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Abstract The cluster validity function is used to evaluate

the quality of the cluster results, and giving the exact

number of initial cluster categories will rationalize the

cluster results. Most single cluster validity functions and

combined cluster validity functions generally have strong

subjective problems, which also increases the burden on

decision analysts and have great limitations in applications.

To overcome the shortcomings of these clustering validity

functions and improve the accuracy of the optimal cluster

category classification for the datasets, based on the clus-

tering performance evaluation components, a validity

functional component construction method based on the

exponential and log form was proposed. The weighting

method adopts the combination of expert empowerment

and standard separation method to combine the five

weights so as to obtain 52 different fuzzy clustering

validity functions. Then, based on the fuzzy C-mean

(FCM) clustering algorithm, the performance analysis are

carried out by using multiple data sets. Experimental

simulation of these functions are proceeded on six com-

monly used UCI datasets. A clustering validity function

with the simplest structure and the best classification effect

was selected by comparison. Finally, this function is

compared with 8 typical single clustering validity functions

and four common clustering validity combination evalua-

tion methods on 8 UCI data sets. Through experimental

simulation, the proposed validity function is compared in

processing data sets, but also has strong scientific theoret-

ical basis. Thus, the feasibility and effectiveness of the

proposed clustering validity function construction method

are proved.

Keywords Fuzzy c-means clustering algorithm �
Clustering validity function � Subjective and objective

weighting � Component-wise design

1 Introduction

Clustering is accompanied by the emergence and devel-

opment of human society. People in the process of under-

standing and mastering objective things, always distinguish

different things and recognize the similarity between

things. Therefore, the research of cluster analysis is not

only of great theoretical significance, but also has impor-

tant engineering application and humanistic values. With

its theory development, clustering has been widely used in

many fields, such as speech recognition, face recognition,

radar target recognition, biological information analysis

[1, 2], image segmentation [3–6], edge detection [7], image

compression [8], curve fitting, target detection and track-

ing, mobile robot positioning, traffic flow video detection

[9, 10], and model identification and fuzzy rule establish-

ment [11, 12]. Clustering learning is one of the earliest

methods used in pattern recognition and data mining tasks,

and is used to study large databases in various applications.

Therefore, the clustering algorithm for big data has

attracted more and more attention.

In recent years, with the development of computing

theory and technology, many clustering methods have been

proposed. According to the implementation ideas of
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clustering algorithms, they can be divided into hierarchical

clustering algorithm, partitioned clustering algorithm,

density based clustering algorithm, grid based clustering

algorithm, and model-based clustering algorithm. Gold-

berger et al. Proposed a hierarchical clustering algorithm

based on classical Hungarian method [13]. Typical clus-

tering methods include k-means algorithm, k-medoids

algorithm, and fuzzy c-means algorithm [14]. Macqueen

proposed K-means clustering algorithm [15] in 1967,

which has become one of the most classic clustering

algorithms. Yodern et al. proposed a semi-supervised

K-means clustering algorithm in 2017 [16]. Gengzhang

et al. proposed a DC k-means algorithm in 2018 [17]. Hiep

proposed a differential privacy preserving K-Modes algo-

rithm in 2018 [18]. So far, many clustering algorithms have

been put forward for different types of clustering, which

can meet the different clustering requirements. However,

many existing clustering algorithms need to specify the

number of clusters in order to obtain the optimal clustering

partition of the target datasets before performing the clus-

tering task. The clustering validity index is used to evaluate

the partition result of clustering algorithm, which are

modeled by mathematical knowledge and can evaluate the

effectiveness of clustering partition results. Through the

mathematical evaluation of the clustering results for data-

sets, the clustering algorithm can also obtain the best

clustering results under the premise of unable to achieve

the given optimal number of clusters. From the present

point of view, the research on clustering validity can be

roughly divided into the study of single cluster validity

function and the research of combined clustering validity

evaluation method. The research on single clustering

validity function focuses on the following two aspects.

(1) The fuzzy clustering validity function based on

membership degree. Partition coefficient ðVPCÞ
defined by Bezdek is used to measure the overlap

between clusters [19]. Bezdek will also proposed

partition entropy ðVPEÞ used to measure the fuzzi-

ness of clustering partition [20]. This index is similar

to VPC. Bezdek proved that for all probabilistic

cluster partitions, the structure of VPC and VPE is

simple and the amount of calculation is small, but

they will change monotonously with the number of

clusters. An improved partition coefficient ðVMPCÞ is
revised on VPC about the existed monotone decreas-

ing trend problem, but other aspects of the defects

have not been improved [21]. In 2004, Chen and

links proposed an effective index in the form of

subtraction ðVPÞ, which is an effective function that

only focuses on membership [22]. In 2013, Jiashun

proposed a clustering validity function ðVCSÞ, which
can effectively suppress noise data [23]. Joopudi

used the maximum membership degree and the

minimum membership degree to measure the data

overlap and proposed a clustering validity function

ðVGDÞ [24].
(2) The fuzzy clustering validity function based on

geometric structure. Xie and Beni proposed a

clustering validity function ðVXBÞ based on propor-

tion operation in 1991 [25], which is the first

clustering validity function which takes into account

the structure of the data set. It is the ratio of the

compactness within the cluster and the separation

between the clusters. VK is an validity index

proposed by Kwon. The method of adding penalty

items to the numerator of the index effectively

restrained the trend of decreasing monotonously of

VXB. VPCAES index is a clustering validity index

proposed by Wu and Yang in 2005. It describes the

compactness and separation of clustering by fuzzy

membership function and the relative value of the

center distance of an exponential type structure [26].

Chi-Hung Wu proposed a clustering validity func-

tion ðVWLÞ in 2015 [27]. It considers all clusters and

the overall compactness separation ratio of each

cluster. Chi Yun proposed a validity function ðVFMÞ
in 2007 [28], which takes the partition entropy and

fuzzy partition factor into account, and defines the

compactness and separation of clustering, but its

performance on noisy data sets is poor. Zhu

proposed a new clustering validity function ðVZLFÞ
in 2019 [29], which can divide high-dimensional

data sets accurately. In 2021, Wang used the

definition of compactness, separation, and overlap

as reference, introduced a new concept to enhance

the adaptability of the validity function, and thus

proposed a clustering validity function ðVHYÞ [30].

Wang proposed a new clustering validity function

ðVWGÞ in 2021, which can find the best clustering

number of the noise, overlapping, and high-dimen-

sional datasets [31].

The final clustering results will be directly affected by

the performance of the clustering validity functions. Aim-

ing at the shortcomings of the existing fuzzy clustering

validity functions, this paper proposes a new fuzzy c-means

clustering validity function based on multi clustering per-

formance evaluation components by combining the sub-

jective weighting method and standard deviation method.

Two kinds of combination weighting methods in expo-

nential and logarithmic forms are proposed, and then five

FCM clustering performance evaluation components are

continuously arranged and combined in weighted form.

Several clustering validity functions based on combination

weighting strategy are tested on UCI datasets. The
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experimental results show that the two validity functions

can obtain the correct clustering results on UCI datasets,

which can overcome the defects of other clustering validity

functions, and become a new direction to solve the problem

of fuzzy clustering validity problem, and expand the the-

oretical system of constructing clustering validity functions

based on components.

2 FCM Clustering Algorithm and Combined
Clustering Validity Evaluation Method

2.1 FCM Clustering Algorithm

Fuzzy C-means (FCM) algorithm is a common soft clus-

tering algorithm, and it is also the most representative

fuzzy clustering algorithm. It is widely used in pattern

recognition and clustering analysis. Set the target data set

X ¼ x1; x2; . . .; xnf g composed of n samples, the sample

data xj ¼ ½x1j; x2j; . . .; xsj�T , where xkj is the the k property

value of xj. For a given sample set X, the cluster analysis of

X is divided into the c clusters. The minimum objective

function is found by iteration, which is defined in Eq. (1).

JFCMðU;VÞ ¼
Xc

i¼1

Xn

j¼1

ðuijÞm xj � vi
�� ��2 ð1Þ

where JFCMðU;VÞ represents the square error clustering

criterion, and its minimum value is called as the stationary

point of least square error. V ¼ v1; v2; . . .; vnf g represents

the set of clustering centers, whose definition is shown in

Eq. (2).

vi ¼
Pc

i¼1

Pn
j¼1 u

m
ij � xiPn

j¼1 u
m
ij

ð2Þ

where, c represents the number of clusters; m 2 ð1;1Þ is
the fuzzy coefficient to control the fuzziness of member-

ship degree of each group data the range; vi is on behalf of

the i-th clustering centers; xj � vi
�� �� represents the distance

between the objects xj to the cluster center vi, which usu-

ally adopts the euclidean distance; uijð0� uij � 1Þ repre-

sents the membership degree of the data objects xj
belonging to the cluster center vi; uij 2 U and U is the

membership matrix of fuzzy partition and meet the fol-

lowing conditions.

uij ¼
Xc

k¼1

xj � vi
�� ��2

xj � vk
�� ��2

 !2=m� 12
4

3
5
�1

;

Xc

i¼1
uij ¼ 1; 0�

Xn

j¼1
uij � n

ð3Þ

where, 1� j� n, 1� i� c.

The FCM clustering algorithm process is described as

follows:

Step 1: Set the clustering parameter c, fuzzy factor m,

and convergence threshold e.
Step 2: Initialize the clustering center matrix V and

membership matrix U, and obtain U0 and V0.

Step 3: Update the fuzzy partition matrix U ¼ ðuijÞc�n

according to Eq. (3).

Step 4: Update the clustering center V ¼ v1; v2; . . .; vcf g
according to Eq. (2).

Step 5: Calculate e ¼ utþ1 � utk k. If e� e (e is a

threshold from 0.001 to 0.01), the algorithm stops and the

final clustering result is calculated. Otherwise, Ut ¼ Utþ1

and repeat from Step 2.

2.2 Combined Clustering Validity Evaluation

Method

The clustering validity problem mainly lies in how to select

a clustering validity function to determine the optimal

number of clusters in datasets. The clustering validity

functions can be roughly divided into external validity

function, internal validity function, and relative validity

function. Both the internal fuzzy clustering validity func-

tion and the relative fuzzy clustering validity function have

developed very mature and the system is more and more

perfect. At present, the fusion of clustering validity func-

tions mostly uses the weighted combination. The typical

weighted combination clustering validity evaluation

methods are listed in Table 1.

3 Exponent and Logarithm Component-wise
Construction Method of FCM Clustering
Validity Function

3.1 Clustering Validity Evaluation Components

Based on the characteristics of FCM clustering algorithm

and typical clustering validity functions, five clustering

validity evaluation components (CP) are defined in this

paper. These components are used to represent the com-

pactness, similarity, variability within the datasets, and the

degree of separation and overlap between datasets, which

are shown in Table 2.

3.2 Exponent and Logarithm Component-Wise

Construction Method

In order to explore the combinatorial weighting component

construction method of clustering validity evaluation, the

above five components are normalized and standardized to
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make them in the same dimension range. Then, these

components are arranged and combined in the form of

combination weight. The new exponential and logarithmic

clustering validity functions are constructed. Their con-

struction rules are shown in Eq. (4) and (5).

minV ¼
Xm

i¼1

whybride
CPi ð4Þ

min S ¼
Xn

j¼1

whybrid lnð1þ CPjÞ ð5Þ

where, m, i, n, and j are random positive integers from 1 to

5.

This paper proposed a clustering validity function con-

structed in the form of logarithm and exponent. The

exponential function y ¼ ex and the logarithm function y ¼
ln x are monotonically increasing functions. In the interval

0þ1, the ordinate value of the exponential function is

always greater than 0, while the value of the logarithmic

function is less than 0 in the interval, and it needs to be

greater than 0 in the constructor. Therefore, this problem

can be solved by expressing it with the logarithmic form

y ¼ lnð1þ xÞ. Then V and S are applied to the FCM

clustering algorithm, and the algorithm flowchart for

obtaining the optimal number of clusters is shown in

Fig. 1. The flowchart of the FCM clustering algorithm

based on V and S are described as follows.

The design method draws lessons from the linear

superposition idea and the characteristics of exponential

and logarithmic functions based on the previous combined

clustering validity methods. However, the components

selected in this paper have the problem that they are

effective under different extreme conditions. Therefore, the

components with the maximum effective value in Eq. (4) is

Table 1 Weighted combination clustering validity evaluation methods

Proposer Definition Weighting method Selection of validity functions

Sheng [32]
maxWSVF ¼

Pm

i¼1

wifiðxÞ
Average weighting 1=DB;VSIL;VD;V33;VCH ;VPBM

Hong-bin Dong [33]
maxFWSVF ¼

Pr

i¼1

wifiðxÞ
Average weighting 1=VXB; 1=VPE;VPC ;VPBMF

Wu [34]
minDWSVF ¼

Pm

i¼1

wifiðxÞ
Dynamic weighting 1=VMPC;VPE;VXB;VPBMF

Wang [35]
minHWCVF ¼

Pm

i¼1

wifiðxÞ
Mixed weighting VMPC ;VXB;VK ;VP;VPBMF ;VWL;VZLF ;VHY

Table 2 Clustering validity evaluation components

Component

name

Define formula Features of components

CP1

(Compactness)
CP1 ¼

Pc

i¼1

Pn

j¼1

ðuijÞ2 xj � vi
�� ��2 The smaller the value of CP1 is, the higher the similarity degree of data in the class is,

and the closer the data in the class is

CP2

(Variability)
CP2 ¼ 1

n

Pc

i¼1

Pn

j¼1

exp � xj�vik k2

e

� �
The smaller the value of CP2 is, the lower the variability of the data, and the more

stable the intra class data. e represents the average sum of distances between the data

in the class and the mean value of the data sample. The smaller the value, the more

stable the data

CP3

(Overlap)
CP3 ¼ min

i 6¼j

1
n

Pn

j¼1

1� uik � ujk
�� ��� �

 !
CP3 is proposed based on the membership degree to represent the degree of overlap

between data sets. The closer the difference uik � ujk
�� �� will be to 1, the smaller the

1� uik � ujk
�� �� value. Therefore CP3 with a small value indicates that the classification

effect is good

CP4

(Similarity)
CP4 ¼ min

1� i� c

Pn

j¼1

ðuijÞ2
CP4 represents the sum of the squares of membership of data points xj belonging to the

cluster center vi. The higher the value of CP4, the more similar the data within the

class

CP5

(Separation)

CP5 ¼ min
i 6¼k

vi � vkk k2 CP5 ¼ min
i6¼k

vi � vkk k2 is used to define the components of overlapping degree between

classes, which represents the minimum distance between any two clusters. The higher

the value CP5, the better the separation between classes

123

650 International Journal of Fuzzy Systems, Vol. 25, No. 2, March 2023



used as (1� CPi). In Eq. (5), the component is dealt with

(1þ CPj) so as to obtain CPj ¼ fð1þ CP1Þ; ð1þ CP2Þ;
ð1þ CP3Þ; ð1þ CP4Þ; ð1þ CP5Þ; ð1þ CP6Þg. In this way,

the format of each validity function can be guaranteed to be

unified. In addition, for different components, the amount

of information is different, but a component corresponds to

a weight, which is independent of the position of the

component in the clustering validity function. So whybrid

based on five components can be expressed as

whybrid ¼ fw1;w2;w3;w4;w5;w6g. In this way, the cluster-

ing validity function is constructed as V and S. It is more

convenient to carry out the simulation and contrast tests in

the following paper by using similar structure mode and all

the minimum values are effective.

3.3 Subjective and Objective Weighting Strategy

The selection of weight is very important in the combina-

tion evaluation process of clustering validity function.

Different weight will bring different influence. The weight

types can be mainly divided into the following two types.

(1) Subjective weighting method. It is a method to

determine the attribute weight according to the

subjective attention of decision makers (experts).

Common methods include Delphi method, analytic

hierarchy process (AHP), fuzzy analysis method,

linked ratio method, correlation tree method, set-

valued iteration method, and eigenvalue method.

The subjective weighting method is that the experts

Begin

Given the maximum number of clusters ( ≤ ); the maximum number 
of iterations ; the fuzzy index m and the termination threshold ε

Initialize membership degree matrix U; cluster center V and cluster number c

Update the fuzzy partition matrix U

and the cluster center V/S and judge 

whether e is less than ε

Calculate the value of / and 

judge whether c is less than 

Select / ( , , ) = min{ / ( , , )}, and output the values of the 

optimal number of clusters and /

End

Yes

Yes

= + 1

(c = 2, …, )

No

No

Fig. 1 Flowchart of FCM clustering algorithm based on the proposed validity function
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reasonably determine the weight of each attribute

according to the actual decision-making problems

and their own knowledge and experience. The

determination of the weight is generally in line with

the reality, so it is highly explanatory. But the

decision-making and evaluation results have strong

subjectivity and randomness, so its objectivity is

weak and has great limitations in application.

(2) Objective weighting method. It is mainly based on

the degree of connection between indicators, the

amount of information provided by each index, and

the impact on other indicators. Therefore, the

obtained weight is observable and does not increase

the burden of decision makers. This method has

strong mathematical theoretical basis. Common

objective weighting methods include the principal

component analysis method, multi-objective pro-

gramming method, entropy weight method, CRITIC

method, and standard deviation method.

In this paper, the hybrid weighting method of subjective

and objective combination is used to eliminate subjective

deviation and objective one-sided, and show the subjective

and objective information while determining the weight so

that it can truly and objectively reflect the actual situation

of single cluster validity function. The hybrid weighting

method can be defined as follows:

whybrid ¼ dwobject þ ð1� dÞwsubject ð6Þ

where, wobject is the subjective empowerment, wsubject is the

objective empowerment, whybrid is the hybrid empower-

ment, and d is the adjustment coefficient (d 2 ½0; 1�½0; 1�).
When d ¼ 0, whybrid ¼ wobject becomes the subjective

weight.When d ¼ 1,whybrid ¼ wsubject and the hybrid weight

becomes the objective weight. When d ¼ 0:5, we can con-

clude the objective index wobject and the subjective index

wsubject have the same influence on whybrid. d may be revised

according to the importance of the index and the character-

istics of the data set so as to improve the classification

accuracy. The value of wobject is determined by the decision

maker and is taken as wobject ¼ 1=n without special instruc-

tions, where n is the number of clustering validity functions.

wsubject is determined by information entropy weighting.

The standard deviation method is used to determine the

index weight. First, the standard deviation of the index is

calculated, and then the weight is determined based on the

mean square deviation of the index. In the multi-index

comprehensive evaluation, because the dimension of the

index or the quantity of the datasets may be different, there

is no comparability between the indicators. So the first step

is to process the data and make the indexes comparable.

There are many ways to deal with it, such as normalization,

standardization, and some other dimensionless methods.

For the convenience of the following description, it is

advisable to set the index set as G ¼ fG1G2. . .Gmg, the
sample set (or scheme set) is A ¼ fA1A2. . .Ang, and the

corresponding sample point is Xij(i ¼ 1; 2. . .n and

j ¼ 12. . .;m). The weight vector of evaluation index is

W ¼ ðw1w2. . .wmÞT , which satisfies
P

wi ¼ 1. After

dimensionless or standardized treatment, the matrix X ¼
ðXijÞ is changed to the matrix Z ¼ ðZijÞ. The standard

deviation determines the weight of the index. The principle

is that if the standard deviation of an index is smaller, the

variation degree of the index is smaller, the amount of

information provided is smaller, and the role played in the

comprehensive evaluation is smaller, so the weight of the

index is smaller. On the contrary, the greater the weight.

The characteristic of standard deviation weighting method

is that the index weight reflects the amount of data infor-

mation or the change of index data.

The specific calculation steps of subjective and objective

weighting are described as follows.

Step 1: The original data matrix Xijði ¼ 1; 2; . . .; n; j ¼
1; 2; . . .;mÞ is carried out the dimensionless treatment. The

extreme method is generally used for dimensionless treat-

ment. The positive indices are Zij ¼ ðXij �minjfXijgÞ=
ðmaxjfXijg �minjfXijgÞ. For the inverse index

Zij ¼ ðXij �maxjfXijg � XijÞ=ðmaxjfXijg �minjfXijgÞ,
obtain the matrix Z 0

ij.

Step 2: Calculate the mean value of random variables by

Zj ¼ 1
n

Pn
i¼1 Zij;

Step 3: Calculate the mean square error of index j by

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðZij � ZjÞ2
q

;

Step 4: Calculate the weight of index j by wj ¼ rj=Pp
j¼1 rj;

Step 5: According to the multi-index weighted com-

prehensive evaluation model Di ¼
Pm

j¼1 Wj � Zijði ¼ 1;

2; . . .; n; j ¼ 1; 2; . . .mÞ, calculate the comprehensive eval-

uation value, where Wi is the weight of the j the index.

4 Simulation Experiment and Result Analysis

According to the composition rules shown in Eq. (4) and

Eq. (5), 52 different clustering validity functions can be

formed by permutation and combination of five compo-

nents in the form of exponent and logarithm. In order to

facilitate the experiment, these 52 validity functions were

divided into six groups (eight in four groups and nine in

two groups), which are listed in Tables 3, 4, 5, 6, 7, and 8,

respectively. These tables show the names and the sim-

plified function form of the 52 validity functions.

According to the prior knowledge, the fuzzy index can be

determined as 1:5�m� 2:5 and the number of clusters is
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selected as 2� c�
ffiffiffi
n

p
. This paper chooses m ¼ 2 and

2� c� 14. Then whether the classification by using each

clustering validity function is accurate is judged on dif-

ferent data sets. In this paper, we select the UCI datasets to

carry out simulation experiments, such as Iris, Seeds,

Balance, Hfcr, Glass, and Cooking. The amount of data,

categories, and attributes of the adopted UCI datasets are

listed in Table 9. In order to better observe the changing

trend of six groups of clustering validity functions in the

face of UCI datasets, the function values of their experi-

mental results are placed in the normalized coordinate

system, as shown in Figs. 1, 2, 3, 4, 5, and 6. In this way,

the clustering effect of each validity function can be

compared more intuitively. Finally, for different UCI

datasets, the optimal number of clusters for each cluster

validity function is listed. The results are listed in

Tables 10, 11, 12, 13, 14, and 15.

Table 3 Exponent clustering validity functions (Group 1)

Function name Shorthand function description

V1 w1e
CP1 þ w2e

CP2

V2 w1e
CP1 þ w3e

CP3

V3 w1e
CP1 þ w4e

ð1�CP4Þ

V4 w1e
CP1 þ w5e

ð1�CP5Þ

V5 w2e
CP2 þ w3e

CP3

V6 w2e
CP2 þ w4e

1�CP4

V7 w2e
CP2 þ w5e

1�CP5

V8 w3e
CP3 þ w4e

1�CP4

V9 w3e
CP3 þ w5e

1�CP5

Table 4 Exponent clustering validity functions (Group 2)

Function name Shorthand function description

V10 w4e
1�CP4 þ w5e

1�CP5

V11 w1e
CP1 þ w2e

CP2 þ w3e
CP3

V12 w2e
CP2 þ w3e

CP3 þ w5e
ð1�CP5Þ

V13 w1e
CP1 þ w2e

CP2 þ w5e
ð1�CP5Þ

V14 w1e
CP1 þ w3e

CP3 þ w4e
ð1�CP4Þ

V15 w1e
CP1 þ w3e

CP3 þ w5e
ð1�CP5Þ

V16 w1e
CP1 þ w4e

ð1�CP4Þ þ w5e
ð1�CP5Þ

V17 w2e
CP2 þ w3e

CP3 þ w4e
ð1�CP4Þ

V18 w2e
CP2 þ w3e

CP3 þ w5e
ð1�CP5Þ

Table 5 Exponent clustering

validity functions (Group 3)
Function name Shorthand function description

V19 w2e
CP2 þ w4e

ð1�CP4Þ þ w5e
ð1�CP5Þ

V20 w3e
CP3 þ w4e

ð1�CP4Þ þ w5e
ð1�CP5Þ

V21 w1e
CP1 þ w2e

CP2 þ w3e
CP3 þ w4e

ð1�CP4Þ

V22 w1e
CP1 þ w2e

CP2 þ w3e
CP3 þ w5e

ð1�CP5Þ

V23 w1e
CP1 þ w2e

CP2 þ w4e
ð1�CP4Þ þ w5e

ð1�CP5Þ

V24 w1e
CP1 þ w3e

CP3 þ w4e
ð1�CP4Þ þ w5e

ð1�CP5Þ

V25 w2e
CP2 þ w3e

CP3 þ w4e
ð1�CP4Þ þ w5e

ð1�CP5Þ

V26 w1e
CP1 þ w2e

CP2 þ w3e
CP3 þ w4e

ð1�CP4Þ þ w5e
ð1�CP5Þ

Table 7 Logarithmic clustering validity functions (Group 2)

Function name Shorthand function description

S10 w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S11 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ
S12 w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w5= lnð1þ cp5Þ
S13 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w5= lnð1þ cp5Þ
S14 w1 lnð1þ cp1Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ
S15 w1 lnð1þ cp1Þ þ w3 lnð1þ cp3Þ þ w5= lnð1þ cp5Þ
S16 w1 lnð1þ cp1Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S17 w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ
S18 w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w5= lnð1þ cp5Þ

Table 6 Logarithmic clustering validity functions (Group 1)

Function name Shorthand function description

S1 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ
S2 w1 lnð1þ cp1Þ þ w3 lnð1þ cp3Þ
S3 w1 lnð1þ cp1Þ þ w4= lnð1þ cp4Þ
S4 w1 lnð1þ cp1Þ þ w5= lnð1þ cp5Þ
S5 w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ
S6 w2 lnð1þ cp2Þ þ w4= lnð1þ cp4Þ
S7 w2 lnð1þ cp2Þ þ w5= lnð1þ cp5Þ
S8 w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ
S9 w3 lnð1þ cp3Þ þ w5= lnð1þ cp5Þ
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5 Simulation Results and Analysis on Exponent
Validity Functions (Group 1)

As can be seen from Fig. 2a–f, the six clustering validity

functions of the first group of indices are defined as V1, V5,

V6, V7, V8, and V9, which cannot classify any group of UCI

datasets. Each group of data in UCI data set can be clas-

sified by V2. It can be seen from Fig. 2a–c that Iris, Seeds

and Balance data sets can be correctly divided into three

categories by V3; and the other data sets are classified

incorrectly. Finally, it can be seen from Fig. 2b and d, V3

only can the optimal number of clusters for the Seeds and

Hfcr datasets. It can be found in the comparison experi-

ment of the first group of exponent clustering validity

functions. Three UCI datasets can be distinguished cor-

rectly by V3; Only two sets of real datasets can be correctly

divided by V4; V1, V5, V6, V7, V8, and V9 unable to accu-

rately cluster any set of UCI datasets. The validity function

V2 has the best clustering performance, which can be

achieved by dividing all UCI datasets.

6 Simulation Results and Analysis on Exponent
Validity Functions (Group 2)

From the experimental results in Fig. 3a–d, it can be con-

cluded that when processing Glass and Cooking datasets, the

second group of clustering validity function cannot correctly

classify them. It can be seen from Fig. 3a–b that the samples

in Iris and Seeds datasets can be accurately divided into three

categories by V11, V12, and V14. It can be found from Fig. 3b

and d that Seeds and Hfcr datasets can be effectively clas-

sified byV13. As shown in Fig. 3c, Balance can be accurately

divided into three categories by V12: Through the compara-

tive experiments on the second group of exponential validity

functions, it can be found that, V10, V15, V16, V17, and V18 are

unable to successfully distinguish any of the selected UCI

datasets. TwoUCI datasets can be distinguished successfully

byV11,V13, andV14. The best clustering number of threeUCI

datasets can be obtained by V12.

7 Simulation Results and Analysis on Exponent
Validity Functions (Group 3)

In Fig. 4d-f, it can be found that none of the eight validity

functions can classify Hfcr, Glass, and Cooking data sets.

As can be seen from Fig. 4c, in addition to the validity

function V21, the other seven validity functions can classify

the Balance data set into three categories and the classifi-

cation performance is excellent. Finally, according to

Fig. 4a and b, Iris and Seeds datasets can be correctly

divided into three categories by V21; while other seven

validity functions cannot effectively classify these two

datasets. Based on the comparative experiment results by

adopting the third group of exponential validity functions,

we can draw the conclusion that V21 can successfully

separate two datasets, while the other seven validity

functions cannot classify the other datasets except the

Balance data set. The classification performance of the

eight clustering validity functions is relatively poor and is

excluded from the selection range.

8 Simulation Results and Analysis on Logarithm
Validity Functions (Group 1)

According to Fig. 5a–f, the six datasets in UCI datasets can

be classified successfully by S2. Seen from Fig. 5c, Balance

can be divided into three categories by S5; and the optimal

Table 8 Logarithmic clustering

validity functions (Group 3)
Function name Shorthand function description

S19 w2 lnð1þ cp2Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S20 w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S21 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ
S22 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w5= lnð1þ cp5Þ
S23 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S24 w1 lnð1þ cp1Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S25 w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ
S26 w1 lnð1þ cp1Þ þ w2 lnð1þ cp2Þ þ w3 lnð1þ cp3Þ þ w4= lnð1þ cp4Þ þ w5= lnð1þ cp5Þ

Table 9 UCI data sets (component experiments)

Data sets Data numbers Attributes Classes

Iris 150 4 3

Seeds 210 7 3

Balance 635 4 3

Hfcr 299 13 4

Glass 214 9 6

Cooking 4900 3 7
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(a) Iris                   (b) Seeds

(c) Balance (d) Hfcr

(e) Glass (f) Cooking
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Fig. 2 Variation trend of normalized exponential clustering validity functions (Group 1)
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(a) Iris                      (b) Seeds

(c) Balance (d) Hfcr

(e) Glass (f) Cookiing
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Fig. 3 Variation trend of normalized exponential clustering validity functions (Group 2)
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(a) Iris                               (b) Seeds

(c) Balance (d) Hfcr

(e) Glass (f) Cooking
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(a) Iris                                  (b) Seeds

(c) Balance (d) Hfcr

(e) Glass (f) Cooking

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11 12 13 14

S₁ S₂ S₃ S₄ S₅

S₆ S₇ S₈ S₉

Fig. 5 Variation trend of normalized logarithmic clustering validity functions (Group 1)
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(a) Iris                                   (b) Seeds

(c) Wine                                   (d) Cooking

(e) Ionosphere                               (f) Wpbc
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Fig. 6 Variation trend of normalized logarithmic clustering validity functions (Group 2)
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cluster number of Balance is c = 3. However, the rest of the

log validity functions in the first group cannot distinguish any

selected UCI datasets correctly. The experimental results are

similar to those of the first exponential group. According to

the contrast experiment results on the first group of loga-

rithmic validity functions, it can be concluded that S5 can

obtain the perfect clustering number of data sets accurately.

The clustering performance of S2 is very good and it can

accurately and effectively classify all adopted UCI datasets,

so it is included in our selection range.

9 Simulation Results and Analysis on Logarithm
Validity Functions (Group 2)

From Fig. 6a–f, it can be observed that the performance of

the nine logarithmic validity functions in the clustering and

classification process on UCI data sets is very poor, and it

is impossible to classify any datasets successfully. There-

fore, it shows that the nine logarithmic validity functions in

the simulation experiments cannot be used to classify UCI

data sets, it is necessary to select and compare other log-

arithmic validity functions composed of components.

10 Simulation Results and Analysis on Logarithm
Validity Functions (Group 3)

It can be observed from Fig. 7a–f that the simulation

results of this group are similar to those of the second

group of logarithmic clustering functions. These eight

logarithmic validity functions also have no way to distin-

guish UCI datasets effectively. As can be seen from

Fig. 7e, Glass dataset can only be divided into three cate-

gories by S22, but it is still not the optimal number of

clusters. The other validity functions in this group can only

divide each data set into two categories, and none of them

Table 10 The best cluster number of the exponential validity func-

tions for UCI datasets (Group 1)

Data Optimal c V1 V2 V3 V4 V5 V6 V7 V8 V9

Iris 3 5 3 3 11 2 2 2 2 2

Seeds 3 5 3 3 3 2 2 2 2 2

Balance 3 5 3 3 4 2 2 2 2 2

Hfcr 4 6 4 3 4 2 2 2 2 2

Glass 6 5 6 3 13 2 2 2 2 2

Cooking 7 5 7 4 3 2 2 2 2 2

Bold indicates that the clustering validity function can obtain the best

number of clusters for this dataset

Table 11 The best cluster

number of the exponential

validity functions for UCI

datasets (Group 2)

Data Optimal c V10 V11 V12 V13 V14 V15 V16 V17 V18

Iris 3 2 3 3 2 3 2 2 2 2

Seeds 3 2 3 3 3 3 2 2 2 2

Balance 3 2 4 3 4 2 4 2 2 2

Hfcr 4 2 3 3 4 3 3 2 2 2

Glass 6 2 3 3 2 2 2 2 2 2

Cooking 7 2 3 3 3 2 3 2 2 2

Bold indicates that the clustering validity function can obtain the best number of clusters for this dataset

Table 12 The best cluster number of the exponential validity

functions for UCI datasets (Group 3)

Data Optimal

c
V19 V20 V21 V22 V23 V24 V25 V26

Iris 3 2 2 3 2 2 2 2 2

Seeds 3 2 2 3 2 2 2 2 2

Balance 3 3 3 4 3 3 3 3 3

Hfcr 4 2 2 3 3 2 2 2 2

Glass 6 2 2 2 3 3 3 2 3

Cooking 7 2 2 2 2 2 2 2 2

Bold indicates that the clustering validity function can obtain the

best number of clusters for this dataset

Table 13 The best cluster number of the logarithmic validity

functions for UCI datasets (Group 1)

Data Optimal

c
S1 S1 S1 S1 S1 S1 S1 S1 S1

Iris 3 5 3 2 2 2 2 2 2 2

Seeds 3 5 3 2 2 2 2 2 2 2

Balance 3 5 3 2 4 3 2 4 2 4

Hfcr 4 7 4 2 2 2 2 2 2 2

Glass 6 5 6 2 3 2 2 3 2 2

Cooking 7 5 7 2 2 2 2 2 2 2

Bold indicates that the clustering validity function can obtain the

best number of clusters for this dataset
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can be classified successfully. Therefore, the performance

of these eight logarithmic validity functions in this group is

still very poor and is not in the selected range.

The validity functions V and S are the best clustering

validity evaluation criteria when both the minimum value c

is taken. From Fig. 2 to Fig. 7, 52 validity functions con-

structed in this paper can clustering the selected data sets

into several categories, which is the improved quantitative

result. In practice, if a data is given, in the cluster number

2� c�
ffiffiffi
n

p
, the two optimal validity functions V2 and S2

compared with the 52 validity functions are used to

determine how much is the optimal cluster number.

11 Simulation Comparison with Single Clustering
Validity Functions and Combined Clustering
Validity Methods

11.1 Simulation Comparison with Single Clustering

Validity Functions

Through the simulation comparison on the above six

groups of clustering validity functions, six UCI datasets

can only be divided successfully by the exponential

validity function V2 and the logarithmic validity function

S2. In order to fully reflect the clustering performance of

the validity function V2 and S2, this paper selected the eight

common clustering validity functions (VMPC, VXB, VPCAES,

VWL, VFM , VZLF , VHY , and VWG) and 8 kinds of commonly

used UCI datasets to carry out the comparative experiments

with V2 and S2. The function description and optimal

cluster number of the eight typical clustering validity

functions are listed in Table 16, where v ¼
Pc

i¼1 vi=c

represents the mean value of the cluster centers. The geo-

metric meaning of umj ¼ min1� i� c

Pn
j¼1 ðuijÞ

2
can refer to

the component CP4 shown in Sect. 3. l and

median vi � vkk k2 represents the median distance between

two cluster centers.

Table 17 lists the number of samples, attributes, and

categories of UCI datasets selected in this experiment.

Vehicle and Led7 datasets are added in the comparison

process to improve the experiment integrity by adopting

the 10 normalized fuzzy validity functions (VMPC, VXB,

VPCAES, VWL, VFM , VZLF , VHY , VWG, V2, and S2) in the same

coordinate system. The simulation results are shown in

Fig. 7a–h. Finally, for different UCI datasets, the optimal

number of clusters for each cluster validity function is

listed in Table 18.

As can be seen from Fig. 8a, b, Iris and Seeds data sets

can be successfully divided into three categories by the

four validity functions (VHY , VWG, V2, S2), while other six

validity functions could not get the correct cluster number.

This shows that when dealing with Iris and Seeds datasets

with complex structures, V2 and S2 have the better per-

formance compared with some other typical clustering

validity functions. As shown in Fig. 8e-h, only V2 and S2
can accurately distinguish Glass, Cooking, Vehicle and

Led7 datasets. It can be observed from Fig. 8c and d,

except that V2 and S2, there are other validity functions that

distinguish individual datasets from UCI datasets, such as

VWL can get the correct number of clusters in the Balance

data set. The optimal clustering number of Hfcr data set

can be correctly divided by VZLF , whose the best cluster

number can be divided into four. As shown in Fig. 8a–h.

The best classification number of all UCI datasets can only

be found by V2 and S2, which indicates that when faced

with data sets with overlapping samples, noise data and

higher dimensions, the classification number of UCI data-

sets can be found. The clustering result of V2 and S2 is

better than other clustering validity functions.

This paper constructs 52 validity functions. The com-

putational complexity of simulating these 52 validity

Table 14 The best cluster

number of the logarithmic

validity functions for UCI

datasets (Group 2)

Data Optimal c S10 S11 S12 S13 S14 S15 S16 S17 S18

Iris 3 2 2 2 2 2 2 2 2 2

Seeds 3 2 2 2 2 2 2 2 2 2

Balance 3 2 2 2 6 2 6 2 2 2

Hfcr 4 2 2 2 2 2 2 2 2 2

Glass 6 2 2 2 2 2 2 2 2 2

Cooking 7 2 4 2 2 2 2 2 2 2

Table 15 The best cluster number of the logarithmic validity

functions for UCI datasets (Group 3)

Data Optimal c S19 S19 S19 S19 S19 S19 S19 S19

Iris 3 2 2 2 2 2 2 2 2

Seeds 3 2 2 2 2 2 2 2 2

Balance 3 2 2 2 2 2 2 2 2

Hfcr 4 2 2 2 2 2 2 2 2

Glass 6 2 2 2 3 2 2 2 2

Cooking 7 2 2 2 2 2 2 2 2
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(a) Iris                               (b) Seeds

(c) Balance (d) Hfcr

(e) Glass (f) Cooking
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Fig. 7 Variation trend of normalized logarithmic clustering validity functions (Group 3)
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Table 16 Typical clustering validity functions

Validity Index Function description Optimal c

Modification of partition coefficient VMPC ¼ 1� c
c�1

ð1� 1
n

Pc
i¼1

Pn
j¼1 uij

2Þ Max

Xie and Beni
VXB ¼

1
n
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i¼1

Pn

j¼1
uij

mkvi�xjk2
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i 6¼j

kvi�vjk2
Min

Partition coefficient and exponential separation
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i¼1

Pn
j¼1

uij
2

umj
�
Pc

i¼1exp
�min

k 6¼i
kvi�vkk2
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 !
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Chih-Hung Wu

VWL ¼

Pc
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j¼1
uij

2kxj�vik2Pn

j¼1
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� �
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i 6¼k

kvi�vkk2þmediankvi�vkk2
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FM-index
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Pc

i¼1

Pn

j¼1
ðuij�1

cÞ
2kvi�xjk

2

nmin
i 6¼j

kvi�vjk2
� ð� 1

n
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i¼1

Pn
j¼1 ½uijlogaðuijÞ�Þ
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Zhu
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sep ¼

Pn
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i
uijPc

i¼1
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k¼1

Pc

i¼1;i 6¼k
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2

Min

Wang2020
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k
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Guan Wang
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Jiaxu Liu
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e
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Jiaxu Liu
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j¼1
lnððuijÞ2 xj�vik k2þ1

n

Pc

i¼1

Pn

j¼1
ð�

xj�vik k2

e Þþmin
i 6¼j

ð1n
Pn

j¼1
lnð1� uik�ujkj jÞÞ

min
1� i� c

Pn

j¼1
2 lnðuijÞþmin

i 6¼k
2 lnð vi�vkk kÞ

Min

Table 17 UCI datasets (comparative experiments)

Data sets Data numbers Attributes Classes

Iris 150 4 3

Seeds 210 7 3

balance 635 4 3

Hfcr 299 13 4

glass 214 9 6

Cooking 4900 3 7

Vehicle 846 18 4

Led7 500 7 10

Table 18 The best cluster

number of the different validity

functions for UCI datasets

Data Optimal c VMPC VXB VPCAES VWL VFM VZLF VHY VWG V2 S2

Iris 3 2 2 11 2 2 2 3 3 3 3

Seeds 3 2 2 14 2 2 2 3 3 3 3

Balance 3 10 10 2 3 2 10 2 2 3 3

Hfcr 4 10 8 14 10 2 4 8 8 4 4

Glass 6 2 2 12 2 2 2 2 2 6 6

Cooking 7 2 2 13 2 2 2 2 2 7 7

Vehicle 4 2 2 14 2 2 2 2 2 4 14

Led7 10 12 2 14 2 2 2 2 2 6 10

Bold indicates that the clustering validity function can obtain the best number of clusters for this dataset
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Fig. 8 Variation trend of normalized clustering validity functions
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function experiments is the same as the calculation com-

plexity of a single validity function. The single validity

function calculation complexity takes time, and the time

complexity is positively proportional to the number of

validity function so that the time complexity is a positive

linear relationship with the constructed validity function.

The selected eight common clustering validity functions

(VMPC, VXB, VPCAES, VWL, VFM , VZLF , VHY , and VWG) are

designed through subjective experience based on the basic

concepts of FCM clustering algorithm and validity evalu-

ation criteria. The improved partition coefficients VMPC

correct the VPC existing monotonic reduction problem, but

still lack a direct connection to the geometry of the data set.

VXB is the structure of the data set clustering validity

function, but this calculation method often ignore the noise

data. VPCAES is a function of exponential operation pro-

posed by Wu and Yang et al. VWL has best classification

effect among these eight validity functions. VFM has poor

performance on the data set with noise. On the other hand,

the exponential validity function V2 and the log validity

function S2 used for comparison are the two best clustering

validity functions by the objective combination and then

performance comparison. These two validity functions

proposed in this paper not only avoid the strong subjective

randomness of the subjective experience in designing the

validity function, but also greatly reduce the limitations in

real applications.

11.2 Simulation Comparison with Combined

Clustering Validity Methods

In order to better highlight the advantages of the weighting

method and validity function proposed in this paper com-

pared with other traditional methods, so as to enhance its

persuasiveness, four combined clustering validity methods

introduced in Sect. 2.2 (DWSVF, FWSVF, WSCVI, and

HWCVF) and 8 UCI datasets are selected to carry out the

simulation experiments. They are compared with V2 and S2
through simulation experiments. Then the six clustering

validity evaluation methods (DWSVF, FWSVF, WSCVI,

HWCVF, V2, and S2) are placed in the normalized coor-

dinate system, and the experimental results are shown in

Fig. 9a–h. Finally, Table 19 lists the optimal number of

clusters for each clustering validity evaluation method for

different UCI datasets.

As can be seen from Fig. 8a–c, the Iris, Seeds and

Balance datasets can be accurately classified into three

subsets by DWSVF, WSCVI, V2, and S2. In Fig. 9d and h,

it can be found that when processing Hfcr, Glass, Cooking,

Vehicle, and Led7 datasets, only V2 and S2 can obtain the

best cluster number of these six datasets. None of the other

clustering combination evaluation methods can accurately

divide these six datasets. Obviously, V2 and S2 are much

better than other classical clustering combination evalua-

tion methods. From the experimental results shown in

Fig. 8a–h, the following conclusions can be drawn. For the

above 8 commonly used UCI data sets, the classification

performance of V2 and S2 is also better.

12 Conclusion

In this paper, a new combination empowerment method is

defined through subjective empowerment and standard

separation method empowerment, and a component con-

struction method of FCM clustering validity function based

on five cluster performance evaluation components was

proposed. By using the UCI data sets, the best clustering
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validity function was selected by carrying out the simula-

tion comparison. Finally, the eight commonly used single

clustering validity functions and four typical combined

clustering validity evaluation methods were simulated and

verified on 8 UCI datasets. The simulation results prove

that the proposed validity function based on this con-

struction method is more complex in the data structure. The

datasets with noise and overlapping data interference is

better than other single or combination clustering validity

functions. The screening and comparison of many experi-

ments prove the proposed constructor more objective. With

a strong scientific theoretical basis, it can reduce the one-

sided aspect of proposing the validity function based on the

subjective intention and improve the research depth of the

clustering validity function. However, the construction

method also has its own limitations, so some constructed

superior validity functions will be selected to integrate the

method, and comprehensively use multiple validity func-

tions for evaluation. Therefore, the component integration

for the clustering validity function is put into further study.
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