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Abstract In this paper, an adaptive fuzzy fixed time con-

trol strategy based on dynamic surface control (DSC)

method is proposed for pure feedback stochastic nonlinear

systems with external disturbances. The mean value theo-

rem is introduced to transform the pure feedback structure

to strict feedback structure in order to deal with the prob-

lem of nonaffine appearance of the considered systems.

Then, combining backstepping method with fixed time

stability theorem, an adaptive fuzzy fixed time controller is

designed, where the DSC method and adaptive fuzzy

technique are utilized to handle ‘‘explosion of complexity’’

resulting from backstepping method and approximate

unknown nonlinear functions, respectively. Finally, we

give simulation results based on the proposed control

strategy and we can obtain that the considered systems are

semiglobally uniform and ultimately bounded and the

tracking errors are driven to a small neighborhood of the

origin in a fixed time.

Keywords Adaptive fuzzy technique � Fixed time control �
Dynamic surface control � Pure feedback stochastic

nonlinear systems

1 Introduction

During the past decades, backstepping technique proposed

in [1] has been actively employed to address the control

problem for nonlinear systems, and abundant results have

been achieved [2–8]. To mention a few, combining back-

stepping technique with adaptive fuzzy approach, the

authors in [2] investigate tracking control problem for

uncertain single-input and single-output nonlinear systems.

As for the multiple-input and multiple-output (MIMO)

nonlinear systems, the authors in [3–5] study the tracking

control problem with various conditions, such as unknown

dead-zone inputs, state-constrained and time-varying

delays. Combine with different nonlinear feature afore-

mentioned, corresponding adaptive fuzzy controllers are

designed to guarantee all signals in the considered systems

are bounded and tracking errors are driven to a small

neighborhood of the origin. Note that stochastic terms are

ignored in the above considered nonlinear systems and

could result into lack of practicability. To handle with the

stability problem of stochastic nonlinear systems, the

authors in [6] first studied the output feedback stabilization

problem via the quartic Lyapunov function for stochastic

continuous-time nonlinear systems. Afterwards, many

meaningful results on the stochastic nonlinear systems

have been obtained in [7–12]. An adaptive fuzzy output

feedback control strategy is developed in [7] for uncertain

stochastic nonlinear systems, where the adaptive control

method is employed to solve the problem of uncertain

parameters. Then, the authors in [8, 9] extend the results of

[7] to stochastic strict feedback nonlinear systems with

unmeasured states and stochastic nonlinear switched sys-

tems with arbitrary switchings and unmodeled dynamics,

respectively. In [10], an adaptive fuzzy controller is

designed via backstepping technique to address the
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tracking control problem of stochastic nonlinear pure

feedback systems with input saturation, where the mean

value theorem and piecewise smooth functions are

employed to deal with the problem of nonaffine appearance

in the systems and input saturation, respectively. An

adaptive fuzzy control scheme based on command filtering

is developed for the permanent magnet synchronous motor

stochastic system in [11], where fuzzy logic systems

(FLSs) are introduced to approximate unknown stochastic

nonlinear functions and command filtering technique is

employed to solve the problem of ‘‘explosion of

complexity’’.

However, there exists a drawback due to the repetitive

differentiations of nonlinear functions in the aforemen-

tioned controller design process using backstepping tech-

nique, which is called ‘‘explosion of complexity’’ and

increases computational complexity. In order to reduce the

computational burden, the authors in [13] propose dynamic

surface control (DSC) method for nonlinear systems, which

uses the algebraic operation instead of the repeated dif-

ferentiation. In this method, a new parameter is obtained by

letting the virtual controller ai as input signal pass through
a first-order filter. Then the obtained new parameter is used

to replace the virtual controller ai during the controller

design process. From then on, the DSC method is widely

employed to vehicle systems in [14, 15], marine surface

vessels system [16], and so on. Combining the DSC

method with adaptive neural network (NN) technique or

adaptive fuzzy approach, the adaptive intelligent con-

trollers are designed for uncertain strict feedback nonlinear

system in [17, 18] and interconnected pure feedback non-

linear system in [19]. Afterwards, the results of [17] are

extend to the uncertain strict feedback nonlinear system

with unknown control direction and disturbances in [20]

and stochastic MIMO pure feedback nonlinear systems

with full state constraints in [21], respectively. Similar with

the DSC method, an adaptive control scheme based on the

command filtering technique, which is another way to

handle with the computational complexity, is proposed in

[22] for surface vehicles with unknown model parameters.

On another hand, the reacher on convergence perfor-

mance draws a lot of attention due to the potential appli-

cations in many industrial field. To obtain fast transient and

high accuracy, the authors in [23] propose finite time

control strategy via the DSC method for nonaffine non-

linear systems with dead-zone. An adaptive NN finite time

controller is designed in [24] via DSC method for perma-

nent magnet synchronous motor stochastic nonlinear sys-

tems with iron losses. However, the settling time of finite

time control in the works aforementioned are related to

initial states of the considered systems, thus it could result

in lack of practicability when the initial states can be

changed in the feasible region. For this reason, fixed time

stability control strategy is developed in [25], in which the

settling time is irrelevant to initial states. Subsequently,

fixed time control scheme is employed for different classes

switched nonlinear systems in [26–28]. The fixed time

tracking control problem for uncertain pure feedback

nonlinear systems in [29] is studied, where adaptive NN

and mean value theorem are used to approximate unknown

functions and handle with the problem of nonaffine

appearance, respectively. In [30], a fixed time high-order

sliding mode control strategy via the DSC method is pro-

posed for chaotic oscillation in three-bus power system.

The event-triggered (ET) fixed time tracking control

problem for stochastic non-triangular structure nonlinear

systems in [31] is addressed by utilizing the DSC method

and ET control technique.

Although fruitful results on fixed time control strategy

via the DSC method have been obtained from the above

literature review, few efforts are paid attention to stochastic

pure feedback nonlinear systems. In this paper, an adaptive

fuzzy fixed time tracking control strategy based on the

DSC method is proposed for stochastic pure feedback

nonlinear systems to guarantee all signals in the considered

systems are semiglobally uniform ultimately bounded

(SGUUB) and the tracking errors are driven to a small

neighborhood of the origin in a fixed time. The main

contributions of this paper are listed as follows:

(1) Compared with the studied systems in the [26–28],

the considered systems in this paper are more

general in the actual control systems due to the

existence of nonaffine mapping and stochastic item.

In order to deal with the problem of nonaffine

appearance, the mean value theorem is introduced in

stochastic nonlinear systems to invert the nonaffine

structure into strict feedback form, which makes the

backstepping technique suitable during the controller

designed.

(2) During the controller design process, the DSC

method is used to solve the computational complex-

ity problem caused by backstepping technique and

Hession item introduced by infinitesimal generator.

The virtual controller which consist of stochastic

state variables is pass through a first-order filter as

input signal. Then, algebraic operation is utilized in

the control strategy instead of the repeated differen-

tiation. In addition, we also introduce the adaptive

fuzzy method to approximate the unknown nonlinear

functions.

The rest of this paper is arranged as follows. The

problem formulation and preliminaries are introduced in

Sect. 2. Section 3 gives the process of fixed time adaptive

fuzzy controller design via the DSC method. The proof of

Theorem 1, which summarizes the main results of this
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paper, is given in Sect. 4. Section 5 presents a simulation to

show the validity of the proposed control strategy. Sec-

tion 6 concludes this paper.

2 Problem Formulations and Preliminaries

In this paper, consider the following stochastic pure feed-

back nonlinear systems with external disturbances:

dx1 ¼ ðf1ðx1; x2Þ þ �h1ðtÞÞdt þ � T
1 ðx1Þdx

..

.

dxi ¼ ðfið�xi; xiþ1Þ þ �hiðxÞÞdt þ � T
i ð�xiÞdx

..

.

dxn ¼ ðfnð�xn; uÞ þ �hnðtÞÞdt þ � T
n ð�xnÞdx

y ¼ x1;

8
>>>>>>>><

>>>>>>>>:

; ð1Þ

where �xi ¼ ½x1; x2; . . .; xi�T, i ¼ 1; 2; . . .; n, u and y repre-

sent the considered systems states, input and output,

respectively. �hiðtÞ, i ¼ 1; 2; . . .; n denote the external dis-

turbances of the considered systems. x represents an

independent r-dimensional standard Wiener motion, which

is defined on the complete probability space (S, F, P). fið�Þ
and � T

i ð�Þ, i ¼ 1; 2; . . .; n, denote the unknown smooth

functions. To show the detailed control process and signals,

we have added the block diagram as Fig. 1 in the

following:

In this paper, the control objective is that the tracking

errors converge on a small neighborhood of the origin

within a fixed time and all signals in the considered sys-

tems are SGUUB by designing an adaptive fuzzy fixed

time controller. Before proceeding further, some important

Definitions, Lemmas and Assumptions are given as

follows:

Definition 1 ([8]) Consider a stochastic nonlinear system

as follows:

dv ¼ f ðv; uÞdt þ � ðvÞdx; ; ð2Þ

where v and u represent the system state and input,

respectively. x denotes a r-dimensional standard Wiener

motion. Then, for any given VðvÞ, the infinitesimal gen-

erator ‘VðvÞ is defined as follow:

‘VðvÞ ¼ oVðvÞ
ov

f ðvÞ þ 1

2
� TðvÞo

2VðvÞ
ov2

� ðvÞ: ð3Þ

Definition 2 ([23]) For all time t[ t1, the solution of the

system (2), which satisfies vðtÞ ¼ 0, is called to be semi-

global finite time stable and T1ðv0Þ represents settling time

of the system (2) where v0 denotes the initial condition.

Thus, we can obtain that the settling time T1ðv0Þ is related
to the initial condition v0. If the settling time T1ðv0Þ is

bounded and satisfies T1ðv0Þ\T1, then the system (2) is

called to be semiglobal fixed time stable and the settling

time T1 has no connection with the initial condition.

Theorem 1 ([26]) For the system (2), assuming VðvÞ is a
smooth positive function and v1 [ 0; v2 [ 0; c[ 0; p[ 1;

q 2 ð0; 1Þ and i 2 ð0; 1Þ such that

‘VðvÞ��v1V
pðvÞ � v2V

qðvÞ þ c; 8x 2 R: ð4Þ

Then the system (2) is called to be SGUUB and the settling

time T1 can be derived as

T1 �
1

iv1ðp� 1Þ þ
1

iv2ð1� qÞ: ð5Þ

Theorem 2 (Young’s Inequality [23]) For x; y 2 R; a; b;

c[ 0; we can have:

jxjajyjb � a

aþ b
cjxjaþb þ b

aþ b
c�

a
bjyjaþb: ð6Þ

Theorem 3 ([24]) For p[ 1; 0\q\1; x[ 0; then we

have

Fig. 1 The block diagram of the control procedure and signals
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n1�p
Xn

i¼1

xi

 !p

�
Xn

i¼1

xi
p �

Xn

i¼1

xi

 !p

; ð7Þ

Xn

i¼1

xi

 !q

�
Xn

i¼1

xi
q � n1�q

Xn

i¼1

xi

 !q

: ð8Þ

Theorem 4 ([24]) For a; b 2 R; a� b; and p[ 1; we

have

aðb� aÞp � p

pþ 1
bpþ1 � apþ1
� �

: ð9Þ

Theorem 5 ([25]) For x; y[ 0; 0\q\1; and p[ 1; we

have

Xn

i¼1

xi þ
Xn

i¼1

yi

 !q

�
Xn

i¼1

xi

 !q

þ
Xn

i¼1

yi

 !q

; ð10Þ

Xn

i¼1

xi þ
Xn

i¼1

yi

 !p

� 2p�1
Xn

i¼1

xi

 !p

þ
Xn

i¼1

yi

 !p !

:

ð11Þ

Theorem 6 ([12]) There exists a continuous function

H(X), which is defined on a compact set X; and a positive

constant g�. The continuous function H(X) can be

approximated by utilizing the FLS WTf Xð Þ
H Xð Þ ¼ WTf Xð Þ þ g; jgj � g�; ; ð12Þ

where WT ¼ ½w1;w2; . . .;wn�T and g represent the optimal

weight vector and the approximation error, respectively. n

denotes the number of the FLS nodes and f Xð Þ ¼
½a1 Xð Þ; a2 Xð Þ; . . .; an Xð Þ� is the fuzzy basis function. The

ai Xð Þ, i ¼ 1; 2; . . .; n; represent corresponding membership

and can be expressed as follows

ai Xð Þ ¼ exp
X � �kð ÞT X � �kð Þ

kk
Tkk

 !

; ; ð13Þ

where �k ¼ ½�k1; �k2; . . .; �kn�T and kk ¼ ½kk1; kk2; . . .; kkn�;
i ¼ 1; 2; . . .; n; represent the center vector and the width of

ak Xð Þ; respectively.

Assumption 1 ([15]) y0; y1; . . .; yi denote positive con-

stants. The reference signal yd is bounded, which satisfies

jydj � y0, and its ith-order derivatives y
ið Þ
d , i ¼ 1; 2; . . .; n,

are bounded, which satisfy jy ið Þ
d j � yi.

By employing the mean value theorem in [26] to solve

the problem of nonaffine appearance in the considered

systems (1), the unknown smooth functions fi �xi; xiþ1ð Þ can
be rewritten as

fi �xi; xiþ1ð Þ ¼ fi �xi; ıið Þ þ
ofi �xi; xqi
� �

oxqi
xiþ1 � ıið Þ; ð14Þ

fn �xn; uð Þ ¼ fn �xn; ınð Þ þ
ofn �xn; xqn
� �

oxqn
u� ınð Þ; ; ð15Þ

where xqi ¼ qixiþ1 þ 1� qið Þıi and 0\qi\1,

i ¼ 1; 2; . . .; n, and ıi is a known quantity at the given time

t0.

Substituting (14) and (15) into the system (1),we have

dx1 ¼ f1 x1; ı1ð Þ þ c1 x2 � ı1ð Þ þ �h1ðtÞð Þdt
þ� T

1 ðx1Þdx
..
.

dxi ¼ fi �xi; ıið Þ þ ci xiþ1 � ıið Þ þ �hiðtÞð Þdt
þ� T

i ð�xiÞdx
..
.

dxn ¼ fn �xn; ınð Þ þ cn u� ınð Þ þ �hnðtÞð Þdt
þ� T

n ð�xnÞdx
y ¼ x1;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

; ð16Þ

where ci ¼ ofi �xi; xqi
� �

=oxqi , i ¼ 1; 2; . . .; n.

Assumption 2 ([26]) The functions ci are bounded, which

satisfy 0\b� ci\d\1, i ¼ 1; 2; . . .; n, where b, d are

known constants.

Assumption 3 ([26]) The system external disturbances

�hiðtÞ, i ¼ 1; 2; . . .; n are bounded, which satisfy j�hiðtÞj � ��hi
and ��hi are unknown positive constants.

3 Fixed Time Adaptive DSC Controller Design

In this section, a fixed time adaptive DSC controller is

designed for the system (16) to achieve the control objec-

tive by utilizing backstepping and DSC technique. Firstly,

the coordinate transformation is introduced as follows

z1 ¼ x1 � yd; ð17Þ

zi ¼ xi � ai�1; i ¼ 2; 3; . . .; n; ; ð18Þ

where yd and ai�1 represent the desired signal and the

virtual controllers, respectively.

Let the virtual controllers ai�1 as the input signals pass

through a first-order filter to obtain new parameters bi,
which represent the first-order filter output signals, then we

have

li _bi þ bi ¼ ai�1; i ¼ 2; 3; . . .; n; ; ð19Þ

where bið0Þ ¼ ai�1ð0Þ and li represent time constants of

the first-order filter.
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The obtained new parameters bi is used to replace the

virtual controllers ai�1 in the fixed time adaptive controller

design process, then the repeated differentiation is replaced

by the algebraic operation and (18) can be rewritten as

follows

zi ¼ xi � bi; i ¼ 2; 3; . . .; n: ð20Þ

Define ei as the error variables of the first-order filter and

we can obtain

ei ¼ bi � ai�1; i ¼ 2; 3; . . .; n: ð21Þ

Step 1: According to (16), (17), (20) and (21), we can have

dz1 ¼ f1ðx1; ı1Þ þ c1

�
z2 þ e2 þ a1 � ı1

� �
þ �h1ðtÞ � _yd

�
dt

þ � T
1 ðx1Þdx:

ð22Þ

Then, we design the Lyapunov functional candidates as

follows

V1;1 ¼
1

4
z41 þ

b

2t1
~h
2

1; ð23Þ

V1;2 ¼
1

2
e22; ð24Þ

V1 ¼ V1;1 þ V1;2; ; ð25Þ

where the Lyapunov functional candidate V1;1 and the

Lyapunov functional candidate V1;2 are employed to solve

the problem of tracking error z1 and the first-order filter

error e1 are driven to a small neighborhood of the origin,

respectively. t1 is positive designed parameter, and ~h1
represents the estimation error of h1 defined later and

~h1 ¼ h1 � ĥ1, where ĥ1 is the estimation of h1.
Then, by applying the infinitesimal operator ‘, (22) and

(23), we can obtain

‘V1;1 ¼z31

�
f1ðx1; ı1Þ þ c1a1 þ c1e2 þ c1z2 � c1ı1 þ �h1ðtÞ � _yd

�

þ 3

2
z21�

2
1ðx1Þ �

b

t1
~h1

_̂h1:

ð26Þ

Using (2), we have

3

2
z21�

2
1ðx1Þ�

9

8
z41�

4
1ðx1Þ þ

1

2
: ð27Þ

Substitute (27) into (26), we can have

‘V1;1 � z31

�
� k1;2z

4q�3
1 þ H1ðX1Þ

þ c1a1 þ c1e2 þ c1z2 � _yd þ �h1ðtÞ
�

þ 1

2
� ð1þ dÞz61 �

b

t1
~h1

_̂h1;

; ð28Þ

where H1ðX1Þ ¼ k1;2z
4q�3
1 þ f1ðx1; ı1Þ þ 9

8
z1�

4
1ðx1Þ � c1ı1 þ ð1þ dÞz31.

According to the (6), the unknown function H1ðX1Þ can
be approximated using FLS, then we can obtain

H1ðX1Þ ¼ WT
1 f1 X1ð Þ þ g1; jg1j � g�1; ð29Þ

where X1 ¼ ½x1; yd; _yd�T.
Using (2), we obtain

z31H1ðX1Þ ¼z31 WT
1 f1 X1ð Þ þ g1

� �

� z61b

2a21
h1f

T
1 X1ð Þf1 X1ð Þ þ a21

2b
þ 1

2
z61 þ

g�1
2

2
;

ð30Þ

where kW1k2 ¼ h1 and a1 is positive designed parameter.

Then, the fixed time virtual controller a1 and the adap-

tive law
_̂h1 are designed as follows:

a1 ¼ �k1;1z
4p�3
1 � z31

2a21
ĥ1f

T
1 ðX1Þf1ðX1Þ þ

_yd
c1
; ð31Þ

_̂h1 ¼
t1z61
2a21

fT1 ðX1Þf1ðX1Þ � k1ĥ1 � s1ĥ
2p�1

1; ð32Þ

where k1;1; k1 and s1 are positive designed parameters.

Using (2), we can have

c1z
3
1z2 �

d

2
z61 þ

d

2
z22; ð33Þ

c1z
3
1e2 �

d

2
z61 þ

d

2
e22; ð34Þ

�h1ðtÞz31 �
��h
2

1

2
þ z61

2
: ð35Þ

By substituting (30)–(35) into (28), we have

‘V1;1 ��k1;1bz
4p
1 � k1;2z

4q
1 þ d

2
z22 þ

d

2
e22 þ A1

þ bk1~h1ĥ1
t1

þ bs1~h1ĥ
2p�1

1

t1
;

; ð36Þ

where A1 ¼
��h
2
1

2
þ a2

1

2b þ
g�
1
2

2
þ 1

2
. Combining (19) with (21), we

can obtain

_e2 ¼ �e2
l2

� ‘a1dt: ð37Þ

According to (16), (31) and the infinitesimal operator ‘, we

can obtain

‘a1 ¼ /2 �y
ð2Þ
d ; �z2; e2; ĥ1

� �
; ; ð38Þ

where /2ð�y
ð2Þ
d ; �z2; e2; ĥ1Þ ¼ oa1

ox1
ðf1 �x1; ı1ð Þ þ c1 x2 � ı1ð Þ þ

�h1ðtÞÞ þ
P1

j¼0
oa1
oydðjÞ

yd
ðjþ1Þ þ 1

2
o2a1
ox1ox1

� T
1 ðx1Þ� 1ðx1Þ þ oa1

oĥ1

_̂h1 is

a continuous function and satisfies j/2ð�y
ð2Þ
d ; �z2; e2; ĥ1Þj

�u2, where u2 is a positive constants, �y
ð2Þ
d ¼ ½yd; _yd; €yd�

and �z2 ¼ ½z1; z2�
By applying (2), (24), (37) and (38), we can obtain

123

2752 International Journal of Fuzzy Systems, Vol. 25, No. 7, October 2023



_V1;2 � � e22
l2

þ e22 þ
1

4
u2
2: ð39Þ

By substituting (36) and (39) into (25), we can obtain

‘V1 ��k1;1bz
4p
1 � k1;2z

4q
1 þ d

2
z22 � j2e

2
2 þ A1

þ B2 þ
bk1~h1ĥ1

t1
þ bs1~h1ĥ

2p�1

1

t1
;

; ð40Þ

where j2 ¼ 1
l2
� d

2
� 1

� �
and B2 ¼ 1

4
u2
2.

Step i; ði ¼ 2; 3; . . .; n� 1Þ:
According to (16), (20) and (21), we can have

dzi ¼ fiðxi; ıiÞ þ ci

�
ziþ1 þ eiþ1 þ ai � ıi

� �
þ �hiðtÞ � _bi

�
dt

þ � T
i ð�xiÞdx:

ð41Þ

Then, we design the Lyapunov functional candidates as

follows

Vi;1 ¼
1

4
z4i þ

b

2ti
~h
2

i ; ð42Þ

Vi;2 ¼
1

2
e2iþ1; ð43Þ

Vi ¼ Vi�1 þ Vi;1 þ Vi;2; ; ð44Þ

where the Lyapunov functional candidates Vi;1 and the

Lyapunov functional candidates Vi;2 are employed to solve

the problemof ith-order derivatives zi of tracking error z1 and

the first-order filter errors ei are driven to a small neighbor-

hood of the origin, respectively. ti is positive designed

parameter, and ~hi represents the estimation error of hi defined

later and ~hi ¼ hi � ĥi, where ĥi is the estimation of hi.
Then, by applying the infinitesimal operator ‘, (41) and

(42), we can obtain

‘Vi;1 ¼ z3i

�
fiðxi; ıiÞ þ ciai þ cieiþ1 þ ciziþ1 � ciıi þ �hiðtÞ � _bi

�

þ 3

2
z2i �

2
i ð�xiÞ �

b

ti
~hi
_̂hi:

ð45Þ

Using (2), we have

3

2
z2i �

2
i ð�xiÞ�

9

8
z4i �

4
i ð�xiÞ þ

1

2
: ð46Þ

Substitute (46) into (45), we can have

‘Vi;1� z3i

�
� ki;2z

4q�3
i þ HiðXiÞ þ ciai þ cieiþ1 þ ciziþ1 � _bi þ �hiðtÞ

�

þ 1

2
� ð1þ dÞz6i �

d

2
z2i �

b

ti
~hi
_̂hi;

;

ð47Þ

where HiðXiÞ ¼ ki;2z
4q�3
i þ fiðxi; ıiÞ þ 9

8
zi�

4
i ð�xiÞ � ciıi þ ð1þ dÞz3i þ d

2zi
.

According to the (6), the unknown function HiðXiÞ can
be approximated using FLS, then we can obtain

HiðXiÞ ¼ WT
i fi Xið Þ þ gi; jgij � g�i ; ; ð48Þ

where Xi ¼ ½�xi; �̂hi�1; �y
ðiÞ
d �T with

�̂hi�1 ¼ ½ĥ1; . . .; ĥi�1� and

�y
ðiÞ
d ¼ ½yd; . . .; yðiÞd �.
Using (2), we can obtain

z3i HiðXiÞ ¼z3i WT
i fi Xið Þ þ gi

� �

� z6i b

2a2i
hif

T
i Xið Þfi Xið Þ þ a2i

2b
þ 1

2
z6i þ

g�i
2

2
;
; ð49Þ

where kWik2 ¼ hi and ai is positive designed parameter.

Then, the fixed time virtual controller ai and the adap-

tive law
_̂hi are designed as follows:

ai ¼ �ki;1z
4p�3
i � z3i

2a2i
ĥif

T
i ðXiÞfiðXiÞ þ

_bi
ci
; ð50Þ

_̂hi ¼
tiz6i
2a2i

fTi ðXiÞfiðXiÞ � kiĥi � siĥ
2p�1

i; ; ð51Þ

where ki;1; ki and si are positive designed parameters.

Using (2), we can have

ciz
3
i ziþ1 �

d

2
z6i þ

d

2
z2iþ1; ð52Þ

ciz
3
i eiþ1 �

d

2
z6i þ

d

2
e2iþ1; ð53Þ

�hiðtÞz3i �
��h
2

i

2
þ z6i

2
: ð54Þ

By substituting (49)–(54) into (47), we have

‘Vi;1 ��ki;1bz
4p
i � ki;2z

4q
i þ d

2
z2iþ1 þ

d

2
e2iþ1 þ Ai

þ bki~hiĥi
ti

þ bsi~hiĥ
2p�1

i

ti

� d

2
z2i ;

; ð55Þ

where Ai ¼
��h
2

i

2
þ a2i

2b þ
g�i

2

2
þ 1

2
.

Combining (19) with (21), we can obtain

_eiþ1 ¼ �eiþ1

liþ1

� _ai: ð56Þ

According to (16), (50) and the infinitesimal operator ‘, we

can obtain

‘ai ¼ /iþ1 �zi; �y
ðiþ1Þ
d ; �eiþ1;

�̂hi
� �

; ð57Þ

where
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/iþ1 �zi; �y
ðiþ1Þ
d ; �eiþ1;

�̂hi
� �

¼
Xi

j¼1

oai
oxj

ðfj �xj; ıj
� �

þ cjðxjþ1 � ıjÞ

þ �hjðtÞÞ þ
Xi

j¼1

oai

oĥj

_̂hj þ
1

2

Xi

j;k¼1

o2ai
oxjoxk

� T
j ð�xjÞ� kð�xkÞ þ

Xi

j¼0

oai�1

oydðjÞ
yd

ðjþ1Þ

is a continuous function and satisfies j/iþ1ð�zi; �y
ðiþ1Þ
d ; �eiþ1;

�̂hiÞj �uiþ1, where uiþ1 is a positive constants, and

�zi ¼ ½z1; z2; . . .; zi�, �y
ðiþ1Þ
d ¼ ½yd; _yd; . . .; y

ðiþ1Þ
d �, �eiþ1 ¼

½e2; e3; . . .; eiþ1�. By applying (2), (42), (56) and (57), we

can obtain

_Vi;2 � �
e2iþ1

liþ1

þ e2iþ1 þ
1

4
u2
iþ1: ð58Þ

By substituting (55) and (58) into (44), we can obtain

‘Vi � �
Xi

j¼1

kj;1bz
4p
j �

Xi

j¼1

kj;2z
4q
j þ

Xi

j¼1

bkj~hjĥj
tj

þ
Xi

j¼1

bsj~hjĥ
2p�1

j

tj

þ
Xi

j¼1

Aj þ
Xiþ1

j¼2

Bj þ
d

2
z2iþ1 �

Xiþ1

j¼2

jje
2
j ;

;

ð59Þ

where jj ¼ 1
lj
� d

2
� 1

� �
and Bj ¼ 1

4
u2
j .

Step n:

According to (16) and (20), we can have

dzn ¼ fnðxn; ınÞ þ cn u� ınð Þ þ �hnðtÞ � _bn
� �

dt þ � T
n ð�xnÞdx: ð60Þ

In this step, the virtual controller is replaced by the actual

controller u. Thus, the first-order filter will be ignored and

there no exist the dynamic surface error. Then, we design

the Lyapunov functional candidates as follows

Vn;1 ¼
1

4
z4n þ

b

2tn
~h
2

n; ð61Þ

Vn ¼ Vn�1 þ Vn;1; ; ð62Þ

where tn is positive designed parameter. ~hn represents the

estimation error of hn defined later and ~hn ¼ hn � ĥn,

where ĥn is the estimation of hn.
Then, by applying the infinitesimal operator ‘, (60) and

(61), we can obtain

‘Vn;1 ¼ z3n

�
fnðxn; ınÞ þ cnu� ciın þ �hnðtÞ � _bn

�

þ 3

2
z2n�

2
nð�xnÞ �

b

tn
~hn

_̂hn:
ð63Þ

Using (2), we have

3

2
z2n�

2
nð�xnÞ�

9

8
z4n�

4
nð�xnÞ þ

1

2
: ð64Þ

Substitute (64) into (63), we can have

‘Vn;1 � z3n

�
� kn;2z

4q�3
n þ HnðXnÞ þ cnu� _bn þ �hnðtÞ

�
� ð1þ dÞz6n

� d

2
z2n �

b

tn
~hn

_̂hn þ
1

2
;

;

ð65Þ

where

HnðXnÞ ¼ kn;2z
4q�3
n þ fnðxn; ınÞ þ 9

8
zn�

4
nð�xnÞ � cnın þ ð1þ dÞz3n þ d

2zn
.

According to the (6), the unknown function HnðXnÞ can
be approximated using FLS, then we can obtain

HnðXnÞ ¼ WT
n fn Xnð Þ þ gn; jgnj � g�n; ; ð66Þ

where Xn ¼ ½�xn; �̂hn�1; �y
ðnÞ
d �T with

�̂hn�1 ¼ ½ĥ1; . . .; ĥn�1� and
�y
ðnÞ
d ¼ ½yd; . . .; yðnÞd �. Using (2), we obtain

z3nHnðXnÞ ¼z3n WT
n fn Xnð Þ þ gn

� �

� z6nb

2a2n
hnf

T
n Xnð Þfn Xnð Þ þ a2n

2b
þ 1

2
z6n þ

g�n
2

2
;
; ð67Þ

where kWnk2 ¼ hn and an is positive designed parameter.

Then, the fixed time actual controller u and the adaptive

law
_̂hn are designed as follows:

u ¼ �kn;1z
4p�3
n � z3n

2a2n
ĥnf

T
n ðXnÞfnðXnÞ þ

_bn
cn
; ð68Þ

_̂hn ¼
tnz6n
2a2n

fTn ðXnÞfnðXnÞ � knĥn � snĥ
2p�1

n; ; ð69Þ

where kn;1; kn and sn are positive designed parameters.

Using (2), we can have

�hnðtÞz3n �
��h
2

n

2
þ z6n

2
: ð70Þ

By substituting (67)–(70) into (65), we have

‘Vn;1 ��kn;1bz
4p
n � kn;2z

4q
n þ An �

d

2
z2n þ

bkn~hnĥn
tn

þ bsn~hnĥ
2p�1

n

tn
; ;

ð71Þ

where An ¼
��h
2
n

2
þ a2n

2b þ
g�n

2

2
þ 1

2
. By substituting (71) into (62),

we can obtain

‘Vn � �
Xn

j¼1

kj;1bz
4p
j �

Xn

j¼1

kj;2z
4q
j þ

Xn

j¼1

bkj~hjĥj
tj

þ
Xn

j¼1

bsj~hjĥ
2p�1

j

tj
þ
Xn

j¼1

Aj þ
Xn

j¼2

Bj �
Xn

j¼2

jje
2
j ;

;

ð72Þ

where jj ¼ 1
lj
� d

2
� 1

� �
and Bj ¼ 1

4
u2
j .
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4 Stability Analysis

The following theorem is presented to show the main

results of the proposed control strategy.

Theorem 7 For the stochastic pure feedback nonlinear

systems with external disturbances (16), under (1)–(3), the

virtual controller (31), (50), the actual controller (68), and

the adaptive law (32), (51) and (69) can ensure that all

states in the considered systems are SGUUB and the

tracking errors are driven into a small neighborhood of the

origin in a fixed time.

Proof Using (3), (72) can be rewritten as follow

‘Vn � � s
Xn

j¼1

1

4
z41

� �p

�v
Xn

j¼1

1

4
z41

� �q

�
Xn

j¼2

1

2
jje

2
j

�
Xn

j¼2

1

2
jje

2
j �

Xn

j¼2

1

2
jje

2
j

 !p

�
Xn

j¼2

1

2
jje

2
j

 !q

þ
Xn

j¼2

1

2
jje

2
j

 !p

þ
Xn

j¼2

1

2
jje

2
j

 !q

þ
Xn

j¼1

bkj~hjĥj
tj

þ
Xn

j¼1

bsj~hjĥ
2p�1

j

tj
þ q;

;

ð73Þ

where s ¼ minfbkj;1n1�p4p : 1� j� ng, v ¼ minfkj;24q :
1� j� ng and q ¼

Pn
j¼1 Aj þ

Pn
j¼2 Bj.

By utilizing (2), we can obtain

Xn

j¼2

1

2
jje

2
j

 !q

�
Xn

j¼2

1

2
jje

2
j þ ð1� qÞq

q
1�q: ð74Þ

Assume that ej � rj, where rj are unknown constants.

Then, we can get

Pn
j¼2

1

2
jje2j

� �p

�
Pn

j¼2

1

2
jje2j\0 if rj\

ffiffiffiffi
2

jj

s

;

Pn
j¼2

1

2
jje2j

� �p

�
Pn

j¼2

1

2
jje2j �/ if rj �

ffiffiffiffi
2

jj

s

;

8
>>>><

>>>>:

; ð75Þ

where / ¼
Pn

j¼2
1
2
jjr2j

� �p
�
Pn

j¼2
1
2
jjr2j .

substituting (74) and (75) into (73) gives

‘Vn � � s
Xn

j¼1

1

4
z41

� �p

�v
Xn

j¼1

1

4
z41

� �q

�
Xn

j¼2

1

2
jje

2
j

 !p

�
Xn

j¼2

1

2
jje

2
j

 !q

þ
Xn

j¼1

bkj~hjĥj
tj

þ
Xn

j¼1

bsj~hjĥ
2p�1

j

tj
þ U;

; ð76Þ

where

U ¼
qþ ð1� qÞq

q
1�q if rj\

ffiffiffiffi
2

jj

s

;

qþ /þ ð1� qÞq
q

1�q if rj �
ffiffiffiffi
2

jj

s

:

8
>>>><

>>>>:

Using (2) and (4), we can get

~hjĥj �
h2j
2
�

~h2j
2
; ð77Þ

~hjĥ
2p�1

j � 2p� 1

2p

�
h2pj � ~h2pj

�
: ð78Þ

By substituting (77)–(78) into (76), we can obtain

‘Vn � � s
Xn

j¼1

1

4
z41

� �p

�v
Xn

j¼1

1

4
z41

� �q

�
Xn

j¼2

1

2
jje

2
j

 !p

�
Xn

j¼2

1

2
jje

2
j

 !q

�
Xn

j¼1

bkj~h
2

j

2tj
�
Xn

j¼1

ð2p� 1Þbsj~h
2p

j

2ptj
þ .;

;

ð79Þ

where . ¼ Uþ
Pn

j¼1

bkjh
2
j

2tj
þ
Pn

j¼1

ð2p�1Þbsjh2pj
2ptj

.

By utilizing (3), (58) can be rewritten as follows

‘Vn � � h
Xn

j¼1

1

4
z41

 !p

�o
Xn

j¼1

1

4
z41

 !q

�h
Xn

j¼2

1

2
jje

2
j

 !p

�o
Xn

j¼2

1

2
jje

2
j

 !q

� h
Xn

j¼1

b~h
2

j

2tj

0

@

1

A

p

�o
Xn

j¼1

b~h
2

j

2tj

0

@

1

A

q

þo
Xn

j¼1

b~h
2

j

2tj

0

@

1

A

q

�o
Xn

j¼1

b~h
2

j

2tj
þ .;

;

ð80Þ

where h ¼ min n1�p

s ;
pð2tjÞp�1

sjð2p�1Þbp�1 : 1� j� n
n o

and o ¼ min

fv; kj : 1� j� ng.
By utilizing (2), we can obtain

Xn

j¼1

b~h
2

j

2tj

0

@

1

A

q

�
Xn

j¼1

b~h
2

j

2tj
þ ð1� qÞq

q
1�q: ð81Þ

Using (6) and (81), we can obtain

‘Vn � � v1
Xn

j¼1

1

4
z41 þ

Xn

j¼2

1

2
jje

2
j þ

Xn

j¼1

b~h
2

j

2tj

0

@

1

A

p

� v2
Xn

j¼1

1

4
z41 þ

Xn

j¼2

1

2
jje

2
j þ

Xn

j¼1

b~h
2

j

2tj

0

@

1

A

q

þc

��v1V
pðxÞ � v2V

qðxÞ þ c;

;

ð82Þ

where v1 ¼ h
2p�1, v2 ¼ o and c ¼ .þ v2ð1� qÞq

q
1�q.

Combining Eq. (82) with (1), we can obtain all states in

the considered systems are SGUUB and the tracking errors

are driven to a small neighborhood of the origin in a fixed

time T1, where T1 satisfies
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T1 �
1

iv1ðp� 1Þ þ
1

iv2ð1� qÞ: ð83Þ

h

5 Simulation Studies

In this section, a numerical example is introduced to verify

the effectiveness of the proposed control strategy.

According to the system (16), a second-order stochastic

nonlinear system with external disturbances is considered

as follows:

dx1 ¼ x2 þ �h1ðtÞð Þdt þ 0:01x1dx;

dx2 ¼ 0:3x1x2 þ uþ �h2ðtÞð Þdt þ 0:02x1x2dx;

y ¼ x1;

: ;

8
><

>:
ð84Þ

where x1 and x2 are state variables. u and y represent

system input and output. �h1ðtÞ ¼ 0:01 sinðtÞ and �h2ðtÞ ¼
0:02 sinðtÞ represent system disturbances. The reference

signal yd is described as yd ¼ 0:5ðcosð0:5tÞ þ sinð0:5tÞÞ.
The virtual controller a1, actual controller u and the

adaptive law
_̂h1,

_̂h2 are designed as follows:

a1 ¼ �k1;1z
4p�3
1 � k1;2z

4q�3
1 � z31

2
þ _yd
c1

� D1ðtÞ
c1

; ð85Þ

u ¼ �k2;1z
4p�3
2 � z32

2a22
ĥ2f

T
2 ðX2Þf2ðX2Þ þ

_b2
c2
; ð86Þ

_̂h1 ¼ 0; ð87Þ

_̂h2 ¼
t2z62
2a22

fT2 ðX2Þf2ðX2Þ � k2ĥ2 � s2ĥ
2p�1

2; ð88Þ

l2 _b2 þ b2 ¼ a1; b2ð0Þ ¼ a1ð0Þ; ; ð89Þ

where z1 ¼ x1 � yd, z2 ¼ x2 � b2. The initial values of the

system (82) are given as x1ð0Þ ¼ 1, x2ð0Þ ¼ �0:1 and
_̂h1ð0Þ ¼ _̂h2ð0Þ ¼ 0. All the design parameters are selected

as k1;1 ¼ k2;1 ¼ 100, k1;2 ¼ 0:2, p ¼ 1:1, q ¼ 0:8, c1 ¼ 1,

c2=2, t2 ¼ 0:1, k2 ¼ 0:1, s2 ¼ 1 and l2 ¼ 0:005.

The results of the simulation are illustrated in Figs. 2, 3,

4 and 5 using the above design parameters. Figure 2 shows

the trajectories of the considered systems output y and the

reference signal yd and we can obtain a good tracking

performance. The trajectory of tracking error z1 is repre-

sented in Fig. 3, where the tracking error z1 is driven to a

small neighborhood of the origin in a fixed time. Figure 4

is employed to show the trajectories of the considered

systems state variables x1 and x2 and we can obtain that the

state variables in the considered systems are bounded. The

trajectory of the considered systems input u is shown in

Fig. 5 and we can obtain the considered systems input u is

bounded. Therefore, we can obtain that all the states in the

considered systems are bounded and the tracking error is

driven to a small neighborhood of the origin in a fixed time.

6 Conclusion

In this paper, a novel fixed time adaptive fuzzy dynamic

surface tracking control problem is studied for stochastic

pure feedback nonlinear systems with disturbances. Com-

bined with mean value theorem, which can deal with the

problem of nonaffine structure, adaptive fuzzy technique
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Fig. 2 The trajectories of the considered system output y and the

reference signal yd

0 5 10 15 20 25 30 35 40 45 50
Time in seconds

-0.1

0

0.1

0.2

0.3

0.4

0.5
Va

lu
e

z1

Fig. 3 The trajectory of tracking error z1
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are utilized to transform the pure feedback structure into a

strict feedback structure with approximated unknown

nonlinear functions. The DSC method is employed to

handle with the problem of ‘‘explosion of complexity’’ in

the controller design process. A novel fixed time adaptive

fuzzy control strategy is developed for the considered

stochastic nonlinear systems to ensure all the signals of the

considered systems are SGUUB and the tracking errors are

driven to a small neighborhood of the origin in a fixed time.

The strategy mentioned can also be used in many appli-

cations such as industrial control and aircraft control.

Future research will focus on the stochastic pure feedback

nonlinear systems with various conditions, such as full

state constraints or unknown control directions by utilizing

the proposed control scheme.
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