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Abstract The conventional state-space form often leads to

control design strategies and stability analysis techniques

generally applicable to dynamical processes. Nevertheless,

it may also lead to higher model complexity and loss of

interpretability. Here, we skip this representation for non-

linear dynamical systems with high-order input derivatives

and nonlinear input–output relationships. Specifically, we

incorporate the principle of H1 design within an observer-

based adaptive fuzzy controller to guarantee robust stabi-

lization and trajectory tracking for such nonlinear systems.

The proposed approach has four integral components.

Firstly, zero-order Takagi–Sugeno fuzzy systems approxi-

mate nonlinear and uncertain functions by the estimated

states of the observer. Secondly, the H1 control attenuates

fuzzy approximation errors, observer errors, and environ-

mental effects to a prescribed attenuation level. Thirdly, the

adaptive laws and the H1 term are met with simple

equations, avoiding the positive definite matrices in Lya-

punov equations. Fourthly, a compensation term is added

to ensure the stability of the closed-loop system. Fifthly,

the Lyapunov theory guarantees the asymptotic stability of

the overall system and the H1 tracking performance of the

output. Finally, the proposed method is applied to two

unknown nonlinear systems under disturbances, noises,

packet loss, and asymmetric dead-zone. The first is a

second-order spring-mass-damper trolley system, and the

second is a third-order nonlinear system. Comparing the

results with a recent competing controller reveals that the

proposed approach improves transparency and lowers

tunable parameters, fuzzy basis functions dimension, the

observation and tracking errors, the consumed energies,

and the settling times.

Keywords Nonlinear input–output relationships � Input

derivatives � Robust control � Adaptive fuzzy control �
Uncertainties

1 Introduction

Uncertainties and nonlinearities have been studied exten-

sively in systems and control theory. Among them, models

that involve the input’s time derivatives present consider-

able challenge. Such dynamics appear in various applica-

tions such as cranes [1], cars with trailers [1], piezoelectric

actuators [2], capacitor loops connected with voltage

sources [3], inductor cut-sets connected with current

sources [3], transducers in setting the reference inputs [3],

active suspension systems with vibration control [3],

descriptor variable systems [3], flat systems [1], and bio-

logical processes [4]. Controlling such models is chal-

lenging since they do not directly conform to the

conventional state-space models, and inputs are not inde-

pendent. Even if the input derivatives are alternated with

state variables [3, 5, 6], this method faces two problems.

First, these added states lead to the added controller com-

plexity and its stability analysis. Second, as state variables

describe the system behavior without external forces

affecting the system, alternating the input derivatives with

the states leads to less physical interpretation.
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Alternatively, directly handling such dynamics could be a

valuable framework for such a problem, but few works

have addressed it.

There are considerably fewer works on controlling the

mentioned dynamics without converting to the conven-

tional state-space form. Among the few, Zhang et al.

offered indirect and direct adaptive first-order Takagi–

Sugeno (TS) fuzzy controllers with state observers for

models affine with the input and its first derivative [7, 8].

The fuzzy systems were used to estimate three unknown

nonlinear functions. They later showed that converting the

nonaffine nonlinear pure feedback dynamics to a form with

the input derivative and input–output nonlinear relation-

ships might also reach better tracking and avoid the

backstepping structure with virtual inputs [9]. Furthermore,

the work of [10] simplified the mentioned method through

a low-pass filter driven by a control input. However, the

mentioned papers only studied systems with the first-order

derivative of the input.

TS fuzzy approaches have been developed over the past

30 years, particularly following the seminal works of

Wang. As mentioned before, there are only four references

on TS fuzzy approaches of uncertain nonlinear systems

with the time derivative of the input. However, no fuzzy

controller exists on unknown nonlinear systems, including

higher-order input derivatives. In other words, to study a

broader range of existing systems, we consider uncertain

nonlinear systems, where the order of input derivatives is

extended, and the model is nonaffine in the input and its

derivatives. The aim is to design a simpler and more robust

controller for handling different categories of uncertainties.

As a result, we propose an observer-based H1 indirect

adaptive zero-order TS fuzzy controller (OH1IAZTSFC).

In other words, the investigation’s contributions are as

follows:

• To study a broader range of existing systems, we

consider uncertain nonlinear systems, where the input

derivatives are extended to mth order and the model is

nonaffine in not only u but also _u,. . .,uðm�1Þ.
• We propose zero-order TS fuzzy systems, whose inputs

are the states, the dynamical system input, and its

derivatives, to improve transparency and simplicity and

reduce the amount of online adjustable parameters.

• We propose a H1 controller and a compensation

control for such augmented systems to guarantee

asymptotic stability and improve robustness under

uncertainties.

• We avoid solving the Riccati equation to define the P

matrix and Bc vector in adaptive rules.

Note that the proposed method lowers tracking errors,

observer errors, adjustable parameters, and consumed

energies, besides improving the convergence speed under

realistic uncertainties, such as unmeasured states, distur-

bances, measurement noise, data loss, and dead-zone.

This paper contains the following sections. Section 2

includes research in different categories. Section 3

describes the dynamics. Section 4 explains the proposed

methodology. Section 5 investigates stability and conver-

gence. Section 6 demonstrates the simulation results

compared with a recent competing approach. Ultimately,

Sect. 7 provides the conclusions.

Notation The superscripts ‘‘T’’ and ‘‘-1’’ show the

transposition and inverse, respectively. Rn denotes n-di-

mensional Euclidean space. k:k indicates the Euclidean

norm, kAk2
B means ATBA and j : j shows the absolute value.

For any derivable signal such as u, _u is the first derivative,

€u is the second derivative, and uðmÞ is the mth derivative.

For any ideal C, C� is the optimization, Ĉ is the estimation,

and ~C ¼ C � Ĉ. Besides that, D
0 ¼ L�1ðsÞD for any D.

2 Related Works

Fuzzy logic systems (FLSs) have universal approximation

properties [11] to handle uncertainties. The literature is

abundant, with excellent examples of applying fuzzy logic

to control complex systems. One may refer to some sem-

inal works, such as by Mamdani in 1975 [12], which was

improved by online adaptive rules [13] and observer design

[14] to handle model and external uncertainties. Recently,

the observer-based adaptive fuzzy approach was developed

to control different types of nonlinear systems, such as

stochastic systems [15], fractional-order systems [16],

large-scale systems [17], multi-agent systems [18], strict-

feedback systems [19], nonstrict-feedback systems [20],

rigorous feedback cascade systems [21], singular systems

[22], stochastic systems [23], switched systems [24], non-

triangular systems [25], and networked systems [26]. As a

result, even the more recent works on fuzzy control gen-

erally assume the nonlinear systems in the standard and

conventional state-space models.

H1 analysis [27] has been merged into the fuzzy con-

trollers to improve robustness and semi-global stabiliza-

tion. The fruitful results occur by attenuating the errors and

the influence of environmental effects on an arbitrary level

[28]. A combined observer-based H1 adaptive fuzzy

approach is an excellent candidate for creating a compre-

hensible controller. For instance, an H1 controller with a

PD form was employed in [29] for stable and robust

tracking in the indirect adaptive fuzzy method. In [30], the

composite learning based on a serial–parallel identifier

promoted the mentioned combined method. The H1 con-

troller compensated the residual errors of the fuzzy system

and the observer to the desired level. In [31], an H1-H2
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strategy enhanced the trade-off between energy consump-

tion and control performances. In [32], an adaptive event-

triggered scheme reduced resource consumption and output

variation. A networked TS fuzzy filter improved the design

flexibility, guaranteeing stability with the desired H1 dis-

turbance attenuation performance. Falla-Gh [33] consid-

ered the H1 controller to compensate uncertainties for

different nonlinear systems in an adaptive fuzzy method.

However, the strategies mentioned above focused on non-

linear systems with conventional state-space representation

without any input derivates.

3 Problem Description

Consider nth-order unknown nonlinear systems with mth-

order input derivatives and nonlinear input–output rela-

tionships as

_xi ¼ xiþ1; 1� i� n� 1;

_xn ¼ f ðx; u; _u; . . .; uðm�1ÞÞ þ gðx; u; _u; . . .;
uðm�1ÞÞuðmÞ þ dðtÞ;

y ¼ x1;

:

8
>>>><

>>>>:

ð1Þ

where x ¼ ðx1; x2; . . .; xnÞT ¼ ðx; _x; . . .; xn�1ÞT 2 Rn is the

unavailable state vector of the plant, f(.) and g(.) are the

unknown nonlinear functions, y 2 R is the output of the

system, u 2 R is the system input to which its derivatives

also contribute, and d(t) is the unknown external distur-

bance. Because of the appearance of the derivatives of u in

the dynamic equations, (1) does not have the conventional

state-space representation. f(.) and g(.) relate to

u ¼ ðu; _u; . . .; uðm�1ÞÞ; which causes the nonlinearity of the

input–output relationship.

Equation (1) is represented in the following form by

A0 ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

0 0 0 � � � 0

2

6
6
6
6
4

3

7
7
7
7
5

, B ¼

0

0

..

.

0

1

2

6
6
6
6
4

3

7
7
7
7
5

, and C ¼

1

0

..

.

0

0

2

6
6
6
6
4

3

7
7
7
7
5

:

_x ¼ A0xþ B
�
f ðx; uÞ þ gðx; uÞuðmÞ þ d

�
;

y ¼ CT :

�

ð2Þ

Assumption 1 f(.) and g(.) are unknown, nonlinear,

bounded, smooth, and continuous functions for x 2 Rn and

u 2 Rm. It is assumed that 0\jf ð:Þj�FU , where FU is an

unknown upper bound of f(.). As the system (1) should be

controllable, g�1ð:Þ exists which means gð:Þ 6¼ 0. There are

unknown constants GL and GU such that 0\GL �
jgð:Þj �GU , where GL and GU show the lower and upper

bound, respectively.

Assumption 2 u(t) is a continuous input which is m-times

differentiable.

Assumption 3 ydðtÞ is the reference signal which is n-

times differentiable, bounded, smooth, and known.

Assumption 4 d(t) is the unknown bounded disturbance,

i.e., jdj �D and D is the unknown upper bound.

Control Objectives This paper’s main goals are to track

the reference trajectory and to achieve high robustness

against uncertainties, whereas all signals involved are

bounded.

4 Proposed Controller Design

Figure 1 shows the proposed method of this section.

4.1 Proposed Adaptive Fuzzy Controller

By knowing f(.), g(.), and all the elements of x with

dðtÞ ¼ 0, we propose the control law for the maximal order

of the input derivatives as

u�
ðmÞ ðtÞ ¼ 1

gðx; u�Þ
h
� f ðx; u�Þ þ yðnÞm ðtÞ þ KTe

i
; ð3Þ

where u� ¼ u�; _u�; . . .; u�
ðm�1Þ

� �
, e ¼ ½e; _e; . . .; en�1�T , e ¼

yd � y is the tracking error, K ¼ ½kn; kn�1; . . .; k1�T which

yields all roots of sn þ k1s
n�1 þ � � � þ kn ¼ 0 in the open

left half of the complex s-plane and guarantees A1 ¼
A0 � BKT to be strictly Hurwitz in Lyapunov equation as

ðA0 � BKTÞTP0 þ P0ðA0 � BKTÞ ¼ �Q0; ð4Þ

where P0 and Q0 are positive definite matrices.

Fig. 1 Scheme of the proposed OH1IAZTSFC method
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Substituting (3) into (1), the closed-loop control system

is given as

eðnÞ þ k1e
ðn�1Þ þ � � � þ kne ¼ 0; ð5Þ

where it means e converges to zero as t ! 1.

Unfortunately, f(.) and g(.) are unknown, all the states

are not available, and the disturbances exist in real appli-

cations. Therefore, FLSs are used for the estimation.

Lemma 1 [11] FLS can approximate any continuous

function on a compact set.

We use zero-order TS FLSs to identify the unknown

functions in the dynamical system such that the adaptive

laws adjust the fuzzy controller parameters based on the

Lyapunov synthesis approach. We describe the lth rule as

IF x̂1 is Al
1 and x̂2 is Al

2 and � � � and x̂n is Al
n and

u is Bl
1 and _u is Bl

2 and � � � and uðm�1Þ is Bl
m ;

THEN yl ¼ al;

where l ¼ ð1; . . .;MÞ, M is the number of rules; x̂ ¼
½x̂1; x̂2; . . .; x̂n�T is the estimation of x ¼ ½x1; x2; . . .; xn�T
based on the observer design; x̂ and u are the fuzzy inputs;

Al
i is the fuzzy set of x̂i, i ¼ 1; . . .; n; Bl

i0 is the fuzzy set of

uði
0�1Þ, i0 ¼ 1; . . .;m; yl is the output of lth rule; and al is the

constant coefficient of the lth output function.

The FLS’s output is obtained as

y ¼

XM

l¼1
yl
Yn

i¼1
exp � x̂i � �xli

dl1;i

 !2
0

@

1

A
Ym

i0¼1
exp � uði

0�1Þ � �uli0

dl2;i0

 !2
0

@

1

A

XM

l¼1

Yn

i¼1
exp � x̂i � �xli

dli

 !2
0

@

1

A
Ym

i0¼1
exp � uði

0�1Þ � �uli0

dl2;i0

 !2
0

@

1

A

¼ hT nðx̂; uÞ;

ð6Þ

and

h ¼ a1; a2; . . .; aM
� �T

;

nðx̂; uÞ ¼ ½n1; n2; . . .; nM �T ;

nl ¼

Yn

i¼1
exp � x̂i � �xli

dl1;i

 !2
0

@

1

A
Ym

i0¼1
exp � uði

0�1Þ � �uli0

dl2;i0

 !2
0

@

1

A

XM

l¼1

Yn

i¼1
exp � x̂i � �xli

dl1;i

 !2
0

@

1

A
Ym

i0¼1
exp � uði

0�1Þ � �uli0

dl2;i0

 !2
0

@

1

A

;

ð7Þ

where the fuzzifier is singleton, the membership functions are

Gaussian with the center �xli and the width dl1;i for x̂i and also

with the center �uli0 and the width dl2;i0 for uði
0�1Þ, the inference

engine is product, and the defuzzifier is center-average.

Therefore, f(.) and g(.) are approximated as

f̂ ðx̂; ujhf Þ ¼ hTf nf ðx̂; uÞ;
ĝðx̂;ujhgÞ ¼ hTgngðx̂; uÞ;

ð8Þ

where nf , ng are the fuzzy basis function vectors, and hf , hg
are the adjustable parameters vectors.

Definition 1 The optimal parameters’ vectors are descri-

bed as

h�f ¼ arg minhf2Xf
sup
�
�f̂ � f

�
�

� 	
;

h�g ¼ arg minhg2Xg
sup
�
�ĝ� g

�
�

� 	
;

ð9Þ

where Xf, hf 2 RNf

�
�
�jhf j �Mf

n o
and Xg, hg 2 RNg

�
�
�0\

n

e\jhgj �Mgg are the constraint sets, and the constants of

Mf , Mg , and e are unknown.

Definition 2 The minimum approximation error is defined

as follows:

x1,f̂ ðx̂; ujh�f Þ � f ðx; uÞ þ ðĝðx̂; ujh�gÞ � gðx; uÞÞuðmÞc :

ð10Þ

Definition 3 The observer error vector is written as

ê ¼ ê; _̂e; . . .; êðn�1Þ
� �T

; ð11Þ

where ê ¼ yd � x̂.

The proposed fuzzy control is given by feedback lin-

earization method as

uðmÞc ¼ 1

ĝðx̂; ujhgÞ
½ � f̂ ðx̂; ujhf Þ þ yðnÞm ðtÞ þ KT ê

� uh � us�;
ð12Þ

where f̂ ð:Þ and ĝð:Þ are the FLSs’ outputs; uh is an H1
control term to attenuate the uncertainties effect; us is a

linear combination of the error estimates; uh and us ensure

the stability of the closed-loop system.

By (12) and (1), the dynamics is rewritten as

_e ¼ A1eþ B½ðf̂ ðx̂; ujhf Þ � f̂ ðx̂; ujh�f ÞÞþ

ðĝðx̂; ujhgÞ � ĝðx̂; ujh�gÞÞuðmÞc þ uh þ us þ x�;

e ¼ CTe;

:

8
>>><

>>>:

ð13Þ

where x ¼ x1 � d.

4.2 Designing the Observer

The concerns over the cost of sensors lead to using

observers for estimating unavailable states. The observer

error equation is written as follows [34]:

_̂e ¼ A1ê� BKT êþ K0ðe� êÞ;
ê ¼ CT ê;

�

ð14Þ
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where K0 ¼ ½k01; k02; . . .; k0n�T is the observer gain vector

satisfying A2 ¼ A1 � K0C
T to be a strict Hurwitz matrices.

By defining ~e ¼ e� ê ¼ x̂� x 2 Rn, the observation

state-space equation is calculated as

_~e ¼ A2~eþ B½ðf̂ ðx̂; ujhf Þ � f̂ ðx̂; ujh�f ÞÞþ
ðĝðx̂; ujhgÞ � ĝðx̂; ujh�gÞÞuðmÞc þ uh þ us þ x�;

~e ¼ CT ~e:

:

8
>><

>>:

ð15Þ

As only y is measurable, ~e is available. Therefore, the

strictly positive real (SPR) Lyapunov design method is

employed to analyze the system stability and one has

_~e ¼ HðsÞLðsÞL�1ðsÞ
h
ðf̂ ðx̂; ujhf Þ � f̂ ðx̂; ujh�f ÞÞþ

ðĝðx̂; ujhgÞ � ĝðx̂; ujh�gÞÞuðmÞc þ uh þ us þ x
i
;

ð16Þ

where HðsÞ ¼ CTðsI � A2Þ�1B is in stable; LðsÞ ¼ sðn�1Þ þ
C1
n�1as

n�2 þ � � � þ Cn�2
n�1 an�2sþ an�1 ¼ ðsþ aÞn�1

, a[ 0,

where L�1ðsÞ is a proper stable transfer function and

H(s)L(s) is a proper SPR transfer function.

By defining ~hf ¼ hf � h�f and ~hg ¼ hg � h�g, (15) is

represented as follows:

_~e ¼ A2~eþ Bcð~hf n0f þ ~hgn
0
gu

ðmÞ
c þ u0h þ u0s þ x0Þ

~e ¼ CT ~e;
:

(

ð17Þ

where Bc ¼ 1;C1
n�1a; . . .;C

n�2
n�1a

n�2; an�1
� 	T

; n0f ð:Þ ¼ L�1

ðsÞnf ð:Þ; n0gð:Þ ¼ L�1ðsÞngð:Þ; u0h ¼ L�1ðsÞuh; u0s ¼ L�1ðsÞ
us; and x0 ¼ L�1ðsÞx.

4.3 Proposed Robust Controllers and Adaptive

Laws

The H1 control term, the compensation control term, and

adaptive laws are described in this section. The Lyapunov

function proves the validity of these equations.

As H(s)L(s) is a proper SPR transfer function, there are

P[ 0 and Q[ 0 in the Riccati equation such that [35]

A2
TPþ PA2 � PBc

2

k
� 1

q2


 �

Bc
TP ¼ �Q;

PBc ¼ C;

ð18Þ

where ð0\k� 2q2Þ.
The H1 controller compensates for the approximation

error. Lowering q improves the tracking performance while

it could saturate the control input and cause higher fre-

quency chattering.

Since ~e is measurable, we define the H1 control term as

follows:

u0h ¼ � 1

k
Bc

TP~e: ð19Þ

By PBc ¼ C (18), we can simplify (19) as

u0h ¼ � 1

k
CT ~e ¼ � ~e

k
: ð20Þ

The above equation is considered without needing for

finding n� n-matrix P and n� 1-vector Bc. Therefore, we

describe the robust term by only one designing parameter

as k.

The compensation control term is defined as

u0s ¼ �KT
0 P0ê: ð21Þ

Lemma 2 The adaptive laws are defined as

_hf ¼ �c1~e
TPBcn

0
f ðx̂; uÞ ¼ �c1 ~en

0
f ðx̂; uÞ;

_hg ¼ �c2~e
TPBcn

0
gðx̂; uÞuðmÞc ¼ �c2 ~en

0
gðx̂; uÞuðmÞc ;

ð22Þ

where c ¼ ½c1,c2�[ 0 regulate the convergence of the

adaptive parameters. According to PBc ¼ C (18), the

control law and adaptive laws are simplified to be free of

designing P matrix and Bc vector.

Lemma 3 [13] The projection method restricts hf and hg
to be in the sets of Xf and Xg, respectively. As a result, _hf is
modified as

_hf ¼

� c1 ~en
0
f x̂; uð Þ

if khf k\Mf

� �
or ðkhf k ¼ Mf and ~ehTf n

0
f � 0Þ;

� c1 ~en
0
f ðx̂; uÞ þ c1 ~e

hf h
T
f n

0
f ðx̂; uÞ

khf k2
;

if ðkhf k ¼ Mf and ~ehTf n
0
f\0Þ;

:

8
>>>>>>>>><

>>>>>>>>>:

ð23Þ

and _hg is rewritten as follows:

a. For an element hgi ¼ e of hg, one has

_hgi ¼
� c2 ~en

0
gðx̂; uÞuðmÞc ; if ~en0giu

m
c \0;

0; if ~en0giu
m
c � 0;

:

8
<

:
ð24Þ

to guarantee jhgj � e.
b. Otherwise,

_hg ¼

� c2 ~en
0
g x̂; uð ÞuðmÞc ;

if khgk\Mg

� �
or
�
khgk ¼ Mg and ~ehTgn

0
gu

ðmÞ
c � 0

�
:

� c2 ~en
0
gðx̂; uÞuðmÞc þ c2 ~e

hgh
T
gn

0
gðx̂; uÞu

ðmÞ
c

khgk2
;

if
�
khgk ¼ Mg and ~ehTgn

0
gu

ðmÞ
c \0

�
;

:

8
>>>>>>>>><

>>>>>>>>>:

ð25Þ
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which guarantees jhgj �Mg.

By the above Lemma, it is proved that hf and hg are

bounded and also ~hf and ~hg ultimately converge to compact

residual sets around zero.

5 Stability Analysis

The stability of the closed-loop system in the proposed

scheme is proven by the following theorem.

Theorem 1 By considering Assumptions 1–4 for the plant

(1) with the control law (12), the robust controllers (20),

(21), and the adaptive laws (23)–(25), the following results

are obtained:

• The asymptotic stability is proved, and the system

output y follows the reference signal yd.

• All the signals of the closed-loop system, i.e., xðtÞ, x̂ðtÞ,
hf ðtÞ, hgðtÞ, ucðtÞ, _ucðtÞ,. . ., and uðmÞc are bounded for all

t� 0.

• The H1 tracking criterion is achieved for a prescribed

attenuation level q[ 0.

Proof The Lyapunov function is considered as

V ¼ 1

2
êTP0êþ

1

2
~eTP~eþ 1

2c1

~h
T

f
~hf þ

1

2c2

~h
T

g
~hg; ð26Þ

The time derivative of V is computed as

_V ¼ � 1

2
êTQ0ê�

1

2
~eTQ~eþ 1

2
~eTPBc

2

k
� 1

q2


 �

Bc
TP~eþ ~eCK0

TP0êþ ~ePBc
~hTf n

0 þ ~hTg n
0
gu

ðmÞ
c þ u0h þ u0s þ x0

� �

þ 1

c1

~h
T

f
_hf þ

1

c2

~h
T

g
_hg:

ð27Þ

According to C ¼ PBc in the third line of Eq. (18), we have

_V ¼ � 1

2
êTQ0ê�

1

2
~eTQ~eþ 1

2
~eTPBc � 1

q2


 �

Bc
TP~e

þ ~eTPBc
1

k
Bc

TP~eþ K0
TP0êþ u0h þ u0s þ x0


 �

þ 1

c1

~h
T

f
_hf þ c1~e

TPBcn
0
f

� �

þ 1

c2

~h
T

g
_hg þ c2~e

TPBcn
0
gu

ðmÞ
c

� �
:

ð28Þ

By replacing u0s ¼ �KT
0 P0ê, u0h ¼ � 1

kB
T
c P~e, _hf ¼

�c1~e
TPBcn

0
f and _hg ¼ �c2~e

TPBcn
0
gu

ðmÞ
c , the result is real-

ized as

_V ¼ � 1

2
êTQ0ê�

1

2
~eTQ~e� 1

2q2
~eTPBcBc

TP~eþ ~eTPBcx
0: ð29Þ

By considering a ¼ x0 and b ¼ ~eTPBc in Young’s

inequality, which holds ab� 1
2q2 b

2 � 1
2
q2a2, the asymp-

totic stability is proved as follows:

_V � � 1

2
êTQ0ê�

1

2
~eTQ~eþ 1

2
q2x0Tx0: ð30Þ

Hence _V is negative semi-definite when x0 is too small.

The integration of the above equation from 0 to T gives
Z T

0

_VðtÞ� � 1

2

Z T

0

êTQ0ê dt � 1

2

Z T

0

~eTQ~e dtþ

1

2
q2

Z T

0

x0Tx0 dt:

ð31Þ

By the Euclidean norm and kAk2
B ¼ ATBA, we have

Z T

0

_VðtÞ� � 1

2

Z T

0

kêk2
Q0

dt � 1

2

Z T

0

k~ek2
Q dtþ

1

2
q2

Z T

0

kx0k2
dt:

ð32Þ

By considering Q1 ¼ diag Q0;Q½ � and e1 ¼ ê; ~e½ �T , we have

2 VðTÞ � Vð0Þð Þ� �
Z T

0

ke1k2
Q1

dt þ q2

Z T

0

kx0k2
dt: ð33Þ

Assuming a positive constant Mx [ 0 such that
R1

0
kx0k2

dt�Mx, we have

2 VðTÞ � Vð0Þð Þ� �
Z T

0

ke1k2
Q1

dt þ q2Mx: ð34Þ

As VðTÞ� 0, we get
Z 1

0

ke1k2
Q1

dt� 2Vð0Þ þ q2Mx: ð35Þ

Therefore, the integral
R T

0
k�ek2

Q1
dt is bounded. By Bar-

balat’s lemma, it is proved that limt!1 ~e ¼ 0, and

limt!1 ê ¼ 0, which yield limt!1 e ¼ 0. It shows that y

asymptotically tracks yd. The boundedness of the errors

also guarantees the boundedness of x̂, x, and u
ðmÞ
c . As the

signals of u, _u,. . ., and uðm�1Þ are obtained through the

integration of u
ðmÞ
c signal, their boundedness is proved.

Moreover, by Lemma 3, the parameters of hf and hg can

reach their optimal values.

By defining P1 ¼ diag½P0;P�, we have
Z 1

0

k�ek2
Q1

dt� �eTð0ÞP1�eð0Þ þ
1

c1

~h
T

f ð0Þ~hf ð0Þ

þ 1

c2

~h
T

g ð0Þ~hgð0Þ þ q2Mx:

ð36Þ
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The above shows the following H1 tracking performance

is met. h

6 Simulation Results

We apply two uncertain nonlinear systems with inputs

derivative under various uncertainties for evaluation.

6.1 Second-Order System

Example 1 The spring-mass-damper system is used in

different architectures, e.g., cars, trains, screw presses in

forging processes, seismically excited multi-story build-

ings, and human structure [36–40]. The spring-mass-dam-

per trolley system is expressed as [7, 41]

m€y2 þ f _y2 � _y1ð Þ þ k exp� y2�y1ð Þ y2 � y1ð Þ ¼ 0; ð37Þ

where y1 is the displacement input, y2 is the mass dis-

placement output, m is the mass, and f and k are the

coefficients of the viscous friction and the stiffness spring,

respectively (see Fig. 2).

By defining x1 ¼ y2, x2 ¼ _y2 , u ¼ y1 , _u ¼ _y1 [7, 8],

(37) is described as follows:

_x1 ¼ x2;

_x2 ¼ �fx2 � k exp�ðx1�uÞðx1 � uÞ � bx3
1

m
þ f

m
_uþ d;

y ¼ x1 þ m;

:

8
>>>><

>>>>:

ð38Þ

where d and m are a disturbance and a measurement noise,

respectively.

Physical parameters are m ¼ 1 kg, k ¼ 10 N=m, f ¼
200 Ns=m [7, 8]. The reference trajectory is a unit step

function. 4th-order Runge–Kutta method is taken to solve

equations in the numerical simulations in which the step

time of the simulation experiments is 0:0001s. The initial

values are xð0Þ ¼ ½2; 1:3�T , x̂ð0Þ ¼ ½1:5; 1:2�T , uð0Þ ¼ 0.

The control parameters are assigned by trial and error to

attain reasonable tracking error and control energy con-

sumption. Therefore, K ¼ ½1000; 60�T , K0 ¼ ½1; 2�T ,

c1 ¼ 1; c2 ¼ 2, LðsÞ ¼ ðsþ 20Þ, and k ¼ 0:01. The Gaus-

sian functions are used in the estimation of f(.) and g(.) with

d ¼ 0:5 for all membership functions. Furthermore, the

centers of the fuzzy membership functions are equally

spaced in the range of x̂1, x̂2, and u. The universe of

discourse of each FLS’s input variable is defined by three

fuzzy sets; therefore, the number of fuzzy rules equals 27

(3 � 3 � 3 ¼ 27). Hence, each of nf , ng, hf , and hg includes

27 parameters. For comparison results, the method of [7] is

considered, which employs observer-based indirect adap-

tive first-order TS fuzzy controllers (OIAFTSFC). By

defining three fuzzy sets for each input in the first-order TS,

the dimension of the fuzzy basis functions and the adaptive

parameters increases to 36 elements (3 � 3 � 4 ¼ 36) in

OIAFTSFC. The simulation time equals 1 s in Fig. 3 and

Table 1. We investigate different conditions in the

following case studies (A-G).

Case A. Ideal Condition Here, we consider the trolley

when there are no environmental effects. Figure 3 shows the

tracking of the reference signal and the estimated state, the

boundedness of the system inputs, the estimations of the

unknown nonlinear functions, and the better transient

response. Table 1 shows that the proposed method lowers

the mean squared tracking error e1 (MSE), the mean squared

observer error ê1 (MSÊ), the consumed control energy

measurement criteria by u (J1), the consumed control energy

measurement criteria by _u (J2), and the settling time (Ts) by

60:3%, 32:7%, 2:9%, 75%, and 48:6%, respectively.

Case B. Sinusoidal Disturbance The trolley is consid-

ered in the presence of a fast external sinusoidal distur-

bance dðtÞ ¼ 3 sinð20tÞ. The comparison results between

the two methods are shown in Table 1. OH1IAZTSFC

lowers MSE by 60:3%, MSÊ by 32:7%, J1 by 2:9%, J2 by

74:9%, and Ts by 48:6%.

Case C. Pulse Disturbance Here, we apply an external

pulse disturbance dðtÞ ¼
1; 0:3� t� 0:6

0; otherwise
:

(

. Table 1

shows that OH1IAZTSFC lowers MSE by 60:3%, MSÊ by

32:7%, J1 by 2:8%, J2 by 75%, and Ts by 48:1%.

Case D. Noise Under the measurement noise

(SNR ¼ 40 dB), MSE, MSÊ, J1, J2, and Ts are improved

in the proposed method by 60:2%, 32:7%, 2:9%, 79:3%,

and 48:1%, respectively (see Table 1).

Case E. Data Loss Data loss is in networked control

systems with negative effects on system stability. The

stochastic data losses effect in the trolley system is shown

as [42]

Fig. 2 The spring-mass-damper trolley system
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xicðtÞ ¼ axiðtÞ þ ð1 � aÞxiðt � 1Þ; ð39Þ

where xicðtÞ is the ith states used in the control, xiðtÞ is the

ith state to be transmitted through the communication

network, and 0\a\1 is the constant data loss probability.

By supposing a ¼ 0:65, Table 1 shows that OH1IAZTSFC

lowers MSE (by 98:2%), MSÊ (by 29:6%), J1 (by 62:7%),

J2 (by 88:1%), and Ts (by 29%).

(c) (d)

(a) (b)

(e) (f)

Fig. 3 Comparison of the proposed method (OH1IAZTSFC) with OIAFTSFC [7] in Case A. a Trajectory of y. b x̂1. c _u. d u. e f � f̂ . f g� ĝ
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Case F. Dead-Zone The dead-zone nonlinearities of the

actuators negatively affect the control systems. The output

of the dead-zone with input u(t) is considered as

/ðuðtÞÞ ¼

mr uðtÞ � brð Þ; if uðtÞ� br;

0; if � bl\uðtÞ\br;

mlðuðtÞ � blÞ; if uðtÞ� � bl;

:

8
>><

>>:

ð40Þ

where mr and ml are the slope of the dead-zone, and br
and bl are the right and left dead-zone breakpoints,

respectively.

We consider the asymmetric dead-zone by mr ¼
ml ¼ 0:4, br ¼ 0:5, and bl ¼ �0:9 (see Table 1).

OH1IAZTSFC improves all of the comparison criteria,

e.g., MSE, J1, and J2 by 88:5%, 29:5%, and 86:3%,

respectively. The proposed method also shows a fast

convergence rate, as Ts improves by 95:7% compared with

OIAFTSFC, whereas the mean squared observer error has

no significant change (1:9%).

Case G. Sensitivity Analysis The sensitivity of the

proposed method to variations of the controller’s param-

eters is studied here. We calculate performance change

with respect to lowering the controller’s parameters by

10% (K0, K, c, a, and k) from the designed values. Table 1

shows that the proposed method maintains its advantage in

terms of the comparison criteria, e.g., MSE (by 59:7%),

MSÊ (by 29:5%), J1 (by 13:4%), J2 (by 73:6%), and Ts (by

97:2%).

6.2 Third-Order System

Example 2 Consider the following third-order system as

[9]:

_x1 ¼ x2;

_x2 ¼ x3;

_x3 ¼ F x1; x2; uð Þ þ G x1; x2; uð Þ _uþ d

y ¼ x1 þ m;

:

8
>>>>><

>>>>>:

ð41Þ

and

Fðx1; x2;uÞ ¼ 2 1 � x2
1

� ��
� x1 þ 2x2 þ

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj þ 0:1

p

� 2x2
1x2

�
� x2 �

1

2u juj þ 0:1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj þ 0:1

p ;

Gðx1; x2;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj þ 0:1

p

juj þ 0:1
;

ð42Þ

T
a

b
le

1
C

o
m

p
ar

is
o

n
o

f
th

e
p

ro
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se
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where x ¼ ½x1; x2; x3�T is the state vector, y is the system

output, u and _u are the system inputs, d is an external

disturbance, and m is a measurement noise.

In this example, the reference trajectory yd is a step

function. The numerical simulation method is a fourth-

order Rung-Kutta with the simulation step time 0:001 sec.

The initial states are supposed to be xð0Þ ¼ ½0:2; 0; 0�T and

x̂ð0Þ ¼ ½0:1; 0:1; 0:1�T . The control parameters are assigned

by trial and error to attain reasonable tracking error and

control energy consumption, e.g., K ¼ ½600; 400; 100�T ,

K0 ¼ ½50; 300; 1500�T , c1 ¼ 1, c2 ¼ 1, LðsÞ ¼ ðs2 þ 14s

þ49Þ, and k ¼ 0:00004. The basic fuzzy functions are

the Gaussian membership function with d ¼ 0:5. Further-

more, the centers of the fuzzy membership functions are

equally spaced in the range of the inputs of the fuzzy

system x̂1, x̂2, x̂3, and u. The universe of discourse of each

input variable consists of three fuzzy sets, so there are 81

fuzzy rules (3 � 3 � 3 � 3 ¼ 81) and 81 adaptive param-

eters. But, in OIAFTSFC, nf , ng, hf , and hg include 135

(27 � 5 ¼ 135) parameters because first-order TS increases

the dimension burden. The following seven cases (A–G)

express the better performance of the proposed method

compared with OIAFTSFC in all the evaluation criteria.

Case A. Ideal Condition By considering the system

(38) without any environmental effects, the better results of

the tracking performance and the transient response are

shown in Fig. 4. Table 2 also expresses the proposed

approach lowers MSE by 36:6%, MSÊ by 35:9%, J1 by

70%, J2 by 85:4%, and Ts by 36:3% compared to

OIAFTSFC.

Case B. Sinusoidal Disturbance The effect of a

disturbance signal dðtÞ ¼ 3 sinð20tÞ is discussed.

OH1IAZTSFC lowers MSE by 37:9%, MSÊ by 37%, J1

by 23:7%, J2 by 68:4%, and Ts by 40:5% in comparison

with OIAFTSFC (see Table 2).

Case C. Pulse Disturbance In the presence of

dðtÞ ¼
1 0:5� t� 2:5

0 otherwise
:

(

, OH1IAZTSFC lowers

MSE by 36:4%, MSÊ by 35:5%, J1 by 79:4%, J2 by

85:4%, and Ts by 53:1% in comparison with OIAFTSFC

(see Table 2).

Case D. Measurement Noise Under noise with

SNR ¼ 45 dB, Table 2 shows that OH1IAZTSFC lowers

MSE by 30:5%, MSÊ by 30:1%, J1 by 68:6%, J2 by 53:3%,

and Ts by 49:8%.

Case E. Data Loss By supposing a ¼ 0:98 in (39),

Table 2 shows that OH1IAZTSFC lowers MSE by 33:3%,

MSÊ by 32:7%, J1 by 42:8%, J2 by 78:5%, and Ts by

48:3%.

Case F. Dead-Zone Under the asymmetric dead-zone

with mr ¼ ml ¼ 0:3, br ¼ 0:5, bl ¼ �0:8, Table 2 reveals

that the proposed method lowers MSE by 23:4%, MSÊ by

23:1%, J1 by 18:7%, J2 by 36%, and Ts by 53:5%
compared with OIAFTSFC.

Case G. Sensitivity Analysis The sensitivity of the

introduced method to variations of the controller’s param-

eters is analyzed here. We calculate performance with

respect to lowering the controller’s parameters by 10% (K0,

K, c, a, and k) from the designed values. Table 2 shows that

OH1IAZTSFC improves MSE (by 35:2%), MSÊ (by

34:4%), J1 (by 69:5%), J2 (by 91:7%), and Ts (by

48:9%).The results show the better performance of the

proposed method in all criteria.

7 Conclusion

This paper studies nonlinear systems with high-order input

derivatives and nonlinear input–output relationships. The

dynamics are investigated without converting them to stan-

dard state-space forms to increase simplicity and inter-

pretability. The proposed controller guarantees robust

stability and trajectory tracking under uncertainties. The

proposed method utilizes the simple structure of the zero-

order TS fuzzy systems to increase transparency and estimate

unknown nonlinear functions. The state observer approxi-

mates the unmeasured states to decrease the cost. The H1
controller tries to compensate for the residual errors. The

adaptive rules and the H1 controller have simplified which

their equations are expressed without determining P0, Q0, P,

Q matrixes, and Bc vector. Compensation control is appen-

ded to ensure stability. The asymptotic stability of the closed-

loop system and the parameters’ convergence are proved

with the Lyapunov theory. Finally, the effectiveness of the

proposed method is revealed via simulations of the second-

order trolley system and the third-order SISO system in the

presence of unmeasured states, disturbances, measurement

noises, data loss, and asymmetric dead-zone. The results

show that the proposed approach has better tracking behavior

and lower energy consumption with a fast response. Our

future research directions in this research will be as follows:
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Comparison of OH1IAZTSFC with (OIAFTSFC) [7] in Case A. of Example 2. a Trajectory of output. b Trajectory of x̂1. c Designed

Controller ( _u). d Input (u). e Trajectory of x̂2. f Trajectory of x̂3
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• Use optimal controllers to adjust the parameters we

obtain with trial and error.

• Study various uncertainties, such as hysteresis, delay,

and saturation in the model, to check the robustness.

• Study more expressions of uncertainties in fuzzy

systems, such as in type-2 fuzzy systems, to reach

higher performance levels.
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mental validation of moving spring-mass-damper model for

human-structure interaction in the presence of vertical vibration.

Structures 29, 1274–1285 (2021)

40. Wang, H., Chen, J., Nagayama, T.: Parameter identification of

spring-mass-damper model for bouncing people. J. Sound Vib.

456, 13–29 (2019)

41. Zhang, L., Yang, G.: Low-computation adaptive fuzzy tracking

control for nonlinear systems via switching-type adaptive laws.

IEEE Trans. Fuzzy Syst. 27(10), 1931–1942 (2019)

42. Wu, C., Liu, J., Jing, X., Li, H., Wu, L.: Adaptive fuzzy control

for nonlinear networked control systems. IEEE Trans. Syst. Man

Cybern. Syst. 47(8), 2420–2430 (2017)

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Maryam Hassani received the

B.Sc. degree in Electrical Engi-

neering-control field from Fer-

dowsi University of Mashhad

and M.Sc. degree in Electrical

Engineering-control from Shah-

rood University of Technology,

Iran. She is currently working

toward the Ph.D. degree in

Electrical Engineering-control

field at Ferdowsi University of

Mashhad, Iran. Her research

interest includes intelligent

control, fuzzy control, adaptive

control, nonlinear systems, and

Robotics. More details can be found in LinkedIn profile https://www.

linkedin.com/in/hassani-maryam.

Mohammad-R. Akbarzadeh-T
is a professor and founding

member of the Center of

Excellence on Soft Computing

and Intelligent Information

Processing, Department of

Electrical Engineering, Fer-

dowsi University of Mashhad,

Iran. He received his Ph.D. on

Evolutionary Optimization and

Fuzzy Control of Complex

Systems from the department of

electrical and computer engi-

neering at the University of

New Mexico (UNM) in 1998.

From 1996 to 2003, he was also affiliated with the NASA Center for

Autonomous Control Engineering at UNM. In 2006 and 2017, he was

also with the Berkeley Initiative on Soft Computing (BISC), UC

Berkeley as a visiting scholar. In 2007, he also served as a consulting

faculty at the Department of Aerospace and Aeronautic Engineering,

Purdue University. Prof. Akbarzadeh is the founding president of the

1412 International Journal of Fuzzy Systems, Vol. 25, No. 4, June 2023

123

https://www.linkedin.com/in/hassani-maryam
https://www.linkedin.com/in/hassani-maryam


Intelligent Systems Scientific Society of Iran and the founding

councilor representing the Iranian Coalition on Soft Computing in

IFSA. He is also a senior member of the IEEE and the founding

faculty councilor of the IEEE student branch until 2008. His research

interests are in the areas of bio-inspired computing/optimization,

fuzzy logic and control, soft computing, multi-agent systems, com-

plex systems, robotics, cognitive sciences, and medical informatics.

He has published over 450 peer-reviewed articles in these and related

research fields. His research interests are in bio-inspired computing/

optimization, soft computing and control, multi-agent systems, cog-

nitive sciences, and medical informatics. More details can be found in

http://akbazar.profcms.um.ac.ir/. and LinkedIn profile www.linkedin.

com/in/mohammadakbarzadeh.

M. Hassani, M.-R. Akbarzadeh-T: Observer-Based Robust Adaptive TS Fuzzy Control of... 1413

123

http://akbazar.profcms.um.ac.ir/
http://www.linkedin.com/in/mohammadakbarzadeh
http://www.linkedin.com/in/mohammadakbarzadeh

	Observer-Based Robust Adaptive TS Fuzzy Control of Uncertain Systems with High-Order Input Derivatives and Nonlinear Input--Output Relationships
	Abstract
	Introduction
	Related Works
	Problem Description
	Proposed Controller Design
	Proposed Adaptive Fuzzy Controller
	Designing the Observer
	Proposed Robust Controllers and Adaptive Laws

	Stability Analysis
	Simulation Results
	Second-Order System
	Third-Order System

	Conclusion
	References




