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Abstract The main drawback of the typical fuzzy least

squares approach is that the resulting fuzzy regression

model is linear, and the model’s accuracy decreases with

the increases in the magnitudes and the number of inde-

pendent variables. Some nonparametric methods, such as

the kernel regression method, have been proposed to

overcome these drawbacks. In this paper, we derive a novel

fuzzy nonparametric regression method. A convex non-

parametric least squares approach (CNLS) is employed for

the fuzzy regression models with crisp input fuzzy output

data (Fuzzy-CNLS). Like Diamond’s fuzzy least squares

method, the fuzzy regression model is divided into three

submodels, the Center, the Left endpoint, and the Right

endpoint. We employ CNLS for each sub-model. Hence,

the resulting Fuzzy-CNLS regression model consists of

three sets of CNLS results (hyperplanes) for each sub-

model, representing a fuzzy nonlinear regression model.

One of the advantages of the original CNLS over ordinary

least squares (OLS) is that the coefficient of determination

of CNLS must be greater than that of OLS. Hence, the

goodness of fit of Fuzzy-CNLS is better than the fuzzy

least squares methods. On the other hand, CNLS can

accommodate the concavity or convexity constraints for

the regression functions following the concavity or con-

vexity pattern, respectively. With these shape (concavity or

convexity) constraints, it is considered that Fuzzy-CNLS is

less sensitive to outliers. A similarity-distance measure is

used to select the shape constraints and to evaluate the

performance of Fuzzy-CNLS. An illustrative example and

an application example are given. The numerical results

show that Fuzzy-CNLS is better than Diamond’s least

squares method and fuzzy least absolute linear regression

method in terms of the similarity measure.

Keywords Fuzzy regression � Nonparametric least

squares � Shape constraints � Similarity measure

1 Introduction

Fuzzy regression analysis is one of the tools to investigate

problems with vague variables in a complex system. The

first fuzzy linear regression method was derived by Tanaka

et al. [1]. After that, different variants of fuzzy regression

have been proposed. According to the review paper [2],

fuzzy regression methods can be generally classified into

three main categories: (1) possibilistic regression methods,

(2) fuzzy least squares methods, and (3) machine learning

methods.

Tanaka et al. [1], in which linear programming methods

minimize the total spread of fuzzy variables. Other opti-

mization methods were proposed, such as nonlinear pro-

gramming [3] and goal programming [4].

The fuzzy least squares method was first proposed by

Celmins [5] and Diamond [6]. The fuzzy regression coef-

ficients are estimated by minimizing the squared distance

between the estimated and observed fuzzy outputs. Dif-

ferent enhancements were proposed. For example, Xu

[7, 8] used the integral distance of every level set for

treating three vertices of the triangular fuzzy number

equally. Diamond and Körner [9] applied the Hukuhara

difference to resolve the negative spread problem.

For developing robust fuzzy regression models, some

machine learning techniques were employed, e.g., fuzzy
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genetic algorithms [10], support vector fuzzy regression

machines [11], and back-propagation neural networks

combined with fuzzy regression analysis [12].

The main drawback of the fuzzy least squares approach

is that the resulting fuzzy regression model’s accuracy

decreases with the increases in the magnitudes and the

number of independent variables, see [13]. On the other

hand, it is well-known that regression analyses based on

minimizing convex loss functions are sensitive to outliers

in the design space [14]. Hence, fuzzy regression analysis

based on the least squares method also comes with the

same criticism [15].

Some nonparametric methods have been proposed for

overcoming these drawbacks [6, 13, 16]. Jung et al. [13]

employed the rank transform method to construct a fuzzy

linear regression model and empirically showed that the

rank transform method is robust to outliers using three

examples. Each example consists of less than ten samples

and three independent variables. Cheng and Lee [16]

employed two nonparametric regression techniques:

k-nearest neighbor smoothing and kernel smoothing. Wang

et al. [6] developed a fuzzy nonparametric regression

method based on the Diamond distance measure and the

local linear smoothing technique. On the other hand, Choi

and Buckley [15] proposed the least absolute deviation

estimators method, a parametric method, to enhance the

accuracy.

This paper derives a new fuzzy nonparametric regres-

sion method based on a convex nonparametric least squares

(CNLS) approach, like [6, 16] and Diamond’s fuzzy least

squares model. The resulting regression model is a fuzzy

nonlinear regression model. Hence, it is considered that the

proposed approach may alleviate the drawback mentioned

before.

In 2008, Kuosmanen [17] derived the representation

theorem for CNLS, subject to continuity, monotonicity,

and concavity constraints. Also, CNLS does not require the

functional form’s prior specification and a smoothing

parameter like the kernel regression. Due to the shape

constraints (concavity), CNLS has attracted considerable

interest in the literature on productivity efficiency analysis

[18, 19]. In short, the attractiveness of CNLS is the

avoidance of the functional form assumption and the better

model fit compared with ordinary least squares. However,

to our best knowledge, CNLS is not employed in fuzzy

regression analysis, which is a research gap and the moti-

vation of the current paper.

To derive the new fuzzy nonparametric regression

method, we first separate Diamond’s fuzzy least squares

model into three fuzzy least squares submodels. A similar

approach can be found in [20]. Then, we employ the CNLS

technique for each sub-model and call this method fuzzy

convex nonparametric least squares (Fuzzy-CNLS). The

resulting fuzzy regression model of Fuzzy-CNLS becomes

nonlinear. Since the proposed fuzzy regression analysis

employs a nonparametric method and the resulting model

is nonlinear, the drawback of the model’s accuracy

decreasing with the increases in the magnitudes and the

number of independent variables is alleviated. Some non-

parametric methods, such as the kernel regression method,

have been proposed to overcome these drawbacks.

The current paper’s main contribution is to derive a

fuzzy nonparametric regression method (Fuzzy-CNLS) that

combines Diamond’s fuzzy least squares and a CNLS

approach. The Fuzzy-CNLS does not require prior speci-

fication of the regression models’ functional form and a

smoothing parameter like the kernel regression. It provides

a better estimation performance with a set of hyperplanes

which is not a kind of black box. In short, the contributions

of this paper are:

1. To derive a new novel fuzzy nonparametric regression

method, Fuzzy-CNLS

2. To introduce CNLS to Diamond’s fuzzy least squares

3. To derive the nonlinear fuzzy regression model by

Fuzzy-CNLS

4. To derive the forecasting process of the nonlinear

fuzzy regression model, which is not a kind of black

box

5. To provide one illustrative example and one applica-

tion example of Fuzzy-CNLS to the house prices of

Shanghai retrieved from literature.

The remainder of the paper is organized as follows.

Section 2 presents Diamond’s Fuzzy least squares estima-

tion and the convex nonparametric least squares (CNLS)

technique. Section 3 derives the new fuzzy nonparametric

regression method, Fuzzy-CNLS, discusses the modifica-

tion and the use of the shape constraints, and describes

forecasting processes. Section 4 selects a method of the

goodness of fit (Similarity) to measure the performance of

Fuzzy-CNLS compared with other fuzzy least squares

methods. Section 5 provides three examples to illustrate

the use of Fuzzy-CNLS. The performance of Fuzzy-CNLS

in terms of goodness of fit is reported. Example 1 and

Example 2 demonstrate the use of different shape con-

straints. Section 6 concludes the current article.

2 Preliminaries

Throughout this paper, R stands for all real numbers, and

F Rð Þ stands for the set of all fuzzy numbers in R. All

asymmetric and symmetric triangular fuzzy numbers in R.

ea stands for a fuzzy number.
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Definition 1 [21] A fuzzy number ey is a so-called L-R

fuzzy number, ey ¼ ðyc; yL; yRÞ, if the corresponding mem-

bership function l
ey
ðxÞ satisfies for all x 2 R

l
ey
ðxÞ ¼

L
yc � x

yc � yL

� �

yL � x� yc;

R
x� yc
yR � yc

� �

yc � x� yR;

0 else;

8

>

>

>

>

<

>

>

>

>

:

where yc; yL; yR are the center, left endpoint, and right

endpoint of the fuzzy number ey, respectively, and L and R

are strictly decreasing continuous functions from [0,1] to

[0,1] such that L 0ð Þ ¼ R 0ð Þ ¼ 1 and L 1ð Þ ¼ R 1ð Þ ¼ 0.

L xð Þ and R xð Þ are called the left and the right shape

function, respectively.

If yc � yL ¼ yR � yc ¼ ye, then the L-R fuzzy number ey

is called L-R symmetrical fuzzy number and denoted by

ey ¼ ðyc; yeÞ.

Definition 2 [21] A fuzzy number ey is a so-called trian-

gular fuzzy number, ey ¼ ðyc; yL; yRÞ, if the corresponding

membership function l
ey
ðxÞ satisfies for all x 2 R

l
ey
ðxÞ ¼

x� yL
yc � yL

yL � x� yc;

yR � x

yR � yc
yc � x� yR;

0 else:

8

>

>

>

<

>

>

>

:

Remark Some papers define ey ¼ yc; yl; yrð Þ where yl and

yr are the left and right spread of ey, i.e., yl ¼ yc � yL and

yr ¼ yR � yc. In the current paper, using ey ¼ yc; yL; yRð Þ is

more appropriate because we need to search a set of unique

hyperplanes of the proposed fuzzy CNLS methods. Here-

after, we denote ey ¼ yc; yl; yrð Þ spread format and ey ¼
yc; yL; yRð Þ endpoint format.

2.1 Fuzzy Linear Regression Models

Diamond [22] derived the fuzzy least squares method for

the fuzzy linear regression model of the following form (1)

~yi ¼ ~aþ ~b1xi1 þ ~b2xi2 þ . . .þ ~bmxim i ¼ 1; 2; . . .; n ð1Þ

xi1; xi2; . . .; xim; eyið Þ; i ¼ 1; . . .; n; be n pairs of crisp input

and fuzzy output observations. The fuzzy parameters,

ea; eb1; . . .; ebm Let ea ¼ ðac; aL; aRÞ, ebj ¼ ðbcj; bLj; bRjÞ for

j ¼ 1; 2; . . .;m, be the triangular fuzzy parameter. More-

over, let b

ey i ¼ byci; byLi; byRið Þ be the estimated fuzzy

response, and by Zadeh’s extension principle of fuzzy

numbers, we have

~aþ
X

m

j¼0

~bjxij ¼ ac þ
X

m

j¼1

bcjxij; aL þ
X

m

j¼1

bLjxij; aR þ
X

m

j¼1

bRjxij

 !

¼ ~yi ¼ yci; yLi; yRið Þ:

2.2 Fuzzy Least Squares Estimation [22]

There are three major approaches to finding the fuzzy

parameters, ea and ebj, of the regression model, (i) possi-

bilistic regression analysis, (ii) fuzzy least squares meth-

ods, and (iii) machine learning. See Chukhrova and

Johannssen’s review paper for more details [2]. Since we

derive Fuzzy-CNLS based on Diamond’s fuzzy least

squares method [22], we present Diamond’s model below

and the CNLS approach next.

Diamond [22] developed the fuzzy least squares method

to obtain the fuzzy parameters by minimizing the total

squared error of the output of the following least square

problem.

min
ac;al;ar ;bcj;blj;brj

X

n

i¼1

b~yi � ~yi

� �2

¼
X

n

i¼1

ac þ
X

m

j¼1

bcjxij � yci

 !2

þ
X

n

i¼1

al þ
X

m

j¼1

bljxij � yli

 !2

þ
X

n

i¼1

ar þ
X

m

j¼1

brjxij � yri

 !2

:

Note that the above regression coefficients, ea and ebj, are

in the spread format. If the regression coefficients are fuzzy

triangular numbers, we can have the following Diamond

method with the fuzzy numbers in the endpoint format

[20].

[Diamond]

min
ac;aL;aR;bcj;bLj;bRj

X

n

i¼1

b~yi � ~yi

� �2

¼
X

n

i¼1

ac þ
X

m

j¼1

bcjxij � yci

 !2

þ
X

n

i¼1

aL þ
X

m

j¼1

bLjxij � yLi

 !2

þ
X

n

i¼1

aR þ
X

m

j¼1

bRjxij � yRi

 !2

:

2.3 Convex Nonparametric Least Squares (CNLS)

CNLS is a nonparametric regression method shown below.

y ¼ f xð Þ þ eCNLS;

where f xð Þ is a function with shape restrictions, y is the

dependent crisp output variable, x is a vector of crisp input

variables, and eCNLS is a random variable satisfying

EðeCNLSjxÞ ¼ 0. Kuosmanen [17] derived the following

quadratic programming formulation to estimate any f xð Þ.
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[CNLS]

mina;b;e

X

n

i¼1

ðeCNLS
i Þ2

s:t: yi ¼ ai þ
X

m

j¼1

bijxij þ eCNLS
i for i ¼ 1; . . .; n; ð2Þ

ai þ
X

m

j¼1

bijxij � ah þ
X

m

j¼1

bhjxij for i; h ¼ 1; . . .; n and i 6

¼ h;

ð3Þ
bij � 0; for i ¼ 1; . . .; n; j ¼ 1; . . .;m ð4Þ

where yi is the crisp output, xij is the crisp input j, and eCNLSi

is the disturbance term representing the deviation of

observation i from the estimated function.

The first n equality constraints (different hyperplanes)

are used to approximate the unknown underlying function,

f xð Þ, where ai and bij are specific to each observation i.

Afriat concavity inequalities and monotonicity constraints

are represented by constraints (3) and (4), respectively.

According to Kuosmanen and Kortelainen [23], the

[CNLS] may not generate a unique optimal solution in

terms of ai and bij. However, the fitted values,

byi ¼ bai þ
Pm

j¼1
bbijxij, are unique. Thus, we can calculate a

low concave envelope for the estimated function. Kuos-

manen and Kortelainen [23] proposed to estimate the low

concave envelop by solving the following problems with

the estimated byi by [CNLS].

[CNLS-LCEi]

minai;bij ai þ
X

m

j¼1

bijxijjai þ
X

m

j¼1

bijxij � byi8i
( )

;

where aiandbij is the unique optimal solution to [CNLS],

which may be distinct from the results ðbai; bbijÞ estimated in

[CNLS]. The resulting model (a set of unique hyperplanes)

of [CNLS-LCEi] is used for the forecasting process. The

number of unique hyperplanes is smaller than that of

observations.

The advantages of CNLS are its nonparametric, non-

linear, and better estimation performance than ordinary

least squares (OLS), see [17, 23, 24, 25], which are also

applied to Fuzzy-CNLS.

3 Fuzzy-CNLS Regression Method

In this section, we derive the Fuzzy-CNLS regression

method, discuss the issue of shape constraints, and provide

a forecasting process with Fuzzy-CNLS models.

The main concern is how we can employ the CNLS

method in the fuzzy regression analysis. We find that the

Diamond method of the fuzzy regression model can apply

the CNLS method. It is because from [Diamond], we can

have three individual OLSs, [Diamond-c], [Diamond-L],

and [Diamond-R], shown below. A similar approach can

be found in [20].

[Diamond-c]

min
ac;bcj;eci

X

n

i¼1

ðeci Þ
2jyci ¼ ac þ

X

m

j¼1

ðbcÞjxij þ eci 8i
( )

[Diamond-L]

min
aL;bLj;eLi

X

n

i¼1

ðeLi Þ
2jyLi ¼ aL þ

X

m

j¼1

ðbLÞjxij þ eLi 8i
( )

[Diamond-R]

min
aR;bRj;eRi

X

n

i¼1

ðeRi Þ
2jyRi ¼ aR þ

X

m

j¼1

ðbRÞjxij þ eRi 8i
( )

[Diamond-c] is the regression model for the center

point, while [Diamond-L] and [Diamond-R] are for the

left and right endpoints, respectively.

For simplification, we define [Diamond-(K)] for K ¼
fc; L;Rg representing the above three Diamond’s models.

[Diamond-(K)]

min
aK ;bKj;eKi

X

n

i¼1

ðeKi Þ
2jyKi ¼ aK þ

X

m

j¼1

ðbKÞjxij þ eKi 8i
( )

It is noted that Diamond used OLS to approximate the

fuzzy regression functions of the center, left endpoint, and

right endpoint. Instead of using OLS, we propose to use

CNLS to approximate the fuzzy regression functions. We

consider the fuzzy regression in the form of y ¼ f xð Þ þ
eCNLS for;K ¼ fc; L;Rg. Then we apply {CNLS} for each

K, and we have.

[Fuzzy-CNLS-(K)]

min
aKi;ðbK Þij;eKi

X

n

i¼1

ðeKi Þ
2

s:t: yKi ¼ aKi þ
X

m

j¼1

ðbKÞijxij þ eKi for i ¼ 1; . . .; n; ð5aÞ

aKi þ
X

m

j¼1

ðbKÞijxij � aKh þ
X

m

j¼1

ðbKÞhjxij; for i; h

¼ 1; . . .; n; and i 6¼ h: ð5bÞ

ðbKÞij � 0i ¼ 1; . . .; n; j ¼ 1; . . .;m: ð5cÞ

Like [CNLS], the [Fuzzy-CNLS-(K)] may not generate

a unique optimal solution, and we need to calculate a low
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concave envelope for the estimated function using the

following model.

[Fuzzy-CNLS-(K)-LCEi]

mina
Kbi
;ðbK Þ
bi j

a
Kbi

þ
X

m

j¼1

ðbKÞ
bij
xijja

Kbi
þ
X

m

j¼1

ðbKÞ
bij
xij � byKi8i

( )

;

ð5dÞ

where a
Kbi
; ðbKÞ

bij
is the unique optimal solution to [Fuzzy-

CNLS-(K)], which may be distinct from the results

ðaKi; ðbKÞijÞ estimated in [Fuzzy-CNLS-(K)].Conse-

quently, we can use [Fuzzy-CNLS-(K)] to conduct a fuzzy

regression analysis, and the resulting fuzzy regression

model is nonlinear found by solving [Fuzzy-CNLS-(K)-

LCEi]. That is,

a
cbi
þ
Pm

j¼1ðbcÞ
bij
xij 8bi

a
Lbi
þ
Pm

j¼1ðbLÞ
bij
xij 8bi

a
Rbi

þ
Pm

j¼1ðbRÞ
bij
xij 8bi

8

>

>

<

>

>

:

Note that [Fuzzy-CNLS-(K)] inherits some properties

of the [Diamond] method and [CNLS] method. The fol-

lowing table, Table 1, shows the difference and similarities

between the Diamond and Fuzzy-CNLS methods.

According to [24], the coefficient of determination of

[CNLS] must be greater than that of OLS (R2
OLS �R2

CNLS).

Hence, the goodness of fit of the Fuzzy-CNLS method is

better than the Diamond method because each sub-model

of the Diamond method is OLS.

3.1 The Issue of Shape Constraints

In the development of CNLS by Kuosmanen [17], the

application domain is concave productivity function fore-

casting, and Afriat concavity inequalities (inequalities (3)

of [CNLS]) are employed. However, when we apply

[Fuzzy-CNLS-(K)], convex regression functions may be

involved. Lee et al. [25] mentioned these concavity and

convexity constraints in the context of CNLS. The

inequalities (5b) are modified by changing ‘‘� ’’ to ‘‘� ’’ to

capture the convexity of the forecasting function instead of

the concavity. That is,

aKi þ
X

m

j¼1

ðbKÞijxij � aKh þ
X

m

j¼1

ðbKÞhjxij for i; h

¼ 1; . . .; n and i 6¼ h: ð6bÞ

Accordingly, the [Fuzzy-CNLS-(K)-LCEi] is also

changed to

maxa
Kbi
;ðbK Þ
bi j

a
Kbi

þ
X

m

j¼1

ðbKÞ
bij
xijja

Kbi
þ
X

m

j¼1

ðbKÞ
bij
xij � byKi8i

( )

;

ð6dÞ

3.2 Development of Fuzzy Nonlinear Regression Model

by Fuzzy-CNLS

[Fuzzy-CNLS-c], [Fuzzy-CNLS-L], and [Fuzzy-CNLS-

R] may need different concavity or convexity constraints to

estimate the concavity or the convexity of the corre-

sponding regression functions.

We call [Fuzzy-CNLS-(K)] with 5(a), 5(b), 5(c) con-

cavity model and [Fuzzy-CNLS-(K)] with 5(a), 5(b),

5(c) convexity model.

We use this subsection to describe the development

steps in detail, i.e., the calculation steps of using [Fuzzy-

CNLS-(K)], [Fuzzy-CNLS-(K)-LCEi], and two different

shape constraints to develop a fuzzy nonlinear regression

model. The calculation steps are described below.

Table 1 The difference and similarities of Diamond and Fuzzy-

CNLS methods

Diamond Fuzzy-CNLS

Parametric/

nonparametric

Parametric Nonparametric

Linear/nonlinear Linear Nonlinear

No. of

Submodels

3 3

No. of

hyperplanes

3 3\ no. hyperplanes\ 3n

Goodness of fit Better than Diamond (since CNLS is

better than OLS)

Table 2 Eight [Fuzzy-CNLS] models with different combinations of

the shape constraints

[Fuzzy-CNLS] [Fuzzy-CNLS-(K)]

Center (c) Left (L) Right (R)

CCC Concavity* Concavity Concavity

CCV Concavity Concavity Convexity**

CVC Concavity Convexity Concavity

CVV Concavity Convexity Convexity

VCC Convexity Concavity Concavity

VCV Convexity Concavity Convexity

VVC Convexity Convexity Concavity

VVV Convexity Convexity Convexity

*For concavity model, we use [Fuzzy-CNLS-(K)] with 5(a), 5(b),

5(c)

**For convexity model, we use [Fuzzy-CNLS-(K)] with 5(a), 6(b),

5(c)
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First, for K ¼ fc; L;Rg, solve the concavity model and

convexity model. Then, we have eight [Fuzzy-CNLS]

models with different combinations of the concavity model

and convexity model, shown in Table 2 below.

Second, the similarity of each fuzzy nonlinear regres-

sion model is calculated. The model with the highest

similarity score is selected.

Third, use 5(a) of the corresponding concavity or con-

vexity model to obtain the hyperplanes of the Center, the

Left, and the Right models.

Fourth, [Fuzzy-CNLS-(K)-LCEi] with 5(d) or 6(d) is

then used to calculate the resulting fuzzy nonlinear

regression model if [Fuzzy-CNLS-(K)] is the concavity

model or convexity model, respectively. Note that resulting

hyperplanes 5(a) of [Fuzzy-CNLS-(K)] are used as input to

[Fuzzy-CNLS-(K)-LCEi]. For example, if [CCV] has the

largest similarity, [Fuzzy-CNLS-(K)-LCEi] with 5(d) is

used to calculate the Center and Left models and with

6(d) to calculate the Right model. The similarity calcula-

tion will be discussed in Sect. 4.

Figure 1 provides the information flow of the Fuzzy-

CNLS calculation steps in developing fuzzy nonlinear

regression models.

3.3 Forecasting Process with Fuzzy-CNLS

Regression Models

In [CNLS], the forecasting process for a given observation

is described in [24] for concavity models. In short, let xtj be

the observed inputs for a given observation t. We first

found the fitted values, byi ¼ bai þ
Pm

j¼1
bbijxtj, using the

hyperplane i. Then, the forecasted

byt ¼ min bytijbyti ¼ bai þ
X

m

j¼1

bbijxtj8i
( )

: ð7aÞ

See Fig. 2 for the illustration of the forecasting results in

a regression model with one input and four hyperplanes.

In Fuzzy-CNLS, we use the above forecasting process of

CNLS in [Fuzzy-CNLS-(K)-LCEi] for K = {c, L, R} to

find bey t ¼ ðbyc; byL; byRÞ for concavity models. For convexity

models, we use.

byt ¼ max bytijbyti ¼ bai þ
X

m

j¼1

bbijxtj8i
( )

ð7bÞ

For example, if [CCV] has the largest similarity, 7(a) is

used for the Center and Left models and 7(b) for the Right

model. Also, see Fig. 1 for reference.

4 The Goodness of Fit (Similarity-Distance
Measure)

To evaluate the performance of fuzzy regression results, we

can find several popular approaches from the literature, the

goodness of fit index, similarity measures, and distance

measures.

We also find that distance is more popular than simi-

larity, and Zeng et al. [26] derived the following formula to

calculate the similarity measure between two fuzzy trian-

gular numbers, ea and eb.

S ea; eb
� �

¼ 1 � ac � bcj j þ al � blj j þ ar � brj j
max ac þ ar; bc þ brð Þ � min ac � al; bc � blð Þ ð8Þ

ð8Þ

Zeng et al. proved that S ea; eb
� �

satisfies.

(P1) ea ¼ eb , S ea; eb
� �

¼ 1

(P2) S ea; eb
� �

¼ Sðeb; eaÞ

(P3) ea � eb � ec ) S ea; ecð Þ�min S ea; eb
� �

; S eb; ec
� �n o

(P4) S ea; eacð Þ ¼ 0

Fig. 1 Information flow of the Fuzzy-CNLS
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if ea is a crisp set. Indeed, S ea; eb
� �

also satisfies (P5),

0� Sðea; ebÞ� 1, shown in Theorem 1

Theorem 1 S ea; eb
� �

is the similarity measure of fuzzy

triangular numbers ea and eb with the following properties:

P(1) to P(5).

Proof P(1), P(2), P(3), and P(4), see Theorem 5 of Zeng

et al. [26]. For P(5), 0� Sðea; ebÞ� 1, we prove that

max ac þ ar; bc þ brð Þ � minðac � al; bc � blÞð Þ�
ac � bcj j þ al � blj j þ jar � brjð Þ as follows.

max ac þ ar; bc þ brð Þ � minðac � al; bc � blÞð Þ results in

four result scenarios, (i) ac þ ar � ðbc � blÞ, (ii)

bc þ br � ðbc � blÞ, (iii) bc þ br� (ac � alÞ, and (iv)

ac þ ar � ðac � alÞ:
For ið Þac þ ar� bc � blð Þ � ac � bcj j þ al � blj j þ jar � brjð Þ

¼ðac � bcÞ � ac � bcj j þ ar þ bl � al � blj j þ jar � brjð Þ
� ar þ bl � al � blj j þ ar � brj jð Þ ¼ ðar � brÞ þ br þ bl � al � blj j þ ar � brj jð Þ
� br þ bl � al � blj jð Þ ¼ br þ bl � alð Þ þ al � bl � alj jð Þ� br þ al � 0

ForðiiÞ; bc þ br�ðbc � blÞ � ac � bcj j þ al � blj j þ jar � brjð Þ
� bc þ brð Þ � bc � blð Þ � ½ bc þ brð Þ � ac þ arð Þ�
� ac � bcj j þ al � blj j þ jar � brjð Þ
¼ ðac þ arÞ � bc � blð Þ � ac � bcj j þ al � blj j þ jar � brjð Þ� 0

We can have the results of (iii) and (iv) similar to (i) and

(ii), respectively.

Fig. 2 Illustration of the forecast byt for on x input and four hyperplanes regression model (Concavity model)

Table 3 Data of Example 1 i x1 yc yL yR

1 5 11 4 19

2 8 16 11 20

3 11 18 15 21

4 14 24 21 26

5 17 25 23 27

6 19 30 26 34

7 22 31 27 39

8 24 37 28 48

*Source Table 2 of [28]

123

W. Chung et al.: A Fuzzy Convex Nonparametric Least Squares Method… 2739



S ea; eb
� �

also is a distance measure with

ac � bcj j þ al � blj j þ jar � brj, which does not require the

intersection properties. Due to S ea; eb
� �

consisting of both

similarity and distance measure properties, we employ

S ea; eb
� �

to discuss the empirical results of the current

paper.

5 Illustrative Example and Application

We use one example and one application to illustrate the

proposed [Fuzzy-CNLS-(K)] model and compare the

results with the [Diamond] and the FLAR method of Zeng

et al. [26]. All the models and examples are coded in

GAMS [27] with the Pathnlp solver and run on a PC. We

compare the FLAR method because the FLAR is becoming

popular, and we believe its performance is better than

Diamond’s. The formulations of the FLAR are given in

supplementary material.

5.1 An Illustrative Example

This illustrative example, example 1, is retrieved from

[28]. Table 3 shows the data with one input ðx1Þ. Figure 3

is the scatter diagram. Following the development steps in

Sect. 3.2, first, we calculated three concavity models

(Fuzzy � CNLS Kð Þ 5(a), 5(b), 5(c)) and three convexity

models Fuzzy � CNLS Kð Þ 5(a), 6(b), 5(c)) for K = {c, L,

R}.

Second, using Eq. (8), eight similarity scores are found

and shown in Table 4 below.

Third, the [Fuzzy-CNLS] model (VCV) consists of two

convexity models (the Center and the Right) and one

concavity model (the Left) due to its largest similarity

score. By 5(a) of their corresponding models, we have

eight hyperplanes for the Center, the Left, and the Right,

shown in rows 3–11 of Table 5. The last two rows present

the results of the Diamond model and FLAR model,

respectively. The similarity of Fuzzy-CNLS (0.749) is

much better than that of Diamond (0.543) and FLAR

(0.593) in this example. Figure 4 shows the results of the

Diamond method, in which we have three single

hyperplanes.
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x1
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Fig. 3 Scatter plot of Example 1
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Fourth, since the Center and Right are convexity

models, and 6(d) of [Fuzzy-CNLS-(K)-LCEi] is used to

calculate the hyperplanes of the corresponding regression

model 5(a). On the other hand, the Left is the concavity

model, and 5(d) of [Fuzzy-CNLS-(K)-LCEi] is used to find

the hyperplanes to represent the fuzzy nonlinear regression

model. Tables 6, 7, and 8 summarize the hyperplanes of the

Center, Left, and Right regression models, respectively.

There are two, four, and five hyperplanes for the Center,

Left endpoint, and Right endpoint.

5.1.1 An Instance of a Forecasting Process

with Hyperplanes

The last columns of Tables 6, 7, and 8 are the forecasting

result when xt ¼ 21. For the Center, there are two hyper-

planes, C1 and C2. We use byCt ¼ aC þ bC � xtð Þ to find the

corresponding estimated byCt, 30.896 by C1 and 29.639 for

C2. Since Center is a concavity model, (max{byCt}) of 7(b)

is used and the byCt ¼ max byCtf g ¼ max 30:896;f
29:639g ¼ 30:896. Similarly, we can have

byLt ¼ 26:569andbyRt ¼ 37:251. Then, b

eyt ¼ byct; byLt;ð
byRtÞ ¼ ð30:896; 26:569; 37:251Þ.

Figure 5 presents the positions of the hyperplanes of

Example 1. C1-c2 are the hyperplanes of the Center; L1-L4

are the hyperplanes of left endpoints; R1-R5 are the right

endpoints’ hyperplanes. These hyperplanes are listed in

Tables 6, 7 and 8. Different numbers of resulting hyper-

planes to the Center, Left, and Right may be obtained.

5.2 An Application

This example is retrieved from [20], in which the afford-

able levels of house prices in Shanghai (China) are ana-

lyzed. They considered a set of influential factors,

including three policy factors (the mortgage interest rate

(x2Þ, the real estate tax (x3), and the down payment ratio

(x4Þ) and three non-policy factors (the housing size (x1Þ,

Table 4 Similarity scores of

the Example 1 and 2
[Fuzzy-CNLS] [Fuzzy-CNLS-(K)] Similarity score

Center (c) Left (L) Right (R) Example 1 Example 2

CCC Concavity Concavity Concavity 0.594 0.774

CCV Concavity Concavity Convexity 0.717 0.763

CVC Concavity Convexity Concavity 0.550 0.758

CVV Concavity Convexity Convexity 0.647 0.746

VCC Convexity Concavity Concavity 0.579 0.731

VCV Convexity Concavity Convexity 0.749 0.764

VVC Convexity Convexity Concavity 0.575 0.749

VVV Convexity Convexity Convexity 0.719 0.783

Table 5 The results of the

Fuzzy-CNLS analysis for

Example 1

Fuzzy-CNLS Center Left endpoint Right endpoint Similarity (S)

Convexity model 5(a) Concavity model 5(a) Convexity model 5(a)

Hyperplane no aC bC aL bL aR bR MSM (avg.)

1 5.675 1.201 - 7.175 2.235 17.333 0.333 0.749

2 5.675 1.201 - 7.175 2.235 17.333 0.333

3 5.675 1.201 - 2.322 1.628 15.982 0.514

4 5.675 1.201 - 2.322 1.628 9.187 1.123

5 5.675 1.201 6.016 1.033 9.187 1.123

6 5.675 1.201 6.016 1.033 - 9.831 2.242

7 5.675 1.201 16.762 0.467 - 9.831 2.242

8 - 21.895 2.454 16.762 0.467 - 54.082 4.253

Diamond 4.918 1.272 0.72 1.244 7.652 1.44 0.543

FLAR 1.542 0.214 0.273 0.593
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the annual household income (x5Þ, and the family popula-

tion (x6Þ). 147 samples were collected, and the

corresponding data table is in supplementary material

(see S1).

We employed 147 samples, and the resulting hyper-

planes are provided in Tables S2, S3, S4 in supplementary

material. Figures 6 and 7 show the possible requirement of

convexity constraints for estimating the regression func-

tions of the Center, Left endpoint, and Right endpoint. See
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5
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L c R obs-yc obs-yL obs-yR

Fig. 4 Diamond results and the observations

Table 6 Fuzzy nonlinear

regression model of Example 1

by [Fuzzy-CNLS-(K)-
LCEi] for Center

Center Forecast

Convexity model 6(d) xt ¼ 21

Hyper-plane no aC bC byCt ¼ aC þ bC � ðxtÞ

c1 5.675 1.201 30.896/ by 7(b) for convexity model (max{byCt})

c2 - 21.895 2.454 29.639

Table 7 Fuzzy nonlinear

regression model of Example 1

by [Fuzzy-CNLS-(K)-
LCEi] for Left

Left endpoint Forecast

Concavity model 5(d) xt ¼ 21

Hyper-plane no aL bL byLt ¼ aLþ bL � ðxtÞ

L1 - 7.175 2.235 39.76

L2 - 2.322 1.628 31.866

L3 6.016 1.033 27.709

L4 16.762 0.467 26.569 / by 7(a) for concavity model (min{byLt})
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the last column of Table 4, and the [Fuzzy-CNLS] with

(VVV) obtains largest similarity. Hence, convexity con-

straints are employed for all K. On the other hand, Zhou

et al. [20] mentioned that all three policy factors (x2; x3; x4)

and the family population (x6Þ are negatively correlated

with the affordable levels of house prices. Hence, these

data are converted into negative for having ðbKÞij � 0 in

[Fuzzy-CNLS-(K)].

After solving [Fuzzy-CNLS-(K)] and then [Fuzzy-

CNLS-(K)-LCEi], we have 117, 128, and 108 for Center,

Left endpoint, and Right endpoint, respectively, see the last

column of Table 9. The details of hyperplanes are attached

Table 8 Fuzzy nonlinear

regression model of Example 1

by [Fuzzy-CNLS-(K)-
LCEi] for Right

Right endpoint Forecast

Convexity model 6(d) xt ¼ 21

Hyper-plane no aR bR byRt ¼ aRþ bR � ðxtÞ

R1 17.333 0.333 24.326

R2 15.982 0.514 26.776

R3 9.187 1.123 32.77

R4 - 9.831 2.242 37.251 / by 7(b) for convexity model (max{byRt})

R5 - 54.082 4.253 35.231

Fig. 5 Hyperplanes of Example 1 with observations
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in supplementary material, Tables S2, S3, S4, which can be

used for the forecasting process—for instance, estimated bey i
is (298.67, 180.3, 365.6) for a new sample

(9 1 = 70, 9 2 = 4.9, 9 3 = 0.6, 9 4 = 35, 9 5 = 30, 9

6 = 4). The forecasting results with Table 12, 13, and 14

are shown in Table 9.

For the similarity of different methods, we have 0.716,

0.719, and 0.783 for the FLAR, Diamond, and Fuzzy-

CNLS, respectively.

As mentioned in [20], Zhou et al. considered two out-

liers out of 147 samples based on their far-from-zero

residual errors. Hence, 145 samples were employed in their

analyses. These two outliers are bolded in Table 11. It may

be interesting to investigate empirically if the similarities

of Diamond, FLAR, and Fuzzy-CNLS for these 145

observations significantly differ from the similarities with

all 147 observations (including outliers). Table 10 sum-

marizes the similarity scores of different methods. Outliers

do not affect the similarity significantly, and the perfor-

mance of Fuzzy-CNLS is better than that of Diamond and

FLAR.

6 Conclusion

This paper proposes a new fuzzy convex nonparametric

least squares method (fuzzy-CNLS) for the triangular fuzzy

output crisp input model, which is a nonparametric method

for no prior specification of the functional form of the

resulting regression function is required. The resulting

fuzzy regression model is nonlinear. We first separate

Diamond’s fuzzy least squares model into three fuzzy

submodels, Center, Left endpoint, and Right endpoint.

Then, we employ a CNLS approach to each sub-model to

find the corresponding regression model. The original

CNLS was developed with the shape constraints (concavity

constraints) for the productivity efficiency analysis. We

consider that the regression function of each submodels

may be convex instead of concave. Hence, we propose

another type of shape constraint (convexity constraint) if

the corresponding submodels’ regression functions follow

the convex pattern. In Examples 1 and 2 of the current

paper, some estimated function follows a convex pattern

instead of a concave one. Hence, some modifications are

needed in the proposed Fuzzy-CNLS. Two examples have

been used to illustrate shape constraints, better similarity

scores, and insensitivity of outliers of Fuzzy-CNLS.

The limitation of Fuzzy-CNLS comes from the shape

constraints, which contribute to the abovementioned

advantages. It is because the shape constraints generate

many constraints that incur computational burdens. From

the literature, we can find Lee et al. [25] and Mazumder

et al. [29] proposed an efficient algorithm. Further research

is needed to find an approach to using these efficient

algorithms to resolve three Fuzzy-CNLS submodels with

the same set of input variables. Other further researches are

to extend the Fuzzy-CNLS with ridge approaches, like

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160

yc yL yR

Fig. 6 Scatter plots of Y values for Example 2. *The horizontal axis is the observation number according to the ascending order of yc
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Fig. 7 Line plots of x values for Example 2. *The horizontal axis is the observation number according to the ascending order of yc

Table 9 Forecasting example

and number of hyperplanes
Estimations Hyperplane no Reference table No. of hyperplane planes

Center byc 298.67 78 Table 12 117

Left byL 180.30 107 Table 13 128

Right byR 365.60 56 Table 14 108

Table 10 Similarity results of

Example 2
Method 145 samples (without outliers) 147 samples (with outliers)

FLAR 0.719 0.716

Diamond 0.725 0.719

Fuzzy-CNLS 0.795 0.783
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[30], and to other fuzzy regression analyses, like the fuzzy-

input fuzzy output model.

Fuzzy Least Absolute Linear Regression Method
(FLAR)

min
ac;al;ar ;bcj;blj;brj;li;mi;xi;ti;ui;£i

X

n

i¼1

li þ mi þ xi þ ti þ ui þ£ið Þ

s.t.

yci � ac þ
X

m

j¼1

bcjxij

 !

¼ li � mi8i

yli � al þ
X

m

j¼1

bljxij

 !

¼ xi � ti8i

yri � ar þ
X

m

j¼1

brjxij

 !

¼ ui �£i8i

li; mi;xi; ti;ui;£i � 08i
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supplementary material available at https://doi.org/10.1007/s40815-

023-01522-0.
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5. Celmiņš, A.: Least squares model fitting to fuzzy vector data.

Fuzzy Sets Syst. (1987). https://doi.org/10.1016/0165-

0114(87)90070-4

6. Wang, N., Zhang, W.X., Mei, C.L.: Fuzzy nonparametric

regression based on local linear smoothing technique. Inf. Sci.

(Ny). (2007). https://doi.org/10.1016/j.ins.2007.03.002

7. Xu, R.: A linear regression model in fuzzy environment. Adv.

Model. Simul. 27, 31–40 (1991)

8. Xu, R.: S-curve regression model in fuzzy environment. Fuzzy

Sets Syst. (1997). https://doi.org/10.1016/s0165-0114(96)00120-

0

9. Diamond, P., Körner, R.: Extended fuzzy linear models and least

squares estimates. Comput. Math. Appl. (1997). https://doi.org/

10.1016/S0898-1221(97)00063-1

10. Yabuuchi, Y., Watada, J.: Fuzzy robust regression analysis based

on a hyperelliptic function. J. Oper. Res. Soc. Jpn. (1996). https://

doi.org/10.15807/jorsj.39.512

11. Kim, T.W., Lee, K.G., Hong, W.H.: Energy consumption char-

acteristics of the elementary schools in South Korea. Energy

Build. (2012). https://doi.org/10.1016/j.enbuild.2012.07.015

12. Ishibuchi, H., Tanaka, H., Okada, H.: An architecture of neural

networks with interval weights and its application to fuzzy

regression analysis. Fuzzy Sets Syst. (1993). https://doi.org/10.

1016/0165-0114(93)90118-2

13. Jung, H.Y., Yoon, J.H., Choi, S.H.: Fuzzy linear regression using

rank transform method. Fuzzy Sets Syst. (2015). https://doi.org/

10.1016/j.fss.2014.11.004

14. Li, A.H., Bradic, J.: Boosting in the presence of outliers: adaptive

classification with nonconvex loss functions. J. Am. Stat. Assoc.

(2018). https://doi.org/10.1080/01621459.2016.1273116

15. Choi, S.H., Buckley, J.J.: Fuzzy regression using least absolute

deviation estimators. Soft Comput. (2008). https://doi.org/10.

1007/s00500-007-0198-3

16. Cheng, C.B., Lee, E.S.: Nonparametric fuzzy regression - k-NN

and kernel smoothing techniques. Comput. Math. Appl. (1999).

https://doi.org/10.1016/S0898-1221(99)00198-4

17. Kuosmanen, T.: Representation theorem for convex nonpara-

metric least squares. Econom. J. (2008). https://doi.org/10.1111/j.

1368-423X.2008.00239.x

18. Kuosmanen, T., Johnson, A.L.: Data envelopment analysis as

nonparametric least-squares regression. Oper. Res. (2010).

https://doi.org/10.1287/opre.1090.0722

19. Kuosmanen, T.: Stochastic semi-nonparametric frontier estima-

tion of electricity distribution networks: application of the

StoNED method in the Finnish regulatory model. Energy Econ.

(2012). https://doi.org/10.1016/j.eneco.2012.03.005

20. Zhou, J., Zhang, H., Gu, Y., Pantelous, A.A.: Affordable levels of

house prices using fuzzy linear regression analysis: the case of

Shanghai. Soft Comput. (2018). https://doi.org/10.1007/s00500-

018-3090-4

21. Dubois, D.J., Prade, H.: Fuzzy Sets and Systems: Theory and

Applications. Academic Press, New York (1980)

22. Diamond, P.: Fuzzy least squares. Inf. Sci. (NY). (1988). https://

doi.org/10.1016/0020-0255(88)90047-3

23. Kuosmanen, T., Kortelainen, M.: Stochastic non-smooth envel-

opment of data: semi-parametric frontier estimation subject to

shape constraints. J. Product. Anal. (2012). https://doi.org/10.

1007/s11123-010-0201-3

24. Chung, W., Yeung, I.M.H.: A study of energy consumption of

secondary school buildings in Hong Kong. Energy Build. (2020).

https://doi.org/10.1016/j.enbuild.2020.110388

25. Lee, C.Y., Johnson, A.L., Moreno-Centeno, E., Kuosmanen, T.:

A more efficient algorithm for Convex Nonparametric Least

Squares. Eur. J. Oper. Res. (2013). https://doi.org/10.1016/j.ejor.

2012.11.054

26. Zeng, W., Feng, Q., Li, J.: Fuzzy least absolute linear regression.

Appl. Soft Comput. J. (2017). https://doi.org/10.1016/j.asoc.

2016.09.029

27. Bussieck, M.R., Meeraus, A.: General Algebraic Modeling Sys-

tem (GAMS). Presented at the (2004)

123

2746 International Journal of Fuzzy Systems, Vol. 25, No. 7, October 2023

https://doi.org/10.1007/s40815-023-01522-0
https://doi.org/10.1007/s40815-023-01522-0
https://doi.org/10.1109/tsmc.1982.4308925
https://doi.org/10.1109/tsmc.1982.4308925
https://doi.org/10.1142/S0218488507004789
https://doi.org/10.1142/S0218488507004789
https://doi.org/10.1016/0165-0114(87)90070-4
https://doi.org/10.1016/0165-0114(87)90070-4
https://doi.org/10.1016/j.ins.2007.03.002
https://doi.org/10.1016/s0165-0114(96)00120-0
https://doi.org/10.1016/s0165-0114(96)00120-0
https://doi.org/10.1016/S0898-1221(97)00063-1
https://doi.org/10.1016/S0898-1221(97)00063-1
https://doi.org/10.15807/jorsj.39.512
https://doi.org/10.15807/jorsj.39.512
https://doi.org/10.1016/j.enbuild.2012.07.015
https://doi.org/10.1016/0165-0114(93)90118-2
https://doi.org/10.1016/0165-0114(93)90118-2
https://doi.org/10.1016/j.fss.2014.11.004
https://doi.org/10.1016/j.fss.2014.11.004
https://doi.org/10.1080/01621459.2016.1273116
https://doi.org/10.1007/s00500-007-0198-3
https://doi.org/10.1007/s00500-007-0198-3
https://doi.org/10.1016/S0898-1221(99)00198-4
https://doi.org/10.1111/j.1368-423X.2008.00239.x
https://doi.org/10.1111/j.1368-423X.2008.00239.x
https://doi.org/10.1287/opre.1090.0722
https://doi.org/10.1016/j.eneco.2012.03.005
https://doi.org/10.1007/s00500-018-3090-4
https://doi.org/10.1007/s00500-018-3090-4
https://doi.org/10.1016/0020-0255(88)90047-3
https://doi.org/10.1016/0020-0255(88)90047-3
https://doi.org/10.1007/s11123-010-0201-3
https://doi.org/10.1007/s11123-010-0201-3
https://doi.org/10.1016/j.enbuild.2020.110388
https://doi.org/10.1016/j.ejor.2012.11.054
https://doi.org/10.1016/j.ejor.2012.11.054
https://doi.org/10.1016/j.asoc.2016.09.029
https://doi.org/10.1016/j.asoc.2016.09.029


28. Chang, P.T., Lee, E.S.: Fuzzy least absolute deviations regression

and the conflicting trends in fuzzy parameters. Comput. Math.

Appl. (1994). https://doi.org/10.1016/0898-1221(94)00143-X

29. Mazumder, R., Choudhury, A., Iyengar, G., Sen, B.: A compu-

tational framework for multivariate convex regression and its

variants. J. Am. Stat. Assoc. (2019). https://doi.org/10.1080/

01621459.2017.1407771

30. Choi, S.H., Jung, H.Y., Kim, H.: Ridge fuzzy regression model.

Int. J. Fuzzy Syst. (2019). https://doi.org/10.1007/s40815-019-

00692-0

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

William Chung is an associate

professor of Management Sci-

ences at the City University of

Hong Kong. He earned his

Ph.D. in Management Sciences

at the University of Waterloo,

Canada. His personal research

interests mainly focus on

developing mathematical

methodologies for energy-envi-

ronmental policy problems, like

large-scale equilibrium models,

benchmarking methods for the

energy consumption perfor-

mance of buildings, and

decomposition analysis of energy intensity. His papers can be found

in the following journalsOperations ResearchEuropean Journal of
Operational Research (EJOR), Computational Economics, Energy
Economics, Energy PolicyEnergyApplied Energyand Energy and
Buildings. In addition, he is the director and founder of the Energy

and Environmental Policy Research Unit at the City University of

Hong Kong. He was a visiting professor of the Center for Interna-

tional Energy and Environment Strategy Studies, Renmin University

of China. He also joined the PREE of APERC as an expert in 2019

and 2021.

’

123

W. Chung et al.: A Fuzzy Convex Nonparametric Least Squares Method… 2747

https://doi.org/10.1016/0898-1221(94)00143-X
https://doi.org/10.1080/01621459.2017.1407771
https://doi.org/10.1080/01621459.2017.1407771
https://doi.org/10.1007/s40815-019-00692-0
https://doi.org/10.1007/s40815-019-00692-0

	A Fuzzy Convex Nonparametric Least Squares Method with Different Shape Constraints
	Abstract
	Introduction
	Preliminaries
	Fuzzy Linear Regression Models
	Fuzzy Least Squares Estimation [22]
	Convex Nonparametric Least Squares (CNLS)

	Fuzzy-CNLS Regression Method
	The Issue of Shape Constraints
	Development of Fuzzy Nonlinear Regression Model by Fuzzy-CNLS
	Forecasting Process with Fuzzy-CNLS Regression Models

	The Goodness of Fit (Similarity-Distance Measure)
	Illustrative Example and Application
	An Illustrative Example
	An Instance of a Forecasting Process with Hyperplanes

	An Application

	Conclusion
	Fuzzy Least Absolute Linear Regression Method (FLAR)
	Acknowledgments
	References




