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Abstract The probabilistic rough set (PRS) model,

through the incorporation of error levels, represents a

quantitative extension of the classical rough set model. It

serves as a fundamental expansion that enables robust fault

tolerance capabilities by employing relative quantitative

description. However, when confronted with interval-val-

ued fuzzy data, the PRS model is rendered ineffective. The

primary reason for this lies in the absence of a unique

equivalence relation in interval-valued decision systems.

This paper presents a novel approach to address this limi-

tation. In this paper, we first propose a fuzzy similarity

relation based on diversity function, which establishes a

viable foundation for constricting models of probabilistic

rough fuzzy set and multi-granularity probabilistic rough

set models for interval-valued fuzzy decision systems.

Then the decision rules are derived from the presented

three kinds of multi-granularity probabilistic rough fuzzy

sets, respectively. In order to elucidate the concepts of

interval-valued probabilistic rough fuzzy sets and multi-

granularity probabilistic rough fuzzy sets, a case study is

considered, which is helpful for applying these theories to

deal with practical issues.

Keywords Fuzzy set � Interval-valued data � Multi-

granularity � Rough fuzzy sets

1 Introduction

Fuzzy set theory [1], initially proposed by Zadeh in 1965,

extends classical set theory to express fuzzy concepts. It

involves representing the object under investigation and its

corresponding fuzzy concept as a fuzzy set, establishing a

suitable membership function, and analyzing the fuzzy

object through relevant operations and transformations of

the fuzzy set. Fuzzy set theory provides a mathematical

framework and methodology for studying and dealing with

imprecise phenomena. Since the concept of fuzziness has

found the description way of fuzzy sets, the methods of

fuzzy mathematics can also be described to evaluate, rea-

soning, make decisions and control. For example, fuzzy

clustering analysis [2], fuzzy pattern recognition [3, 4],

fuzzy comprehensive evaluation [5], fuzzy decision-mak-

ing [6] and fuzzy prediction [7], fuzzy control [8], fuzzy

information processing [9–11], and others. These methods

constitute a fuzzy system theory and a rudiment of spec-

ulative mathematics. It has made concrete research

achievements in medical diagnosis [12], meteorological

prediction [13], economic management [15, 16], aerospace

control [8, 14], remote sensing [17] and other fields. It has

proven its utility and effectiveness in practical applications.

As a special data type different from the classical single

value, the interval value is a common data type in fields

such as approximate reasoning, signal processing, and

control. While traditional datasets in machine learning and

data mining represent a single real value, which is used to

represent just one exact value, while each value in interval-

valued data is expressed as an interval, which is denoted as
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a range. This unique representation offers several advan-

tages and practical significance. For instance, when dealing

with measurement errors that are sometimes unavoidable,

interval values can be employed, and then the results can

be expressed as interval values. Furthermore, interval val-

ues are also particularly useful for continuous attributes

where other data types cannot meet the same requirement

simultaneously. Let us take the temperature as another

example. Consider the example of temperature. On a cer-

tain day in September, the temperature in city A ranges

from 10�C to 16�C. Representing this using a real value

cannot directly express that, so we always use an average

temperature as a substitute. In that case, we can say that the

average temperature is 13�C. On the other hand, we can

also use an interval value to precisely express the variation

range, which is expressed as ½10�C; 16�C�, and it can reflect
the facts better than the average temperature 13�C. Clearly,
an interval value conveys more information than a single

value, which highlights the necessity of studying interval-

valued data. This is one of the reasons why it is necessary

to study interval-valued data.

Rough set theory, originally proposed by Pawlak [18], is

built on the basis of the classification mechanism and is

classified as an equivalence relation within a specific uni-

verse. A concept is presented by a subset of a universe of

objects and is approximated by a pair of definable concepts

of a logical language. The fundamental idea behind rough

set theory is to utilize known knowledge from a knowledge

base to approximate the inaccurate and uncertain knowl-

edge. Since both rough set and fuzzy set are important tools

to deal with the uncertainty in the complex system, more

and more scholars have paid attention to the research of

combining these two methods, leading to remarkable

results. Among these studies, Dubois and Prade [19] first

proposed the fuzzy rough set model. In Dubois’s fuzzy

rough set model, the membership functions for upper and

lower approximations are obtained firstly, which means

that the upper and lower approximations are fuzzy sets.

Due to its distinctive advantages in dealing with complex

systems, significant research efforts have been dedicated to

advancing the fuzzy rough set model [20–23]. Notably,

after introducing the conditional probability that can reflect

the relative quantitative information into the upper and

lower approximations of fuzzy rough sets to improve the

fault tolerance of the model, the applicability of the model

are further upgraded [24–26].

Pawlak rough set and its corresponding generalization

forms are composed of a series of classes, which can be

considered as information granules. To effectively leverage

information granules in the design and analysis of intelli-

gent systems, we need to make information granules more

explicit. Yao was the first to establish the relationship

between approximation and information granulation [27].

Peters et al. addressed a measurement of information

granule using the rough set framework [28]. In particular,

Rasiowa introduced approximation methods in the basis of

many indiscernibility relations, and they are used to specify

approximations [29]. Qian et al. expanded the concept of

granularity from single to multi-granularity [30]. Subse-

quently, scientists further extended the multi-granularity

case to different environments and provided significant

outcomes [31–33]. However, it becomes apparent that

while these methods can partially solve the problem of

rough modeling in single-valued fuzzy systems, they

appear to be inadequate when confronted with the more

prevalently presence of interval-valued fuzzy data [34–42],

these methods seem to be rather powerless. Accordingly,

an effective and appropriate rough fuzzy method suit-

able for interval-valued data is urgently needed to deal with

the rough fuzzy modeling problem of interval-valued fuzzy

systems.

Interval values are commonly encountered in various

real-world scenarios and domains. They are used to rep-

resent uncertainties, imprecisions, or variations in mea-

surements or observations. By focusing on interval values,

the research acknowledges and addresses the practical

relevance and applicability of the findings to real-world

problems. Interval values inherently encapsulate uncer-

tainty. By explicitly dealing with uncertainty through

interval representations, researchers can quantitatively

assess the degree of uncertainty and make informed deci-

sions that account for the range of possible outcomes. This

is especially important in situations where decision-making

under uncertainty is crucial. Interval values can effectively

handle situations where data variability exists. In many

cases, measurements or observations may not be precise

and can vary within a certain range. Interval values allow

for direct comparisons between data points or entities. By

employing the fuzzy similarity relation derived from the

diversity function, the research can quantitatively assess

the degree of similarity or dissimilarity between interval-

valued data. This facilitates comparative analysis and aids

in identifying patterns, trends, or relationships that may not

be apparent when using single-point estimates. Interval-

valued fuzzy decision systems have gained significant

attention in the field of decision analysis due to their ability

to handle uncertain and imprecise information. However,

despite their potential, the existing research on interval-

valued fuzzy decision systems has certain limitations that

hinder their full utilization and applicability. This study

explores the construction method of multi-granularity

probabilistic rough set models by introducing a novel fuzzy

similarity relation in interval-valued fuzzy decision sys-

tems, and verifies the effectiveness and practicality through

application case studies. These innovative points provide

new methods and tools for dealing with interval-valued
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fuzzy decision systems, which help to handle uncertainty

and conduct decision reasoning in practical problems. The

main contributions of this article could be summarized into

three aspects.

(1) Introduction of fuzzy similarity relation based on

diversity function. The paper introduces a novel

fuzzy similarity function based on a diversity

function for handling data in interval-valued fuzzy

decision systems. This similarity relation provides a

viable foundation for constructing probabilistic

rough fuzzy sets and multi-granularity probabilistic

rough fuzzy set models.

(2) Construction of probabilistic rough fuzzy sets and

multi-granularity probabilistic rough fuzzy sets. The

paper proposes three kinds of multi-granularity

probabilistic rough fuzzy sets to address interval-

valued fuzzy data and derives decision rules from

these models. The introduction of these models

enables more effective uncertainty modeling and

decision reasoning in interval-valued fuzzy decision

systems.

(3) Application case study. To elucidate the concepts of

interval-valued probabilistic rough fuzzy sets and

multi-granularity probabilistic rough fuzzy sets, the

paper conducts a case study. This study is highly

valuable for the practical application of these

theories, aiding users in better understanding and

applying the proposed methods.

This paper is organized as follows. Sect. 2 provides an

introduction to the basic concepts of fuzzy sets and inter-

val-valued fuzzy decision systems. In Sect. 3, we present

the process of constructing the fuzzy similarity relation for

interval-valued data. This involves defining the possible

degree between any two interval values and introducing the

diversity function between two objects. Then the fuzzy

similarity relation is formulated. In Sect. 4, we mainly

study the probabilistic rough fuzzy approximations with

single granularity for interval-valued fuzzy systems. Then

the corresponding properties are also provided. Moving on

to Sect. 5, we introduce the probabilistic rough fuzzy set

models for interval-valued fuzzy systems, considering

three different types of of multi-granularity, namely, mean

multi-granularity, optimistic multi-granularity and pes-

simistic multi-granularity. Moreover, the corresponding

decision rules for these special multi-granularity models

are derived. In Sect. 6, we provide an illustrative example

that showcases the application of the proposed methods in

a multi-granularity space formed by three experts. Finally,

Sect. 7 draws the main conclusions and puts forward fur-

ther directions for future research.

2 Related Fundamental Works

The class of all subsets of a non-empty set U is denoted by

PðUÞ, and the class of all fuzzy subsets of U is denoted by

FðUÞ. A fuzzy subset of U is defined as a membership

function assigning to each element x of U a certain degree

of membership. The value XðxÞ 2 ½0; 1� is referred to as the

membership degree of x to the fuzzy set X. A set composed

of fuzzy sets fX1;X2; � � � ;Xrg is called a fuzzy partition of

U if they satisfy 8x 2 U;
Pr

i¼1 XiðxÞ ¼ 1.

For fuzzy sets X1;X2 2 U, the basic operations on fuzzy

set are described as follows.

(1) X1 � X2, if 8x 2 U, X1ðxÞ�X2ðxÞ.
(2) X1 ¼ X2, if X1 � X2 and X2 � X1.

(3) ðX1 [ X2ÞðxÞ ¼ maxfX1ðxÞ;X2ðxÞg.
(4) ðX1 \ X2ÞðxÞ ¼ minfX1ðxÞ;X2ðxÞg.
The complement and the cardinality of fuzzy set X are

expressed as follows.

(1) :XðxÞ ¼ 1� XðxÞ.
(2) jXj ¼

P

x2U
XðxÞ.

An interval value is denoted as u ¼ ½u�; uþ�, in which

u�; uþ 2 R and u�\uþ always holds. u� is the lower

boundary of interval value u, and b is the upper boundary

of u. For two interval values u ¼ ½u�; uþ� and v ¼ ½v�; vþ�,
u ¼ v holds iff u� ¼ v� and uþ ¼ vþ. An interval value

can be viewed as a collection of continuous values and can

be visualized as a region on the real number line. Fur-

thermore, we define the set of all interval values as

IV ¼ fuju ¼ ½u�; uþ�; u�; uþ 2 Rg. This set comprises all

interval values u where u� and uþ are real numbers.

An information system is defined as (U, AT, V, f), in

which U ¼ fx1; x2; � � �; xng is non-empty finite set of

objects; AT ¼ fa1; a2; � � �; amg is a non-empty finite set of

attributes or features, V ¼
S

al2AT
Val , where Val is the

domain of conditional attributes al, and Val 2 IV; and f :

U � AT ! V is a mapping from U � AT to V.

For an information system (U, AT, V, f), if

8x 2 U; al 2 AT , f ðx; alÞ 2 Val , then (U, AT, V, f) is called

an interval-valued information system (IV-IS). When

(U, AT, V, f) is accompanied by fuzzy decision D, we call

it interval-valued fuzzy decision system (IV-FDS). Gen-

erally, we use ðU;AT [ D;V; f Þ to represent an IV-FDS.
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3 Fuzzy Similarity Relation for Interval-Valued
Data

In this section, we introduce the diversity function for an

attribute set in interval-valued information systems. Let us

first show an interval-valued information system depicted

in Table 1.

Definition 3.1 For two interval values u1 ¼ ½u�1 ; uþ1 � and
u2 ¼ ½v�2 ; vþ2 �, the possible degree of interval value u1
greater than u2 is defined as

Pðu1; u2Þ ¼ min 1;max
uþ1 � u�2

ðuþ1 � u�1 Þ þ ðuþ2 � u�2 Þ
; 0

� �� �

:

From the above definition, Pðu1; u2Þ is the probability of

interval value u1 greater than u2, and Pðu2; u1Þ is the

probability of interval value u2 greater than interval value

u1. So the formula jPðu1; u2Þ � Pðu2; u1Þj can be viewed as

diversity degree between u1 and u2.

Definition 3.2 Let (U, AT, V, f) be an interval-valued

information system, xi and xj are two objects in U. For a

subset B � AT , the diversity function between two objects

xi and xj on attribute set B is defined as

dðxi; xjÞ ¼
Xm

l¼1

P f ðxi; alÞ; f ðxj; alÞ
� �

� P f ðxj; alÞ; f ðxi; alÞ
� ��

�
�
�;

where f ðxi; alÞ ¼ ½u�i;l; uþi;l� is the interval value of xi on al
and m ¼ jBj.

The diversity function can be mathematically expressed

using the specific expression: dðxi; xjÞ ¼
Pm

l¼1 P ½u�i;l; uþi;l�; ½u�j;l; uþj;l�
� �

� P ½u�j;l; uþj;l�; ½u�i;l; uþi;l�
� ��

�
�

�
�
� in

the IV-IS.

Definition 3.3 Let (U, AT, V, f) be an interval-valued

information system and B � AT , the diversity matrix of B

is defined by

DB ¼

dðx1; x1Þ dðx1; x2Þ � � � dðx1; xnÞ
dðx2; x1Þ dðx2; x2Þ � � � dðx2; xnÞ

..

. ..
.

dðxi; xjÞ ..
.

dðxn; x1Þ dðxn; x2Þ � � � dðxn; xnÞ

0

B
B
B
B
@

1

C
C
C
C
A
;

where dðxi; xjÞ is the diversity function between two

objects xi and xj on B.

Definition 3.4 Let I ¼ ðU;AT ;V ; f Þ be an interval-valued

information system and B � AT . DAT and DB are two

diversity matrices on AT and B. The D
0

B is normalized as

D
0

B ¼ DB

maxðDATÞ
;

the maxðDATÞ represents for the maximal value of elements

of diversity matrix DAT .

Definition 3.5 Let I ¼ ðU;AT ;V ; f Þ be an interval-valued

information system and a subset B � AT . Suppose D
0
B is a

normalized diversity matrix on B. The element dðxi; xjÞ of
D

0
B is the normalized diversity between two objects xi and

xj on B. Then RB is a fuzzy relation on B, denoted by the

relation matrix SRB
as follows.

SRB
¼

RBðx1; x1Þ RBðx1; x2Þ � � � RBðx1; xnÞ

RBðx2; x1Þ RBðx2; x2Þ � � � RBðx2; xnÞ

..

. ..
.

RBðxi; xjÞ ..
.

RBðxn; x1Þ RBðxn; x2Þ � � � RBðxn; xnÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

where RBðxi; xjÞ ¼ 1� dðxi; xjÞ.
It could be easily verified that fuzzy relation RB satisfies

(1) Reflexive: 8xi 2 U;RBðxi; xiÞ ¼ 1;

(2) Symmetry: 8xi; xj 2 U;RBðxi; xjÞ ¼ RBðxj; xiÞ.
These properties indicate that RB is a fuzzy similarity

relation. Then RBðxi; xjÞ denotes the similarity degree

between xi and xj on B.

The fuzzy similarity relation induces fuzzy similarity

classes, which form a fuzzy covering of the domain. Let us

focus on the following concepts about fuzzy covering and

fuzzy similarity classes.

Definition 3.6 Let (U, AT, V, f) be an interval-valued

information system, RB is a fuzzy similarity relation on

B � AT . A fuzzy covering induced by RB is defined by

U=RB ¼ f½xi�RB
jxi 2 Ug;

where

½xi�RB
¼

X

xj2U

RBðxi; xjÞ
xj

Table 1 Interval-valued information system

U a1 a2 � � � am

x1 ½u�1;1; uþ1;1� ½u�1;2; uþ1;2� � � � ½u�1;m; uþ1;m�
x2 ½u�2;1; uþ2;1� ½u�2;2; uþ2;2� � � � ½u�2;m; uþ2;m�

..

. ..
. ..

. ½u�i;j; uþi;j� ..
.

xn ½u�n;1; uþn;1� ½u�n;2; uþn;2� � � � ½u�n;m; uþn;m�
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is the fuzzy similarity class belonging to xi, and the symbol

‘‘
P

‘‘ denotes a union of elements.

The cardinality of ½xi�RB
is derived as

j½xi�RB
j ¼

X

xj2U
RBðxi; xjÞ:

Example 1 Table 2 is an interval-valued information

system from the reference, where the object set

U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g, and the attribute

set AT ¼ fa1; a2; a3; a4; a5g.

The diversity matrix of the attribute set AT ¼
fa1; a2; a3; a4; a5g is formed as

DðATÞ ¼

0 5:00 5:00 5:00 3:42 5:00 2:58 1:63 2:07 3:03

5:00 0 4:50 4:78 3:50 4:46 4:33 4:42 4:92 3:20

5:00 4:50 0 3:69 5:00 2:60 5:00 5:00 5:00 5:00

5:00 4:78 3:69 0 5:00 2:34 5:00 5:00 5:00 5:00

3:42 3:50 5:00 5:00 0 5:00 2:85 3:60 2:36 1:75

5:00 4:46 2:60 2:34 5:00 0 5:00 5:00 5:00 4:96

2:58 4:33 5:00 5:00 2:84 5:00 0 3:16 2:76 2:45

1:63 4:42 5:00 5:00 3:60 5:00 3:16 0 3:37 2:67

2:07 4:92 5:00 5:00 2:36 5:00 2:76 3:37 0 2:99

3:03 3:20 5:00 5:00 1:75 4:96 2:45 2:67 2:99 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

We can easily obtain that maxðDðATÞÞ ¼ 5:00, from Def-

inition 3.4, the above diversity matrix is normalized as

follows.

DðAT 0 Þ ¼

0 1:00 1:00 1:00 0:68 1:00 0:52 0:33 0:41 0:61

1:00 0 0:90 0:96 0:70 0:89 0:87 0:88 0:98 0:64

1:00 0:90 0 0:74 1:00 0:52 1:00 1:00 1:00 1:00

1:00 0:96 0:74 0 1:00 0:47 1:00 1:00 1:00 1:00

0:68 0:70 1:00 1:00 0 1:00 0:57 0:72 0:47 0:35

1:00 0:89 0:52 0:47 1:00 0 1:00 1:00 1:00 0:99

0:52 0:87 1:00 1:00 0:57 1:00 0 0:63 0:55 0:49

0:33 0:88 1:00 1:00 0:72 1:00 0:63 0 0:67 0:53

0:41 0:98 1:00 1:00 0:47 1:00 0:55 0:67 0 0:60

0:61 0:64 1:00 1:00 0:35 0:99 0:49 0:53 0:60 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Based on the fuzzy similarity relation matrix defined in

Definition 3.5, we obtain that

SRAT
¼

1:00 0 0 0 0:32 0 0:48 0:67 0:59 0:39

0 1:00 0:10 0:04 0:30 0:11 0:13 0:12 0:02 0:36

0 0:10 1:00 0:26 0 0:48 0 0 0 0

0 0:04 0:26 1:00 0 0:53 0 0 0 0

0:31 0:30 0 0 1:00 0 0:43 0:28 0:53 0:65

0 0:11 0:48 0:53 0 1:00 0 0 0 0:01

0:48 0:13 0 0 0:43 0 1:00 0:37 0:45 0:51

0:67 0:12 0 0 0:28 0 0:37 1:00 0:33 0:47

0:59 0:02 0 0 0:53 0 0:45 0:33 1:00 0:40

0:39 0:36 0 0 0:65 0:01 0:51 0:47 0:40 1:00

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

then the similarity classes with regard to the fussy simi-

larity relation RAT are listed as follows.

½x1�AT ¼ f 1
x1
þ 0:32

x5
þ 0:48

x7
þ 0:67

x8
þ 0:59

x9
þ 0:39

x10
g;

½x2�AT ¼ f 1
x2

þ 0:10

x3
þ 0:04

x4
þ 0:30

x5
þ 0:11

x6
þ 0:13

x7
þ 0:12

x8
þ 0:02

x9
þ 0:36

x10
g;

½x3�AT ¼ f0:10x2
þ 1

x3
þ 0:26

x4
þ 0:48

x6
g;

½x4�AT ¼ f0:04x2
þ 0:26

x3
þ 1

x4
þ 0:53

x6
g;

½x5�AT ¼ f0:31x1
þ 0:30

x2
þ 1

x5
þ 0:43

x7
þ 0:28

x8
þ 0:53

x9
þ 0:65

x10
g;

½x6�AT ¼ f0:11x2
þ 0:48

x3
þ 0:53

x4
þ 1

x6
þ 0:01

x10
g;

½x7�AT ¼ f0:48x1
þ 0:13

x2
þ 0:43

x5
þ 1

x7
þ 0:37

x8
þ 0:45

x9
þ 0:51

x10
g;

½x8�AT ¼ f0:67x1
þ 0:12

x2
þ 0:28

x5
þ 0:37

x7
þ 1

x8
þ 0:33

x9
þ 0:47

x10
g;

½x9�AT ¼ f0:59x1
þ 0:02

x2
þ 0:53

x5
þ 0:45

x7
þ 0:33

x8
þ 1

x9
þ 0:40

x10
g;

½x10�AT ¼ f0:39
x1

þ 0:36

x2
þ 0:65

x5
þ 0:01

x6
þ 0:51

x7
þ 0:47

x8
þ 0:40

x9
þ 1

x10
g:

4 Probabilistic Rough Fuzzy Approximations
for Interval-Valued Fuzzy Systems

In this section, we consider the interval-valued proba-

bilistic rough fuzzy set (IV-PRFS) approach.

Table 2 An interval-valued information system

U a1 a2 a3 a4 a5 D

x1 [1, 3] [1.3, 2.1] [2, 3] [2.3, 4] [2, 4.1] 0.42

x2 [3, 4] [5.3, 6.2] [3, 5] [4, 6] [6, 8] 0.72

x3 [5, 7] [5.8, 6.5] [5, 6] [7.1, 7.5] [9, 10] 0.00

x4 [7.2, 10.2] [6.2, 8] [6.1, 9] [6, 8.2] [7.6, 9.3] 0.30

x5 [2, 5] [3.1, 3.7] [2, 4] [1, 2] [3, 5.2] 0.15

x6 [5.2, 7.1] [7, 9] [4.9, 7.6] [6, 9] [7, 9] 0.09

x7 [2, 4] [3, 4] [1.5, 2.6] [2.3, 3.4] [1, 3.2] 0.19

x8 [1.2, 1.8] [1.5, 2.3] [2.3, 4.1] [2.1, 3.2] [0.8, 4.5] 0.35

x9 [2, 3] [3, 3.5] [2.5, 3.1] [3, 4] [2.4, 4.1] 0.40

x10 [2, 5] [1, 4] [2, 5] [1, 2.1] [1, 3] 0.54
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Definition 4.1 (IV-PRFS) Let ðU;AT [ D;V ; f Þ be an IV-

FDS, RB is a fuzzy similarity relation on B � AT . For X 2
FðUÞ and 0� b\a� 1, the interval-valued probabilistic

rough fuzzy lower and upper approximation operators of X

based on parameters a and b with respect to RB are defined

as

R
ða;bÞ
B ðXÞ ¼ x 2 UjPðXj½x�RB

Þ	 a
n o

;

R
ða;bÞ
B ðXÞ ¼ x 2 UjPðXj½x�RB

Þ[ b
n o

;

where PðXj½x�RB
Þ ¼ j½x�RB\Xj

j½x�RB j
is the conditional probability

determined by the rough membership function. From the

presented two approximation operators, an IV-PRFS model

could be determined if R
ða;bÞ
B ðXÞ 6¼ R

ða;bÞ
B ðXÞ, denoted by

ðRða;bÞ
B ðXÞ;Rða;bÞ

B ðXÞÞ. Otherwise, we say that X is the

interval-valued probabilistic definable fuzzy set.

The thresholds a and b are parameters derived from the

losses of the Bayesian decision procedure. The loss

function represents standard threshold values that have a

practical and intuitive interpretation. In real-world appli-

cations, the loss or cost can be easily interpreted and

measured. Therefore, the thresholds a and b have concrete

and tangible meanings in the context of the specific

application.

Usually, the approximated target concept X is the fuzzy

decision D in the interval-valued fuzzy decision system.

The approximations defined above constitute a method to

approximately describe a fuzzy set X using interval-valued

probabilistic rough fuzzy approximations. Three decision

regions of X for B in IV-PRFS model are then expressed as

follows.

PosðXÞ ¼ R
ða;bÞ
B ðXÞ

¼ x 2 UjPðXj½x�RB
Þ	 a

n o
;

NegðXÞ ¼ U � R
ða;bÞ
B ðXÞ

¼ x 2 UjPðXj½x�RB
Þ� b

n o
;

BndðXÞ ¼ R
ða;bÞ
B ðXÞ � R

ða;bÞ
B ðXÞ

¼ x 2 Ujb\PðXj½x�RB
Þ\a

n o
;

where Pos(X) represents positive region, Neg(X) represents

negative region, and Bnd(X) represents boundary region.

It should be noted that the set type of the upper and

lower approximations obtained by constructing IV-PRFS

model to approximate the arbitrary eX is longer a fuzzy set,

but classical set. It means that we use two classical sets

(upper and lower approximations) to approximate a given

fuzzy set.

Theorem 4.1 Let (U, AT, V, f) be an interval-valued

information system, B � AT. For X 2 FðUÞ and

0� b1 � b2\a2 � a1 � 1, then

(1) R
ða1;b1Þ
B ðXÞ � R

ða2;b2Þ
B ðXÞ;

(2) R
ða1;b1Þ
B ðXÞ 
 R

ða2;b2Þ
B ðXÞ:

Proof

(1) From the lower approximation defined in Definition

4.1,

x 2 R
ða1;b1Þ
B ðXÞ

) PðXj½x�RB
Þ[ a1 	 a2

) x 2 R
ða2;b2Þ
B ðXÞ:

(2) From the upper approximation defined in Definition

4.1,

x 2 R
ða2;b2Þ
B ðXÞ

) ðXj½x�RB
Þ[ b2 	 b1

) x 2 R
ða1;b1Þ
B ðXÞ:

h

In the following Theorem 4.2 and Theorem 4.3, we

provide the important monotonicity of the DP-RFS model.

Theorem 4.2 Let (U, AT, V, f) be an interval-valued

information system, B � AT. For X1;X2 2 F ðUÞ and

X1 � X2, 0� b\a� 1, then

(1) R
ða;bÞ
B ðX1Þ � R

ða;bÞ
B ðX2Þ;

(2) R
ða;bÞ
B ðX1Þ � R

ða;bÞ
B ðX2Þ:

Proof As X1 � X2, 8x 2 U, it follows that

j½x�RB
\ X1j � j½x�RB

\ X2j, which means
j½x�RB\X1j
j½x�RB j

� j½x�RB\X2j
j½x�RB j

.

(1) If x 2 R
ða;bÞ
B ðX1Þ, then

j½x�RB\X1j
j½x�RB j

	 a, so
j½x�RB\X2j
j½x�RB j

	 a,

we obtain that x 2 R
ða;bÞ
B ðX2Þ.

(2) If x 2 R
ða;bÞ
B ðX1Þ, then

j½x�RB\X1j
j½x�RB j

	 b, so
j½x�RB\X2j
j½x�RB j

	 b,

we obtain that x 2 R
ða;bÞ
B ðX2Þ.

h

Theorem 4.3 Let (U, AT, V, f) be an interval-valued

information system, B1 � B2 � AT. For X 2 FðUÞ and

0� b\a� 1, then

(1) R
ða;bÞ
B1

ðXÞ � R
ða;bÞ
B2

ðXÞ;
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(2) R
ða;bÞ
B1

ðXÞ � R
ða;bÞ
B2

ðXÞ:

Proof Because B1 � B2, according to Definition 4.2 and

Definition 4.3, DB1
�DB2

. From Definition 3.5, SRB1
	 SRB2

.

So this theorem could be easily derived. h

In the following, an example is employed to introduce

the IV-PRFS.

Example 2 (Continuation of Example 1.) Consider the

decision fuzzy set D ¼ f0:42x1
þ 0:72

x2
þ 0:00

x3
þ 0:30

x4
þ

0:15
x5

þ 0:09
x6

þ 0:19
x7

þ 0:35
x8

þ 0:40
x9

þ 0:54
x10

g, which represents the

initial diagnosis of each patient suffering from a cold. The

two parameters are set as a ¼ 0:6 and b ¼ 0:3. The car-

dinality of intersection between ½xi�AT (i ¼ 1; 2; ; � � � ; 10)
and D are calculated as

j½x1�RAT
\ Dj ¼ 2:34; j½x2�RAT

\ Dj ¼ 1:90;

j½x3�RAT
\ Dj ¼ 0:00; j½x4�RAT

\ Dj ¼ 0:91;

j½x5�RAT
\ Dj ¼ 1:03; j½x6�RAT

\ Dj ¼ 0:38;

j½x7�RAT
\ Dj ¼ 1:25; j½x8�RAT

\ Dj ¼ 2:11;

j½x9�RAT
\ Dj ¼ 2:33; j½x10�RAT

\ Dj ¼ 3:21:

The cardinality of ½xi�AT (i ¼ 1; 2; ; � � � ; 10) are shown as

j½x1�RAT
j ¼ 3:45; j½x2�RAT

j ¼ 2:18;

j½x3�RAT
j ¼ 1:84; j½x4�RAT

j ¼ 1:84;

j½x5�RAT
j ¼ 3:50; j½x6�RAT

j ¼ 2:13;

j½x7�RAT
j ¼ 3:37; j½x8�RAT

j ¼ 3:23;

j½x9�RAT
j ¼ 3:51; j½x10�RAT

j ¼ 3:79:

The interval-valued probabilistic rough fuzzy lower and

upper approximations of X based on a ¼ 0:6 and b ¼ 0:3

with respect to the attribute set AT are obtained as follows.

R
ða;bÞ
B ðDÞ ¼ fx2; x5; x7; x8; x10g;

R
ða;bÞ
B ðDÞ ¼ fx1; x2; x5; x7; x8; x9; x10g:

The three-way decision regions are

PosBðDÞ ¼ fx2; x5; x7; x8; x10g;
NegBðDÞ ¼ fx3; x4; x6g;
BndBðDÞ ¼ fx1; x9g:
From the above three-way decision regions, the decision

rules of acceptance, rejection and postponement could be

derived.

5 Multi-Granularity Probabilistic Rough Fuzzy
Approximations for IV-FDSs

In the subsequent sections, we examine two types of

interval-valued multi-granularity probabilistic rough fuzzy

set (IV-MG-PRFS) models. Each model is tailored to a

specific application context, and the choice between the

two models should be based on the specific requirements of

the application. We begin by introducing the first type of

IV-MG-PRFS, known as the interval-valued mean multi-

granularity probabilistic rough fuzzy set (IV-MMG-PRFS).

Definition 5.1 let ðU;AT [ D;V ; f Þ be an IV-FDS,

RB1
;RB2

; � � � ;RBm
are fuzzy similarity relation on

B1;B2; � � � ;Bm � AT . 8X 2 FðUÞ and 0� b\a� 1.

The interval-valued mean multi-granularity probabilistic

rough fuzzy lower and upper approximations are denoted

by

R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ ¼ x 2 Uj

Pm

i¼1

PðXj½x�RBi
Þ

m
	 a

8
>><

>>:

9
>>=

>>;

R
ða;bÞ
Pm

i¼1

Bi

M

ðXÞ ¼ x 2 Uj

Pm

i¼1

PðXj½x�RBi
Þ

m
[ b

8
>><

>>:

9
>>=

>>;
:

If R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ 6¼ R

ða;bÞ
Pm

i¼1

Bi

M

ðXÞ, the IV-MMG-PRFS model

could be determined, denoted by

R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ;Rða;bÞ

Pm

i¼1

Bi

M

ðXÞ

0

B
@

1

C
A.

It is easy to verify that R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ � R

ða;bÞ
Pm

i¼1

Bi

M

ðXÞ always

holds. Then three decision regions of X in IV-MMG-PRFS

model are then expressed, namely

PosMðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ

NegMðXÞ ¼ U � R
ða;bÞ
Pm

i¼1

Bi

M

ðXÞ

BndMðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

M

ðXÞ � R
ða;bÞ
Pm

i¼1

Bi

M
ðXÞ

where PosMðXÞ represents interval-valued mean multi-

granularity probabilistic positive region, NegMðXÞ repre-

sents interval-valued mean multi-granularity probabilistic

negative region, and BndMðXÞ represents interval-valued

mean multi-granularity probabilistic boundary region.
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Based on these regions, we obtain the IF-THEN decision

rules:

(P)
If

Pm

i¼1

PðXj½x�RBi
Þ=m	 a, then decide PosMðXÞ.

(N)
If

Pm

i¼1

PðXj½x�RBi
Þ=m� b, then decide NegMðXÞ.

(B)
If b\

Pm

i¼1

PðXj½x�RBi
Þ=m\a, then decide BndMðXÞ.

Definition 5.2 Let ðU;AT [ D;V; f Þ be an IV-FDS,

RB1
;RB2

; � � � ;RBm
are fuzzy similarity relation on

B1;B2; � � � ;Bm � AT . 8X 2 F ðUÞ and 0� b\a� 1. The

interval-valued optimistic multi-granularity probabilistic

rough fuzzy lower and upper approximations are denoted

by

R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ ¼ x 2 Uj

_m

i¼1

ðPðXj½x�RBi
Þ	 aÞ

( )

R
ða;bÞ
Pm

i¼1

Bi

O

ðXÞ ¼ x 2 Uj
m̂

i¼1

ðPðXj½x�RBi
Þ[ bÞ

( )

:

If R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ 6¼ R

ða;bÞ
Pm

i¼1

Bi

O

ðXÞ, the IV-OMG-PRFS model

could be determined, denoted by

R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ;Rða;bÞ

Pm

i¼1

Bi

O

ðXÞ

0

B
@

1

C
A.

It should be noted that there is no inclusion relation

between R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ and R

ða;bÞ
Pm

i¼1

Bi

O

ðXÞ, positive region,

negative region upper and lower boundary regions are

naturally proposed. We form the following decision

regions of X in IV-OMG-PRFS model, namely

PosOðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ \ R

ða;bÞ
Pm

i¼1

Bi

O

ðXÞ

NegOðXÞ ¼ U � ðRða;bÞ
Pm

i¼1

Bi

O
ðXÞ [ R

ða;bÞ
Pm

i¼1

Bi

O

ðXÞÞ

UbnOðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

O

ðXÞ � R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ

LbnOðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

O
ðXÞ � R

ða;bÞ
Pm

i¼1

Bi

O

ðXÞ

where PosOðXÞ represents interval-valued optimistic multi-

granularity probabilistic positive region, NegOðXÞ repre-

sents interval-valued optimistic multi-granularity

probabilistic negative region, UbnOðXÞ represents interval-
valued optimistic multi-granularity probabilistic upper

boundary region, and LbnOðXÞ represents interval-valued

optimistic multi-granularity probabilistic lower boundary

region. The interval-valued optimistic multi-granularity

probabilistic boundary region is the union of upper

boundary region and lower boundary region, which means

BndOðXÞ ¼ UbnOðXÞ [ LbnOðXÞ: Based on these regions,

we obtain the IF-THEN decision rules:

(P) If 8i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi
Þ[ b, and

9j 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBj
Þ	 a, then decide

PosOðXÞ.
(N) If 8i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi

Þ\a, and

9j 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBj
Þ� b, then decide

NegOðXÞ.
(U) If 8i 2 f1; 2; � � � ;mg, s.t. b\PðXj½x�RBi

Þ\a, then

decide UbnOðXÞ.
(L) If 9i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi

Þ	 a, and

9j 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBj
Þ\b, then decide

LbnOðXÞ.

Definition 5.3 Let ðU;AT [ D;V; f Þ be an IV-FDS,

RB1
;RB2

; � � � ;RBm
are fuzzy similarity relation on

B1;B2; � � � ;Bm � AT . 8X 2 F ðUÞ and 0� b\a� 1. The

interval-valued pessimistic multi-granularity probabilistic

rough fuzzy lower and upper approximations are denoted

by

R
ða;bÞ
Pm

i¼1

Bi

P
ðXÞ ¼ x 2 Uj

m̂

i¼1

ðPðXj½x�RBi
Þ	 aÞ

( )

R
ða;bÞ
Pm

i¼1

Bi

P

ðXÞ ¼ x 2 Uj
_m

i¼1

ðPðXj½x�RBi
Þ[ bÞ

( )

:

The IV-PMG-PRFS model could be determined based on

the above two operators, denoted by

R
ða;bÞ
Pm

i¼1

Bi

P
ðXÞ;Rða;bÞ

Pm

i¼1

Bi

P

ðXÞ

0

B
@

1

C
A.

It is easy to verify that R
ða;bÞ
Pm

i¼1

Bi

P
ðXÞ � R

ða;bÞ
Pm

i¼1

Bi

P

ðXÞ always

holds. Then three decision regions of X in IV-PMG-PRFS

model are then expressed, namely
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PosPðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

P
ðXÞ

NegPðXÞ ¼ U � R
ða;bÞ
Pm

i¼1

Bi

P

ðXÞ

BndPðXÞ ¼ R
ða;bÞ
Pm

i¼1

Bi

P

ðXÞ � R
ða;bÞ
Pm

i¼1

Bi

P
ðXÞ

where PosPðXÞ represents interval-valued pessimistic

multi-granularity probabilistic positive region, NegPðXÞ
represents interval-valued pessimistic multi-granularity

probabilistic negative region, and BndPðXÞ represents

interval-valued pessimistic multi-granularity probabilistic

boundary region. Based on these regions, we obtain the IF-

THEN decision rules:

(P) If 8i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi
Þ[ a, then

decide PosPðXÞ.
(N) If 8i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi

Þ� b, then decide

NegPðXÞ.
(B) If 9i 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi

Þ\a, and

9j 2 f1; 2; � � � ;mg, s.t. PðXj½x�RBi
Þ[ b then decide

BndPðXÞ.

6 Illustrative Case Study

Based on the presented three kinds of multi-granularity

probabilistic rough fuzzy set models for interval-valued

fuzzy systems, we can make more comprehensive deci-

sions and evaluations when dealing with multi-source

decision fusion in the actual decision processes. There are

many practical examples of multi-source decision fusion

involving interval-valued fuzzy systems in the actual

decision processes. Let us give several examples as fol-

lows. (1) Medical diagnosis. In the field of medicine, uti-

lizing multi-granularity decision fusion with interval-

valued fuzzy systems can assist in the accurate patient

diagnosis. By integrating data from different medical tests

or diagnostic tools, such as results from various laboratory

tests or expert opinions, a more comprehensive and reliable

diagnosis can be obtained. (2) Financial investment deci-

sion-making. In the financial domain, employing multi-

granularity decision fusion with interval-valued fuzzy

systems can aid investors in making informed investment

decisions. By integrating information from different

financial indicators, market prediction models, or expert

judgments, risks can be minimized, and the accuracy of

evaluating investment projects can be improved. (3)

Engineering project decision-making. In the engineering

field, employing multi-granularity decision fusion with

interval-valued fuzzy systems can assist engineers in

making complex project decisions. By fusing knowledge

and experience from various domains, such as structural

design, environmental assessment, and cost estimation,

multiple factors can be considered comprehensively,

reducing decision uncertainty. These examples illustrate

the application of multi-granularity decision fusion with

interval-valued fuzzy systems in real-world decision pro-

cesses. By integrating data and decisions from diverse

sources, more accurate, comprehensive, and reliable deci-

sion support can be provided.

Example 3 To make the presented models more com-

prehensible, we provide a real world application back-

ground to Table 2, where U is a universe which consists of

ten patients with the clinical features degree; the attributes

a1; a2; a3; a4; a5 are Cough, Rhinorrhoea, Myodynia,

Diarrhea, Nausea, respectively. In the early stage of Virus

Flu outbreak, due to its similar condition with traditional

pneumonia, but with many different performance charac-

teristics, multiple experts may be required to diagnose the

same patient, and different experts may have different

considerations for the selected characteristics. In this case,

each expert’s diagnosis of patients can be regarded as a

single granularity decision.

For the Doctor M1, he (or she) believe that among the 5

clinical features, B1 ¼ fa1; a2; a3g need to be considered.

For the Doctor M2, he (or she) believes that among the 5

clinical features, B2 ¼ fa1; a3; a5g need to be considered.

For the Doctor M3, he (or she) believes that among the 5

clinical features, B3 ¼ fa3; a4; a5g need to be considered.

Next we will make sure the patients who need to obtain

treatments, who need not to obtain treatments and who

need a further observation. We consider the two parameters

a ¼ 0:6; b ¼ 0:5, which will be considered in this case

study. We can get the conditional probability as follows.

The calculated statistical results of the upper and lower

approximations for Doctor M1, Doctor M2 and Doctor M3

are listed in Table 3.

According to the results displayed in Table 3, we can

obtain the multi-granularity probabilistic rough fuzzy

approximations for interval-valued fuzzy decision systems.

In order to facilitate the comparisons, we first calculate

the lower and upper approximations of D regard to B1 in

IV-PRFS as

R
ða;bÞ
B1

ðDÞ ¼ fx1; x2; x7g;

R
ða;bÞ
B1

ðDÞ ¼ fx1; x2; x5; x7; x8; x9; x10g:

The three-way decision regions are

PosB1
ðDÞ ¼ fx1; x2; x7g;

NegB1
ðDÞ ¼ fx3; x4; x6g;
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BndB1
ðDÞ ¼ fx5; x8; x9; x10g:

The lower and upper approximations of D regard to B2

in IV-PRFS are

R
ða;bÞ
B2

ðDÞ ¼ fx2; x5; x7; x8; x10g;

R
ða;bÞ
B2

ðDÞ ¼ fx2; x5; x7; x8; x9; x10g:

The three-way decision regions are

PosB2
ðDÞ ¼ fx2; x5; x7; x8; x10g;

NegB2
ðDÞ ¼ fx1; x3; x4; x6g;

BndB2
ðDÞ ¼ fx9g:

The lower and upper approximations of D regard to B3

in IV-PRFS are

R
ða;bÞ
B3

ðDÞ ¼ fx2; x5; x10g;

R
ða;bÞ
B3

ðDÞ ¼ fx2; x5; x7; x8; x9; x10g:

The three-way decision regions are

PosB3
ðDÞ ¼ fx2; x5; x10g;

NegB3
ðDÞ ¼ fx1; x3; x4; x6g;

BndB3
ðDÞ ¼ fx7; x8; x9g:

The lower and upper approximations of D for IV-MMG-

PRFS model as shown as

R
ða;bÞ
Pm

i¼1

Bi

M
ðDÞ ¼ fx2; x5; x8; x10g;

R
ða;bÞ
Pm

i¼1

Bi

M

ðDÞ ¼ fx1; x2; x5; x7; x8; x9; x10g:

Then three decision regions of D in IV-MMG-PRFS model

are then expressed, namely

PosMðDÞ ¼ fx2; x5; x8; x10g;
NegMðDÞ ¼ fx3; x4; x6g;
BndMðDÞ ¼ fx1; x7; x9g

The lower and upper approximations of D for IV-OMG-

PRFS model as shown as

R
ða;bÞ
Pm

i¼1

Bi

O
ðDÞ ¼ fx1; x2; x5; x7; x8; x10g;

R
ða;bÞ
Pm

i¼1

Bi

O

ðDÞ ¼ fx2; x5; x7; x8; x9; x10g:

Then four decision regions of D in IV-OMG-PRFS model

are then expressed, namely

PosOðDÞ ¼ fx2; x5; x7; x8; x10g;
NegOðDÞ ¼ fx3; x4; x6g;
UbnOðDÞ ¼ fx9g;
LbnOðDÞ ¼ fx1g:
The lower and upper approximations of D for IV-PMG-

PRFS model as shown as

R
ða;bÞ
Pm

i¼1

Bi

P
ðDÞ ¼ fx2g;

R
ða;bÞ
Pm

i¼1

Bi

P

ðDÞ ¼ fx1; x2; x5; x7; x8; x9; x10g:

Then three decision regions of D in IV-PMG-PRFS model

are then expressed, namely

PosPðDÞ ¼ fx2g;
NegPðDÞ ¼ fx3; x4; x6g;
BndPðDÞ ¼ fx1; x5; x7; x8; x9; x10g:
The upper and lower approximations of D in different

types of interval-valued single granularity and multi-

granularity rough fuzzy sets are concluded in Table 4.

With regard to this example of medical diagnosis from

three Doctors, we can make more comprehensive and

objective decisions to decide whether patients need the

remedies using three types of IV-MG-PRFS in interval-

valued fuzzy decision systems. The related decision

Table 3 Statistical results for

three Doctors
U Doctor M1 Doctor M2 Doctor M3

j½x�RB1
j j½x�RB1

\ Dj j½x�RB1
\Dj

j½x�RB1
j

j½x�RB2
j j½x�RB2

\ Dj j½x�RB2
\Dj

j½x�RB2
j

j½x�RB3
j j½x�RB3

\ Dj j½x�RB3
\Dj

j½x�RB3
j

x1 3.2580 1.9853 0.6094 3.9198 1.9550 0.4987 3.7823 1.8216 0.4816

x2 2.7217 1.8251 0.6706 2.7938 1.9752 0.7070 1.9049 1.5168 0.7963

x3 1.7526 0.3391 0.1935 1.5800 0.1665 0.1054 1.8484 0.3948 0.2136

x4 1.4340 0.3948 0.2753 1.5770 0.4669 0.2960 2.1411 0.4669 0.2180

x5 4.2990 2.4224 0.5635 4.1566 2.5312 0.6090 3.2407 2.1467 0.6624

x6 1.8858 0.4207 0.2231 2.1293 0.5873 0.2758 2.3977 0.5873 0.2450

x7 3.3503 1.9090 0.5698 3.6114 2.2480 0.6225 3.1286 1.8136 0.5797

x8 2.9239 1.9132 0.6543 3.6905 2.2242 0.6027 4.0359 2.2242 0.5511

x9 3.4141 1.9335 0.5663 3.7493 1.9965 0.5325 3.4090 1.8298 0.5368

x10 4.4828 2.6429 0.5896 4.3834 2.6429 0.6029 3.4676 2.1368 0.6162
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regions of the patients in different models are displayed

and compared in Table 5 and Fig. 1.

Here, let us take the patient x8 for example. The results

in Table 4 indicate that different models can be used to

generate different decision regions, and the patient x8
belonging to different decision regions formed by the

different models illustrate this effect.

In the actual decision-making circumstance, we have

three IV-MG-PRFS models to be selected. Which model

should be selected is based on the actual situation. What

one ought to do is to choose a model from these models

firstly. Then the decision regions of the selected model

could be derived accordingly. If different types of models

were selected, the decision rules might be totally different.

Table 4 Approximations in

different models
Model Upper approximation Lower approximation

Single granularity B1 x1; x2; x5; x7; x8; x9; x10 x1; x2; x7

B2 x2; x5; x7; x8; x9; x10 x2; x5; x7; x8; x10

B3 x2; x5; x7; x8; x9; x10 x2; x5; x10

Multi-granularity Mean x1; x2; x5; x7; x8; x9; x10 x2; x5; x8; x10

Opt x2; x5; x7; x8; x9; x10 x1; x2; x5; x7; x8; x10

Pes x1; x2; x5; x7; x8; x9; x10 x2

Table 5 Decision regions in

different models
Model Positive region Negative region Boundary region

Upper Lower

Single granularity B1 x1; x2; x7 x3; x4; x6 x5; x8; x9; x10

B2 x2; x5; x7; x8; x10 x1; x3; x4; x6 x9

B3 x2; x5; x10 x1; x3; x4; x6 x7; x8; x9

Multi-granularity Mean x2; x5; x8; x10 x3; x4; x6 x1; x7; x9

Opt x2; x5; x7; x8; x10 x3; x4; x6 x9 x1

Pes x2 x3; x4; x6 x1; x5; x7; x8; x9; x10

Fig. 1 Decision regions in different models
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As it is impractical to decide whether x8 needs to receive

the treatment based on the membership degree Dðx8Þ ¼
0:35 of the initial diagnosis D, the doctors needs to make

decisions based on some more methods. There are many

generalized rough set methods available, including the IV-

MG-PRFS models. When we consider the multi-granular-

ity circumstances, the mean multi-granularity, optimistic

multi-granularity, and pessimistic multi-granularity could

be generated. Whether x8 needs to receive treatment

depends on which model the doctors have chosen. We

can clearly explain the decisions made on x8 as follows. If

the IV-MMG-PRFS model is selected, x8 2 PosMðDÞ, then
x8 needs to receive treatment. If the IV-OMG-PRFS model

is selected, x8 2 PosOðDÞ, then x8 needs to receive

treatment. If the IV-PMG-PRFS model is selected,

x8 2 BndPðDÞ, then x8 needs to be observed to make

decisions whether he (or she) needs to receive

treatment.7 Conclusions

Multi-granularity fusion refers to the integration of infor-

mation gathered from various investigations and analyses

using appropriate methods. It aims to evaluate and unify the

information, ultimately achieving a consolidated and

enhanced understanding compared to individual data sour-

ces. Researchers have increasingly focused on studying

multi-granularity fusion to address the challenge of inte-

grating information from different levels of granularity. In

the context of multi-granularity information fusion, the field

of multi-granularity granular computing plays a crucial role.

It not only extracts the core aspects of problem-solving from

complexmulti-source data throughmultiple perspectives but

also provides flexibility in scaling and splitting problems

using different granularities. This concept aligns well with

the requirements of processing large-scale complex data.

However, traditional multi-granularity granular computing

approaches have limitations when it comes to handling

quantitative information. They often overlook the distinc-

tions and relationships between relative and absolute mea-

sures, focusing solely on relative quantification through

quantitative descriptions. In reality, it is important to con-

sider the influence of quantitative information on the deci-

sion-making process simultaneously. The main objective of

this paper is to explore multi-granularity probabilistic rough

fuzzy set (MG-PRFS) models in interval-valued fuzzy

decision systems. The aim is to develop decision-making

rule analyses based on the fusion of multi-granularity

quantitative computing in interval-valued fuzzy decision

systems. The paper introduces new concepts and models,

supported by real-life case studies, and discusses the decision

regions of decision classes in different models. It presents a

framework for the IV-MG-PRFS model. In future work, it

would be valuable to investigate uncertainty measurement

and explore the underlying properties of the proposed

models in terms of decision rules.
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