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Abstract An adaptive tracking control problem of high-

order nonlinear strict-feedback system (SFS) with non-

affine nonlinear faults is considered in this paper. Based on

high-order fully actuated (HOFA) systems theory, dynamic

surface control technique and universal approximation of

fuzzy logic systems, a novel adaptive fuzzy fault-tolerant

tracking controllers are directly constructed, it does not

need to convert the high-order system into first-order one.

By using Lyapunov function theory, the proposed con-

troller design approach can guarantee that the closed-loop

system is stable; at the same time, the tracking error can

converge to a compact neighborhood with respect to zero.

The simulation example has been verified the feasibility

and effectiveness of the control approach in this paper.

Keywords Fully actuated system approach � Nonlinear
systems � Adaptive backstepping control � Fuzzy control �
Fault-tolerant control

1 Introduction

Compared with linear systems, almost all actual industrial

systems are nonlinear systems, such as hypersonic aircraft

[1], ship autopilot system [2], aircraft flight control system

[3], and robotic manipulator system [4]. However, because

the analysis of nonlinear systems is far more complicated

than linear systems, and there is a lack of effective math-

ematical tools that can be processed uniformly, there are

few results on nonlinear systems compared with linear

systems. It was not until the emergence of neural networks

(NNs) and fuzzy logic systems (FLSs) that this deadlock

was broken. NNs and FLSs have been proven to be a

universal approximator that can approximate a continuous

unknown nonlinear function with arbitrary precision. Since

then, adaptive control methods of unknown nonlinear

systems have been extensively developed in [4–17]. For the

switched nonlinear systems, an adaptive fuzzy finite-time

tracking control approach was investigated in [5]. Based on

event triggered, a fuzzy adaptive tracking fixed-time con-

trol problem was studied for non-strict-feedback nonlinear

systems in [16].

Based on the state-space method, also called the first-

order method, all the above control methods are very

effective for dealing with the control problems of nonlinear

systems, but it requires a system to be a first-order differ-

ential system. According to the laws of physics, such as

Newton’s laws of motion, Euler’s equations, Lagrange’s

equations, Kirchhoff’s law, etc., many models of real

industrial systems are higher-order differential equations.
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For example, the rigid robotic systems were modeled as

second-order differential dynamics equations in [18], and

single-link flexible manipulators were described as fourth-

order differential equations in [19]. The state-space method

can solve the control problems of high-order nonlinear

systems, but it is necessary to transform the high-order

system into a first-order one by lowering the order and

maximizing the number of equations, which greatly

increases the complexity of the controller design, and the

system after processing by maximizing the number of

equations, the physical meaning of some states may be lost.

How to directly design a simpler controller for high-order

systems is more challenging. Professor Guangren Duan

first proposed the high-order fully actuated (HOFA) system

method, namely the high-order method, which provides a

new dawn for the controller design of high-order systems,

such as [20–29]. The adaptive tracking controllers and

stabilizing controllers were first designed for three types of

high-order system models with parametric uncertainties in

[23]. In [24], the high-order backstepping control and

robust control approaches were discussed for an uncertain

high-order strict-feedback system (SFS), an uncertain sec-

ond-order SFS, and a single HOFA model with nonlinear

uncertainties. Although these results require fault-free

operating conditions, but they provide a new idea for

directly designing a fault-tolerant controller of high-order

unknown nonlinear systems in this paper.

For actual industrial systems, faults are inevitable and

unpredictable. Faults may lead to poor control performance

and even system instability. Therefore, considering the

controller design of the unknown nonlinear system with

faults is theoretical and practical significance. Some

adaptive control methods of nonlinear systems with faults

were investigated in [30–33]. An adaptive decentralized

fault-tolerant control (FTC) approach was proposed for

uncertain interconnected nonlinear systems in [31]. In

[30–33], all the control methods only consider linear faults,

which are invalid for nonlinear faults. In fact, most faults in

practical systems are nonlinear functions of controller

u and state x [34–38]. To the best of the authors’ knowl-

edge, so far there are few FTC results that considered

nonlinear faults in nonlinear system control. For instance,

the FTC algorithm proposed in [39] has solved the control

problem of nonlinear systems with affine nonlinear faults,

which are functions of the state x. But what about non-

affine nonlinear faults, the control methods above are

obviously ineffective. For the above literature, all the FTC

approaches were studied for first-order nonlinear systems.

Therefore, how to directly design an adaptive controller of

the high-order nonlinear SFS with non-affine nonlinear

faults is still an open problem, which is of great theoretical

and practical value.

Based on the above motivation, we study the adaptive

tracking FTC method for the high-order nonlinear SFS with

non-affine nonlinear faults. The main contributions are

summarized as follows:

(1) Based on the state-space method, for the control

methods of second- or high-order systems in the

existing literature, it is all need to converting the

system to first-order one. But for actual industrial

systems, some states have lost the physical meanings

in the process of model transformation. In this paper,

the adaptive controller can be designed directly for

high-order unknown nonlinear systems, it does not

need to convert the high-order system into first-order

one. Thus, the proposed high-order backstepping

method needs fewer steps than the usual state-space

backstepping method; at the same time, the compu-

tation complexity has been greatly reduced.

(2) For the actual industrial system, faults are

inevitable due to some unpredictable reasons. For

the existing results on faults, most control methods

only consider linear faults [30–33], and only a few

control methods consider affine nonlinear faults [39].

However, in most cases, the faults exhibit non-affine

properties. Therefore, it is of practical significance to

investigate high-order nonlinear systems with non-

affine nonlinear faults. And according to the authors’

knowledge, it is the first time to solve the adaptive

fuzzy FTC of high-order nonlinear SFS with non-

affine nonlinear faults.

The outline of this paper is state as follows: Sect. 2 pro-

vides the problem description and preliminaries. High-

order backstepping controller is constructed in Sect. 3.

Section 4 shows the stability analysis. Finally, the simu-

lation results and conclusion are provided in Sect. 5 and 6,

respectively.

2 Problem Description and Preliminaries

2.1 Problem Formulation

The high-order nonlinear SFS is considered as follows:

x
q1ð Þ
1 ¼ f1ðx 0� q1�1ð Þ

1 Þ þ g1ðx 0� q1�1ð Þ
1 Þx2;

x
q2ð Þ
2 ¼ f2ðx 0� qi�1ð Þ

i i¼1� 2j Þ þ g2ðx 0� qi�1ð Þ
i i¼1� 2j Þx3;

..

.

x
qn�1ð Þ
n�1 ¼ fn�1ðx 0� qi�1ð Þ

i i¼1� n�1j Þ þ gn�1ðx 0� qi�1ð Þ
i i¼1� n�1j Þxn;

x qnð Þ
n ¼ fnðx 0� qi�1ð Þ

i i¼1� nj Þ þ gnðx 0� qi�1ð Þ
i i¼1� nj Þuþ l t � T0ð Þm x

0� qi�1ð Þ
i i¼1� nj ; u

� �
;

y ¼ x1;

8>>>>>>>><
>>>>>>>>:

;

ð1Þ

where xi 2 R, i ¼ 1; 2; . . .; n are the state variables,

fjðx 0� qi�1ð Þ
i i¼1� j

�� Þ 2 R and gjðx 0� qi�1ð Þ
i i¼1� j

�� Þ 2 R, j ¼
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1; 2. . .; n denote unknown nonlinear functions and known

nonlinear functions, respectively. y 2 R and u 2 R are the

output and input of the considered system. It is assumed

that gjðx 0� qi�1ð Þ
i i¼1� j

�� Þ 6¼ 0. m x
0� qi�1ð Þ
i i¼1� nj ; u

� �
2 R

represents an unknown external disturbance caused by a

fault. l t � T0ð Þ 2 R denotes the time profile of the fault that

occurs at some unknown time:

l t � T0ð Þ ¼ 0; t\T0;
1� e�d t�T0ð Þ; t� T0;

�
; ð2Þ

where d[ 0 is the evolution rate of the unknown fault. The

reference signal yr is a smooth function, yr and its deriva-

tives _yr; . . .; y
ðq1Þ
r are all bounded.

The objective is to construct adaptive fuzzy controller

for high-order nonlinear SFS with non-affine nonlinear

faults (1), such that the output of the system can track the

ideal signal yr, and the closed-loop system is stable.

Assumption 1 ([40]:) For system (1), the inequality

fnðx 0� qi�1ð Þ
i i¼1� nj Þ þ l t � T0ð Þm x

0� qi�1ð Þ
i i¼1� nj ; u

� ����
���

� g x
0� qi�1ð Þ
i i¼1� nj ; u

� �

ð3Þ

holds, where g x
0� qi�1ð Þ
i i¼1� nj ; u

� �
is an unknown non-

negative function.

Remark 1 It should be pointed out that almost all the

results on adaptive control problems of nonlinear systems

are based on the state-space method, i.e., the first-order

method. According to the laws of physics, many models of

real industrial systems are high-order dynamic differential

equations. The state-space method can also solve the

control problem of high-order nonlinear systems, but it

needs to transform the system into a first-order one first, so

this method is relatively cumbersome. In the past 2 years,

professor Guangren Duan first proposed the HOFA system

method [20–29]. This method can directly design the

controller of the high-order nonlinear system, but it

requires the nonlinear function to be known [20, 22–28].

Due to the natural environment or technical means, many

practical systems cannot be accurately modeled. Therefore,

it is of great theoretical and practical significance to study

the direct design controller of high-order systems with

unknown nonlinear functions.

Remark 2 For most of the existing results on adaptive

FTC approaches of nonlinear systems, basically only linear

faults are considered [30–33], i.e., lock-in-place model and

loss of effectiveness model. Compared to linear faults,

there are few results considering nonlinear faults. In fact,

most faults in practical systems are nonlinear functions of

controller u and state x [39]. The FTC algorithm proposed

in [39] has solved the control problem of nonlinear systems

with affine nonlinear faults, which are functions of the state

x. But what about non-affine faults, the control methods

above are obviously ineffective. However, in most cases,

the faults exhibit non-affine properties. Therefore, the

faults considered in this paper are more general than the

above-mentioned results.

2.2 Preliminaries

For convenience, we define the following symbols that can

be used in the following paper. Im represents the identity

matrix, and

x 0� qð Þ ¼

x

_x

..

.

x qð Þ

2
66664

3
77775
;

x
q0 � qkð Þ
k

���
k¼i� j

¼

x
q0 � qkð Þ
i

x
q0 � qkð Þ
iþ1

..

.

x
q0 � qkð Þ
j

2
666664

3
777775
; j� i;

A0� q�1 ¼ A0 A1 � � � Aq�1½ �;

U A0� q�1
� �

¼

0 I

. .
.

I

�A0 � A1 � � � Aq�1

2
66664

3
77775
:

FLSs are used to approximate the unknown nonlinear

functions of the system (1). The inference rules of

knowledge base are in the following [40]:

Rl: If x1 is Fl
l and x2 is Fl

2 and . . . and xn is Fl
n,

then y is Gl, l ¼ 1; 2; . . .;N,

where x ¼ ½x1; . . .; xn�T and y are the input and output of

an FLS. N is the rules number. Fuzzy sets Fl
i and Gl are

associated with the fuzzy membership functions lFl
i
ðxÞ and

lGlðyÞ, respectively.
By using product inference, center average defuzzifica-

tion along with singleton fuzzifier, the FLS is designed as

follows:

yðxÞ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
ðxiÞPN

l¼1½
Qn

i¼1 lFl
i
ðxiÞ�

; ð4Þ

where �yl ¼ maxy2R lGlðyÞ.
The fuzzy basis functions are designed as follows:

ul ¼
Qn

i¼1 lFl
i
ðxiÞ

PN
l¼1

Qn
i¼1 lFl

i
ðxiÞ

� � ð5Þ
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then, (4) can be rewritten as yðxÞ ¼ hTuðxÞ, where hT ¼
½�y1; �y2; . . .; �yN � ¼ ½h1; h2; . . .; hN � and

uðxÞ ¼ ½u1ðxÞ; . . .;uNðxÞ�T.

Lemma 1 Let f xð Þ be a continuous smooth function

defined on a compact set U, for any positive approxima-

tion error e; there exists a FLS hTu xð Þ such that

sup
x2U

f xð Þ � hTu xð Þ
�� ��� e; ð6Þ

where e satisfies jej � e�; e� is a positive constant.

Proposition 1 ([22, 23]:) For an arbitrarily chosen F 2
Rqi	qi ; all the matrix A0� qi�1 and the nonsingular matrix V

2 Rqi	qi satisfying

U A0� qi�1
� �

¼ VFV�1 ð7Þ

are given by

A0� qi�1 ¼ �ZFqiV�1 Z;Fð Þ; ð8Þ

V Z;Fð Þ ¼

Z

ZF

..

.

ZFqi�1

2
66664

3
77775
; ð9Þ

where Z 2 R1	qi is an arbitrary parameter matrix satisfying

detV Z;Fð Þ 6¼ 0: ð10Þ

Then, to solve the matrix P A0� qi
i

� �
satisfying the fol-

lowing Lyapunov matrix equation (13), some notations

related to a square matrix U 2 Rqi	qi are introduced as

follows:

det sI þ Uð Þ,
Xqi
i¼0

cUi s
i; ð11Þ

adj sI þ UT
� �

,

Xqi�1

i¼0

CU
i s

i: ð12Þ

Proposition 2 ([23]:) If U 2 Rqi	qi is Hurwitz, then the

following Lyapunov equation

UTPþ PU ¼ �I ð13Þ

has a unique solution given by

P ¼
Xqi�1

i¼0

CU
i P

�1
0 Ui ð14Þ

with

P0 ¼
Xqi
i¼0

cUi U
i: ð15Þ

3 High-Order Backstepping Controller Design

Bases on HOFA theory, the backstepping controller design

approach can be directly given for the high-order nonlinear

SFS (1) without converting the system into a first-order

one.

Suppose A0� qi�1
i 2 R1	qi , i ¼ 1; 2; . . .; n are a set of

matrices which make UðA0� qi�1
i Þ 2 Rqi	qi , i ¼ 1; 2; . . .; n

stable, and

Pi A0� qi�1
i

� �
¼ PiF A0� qi�1

i

� �
PiM A0� qi�1

i

� �
PiL A0� qi�1

i

� �h i
2 Rqi	qi

is the unique positive definite solution to the Lyapunov

equation:

UT A0� qi�1
i

� �
Pi A0� qi�1

i

� �

þ Pi A0� qi�1
i

� �
U A0� qi�1

i

� �
¼ �Iqi ;

ð16Þ

where PiF A0� qi�1
i

� �
2 Rqi	1 and PiL A0� qi�1

i

� �
2 Rqi	1.

For the backstepping control method in this paper, the

following first-order filter is introduced

li _�ai þ �ai ¼ ai; i ¼ 2; . . .; n; ð17Þ

where �ai is the output, the backstepping virtual controller ai
is the input, and li is a positive design parameter.

Let

-i ¼ �ai � ai ð18Þ

denotes the filter error. Then, it is easy to get

liGi �ð Þ ¼ li _-i þ -i; ð19Þ

where Gi �ð Þ represents the continuous function.

Step 1: Let

n 0� q1�1ð Þ
1 ¼ x

0� q1�1ð Þ
1 � y 0� q1�1ð Þ

r ð20Þ

and

n 0� q2�1ð Þ
2 ¼ x

0� q2�1ð Þ
2 � �a 0� q2�1ð Þ

2 : ð21Þ

(21) can be decomposed into

n2 ¼ x2 � �a2; ð22Þ

then the q1th derivative of n1 is given by

n q1ð Þ
1 ¼ f1ðx 0� q1�1ð Þ

1 Þ þ g1ðx 0� q1�1ð Þ
1 Þ n2 þ -2 þ a2ð Þ

� y q1ð Þ
r : ð23Þ

Design the first virtual control a2 as follows:
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a2 ¼ �g�1
1 x

0� q1�1ð Þ
1

� �
A0� q1�1
1 n 0� q1�1ð Þ

1

�

þĥ
T

1u1 x
0� q1�1ð Þ
1

� �
� y q1ð Þ

r

�
:

ð24Þ

Substituting (24) into (23) gives

n q1ð Þ
1 ¼� A0� q1�1

1 n 0� q1�1ð Þ
1 þ ~h

T

1u1 x
0� q1�1ð Þ
1

� �
þ e1

þ g1ðx 0� q1�1ð Þ
1 Þ n2 þ -2ð Þ:

ð25Þ

(25) can be further written as follows:

_n
0� q1�1ð Þ
1 ¼ U1 A0� q1�1

1

� �
n 0� q1�1ð Þ
1 þ 0

b1

� 	
; ð26Þ

where

b1 ¼ ~h
T

1u1 x
0� q1�1ð Þ
1

� �
þ e1 þ g1 x

0� q1�1ð Þ
1

� �
n2 þ -2ð Þ:

ð27Þ

Select Lyapunov function candidate as follows:

V1 ¼ n 0� q1�1ð Þ
1

� �T
P1 A0� q1�1

1

� �
n 0� q1�1ð Þ
1 þ ~h

T

1
~h1: ð28Þ

Differentiating V1 with respect to time produces

_V1 ¼ _n
0� q1�1ð Þ
1

� �T
P1 A0� q1�1

1

� �
n 0� q1�1ð Þ
1

þ n 0� q1�1ð Þ
1

� �T
P1 A0� q1�1

1

� �
_n
0� q1�1ð Þ
1 � 2~h

T

1
_̂h1

¼ U1 A0� q1�1
1

� �
n 0� q1�1ð Þ
1 þ

0

b1

� 	
 �T

P1 A0� q1�1
1

� �
n 0� q1�1ð Þ
1

þ n 0� q1�1ð Þ
1

� �T
P1 A0� q1�1

1

� �
U1 A0� q1�1

1

� �
n 0� q1�1ð Þ
1 þ

0

b1

� 	
 �
� 2~h

T

1
_̂h1

¼ n 0� q1�1ð Þ
1

� �T
UT

1 A0� q1�1
1

� �
P1 A0� q1�1

1

� ��

þP1 A0� q1�1
1

� �
U1 A0� q1�1

1

� ��
n 0� q1�1ð Þ
1

þ 2~h
T

1 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
u1 x

0� q1�1ð Þ
1

� �
� _̂h1


 �

þ 2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
g1ðx 0� q1�1ð Þ

1 Þ n2 þ -2ð Þ

þ 2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
e1:

ð29Þ

By designing the adaptive law

_̂h1 ¼ n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
u1 x

0� q1�1ð Þ
1

� �
� c1ĥ1:

ð30Þ

_V1 can be transformed into

_V1 ¼ � n 0� q1�1ð Þ
1

���
���
2

þ2c1~h
T

1 ĥ1 þ 2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
e1

þ 2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
g1 x

0� q1�1ð Þ
1

� �
n2 þ -2ð Þ:

ð31Þ

By using the following inequalities:

2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
g1 x

0� q1�1ð Þ
1

� �
n2 þ -2ð Þ

� 1

4
n 0� q1�1ð Þ
1

���
���
2

þ8 P1L A0� q1�1
1

� ����
���
2

g21 x
0� q1�1ð Þ
1

� �
-2

2

þ 8 P1L A0� q1�1
1

� ����
���
2

g21 x
0� q1�1ð Þ
1

� �
n 0� q2�1ð Þ
2

���
���
2

ð32Þ

2 n 0� q1�1ð Þ
1

� �T
P1L A0� q1�1

1

� �
e1

� 1

4
n 0� q1�1ð Þ
1

���
���
2

þ4 P1L A0� q1�1
1

� ����
���
2

e�21 :

ð33Þ

(31) becomes

_V1 � � 1

2
n 0� q1�1ð Þ
1

���
���
2

þ2c1~h
T

1 ĥ1 þ 8 P1L A0� q1�1
1

� ����
���
2

g21 x
0� q1�1ð Þ
1

� �
-2

2

þ 8 P1L A0� q1�1
1

� ����
���
2

g21 x
0� q1�1ð Þ
1

� �
n 0� q2�1ð Þ
2

���
���
2

þc1;

ð34Þ

where

c1 ¼ 4 P1L A0� q1�1
1

� ����
���
2

e�21 :

Step i: Let

n 0� qi�1ð Þ
i ¼ x

0� qi�1ð Þ
i � �a 0� qi�1ð Þ

i ð35Þ

n qi�1ð Þ
i can be written as follows:

n qi�1ð Þ
i ¼ x

qi�1ð Þ
i � �a qi�1ð Þ

i : ð36Þ

Differentiating (36) with respect to time, and using (1),

yield

n qið Þ
i ¼ fiðx

0� qj�1ð Þ
j j¼1� i

�� Þ þ gi x
0� qj�1ð Þ

j j¼1� i

��

 �

xiþ1

� �a qið Þ
i :

ð37Þ

Let

n 0� qiþ1�1ð Þ
iþ1 ¼ x

0� qiþ1�1ð Þ
iþ1 � �a 0� qiþ1�1ð Þ

iþ1 ð38Þ

which can be equivalently decomposed into

niþ1 ¼ xiþ1 � �aiþ1: ð39Þ

Substituting (39) into (37) gives

n qið Þ
i ¼ fi x

0� qj�1ð Þ
j j¼1� i

��

 �

� �a qið Þ
i

þ gi x
0� qj�1ð Þ

j j¼1� i

��

 �

niþ1 þ -iþ1 þ aiþ1ð Þ:
ð40Þ

By designing the virtual controller aiþ1 as follows:
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aiþ1 ¼ � giðx
0� qj�1ð Þ

j j¼1� i

�� Þ

 ��1

A0� qi�1
i n 0� qi�1ð Þ

i

�

þĥ
T

i u x
0� qj�1ð Þ

j j¼1� i

��

 �

� �a qið Þ
i

�
:

ð41Þ

n qið Þ
i can be further transformed into the following equation:

n qið Þ
i ¼ �A0� qi�1

i n 0� qi�1ð Þ
i þ ~h

T

i uðx
0� qj�1ð Þ

j j¼1� i

�� Þ þ ei

þ gi x
0� qj�1ð Þ

j j¼1� i

��

 �

niþ1 þ -iþ1ð Þ:

ð42Þ

Eq (42) can be further rewritten in the state-space form as

follows:

_n
0� qi�1ð Þ
i ¼ Ui A0� qi�1

i

� �
n 0� qi�1ð Þ
i þ 0

bi

� 	
; ð43Þ

where

bi ¼ ~h
T

i u x
0� qj�1ð Þ

j j¼1� i

��

 �

þ ei

þ gi x
0� qj�1ð Þ

j j¼1� i

��

 �

niþ1 þ -iþ1ð Þ: ð44Þ

Select Lyapunov function candidate as follows:

Vi ¼ n 0� qi�1ð Þ
i

� �T
Pi A0� qi�1

i

� �
n 0� qi�1ð Þ
i þ -2

i þ ~h
T

i
~hi:

ð45Þ

Taking the derivative of Vi yields

_Vi ¼ _n
0�qi�1ð Þ
i

� �T
Pi A0�qi�1

i

� �
n 0�qi�1ð Þ
i þ n 0�qi�1ð Þ

i

� �T

Pi A0�qi�1
i

� �
_n
0�qi�1ð Þ
i þ2-i _-i�2~h

T

i
_̂hi

¼ Ui A0�qi�1
i

� �
n 0�qi�1ð Þ
i þ

0

bi

� 	
 �T

Pi A0�qi�1
i

� �
n 0�qi�1ð Þ
i

þ n 0�qi�1ð Þ
i

� �T
Pi A0�qi�1

i

� �
Ui A0�qi�1

i

� �
n 0�qi�1ð Þ
i þ

0

bi

� 	
 �

þ2-i Gi �ð Þ�
-i

li


 �
�2~h

T

i
_̂hi

¼ n 0�qi�1ð Þ
i

� �T
UT

i A0�qi�1
i

� �
Pi A0�qi�1

i

� �
þPi A0�qi�1

i

� �
Ui A0�qi�1

i

� �� �
n 0�qi�1ð Þ
i

þ2~h
T

i n 0�qi�1ð Þ
i

� �T
PiL A0�qi�1

i

� �
u x

0�qj�1ð Þ
j j¼1� i

��

 �

� _̂hi


 �

þ2 n 0�qi�1ð Þ
i

� �T
PiL A0�qi�1

i

� �
gi x

0�qj�1ð Þ
j j¼1� i

��

 �

niþ1þ-iþ1ð Þ

þ2 n 0�qi�1ð Þ
i

� �T
PiL A0�qi�1

i

� �
eiþ2-i Gi �ð Þ�

-i

li


 �
:

ð46Þ

The adaptive law is designed as follows:

_̂hi ¼ n 0� qi�1ð Þ
i

� �T
PiL A0� qi�1

i

� �
u x

0� qj�1ð Þ
j j¼1� i

��

 �

� ciĥi:

ð47Þ

Together with (47), (46) is given as follows:

_Vi ¼ � n 0� qi�1ð Þ
i

���
���
2

þ2ci~h
T

i ĥi þ 2-i Gi �ð Þ �
-i

li


 �

þ 2 n 0� qi�1ð Þ
i

� �T
PiL A0� qi�1

i

� �
gi x

0� qj�1ð Þ
j j¼1� i

��

 �

niþ1 þ -iþ1ð Þ þ 2 n 0� qi�1ð Þ
i

� �T
PiL A0� qi�1

i

� �
ei:

ð48Þ

By using Yang’s inequality, the following inequalities

hold:

2 n 0� qi�1ð Þ
i

� �T
PiL A0� qi�1

i

� �
gi x

0� qj�1ð Þ
j j¼1� i

��

 �

niþ1 þ -iþ1ð Þ

� 1

4
n 0� qi�1ð Þ
i

���
���
2

þ8 PiL A0� qi�1
i

� ����
���
2

g2i x
0� qj�1ð Þ

j j¼1� i

��

 �

n 0� qiþ1�1ð Þ
iþ1

���
���
2

þ8 PiL A0� qi�1
i

� ����
���
2

g2i x
0� qj�1ð Þ

j j¼1� i

��

 �

-2
iþ1;

ð49Þ

2 n 0� qi�1ð Þ
i

� �T
PiL A0� qi�1

i

� �
ei

� 1

4
n 0� qi�1ð Þ
i

���
���
2

þ4 PiL A0� qi�1
i

� ����
���
2

e�2i ;

ð50Þ

2-iGi �ð Þ� bþ G2
i �ð Þ-2

i

b
: ð51Þ

Substituting (49)–(51) into (48) yields

_Vi � � 1

2
n 0� qi�1ð Þ
i

���
���
2

þ2ci~h
T

i ĥi �
2

li
� G2

i �ð Þ
b


 �
-2

i

þ 8 PiL A0� qi�1
i

� ����
���
2

g2i x
0� qj�1ð Þ

j j¼1� i

��

 �

n 0� qiþ1�1ð Þ
iþ1

���
���
2

þ 8 PiL A0� qi�1
i

� ����
���
2

g2i x
0� qj�1ð Þ

j j¼1� i

��

 �

-2
iþ1 þ ci;

ð52Þ

where

ci ¼ 4 PiL A0� qi�1
i

� ����
���
2

e�2i þ b: ð53Þ

Step n: Similarly, let

n 0� qn�1ð Þ
n ¼ x 0� qn�1ð Þ

n � �a 0� qn�1ð Þ
n ð54Þ

which gives

n qn�1ð Þ
n ¼ x qn�1ð Þ

n � �a qn�1ð Þ
n : ð55Þ

From the system (1), taking the derivative of (55) yields
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n qnð Þ
n ¼ fn x

0� qi�1ð Þ
i i¼1� nj

� �
þ gn x

0� qi�1ð Þ
i i¼1� nj

� �
u

þ l t � T0ð Þm x
0� qi�1ð Þ
i i¼1� nj ; u

� �
� �a qnð Þ

n :

ð56Þ

By designing the actual controller

u ¼ � gn x
0� qi�1ð Þ
i i¼1� nj

� �� ��1

A0� qn�1
n n 0� qn�1ð Þ

n

�

þĥ
T

nu x
0� qi�1ð Þ
i i¼1� nj ; uf

� �
� �a qnð Þ

n

�
;

ð57Þ

then the Eq. (56) can be converted to

n qnð Þ
n ¼ �A0� qn�1

n n 0� qn�1ð Þ
n þ fn x

0� qi�1ð Þ
i i¼1� nj

� �

� ĥ
T

nu x
0� qi�1ð Þ
i i¼1� nj ; uf

� �
þ l t � T0ð Þm x

0� qi�1ð Þ
i i¼1� nj ; u

� �
:

ð58Þ

Then, it can be converted into a state-space form:

_n
0� qn�1ð Þ
n ¼ Un A0� qn�1

n

� �
n 0� qn�1ð Þ
n þ 0

bn

� 	
; ð59Þ

where

bn ¼ fn x
0� qi�1ð Þ
i i¼1� nj

� �
� ĥ

T

nu x
0� qi�1ð Þ
i i¼1� nj ; uf

� �

þ l t � T0ð Þm x
0� qi�1ð Þ
i i¼1� nj ; u

� �
:

ð60Þ

Design the following Lyapunov function

Vn ¼ n 0� qn�1ð Þ
n

� �T
Pn A0� qn�1

n

� �
n 0� qn�1ð Þ
n þ -2

n þ ~h
T

n
~hn:

ð61Þ

Differentiating Vn with respect to time produces

_Vn ¼ _n
0� qn�1ð Þ
n

� �T
Pn A0� qn�1

n

� �
n 0� qn�1ð Þ
n þ n 0� qn�1ð Þ

n

� �T

Pn A0� qn�1
n

� �
_n
0� qn�1ð Þ
n þ 2-n _-n � 2~h

T

n
_̂hn

¼ Un A0� qn�1
n

� �
n 0� qn�1ð Þ
n þ

0

bn

� 	
 �T

Pn A0� qn�1
n

� �
n 0� qn�1ð Þ
n

þ n 0� qn�1ð Þ
n

� �T
Pn A0� qn�1

n

� �
Un A0� qn�1

n

� �
n 0� qn�1ð Þ
n þ

0

bn

� 	
 �

þ 2-n Gn �ð Þ � -n

ln


 �
� 2~h

T

n
_̂hn

¼ n 0� qn�1ð Þ
n

� �T
UT

n A0� qn�1
n

� �
Pn A0� qn�1

n

� ��

þ Pn A0� qn�1
n

� �
Un A0� qn�1

n

� �
Þn 0� qn�1ð Þ

n

þ 2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
fnðx 0� qi�1ð Þ

i i¼1� nj Þ
�

�ĥ
T

nu x
0� qi�1ð Þ
i i¼1� nj ; uf

� �
þ l t � T0ð Þm x

0� qi�1ð Þ
i i¼1� nj ; u

� ��

þ 2-n Gn �ð Þ � -n

ln


 �
� 2~h

T

n
_̂hn:

ð62Þ

By using Assumption 1 and Young’s inequality, one has

2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
fn x

0� qi�1ð Þ
i i¼1� nj

� ��

þl t � T0ð Þm x
0� qi�1ð Þ
i i¼1� nj ; u

� ��

� 2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �����
���� g x

0� qi�1ð Þ
i i¼1� nj ; u

� ����
���

� 1

a
n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
 �2

g2 x
0� qi�1ð Þ
i i¼1� nj ; u

� �
þ a

¼ 2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
�g x

0� qi�1ð Þ
i i¼1� nj ; u

� �
þ a;

ð63Þ

where

�g x
0� qi�1ð Þ
i i¼1� nj ; u

� �

¼ 1

2a
n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
g2 x

0� qi�1ð Þ
i i¼1� nj ; u

� �
:

ð64Þ

Define the approximation error as follows:

en ¼ �g x
0� qi�1ð Þ
i i¼1� nj ; u

� �
� hTnu x

0� qi�1ð Þ
i i¼1� nj ; uf

� �
;

ð65Þ

where enj j � e�n , e�n being a positive constant, uf is the

output of filtered signal

uf ¼ HL sð Þu 
 u ð66Þ

and HL sð Þ is the Butterworth low-pass filter. Then, (62) is

expressed as follows:

_Vn� � n 0� qn�1ð Þ
n

���
���
2

þ2-n Gn �ð Þ � -n

ln


 �

þ 2~h
T

n n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
u x

0� qi�1ð Þ
i i¼1� nj ; uf

� �
� _̂hn


 �

þ 2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
en þ a:

ð67Þ

It is true that

2 n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
en

� 1

2
n 0� qn�1ð Þ
n

���
���
2

þ2 PnL A0� qn�1
n

� ��� ��2e�2n ;

ð68Þ

2-nGn �ð Þ� bþ G2
n �ð Þ-2

n

b
: ð69Þ

By designing the adaptive law

_̂hn ¼ n 0� qn�1ð Þ
n

� �T
PnL A0� qn�1

n

� �
u x

0� qi�1ð Þ
i i¼1� nj ; uf

� �

� cnĥn

ð70Þ

and according to (68) and (69), _Vn can be obtained as

follows:
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_Vn � � 1

2
n 0� qn�1ð Þ
n

���
���
2

þ2cn~h
T

n ĥn �
2

ln
� G2

n �ð Þ
b


 �
-2

n þ cn;

ð71Þ

where

cn ¼ 2 PnL A0� qn�1
n

� ��� ��2e�2n þ aþ b:

4 Stability Analysis

So far, according to fully actuated system approach, the

adaptive tracking FTC has been completed for high-order

nonlinear SFS with non-affine nonlinear faults. Then, a

theorem can be summarized as follows.

Theorem 1 Consider the fuzzy adaptive tracking control

of high-order nonlinear SFS with non-affine nonlinear

faults (1), composed of the virtual controllers (24) and

(41), the actual controllers (57) and adaptive laws (30),

(47), and (70), if there exist the positive design parameters

ci and li satisfy
1
2
� gi [ 0 and 2

li
� G2

i

b � di [ 0, then all the

signals in the closed-loop system are bounded, and the

satisfactory tracking control performance is achieved.

Proof Select the whole Lyapunov function V as follows:

V ¼
Xn
i¼1

Vi: ð72Þ

According to the inequalities (34), (52) and (71), the

derivative of V can be given as follows:

_V � �
Xn
i¼1

1

2
� gi


 �
n 0� qi�1ð Þ
i

���
���
2

þ2
Xn
i¼1

ci~h
T

i ĥi

�
Xn
i¼2

2

li
� G2

i �ð Þ
b

� di


 �
-2

i þ c0;

ð73Þ

where c0 ¼
Pn

i¼1 ci, g1 ¼ 0,

gi ¼ 8 Pi�1;L A0� qi�1�1
i�1

� ����
���
2

g2i�1 x
0� qj�1ð Þ

j j¼1� i�1

��

 �

; i ¼ 2; . . .; n;

di ¼ 8 Pi�1;L A0� qi�1�1
i�1

� ����
���
2

g2i�1 x
0� qj�1ð Þ

j j¼1� i�1

��

 �

; i ¼ 2; . . .; n:

and Gi �ð Þ satisfy the inequalities jGi �ð Þj � �Gi with �Gi being

some positive constants. h

Based on Young’s inequality, one has

~h
T

i ĥi ¼ ~h
T

i hi � ~hi
� �

¼ ~h
T

i hi � ~h
T

i
~hi � � 1

2
~h
T

i
~hi þ

1

2
hTi hi:

ð74Þ

Substituting (74) into (73) gives

_V � �
Xn
i¼1

1

2
� gi


 �
n 0� qi�1ð Þ
i

���
���
2

�
Xn
i¼1

ci~h
T

i
~hi

�
Xn
i¼2

2

li
�

�G
2

i

b
� di

 !
-2

i þ
Xn
i¼1

cih
T
i hi þ c0

� � bV þ c;

ð75Þ

where c¼
Pn

i¼1cih
T
i hiþc0and b¼min 1

2
�gi;ci;

2
li
� �G

2
i

b �di
n o

.

5 Simulation Example

In order to illustrate the effectiveness of the proposed

control approach, a numerical example is considered in the

following

€x1 ¼ f1ðx 0� 2ð Þ
1 Þ þ g1ðx 0� 2ð Þ

1 Þx2;
€x2 ¼ f2ðx 0� qi�1ð Þ

i i¼1� 2j Þ þ g2ðx 0� qi�1ð Þ
i i¼1� 2j Þuþ l t � T0ð Þm x

0� qi�1ð Þ
i i¼1� 2j ; u

� �
;

y ¼ x1;

8><
>:

ð76Þ

where f1ðx 0� 2ð Þ
1 Þ ¼ sinð _x1Þe�x4

1 , f2ðx 0� qi�1ð Þ
i i¼1� 2j Þ ¼

_x2e
0:5x1 _x1 þ _x1 sin x1x2ð Þ, g1ðx 0� 2ð Þ

1 Þ ¼ 2þ sinðx1 _x1Þ,
g2ðx 0� qi�1ð Þ

i i¼1� 2j Þ ¼ 3þ 0:5 cosðx1 _x1Þ sinðx2 _x1Þ. Select

the fault function as

m x
0� qi�1ð Þ
i i¼1� 2j ; u

� �
¼ 15ðx1 _x1x2 _x2 þ sinðuÞÞ þ 15, and

the time profile of fault as follows:

l t � T0ð Þ ¼ 0; t\T0;
1� e�d t�T0ð Þ; t� T0;

�

where d ¼ 8 and T0 ¼ 10 s. The Butterworth low-pass filter

is chosen as HLðsÞ ¼ 1
s2þ1:414sþ1

, and the reference signal is

chosen as yr ¼ sinðtÞ.
Choose

F1 ¼
�6 1

0 � 6

� 	
; F2 ¼

�5 � 1

1 � 5

� 	
;

Z1 ¼ 1 0½ �; Z2 ¼ 1 1½ �

by Proposition 1, we have

V1 ¼
Z1

Z1F1

� 	
¼

1 0

�6 1

� 	
;

V2 ¼
Z2

Z2F2

� 	
¼

1 1

�4 � 6

� 	

and

A

0s 2

1 ¼ �Z1F
2
1V

�1
1 ¼ 36 12½ �;

A

0s 2

2 ¼ �Z2F
2
2V

�1
2 ¼ 26 10½ �:
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Select the initial values as x1 0ð Þ ¼ x2 0ð Þ ¼ 0 and

hT1 0ð Þ ¼ hT2 0ð Þ ¼ 0; 0; 0; 0; 0; 0; 0½ �, and choose the design

parameters as c1 ¼ c2 ¼ 60 and l2 ¼ 0:01.

By using the proposed fuzzy adaptive tracking control

approach of high-order nonlinear SFS with non-affine

nonlinear faults, the simulation results are given in Figs. 1.

2, 3, 4, and 5. The tracking trajectories are displayed in

Fig. 1. From Fig. 1, it is clearly seen that the proposed

control method in this paper has satisfactory tracking

control performance. The states trajectories are shown in

Fig. 2. Figure 3 shows the response of the adaptive fuzzy

tracking controller. The norm of adaptive laws estimation

are shown in Fig. 4. The input and output of first-order

filter are shown in Fig. 5. Figures 1, 2, 3, 4, and 5 show

that the stability of the high-order nonlinear SFS is guar-

anteed by using the proposed fuzzy adaptive tracking

control method. Besides, the tracking control performance

is achieved.

6 Conclusion

An novel adaptive fuzzy FTC method has been investi-

gated for high-order nonlinear SFS with non-affine non-

linear fault. The fuzzy logic systems can be used as

approximators of unknown nonlinear functions in the sys-

tem. There was no need to convert a high-order system to

0 5 10 15 20 25 30
Time
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1

2

0 5 10 15 20 25 30
Time
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0.5

1

Fig. 1 Tracking performance trajectories
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Fig. 2 States trajectories
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Fig. 3 Trajectory of control signal u

0 5 10 15 20 25 30
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1
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Fig. 4 Trajectories of Norm of adaptive laws estimation jjĥ1jj and
jjĥ2jj
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first-order one, the controllers have been designed directly

for the high-order system, and the control performance can

be achieved. In the further, our research scope will be

extended to the cooperative control of high-order nonlinear

multi-agent systems by using the fully actuated system

approach.
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