro-

duce bi-weighted probabilistic intuitionistic fuzzy C-

means algorithm (bW-PIFCM) (see Sect. 2.2 and 2.3).

• The initialization of uW-IFCM and bW-PIFCM algo-

rithms requires a transformation of the real-valued

multi-dimensional/featured dataset to an AIFS dataset.

For this, we have utilized two parameters ða and bÞ-
based novel data fuzzification technique (see Sect. 3).

• In uW-IFCM algorithm, the weighing exponent g and

fuzzy factor m are used as parameters. We further tune

the feature weights using the exponent g, which gives

better feature weight distribution for uW-IFCM in

comparison to bW-PIFCM. A study about the optimal

choices of g and m at which uW-IFCM delivers its best

clustering has been carried out in Sect. 4. Here, we

Table 1 Mathematical symbols

Symbols Details

a Tuning parameter in Yager’complement function

b Tuning parameter in membership function

g Weighing exponent

D Number of features/dimensions

m Fuzziness index

C Number of clusters

P Number of data points

Jm Criterion function

uli Membership degree of ith data point in lth cluster

xi ith data point

vl Centroid of lth cluster

U Membership matrix

V Centroid matrix

W Weight matrix

w Fixed weight collection
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perform both experimental analysis and convergence

analysis of the uW-IFCM and bW-PIFCM algorithms.

• The uW-IFCM detects irrelevant features in a multi-

dimensional/featured dataset during its clustering. We

have shown that uW-IFCM is a mechanized feature

reduction technique (see Sect. 5.1), whereas an autom-

atized feature reduction technique called FRT-equipped

uW-IFCM algorithm is also proposed for nullification

of irrelevant features (see Sect. 5.2).

The remaining paper is organized into five sections. In

Section 2, we provide a mathematical solution for a fuzzy

clustering problem. Section 3 discusses the procedural

detailing of proposed uW-IFCM and bW-PIFCM algo-

rithms. In Sect. 4, an experimental analysis of synthetic

and some UCI machine learning datasets is carried out. We

provide two uW-IFCM-based feature reduction techniques

in Sect. 5. Finally, the conclusion is stated in Sect. 6.

2 Some Important Mathematical Results for C-
Means Clustering Algorithms

We have divided this section into three subsections.

2.1 Description of Clustering Problem I

Intuitionistic fuzzy C-means (IFCM) is a well-known

clustering algorithm that uses Euclidean distance measure

to cluster the datasets.

Clustering problem I: Let fx̂1; x̂2; . . .; x̂Pg be a set of

multi-valued AIFS data items. Here, the dimension of each

data item is D, that is, x̂i ¼ ð~xidÞDd¼1, and ~xid ¼ ðlid; mid;
pidÞ. We have to group fx̂1; x̂2; . . .; x̂Pg into C clusters. Let

V ¼ fv̂1; v̂2; . . .; v̂C : v̂l ¼ ð�lld; �mld; �pldÞDd¼1; 1 � l�Cg be a

set of initial cluster centroids.

IFCM-based solution procedure: The criterion func-

tion Jm is defined as

JmðU;VÞ ¼
XC

l¼1

XP

i¼1

umli D
2
1ðx̂i; v̂lÞ; where ; ð1Þ

D2
1ðx̂i; v̂lÞ ¼ 1

2P

XD

d¼1

fðlid � �lldÞ2 þ ðmid � �mldÞ2

þ ðpid � �pldÞ2g
ð2Þ

such that

XC

l¼1

uil ¼ 1; 1� i�P ð3aÞ

uil 2 ½0; 1�1� i�P; 1� l�C ð3bÞ

XP

i¼1

uil [ 0; 1� l�C : ð3cÞ

The membership value uil of ith data item in lth cluster

and the centroid ðl �vld ; m�vld ; p�vld Þ
D
d¼1 are updated using

Eqs. (4) and (5).

uil ¼
1

PC

l¼1

 
D1ðx̂i;v̂lÞ
D1ðx̂i;v̂lÞ

! 2
m�1 ð4Þ

l ~vld¼
PP

i¼1u
m
ill ~xidPP

i¼1u
m
il

;m ~vld¼
PP

i¼1u
m
il m ~xidPP

i¼1u
m
il

;p ~vld¼
PP

i¼1u
m
ilp ~xidPP

i¼1u
m
il

: ð5Þ

In IFCM algorithm, all the features of a multi-dimensional/

featured dataset are equally emphasized during clustering.

The IFCM transforms into weighted-IFCM, if D2
1ð~xi; ~vlÞ is

replaced with D2
wð~xi; ~vlÞ ¼

PD
d¼1 wdððlid � �lldÞ2 þ ðmid �

�mldÞ2 þðpid � �pldÞ2Þ. In weighted-IFCM, we randomly

select its weights (i.e., wd; 1� d�D) such thatPD
d¼1 wd ¼ 1.

Table 2 Description of C-means algorithms

Clustering Algorithm Path of distance measure Nature of algorithm Parameters used

1 IFCM Spherical path Equally likely approach m; a;b;U or (V)

2 weighted-IFCM Ellipsoidal path Random weight selection approach m;b;U or (V)

3 wIFCM Spherical path Data-driven weight selection approach m;b;U or (V)

4 FCM Circular path Equally likely approach m, U or (V)

5 wFCM Circular path Data-driven weight selection approach m, U or (V)

6 PIFCM Ellipsoidal path Adaptive weight selection approach m; a;b;U or (V)

7 Proposed uW-IFCM Spherical path Data-driven non-adaptive weight selection approach m; a;b; g;V ;W

8 Proposed bW-PIFCM Ellipsoidal path Data-driven adaptive weight selection approach m; a;b;V
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2.2 A Proposal of Novel Probabilistic Intuitionistic

Fuzzy C-Means Clustering Algorithm

Let us solve the Clustering problem I probabilistically. So,

we propose bi-Weighted Probabilistic Intuitionistic Fuzzy

C-Means algorithm (bW-PIFCM), and this variant of

PIFCM uses two variable-based weight triplets. The pro-

posed algorithm computes data-driven feature weights such

that it results to an optimal feature weight distribution at

the convergence. It means that the proposed algorithm is

adaptive in nature. The weights portray the importance of

features in a multi-dimensional/featured dataset. Here, a

membership matrix M ¼ ðuilÞP�C of order P� C is

obtained. The mathematical results which correspond to

bW-PIFCM are given in the form of four theorems.

Theorem 2.1 Let S be a collection that contains AIFS. If

I1 ¼ ½p0; p00� and I2 ¼ ½q0; q00� be the weight intervals

assigned to membership and non-membership components

of an AIFS, which is an element of S. The weight interval I

assigned to the hesitancy component of the AIFS is

I¼½1�maxðp0;q0;p00;q00Þþmaxðp0;q0;p00;q00Þp;1�minðp0;q0;p00;q00Þ
þminðp0;q0;p00;q00Þp�

:

ð6Þ

Proof Let A ¼ ðl; m; pÞ be an AIFS belonging to S. As,

minðp0; q0Þðlþ mÞ� p0lþ q0m� maxðp0; q0Þðlþ mÞ ð7Þ

minðp00; q00Þðlþ mÞ� p00lþ q00m� maxðp00; q00Þðlþ mÞ :
ð8Þ

From (7) and (8), we have,

minðp0;q0;p00;q00ÞðlþmÞ�p0lþq0m;p0lþq0m�maxðp0;q0;p00;q00ÞðlþmÞ

ð9Þ
minðp0;q0;p00;q00ÞðlþmÞ�p00lþq00m;p00lþq00m�maxðp0;q0;p00;q00ÞðlþmÞ :

ð10Þ

Therefore, from (9) and (10), we get,

I¼½1�maxðp0;q0;p00;q00Þþmaxðp0;q0;p00;q00Þp;1�minðp0;q0;p00;q00Þ
þminðp0;q0;p00;q00Þp�:

h

Theorem 2.2 Let an AIFS, say A1 belonging to S has been

assigned weight intervals I1 ¼ ½p0; p00�, I2 ¼ ½q0; q00� , and I

to their membership, non-membership, and hesitancy

components, respectively. Here, I1 ¼ ½p0; p00�, I2 ¼ ½q0; q00�
are independent of A1, but the interval I depends on A1. Let

d : S� S ! R be a mapping, such that,

dðA1;A2Þ¼
h 1
2n

Xn

i¼1

p12ðlA1
ðxiÞ�lA2

ðxiÞÞ2þq12ðmA1
ðxiÞ�mA2

ðxiÞÞ2

þr12ðpA1
ðxiÞ�pA2

ðxiÞÞ2
i1=2

:

ð11Þ

The mean of the intervals I1; I2; I3 ¼ I \ I
0
gives the coef-

ficients p12; q12, r12, respectively. Here, the weight interval

associated with the hesitancy component of A2 is I
0
. The

mapping d is a distance measure.

Proof We show that d satisfies all the properties of dis-

tance measure:

1. It is trivial to see 0� dðA1;A2Þ� 1, where A1 and A2

are any two AIFS of S.

2. Let, dðA1;A2Þ ¼ 0

,
h 1
2n

Xn

i¼1

p12ðlA1
ðxiÞ � lA2

ðxiÞÞ2 þ q12ðmA1
ðxiÞ � mA2

ðxiÞÞ2

þ r12ðpA1
ðxiÞ � pA2

ðxiÞÞ2
i1=2

¼ 0

:

ð12Þ

Equation (12) implies

lA1
ðxiÞ ¼ lA2

ðxiÞ; mA1
ðxiÞ ¼ mA2

ðxiÞ :

3. It can be easily shown that dðA1;A2Þ ¼ dðA2;A1Þ:
4. To establish this condition, it is equivalent to prove

the property of transitivity (see [42, 43] and [41]). To do so,

let A1;A2;A3 be the three AIFSs. Now,

dðA1;A3Þ¼
h 1
2n

Xn

i¼1

p12ðlA1
ðxiÞ�lA3

ðxiÞÞ2þq12ðmA1
ðxiÞ�mA3

ðxiÞÞ2

þr12ðpA1
ðxiÞ�pA3

ðxiÞÞ2
i1=2

:

ð13Þ

Using Minkowski’s inequality, we get

�
h 1
2n

Xn

i¼1

p12ðlA1
ðxiÞ�lA2

ðxiÞÞ2þq12ðmA1
ðxiÞ�mA2

ðxiÞÞ2

þr12ðpA1
ðxiÞ�pA2

ðxiÞÞ2
i1=2

þ
h 1
2n

Xn

i¼1

p12ðlA2
ðxiÞ�lA3

ðxiÞÞ2þq12ðmA2
ðxiÞ

�mA3
ðxiÞÞ2þr12ðpA2

ðxiÞ�pA3
ðxiÞÞ2

i1=2

ð14Þ

) dðA1;A3Þ� dðA1;A2Þ þ dðA2;A3Þ
Thus, dðA1;A2Þ is a distance measure. h

Theorem 2.3 Let h1 : Msi �Vsd ! R be a mapping,

such that h1ðU;VÞ ¼ JmðU;VÞ, where cluster matrix, V 2
Vsd and membership matrix, U 2 Msi. Then U� is a strict
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local minima if U� is calculated from Eq. (23). The coef-

ficients p12; q12; r12 are known (see Theorem 2.2).

Proof The criterion function and constraint are given as

JmðU;VÞ¼
XC

s¼1

XP

i¼1

umsi
XD

d¼1�
p12ðlid��lsdÞ2þq12ðmid��msdÞ2þr12ðpid��psdÞ2

� ð15Þ

such that

XC

s¼1

usi ¼ 1; 8 1� i�P : ð16Þ

The Lagrangian G(U, V) is constructed based on the cri-

terion function and constraint as follows:

GðU;VÞ¼
XP

i¼1

�XC

s¼1

umsi
XD

d¼1

ðp12ðlid��lsdÞ2þq12ðmid��msdÞ2

þr12ðpid��psdÞ2Þ�
XP

i¼1

ki

�XC

s¼1

usi�1

� :

ð17Þ

In Eq. (17), we have used Lagrange’s multipliers

ki;1�i�P. Here, the fuzzy factor m2ð0;1Þ[ð1;1Þ operates
over the elements of the membership matrix, U. The ele-

ment uli2½0;1� denotes the membership grade of the ith

element of the universe of discourse within the lth cluster.

It is a minimization problem, so for its solution, we dif-

ferentiate Eq. (17) with respect to Lagrange multipliers ki,
and set them equal to zero as follows:

oGðU;V;WÞ
oki

¼ �
�Xc

s¼1

usi � 1

�
¼ 0; 81� i�P : ð18Þ

Similarly, derivatives of the Lagrangian condition (17) are

set equal to zero with respect to membership parameter usi,

where 1� i�P,1� s�C as

oGðU;VÞ
ousi

¼ mum�1
si

XD

d¼1

ððp12ðlid � ~lsdÞ
2 þ q12ðmid � ~msdÞ2

þ r12ðpid � ~psdÞ2ÞÞ � ki ¼ 0

:

ð19Þ

Solving Eq. (19), we get

usi ¼
�
ki
m

� 1
m�1XD

d¼1

ðp12ððlid � �lsdÞ2

þ q12ðmid � �msdÞ2 þ r12ðpid � �psdÞ2ÞÞ
1

1�m

: ð20Þ

To compute the iterative formula for usi, we combine

Eqs. (18) and (20) to yield

XC

s¼1

�
ki
m

� 1
m�1
�XD

d¼1

ðp12ðlid � �lsdÞ
2 þ q12ðmid � �msdÞ2

þ r12ðpid � �psdÞ2Þ
� 1

1�m

¼ 1

ð21Þ
�
ki
m

� 1
m�1XC

s¼1

�XD

d¼1

ðp12ðlid � �lsdÞ
2 þ q12ðmid � �msdÞ2

þ r12ðpid � �psdÞ2Þ
� 1

1�m

¼ 1

:

ð22Þ

Therefore, with the division of Eq. (20) by Eq. (22), the

iterative formula for membership value usi is obtained as

follows:

usi ¼

�PD
d¼1 p12ðlid � �lsdÞ2

þq12ðmid � �msdÞ2 þ r12ðpid � �psdÞ2
�

1
1�m

8
>>><

>>>:

9
>>>=

>>>;

PC
s¼1

�PD
d¼1 p12ððlid � �lsdÞ2

þq12ðmid � �msdÞ2 þ r12ðpid � �psdÞ2Þ
�

1
1�m

8
>>><

>>>:

9
>>>=

>>>;

ð23Þ

h

Theorem 2.4 The optimal minima U� is obtained at a

point V ¼ V�.

Proof We define the Lagrangian G(U, V) as

GðU;VÞ¼
XP

i¼1

�XC

s¼1

umsi
XD

d¼1

ðp12ðlid� �lsdÞ2þq12ðmid��msdÞ2

þr12ðpid� �psdÞ2Þ�
XP

l¼1

kl

�XC

s¼1

usi�1

�� :

ð24Þ

To find the cluster center matrix V, we equate derivatives

of the Lagrangian (see Eq. (24)) equal to zero with respect

to cluster center �lsd;�msd;�psd, where 1�s�C;1�d�D. It

yields,

oGðU;VÞ
o�lsd

¼ 0 ð25Þ

oGðU;VÞ
o�msd

¼ 0 ð26Þ

oGðU;VÞ
o�psd

¼ 0 : ð27Þ

Solving Eq. (25), we get
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oGðU;VÞ
o�lsd

¼
XP

i¼1

�
umsip12½�2ðlid � �lsdÞ�

�
¼ 0 ð28Þ

�lsa ¼
PP

i¼1 u
m
silidPP

i¼1 u
m
si

: ð29Þ

Similarly, we obtain the following solutions from Eqs. (26)

and (27), respectively,

�msa ¼
PP

i¼1 u
m
simidPP

i¼1 u
m
si

ð30Þ

�psa ¼
PP

i¼1 u
m
sipidPP

i¼1 u
m
si

: ð31Þ

Here, eqns. (29), (30), and (31) derive the point V ¼ V�.hh

2.3 A Proposal of Novel Intuitionistic Fuzzy C-

Means Clustering Algorithm

This section establishes some mathematical results to

propose the uni-weighted intuitionistic fuzzy C-means

clustering (uW-IFCM) algorithm. A feature weight matrix

(namely, W ¼ ðwdÞ1�D)-dependent distance measure

D2
2ðx̂i; v̂lÞ is used here. We have

D2
2ðx̂i;v̂lÞ¼

XD

d¼1

wg
d ðlid��lldÞ2þðmid��mldÞ2þðpid��pldÞ2
� �

: ð32Þ

The set containing C cluster centroids against dth feature is

V ¼ fv1; v2; . . .; vC; vl ¼ ð�lld; �mld; �pldÞ; 1� l�Cg. Here,

the theorems derive membership matrix U, cluster cen-

troids ð�lld; �mld; �pldÞ , and weight matrix W.

Theorem 2.5 Let h1 : Mli ! R be a mapping, such that

h1ðUÞ ¼ JðU;V;WÞ, where cluster matrix V 2 Vld and

weight matrix W 2 Wld are fixed. Then U� is a strict local

minima if U� is calculated from Eq. (41).

Proof AsV andW are kept fixed, they aremarked bold. Let

us take cluster center matrix as V ¼ ½v1; v2; :::; vC�T , where
vl ¼ ð�llj; �mlj; �pljÞDj¼1. The weight matrixW is of order 1� D,

and
PD

d¼1 wd ¼ 1; for all 1� i�P. Here,m; g 2 ð0; 1Þ[
ð1;1Þ. Now, we define the criterion function:

JmðU;V;WÞ¼
XC

l¼1

XP

i¼1

umli
XD

d¼1

wg
d

�
ðlid��lldÞ2þðmid��mldÞ2þðpid��pldÞ2

� ð33Þ

the following constraint is used for defining Lagrangian:

XC

l¼1

uli ¼ 1; 8 1� i�P : ð34Þ

Equations (33) and (34) define the Lagrangian:

GðU;V;WÞ ¼
XP

i¼1

�XC

l¼1

umli
XD

d¼1

wg
dððlid � �lldÞ2

þ ðmid � �mldÞ2 þ ðpid � �pldÞ2Þ

�
XP

i¼1

ki

�XC

l¼1

uli � 1

�
: ð35Þ

The derivatives of the Lagrangian condition (35) are set

equal to zero with respect to Lagrange’s multipliers ki:

oGðU;V;WÞ
oki

¼ �
�Xc

l¼1

uli � 1

�
¼ 0; 81� i�P : ð36Þ

Similarly, derivatives of the Lagrangian condition (35) are

set equal to zero with respect to membership parameter usi,

where 1� i�P,1� s�C. So,

oGðU;V;WÞ
ousi

¼mum�1
si

XD

d¼1

wg
dðððlia��lsaÞ2

þðmia��msaÞ2þðpia��psaÞ2ÞÞ�ki¼0

: ð37Þ

Solving Eq. (37), we get

usi ¼
�
ki
m

� 1
m�1XD

d¼1

wg
dðððlid � �lsdÞ

2 þ ðmid � �msdÞ2

þ ðpid � �psdÞ2ÞÞ
1

1�m

: ð38Þ

Equations (36) and (38) together yield:

XC

l¼1

�
ki
m

� 1
m�1
�XD

d¼1

wg
dððlia��lsdÞ2þðmid��msdÞ2þðpid��psdÞ2Þ

� 1
1�m

¼1

ð39Þ
�
ki
m

� 1
m�1XC

l¼1

�XD

d¼1

wg
dððlia��lsdÞ2þðmid��msdÞ2þðpid��psdÞ2Þ

� 1
1�m

¼1 :

ð40Þ

Dividing Eq. (38) by Eq. (40) results in an iterative formula

for membership value usi as follows:

usi ¼

�PD
d¼1 w

g
dðlid � �lsdÞ2

þðmid � �msdÞ2 þ ðpid � �psdÞ2
�

1
1�m

8
>>><

>>>:

9
>>>=

>>>;

Pc
l¼1

�PD
d¼1 w

g
dððlia � �lsdÞ2

þðmid � �msdÞ2 þ ðpid � �psdÞ2Þ
�

1
1�m

8
>>><

>>>:

9
>>>=

>>>;

ð41Þ

h

Theorem 2.6 Let h2 : WD ! R be a mapping such that

h2ðWÞ ¼ JðU;V;WÞ, where membership matrix U 2 Uli
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and cluster matrix V 2 Vld remain constant. Then W� is a
strict local minima if Eq. (50) calculates W�.

Proof The membership matrix U and cluster center

matrix V are kept constant and we mark them bold. The

Lagrangian GðU;V;WÞ is defined using a weight matrix

W ¼ ðwg
dÞ1�D as follows:

GðU;V;WÞ¼
XP

i¼1

�XC

l¼1

umli
XD

d¼1

wg
dððlid��lldÞ2þðmid��mldÞ2þðpid��pldÞ2Þ

�
XP

l¼1

kl

�XD

d¼1

wd�1

�� : ð42Þ

The derivatives of the Lagrangian (see Eq. (42)) with

respect to Lagrange multiplier kl are set equal to zero.

Hence,

oGðU;V ;WÞ
okl

¼ �
�XD

d¼1

wd � 1

�
¼ 0; 81� l�P ð43Þ

Similarly, the derivatives of the Lagrangian (see Eq. (42))

with respect to weight parameter wa, 1� a�D is set equal

to zero. Hence,

oGðU;V;WÞ
owa

¼
Xq

i¼1

umsigw
ðg�1Þ
sd ðððlia� �lsaÞ2þðmia��msaÞ2þ

ðpia� �psaÞ2ÞÞ�kl¼0

:

ð44Þ

We simplify Eq. (44) and it derives feature weight wa as

follows:

XP

i¼1

umsigw
ðg�1Þ
a ðððlia��lsaÞ2þðmia��msaÞ2þðpia��psaÞ2ÞÞ�kl¼0 ð45Þ

XP

i¼1

umsigw
ðg�1Þ
sa ðððlia��lsaÞ2þðmia��msaÞ2þðpia��psaÞ2ÞÞ¼kl : ð46Þ

For g 6¼1:

wa¼
�
kl
g

� 1
g�1
�XP

i¼1

umsigw
ðg�1Þ
a ððlia��lsaÞ2þðmia��msaÞ2þðpia��psaÞ2Þ

� 1
1�g

:

ð47Þ

Equations (46) and (47) are solved, so we have

XD

d¼1

�
kl
g

� 1
g�1
�XP

i¼1

mumsigw
ðg�1Þ
d ððlid��lsdÞ2þðmid��msdÞ2

þðpid��psdÞ2Þ
� 1

1�g

¼1

ð48Þ

�
kl
g

� 1
g�1XD

d¼1

�XP

i¼1

mumsigw
ðg�1Þ
d ððlid��lsdÞ2þðmid��msdÞ2

þðpid��psdÞ2Þ
� 1

1�g

¼1

: ð49Þ

Let us divide Eq. (47) by Eq. (49), and it results in the

iterative formula for weight wa as follows:

wa¼

�XP

i¼1

umsiððlia��lsaÞ2 þðmia��msaÞ2þðpia��psaÞ2Þ
�

1
1�g

( )

PD
d¼1

�PP
i¼1u

m
siððlid��lsdÞ2þðmid��msdÞ2þðpid��psdÞ2Þ

�
1

1�g

� 	

ð50Þ

h

Corollary 2.1 Equations. (55), (56), and (57) give the

iterative formula for cluster center matrix V.

For proof, we set derivatives of the Lagrangian (see

Eq. (42)) with respect to cluster center �lsa; �msa; �psa, where
1� s�C; 1� a�D equal to zero is as follows:

oGðU;V ;WÞ
o�lsa

¼ 0 ð51Þ

oGðU;V ;WÞ
o�msa

¼ 0 ð52Þ

oGðU;V ;WÞ
o�psa

¼ 0 : ð53Þ

From Eq. (51), we have

oGðU;V ;WÞ
o�lsa

¼
XP

i¼1

�
umsiw

g
a½�2ðlia � �lsaÞ�

�
¼ 0 ð54Þ

�lsa ¼
PP

i¼1 u
m
silidPP

i¼1 u
m
si

: ð55Þ

Similarly, from Eqns. (52) and (53), we get

�msa ¼
PP

i¼1 u
m
simidPP

i¼1 u
m
si

ð56Þ

�psa ¼
PP

i¼1 u
m
sipidPP

i¼1 u
m
si

ð57Þ

h

3 Procedural Details of uW-IFCM and bW-
PIFCM

The implementation of the uW-IFCM algorithm involves

seven steps. In the first step, intuitionistic data fuzzification

technique transforms the given dataset into an AIFS data-

set. Here, the functions lid, mid, and pid calculate mem-

bership, non-membership, and hesitancy values,

respectively. The optimized iterative values of membership

matrix U, centroid matrix V, weight matrix W, and con-

vergence criteria are determined from step 2 to step 7. A

brief procedure to implement uW-IFCM and bW-PIFCM

has been given in Algorithm III and Algorithm IV.

123

M. Kaushal et al.: Weighted intuitionistic fuzzy C... 949



Step 1. Intuitionistic data fuzzification technique: Let

us consider a real-valued multi-dimensional/featured

dataset T ¼ fx0
1; x

0
2; . . .; x

0
Pg, where x

0
i ¼ ðxidÞDd¼1 and xid 2

R for all 1� d�D. The bi-parametric formula (a and b are

the parameters) normalizes T as follows:

Nid ¼ aþ
xid � ximin

d

ximax
d

� ximin
d

ðb� aÞ : ð58Þ

The symbols ximin
d

and ximax
d

denote the minima and maxima

of the set ðxidÞDd¼1. Here, a ¼ 0 and b ¼ 1.

1. Membership function, lid: Equation. (58) transforms

T into a normalized data matrix N. The norm function of

MATLAB computes Euclidean distance between each pair

ðx0
i; x

0
jÞ, and its resultant is a distance matrix ½disij�. Let us

multiply N and ½disij�, and then we obtain the matrix ½Pid�.
The feature weight allocation to xid is done with a factor

Mid computed as follows:

Mid ¼
1

Pid
: ð59Þ

We have calculated
PP

i¼1

PD
d¼1ðxid þMidÞ, and it results

to a new matrix called normalized- ðxid þMidÞ
¼ xidþMidPn

i¼1

PD

d¼1
ðxidþMidÞ

. Now, a data-centric membership

function is computed as follows:

lid ¼ ðnormalized- ðxid þMidÞÞb; b[ 0 : ð60Þ

The tuning parameter b 2 ð0; 10Þ tunes the membership

values as per the requirement of the dataset T.

2. Non-membership function, mid: The generalized

intuitionistic fuzzy generator given by [40] derives the non-

membership function mid as

mid ¼ ð1� labid Þ
1
a : ð61Þ

The domain of the tuning parameter a is (0, 1].

3. Hesitancy function, pid: The mathematical formula-

tion of the hesitancy function is given as follows:

pid ¼ 1� lid � ð1� labid Þ
1
a ð62Þ

Equations. (60), (61), and (62) together transform xid into

an AIFS ~xid ¼ ðlid; mid; pidÞ. This novel data fuzzification

technique is implemented with the help of Algorithm I.

Now, we discuss the outlines of Algorithm II:

Step 2. Initialization of centroid matrix V: To ini-

tialize uW-IFCM, and bW-PIFCM algorithms, it is neces-

sary to fix the prior number of cluster centroids. We

randomly select initial cluster centroids, v̂l, 1� l�C with

the help of rand function of MATLAB.

Step 3. Initialization of weight matrix, W: The feature

information provided in the multi-dimensional dataset is

used to compute initial feature weights in uW-IFCM (see

Eqn 50), whereas bW-PIFCM algorithm uses data-driven

weight triplets for its initialization (see Theorem 2.2).

Step 4. Computation of membership matrix, U: The

membership matrix U contains the membership value of

each data point in every cluster. The higher the member-

ship value, the more the associativity of the data points in

the particular cluster. Here, the matrix U ¼ ½ukl� is of order
P� C, where P is the number of data points and C is the

number of clusters. Eq. (41) and Eq. (23) provide mathe-

matical formulas with which we calculate the membership

matrix corresponding to uW-IFCM and bW-PIFCM algo-

rithms, respectively.

Step 5. Updation of cluster centroid matrix, V: We

have arbitrarily selected C number of initial cluster cen-

troids ðv̂l ¼ ðlld; mld; pldÞDd¼1; 1� l�CÞ in step 2. The same

weightage has been given to each dimension d of ŝl (lth

cluster centroid). The uW-IFCM uses Eqns. (55-57) to

update V, whereas Eqns. (29-31) update the cluster cen-

troids of bW-PIFCM. In some algorithms, we see an

explicit role of hesitancy during the updation of centroid

matrix [32]).

Step 6. Updation of weight matrix, W: To update W,

the updated membership matrix U and the updated cluster

centroids V of uW-IFCM are utilized. We observe that after

each iteration, there is an increase in the weights of rele-

vant features and a decrease in the weights of irrelevant

features or noisy features. The data-specific appropriate

selection of the exponent g and fuzzy factor m delivers an

optimal feature weight distribution. The formula (see

Eq. (50)) works for the weight matrix updation. In the case

of bW-PIFCM, we update the probability weight intervals

I1; I2 and I with the help of Algorithm III.

Step 7. Convergence criterion: The convergence of

the uW-IFCM and bW-PIFCM algorithms are decided

with an error margin � equal to 10�6. The convergence

is met for uW-IFCM if the termination criterion

PD

d¼1

d2ðWdðtÞ;Wdðtþ1ÞÞ
D \� is reached else the algorithm repeats

themselves from Step 4. The termination criterion used for

bW-PIFCM is
PC

l¼1

d2ðVlðtÞ;Vlðtþ1ÞÞ
C \� till the convergence is

reached.
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Input: Dataset (X), Number of clusters (C), Fuzzy factor (m), Intuitionistic fuzzy param-
eter (α), Tuning parameter for membership function (β), Tolerance level (ε),
Weighting exponent η.

Output: Intuitionistic fuzzy set (μid, νid, πid) corresponding to xid

Procedure: 1. Normalize the dataset, X using the Eqn. (58) to obtain matrix N .
2. Deduce the Euclidean distance [disij ] between xi and xj .
3. Deduce the product of the distance matrix [disij ] with normalized dataset N .
4.Compute the membership value μid using Eqn. (60), non-membership value νid
using Eqn. (61) and hesitancy value πid using Eqn. (62), respectively.

End Procedure AIFS dataset corresponding to X;

Input: X: Matrix of data items, N : Number of iterations, C: Number of clusters, η:
Weighting exponent, m: Fuzzy factor, α: Complement parameter, β: Tuning
parameter of fuzzification, Tolerance level (ε = 0.006), TC (Threshold condition),
I� (number of iterations).

Output Weight matrix W , Membership matrix U , Cluster matrix V , Optimal α, β, m

Procedure: 1. Initialize cluster matrix V randomly at t = 0
2. Initialize feature weight matrix W with random numbers and normalize with
constraint

∑D
d=1 wd = 1;

For m = 1 to 30
For α = 1 to 20

For β = 1 to 10
Intuitionistic fuzzification of a given dataset using Algorithm I,
fuzzify data to get (μid, νid, πid) corresponding to each data point xid.

While I� > 100 & TC > ε Update Um,α,β with Eqn. (41) and
normalize with Eqn. (34);
Update feature weight matrix Wm,α,β with Eqn. (50) and normalize
with constraint

∑D
d=1 wd = 1;

Update centroid matrix Vm,α,β = (μ̄ld, ν̄ld, π̄ld)D
d=1 using (55 -57):

End

End

End

End

End Procedure Ut+1, (μ̄t+1
l , ν̄t+1

l ,π̄t+1
l ) and W t+1 corresponding to optimal m, α, β;

Input Intuitionistic fuzzified dataset X̃ = {x̂i}, x̂i = (x̃id)D
d=1, where x̃id =

(μid, νid, πid) using Algorithm I.
Output Probabilistic weight interval pij , qij , rij .
Process 1. Compute minimum of membership value μmin(xi) = min

i
μid with respect to

each feature of xi. Then, compute minimal sum {μmin(x1) + μmin(x2) + · · · +
μmin(xD)}.
2. Normalize {μmin(xi)} of each feature d with {μmin(x1) + μmin(x2) + · · · +
μmin(xD)} and hence probabilistic value pi with respect to d of xi is obtained.
3. Compute minimum probability pi

min = (pi ∗ μid) and maximum probability
pi
max = pmin + (pi ∗ πid) for each d of xi.

4. Calculate p′
ij = max(pi

min, pj
min), p′′

ij = min(pi
max, pj

max) to obtain [p′, p′′].
5. Compute minimum of membership value νmin(xi) = min

i
νid with respect to each

feature of xi. Then, compute minimal sum {νmin(x1)+νmin(x2)+· · ·+νmin(xD)}.
6. Normalize {νmin(xi)} of each feature d with {νmin(x1) + νmin(x2) + · · · +
νmin(xD)} and hence probabilistic value qi with respect to d of xi is obtained.
7. Compute minimum probability qi

min = (qi ∗ μid) and maximum probability
qi
max = qmin + (qi ∗ πid) for each d of xi.

8. Calculate q′
ij = max(qi

min, qj
min), q′′

ij = min(qi
max, qj

max) to obtain [q′, q′′].
9. Using theorem 2.1, we compute the weight interval corresponding to hesitancy
component of an IFS (μid, νid, πid).

Return: Probabilistic weights pij , qij , rij
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4 An Experimental Study of Synthetic and UCI
Machine Learning Datasets

This section is divided into four subsections as follows:

Input: X: Matrix of data items, N : Number of iterations, C: Number of clusters, η:
Weighting exponent, m: Fuzzy index, α: Complement parameter, β: Tuning param-
eter of fuzzification, Tolerance level (ε = 0.006), TC (Threshold condition), I�

(number of iterations)
Output Membership matrix U , Cluster matrix V

Procedure: 1. Initialize cluster matrix V randomly at t = 0;
For m = 1 to 30

For α = 1 to 20
For β = 1 to 10
Intuitionistic fuzzification of a given dataset using Algorithm I,
fuzzify data to get (μid, νid, πid) corresponding to each data point xid.
Using Algorithm III, compute the probabilistic weights pij,qij ,rij

.

While I� > 100 & TC > ε do

Update Um,α,β with Eqn. (41) and normalize with Eqn. (34);
Update centroid matrix Vm,α,β = {(μ̄ld, ν̄ld, π̄ld)}D

d=1 using (55-57):
End

End

End

End

End Procedure Ut+1, (μ̄t+1
l , ν̄t+1

l ,π̄t+1
l );

Input: Dataset (X), number of centroids (C), weighing exponent (η), fuzzy factor (m),
intuitionistic fuzzy parameter (α), tuning parameter for membership function (β),
tolerance level (ε)

Output: Fuzzy partition U , centroids {(μ̄ld, ν̄ld, π̄ld)}D
d=1, Weight matrix W

Procedure: 1. 1. Data fuzzification using Algorithm I.
2. 2. Initialize centroid V̂ , U at t = 0.
3. 3. Initialize weight matrix W with 1

D ’s.
Repeat
4. Update (U = uil)t+1 by calculating the fuzzy partition using Eqn. (41).
5. Update centroid {(μ̄ld, ν̄ld, π̄ld)}D

d=1 using Eqns. (55-57).
6. Update weight matrix, W using Eqn. (50).
7. 7. Optimize weight matrix with threshold value 1/(

√
D)χ.

Until

8.
∑C

i=1
d2(Wi(t),Wi(t+1))

D < ε is satisfied.
Return Ut+1, (μ̄t+1

l , ν̄t+1
l ,π̄t+1

l ) and W t+1.

4.1 Study of Synthetic Dataset I Using IFCM

and Weighted-IFCM

Description of Synthetic Dataset I: For the experimentation,

we use a Gaussian distribution function-based five-dimen-

sional SyntheticDataset I of sample size 300 (see [44]).Here,

we denote the mean and the standard deviation with h and r,
respectively. The mean value of the jth cluster along lth

dimension (feature) is given as hjl with standard deviation rjl
and distribution

P3
j¼1

P5
l¼1 Nðhjl; rjlÞ. The Synthetic Data-

set I consists of threewell-separated clusters and each cluster

has 100 data items (see Fig. 1). In Table 3, the mean values

and standard deviations, which we use for the three clusters

are provided.

Claim: The features relevant to clustering are d1; d2; d3 ,

whereas d4; d5 are irrelevant features in the given dataset.

Strategy: This weighted-IFCM-based data analysis is

bifurcated on the basis of the evaluation process of feature

weight distribution as follows: (1) Firstly, we arbitrarily

use four fixed feature weight distributions Wi ¼ fwikg5k¼1,

1� i� 4 (see Table 4). Here, wik is assigned to feature dk,

where 1� k� 5. (2) Secondly, we use an equally likely

approach to calculate the feature weight distributions (see

Table 5).
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Experimental analysis:

Case 1. The collections W1;W2, W3, and W4 contain

weights that are assigned to features d1; d2; d3; d4 and d5
(see Table 4). The benchmark measuring indexes
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(i) Subspace d3-d5 (j) Subspace d4-d5 (k) Subspace d1 − d4-d5 (l) Subspace d2 − d4-d5

Fig. 1 Plotting of a three-cluster 5D Synthetic Dataset I with three normally distributed features d1; d2 and d3 and two noisy features d4 and d5

Table 3 Description of Synthetic Dataset I

Clusters Parameters d1 d2 d3 d4 d5 Data items

h1l 0.55 0.73 0.42 0.50 0.55

Cluster1 100

r1l 0.05 0.04 0.07 0.29 0.31

h2l 0.30 0.58 0.31 0.55 0.45

Cluster2 100

r2l 0.61 0.04 0.69 0.26 0.27

h3l 0.42 0.45 0.63 0.52 0.53

Cluster3 100

r3l 0.05 0.05 0.07 0.26 0.27

Table 4 Clustering results of weighted-IFCM over Synthetic Dataset

I

W d1 d2 d3 d4 d5 CA RI

W1 0.4656 0.2755 0.2000 0.0344 0.0245 0.9933 0.9911

W2 0.0245 0.2755 0.0344 0.2000 0.4656 0.6800 0.7039

W3 0.0245 0.2755 0.2000 0.4656 0.0344 0.7333 0.7712

W4 0.0245 0.2755 0.2000 0.0344 0.4656 0.7033 0.7572
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validating the clustering performance of weighted-IFCM

are clustering accuracy CA and rand index RI (for their

details see Sect. 4.4). Using a random set of initial cluster

centroids and the two parameters m, a (see Table 4), we

initialize the weighted-IFCM algorithm. Here, 30 values of

m are selected from interval [1, 4], and 20 values of a are

selected out of the interval (0, 1) which results in 600 pairs

of ðm; aÞ for the algorithm. The use of W1 in the weighted-

IFCM yields better clustering in comparison toW2;W3;W4,

in this case, CA and RI are obtained as 0.9933 and 0.9911,

respectively (see Table 4). In W1, the emphasis is given to

features d1; d2; d3 , whereas very less importance is

assigned to d4 and d5. It is observed that a considerable

weightage is given to d4 or d5 in W2;W3;W4, so the

weighted-IFCM does not perform well under these distri-

butions (see Table 4). We further explore the role of fea-

tures d4 and d5 in Case 2.

Case 2. The collection computed using an equally likely

approach is W5 = (1/5,1/5,1/5,1/5,1/5). We nullify features

one by one, then the weight distributions obtained by

applying this approach over four feature-based sets, three

feature-based sets, two feature-based set, and single fea-

ture-based set are W6 = (1/4,1/4,1/4,1/4,0), W7 = (1/3,1/3,1/

3,0,0), W8 = (1/2,1/2,0,0,0), and W9 = (1,0,0,0,0), respec-

tively (see Table 5). The algorithm delivers its worst

clustering performance at W5 (CA = 0.3333 and RI =

0.3311), and delivers its best clustering performance at W7

(CA = 0.9966 and RI = 0.9911). We have discarded fea-

tures d4 and d5 in W7. Both cases verify that d4 and d5 are

irrelevant features. Please refer to Table 4 and Table 5 for

all the results obtained using weighted-IFCM.

Through the experiment, we observe a marginal gap

between the performance of weighted-IFCM with random

allocation of weights and relevancy-based weights.

4.2 Study of Synthetic Dataset I Using bW-PIFCM

The weight distributions used in weighted-IFCM algorithm

are randomly selected. In this algorithm, each feature is

allocated a single weight, whereas the algorithms like

PIFCM (see [41]) employ a weight triplet to cluster the

multi-dimensional dataset. Here, we analyze Synthetic

Dataset I with the bi-weighted variant of PIFCM called

bW-PIFCM. The bW-PIFCM algorithm converges after

seven iterations (see Fig. 3d). The bW-PIFCM performs

well over synthetic datasets (see Table 6). It verifies that

algorithm is adaptive in nature. Here, none of the features

were neglected. Therefore, it cannot be used as a feature

reduction technique.

4.3 Study of Synthetic Dataset I Using uW-IFCM

The research work of [21] motivates us to propose uW-

IFCM clustering algorithm. The mathematical study of

convergence of uW-IFCM becomes a trivial exercise due

to the results established by [21]. So, the focus of the paper

is on the experimental study of uW-IFCM algorithm. Our

study on Synthetic Dataset I shows that uW-IFCM and

IFCM take five and ten iterations, respectively, to converge

(see Fig. 3a, b). The criterion value of uW-IFCM differs

from that of wIFCM (see Table 2) by a large margin (3c).

In the figure, the number of iterations is kept along the

horizontal axis, whereas the criterion function values are

placed on the vertical axis.

Role of weighting exponent, g: The weight wd is

iteratively calculated in the proposed uW-IFCM algorithm

(see Eq. (50) in Theorem 2.6). Then, the algorithm assigns

a weight wg
d to the feature x̂id, where 1� d�D. Here, the

feature obtaining the minimum sum of cluster distances is

allocated a larger weight in comparison to other features.

This weight assignment approach involves a weighing

exponent g, so it distinguishes between relevant and irrel-

evant features. The weight wg
d helps in the selection of

relevant features. The set of positive real numbers (g[ 0)

is the domain of weighing exponent g.
We pictorially describe and analyze each feature of

Synthetic Dataset I independently in Fig. 1. In Sect. 4.1, we

have already discussed about relevant features d1; d2, d3, and

irrelevant/noisy features d4, d5. The inseparable clusters are

obtained in the presence of noisy features d4 and d5 (see

Fig. 1). Here, we interrelate an appropriate selection of g and
fuzzy factormwith good clustering. Let us study the domain

of g in two parts, g 2 ð0; 1Þ and g[ 1. Total of eight values

of g are used for the experimentation. It is reasonable to

select the domain equal to [1, 4] for m (see [45]). The

experimental analysis is done in two parts:

Table 6 Clustering of synthetic datasets using bW-PIFCM

Synthetic Dataset CA RI

1 Synthetic Dataset I 0.9933 0.9920

2 Synthetic Dataset II 0.9980 0.9986

3 Synthetic Dataset

III

0.9890 0.9874

4 Synthetic Dataset

IV

0.9998 0.9999

Table 5 Clustering results over Synthetic Dataset I with an equally

likely approach-based weighted-IFCM

W d1 d2 d3 d4 d5 CA RI

W5 1/5 1/5 1/5 1/5 1/5 0.3333 0.3311

W6 1/4 1/4 1/4 1/4 0 0.5566 0.6271

W7 1/3 1/3 1/3 0 0 0.9966 0.9955

W8 1/2 1/2 0 0 0 0.9800 0.9740

W9 1 0 0 0 0 0.8600 0.8377

123

954 International Journal of Fuzzy Systems, Vol. 26, No. 3, April 2024



1. A case study showing impact of weighing exponent g
on feature weight distribution:

We implement uW-IFCM algorithm over Synthetic

Dataset I for the study. The clustering depends on param-

eters g and m (see Fig. 2). Here, uW-IFCM has initialized

under the consideration that all features are equally likely.

If g ¼ 0:1, then wg
d allocates a weight distribution to the

first three features that are very different to the distribution

assigned to the last two features, provided m is suitably

chosen. If m\1:8, then w0:1
d assigns high weightages to d4

and d5, that is, w
0:1
d4
;w0:1

d5
[ [ 0:2. Moreover, w0:1

d assigns

weightages to the features d1; d2, d3 of value lesser than 0.2

(see Fig. 2a). Now, if m� 1:8, then wg
d assigns higher

weights to relevant features d1; d2 and d3 in comparison to

noisy features d4 and d5. Here, we do not observe many

changes in the weight distribution on changing g, where
g 2 f0:5; 0:7; 0:9g. From this discussion, we conclude that

m� 1:8 and 0\g\1 is the domain of uW-IFCM

algorithm.

In Table 7, the initial centroids and five randomly gen-

erated weight distributions initializing the algorithm are

given. We have g 2 f0:1; 0:3; 0:5; 0:7; 0:9; 1:5; 2:0; 2:5;
5:0; 8:0; 10g, now the best performance of the algorithm is

adjudged after experimenting upon all the values of g. Let
g ¼ 1:1 and m\1:8. In this domain, wg

d assigns high

weights to d1; d2, d3 in comparison to noisy features d4 and

d5, here a good weight distribution operationalizes uW-

IFCM. We vary g over the set f1:5; 2; 2:5g while fixing

m\1:8, the distributions obtained slightly differ with the

distribution at g ¼ 1:1. If m� 1:8 and g[ 1, then noisy

features d4 and d5 are assigned high weights due to virtue

of wg
d. If g[ 2, then the second feature d2 is assigned a

very high weightage in comparison to the remaining fea-

tures. Here, corresponding to each g, we select an optimal

m and the algorithm results in efficient clustering using the

optimal ðg;mÞ (see Table 8). It is concluded that for g\1,

we have m� 1:8, and g[ 1 implies m\1:8. The complete

performance details of the uW-IFCM are provided in

Table 7. Here, the two benchmark indexes CA and rand

index RI verify the performance of the uW-IFCM algo-

rithm. The large deviations in the relevant feature weights

and irrelevant feature weights are observed at g ¼ 2. So,

there are bright chances that the algorithm delivers an

efficient performance at g ¼ 2, and this case is analyzed

separately in detail.

2. A case study showing connection between the

weighing exponent g ¼ 2 and optimal feature weight

distribution:

Here, the role of g ¼ 2 in obtaining efficient clustering

is discussed. We randomly select five initial cluster cen-

troids (see Table 7) and five initial weight distributions (see

wo rows in Table 9) for the experimentation. Here, all the
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Fig. 2 Distribution of feature weights using uW-IFCM clustering algorithm over Synthetic Dataset I
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wo rows are initializing uW-IFCM algorithm one by one,

still, the output remains the same because in all the five

instances, the point of convergence is not changing (see

Fig. 7b). Let us deal with the Synthetic Dataset I using the

equally likely approach in uW-IFCM. The multiple con-

vergence patterns are observed for feature weights on

varying g, where g 2 f0:3; 1:5; 2:0; 8:0; 10g (see Fig. 7d).

In Table 10, the performance of g ¼ 2 based uW-IFCM is

compared with the IFCM and weighted-IFCM. An optimal

feature weight distribution appears at g ¼ 2, and we see

very different distributions at g ¼ 0:5 and g ¼ 5 (see

Fig. 6a–d). In the case of g ¼ 5, a high feature weight is

Table 7 Tuning of weighing exponent g with fuzzy factor m in uW-IFCM over Synthetic Dataset I

Initial weights Final weights Optimal parameters

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 CA RI g m

Initial weight 1 0.3561 0.2646 0.0513 0.0779 0.2500 0.2218 0.2056 0.2168 0.1751 0.1806 0.9900 0.9868 0.5 2

0.2542 0.3451 0.2144 0.0960 0.0904 1.0000 0.9999 2 1.1

0.9740 0.0138 0.0042 0.0046 0.0035 0.8500 0.8281 5 1.1

Initial weight 2 0.1254 0.2768 0.2298 0.2007 0.1673 0.2216 0.2053 0.2169 0.1753 0.1808 0.9866 0.9824 0.5 2.1

0.2537 0.3451 0.2148 0.0960 0.0904 0.9900 0.9868 2 1.1

0.0076 0.9835 0.0046 0.0024 0.0019 0.9033 0.8830 5 1.1

Initial weight 3 0.2976 0.0363 0.3597 0.2005 0.1059 0.2218 0.2056 0.2168 0.1751 0.1806 0.9833 0.9781 0.5 2.1

0.2537 0.3451 0.2149 0.0960 0.0904 0.9900 0.9868 2 1.1

0.0012 0.0056 0.9865 0.0037 0.0029 0.7566 0.7431 5 1.1

Initial weight 4 0.3480 0.2276 0.3384 0.0415 0.0446 0.2216 0.2053 0.2169 0.1753 0.1808 0.9866 0.9824 0.5 2.1

0.2537 0.3451 0.2148 0.0960 0.0904 0.9900 0.9868 2 1.1

0.0012 0.0057 0.9865 0.0037 0.0029 0.7566 0.7431 5 1.1

Initial weight 5 0.1498 0.0214 0.2894 0.3403 0.1990 0.2216 0.2053 0.2169 0.1753 0.1808 0.9866 0.9824 0.5 1.8

0.2536 0.3451 0.2150 0.0960 0.0904 0.9900 0.9868 2 1.1

0.0005 0.0009 0.0006 0.9955 0.0025 0.3933 0.5410 5 1.1

Table 9 Distribution of feature weights of Synthetic Dataset I with random weight initialization using uW-IFCM clustering algorithm with

g ¼ 2

d1 d2 d3 d4 d5 CA RI

1 wo 0.0432 0.1387 0.0631 0.5353 0.2197 0.6133 0.6548

wf 0.2536 0.3451 0.2149 0.0960 0.0904 0.9900 0.9868

2 wo 0.0432 0.1387 0.0631 0.2197 0.5353 0.6400 0.6767

wf 0.2572 0.3407 0.2165 0.0965 0.0891 0.9933 0.9912

3 wo 0.0432 0.1387 0.0631 0.2197 0.5353 0.6633 0.6967

wf 0.2569 0.3422 0.2177 0.0952 0.0880 0.9933 0.9912

4 wo 0.2197 0.0432 0.1387 0.5353 0.0631 0.7400 0.7575

wf 0.2537 0.3469 0.2157 0.0946 0.0892 0.9900 0.9868

5 wo 0.1197 0.0432 0.1387 0.3353 0.3631 0.6400 0.9868

wf 0.2536 0.3451 0.2149 0.0960 0.0904 0.9900 0.9868

Table 8 Final weights of Synthetic Dataset I with CA and RI by uW-IFCM clustering algorithm when g ¼ 2 with random initial weights

d1 d2 d3 d4 d5 ðg;mÞ CA RI

1 0.2218 0.2056 0.2168 0.1752 0.1806 (0.3,2.1) 0.9833 0.9781

2 0.2321 0.2699 0.2157 0.1432 0.1391 (1.5,1.1) 0.9933 0.9911

3 0.2536 0.3451 0.2150 0.0960 0.0904 (2.0,1.1) 0.9900 0.9968

4 0.0001 0.9998 0.0000 0.0000 0.0000 (8.0,1.3) 0.9033 0.8831

5 0.0000 1.0000 0.0000 0.0000 0.0000 (10,1.3) 0.8433 0.8270
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allocated to d1 in comparison to d2 and d3 (see Fig. 6a). In

Fig. 6b, the weight allocated to feature d2 is very high,

whereas d2 and d3 are assigned very low weights. In other

words, the algorithm singles out feature d2 for the clus-

tering at g ¼ 5. An optimal weight distribution is obtained

using g ¼ 2, therefore w2
d delivers the best clustering

accuracy and rand index value also.

4.4 A Comparative Analysis of the Proposed

Algorithms with some C-Means Algorithms

Over UCI Machine Learning Datasets

Here, we explore the functioning of proposed uW-IFCM

and bW-PIFCM algorithms on some real-valued UCI

machine learning datasets. In addition, the clustering
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Fig. 3 A study of convergence for a IFCM, b uW-IFCM, c wIFCM, and d bW-PIFCM over Synthetic Dataset I
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performance of uW-IFCM is compared with bW-PIFCM,

PIFCM, IFCM, and FCM clustering algorithms.

1. UCI Machine Learning Datasets

The seven machine learning datasets, namely, IRIS, thy-

roid, Bupa, zoo, heart, WDBC, and Ecoli are considered for

experimentation (see [47]). Out of these seven datasets, five

are disease-based datasets concerning to thyroid, liver, heart,

breast, and cancer. IRIS is a plant dataset and zoo belongs to

the category of the animal dataset. The description of the

datasets is provided in Table 15. MATLAB version 8.1

running on a PCwith 3.40GHz frequency andRAM16GB is

used for the computational tasks.

2. Some popular benchmark measuring indexes:

Here, the five benchmark measuring indexes, namely,

clustering accuracy (CA), rand index (RI), partition coef-

ficient (PC), partition index (PI), and Dunn index (DI) are

used to compare the performances of the algorithms. Now,

we define the indexes as follows:

(1) Clustering accuracy (CA) [48]: It is the ratio of the

number of correctly classified elements pc and a total

number of elements p, that is, CA ¼ pc
p . It is a popular index

that works over labeled datasets.

(2) Rand index (RI) [44]: Rand index is also used for

labeled datasets. Let C be the set of clusters being provided

in the original dataset. The cluster set resulting after the

Fig. 4 Proposed Architecture of uW-IFCM and bW-PIFCM algorithms
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clustering of the dataset is C0. The elements in C� C0 are
categorized as follows: (1) SD, (2) DS, (3) SS, (4) DD (here

S stands for same cluster and D stands for different cluster).

Mathematically, we have,

RI ¼
t1 þ t4
R

ð63Þ

, where t1 = number of SS, t2 = number of DS, t3 = number

of SD and t4 = number of DD with R ¼ aþ bþ cþ d.

(3) Partition coefficient (PC) [49]: It is the mean of the

summation of the square of membership value of ith ele-

ment in jth cluster, 1� j�C. Mathematically,

PC ¼ 1
P

PP
i¼1

PC
j¼1 u

2
ij, where P is the number of elements

in the dataset. It informs about the trade-off between the

clusters. If PC limits to unity, then the number of elements

appearing in common clusters is very few. Therefore,

higher the value of PC 2 ½1C ; 1� (where C is the number of

clusters) results in better clustering performance.

(4) Partition index (SC) [50]: The ratio between the

compactness of a cluster and its separation from other

clusters calculates the partition index. Mathematically,

SC ¼
PP

i¼1

PC
j¼1 uijd

2ðxk; viÞ
PP

k¼1 uik
PC

t¼1 d
2ðvi; vtÞ

: ð64Þ

A lower value of SC means better clustering.

(5) Dunn index (DI) [51]: It is a well-established hard

cluster validity index. Dunn defines the clusters to be

‘‘compact, separate (CS)’’ relative to the metric iff the

following condition is satisfied: for all p, q, r, where p 6¼ q,

any pair of elements u; v 2 Ar are closer together (with

respect to metric), then any pair of elements x 2 Ap and

y 2 Aq. Let A1;A2; . . .;AC be C-partition of A and let U be

the partition matrix. Dunn index is defined as follows:

DI ¼ min
1� i�C

�
min

iþ1� j�C�1

�
disðui; ujÞ
max

1� c� k
diaðukÞ

		
ð65Þ

where disðui; ujÞ ¼ min
Ai2ui;Aj2uj

dðAi;AjÞ; ð66Þ

diaðukÞ ¼ min
Ai;Aj2uk

dðAi;AjÞ ð67Þ

DI ¼ min
1� i�C

�
min

iþ1� j�C�1

�
disðui; ujÞ
max

1� c� k
diaðukÞ

		
ð68Þ

where disðui; ujÞ ¼ min
Ai2ui;Aj2uj

dðAi;AjÞ; ð69Þ

diaðukÞ ¼ min
Ai;Aj2uk

dðAi;AjÞ : ð70Þ

3. Experimental analysis of UCI machine learning

datasets: In Table 17, we record three types of values for

CA, RI , PC, SC, DI, namely, worst, average, and best. The

circular/spherical path-based algorithms, such as uW-

IFCM, wIFCM, IFCM, wFCM, FCM, and elliptic/ellip-

soidal path-based data-driven bW-PIFCM, PIFCM algo-

rithms are implemented over the seven datasets (see

Table 11-Table 14). In IFCM and FCM algorithms, the

equally likely approach computes the weight distributions.

The weight distributions in fixed-weighted data-driven

algorithms, namely wIFCM and wFCM are calculated

using Eq. (50). The uW-IFCM algorithm further tunes the

weight distribution of wIFCM with the help of its weighing

exponent g. Here, the values that frequently repeat them-

selves during 100 random initializations of the algorithms

are termed as average values. The results of Table 17 are

used for the following experimental analysis:

(1) The best CA obtained by uW-IFCM differs from its

worst with a minimal value of 0.033 over the IRIS

dataset, whereas the maximal deviation equal to 0.118 is

observed on the zoo dataset. Hence, we find a CA-

deviation interval [0.033, 0.118] for uW-IFCM.TheCA-

deviation intervals [0.032, 0.212], [0.007, 0.393],

[0.033, 0.196], [0.031, 0.253] are obtained using

wIFCM, IFCM, FCM, and wFCM, respectively. Since,

in IFCM, the underlined requirements of the problemand

weights are not correlated, therefore IFCMhas the largest

deviation interval. In uW-IFCM, g acts as a controlling
parameter, so it deduces highly stable weight distri-

butions (in other words, the deviation interval is least).

(2) In a similar fashion, the RI-deviation intervals

[0.007, 0.124], [0.002, 0.195], [0.008, 0.166], [0.0

04, 0.322], and [0.005, 0.317] are obtained using

uW-IFCM, wIFCM, IFCM, FCM, and wFCM,
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Fig. 5 Impact of equally likely approach on clustering Synthetic

Dataset I by wighted-IFCM
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respectively. Since, in FCM also the weights and

underlined requirement of the problem are not corre-

lated, therefore FCM yields the largest deviation

interval. The uW-IFCM uses a controlling parameter

g-based weight distribution, and hence highly

stable weights are obtained (in other words, the

deviation interval is least). For all the algorithms, we

have shown the patterns of RI-deviations in Fig. 8.
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(3) Similar type of analysis can be done for the PC, SC,

and DI indexes.

(4) Here, every algorithm shows its best and worst

performances on IRIS and Bupa datasets,

respectively.

(5) PIFCM is an adaptive algorithm (see [41]), and its

clustering is improvised by using data-driven bW-

PIFCM. Further, bW-PIFCM yields clustering better

than wIFCM, IFCM, wFCM, FCM algorithms

except for uW-IFCM. Hence, bW-PIFCM is also

an adaptive algorithm.

(6) The worst, average, and best column of every

benchmark measuring indexes clearly indicate that

uW-IFCM outperforms bW-PIFCM, PIFCM,

wIFCM, IFCM, wFCM, and FCM algorithms (see

Table 17).

(7) The wFCM and wIFCM are data-driven non-

adaptive fixed-weighted algorithms. These fixed

weights are derived by Eq. (50). The weighing

parameter tunes the weight provided in Eq. (50)

during the implementation of uW-IFCM.

5 Feature Reduction Technique

Wecarry out this study in two sections. In the first section, the

uW-IFCM algorithm is introduced as a mechanized feature

reduction technique. The next section proposes automatized

feature reduction technique called FRT-equipped uW-IFCM

algorithm. Here, we try to establish a connection between

computational cost and feature reduction.
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Fig. 8 Comparison of Rand Index, RI over real datasets with uW-IFCM, wIFCM, wFCM, IFCM, and FCM
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Table 10 Comparison of

clustering performance between

IFCM, weighted-IFCM and

proposed uW-IFCM with CA
and RI when g ¼ 2

IFCM weighted-IFCM uW-IFCM

Sr. No CA RI CA RI CA RI

1 0.3800 0.5300 0.6400 0.6800 0.9000 0.9100

2 0.3633 0.5333 0.7000 0.7255 0.9333 0.9011

3 0.3700 0.5400 0.7255 0.7000 1.0000 0.9999

4 0.4000 0.5600 0.4800 0.5400 0.8800 0.8778

5 0.3900 0.5700 0.5800 0.6011 0.8900 0.8856

Average 0.38066 0.54666 0.62510 0.64932 0.91932 0.89408

Table 11 Clustering results

based on bW-PIFCM with fixed

initial cluster centroids over

IRIS, Thyroid, and Bupa dataset

Dataset Indexes bW-PIFCM Optimal parameters Running time (seconds)

IRIS CA 0.9533 m ¼ 1:1; a ¼ 0:35; b ¼ 10 0.074412

RI 0.9417

PC 0.9793

SC 0.2676

DI 0.0347

Thyroid CA 0.9813 m ¼ 2:4; a ¼ 0:6;b ¼ 1:5 0.093567

RI 0.9693

PC 0.5033

SC 0.7137

DI 0.0563

Bupa CA 0.6057 m ¼ 3:5; a ¼ 0:05; b ¼ 10 0.098364

RI 0.5209

PC 0.5000

SC 0.3010

DI 0.0134

Table 12 Clustering results

based on bW-PIFCM with fixed

initial cluster centroids over

Zoo, Heart, WDBC, and Ecoli

dataset

Dataset Indexes bW-PIFCM Optimal parameters Running time (seconds)

Zoo CA 0.8910 m ¼ 1:4; a ¼ 0:1; b ¼ 5 0.090445

RI 0.9540

PC 0.8135

SC 0.2906

DI 0.3896

Heart CA 0.8370 m ¼ 1:4; a ¼ 0:2; b ¼ 7:5 0.101622

RI 0.6924

PC 0.6950

SC 3.3093

DI 0.1701

WDBC CA 0.9455 m ¼ 1:9; a ¼ 0:4; b ¼ 1 0.063069

RI 0.8967

PC 0.6428

SC 1.2786

DI 0.0750

Ecoli CA 0.8654 m ¼ 1:3; a ¼ 0:4; b ¼ 1 0.121369

RI 0.9040

PC 0.8534

SC 0.4478

DI 0.0430
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5.1 A discussion of uW-IFCM clustering algorithm

as a feature reduction technique:

Here, we analyze IRIS dataset deeply with the help of the

uW-IFCM algorithm. The dataset consists of four features

fd1; d2; d3; d4g, namely, sepal length, sepal width, petal

length, and petal width, respectively. The 150 instances

present in the dataset are divided into three classes: setosa,

virginica, versicolor, and each class contains 50 instances.

We use twenty feature weight distributions to initialize the

algorithm. Here, the first ten feature weight distributions

are calculated using the equally likely approach, whereas

the next ten feature weight distributions are randomly

generated with the help of rand function of MATLAB (see

Table 19). The initial cluster centroids given in Sect. 4.3

are used here also. The importance of weighing exponent

Table 13 Clustering results

based on PIFCM with fixed

initial cluster centroids over

IRIS, Thyroid, and Bupa dataset

Dataset Indexes PIFCM Optimal parameters Running time (seconds)

IRIS CA 0.9333 m ¼ 3:2; a ¼ 0:40 0.074607

RI 0.9195

PC 0.4049

SC 0.5679

DI 0.0701

Thyroid CA 0.9767 m ¼ 2:4; a ¼ 0:75 0.067314

RI 0.9616

PC 05219

SC 0.6283

DI 0.0421

Bupa CA 0.5797 m ¼ 2; a ¼ 0:4 0.109408

RI 0.5113

PC 0.5804

SC 0.2039

DI 0.0354

Table 14 Clustering results

based on PIFCM with fixed

initial cluster centroids over

Zoo, Heart, WDBC, and Ecoli

dataset

Dataset Indexes PIFCM Optimal parameters Running time (seconds)

Zoo CA 0.8712 m ¼ 1:2; a ¼ 0:15 0.116985

RI 0.9442

PC 0.9603

SC 0.2732

DI 0.4082

Heart CA 0.8111 m ¼ 1:5; a ¼ 0:4 0.088025

RI 0.6924

PC 0.6752

SC 2.5419

DI 0.1832

WDBC CA 0.9420 m ¼ 1:9; a ¼ 0:35 0.64306

RI 0.8905

PC 0.6752

SC 1.2302

DI 0.0759

Ecoli CA 0.84440 m ¼ 1:3; a ¼ 0:2 0.091093

RI 0.9003

PC 0.8501

SC 0.5188

DI 0.0425
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(a) IRIS dataset (b) η = 0.5, m = 1.1 (c) η = 0.5, m = 1.8

(d) η = 0.5, m = 2.3 (e) η = 1.5, m = 1.1 (f) η = 1.5, m = 1.8

(g) η = 1.5, m = 3.5 (h) η = 2, m = 1.1 (i) η = 2, m = 1.7

(j) η = 2, m = 2.2 (k) η = 2, m = 3.5 (l) η = 2, m = 4.0

Fig. 9 Study of clustering of IRIS by uW-IFCM with variation in g and m
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g ¼ 2 in uW-IFCM is highlighted in Sect. 4.4. Let us use

g ¼ 2, m ¼ 1:7, and equally likely approach-based initial

weights (see rows 1–10 of Table 19) to initialize the uW-

IFCM, the algorithm assigns higher weights to the third

feature and fourth feature in comparison to other two fea-

tures. Further, a good clustering accuracy CA ¼ 0:9867,

rand index RI ¼ 0:9875, PC ¼ 0:9205 are obtained with

SC ¼ 0:00007 and DI ¼ 0:05123. These values validate

that initial weight distribution converges to optimal feature

weight distribution. Now, we initialize the uW-IFCM

algorithm using initial weight distribution (0.3119, 0.2371,

0.3183, 0.1327), g ¼ 2, and m ¼ 1:7, its result is an opti-

mal weight distribution (0.1622, 0.1661, 0.3527, 0.3191)

(See Table 19). The experimental findings confirm that

uW-IFCM yields optimal weight distribution over the IRIS

dataset at g ¼ 2 (see Fig. 10a, e, f). The algorithm assigns

higher weights to the third and fourth features in compar-

ison to the first two features, while using g ¼ 2 and

m ¼ 1:1. A graphical comparison of feature weight distri-

bution obtained over the IRIS dataset is also presented (see

Fig. 10). At g ¼ 0:5 and g ¼ 1:1, uW-IFCM gives almost

equal weightage to all the four features (see Fig. 10b, c).

The clustering completely depends on the third feature

whenever g[ 2:5 is explored (see Fig. 10g–j). Here,

convergence is achieved at the ninth iteration. Further, if

g[ 2, the clustering performance of uW-IFCM deterio-

rates which can be improvised by tuning g with m. The

domain of m depends on g (see Sect. 4.4). Therefore, from

an g-dependent domain of m, we have selected some values

for the experimentation (see Table 19). The clustering

results obtained using different g[ 2 and m ¼ 1:1 are

recorded in Table 19, we exploit m ¼ 1:1 as it suitably

tunes the g. During the clustering of the IRIS dataset, we

obtain higher relevancy for the third and fourth features in

comparison to the remaining features. In Table 20, the

relevancy of the features of the IRIS dataset is given.

Summary of this discussion: During the clustering of

the IRIS dataset, the uW-IFCM allocates more weightage to

features d3; d4 in comparison to d1; d2. Here, due to the

absence of proper feature nullification criteria, the less rel-

evant features are mechanically neglected. So, uW-IFCM

mechanically observes that d1; d2 are irrelevant features.

This algorithm can be used as a feature reduction technique.

The uW-IFCM results in an efficient clustering of two fea-

tured versions of the IRIS dataset also. The algorithm con-

verges in nine iterations while clustering the IRIS dataset,

whereas the two featured versions of the IRIS dataset are

clustered in five iterations (see Fig. 11). The total compu-

tational time taken by uW-IFCM over IRIS dataset and its

two featured versions is 0.1485 and 0.1118, respectively.

5.2 Performance of the FRT-equipped uW-IFCM

algorithm

Here, a feature reduction technique (FRT) is incorporated in

the uW-IFCM algorithm for the automatic elimination of

irrelevant features. The computational cost of the algorithm

is low. In the FRT-equipped uW-IFCM, a collective

threshold is decided for all features such that the weights

equal and above the threshold value are accepted andweights

having values lower than the threshold gets rejected. The

dataset contains D numbers of features/dimensions, so for

the removal of irrelevant features the threshold value equal to

1=ð
ffiffiffiffi
D

p
Þv; v[ 0 is selected for computational work. The

features having weight values lower than 1=ð
ffiffiffiffi
D

p
Þv are not

useful for clustering. Higher the number of dimensions/

features, the lower the value of the threshold and vice-versa.

If D is large, then 1=ð
ffiffiffiffi
D

p
Þv becomes small, and in this case,

the underlying iterative process of the algorithm converges

after discarding low relevancy features. The small value of

D results in high threshold value, and hence in this situation

the features are rapidly eliminated. This threshold selection

works well for all finitely valued D. In this section, we

worked on two synthetic datasets of two dimensions and one

six-dimensional synthetic dataset. Please refer to Table 16

for synthetic datasets used in the following examples.

Algorithm
V:

FRT-equipped uW-IFCM algorithm

Input: Dataset (X), number of centroids (C), weighing
exponent (g), fuzzy factor (m), intuitionistic fuzzy

parameter (a), tuning parameter for membership

function (b), tolerance level (�)

Output: Fuzzy partition U, centroids fð�lld; �mld ; �pldÞgDd¼1, Weight

matrix W

Procedure: 1. 1. Data fuzzification using Algorithm I.

2. 2. Initialize centroid V̂ , U at t ¼ 0.

3. 3. Initialize weight matrix W with 1
D’s.

Repeat

4. Update ðU ¼ uilÞtþ1
by calculating the fuzzy

partition using Eq. (41).

5. Update centroid fð�lld; �mld ; �pldÞgDd¼1 using Eqns. (55-

57).

6. Update weight matrix, W using Eq. (50).

7. 7. Optimize weight matrix with threshold value

1=ð
ffiffiffiffi
D

p
Þv.

Until

8.
PC

i¼1
d2ðWiðtÞ;Wiðtþ1ÞÞ

D \� is satisfied.

Return Utþ1, (�ltþ1
l ; �mtþ1

l ,�ptþ1
l ) and Wtþ1.
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Fig. 10 Weight distribution for IRIS dataset among its features using uW-IFCM
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Example 1 We generate a two-dimensional Synthetic

Dataset II of sample size 1000 using a Gaussian distribu-

tion function,
P3

j¼1

P2
l¼1 qkNðhjl; rjlÞ. Here, we denote the

mean and the standard deviation with h and r, respectively.
The mean value of the jth cluster along lth dimension/

feature is given as hjl with standard deviation rjl. Synthetic
Dataset II consists of three well-separated clusters. Here,

the parameter qk ¼ 1=3; 81� k� 3. The values of the

mean and standard deviation of the three clusters are given

as hj1 ¼ ð0 2ÞT ; hj2 ¼ ð4 7ÞT ; hj3 ¼ ð8 12ÞT and rj1 ¼

rj2 ¼
10 0:01
0:01 0:01

� �
and rj3 ¼

4 0

0 1

� �
.

The threshold limit 1=ð
ffiffiffiffi
D

p
Þv of FRT-equipped uW-

IFCM algorithm nullifies the first feature because the rel-

evancy of the first feature is quite less in comparison to the

second feature. Now, uW-IFCM computes the CA and RI

values using only the second feature. The clustering

accuracy CA ¼ 0:9950 and rand index RI ¼ 0:9960 are

calculated over Synthetic Dataset II. Here, with reduced

computational cost, we obtain similar results. These criteria

easily eliminate irrelevant features from the dataset.

Example 2 We generate a two-dimensional/featured

Synthetic Dataset III of sample size 1000 using a Gaussian

distribution function,
P4

j¼1

P2
l¼1 qkNðhjl; rjlÞ. Here, we

denote the mean and the standard deviation with h and r,
respectively. The mean value of the jth cluster along lth

dimension/feature is given as hjl with standard deviation

rjl. The Synthetic Dataset III consists of four well-sepa-

rated clusters. Here, the parameter qk ¼ 1=4; 81 � k� 4.

The values of the mean and standard deviation of the four

clusters are given as hj1 ¼ ð10 5ÞT ; hj2 ¼ ð10 10ÞT ; hj3 ¼

ð10 15ÞT ; hj4 ¼ ð10 20ÞT and rjk ¼
1 0

0 1

� �
, 81� k� 4.

We have transformed two-dimensional/featured dataset

into a three-dimensional/featured dataset using the map-

ping vðx; yÞ ¼ ðx cos x; y; x sin xÞ. A two-dimensional cross-

sectional view of the clustering is shown in Fig. 14, and in

this case, we obtain clustering accuracy CA ¼ 0:5888 and

rand index RI ¼ 0:4999. The threshold limit of the dataset

is given by 1=ð
ffiffiffi
3

p
Þv. The incorporation of feature reduc-

tion criteria (1=ð
ffiffiffi
3

p
Þv) in uW-IFCM excludes the first

feature during the clustering, and thus improved CA ¼
0:9954 and RI ¼ 0:9960 are obtained.
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Fig. 11 Plots to show a reduced number of iterations for IRIS dataset clustering using uW-IFCM
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Example 3 Here, we use a two-cluster six-dimensional

dataset named Synthetic Dataset IV. The dataset contains

two types of data points. Each data point has six features. The

Gaussian distribution selects the 1st, 3rd, and 5th feature

values of the first 100 data points. This distribution has two

parameters, mean = 3 and variance = 0.5. Using uniform

distribution, the 2nd, 4th, and 6th feature values are assigned

in the interval [0,10]. In a similar fashion, the 2nd, 4th, and

5th feature values of the next 100 data points are selected

with the help of Gaussian distribution having mean = 7 and

variance = 0.5. Uniform distribution assigns values to the

remaining features, i.e., 1st, 3rd, and 6th in [0,10].

The dataset is constructed such that the 1st, 3rd, and 5th

dimensions/features reside in the first cluster, whereas the

2nd, 4th, and 6th dimensions reside in the second cluster.

In such datasets, subspace clustering gives effective results.

A detailed subspace view of the dataset is presented (see

Fig. 12). The importance of the 5th feature in separating

two clusters is clearly shown in Fig. 12c and h. The uW-

IFCM algorithm also verifies that 5th feature is most

important as it calculates weight distribution, W ¼
½0:1215; 0:1102; 0:0934; 0:0956; 0:5252; 0:0539�. The CA

and RI are being recorded as 0.9989 and 0.9954,

respectively.

The weight distributions obtained using the uW-IFCM

algorithm over different datasets are compared in Fig. 15.

The figure clearly shows the differences in the weights of

relevant and irrelevant features. Once the number of fea-

tures is reduced, the running time also decreases (see

Table 22). A detailed analysis of the parameter v is pro-

vided in Table 21.

6 Conclusion

In this paper, we have introduced a spherical path-based

clustering algorithm called uW-IFCM and an ellipsoidal

path-based algorithm known as bW-PIFCM. The uW-

IFCM algorithm has assigned a single weight to each

feature, whereas bW-PIFCM is an adaptive algorithm that

allocates data-driven weight triplet to each feature. The

feature weights in uW-IFCM are further tuned with the

help of a weighing parameter g. Here, the real-valued

dataset has been transformed into an AIFS dataset using a

novel intuitionistic fuzzification technique. The technique

does not extract membership and non-membership func-

tions from the dataset. This lacking of the extraction pro-

cess leads to uncertainty for which the two parameters a
and b have been introduced. The uW-IFCM is not an

adaptive algorithm, so it is computationally expensive. In

order to reduce the cost of the uW-IFCM algorithm, we

have introduced the FRT-equipped uW-IFCM algorithm.

The feature reduction technique eliminates irrelevant fea-

tures from the dataset. The proposed uW-IFCM algorithm

has been compared with the introduced bW-PIFCM algo-

rithm, PIFCM, IFCM, wIFCM, wFCM, and FCM algo-

rithms over UCI machine learning datasets and some

synthetic datasets. The feature weight distribution used in

uW-IFCM is appropriate, so it has effectively handled

irrelevant and noisy features in comparison to other algo-

rithms. The uW-IFCM has shrunk the search space of fuzzy

factor m besides eliminating irrelevant features, so the

running time of the algorithm is reduced.

In the future, the aim is to study the outliers and noises

possessing real-world datasets using uW-IFCM. We will

try to formulate an AIFS extraction technique involving a

multi-valued function. The final objective is to suggest

exponent g-based improvisation for the proposed bW-

PIFCM and to tune the weight triplets with g. The FRT-

Table 15 Summary of UCI datasets

Dataset Instances Features Classes

1 IRIS 150 4 3

2 Thyroid 215 5 3

3 Bupa 345 6 2

4 Zoo 101 17 7

5 Heart 270 13 2

6 WDBC 569 30 2

7 E.coli 327 7 5

Table 16 Summary of synthetic datasets used

Dataset Instances Features Classes

1 [44] 300 5 3

2 [21] 1000 2 3

3 [21] 1000 2 3

4 [46] 300 6 2
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Fig. 12 Synthetic Dataset IV illustrated in Example 3 viewed in different subspaces

-10 -5 0 5 10 15 20
0

2

4

6

8

10

12

14
Original dataset

(a)

-10 -5 0 5 10 15 20
0

2

4

6

8

10

12

14
Original feature dataset

(b)

-10 -5 0 5 10 15 20
0

2

4

6

8

10

12

14
Reduced feature dataset

(c)

Fig. 13 a 2D—Original Synthetic Dataset II, b clustering with uW-IFCM using original features, c clustering with uW-IFCM with final features
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equipped uW-IFCM algorithm deduces a threshold-de-

pendent weight distribution, and thereby relevant features

get separated from irrelevant features. In the future, we will

try to introduce the FRT-equipped bW-PIFCM algorithm.

Here, the paper has established bW-PIFCM as an adaptive

algorithm.

The future work of this paper is motivated by the lim-

itations of our proposed approach, which involve

(a)
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Fig. 14 a Original Synthetic Dataset III mapped to 3D, b dataset projected to x–y plane, c clustering with uW-IFCM
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(c) Synthetic dataset IV

Fig. 15 Feature weight distribution of the three synthetic datasets using uW-IFCM
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Table 18 WORST/

AVERAGE/THE BEST CA, RI ,

PC, SC, and DI of bW-PIFCM

and PIFCM with fixed initial

feature weights and different

initial cluster centroids over

UCI datasets

bW-PIFCM PIFCM

Worst Average Best Worst Average Best

IRIS CA 0.5 0.8584 0.9633 0.3400 0.8500 0.9398

RI 0.7894 0.8989 0.9317 0.5120 0.8985 0.9200

PC 0.4587 0.7852 0.9755 0.1254 0.4785 0.5871

SC 0.2547 0.1248 0.1582 0.8546 0.6848 0.7997

DI 0.2140 0.0547 0.0384 0.1245 0.0568 0.0458

Thyroid CA 0.5684 0.9012 0.9845 0.5487 0.7845 0.9794

RI 0.6845 0.8461 0.9493 0.6984 0.8946 0.9696

PC 0.4569 0.5487 0.6033 0.5897 0.4879 0.5487

SC 0.8794 0.6924 0.7237 0.8947 0.7894 0.6584

DI 0.0846 0.5846 0.0564 0.7914 0.1249 0.0579

Bupa CA 0.3845 0.3487 0.6897 0.3541 0.5100 0.5847

RI 0.4824 0.4925 0.5487 0.2847 0.3541 0.4879

PC 0.3841 0.4500 0.4879 0.4824 0.5100 0.5712

SC 0.5479 0.3547 0.2801 0.8940 0.4580 0.2984

DI 0.8946 0.5875 0.1356 0.4514 0.1058 0.0342

zoo CA 0.5134 0.6548 0.8879 0.4876 0.6854 0.8874

RI 0.6841 0.8497 0.9548 0.5640 0.8945 0.9395

PC 0.6845 0.7985 0.8451 0.2546 0.8945 0.9587

SC 0.4879 0.3546 0.2894 0.6547 0.3541 0.2748

DI 0.7845 0.4578 0.3875 1.4650 0.5464 0.4798

Heart CA 0.4578 0.6984 0.8311 0.2846 0.6548 0.8457

RI 0.2345 0.6547 0.6987 0.5846 0.5266 0.6845

PC 0.5487 0.6451 0.7024 0.3546 0.4879 0.6854

SC 3.1541 2.2458 2.1540 4.4680 2.1546 2.1457

DI 0.5456 0.4578 0.1478 2.1478 1.9000 1.8794

WDBC CA 0.6489 0.8254 0.9408 0.5870 0.8465 0.9548

RI 0.7815 0.8947 0.8845 0.8045 0.8874 0.8974

PC 0.4897 0.5487 0.6584 0.7894 0.6745 0.6845

SC 2.1640 1.8490 1.2846 2.1645 1.5469 1.6540

DI 0.8794 0.1254 0.0659 1.2540 0.1479 0.0845

Ecoli CA 0.8074 0.8174 0.8514 0.4581 0.7900 0.8057

RI 0.9022 0.9200 0.9245 0.4100 0.9011 0.9015

PC 0.8000 0.8512 0.8746 0.1100 0.6104 0.8745

SC 0.5899 0.5478 0.5487 0.8010 0.8541 0.6547

DI 0.8790 0.0468 0.0245 0.8914 0.1500 0.0456
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Table 19 Clustering performance of uW-IFCM on IRIS dataset

Initial Feature Weights Final Feature Weights Measuring indexes with optimal parameters

Sr.No d1 d2 d3 d4 D1 D2 D3 D4 CA RI PC SC DI m g

1 0.2500 0.2500 0.2500 0.2500 0.2659 0.2735 0.2168 0.2438 0.9000 0.8859 0.7674 0.00080 0.04342 1.8 0.5

2 0.2500 0.2500 0.2500 0.2500 0.2470 0.2461 0.2566 0.2503 0.9200 0.9055 0.7175 0.00095 0.04342 1.9 1.1

3 0.2500 0.2500 0.2500 0.2500 0.2107 0.2106 0.2863 0.2925 0.9533 0.9417 0.9737 0.00044 0.08123 1.3 1.5

4 0.2500 0.2500 0.2500 0.2500 0.1688 0.1598 0.3765 0.2949 0.9867 0.9875 0.9205 0.00007 0.05123 1.7 2.0

5 0.2500 0.2500 0.2500 0.2500 0.0893 0.0903 0.6025 0.2179 0.9467 0.9326 0.8823 0.00044 0.08123 1.1 3.0

6 0.2500 0.2500 0.2500 0.2500 0.0453 0.0442 0.7647 0.1458 0.9000 0.8949 0.9625 0.00441 0.04342 1.1 4.0

7 0.2500 0.2500 0.2500 0.2500 0.0200 0.0194 0.8658 0.0948 0.8900 0.8749 0.8962 0.00441 0.04342 1.1 5.0

8 0.2500 0.2500 0.2500 0.2500 0.0034 0.0032 0.9587 0.0347 0.8800 0.8892 0.7962 0.00048 0.04342 1.2 7.0

9 0.2500 0.2500 0.2500 0.2500 0.0013 0.0013 0.9770 0.0204 0.8940 0.8925 0.7966 0.00441 0.04342 1.1 8.0

10 0.2500 0.2500 0.2500 0.2500 0.0002 0.0002 0.9928 0.0068 0.9400 0.9249 0.8825 0.00441 0.04342 1.1 10.0

11 0.1541 0.1821 0.3943 0.2696 0.2594 0.2592 0.2260 0.2555 0.8833 0.8977 0.6670 0.01167 0.04342 2.0 0.5

12 0.1676 0.3710 0.1575 0.3039 0.2479 0.2478 0.2553 0.2489 0.9200 0.9045 0.6677 0.00115 0.04342 2.0 1.1

13 0.0992 0.3175 0.2733 0.3099 0.2107 0.2106 0.2863 0.2925 0.9533 0.9417 0.9737 0.00044 0.08123 1.4 1.5

14 0.3119 0.2371 0.3183 0.1327 0.1622 0.1661 0.3527 0.3191 0.9700 0.9495 0.9782 0.00044 0.08123 1.5 2.0

15 0.5649 0.0754 0.0016 0.3581 0.0893 0.0903 0.6025 0.2179 0.9467 0.9326 0.9123 0.00004 0.08123 1.1 3.0

16 0.5666 0.2759 0.0601 0.0974 0.0200 0.0194 0.8658 0.0948 0.8840 0.9249 0.9625 0.00008 0.04342 1.1 5.0

17 0.1095 0.5150 0.2241 0.1514 0.0034 0.0032 0.9587 0.0347 0.8740 0.8952 0.8962 0.00004 0.04342 1.1 7.0

18 0.2479 0.4323 0.0984 0.2214 0.0013 0.0013 0.9770 0.0204 0.8894 0.8249 0.8862 0.00441 0.04342 1.1 8.0

19 0.0401 0.4558 0.0880 0.4161 0.0005 0.0005 0.9871 0.0118 0.8666 0.8692 0.9625 0.00044 0.04342 1.1 9.0

20 0.0609 0.3043 0.3416 0.2931 0.0002 0.0002 0.9928 0.0068 0.8494 0.8925 0.9625 0.00441 0.04342 1.1 10.0

Table 20 Updation of feature

weights for IRIS dataset using

uW-IFCM when g ¼ 2

Feature Weights

Number of Iterations Sepal Length Sepal Width Petal length Petal Width

Initialization

of feature weights 0.2500 0.2500 0.2500 0.2500

Iteration 1 0.2059 0.2081 0.3275 0.2584

Iteration 2 0.2042 0.1881 0.3483 0.2594

Iteration 3 0.1833 0.1769 0.3701 0.2697

Iteration 4 0.1696 0.1702 0.3809 0.2792

Iteration 5 0.1627 0.1657 0.3833 0.2884

Iteration 6 0.1606 0.1649 0.3777 0.2969

Iteration 7 0.1608 0.1651 0.3693 0.3048

Iteration 8 0.1615 0.1656 0.3602 0.3127

Iteration 9 0.1622 0.1661 0.3527 0.3191

Table 21 Final number of features for synthetic datasets with varying v

Variation in exponent v

0.5 0.8 1 1.5 2 3 5

Exponent ðv=2Þ 0.25 0.4 0.5 0.75 1 1.5 2.5

1 Synthetic Dataset I – – – 1 3 5 5

2 Synthetic Dataset II – 1 1 1 1 1 1

3 Synthetic Dataset III – – – 1 1 3 3

4 Synthetic Dataset IV – – – – 1 6 6

5 IRIS dataset – – – – 2 4 4
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implementing the algorithm on real-valued datasets in a

computationally efficient manner.
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