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Abstract In 2013, Yager introduced the theory of Pytha-

gorean fuzzy set (PFS) to generalize the application range

of fuzzy sets. Compared with fuzzy set and intuitionistic

fuzzy set (IFS), PFS is more capable to handle uncertainty

in the real world. Similarity measure is an important topic

in the theory of PFS and has been applied in various fields,

such as classification, clustering, decision making, and so

on. Meanwhile, overlap and grouping functions, as two

novel continuous binary aggregation functions, have been

discussed in the literature for applications in image pro-

cessing, decision making, classification and so on. The

main purpose of this paper is to construct similarity mea-

sures between PFSs based on overlap and grouping func-

tions. Firstly, on the basis of overlap and grouping

functions, we introduce two novel construction methods of

similarity measure between PFSs, called O-similarity

measure and G-similarity measure, respectively. Secondly,

we use some numerical examples to illustrate characteris-

tics of O-similarity measure in detail. Finally, we show the

applications of O-similarity measure in classification and

clustering to demonstrate effectiveness and superiority of

the proposed methods in the environment of expert

assessments and data sets. The results of experiments show

that O-similarity measure has better performance than

some existing similarity measures under some conditions.

Keywords Pythagorean fuzzy set � Similarity measure �
Classification � Clustering � Overlap function � Grouping
function

1 Introduction

The theory of fuzzy set is proposed by Zadeh [1] in 1965 to

describe uncertainty of phenomenon. After that, in 1986,

Atanassov proposed the theory of IFS [2]. The IFS is

characterized by the membership function and the non-

membership function. Therefore, compared with the fuzzy

set only characterized by the membership function, the IFS

can depict the uncertainty of data more detailedly.

In 2013, Yager [3, 4] introduced the Pythagorean theo-

rem into the theory of IFS and proposed the theory of PFS.

As the extension of IFS, PFS has greater representation

space for expressing the uncertainty of phenomenon [5].

Therefore, in the past decade, the theory of PFS was

developing rapidly. Especially in applications, the theory

of PFS has been widely applied in decision making

[4, 6–8], attribute reduction [9], self-driving vehicle [10],

conflict analysis [11], medical waste treatment [12], med-

ical diagnosis [13], and so on.

Similarity measure is an important topic in the theory of

fuzzy set and has been applied in various fields [5, 7, 14].

Ever since PFSs’ appearance, many authors have paid

attention to the similarity measure between PFSs. Peng et al.

[14] proposed 12 similarity measures between PFSs which

are derived from distance measures between PFSs. Zeng
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et al. [7] proposed some similarity measures between PFSs

which take into account five parameters of PFSs. Zhang et al.

[15] proposed four similarity measures between PFSs based

on exponential function. Firozja et al. [16] proposed a con-

struction method of similarity measure between PFSs based

on continuous triangular conorms (t-conorms, for short).

Bustince et al. [17, 18] pointed out that the associativity

property of triangular norms (t-norms, for short) and

t-conorms is not required for many applications, such as

decision making and classification problems. In 2010,

Bustince et al. [17] proposed the definition of overlap

functions that are not necessarily associative binary

aggregation functions. After that, in 2012, Bustince et al.

[18] proposed the definition of grouping functions. Since

then, overlap and grouping functions have been success-

fully applied in numerous fields, such as classification

[, 19, 20], decision making [21, 22], image processing [23],

fuzzy community detection [18], and so on.

It is worth noting that the associativity property of

t-conorm does not work in the construction method of

similarity measure between PFSs given by [16]. Mean-

while, overlap and grouping function, as two novel binary

continuous aggregation functions, are not necessarily

associative and widely applied in numerous application

problems. In addition, there are some application areas

which similarity measure between PFSs and overlap and

grouping functions work together, see, e.g., decision

making [7, 21, 22] and classification [5, 19, 20]. Therefore,

the purpose of this article is to introduce two novel meth-

ods to construct similarity measures between PFSs based

on overlap functions and grouping functions. In this way,

we can not only construct more useful similarity measures

between PFSs from the mathematical point of view, but

also provide more potential applications of similarity

measures between PFSs in actual classification and deci-

sion making problems from the application viewpoint.

The rest of this work is organized as follows. In Sect. 2, we

review some concepts used in this paper. In Sect. 3, we intro-

duce two novel construction methods of similarity measure

between PFSs based on overlap and grouping functions. In

Sect. 4, we provide some numerical examples to illustrate the

superiority and reasonability of proposed methods. In Sect. 5,

we apply the proposed methods to classification and clustering

problems. In Sect. 6, this article is summarized.

2 Preliminaries

2.1 Fuzzy Sets, Intuitionistic Fuzzy Sets

and Pythagorean Fuzzy Sets

Let U and V be two nonempty universes and I be the unit

interval [0, 1]. The notation MapðU;VÞ denotes the family

of all mappings from U to V. For each A 2 MapðU; IÞ; A is

called a fuzzy set on U [1].

Let I2I ¼ fðxi; yiÞ 2 I � I j 0� xi þ yi � 1g and I2P ¼
fðxp; ypÞ 2 I � I j 0� x2p þ y2p � 1g where I2I and I2P denote

the set of all intuitionistic fuzzy numbers (IFNs) [24] and

Pythagorean fuzzy numbers (PFNs) [6], respectively.

Actually, the set I2I is a subset of the set I2P (see Fig. 1).

Let p1 ¼ ða1; b1Þ and p2 ¼ ða2; b2Þ be two PFNs.

Denote that

pC1 ¼ ðb1; a1Þ;
p1 � p2 () a1 � a2 and b1 � b2;

p1 ¼ p2 () a1 ¼ a2 and b1 ¼ b2:

Definition 2.1 (See [2]) Let U be a universe. For each

A 2 MapðU; I2I Þ; A is called an IFS on U where AðuÞ ¼
ðlAðuÞ; mAðuÞÞ for each u 2 U; lAðuÞ and mAðuÞ denote

membership degree and non-membership degree, respec-

tively, of u in the IFS A. For each u 2 U; the hesitancy

degree of u denoted by pAðuÞ is defined as

pAðuÞ ¼ 1� lAðuÞ � mAðuÞ:

Definition 2.2 (See [3]) Let U be a universe. For each

A 2 MapðU; I2PÞ; A is called a PFS on U where AðuÞ ¼
ðlAðuÞ; mAðuÞÞ for each u 2 U; lAðuÞ and mAðuÞ denote

membership degree and non-membership degree, respec-

tively, of u in the PFS A. For each u 2 U; the hesitancy

degree of u denoted by pAðuÞ is defined as

pAðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðlAðuÞÞ2 � ðmAðuÞÞ2
q

:

Remark 2.1 It has been pointed out that the set I2I is a

subset of the set I2P: Therefore, from Definitions 2.1 and

2.2, one has that IFS is a special case of PFS.

Let A;B 2 MapðU; I2PÞ where AðuÞ ¼ ðlAðuÞ; mAðuÞÞ and
BðuÞ ¼ ðlBðuÞ; mBðuÞÞ are two PFNs for each u 2 U:

Denote that

Fig. 1 The comparison between PFNs and IFNs
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ACðuÞ ¼ ðAðuÞÞC;
A � B () AðuÞ�BðuÞ for each u 2 U;

A ¼ B () AðuÞ ¼ BðuÞ for each u 2 U:

2.2 Fuzzy Negations, t-Norms, t-Conorms, Overlap

and Grouping Functions

Definition 2.3 (See [25]) A non-increasing mapping N :

I ! I is called a fuzzy negation if Nð0Þ ¼ 1 and Nð1Þ ¼ 0:

Further, a fuzzy negation N is called strong or involutive if

NðNðxÞÞ ¼ x for each x 2 I:

For each x 2 I; NSðxÞ ¼ 1� x; N1;kðxÞ ¼ 1�x
1þkx ðk 2� �

1;þ1½Þ and N2;uðxÞ ¼ ð1� xuÞ
1
u ðu 2�0;þ1½Þ are three

types strong fuzzy negations [26] (see Fig. 2).

Lemma 2.1 Let N be a strong fuzzy negation. Then the

following statements hold.

(1) NðxÞ ¼ 1 if and only if x ¼ 0;

(2) NðxÞ ¼ 0 if and only if x ¼ 1;

Proof

(1) Let NðxÞ ¼ 1: Since Nð1Þ ¼ 0 and NðNðxÞÞ ¼ x for

each x 2 I; it follows that

NðxÞ ¼ 1 , NðNðxÞÞ ¼ Nð1Þ , x ¼ 0:

Therefore, one concludes that NðxÞ ¼ 1 if and only

if x ¼ 0:

(2) It can be proved in a similar way as for statement (1).

h

Definition 2.4 (See [25]) A mapping T : I � I ! I (resp.

S : I � I ! I) is called a t-norm (resp. t-conorm) if it is

commutative, is associative, is increasing and has 1 (resp.

0) as the neutral element.

Further, a t-norm T is called continuous if it is contin-

uous in both arguments at the same time. A t-norm T is

called positive if Tðx; yÞ ¼ 0; then either x ¼ 0 or y ¼ 0:

Definition 2.5 (See [17]) A binary function O : I � I ! I

is called an overlap function if, for any x; y 2 I; it satisfies

the following conditions:

(O1) O is commutative;

(O2) Oðx; yÞ ¼ 0 if and only if xy ¼ 0;
(O3) Oðx; yÞ ¼ 1 if and only if xy ¼ 1;

(O4) O is increasing;

(O5) O is continuous.

We now list some commonly used overlap functions

from [27–30] as follows.

Example 2.1

(1) Any continuous and positive t-norm is an overlap

function.

(2) For any p[ 0; the function Op : I � I ! I given, for

each x; y 2 I; by

Opðx; yÞ ¼ xpyp

is an overlap function.

(3) The function ODB : I � I ! I given, for each x; y 2
I; by

ODBðx; yÞ ¼
2xy

xþ y
if xþ y 6¼ 0;

0 if xþ y ¼ 0;

(

is an overlap function.

(4) The function Oþ : I � I ! I given, for each x; y 2 I;

by

Oþðx; yÞ ¼
2xy

1þ xy

is an overlap function.

(5) The function OMid : I � I ! I given, for each x; y 2
I; by

OMidðx; yÞ ¼ xy
xþ y

2

is an overlap function.

(6) The function OmM : I � I ! I given, for each x; y 2
I; by

OmMðx; yÞ ¼ minfx; ygmaxfx2; y2g

is an overlap function.

Definition 2.6 (See [18]) A binary function G : I � I ! I

is called a grouping function if, for any x; y 2 I; it satisfies

the following conditions:Fig. 2 The curves of some strong fuzzy negations
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(G1) G is commutative;

(G2) Gðx; yÞ ¼ 0 if and only if x ¼ y ¼ 0;

(G3) Gðx; yÞ ¼ 1 if and only if x ¼ 1 or y ¼ 1;
(G4) G is increasing;

(G5) G is continuous.

Lemma 2.2 (See [18]) Let N : I ! I be a strong fuzzy

negation. Then the following statements are equivalent.

(1) A binary function G : I � I ! I is a grouping

function.

(2) There exists an overlap function O such that, for

each x; y 2 I;

Gðx; yÞ ¼ NðOðNðxÞ;NðyÞÞÞ:

The grouping function G (resp. overlap function O)

given by Lemma 2.2 is called the N-dual grouping function

of O (resp. overlap function of G).

Lemma 2.3 (See [18]) Let G be a grouping function. If

G is associative, then G becomes a t-conorm.

3 Two Novel Construction Methods of Similarity
Measure Between PFSs

To begin with, we review the concept of similarity measure

between PFSs.

Definition 3.1 (See [7]) A mapping S : MapðU; I2PÞ �
MapðU; I2PÞ ! I is called a similarity measure between

PFSs if, for each A;B;C 2 MapðU; I2PÞ; it satisfies the

following conditions:

(SP1) 0�SðA;BÞ� 1;
(SP2) SðA;BÞ ¼ SðB;AÞ;
(SP3) SðA;BÞ ¼ 1 if and only if A ¼ B;

(SP4) If A � B � C; then SðA;CÞ� minfSðA;BÞ;
SðB;CÞg:

3.1 Similarity Measure Derived from Overlap

Functions

In this subsection, we propose a novel method to construct

similarity measure between PFSs based on overlap func-

tions. To begin with, we propose the similarity measure

between PFNs based on overlap functions as follows.

Definition 3.2 Let k 2 ½1;þ1½; Na and Nb be two strong

fuzzy negations and O be an overlap function. The map-

ping SO
P : I2P � I2P ! I is defined as

SO
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a2jkÞ;Nbðjb1 � b2jkÞÞ
k

q

ð1Þ

where p1 ¼ ða1; b1Þ; p2 ¼ ða2; b2Þ 2 I2P:

Theorem 3.1 Let SO
P be the mapping given by Eq. (1).

Then, for each p1 ¼ ða1; b1Þ; p2 ¼ ða2; b2Þ; p3 ¼ ða3; b3Þ 2
I2P; the following statements hold.

(1) 0�SO
P ðp1; p2Þ� 1;

(2) SO
P ðp1; p2Þ ¼ SO

P ðp2; p1Þ;
(3) SO

P ðp1; p2Þ ¼ 1 if and only if p1 ¼ p2;

(4) If p1 � p2 � p3; then

SO
P ðp1; p3Þ� min SO

P ðp1; p2Þ;S
O
P ðp2; p3Þ

� �

:

Proof

(1) Since a1; a2; b1; b2 2 I; one has that ja1 � a2j; jb1 �
b2j 2 I: Further, the unit interval I is closed under k-

power operation for each k 2�0;þ1½: In addition,

from Definitions 2.3 and 2.5, since strong fuzzy

negations Na and Nb are two unary operations on I

and overlap function O is a binary operation on I,

one obtains that 0�SO
P ðp1; p2Þ� 1:

(2) From Eq. (1), it follows that

SO
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a2jkÞ;Nbðjb1 � b2jkÞÞ
k

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja2 � a1jkÞ;Nbðjb2 � b1jkÞÞ
k

q

¼SO
P ðp2; p1Þ:

Therefore, one concludes that

SO
P ðp1; p2Þ ¼ SO

P ðp2; p1Þ:
(3) From Eq. (1), it follows that

SO
P ðp1; p2Þ ¼ 1 ()

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a2jkÞ;Nbðjb1 � b2jkÞÞ
k

q

¼ 1

()OðNaðja1 � a2jkÞ;Nbðjb1 � b2jkÞÞ ¼ 1:

Then, by condition (O3) of Definition 2.5, one has

that

SO
P ðp1; p2Þ ¼ 1 ()Naðja1 � a2jkÞ ¼ Nbðjb1 � b2jkÞ ¼ 1:

Further, from statement (1) of Lemma 2.1, one has

that strong fuzzy negation NðxÞ ¼ 1 if and only if

x ¼ 0. Thus, since Na and Nb are two strong fuzzy

negations, it follows that

SO
P ðp1; p2Þ ¼ 1 ()ja1 � a2jk ¼ jb1 � b2jk ¼ 0

()p1 ¼ p2:

Therefore, one concludes that SO
P ðp1; p2Þ ¼ 1 if and

only if p1 ¼ p2:

(4) Let p1 ¼ ða1; b1Þ; p2 ¼ ða2; b2Þ; p3 ¼ ða3; b3Þ 2 I2P
with p1 � p2 � p3: Then, since k 2 ½1;þ1½; it fol-
lows that
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ja1 � a3jk � max ja1 � a2jk; ja2 � a3jk
n o

and

jb1 � b3jk � max jb1 � b2jk; jb2 � b3jk
n o

:

Further, by Definition 2.3 and condition (O4) of

Definition 2.5, since O is increasing and Na;Nb are

non-increasing, it follows that

SO
P ðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a3jkÞ;Nbðjb1 � b3j
kÞÞk

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a2jkÞ;Nbðjb1 � b2jkÞÞ
k

q

¼SO
P ðp1; p2Þ

and

SO
P ðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja1 � a3jkÞ;Nbðjb1 � b3j
kÞÞk

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNaðja2 � a3jkÞ;Nbðjb2 � b3jkÞÞ
k

q

¼SO
P ðp2; p3Þ:

Therefore, one concludes that

SO
P ðp1; p3Þ� min SO

P ðp1; p2Þ;S
O
P ðp2; p3Þ

� �

:

h

For convenience, the mapping SO
P defined in Definition

3.2 is always said to be the O-similarity measure between

PFNs.

Definition 3.3 Let U ¼ fu1; u2; . . .; ung be a nonempty

finite universe, SO
P be the O-similarity measure between

PFNs given by Eq. (1) and x ¼ ðx1;x2; . . .;xnÞ 2�0; 1�n

with
Pn

i¼1 xi ¼ 1: The mapping SO : MapðU; I2PÞ �
MapðU; I2PÞ ! I is defined as

SOðA;BÞ ¼
X

n

i¼1

xiS
O
P ðAðuiÞ;BðuiÞÞ ð2Þ

where A;B 2 MapðU; I2PÞ:

In the following, x ¼ ðx1;x2; . . .;xnÞ 2�0; 1�n is

always said to be the weight vector of universe.

Theorem 3.2 Let U ¼ fu1; u2; . . .; ung be a nonempty

finite universe and SO be the mapping given by Eq. (2).

Then, for each A;B;C 2 MapðU; I2PÞ; the following state-

ments hold.

(1) 0�SOðA;BÞ� 1;

(2) SOðA;BÞ ¼ SOðB;AÞ;
(3) SOðA;BÞ ¼ 1 if and only if A ¼ B;

(4) If A � B � C; then SOðA;CÞ� minfSOðA;BÞ;
SOðB;CÞg:

Proof Statements (1) and (2) can be immediately derived

from Eqs. (1) and (2) and statements (1) and (2) of Theo-

rem 3.1. Therefore, we only verify statements (3) and (4) as

follows.

(C) Since xi 2�0; 1�; from Eqs. (1) and (2), it follows that

SOðA;BÞ ¼ 1 ()
X

n

i¼1

xiS
O
P ðAðuiÞ;BðuiÞÞ ¼ 1

()SO
P ðAðuiÞ;BðuiÞÞ ¼ 1 for i ¼ 1; 2; . . .; n:

Further, from statement (3) of Theorem 3.1, it fol-

lows that

SOðA;BÞ ¼ 1 () AðuiÞ ¼ BðuiÞ;

for each ui 2 U: Therefore, one concludes that

SOðA;BÞ ¼ 1 if and only if A ¼ B:

(D) Let A;B;C 2 MapðU; I2PÞ with A � B � C: Then,

from statement (4) of Theorem 3.1, one obtains that

SO
P ðAðuiÞ;CðuiÞÞ� min SO

P ðAðuiÞ;BðuiÞÞ;S
O
P ðBðuiÞ;CðuiÞÞ

� �

for each ui 2 U: Thus, for each ui 2 U; it follows

that

X

n

i¼1

xiS
O
P ðAðuiÞ;CðuiÞÞ�

X

n

i¼1

xiS
O
P ðAðuiÞ;BðuiÞÞ

and

X

n

i¼1

xiS
O
P ðAðuiÞ;CðuiÞÞ�

X

n

i¼1

xiS
O
P ðBðuiÞ;CðuiÞÞ;

respectively. Therefore, one concludes that

SOðA;CÞ� minfSOðA;BÞ;SOðB;CÞg:
h

From Theorem 3.2, one has that the mapping SO given

by Definition 3.3 is a similarity measure between PFSs.

The mapping SO is always said to be O-similarity measure

between PFSs.

Remark 3.1 In Definition 3.3, xi 6¼ 0 for each i 2
f1; 2; . . .; ng is important and necessary. Consider the fol-

lowing case. Let U ¼ fu1; u2g; x ¼ ð0; 1Þ; SO be the O-

similarity measure between PFSs and A;B 2 MapðU; I2PÞ
where A ¼ ð0:5;0:5Þ

u1
þ ð0:5;0:5Þ

u2
and B ¼ ð1;0Þ

u1
þ ð0:5;0:5Þ

u2
: Then,

by Eqs. (1) and (2), it follows that

SOðA;BÞ ¼ SO
P ðAðu2Þ;Bðu2ÞÞ ¼ 1:

However, A is not equivalent to B. Therefore, under this

case, SO not satisfies condition (SP3) of Definition 3.1, that

is, SO is not a similarity measure between PFSs.
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3.2 Similarity Measure Derived from Grouping

Functions

Definition 3.4 Let k 2 ½1;þ1½; N be a strong fuzzy

negation and G be a grouping function. The mapping SG
P :

I2P � I2P ! I is defined as

SG
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a2jk; jb1 � b2jk
� �� �

k

r

; ð3Þ

where p1 ¼ ða1; b1Þ; p2 ¼ ða2; b2Þ 2 I2P:

Theorem 3.3 Let SG
P be the mapping given by Eq. (3).

For each p1 ¼ ða1;b1Þ; p2 ¼ ða2; b2Þ; p3 ¼ ða3; b3Þ 2 I2P;

the following statements hold.

(1) 0�SG
P ðp1; p2Þ� 1;

(2) SG
P ðp1; p2Þ ¼ SG

P ðp2; p1Þ;
(3) SG

P ðp1; p2Þ ¼ 1 if and only if p1 ¼ p2;

(4) If p1 � p2 � p3; then SG
P ðp1; p3Þ� min SG

P ðp1; p2Þ;
�

SG
P ðp2; p3Þg:

Proof

(1) From Definitions 2.3 and 2.6, it can be proved in a

similar way as for statement (1) of Theorem 3.1.

(2) From Eq. (3), it follows that

SG
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a2jk; jb1 � b2j
k

� �� �

k

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja2 � a1jk; jb2 � b1jk
� �� �

k

r

¼SG
P ðp2; p1Þ:

Therefore, one concludes that

SG
P ðp1; p2Þ ¼ SG

P ðp2; p1Þ:
(3) From Eq. (3), it follows that

SG
P ðp1; p2Þ ¼ 1 ()

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a2jk; jb1 � b2jk
� �� �

k

r

¼ 1

()N G ja1 � a2jk; jb1 � b2jk
� �� �

¼ 1:

Further, from statement (1) of Lemma 2.1, one has

that strong fuzzy negation NðxÞ ¼ 1 if and only if

x ¼ 0. Therefore, from condition (G2) of Definition

2.6, since N is a strong fuzzy negation, it follows that

SG
P ðp1; p2Þ ¼ 1 ()G ja1 � a2jk; jb1 � b2j

k
� �

¼ 0

()ja1 � a2jk ¼ jb1 � b2jk ¼ 0

()p1 ¼ p2:

Therefore, one concludes that SG
P ðp1; p2Þ ¼ 1 if and

only if p1 ¼ p2:

(4) Let p1 ¼ ða1; b1Þ; p2 ¼ ða2; b2Þ; p3 ¼ ða3; b3Þ 2 I2P
with p1 � p2 � p3: Then, since k 2 ½1;þ1½; it fol-
lows that

ja1 � a3jk � max ja1 � a2jk; ja2 � a3jk
n o

and

jb1 � b3jk � max jb1 � b2jk; jb2 � b3jk
n o

:

Further, from Definition 2.3 and condition (G4) of

Definition 2.6, since G is increasing and N is non-

increasing, it follows that

SG
P ðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a3jk; jb1 � b3jk
� �� �

k

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a2jk; jb1 � b2jk
� �� �

k

r

¼SG
P ðp1; p2Þ

and

SG
P ðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a3jk; jb1 � b3jk
� �� �

k

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja2 � a3jk; jb2 � b3jk
� �� �

k

r

¼SG
P ðp2; p3Þ:

Therefore, one concludes that

SG
P ðp1; p3Þ� min SG

P ðp1; p2Þ;S
G
P ðp2; p3Þ

� �

:

h

For convenience, the mapping SG
P defined in Definition

3.4 is always said to be the G-similarity measure between

PFNs.

Remark 3.2

(1) In Definition 3.4, if we take N ¼ NS; k ¼ 2 and G as

an associative grouping function, then, by Lemma

2.3, it follows that

SG
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S ja1 � a2j2; jb1 � b2j2
� �

r

; ð4Þ

that is, the G-similarity measure SG
P ðp1; p2Þ

becomes the s-similarity measure between PFNs

given by Definition 3.1 of [16].

(2) In Definitions 3.2 and 3.4, if we take Na ¼ Nb ¼ N

and O as N-dual overlap function of grouping

function G, then, by Lemma 2.2, it follows that
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SO
P ðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OðNðja1 � a2jkÞ;Nðjb1 � b2jkÞÞ
k

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N G ja1 � a2jk; jb1 � b2j
k

� �� �

k

r

¼ SG
P ðp1; p2Þ:

Thus, we establish the contact between O-similarity

measure SO
P and G-similarity measure SG

P by Lemma

2.2. Therefore, in the following, we only discuss O-

similarity measure.

Definition 3.5 Let U ¼ fu1; u2; . . .; ung be a nonempty

finite universe, SG
P be the G-similarity measure between

PFNs given by Eq. (3) and x ¼ ðx1;x2; . . .;xnÞ 2�0; 1�n

with
Pn

i¼1 xi ¼ 1: The mapping SG : MapðU; I2PÞ �
MapðU; I2PÞ ! I is defined as

SGðA;BÞ ¼
X

n

i¼1

xiS
G
P ðAðuiÞ;BðuiÞÞ; ð5Þ

where A;B 2 MapðU; I2PÞ:

Theorem 3.4 Let U ¼ fu1; u2; . . .; ung be a nonempty

finite universe and SG be the mapping given by Eq. (5). For

each A;B;C 2 MapðU; I2PÞ; the following statements hold.

(1) 0�SGðA;BÞ� 1;

(2) SGðA;BÞ ¼ SGðB;AÞ;
(3) SGðA;BÞ ¼ 1 if and only if A ¼ B;

(4) If A � B � C; then SGðA;CÞ� min SGðA;BÞ;
�

SGðB;CÞg:

Proof From Definitions 3.4 and 3.5 and Theorem 3.3, it

can be proved in a similarity way as for Theorem 3.2. h

From Theorem 3.4, one has that the mapping SG given

by Definition 3.5 is a similarity measure between PFSs.

The mapping SG is always said to be G-similarity measure

between PFSs.

4 Numerical Examples

In this section, to verify the properties of O-similarity

between PFSs, we expound some numerical examples.

Example 4.1 Let U ¼ fug be a universe, a; b 2 ½0; 1� with
0� a2 þ b2 � 1; and A;B 2 MapðU; I2PÞ where A ¼ ða;bÞ

u

and B ¼ ðb;aÞ
u :

If we take overlap function O as Oþ; strong fuzzy

negations Na and Nb as Ns and k ¼ 2; the degree of

similarity between PFSs A and B calculated by SOþ are

shown in Fig. 3. We now show some analyses to this

example from Fig. 3 as follows.

(1) SOþðA;BÞ gets the maximum value 1 if and only if

A ¼ B (a ¼ b);

(2) If a ¼ 0; b ¼ 1 or a ¼ 1; b ¼ 0; then SOþðA;BÞ gets
the minimum value 0;

(3) For each a; b 2 ½0; 1� with 0� a2 þ b2 � 1;

SOþðA;BÞ 2 ½0; 1�;
(4) SOþðA;BÞ ¼ SOþðB;AÞ; that is, SOþ is

commutative.

Thus, Example 4.1 shows that the O-similarity measure

SOþ satisfies conditions (SP1)–(SP3) of Definition 3.1.

Example 4.2 Let U ¼ fug be a universe and A;B;C 2
MapðU; I2PÞ where A ¼ ð0:1;0:9Þ

u ; B ¼ ð0:4;0:8Þ
u and C ¼

ð0:6;0:6Þ
u ; respectively.

It is obvious that A � B � C: If we take overlap

function O as ODB; strong fuzzy negation Na as Ns, strong

fuzzy negation Nb as N1;2 and k ¼ 1; then one has that

SODBðA;CÞ ¼ 0:4667; SODBðA;BÞ ¼ 0:7241 and

SODBðB;CÞ ¼ 0:6667; respectively. Thus, one obtains that

SODBðA;CÞ� minfSODBðA;BÞ;SODBðB;CÞg:
Thus, Example 4.2 shows that the O-similarity measure

SODB satisfies condition (SP4) of Definition 3.1.

Further, we show the superiority and reasonability of O-

similarity measure as follows. Let U ¼ fu1; u2; . . .; ung be

a universe and A;B 2 MapðU; I2PÞ where AðuiÞ ¼
ðlAðuiÞ; mAðuiÞÞ and BðuiÞ ¼ ðlBðuiÞ; mBðuiÞÞ for each ui 2
U: Some existing similarity measure between A and B are

listed in Table 1.

Example 4.3 This numerical example is adopted from

[36] which includes six cases. All PFSs in this example are

Fig. 3 The similarity measure of PFSs given in Example 4.1
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on universe U ¼ fug: The degree of similarity between

PFSs calculated by existing methods are shown in Table 2.

Then, we construct some O-similarity measures to

calculate the degree of similarity of these cases. In this

example, we always take k ¼ 2 and Na as Ns: If we

determine the strong fuzzy negation Nb; then the corre-

sponding O-similarity measure is denoted SO
Nb
: Then the

degree of similarity between PFSs calculated by different

O-similarity measures are shown in Table 3.

In the end, we show some analyses based on Tables 2

and 3.

(1) For case 1, the degree of similarity between PFSs A

and B calculated by SC and S2
P are 1. However, A is

not equivalent to B. Thus, the O-similarity measures

used in this example are better than SC and S2
P under

case 1.

(2) For cases 1 and 2, the results calculated by SHK are

same. However, cases 1 and 2 are different. Mean-

while, the degree of similarity of cases 1 and 2

cannot be calculated by SY due to ‘‘the division by

zero problem’’. Thus, the O-similarity measures used

in this example are better than SHK and SY under

cases 1 and 2.

(3) For cases 3 and 4, the similarity measures SHY1;

SHY2; SHY3; SC; SL; SHK; S
O1

Ns
; SO2

Ns
; SO0:5

Ns
; SOþ

Ns
;

SODB

Ns
; SOmM

Ns
and SOMid

Ns
cannot distinguish these two

different cases. Thus, these similarity measures need

to improved. It is worth noting that the other O-

similarity measures used in this example can distin-

guish these two different cases. That is why two

strong fuzzy negations Na and Nb are considered in

Definition 3.2.

(4) For cases 5 and 6, O-similarity measures cannot

distinguish these two two cases. Thus, under these

cases, some existing similarity measures are better

than O-similarity measures.

Example 4.4 In this example, we consider five special

cases. In this example, all PFSs are on universe U ¼ fug:
Further, we always take k ¼ 1 and strong fuzzy negations

Na ¼ Nb ¼ Ns: Then the degree of similarity between PFSs

calculated by different similarity measures are shown in

Table 4. We now show some analyses based on Table 4 as

follows:

For cases 1 and 2, the similarity measures S1
P; S

2
P; S

3
P;

S4
P; S

5
P; S

1
Z; S

2
Z; S

3
Z and S4

P cannot distinguish these two

Table 1 Some existing

similarity measures between

PFSs

Author Similarity measure between PFSs

Hung and Yang [31] SHY1ðA;BÞ ¼ 1� 1
n

Pn
i¼1 max jlAðuiÞ � lBðuiÞj; jmAðuiÞ � mBðuiÞjf g

SHY2ðA;BÞ ¼ expðSHY1ðA;BÞ�1Þ�expð�1Þ
1�expð�1Þ

SHY3ðA;BÞ ¼ SHY1ðA;BÞ
2�SHY1ðA;BÞ

Ye [32] SYðA;BÞ ¼ 1
n

Pn
i¼1

lAðuiÞlBðuiÞþmAðuiÞmBðuiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
A
ðuiÞþm2

A
ðuiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2BðuiÞþm2BðuiÞ
p

Chen [33] SCðA;BÞ ¼ 1� 1
2n

Pn
i¼1 jlAðuiÞ � mAðuiÞ � ðlBðuiÞ � mBðuiÞÞj

Li et al. [34]
SLðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1
ððlAðuiÞ�lBðuiÞÞ2þðmAðuiÞ�mBðuiÞÞ2Þ

2n

r

Hong and Kim [35] SHKðA;BÞ ¼ 1� 1
2n

Pn
i¼1 jlAðuiÞ � lBðuiÞj þ jmAðuiÞ � mBðuiÞjð Þ

Peng et al. [14] S1
PðA;BÞ ¼ 1� 1

2n

Pn
i¼1ðjl2AðuiÞ � l2BðuiÞj þ jm2AðuiÞ � m2BðuiÞj þ jp2AðuiÞ � p2BðuiÞjÞ

S2
PðA;BÞ ¼ 1� 1

2n

Pn
i¼1 jl2AðuiÞ � l2BðuiÞ � ðm2AðuiÞ � m2BðuiÞÞj

S3
PðA;BÞ ¼ 1� 1

n

Pn
i¼1 maxfjl2AðuiÞ � l2BðuiÞj; jm2AðuiÞ � m2BðuiÞjg

S4
PðA;BÞ ¼ 1

n

Pn
i¼1

1�maxfjl2AðuiÞ�l2BðuiÞj;jm2AðuiÞ�m2BðuiÞjg
1þmaxfjl2

A
ðuiÞ�l2BðuiÞj;jm2AðuiÞ�m2BðuiÞjg

S5
PðA;BÞ ¼

Pn

i¼1
ð1�maxfjl2AðuiÞ�l2BðuiÞj;jm2AðuiÞ�m2BðuiÞjgÞ

Pn

i¼1
ð1þmaxfjl2

A
ðuiÞ�l2

B
ðuiÞj;jm2AðuiÞ�m2

B
ðuiÞjgÞ

Zhang et al. [15] S1
ZðA;BÞ ¼ 1

n

Pn
i¼1 21�maxfjl2AðuiÞ�l2BðuiÞj;jm2AðuiÞ�m2BðuiÞj;jp2AðuiÞ�p2BðuiÞjg � 1

h i

S2
ZðA;BÞ ¼ 1

n

Pn
i¼1 21�

1
2
ðjl2AðuiÞ�l2BðuiÞjþjm2AðuiÞ�m2BðuiÞjþjp2AðuiÞ�p2BðuiÞjÞ � 1

h i

S3
ZðA;BÞ ¼ 1

n

Pn
i¼1 21�maxfjl2AðuiÞ�l2BðuiÞj;jm2AðuiÞ�m2BðuiÞjg � 1

h i

S4
ZðA;BÞ ¼ 1

n

Pn
i¼1 21�

1
2
ðjl2AðuiÞ�l2BðuiÞjþjm2AðuiÞ�m2BðuiÞjÞ � 1

h i
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different cases, although some of them consider the degree

of hesitancy. For cases 3, 4 and 5, the same problem arises

with these similarity measures. Therefore, O-similarity

measures are better than these similarity measures under

these cases.

5 Applications of O-Similarity Measure
in Classification and Clustering Problems

In this section, we design a series of experiments to verify

the performance of O-similarity measure. There experi-

ments are implemented on MATLAB R2016a, which is

installed on a private computer with 64-bit Windows 10

and Intel Core i5-8300H CPU at 2.30 GHz, 16.0 GB RAM.

5.1 Application in Classification on the Basis

of a Classical Example

Let U ¼ fu1; u2; u3; u4g be a universe and Pi be known

target with class label Ci 2 MapðU; I2PÞ (i ¼ 1; 2; 4) where

C1 ¼
ð0:3; 0:3Þ

u1
þ ð0:4; 0:4Þ

u2
þ ð0:4; 0:4Þ

u3
þ ð0:4; 0:4Þ

u4
;

C2 ¼
ð0:5; 0:5Þ

u1
þ ð0:1; 0:1Þ

u2
þ ð0:5; 0:5Þ

u3
þ ð0:1; 0:1Þ

u4
and

C3 ¼
ð0:5; 0:4Þ

u1
þ ð0:4; 0:5Þ

u2
þ ð0:3; 0:3Þ

u3
þ ð0:2; 0:2Þ

u4
;

respectively. The unknown target Q is given by

Q ¼ ð0:4; 0:4Þ
u1

þ ð0:5; 0:5Þ
u2

þ ð0:2; 0:2Þ
u3

þ ð0:3; 0:3Þ
u4

:

The goal is to identify which class Q belongs to. This

example is also used in [14]. In this subsection, we always

take strong fuzzy negations Na and Nb as Ns; x ¼
ð0:25; 0:25; 0:25; 0:25Þ and k ¼ 1: Then the classified result

of different similarity measures are shown in Table 5.

From Table 5, we show some analyses for this example

as follows. Most similarity measures can determine the

classified results and have the same classified result. There

are only three similarity measures cannot determine the

classified results, such as SY, C and S2
P. This result shows

that the O-similarity measure is reasonable and effective,

as well as being better superior to some similarity

measures.

Table 4 The degree of similarity between PFSs in Example 4.4

Case 1 2 3 4 5 Counterintuitive case

AðuÞ ¼ ð0:5; 0:1Þ AðuÞ ¼ ð0:6; 0:3Þ AðuÞ ¼ ð0:1; 0:5Þ AðuÞ ¼ ð0:4; 0:7Þ AðuÞ ¼ ð0:4; 0:7Þ
BðuÞ ¼ ð0:5; 0:3Þ BðuÞ ¼ ð0:6;

ffiffiffiffi

17
p

10
Þ BðuÞ ¼ ð0:2; 0:7Þ BðuÞ ¼ ð

ffiffiffiffi

19
p

10
;

ffiffiffiffi

73
p

10
Þ BðuÞ ¼ ð

ffiffiffiffi

13
p

10
; 0:5Þ

S1
P [14] 0.9200 0.9200 0.7300 0.7300 0.7300 Cases 1, 2, 3, 4 and 5

S2
P [14] 0.9600 0.9600 0.8950 0.8950 0.8950 Cases 1, 2, 3, 4 and 5

S3
P [14] 0.9200 0.9200 0.7600 0.7600 0.7600 Cases 1, 2, 3, 4 and 5

S4
P [14] 0.8519 0.8519 0.6129 0.6129 0.6129 Cases 1, 2, 3, 4 and 5

S5
P [14] 0.8519 0.8519 0.6129 0.6129 0.6129 Cases 1, 2, 3, 4 and 5

S1
Z [15] 0.8921 0.8921 0.6586 0.6586 0.6586 Cases 1, 2, 3, 4 and 5

S2
Z [15] 0.8921 0.8921 0.6586 0.6586 0.6586 Cases 1, 2, 3, 4 and 5

S3
Z [15] 0.8921 0.8921 0.6935 0.6935 0.6935 Cases 1, 2, 3, 4 and 5

S4
Z [15] 0.9453 0.9453 0.8213 0.8213 0.8213 Cases 1, 2, 3, 4 and 5

SO1 0.8000 0.8877 0.7200 0.8153 0.7684 –

SO2 0.6400 0.7880 0.5184 0.6646 0.5905 –

SO0:5 0.8944 0.9422 0.8485 0.9029 0.8766 –

SOþ 0.8889 0.9405 0.8372 0.8982 0.8691 –

SODB 0.8889 0.9405 0.8471 0.9010 0.8730 –

SOmM 0.8000 0.8877 0.6480 0.7860 0.7381 –

SOMid 0.7200 0.8378 0.6120 0.7377 0.6764 –

‘‘Bolditalic’’ denotes unreasonable results
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5.2 Application in Classification on the Basis of Six

Datasets from the UCI Database

In this section, we show the effectiveness of the O-simi-

larity measures by repeating 2-Fold Cross Validation in the

environment of six datasets. The six datasets are down-

loaded from the UCI machine learning data repository

(http://archive.ics.uci.edu/ml). The detailed information of

the datasets is described in Table 6.

We use the method given by [5] to generate PFSs for six

datasets. Then we apply various existing similarity measure

and O-similarity measures to the classification method

given by [5] (see Algorithm 1) under fuzzy environment

and repeat 100 times 2-Fold Cross Validation for each

experiments. In this subsection, we always take strong

fuzzy negations Na and Nb as Ns; k ¼ 1 and xi ¼ 1
n for

i ¼ 1; 2; . . .; n whenever the universe U ¼ fu1; u2; . . .; ung:
The classification results are shown in Table 7.

Algorithm 1 [5] The classification method in the fuzzy framework
Input: The set of known target T = {T1, T2, · · · , Tm}, the set of unknown

target TU = {Tu1, Tu2, · · · , Tun} and a similarity measure S.
Output: Classification results.
1: for i=1 to n do
2: for j=1 to m do
3: Measure the degree of similarity between Tui and Tj by S;
4: end for
5: Select the maximum S(Tui, Tα);
6: Classify the unknown target Tui to known target Tα;
7: end for

Table 5 The classified results

of different similarity measures

in Sect. 5.1

SOðC1;QÞ SOðC2;QÞ SOðC3;QÞ Target

SHY1 [31] 0.8750 0.7500 0.9000 P3

SHY2 [31] 0.8141 0.6501 0.8495 P3

SHY3 [31] 0.7778 0.6000 0.8182 P3

SY [32] 1.0000 1.0000 0.9969 Cannot be determined

SC [33] 1.0000 1.0000 0.9750 Cannot be determined

SL [34] 0.8677 0.7261 0.9134 P3

SHK [35] 0.8750 0.7500 0.9250 P3

S1
P [14] 0.8250 0.6900 0.9050 P3

S2
P [14] 1.0000 1.0000 0.9775 Cannot be determined

S3
P [14] 0.9125 0.8450 0.9300 P3

S4
P [14] 0.8397 0.7381 0.8698 P3

S5
P [14] 0.8391 0.7316 0.8692 P3

S1
Z [15] 0.7722 0.6211 0.8726 P3

S2
Z [15] 0.7722 0.6211 0.8726 P3

S3
Z [15] 0.8825 0.7984 0.9055 P3

S4
Z [15] 0.8825 0.7984 0.9352 P3

SO0:5 0.9912 0.9613 0.9962 P3

SO1 0.9825 0.9250 0.9925 P3

SO2 0.9655 0.8588 0.9850 P3

SOþ 0.9911 0.9589 0.9962 P3

SODB 0.9912 0.9613 0.9962 P3

SOmM 0.9739 0.8909 0.9900 P3

SOMid 0.9739 0.8909 0.9888 P3

In table 5, the bold content in columns 2-4 represents the highest similarity. The bold content in column 5

indicates unreasonable results
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We now show some analyses on the basis of Table 7 as

follows:

(1) For datasets ‘‘Wine’’, ‘‘Blood’’ and ‘‘Banknote’’,

there is always one O-similarity measure which has

the highest accuracy of classification in compared

with some existing similarity measures.

(2) For datasets ‘‘Seed’’, ‘‘Haberman’’ and ‘‘Wireless’’,

although the highest accuracy of classification is

always given by SY; there is always one O-similarity

measure SO such that the accuracy of classification

given by SO is second only to SY:

Therefore, on the basis of the above analyses, the perfor-

mance of the O-similarity measures is superior to other

methods under some conditions.

5.3 Application in Clustering on the Basis

of a Classical Example

In this subsection, we use the example given by [14] to

illustrate the application of O-similarity measure in clus-

tering. To facilitate understanding, we briefly introduce the

dataset as follows.

Software project [14]: The dataset contains ten software

projects Pi (i ¼ 1; 2; . . .; 10) and five criteria such as eco-

nomic feasibility u1; technological feasibility u2; staff

feasibility u3; period feasibility u4 and legal feasibility u5:

The weight vector of five criteria is given by x ¼
ð0:1; 0:15; 0:2; 0:3; 0:25Þ: The data of evaluation informa-

tion given by experts are represented by the PFSs. The

details of this dataset are shown Table 8.

Table 6 Basic information of experimental datasets

Dataset Data source Objects Attribute Decision class

Wine UCI 178 13 3

Seeds UCI 210 7 3

Haberman UCI 306 3 2

Blood UCI 748 5 2

Banknote UCI 1372 5 4

Wireless UCI 2000 7 4

Table 7 The classified

accuracy of different similarity

measures in subsection 5.2

Wine Seed Haberman Blood Banknote Wireless

SHY1 [31] 0.7003 0.8844 0.7271 0.4771 0.7852 0.9554

SHY2 [31] 0.7003 0.8844 0.7271 0.4771 0.7852 0.9554

SHY3 [31] 0.7003 0.8844 0.7271 0.4771 0.7852 0.9554

SY [32] 0.6525 0.8854 0.7274 0.4431 0.7850 0.9586

SC [33] 0.7056 0.8844 0.7271 0.4771 0.7852 0.9554

SL [34] 0.6994 0.8844 0.7271 0.4591 0.7852 0.9554

SHK [35] 0.7129 0.8844 0.7271 0.4771 0.7852 0.9554

S1
P [14] 0.7107 0.8842 0.7271 0.4763 0.7852 0.9509

S2
P [14] 0.7009 0.8842 0.7271 0.4771 0.7852 0.9509

S3
P [14] 0.7052 0.8842 0.7270 0.5003 0.7852 0.9509

S4
P [14] 0.7019 0.8840 0.7270 0.5047 0.7853 0.9500

S5
P [14] 0.7052 0.8842 0.7270 0.5003 0.7852 0.9509

S1
Z [15] 0.7199 0.8839 0.7270 0.5050 0.7853 0.9503

S2
Z [15] 0.7101 0.8839 0.7270 0.4883 0.7853 0.9503

S3
Z [15] 0.7041 0.8839 0.7270 0.5050 0.7853 0.9503

S4
Z [15] 0.7129 0.8842 0.7271 0.4860 0.7852 0.9509

SO0:5 0.6947 0.8845 0.7271 0.4771 0.7852 0.9566

SO1 0.7167 0.8844 0.7270 0.5029 0.7852 0.9554

SO2 0.7140 0.8843 0.7269 0.5000 0.7856 0.9524

SOþ 0.7133 0.8845 0.7271 0.4998 0.7851 0.9562

SODB 0.6925 0.8846 0.7271 0.4771 0.7852 0.9568

SOmM 0.7206 0.8845 0.7270 0.5094 0.7853 0.9558

SOMid 0.7197 0.8845 0.7270 0.5094 0.7853 0.9547

‘‘Bolditalic’’ denotes the highest accuracy of classification for a dataset
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In this subsection, we always take overlap function O as

Oþ, strong fuzzy negations Na and Nb as Ns and k ¼ 1:

According to classification algorithm given by [14], the

clustering results of the ten software projects calculated by

SOþ are shown in Table 9. It is worth noting that clustering

result with seven clusters fP1g; fP2;P5g; fP3g; fP4g;
fP6g; fP7g; fP8;P9;P10g is supported by [14]. In addition,

we obtain the reasonable results only through three itera-

tions. The number of iterations is equal to Peng’s work [14]

in the clustering algorithm.

5.4 Application in Clustering on the Basis

of Datasets from the UCI Database

In this subsection, we show the effective of the O-similarity

measures in clustering problems. We apply different sim-

ilarity measures to six datasets which are used in Sect. 5.2.

We repeat 100 times 2-Fold Cross Validation for each

dataset. We use the method given by [5] to generate PFSs

for datasets and use the classical k-means algorithm to

cluster the generated PFSs. In this subsection, we always

take strong fuzzy negations Na as Ns; strong fuzzy negation

Nb as N1;1; k ¼ 1 and xi ¼ 1
n for i ¼ 1; 2; . . .; n whenever

the universe U ¼ fu1; u2; . . .; ung: We analyze the perfor-

mance of similarity measures listed in Table 1 and O-

similarity measures by purity of clustering results. The

experiments results are shown in Table 10.

We now show some analyses on the basis of Table 10 as

follows:

(1) For datasets ‘‘Wine’’, ‘‘Banknote’’ and ‘‘Wireless’’,

there ia always one O-similarity measure which has

the highest purity of clustering in compared with

some existing similarity measures.

(2) For dataset ‘‘Seed’’, although the highest purity of

clustering is given by SY; the second highest purity

of clustering is given by SO0:5 and SODB : Meanwhile,

the difference between the two is only 0.0093.

(3) For dataset ‘‘Haberman’’, the highest purity of

clustering is given by S1
P: The highest purity of

clustering calculated by O-similarity measures is

given by SO2 : The difference between the two is

only 0.0008.

(4) For dataset ‘‘Blood’’, the highest purity of clustering

is given by SY and S1
P: The highest purity of

clustering calculated by O-similarity measures is

given by SO0:5 and SODB : The difference between the

two is only 0.0002.

Therefore, on the basis of the above analyses, the perfor-

mance of the O-similarity measures is superior to others

methods under some conditions.

6 Conclusion

We mainly study the construction methods of similarity

measure between PFSs based on overlap and grouping

functions. To be precise, we achieved the followings:

(1) We proposed two construction methods of similarity

measures between PFSs, called O-similarity measure

Table 8 The evaluation information of ten software projects [14]

u1 u2 u3 u4 u5

P1 (0.5,0.7) (0.4,0.3) (0.5,0.4) (0.6,0.6) (0.7,0.6)

P2 (0.6,0.7) (0.6,0.5) (0.5,0.6) (0.7,0.6) (0.6,0.5)

P3 (0.4,0.3) (0.5,0.5) (0.6,0.4) (0.8,0.4) (0.4,0.4)

P4 (0.5,0.3) (0.6,0.4) (0.4,0.5) (0.5,0.6) (0.5,0.4)

P5 (0.6,0.7) (0.6,0.6) (0.6,0.4) (0.7,0.5) (0.7,0.3)

P6 (0.7,0.4) (0.6,0.3) (0.5,0.8) (0.8,0.5) (0.6,0.2)

P7 (0.6,0.5) (0.5,0.6) (0.7,0.6) (0.7,0.6) (0.5,0.1)

P8 (0.6,0.7) (0.4,0.3) (0.8,0.5) (0.6,0.4) (0.7,0.3)

P9 (0.5,0.7) (0.6,0.3) (0.7,0.5) (0.4,0.4) (0.7,0.3)

P10 (0.4,0.7) (0.6,0.3) (0.4,0.5) (0.5,0.4) (0.8,0.3)

Table 9 The clustering result

of ten software projects in Sect.

5.3

Confident Level Clusters

0:9342\k� 1 fP1g; fP2g; fP3g; fP4g; fP5g; fP6g; fP7g; fP8g; fP9g; fP10g
0:9305\k� 0:9342 fP1g; fP2g; fP3g; fP4g; fP5g; fP6g; fP7g; fP8;P9g; fP10g
0:9031\k� 0:9305 fP1g; fP2g; fP3g; fP4g; fP5g; fP6g; fP7g; fP8;P9;P10g
0:8976\k� 0:9031 fP1g; fP2;P5g; fP3g; fP4g; fP6g; fP7g; fP8;P9;P10g
0:8936\k� 0:8976 fP1;P2;P5g; fP3g; fP4g; fP6g; fP7g; fP8;P9;P10g
0:8817\k� 0:8936 fP1;P2;P5;P8;P9;P10g; fP3g; fP4g; fP6g; fP7g
0:8778\k� 0:8817 fP1;P2;P4;P5;P8;P9;P10g; fP3g, fP6g; fP7g
0:8628\k� 0:8778 fP1;P2;P4;P5;P7;P8;P9;P10g; fP3g; fP6g
0:8609\k� 0:8628 fP1;P2;P4;P5;P6;P7;P8;P9;P10g; fP3g
0� k� 0:8609 fP1;P2;P3;P4;P5;P6;P7;P8;P9;P10g
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and G-similarity measure, based on overlap and

grouping functions. The connection between O-

similarity measure and G-similarity measure was

established. We also established the connection

between G-similarity measure and s-similarity mea-

sure derived from t-conorms.

(2) We used four numerical examples to illustrate the

effectiveness, reliability and deficiencies of O-sim-

ilarity measure by contrast with other existing

similarity measures.

(3) We applied some O-similarity measures to classifi-

cation and clustering problems. On the one hand, we

showed the application of O-similarity measure in

classification and clustering by using classical

examples. On the other hand, we used six datasets

from UCI database to illustrate the effectiveness and

reliability by comparing with some existing similar-

ity measures. The experimental results showed that

O-similarity measure had good performance in data-

driven environments.

In the further work, on the one hand, we will research the

construction methods of similarity measures between PFSs

based on other aggregation functions, such as uninorms

[37]. On the other hand, we will study the differences

among the O-similarity measures constructed through dif-

ferent overlap functions, strong fuzzy negations and

parameter k.
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