
Robust Variable Threshold Fuzzy Concept Lattice
with Application to Medical Diagnosis

Yanhui Zhai1,2 • Tao Wang1 • Deyu Li1,2

Received: 20 February 2023 / Revised: 20 May 2023 / Accepted: 19 June 2023 / Published online: 11 July 2023

� The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2023

Abstract Formal concept analysis is an effective tool for

data analysis and visualization by means of concept lattice.

Many concept lattice models have been studied in various

settings. Variable threshold concept lattice is a fuzzy

concept lattice constructed from fuzzy data. However,

variable threshold concept lattice is not robust to noise

because it employs a single threshold, instead of an interval

to derive formal concepts. Thus, the paper introduces the

tolerance threshold to variable threshold concept lattice,

and forms the ROBust variable threshold fuzzy Concept

Lattice (RobCL). By analyzing the properties of RobCL,

we show that RobCL has some incremental characteristics

and is able to model the incremental cognitive process,

which makes RobCL distinctive from other concept lattice

models. A comparative study shows that variable threshold

concept lattice is just a special case of RobCL; in other

words, when two thresholds coincide with each other,

RobCL degenerates to variable threshold concept lattice

and the incremental characteristics vanish. In addition, the

proposed model is also applied to medical diagnosis and

shows its superiority over the previous model.

Keywords Fuzzy formal context � Fuzzy concept lattice �
Variable threshold concept lattice � Robust variable

threshold fuzzy concept lattice

1 Introduction

Formal concept analysis (FCA) [1] is a mathematical tool

for analyzing data and representing knowledge by means of

concept lattice [2] and implication [3–6]. A concept in

FCA is a pair of extent and intent, where the extent refers

to the objects covered by the concept and the intent refers

to the common features of the objects in the extent. In

FCA, the intents and extents of concepts are uniquely

determined by each other, and the complete lattice formed

by all concepts is called concept lattice. Concept lattice has

been successfully applied in data mining [7, 8], machine

learning [9–11], feature selection [12, 13] and concept

cognitive learning [14–17].

In classical FCA, the relations between objects and

attributes are precise. However, in practical applications,

most of the relations are fuzzy and uncertain. Thus, Bur-

usco [18] developed the theory of L fuzzy concept lattice

and presented a construction method of fuzzy concept

lattice. The concept operators in [18] are based on t-con-

orm, and L fuzzy concepts can be obtained by calculating

the fixed point sets of the concept operators. Such concept

operators, however, do not form Galois connection, and

some basic properties of classical formal concepts in [1] do

not hold in the fuzzy case. Therefore, Bělohlávek [19]

generalized Galois connection from the perspective of

fuzzy logic and extended FCA to the fuzzy case [20]. Since
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the number of formal concepts extracted from fuzzy data

can be very large, Bělohlávek [21] introduced true-stress-

ing hedge and constructed true-stressing hedge based fuzzy

concept lattice. It was shown [21] that the stronger the

hedge, the smaller the fuzzy concept lattice. In addition, in

order to efficiently build fuzzy concept lattice, various

methods and algorithms have been proposed. For example,

Mao [22] utilized weighted graph to generate all crisp-

fuzzy concepts. Singh [23] proposed a method to generate

fuzzy concepts based on maximal acceptance of fuzzy

attributes. Shemis [24] employed Shannon entropy to

update fuzzy concept lattice in massive data.

On the other hand, Zhang [25] introduced threshold

based fuzzy concepts and constructed variable threshold

concept lattice. Thus, one may adjust threshold to control

the scale of variable threshold concept lattice. In addition,

the number of formal concepts in a variable threshold

concept lattice is far less than that in a fuzzy concept lat-

tice. Since threshold was used as a different strategy from

hedge, Bělohlávek analyzed the relationship between true-

stressing hedge and threshold in [26], and showed that the

thresholdbased approach can be considered as a special

case of the true-stressing hedge approaches.

From the perspective of theory, it seems that the fuzzy

concept lattice model proposed in [26] is the most general

one for visualizing fuzzy data. From the perspective of

application, however, the more general the models, the

more time-consuming the algorithms of constructing the

models, because the general model will contain more

concepts than other models. It may be an issue of appli-

cation to choose a proper model. Therefore, from the per-

spective of application, variable threshold concept lattice

may be of more advantages in visualizing fuzzy data. Thus,

in order to control the number of fuzzy concepts within a

proper scale, the paper chooses variable threshold concept

lattice as a baseline.

In variable threshold model proposed by [25], whether

an attribute belongs to an object is determined by the

degree of the object having the attribute, which should be

greater than or equal to a given threshold. However, in the

real setting, since data may fluctuate within a range, relying

only on a threshold may be susceptible to noise and reduce

the robustness of the model. For example, setting the

threshold to 0.60, then only when the degree of an object

having an attribute is greater than or equal to 0.60, one may

regard the object having the attribute; if the degree

decreases to 0.59, the object will never have the attribute.

Since the values 0.59 and 0.60 are very close, it may be

inappropriate to diagnose that a patient has some disease if

the possibility is greater than or equal to 0.60, instead of

0.59. In other words, variable threshold concept lattice is

not robust to noise.

In order to solve the problems of variable threshold

concept lattice, the paper introduces another threshold,

called the tolerance threshold, to variable threshold concept

lattice and proposes the ROBust variable threshold fuzzy

Concept Lattice (RobCL). The properties of RobCL show

that, distinctive from other concept lattice models (in-

cluding variable threshold concept lattice), RobCL exhibits

the incremental characteristics when identifying attributes

for objects or recognizing objects for attributes. The

incremental characteristics reflect the deepening of cogni-

tion and can be expressed as the so-called incremental

sequences. We show that such sequences will end in finite

steps and are able to mark the final concepts with their

incremental sequences. Such final concepts form the robust

variable threshold concepts. A further comparison with

variable threshold concept lattice shows that when the two

thresholds coincide with each other, RobCL degenerates to

variable threshold concept lattice and the incremental

characteristics vanish. In other words, variable threshold

model is actually a special case of RobCL. Therefore, our

model is an improvement and development of Zhang’s

thought.

The main contributions of the paper can be summarized

as follows: (1) we introduced the tolerance threshold to

variable threshold concept lattice and proposed RobCL to

improve the robustness of variable threshold concept lat-

tice; (2) we studied the properties of RobCL and showed

that RobCL exhibits the incremental characteristics in

constructing robust concepts; (3) we applied RobCL to the

heart disease data set in UCI and showed its robustness in

medical diagnosis.

This paper is organized as follows. Some related notions

and properties in FCA and variable threshold concept lat-

tice will be reviewed in Sect. 2, and the limitations of

variable threshold concept lattice will be discussed in

Sect. 3. In Sect. 4, we will introduce double threshold

operators and analyze their properties. Then fuzzy concepts

in RobCL can be captured and RobCL related properties

will be proved. This paper is concluded in Sect. 5.

2 Preliminaries

2.1 Basic notions of FCA

In FCA [27], data are represented by formal context.

Definition 1 [27] A formal context is a triple

K ¼ ðG;M; IÞ, where G and M are the set of objects and

the set of attributes respectively, and I � G�M is a binary

relation between G and M. For g 2 G and m 2 M, ðg;mÞ 2
I expresses that the object g has the attribute m.
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Definition 2 [27] Let K ¼ ðG;M; IÞ be a formal context.

For A � G, B � M, one can define two operators:

AI ¼ fm 2 M j 8g 2 A; gImg
BI ¼ fg 2 G j 8m 2 B; gImg:

If AI ¼ B and BI ¼ A then the pair (A, B) is called a formal

concept, where A is the extent of the concept and B is the

intent of the concept. For two concepts ðA1;B1Þ and

ðA2;B2Þ, defining the order

ðA1;B1Þ� ðA2;B2Þ , A1 � A2ð, B1 � B2Þ

will lead to a complete lattice, called the concept lattice of K.

Concept lattice can be regarded as a visual representa-

tion of formal context. Another representation of formal

context, which can be regarded as knowledge representa-

tion, is attribute implication; one may refer to [27] for the

details of attribute implication and [3–6, 28] for the details

of decision implication.

2.2 Variable threshold concept lattice

Variable threshold concept lattice is constructed on fuzzy

formal context.

Definition 3 [25] A fuzzy formal context is a triple

K ¼ ðG;M; IÞ, where G is a non-empty finite set of objects,

M is a non-empty finite set of attributes, and I : G�M !
½0; 1� is a fuzzy relation between G and M. For g 2 G,

m 2 M, I(g, m) denotes the degree at which the object g has

the attribute m.

Definition 4 [25] Let K ¼ ðG;M; IÞ be a fuzzy formal

context and a 2 ð0; 1�. For X � G, B � M, we define the

variable threshold operators as:

Xa ¼ fm 2 M j Iðx;mÞ� a; 8x 2 Xg
Ba ¼ fx 2 G j Iðx;mÞ� a; 8m 2 Bg:

If Xa ¼ B and Ba ¼ X, the pair (X, B) is called a variable

threshold (formal) concept, where X is the extent and B is

the intent. The set of all the variable threshold concepts of

K constitutes a complete lattice, denoted by LaðKÞ and

called the variable threshold concept lattice of K, under the

partial order ‘‘� a’’:

ðX1;B1Þ� aðX2;B2Þ , X1 � X2ð, B1 � B2Þ. The infi-

mums and supremums are given by:

ðX1;B1Þ ^ ðX2;B2Þ ¼ ðX1 \ X2; ðB1 [ B2ÞaaÞ
ðX1;B1Þ _ ðX2;B2Þ ¼ ððX1 [ X2Þaa;B1 \ B2Þ:

Proposition 1 [25] Let (G, M, I) be a fuzzy formal con-

text. For X, X1, X2 � G, B, B1, B2 � M, and a 2 ð0; 1�, we

have:

1. X1 � X2 ) Xa
2 � Xa

1, B1 � B2 ) Ba
2 � Ba

1

2. X � Xaa, B � Baa

3. Xa ¼ Xaaa, Ba ¼ Baaa

4. X � Ba , B � Xa

5. ðX1 [ X2Þa ¼ X1
a \ X2

a, ðB1 [ B2Þa ¼ B1
a \ B2

a

6. ðX1 \ X2Þa � X1
a [ X2

a, ðB1 \ B2Þa � B1
a [ B2

a.

3 Limitations of variable threshold concept lattice

As stated in the Introduction section, variable threshold

concept lattice is not robust to noise because it employs a

single threshold, instead of an interval to derive formal

concepts. In order to reveal the limitations of variable

threshold concept lattice, we take the heart disease data set

in UCI as an example to illustrate the generation process of

concepts on a single threshold.

After normalization, the corresponding fuzzy formal

context is obtained and shown in Table 1, where G ¼
fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g represents 10 patients,

and M ¼ fa; b; c; d; eg represents the age level, the degree

of chest pain, the maximum heart rate, the ST inhibition

and the serum cholesterol level. In Table 1, patients x1 	 x5

do not have heart disease and x6 	 x10 have heart disease.

When setting a ¼ 0:60, we can obtain all the variable

threshold concepts of Table 1 as follows: ðx1x2x3x4x5

x6x7x8x9x10; ;Þ, ðx2x4x6x7x8x9x10; cÞ, ðx1x6x9x10; eÞ,
ðx6x7x8x9x10; bcdÞ, ðx6x8x9; bcdeÞ, ðx7x8x9x10; abcdÞ,
ðx2x6x7x8x9x10; bcÞ, ðx9x10; abcdeÞ. All the concepts are

meaningful because they capture specific groups of patients

with their common symptoms. For example, ðx6x7x8

x9x10; bcdÞ implies that at the threshold level 0.60, all the

possible common symptoms that the patients fx6x7x8x9x10g
are suffering from are fbcdg and conversely, all the

patients in G who are suffering from fbcdg are

fx6x7x8x9x10g. In other words, at the threshold level 0.60,

the pair ðx6x7x8x9x10; bcdÞ represents a disease with fbcdg
as its salient symptoms and fx6x7x8x9x10g as its patients.

Table 1 A fuzzy formal context

a b c d e

x1 0.43 0.00 0.24 0.20 0.80

x2 0.48 0.60 0.62 0.50 0.58

x3 0.45 0.52 0.53 0.40 0.50

x4 0.56 0.58 0.60 0.20 0.40

x5 0.35 0.00 0.50 0.30 0.50

x6 0.47 0.75 0.72 0.70 0.60

x7 0.72 0.75 0.75 0.71 0.50

x8 0.62 1.00 0.80 0.82 0.48

x9 0.66 1.00 0.90 0.71 0.80

x10 0.63 0.70 0.70 0.68 0.60
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Variable threshold concept lattice is not robust to noise

because any threshold, regardless of whether it is deter-

mined by experts or obtained adaptively from data, is a

concise number and is not robust to slight disturbance. For

example, if setting a ¼ 0:60, 0.60 will be regarded as a

threshold at which an attribute belongs to a set of objects. If

an attribute, however, belongs to some object in the set at

the threshold less than 0.60, say 0.58, the object is regarded

as not having the attribute, which may cause the object to

be excluded from the set of objects having the attribute.

For example, at the threshold level 0.60, the variable

threshold concept ðx2x6x7x8x9x10; bcÞ represents a disease

with fbcg as its salient symptoms and fx2x6x7x8x9x10g as

its patients. Thus, all the patients in G who are suffering

from fbcg at the threshold level 0.60 are fx2x6x7x8x9x10g.

For the patient x4, however, since Iðx4; bÞ ¼ 0:58 and

Iðx4; cÞ ¼ 0:60, x4 is excluded from fx2x6x7x8x9x10g
because x4 has b (the degree of chest pain) at the degree

0.58. It is well known that human body is a changing

system and any unexpected factors such as personal emo-

tions may cause the measures of symptoms to fluctuate in a

range. Therefore, a tolerance threshold b may help to

reduce the impact of noise and make variable threshold

concept lattice more robust.

At the threshold level 0.60, i.e., a ¼ 0:60, set the tol-

erance threshold to be 0.58, i.e., b ¼ 0:58. For

X ¼ fx2x6x7x8x9x10g, we can compute Xa ¼ fbcg, i.e., the

salient symptoms of fx2x6x7x8x9x10g are fbcg; in this case,

we compute Xab instead of Xaa, where

Xab ¼ fg 2 G j Iðg;mÞ� b; 8m 2 Xag, i.e., we collect all

the objects that have the salient symptoms in Xa at the

degree greater than or equal to b. Since b� a, all the

objects having the salient symptoms in Xa at the degree

greater than or equal to a will be included in Xab; at the

same time, all the objects having the salient symptoms in

Xa at the degree in ½b; aÞ will be also included in Xab. For

X ¼ fx2x6x7x8x9x10g, we have

Xab ¼ fx2x4x6x7x8x9x10g � fx2x6x7x8x9x10g ¼ Xaa. Thus,

the patient x4 is also included in Xab, because Iðx4; bÞ ¼
0:58 falls in [0.58, 0.60).

4 Robust variable threshold fuzzy concept lattice

In this section, we will construct the robust version of

variable threshold concept lattice, called ROBust variable

threshold fuzzy Concept Lattice (RobCL).

4.1 Double threshold operators

First, we extends the operators in Definition 4 to the double

threshold operators.

Definition 5 Let (G, M, I) be a fuzzy formal context, a 2
ð0; 1� and b 2 ð0; 1�. For X � G, B � M, we can define

double threshold operators as follows:

Xa ¼ fm 2 M j Iðg;mÞ� a; 8g 2 Xg
Bb ¼ fg 2 G j Iðg;mÞ� b; 8m 2 Bg:

According to FCA, Xa in Definition 5 represents the

common attributes that X has at the threshold a, and Bb

represents the objects having B at the threshold b. In order

to further clarify the implication of Definition 5, let us

analyze the case of a� b. In the case of a� b, a can be

regarded as the threshold of objects having attributes and b
can be regarded as the tolerance threshold of objects having

attributes, or equivalently, a and b can be regarded as the

thresholds of objects having salient or general features

respectively. Similarly, when b� a, b can be regarded as

the threshold of objects having attributes and a can be

regarded as the tolerance threshold.

Specifically, for g 2 G and m 2 M, if Iðg;mÞ\b, it can

be considered that the object g does not have the attribute

m; if Iðg;mÞ� b, the object g has the attribute m, where if

Iðg;mÞ� a, the object g has the attribute m as its salient

feature, and if b� Iðg;mÞ\a, the object g has the attri-

butes m as its general feature. Thus, given a set X of

objects, the salient features of X can be obtained by Xa; for

the salient features in Xa, the objects that have Xa as their

general features can be obtained by Xab. Since the values in

½b; aÞ are tolerance values of objects having attributes, the

objects having Xa at the degree greater than or equal to b
should be included in Xab. More implications of double

threshold operators will be explored in the following.

For brevity, we write fxga as xa for x 2 G and fmgb as

mb for m 2 M. Operating ab on X or ba on B with n times

will lead to XðabÞn and BðbaÞn respectively.

The operators in Definition 5 have the following

properties.

Proposition 2 Let (G, M, I) be a fuzzy formal context.

For X, X1, X2 � G, B, B1, B2 � M, a 2 ð0; 1� and

b 2 ð0; 1�, the following conclusions hold.

1. X1 � X2 ) Xa
2 � Xa

1, B1 � B2 ) Bb
2 � Bb

1

2. If a� b then X � Xab

3. If a� b then B � Bba.

Proof (1) Let m 2 Xa
2 . Then we have Iðg;mÞ� a for any

g 2 X2, implying that Iðx;mÞ� a for any x 2 X1 since

X1 � X2. Thus we have m 2 Xa
1 and Xa

2 � Xa
1. Similarly, we

have Bb
2 � Bb

1.
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(2) Suppose a� b. For g 2 X, we have Iðg;mÞ� a for

any m 2 Xa, implying that Iðg;mÞ� a� b for any m 2 Xa,

since a� b. Thus, we have g 2 Xa and X � Xa.

(3) Similar to the proof of (2). h

Proposition 2 (1) implies that the more objects a set

contains, the fewer attributes the objects have; similarly,

the more attributes a set contains, the fewer objects the

attributes pertain to. Proposition 2 (2) implies that when

a� b, all the objects in X have the attributes in Xa at the

threshold b. As shown in Fig. 1, this is obvious, because

Xab contains the objects that have the attributes in Xa at the

threshold b and the objects in X have the attributes in Xa at

the threshold a� b. From the perspective of robustness,

Proposition 2 (2) implies that introducing tolerance

threshold allows more objects having attributes Xa to be

considered. The similar explanation applies to Proposition

2 (3), as shown in Fig. 2.

It should be noted that if a� b, Proposition 2 (2) cannot

apply to B � M, and that if a� b, Proposition 2 (3) cannot

apply to X � G, as shown in Example 1. However, if

a ¼ b, both Proposition 2 (2) and (3) hold for any X and B,

i.e., X � Xab and B � Bba. In this case, double threshold

operators degenerate to variable threshold operators.

Example 1 Set a ¼ 0:50 and b ¼ 0:40. In Table 1, for

X ¼ fx6x7x8x10g, we can compute Xa ¼ fbcdg and

Xab ¼ fx2x3x6x7x8x9x10g, i.e., X � Xab.

If B ¼ fbcdeg, we have Bb ¼ fx2x3x6x7x8x9x10g and

Bba ¼ fbcg, i.e., B 6� Bba. This is because for e 2 B, there

exists the object x8 2 G satisfying 0:40� Iðx8; eÞ\0:50

and thus e 62 Bba.

Similarly, if setting a ¼ 0:30 and b ¼ 0:40 and letting

X ¼ fx2x4x5x7g, we have fx2x4x5x7ga ¼ faceg and

fx2x4x5x7gab ¼ fx2x3x4x6x7x8x9x10g, i.e., X*Xab. This is

because for x5 2 X, there exists the attribute a 2 M

satisfying 0:30� Iðx5; aÞ\0:40 and thus x5 62 Xab.

If setting a ¼ b ¼ 0:50, the double threshold operators

will degenerate to variable threshold operators and both

Proposition 2 (2) and (3) hold for any X and B. For

example, for X ¼ fx6x7x8x10g, we have Xab ¼
fx2x6x7x8x9x10g and for B ¼ fbcdeg, we have

Bba ¼ fbcdeg, satisfying Proposition 2 (2) and (3).

In addition, set a ¼ 0:50 and b ¼ 0:40, and let

X ¼ fx6x7x8x10g. Then, we have Xaba ¼ fbcg and

Xabab ¼ fx2x3x4x6x7x8x9x10g, i.e., Xab 
 Xabab. In the case

of variable threshold concept lattice, however, setting

a ¼ b ¼ 0:50, we have Xab ¼ Xabab ¼ fx2x6x7x8x9x10g.

By Example 1, if a� b, then XðabÞn 
 XðabÞnþ1

may hold,

a distinctive characteristic of double threshold operators

from variable threshold operators, as verified by Proposi-

tion 3.

Proposition 3 Let (G, M, I) be a fuzzy formal context

and X � G. If a� b, then

1. XðabÞn 
 XðabÞnþ1

if and only if there exists g 2 XðabÞnþ1

such that Iðg;mÞ� b for any m 2 XðabÞna and

b[ Iðg;m1Þ for some attribute m1 2 XðabÞn	1a.

2. If XðabÞn 
 XðabÞnþ1

, all attributes m1 in XðabÞn	1anXðabÞna

satisfy a[ Iðg1;m1Þ� b for some object

g1 2 XðabÞnnXðabÞn	1

.

Proof (1) By Proposition 2 (2), we know that

XðabÞn � XðabÞnþ1

, and thus XðabÞn 
 XðabÞnþ1

if and only if

there exists g 2 XðabÞnþ1nXðabÞn . By definition of XðabÞnþ1

,

g 2 XðabÞnþ1

if and only if Iðg;mÞ� b for any m 2 XðabÞna.

By definition of XðabÞn , g 62 XðabÞn if and only if

g 62 XððabÞn	1aÞb, if and only if there exists m1 2 XðabÞn	1a

such that b[ Iðg;m1Þ. Thus, the conclusion holds.

(2) For each m1 2 XðabÞn	1anXðabÞna, since m1 62 XðabÞna,

there exists some object g1 2 XðabÞn such that

Fig. 1 The relationship between X and Xab when a� b

Fig. 2 The relationship between B and Bba when b� a
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a[ Iðg1;m1Þ. Because m1 2 XðabÞn	1a and

g1 2 XðabÞn ¼ XððabÞn	1aÞb, we have Iðg1;m1Þ� b and thus

a[ Iðg1;m1Þ� b. h

Compared with variable threshold concept lattice,

Proposition 3 (1) says that the concept generation of

RobCL is not a one-step process. This is because there may

exist an object g 2 XðabÞnþ1nXðabÞn such that Iðg;mÞ� b for

any m 2 XðabÞna and b[ Iðg;m1Þ for some m1 2 XðabÞn	1a

(see Fig. 3).

If XðabÞn 
 XðabÞnþ1

, we have XðabÞn	1a 6¼ XðabÞna and

XðabÞn 6¼ XðabÞn	1 1 and thus, by Proposition 3 (2), there must

exist some attribute m1 2 XðabÞn	1anXðabÞna such that

a[ Iðg1;m1Þ� b for some g1 2 XðabÞnnXðabÞn	1

(see

Fig. 3). In other words, if XðabÞn 
 XðabÞnþ1

, there must exist

g1 2 XðabÞnnXðabÞn	1

with a[ Iðg1;m1Þ� b for

m1 2 XðabÞn	1anXðabÞna.

From the perspective of cognition, starting from XðabÞn	1

,

one can obtain the salient features of XðabÞn	1

, i.e., XðabÞn	1a;

in order to collect the objects that also have XðabÞn	1a, one

should employ the tolerance threshold b and thus include

g1 in XðabÞn . Since g1 2 XðabÞn and m1 is not a salient feature

of g1, m1 is excluded from XðabÞna and is not a salient

feature of XðabÞn . Thus, Proposition 3 (2) says that if

XðabÞn 
 XðabÞnþ1

, there exists attribute m1 2
XðabÞn	1anXðabÞna that is a general but not salient feature of

XðabÞn . The same conclusion applies to XðabÞn . Since

XðabÞn 
 XðabÞnþ1

, there may exist some attribute in XðabÞna

that is not a salient feature of XðabÞðnþ1Þa.

Such incremental generating processes can be visually

represented by the symbol ‘‘!’’. For example, ‘‘X ! B‘‘

denotes the process from X to B (i.e. Xa), and ‘‘B ! X’’

denotes the process from B to X (i.e. Bb).

Example 2 For the fuzzy formal context in Table 1, set

a ¼ 0:70 and b ¼ 0:65. Let X ¼ fx7g. Since Xa ¼ fabcdg,

Xab ¼ fx7x9g, Xaba ¼ fbcdg, Xabab ¼ fx6x7x8x9x10g and

Xababa ¼ fbcg, the incremental sequence of X is:

fx7g ! fabcdg ! fx7x9g ! fbcdg ! fx6x7x8x9x10g
! fbcg ! fx6x7x8x9x10g:

In this process, since fx7gab ¼ fx7x9g 
 fx6x7x8x9x10g ¼
fx7gðabÞ

2

, there exists x6 2 fx7gðabÞ
2

nfx7gab such that

Iðx6;mÞ� b for any m 2 Xaba and b[ Iðx6; aÞ for

a 2 fx7ga. Moreover, for each attribute m1 in XanXðabÞa,
i.e., the attribute a, there exists an object x9 such that

a[ Iðx9; aÞ� b.

From the perspective of cognition, for X, Xa ¼ fabcdg
captures all the salient symptoms of X at the threshold 0.70,

and Xab ¼ fx7x9g collected all the patients who have the

symptoms fabcdg at the threshold 0.65. It should be noted

that in the process, the patient x9 having the symptom a

with a ¼ 0:70[ Iðx9; aÞ ¼ 0:66� 0:65 ¼ b has been

included in Xab, because although x9 has the symptom a

as its general feature it should not be excluded from Xab,

since the value 0.66 is very close to 0.70. From the

perspective of medical science, the operation can avoid

missed diagnoses. Since x9 is included in Xab, the salient

features of Xab should be updated to fbcdg, where the

attribute a has been removed from Xa because a is not a

salient feature of x9. In order to collect all the objects that

have fbcdg as their symptoms at the tolerance threshold

0.65, one should compute Xabab and include x6, x8 and x10

as its members. Finally, one can obtain the salient features

fbcg of the patients fx6x7x8x9x10g and conversely, no

patient can be added to fx6x7x8x9x10g because no patient

has the symptoms fbcg at the degree greater than or equal

to b ¼ 0:65. In fact, since fx6x7x8x9x10g are the patients

with heart disease, the pair ðx6x7x8x9x10; bcÞ is the concept

of heart disease that contains fbcg as its salient symptoms

and fx6x7x8x9x10g as its patients.

Similarly, if starting from the sets fx6x7g and fx7x8g,

one can obtain the following incremental sequences:

fx6x7g ! fbcdg ! fx6x7x8x9x10g
! fbcg ! fx6x7x8x9x10g

fx7x8g ! fbcdg ! fx6x7x8x9x10g ! fbcg
! fx6x7x8x9x10g:

Both of the processes lead to the concept of heart disease.

Fig. 3 The change from XðabÞn to XðabÞnþ1

1 Otherwise, if XðabÞn	1a ¼ XðabÞna, then

XðabÞn ¼ XððabÞn	1aÞb ¼ XððabÞnaÞb ¼ XðabÞnþ1

, a contradiction with

XðabÞn 
 XðabÞnþ1

. Similarly, we have XðabÞn 6¼ XðabÞn	1

.
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4.2 Incremental Sequence

By Example 2, one may find that the incremental sequen-

ces may end at some point. Specifically, if a� b, for the set

X of objects, we may have the following incremental

sequence:

X ! XðaÞ ! XðabÞ ! XðabÞa ! XðabÞ2

! XðabÞ2a ! � � � ! XðabÞn

satisfying X � XðabÞ � XðabÞ2 � � � � XðabÞn and

Xa � XðabÞa � XðabÞ2a � � � � XðabÞna. Thus, in the incremen-

tal sequence, X will collect more and more objects that

have the same attributes with X and capture less and less

common attributes of them. In the paper, when a� b, we

refer to the incremental sequence from X to XðabÞn as the

object incremental sequence of X.

Similarly, if b� a, the attribute incremental sequence of

B is as follows:

B ! BðbÞ ! BðbaÞ ! BðbaÞb ! BðbaÞ2

! BðbaÞ2b ! � � � ! BðbaÞn :

Obviously, if both G and M are finite sets, both object and

attribute incremental sequences will end at some points.

Even G or M is infinite, we have the following results.

Proposition 4 Let (G, M, I) be a fuzzy formal context,

X � G, and B � M. Then, the following conclusions hold.

1. If there exists a non-negative integer n such that

XðabÞn ¼ XðabÞnþ1

, then we have XðabÞn ¼ XðabÞnþk

for any

non-negative integer k� 0.

2. If there exists a non-negative integer m such that

BðbaÞm ¼ BðbaÞmþ1

, then we have BðbaÞm ¼ BðbaÞmþk

for

any non-negative integer k� 0.

In order to further analyze incremental sequence, we

will discuss the relationships between incremental

sequences. To this end, we will take object incremental

sequences as examples and classify object incremental

sequences into two types of relationships, convergence or

parallel.

Definition 6 For X1, X2 � G, we say that (the incremental

sequences of) X1 and X2 converge in the object-object way

at (i, j), if (i, j) satisfies X
ðabÞi
1 ¼ X

ðabÞ j
2 ; if (i, j) further

satisfies X
ðabÞi	1a
1 6¼ X

ðabÞj	1a
2 , X

ðabÞi
1 6¼ X

ðabÞj	1

2 and

X
ðabÞi	1

1 6¼ X
ðabÞ j
2 , (i, j) is the smallest object-object con-

vergent unit of X1 and X2. Similarly, for X1, X2 � G, if

there exists (i, j) satisfying X
ðabÞia
1 ¼ X

ðabÞ ja
2 , X1 and X2

converge in the object-attribute way at (i, j); if (i, j) further

satisfies X
ðabÞi
1 6¼ X

ðabÞ j
2 , X

ðabÞia
1 6¼ X

ðabÞj	1a
2 and

X
ðabÞi	1a
1 6¼ X

ðabÞ ja
2 , (i, j) the smallest object-attribute con-

vergent unit of X1 and X2.

By Definition 6, if X1 and X2 converge in the object-

attribute way at (i, j), then we have X
ðabÞia
1 ¼ X

ðabÞ ja
2 and

thus X
ðabÞiab
1 ¼ X

ðabÞ jab
2 , i.e., X

ðabÞiþ1

1 ¼ X
ðabÞjþ1

2 . Therefore,

X1 and X2 converge in the object-object way at

ðiþ 1; jþ 1Þ. Similarly, if X1 and X2 converge in the

object-object way at (i, j), X1 and X2 will also converge in

the object-attribute way at ðiþ 1; jþ 1Þ. Thus, for brevity,

we will not distinguish the two types of convergence of

object incremental sequences in the following.

Example 3 In Table 1, let X1 ¼ fx6x7x9x10g and

X2 ¼ fx7x8x9g, and set a ¼ 0:50 and b ¼ 0:40. The object

incremental sequences of X1 and X2 are as follows:

fx6x7x9x10g ! fbcdeg ! fx2x3x6x7x8x9x10g
! fbcg ! fx2x3x4x6x7x8x9x10g

fx7x8x9g ! fabcdg ! fx2x3x6x7x8x9x10g ! fbcg
! fx2x3x4x6x7x8x9x10g:

Because there exists (1, 1) such that Xa
1 6¼ Xa

2 , Xab
1 ¼ Xab

2 ,

X1 6¼ Xab
2 and Xab

1 6¼ X2, (1, 1) is the smallest object-object

convergent unit of X1 and X2.

The convergence of attribute incremental sequences can

be defined similarly.

Definition 7 For B1, B2 � G, we say that B1 and B2

converge in the attribute-attribute way at (i, j), if (i, j)

satisfies B
ðbaÞi
1 ¼ B

ðbaÞ j
2 ; if (i, j) further satisfies

B
ðbaÞi	1b
1 6¼ B

ðbaÞj	1b
2 , B

ðbaÞi	1

1 6¼ B
ðbaÞ j
2 and B

ðbaÞi
1 6¼ B

ðbaÞj	1

2 ,

(i, j) is said to be the smallest attribute-attribute convergent

unit of B1 and B2. Similarly, if (i, j) satisfies

B
ðbaÞib
1 ¼ B

ðbaÞ jb
2 , B1 and B2 converge in the attribute-object

way at (i, j); if (i, j) further satisfies B
ðbaÞi	1

1 6¼ B
ðbaÞj	1

2 ,

B
ðbaÞi	1b
1 6¼ B

ðbaÞ jb
2 and B

ðbaÞib
1 6¼ B

ðbaÞj	1b
2 , (i, j) is the

smallest attribute-object convergent unit of B1 and B2.

Next, we will explore the properties of incremental

sequence. First, we need the following results.

Lemma 1 Let X1, X2 � G be two sets of objects such that

X1 
 Xab
1 and X2 
 Xab

2 . If a� b and (i, j) is the smallest

object-object convergent unit of X1 and X2, then we have

X1 
 X
ðabÞ
1 
 X

ðabÞ2

1 � � � 
 X
ðabÞi
1 and X2 
 X

ðabÞ
2 
 X

ðabÞ2

2

� � � 
 X
ðabÞ j
2 .

Proof If a� b, by Proposition 2 (2) we have

X1 � X
ðabÞ
1 � X

ðabÞ2

1 � � � � X
ðabÞi	1

1 � X
ðabÞi
1 . Since X1 
 Xab

1 ,

suppose that there exists 1� k\i such that
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X
ðabÞk
1 ¼ X

ðabÞkþ1

1 . Since k\i, by Proposition 4 we have

X
ðabÞk
1 ¼ X

ðabÞkþði	k	1Þ

1 ¼ X
ðabÞi	1

1 ¼ X
ðabÞkþði	kÞ

1 ¼ X
ðabÞi
1 . How-

ever, because (i, j) is smallest object-object convergent unit

of X1 and X2, we have X
ðabÞi
1 ¼ X

ðabÞ j
2 and X

ðabÞi	1

1 6¼ X
ðabÞ j
2 ,

a contradiction with X
ðabÞi	1

1 ¼ X
ðabÞi
2 ¼ X

ðabÞ j
2 . Similarly,

we have X2 
 X
ðabÞ
2 
 X

ðabÞ2

2 � � � 
 X
ðabÞ j
2 . h

Similarly, the smallest attribute-attribute convergent

unit has the following property.

Lemma 2 Let B1, B2 � M be two subsets of attributes

such that B1 
 Bba
1 and B2 
 Bba

2 . If a� b and (i, j) is the

smallest object-object convergent unit of B1 and B2, then

we have B1 
 B
ðbaÞ
1 
 B

ðbaÞ2

1 � � � 
 B
ðbaÞi
1 and

B2 
 B
ðbaÞ
2 
 B

ðbaÞ2

2 � � � 
 B
ðbaÞ j
2 .

Now, we can present the conditions of determining the

convergence of object incremental sequences.

Theorem 1 If a� b and two sets X1, X2 � G converge,

then there exist integers m; n; k� 0 such that

X
ðabÞm
1 � X

ðabÞk
2 � X

ðabÞn
1 . Furthermore, if both G and M are

finite, the converse also hold, i.e., X1 and X2 converge if

and only if there exist integer m; n; k� 0 such that

X
ðabÞm
1 � X

ðabÞk
2 � X

ðabÞn
1 .

Proof If X1 and X2 converge, then there exist i; j� 0

satisfying X
ðabÞi
1 ¼ X

ðabÞ j
2 . Setting m ¼ n ¼ i, k ¼ j, then we

have X
ðabÞm
1 � X

ðabÞk
2 � X

ðabÞn
1 .

Conversely, suppose that both G and M are finite. Since

G is finite, there exists a non-negative integer i such that

X
ðabÞi
1 ¼ X

ðabÞiþ1

1 . In this case, by Proposition 4 (1) we have

X
ðabÞi
1 ¼ X

ðabÞiþm

1 ¼ X
ðabÞiþn

1 , where m; n� 0. From the con-

dition X
ðabÞm
1 � X

ðabÞk
2 � X

ðabÞn
1 and Proposition 2 (2), we

can derive X
ðabÞmþi

1 � X
ðabÞkþi

2 � X
ðabÞnþi

1 . Thus, we have

X
ðabÞi
1 ¼ X

ðabÞiþm

1 � X
ðabÞiþk

2 � X
ðabÞiþn

1 ¼ X
ðabÞi
1 , which yields

X
ðabÞiþk

2 ¼ X
ðabÞi
1 , i.e., X1 and X2 converge. h

Theorem 1 presents a sufficient and necessary condition

for determining the convergence of X1 and X2. In fact, even

if X1 and X2 will converge, there may be no any relation

between X1 and X2. However, Theorem 1 says that if, after

a certain number of double threshold operations, the

incremental results of X1 and X2 have the inclusion relation

X
ðabÞm
1 � X

ðabÞk
2 � X

ðabÞn
1 , X1 and X2 will converge. Intu-

itively, if after a certain number of double threshold

operations, X1 and X2 satisfy X
ðabÞm
1 � X

ðabÞk
2 , the inclusion

relation will be maintained in the subsequent incremental

results; in this case, however, X1 and X2 may not converge

even if both G and M are finite. This is because the final

incremental results of X1 and X2 may have a proper

inclusion relation (see Example 4). Thus, the condition

X
ðabÞk
2 � X

ðabÞn
1 further ensures that X1, after a certain

number of double threshold operations, will collect more

objects than X
ðabÞk
2 , excluding the proper inclusion relation

between X1 and X2.

Example 4 For Table 1, set a ¼ 0:50 and b ¼ 0:40. Let

X1 ¼ fx7g and X2 ¼ fx5g. The object incremental

sequences of X1 and X2 are as follows:

fx7g ! fabcdeg ! fx2x3x6x7x8x9x10g ! fbcg
! fx2x3x4x6x7x8x9x10g ! fbcgfx5g ! fceg
! fx2x3x4x5x6x7x8x9x10g ! fcg
! fx2x3x4x5x6x7x8x9x10g:

If setting m ¼ k ¼ 1, we have Xab
1 � Xab

2 . When cognition

ends, however, we also have

X
ðabÞ3

1 ¼ X
ðabÞ2

1 
 Xab
2 ¼ X

ðabÞ2

2 , i.e., the condition X
ðabÞm
1 �

X
ðabÞk
2 in Theorem 1 cannot ensure the convergence of X1

and X2.

Similarly, one can determine the convergence of attri-

bute incremental sequences by the following conclusion.

Theorem 2 If b� a and two sets B1, B2 � M converge,

then there exist integers m; n; k� 0 such that

B
ðbaÞm
1 � B

ðbaÞk
2 � B

ðbaÞn
1 . Furthermore, if both G and M are

finite, the converse also hold, i.e., B1 and B2 converge if

and only if there exist integers m; n; k� 0 such that

B
ðbaÞm
1 � B

ðbaÞk
2 � B

ðbaÞn
1 .

We have discussed the convergence of object and

attribute incremental sequences and presented some results

to judge the convergence of object and attribute incre-

mental sequences. The results are useful especially when

both G and M are finite, a general case in data mining. If

some incremental sequences do not meet the definitions of

convergence, the incremental sequences are considered to

be parallel to each other.

4.3 Robust variable threshold fuzzy concept lattice

If two sets converge, the two sets can be considered to be

with the same information. In other words, after a certain

number of double threshold operations, the incremental

results of the two sets tend to be stable and coincide. Next,

we will analyze the relationships of object and attribute

incremental sequences and then construct the robust vari-

able threshold fuzzy concept lattice based on double

threshold operators.
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In the following, we also suppose a� b and take object

incremental sequence as example to establish the equiva-

lence relation R. Similar discussions can be applied to

attribute incremental sequences.

Definition 8 For the power set P(G) of G, we can define

the relation R on P(G) as follows: for X1, X2 2 PðGÞ,
X1;X2h i 2 R if and only if X1 and X2 converge.

Example 5 For Table 1, set a ¼ 0:50 and b ¼ 0:40. Let

X1 ¼ fx2x8x10g and X2 ¼ fx2x7x8x9g. The object incre-

mental sequences of X1 and X2 can be computed as

follows:

fx2x8x10g ! fbcdg ! fx2x3x6x7x8x9x10g ! fbcg

! fx2x3x4x6x7x8x9x10g ! fbcg
fx2x7x8x9g ! fbcdg ! fx2x3x6x7x8x9x10g ! fbcg

! fx2x3x4x6x7x8x9x10g ! fbcg:

Thus, we have hX1;X2i 2 R.

The relation R in Definition 8 has the following

properties.

Proposition 5 Let K ¼ ðG;M; IÞ be a fuzzy formal con-

text. The relation R in Definition 8 is an equivalence

relation, i.e., for any X1, X2 2 PðGÞ

1. X1;X1h i 2 R

2. If X1;X2h i 2 R, then X2;X1h i 2 R

3. If X1;X2h i 2 R and X2;X3h i 2 R, then X1;X3h i 2 R.

Proof The proofs of self-reflexivity and symmetry are

obvious.

If X1;X2h i 2 R and X2;X3h i 2 R, there exists (i, j)

satisfying X
ðabÞi
1 ¼ X

ðabÞ j
2 and (m, n) satisfying

X
ðabÞm
2 ¼ X

ðabÞn
3 . Setting k ¼ maxði; j;m; nÞ, by Proposition

4 we have X
ðabÞk
1 ¼ X

ðabÞk
2 and X

ðabÞk
2 ¼ X

ðabÞk
3 , and hence

X
ðabÞk
1 ¼ X

ðabÞk
3 , i.e., X1 and X3 converge. Thus, we have

X1;X3h i 2 R. h

According to Definition 8, the equivalence class of X 2
PðGÞ can be denoted as ½X�R ¼ fX1 j X;X1h i 2 Rg, i.e., the

sets that converge with X.

In the following, we suppose that G is finite. Thus, for

X 2 PðGÞ, there exists a non-negative integer n satisfying

XðabÞn ¼ XðabÞnþ1

, denoted as ½X�max ¼ XðabÞn . Clearly, for

any non-negative integer k, we have ½X�max ¼ ð½X�maxÞ
ðabÞk

.

Furthermore, for any X1 2 ½X�R, we have ½X1�max ¼ ½X�max,

meaning that all the sets in ½X�R end at ½X�max.

Definition 9 Let K ¼ ðG;M; IÞ be a fuzzy formal context.

If a� b, for X � G, denote X ¼ ½X�max and X
a ¼ ½X�amax

and call ðX;XaÞ a robust variable threshold concept of

(G, M, I), where X is the extent and X
a

is the intent. Denote

by LabðKÞ all the robust variable threshold concepts of K of

thresholds a and b.

By Definition 9, the extent X of ðX;XaÞ collects all the

objects that have the salient features in Xa, and the intent

X
a

captures the salient features common to all the objects

in X. In this case, the pair ðX;XaÞ is stable because they can

be identified by each other, i.e., we have X
a ¼ ðXÞa and

X ¼ ðXaÞb.

Robust variable threshold concepts in Definition 9 have

the following properties.

Proposition 6 Let K ¼ ðG;M; IÞ be a fuzzy formal con-

text with G and M being finite, and X;X1, X2 � G. If a� b,

then the following conclusions hold.

1. X � X

2. X1 � X2 ) X1 � X2

3. X ¼ X
ab ¼ X

4. X1 [ X2 � X1 [ X2

5. X1 \ X2 ¼ X1 \ X2

6. X
a ¼ X

aba

7. X1 � X2 ) X2
a � X1

a

8. X1 � X2 , X2
a � X1

a

9. ðX1 [ X2Þa ¼ X1
a \ X2

a

10. ðX1
a [ X2

aÞb ¼ X1
ab \ X2

ab
.

Proof The conclusions of (1)–(3) and (6) follow from the

definitions of X and ½X�max and Proposition 2. The con-

clusion of (4) follows from (1). The conclusion of (7)

follows from (2) and Proposition 2.

(5) Since X1 \ X2 � X1 and X1 \ X2 � X2, by (2) and (3)

we have X1 \ X2 � X1 ¼ X1 and X1 \ X2 � X2 ¼ X2, and

thus X1 \ X2 � X1 \ X2. Conversely, by (1), we have X1 \
X2 � X1 \ X2 and thus X1 \ X2 ¼ ðX1 \ X2Þ.

(8) If X1 � X2 ¼ X2
ab

, by Proposition 2 we have

X2
aba � X1

a
. Since by (6) we have X2

aba ¼ X2
a
, we obtain

X2
a � X1

a
. Conversely, by X2

a � X1
a

and Proposition 2 we

have X1
ab � X2

ab
. Since X1 ¼ ½X1�max and X2 ¼ ½X2�max,

we have X1 ¼ X1
ab

and X2 ¼ X2
ab

, and thus X1 � X2.

(9) Since X1 � X1 [ X2 and X2 � X1 [ X2, by Proposi-

tion 2 we have ðX1 [ X2Þa � X1
a
, ðX1 [ X2Þa � X2

a
and

ðX1 [ X2Þa � X1
a \ X2

a
. Suppose that there exists m 2

ðX1
a \ X2

aÞ \ðX1 [ X2Þa. Since m 62 ðX1 [ X2Þa, there exists

x 2 ðX1 [ X2Þ satisfying Iðx;mÞ\a. By m 2 ðX1
a \ X2

aÞ,
all elements x1 2 X1 and x2 2 X2 satisfy Iðx1;mÞ� a and

Iðx2;mÞ� a, implying that for any x0 2 ðX1 [ X2Þ, we have
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Iðx0;mÞ\a, a contradiction with Iðx;mÞ\a for

x 2 ðX1 [ X2Þ.
(10) Since X1

a � ðX1
a [ X2

aÞ and X2
a � ðX1

a [ X2
aÞ, by

Proposition 2 we have X1
ab � ðX1

a [ X2
aÞb, ðX1

a [
X2

aÞb � X2
ab

and ðX1
a [ X2

aÞb � X1
ab \ X2

ab
. Suppose

that there exists g 2 ðX1
ab \ X2

abÞnðX1

a [ X2
aÞb. Since

g 2 X1
ab \ X2

ab
, by definition of X

ab
, all elements m1 2

X1
a

and m2 2 X2
a

satisfy Iðg;m1Þ� b and Iðg;m2Þ� b.

Therefore, for g 2 X1
ab \ X2

ab
, any m 2 ðX1

a [ X2
aÞ satis-

fies Iðg;mÞ� b, i.e., g 2 ðX1
a [ X2

aÞb, a contradiction with

g 62 ðX1
a [ X2

aÞb. h

By Proposition 6 (1), (2) and (3), the operator ð�Þ is a

closure operator on P(G), which is similar to the closure

operators ð�ÞII in FCA and ð�Þaa in variable threshold con-

cept lattice. Basically, the properties enable the system of

robust variable concepts to be a closure system and thus a

complete lattice, as shown in Theorem 3. The property (5)

in Proposition 6 says that the meet of two extents is also an

extent, a property also similar to FCA and variable

threshold concept lattice. The property simplifies the defi-

nition of infimum in LabðKÞ of Theorem 3 from X1 \ X2 to

X1 \ X2. The property (8) in Proposition 6 shows the

equivalence between the two inequalities, enabling the two

equivalent definitions of the partial order defined in Eq. (1).

The properties (5) and (9) in Proposition 6 indicate the

applicability of the distributive property, similar to the

property (5) in Proposition 1.

One distinctive characteristic of robust variable thresh-

old fuzzy concept lattice from FCA and variable threshold

concept lattice is its lack of symmetry between object and

attribute. This is because in Proposition 2 the operator ð�Þab

does not satisfy X � Xab if a� b, and the operator ð�Þba

does not satisfy B � Bba if a� b. Thus, in robust variable

threshold fuzzy concept lattice, we construct our model

from sets of objects for a� b and from sets of attributes for

a� b, and all the properties in Proposition 6 concerning

intents are also starting from sets of objects.

Thus, by Proposition 6, for two robust variable threshold

concepts ðX1;X1
aÞ, ðX2;X2

aÞ, we can define

ðX1;X1
aÞ� ðX2;X2

aÞ , X1 � X2

ð, X2
a � X1

aÞ
ð1Þ

where ðX1;X1
aÞ is called a sub-concept of ðX2;X2

aÞ and

ðX2;X2
aÞ is a super-concept of ðX1;X1

aÞ.
Theorem 3 shows that the above defined partial order

leads to a complete lattice.

Theorem 3 Let K ¼ ðG;M; IÞ be a fuzzy formal context

with G and M being finite. For two robust variable

threshold concepts ðX1;X1
aÞ, ðX2;X2

aÞ 2 LabðKÞ, define

the infimum and the supremum by

ðX1;X1
aÞ ^ ðX2;X2

aÞ
¼ ðX1 \ X2; ðX1 \ X2ÞaÞ

ðX1;X1
aÞ _ ðX2;X2

aÞ

¼ ðX1 [ X2; ðX1 [ X2ÞaÞ:

Then, ðLabðKÞ;^;_Þ forms a complete lattice, called the

ROBust variable threshold fuzzy Concept Lattice (RobCL)

of K.

Proof By Proposition 6 (5), we have ðX1 \
X2; X1 \ X2

� �aÞ 2 LabðKÞ and ðX1 [ X2; X1 [ X2

� �a
Þ 2

LabðKÞ. Furthermore, it is obvious that ðX1 \
X2; X1 \ X2

� �aÞ is a sub-concept of ðX1;X1
aÞ and ðX2;X2

aÞ,
and that ðX1 [ X2; X1 [ X2

� �a
Þ is a super-concept of

ðX1;X1
aÞ and ðX2;X2

aÞ.
Next, we prove that any sub-concept of ðX1;X1

aÞ and

ðX2;X2
aÞ is a sub-concept of ðX1 \ X2; X1 \ X2

� �aÞ, i.e.,

ðX1 \ X2; X1 \ X2

� �aÞ is the infimum of ðX1;X1
aÞ and

ðX2;X2
aÞ. For any sub-concept ðX3;X3

aÞ of ðX1;X1
aÞ and

ðX2;X2
aÞ, since X3 � X1 and X3 � X2, we have X3 �

X1 \ X2 and thus ðX3;X3
aÞ is a sub-concept of

ðX1 \ X2; X1 \ X2

� �aÞ.
Similarly, for any super-concept ðX4; X4

� �aÞ of ðX1;X1
aÞ

and ðX2;X2
aÞ, since X1 [ X2 � X4, by Proposition 6 (2) and

(3), we have ðX1 [ X2Þ � X4 ¼ X4, i.e., ðX1 [
X2; ðX1 [ X2ÞaÞ is the supermum of ðX1;X1

aÞ and

ðX2;X2
aÞ. h

Definition 10 Let K ¼ ðG;M; IÞ be a fuzzy formal con-

text. If b� a, for B � M, denote B ¼ ½B�max and Bb ¼
½B�bmax and call ðBb;BÞ a robust variable threshold concept

of (G, M, I), where Bb is the extent and B is the intent.

By Definition 10, the extent B
b

of ðBb
;BÞ collects all the

objects that possess the salient features in B, and the intent

B captures the salient features common to all the objects in

B
b
. In this case, the pair ðBb;BÞ is stable because they can

be identified by each other. Obviously, if we change the set

X of objects in Proposition 6 with the set B of attributes and

the operator ab with ba, the equations in Proposition 6 still

hold.

Example 6 Setting a ¼ 0:54 and b ¼ 0:51, we can obtain

the robust variable threshold fuzzy concept lattice of

Table 1, as shown in Fig. 4. For comparison, the variable

threshold concept lattices with a ¼ b ¼ 0:54 and a ¼ b ¼
0:51 of Table 1 are shown in Fig. 5 and Fig. 6.
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In Fig. 4, all the meets of extents are also extents. For

example, the meet of the extents of ðx7x8x9x10; abcdÞ and

ðx6x9x10; bcdeÞ is the extent of ðx9x10; abcdeÞ. Comparing

Fig. 4 with Fig. 5, we can find that the variable threshold

concept ðx2x4x6x7x8x9x10; bcÞ has been removed from

Fig. 4. This is because the object incremental sequence

of fx2x4x6x7x8x9x10g is

fx2x4x6x7x8x9x10g ! fbcg ! fx2x3x4x6x7x8x9x10g !

; ! fx1x2x3x4x5x6x7x8x9x10g

i.e., the corresponding robust variable threshold concept of

fx2x4x6x7x8x9x10g is ðx1x2x3x4x5x6x7x8x9x10; ;Þ. In the

incremental sequence of fx2x4x6x7x8x9x10g,

fx2x4x6x7x8x9x10ga ¼ fbcg captures all the salient

symptoms of fx2x4x6x7x8x9x10g, and

fx2x4x6x7x8x9x10gab ¼ fx2x3x4x6x7x8x9x10g collects all the

patients who have the symptoms fbcg at the degree greater

than or equal 0.51. Compared with variable threshold

concept lattice, x3 has been included in

fx2x4x6x7x8x9x10gab, whereas fx2x4x6x7x8x9x10gaa ¼
fx2x4x6x7x8x9x10g does not take x3 as its member. This is

because for the symptoms fx2x4x6x7x8x9x10ga ¼ fbcg, as

stated above, if one employs a for the following compu-

tation, i.e. fx2x4x6x7x8x9x10g, one may collect only the

patients who have the symptoms fbcg at the degree greater

than or equal to 0.54, missing the patients who have the

symptoms fbcg less than but close to 0.54, i.e. x3, where

b� Iðx3; bÞ ¼ 0:52� a and b� Iðx3; cÞ ¼ 0:53� a. Con-

tinuing the process, we can obtain the robust variable

threshold concept ðx1x2x3x4x5x6x7x8x9x10; ;Þ for

fx2x4x6x7x8x9x10g, i.e., there is no common salient symp-

toms for fx2x4x6x7x8x9x10g at the threshold a ¼ 0:54 and

the tolerance threshold b ¼ 0:51.

Similarly, comparing Fig. 4 with Fig. 6, one can find

that the variable threshold concept ðx2x3x4x6x7x8x9x10; bcÞ
has been removed from Fig. 6. In Fig. 6, for

fx2x3x4x6x7x8x9x10g, since a ¼ 0:51, we have

fx2x3x4x6x7x8x9x10ga ¼ fbcg. In Fig. 4, however, because

0:51\Iðx3; bÞ ¼ 0:52\0:54 and 0:51\Iðx3; cÞ ¼ 0:53

\0:54, we have fx2x3x4x6x7x8x9x10ga ¼ ;, where a ¼
0:54. Thus, ðx2x3x4x6x7x8x9x10; bcÞ is a variable threshold

concept of Fig. 6 with 0.51 being the threshold of objects

having attributes, whereas ðx1x2x3x4x5x6x7x8x9x10; ;Þ is a

robust variable threshold concept of Fig. 4 with 0.54 being

the threshold of objects having attributes and 0.51 being

the tolerance threshold.

5 Conclusion and Further Work

In this paper, we introduced the tolerance threshold to

variable threshold concept lattice, solving the problem that

variable threshold concept lattice is easily disturbed by

noise. Then, we constructed RobCL and proved that

RobCL is a complete lattice. In addition, we further made a

comparison with variable threshold concept lattice and the

results show that when the two thresholds coincide with

each other, RobCL degenerates to variable threshold con-

cept lattice and thus variable threshold concept lattice

should be regarded as a special case of RobCL.

In the process of constructing RobCL, by introducing

the tolerance threshold, an object may have a salient fea-

ture, a general feature or no feature; in other words, there

are three possible states between an object and an attribute,

considering with the idea of three-way decision [29–32]. It

is easy to find the difference between RobCL and three-

Fig. 4 RobCL with a ¼ 0:54 and b ¼ 0:51

Fig. 5 Variable threshold concept lattice with a ¼ b ¼ 0:54

Fig. 6 Variable threshold concept lattice with a ¼ b ¼ 0:51
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way concept lattice [33–36], because the latter is con-

structed on a binary formal context by identifying the

common attributes not shared by extents, whereas the

former is constructed on a fuzzy formal context by taking

into account the general attributes shared by extents. Cer-

tainly, the relationship between RobCL and three-way

concept lattice may be further clarified after determining

whether the three states can be replaced by three values,

say 0, 0.5 and 1, without altering the structure of RobCL.

The latter, however, seems not straightforward because the

incremental characteristics of incremental sequence make

it difficult to capture the underlying principle. For example,

Proposition 3 still holds for this case, with substituting

Iðg;mÞ� b by Iðg;mÞ� 0 and a[ Iðg1;m1Þ� b by

Iðg1;m1Þ ¼ 0:5.

Another further work concerns the relationship between

RobCL and variable threshold concept lattice. Although it

is clear that RobCL is a general case of variable threshold

concept lattice, the preliminary results show that the robust

version of variable threshold concept lattice, i.e. RobCL

may reduce the fuzzy concepts in variable threshold con-

cept lattice, a surprising result. The basic explanation for

this is that the robustness reduce the fuzzy concepts that are

not robust; however, further clarification is also needed.

It should be noted that although RobCL was applied

only in medical diagnosis in the paper, RobCL can be

applied in all the fields whose data can be represented as

fuzzy two-dimensional tables. For example, in uncertain

group decision-making, the set of objects usually consists

of different experts, the set of attributes consists of dif-

ferent solutions, and the values between objects and attri-

butes are the evaluating results of solutions by experts. In

this case, if only a simple threshold is chosen, the experts’

attitudes towards the solutions will be either ‘agree’ or

‘disagree’. Thus, a tolerance threshold may allow the

evaluating results to fluctuate within a certain small range

and improve the robustness of group decision-making in

the uncertain case.
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