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Abstract Wireless sensor networks (WSNs) grieve from a

wide range of limitations and aberrations which hinder

their smooth functioning. Detecting anomaly in WSNs is a

decisive research area, which emphasizes making sensor

nodes to be reliable in handling data. Owing to energy

restrictions and less computation capability of sensor net-

works, anomaly detection ought to concentrate on the

fundamental limitations of sensor networks. Anomaly

detection and dipping noisy data transmission are essential

to recover the network life span of sensor networks by

promising data integrity. Henceforth, academicians and

researchers are frequently getting motivated in finding

methods to improve the accuracy of data held by the sensor

nodes. In such surroundings, the investigators focus on

semi-supervised anomaly detection which uses real data to

distinguish incidences that are conflicting with the widely-

held data. The proposed idea is acquainted with a fuzzy-

based anomaly detection model for semi-supervised

anomaly detection in an effort to recover accuracy. The

proposed model is compared with other leading existing

procedures and methodology over robustness and other

substantial metrics. Comparatively, our proposed prototype

achieves a high-performance score with 99.70% accuracy,

99.14% precision, 99.27% detection rate, 98.56% speci-

ficity, 98.78% F1 score, and 0.8 correlation coefficient. It is
detected that our proposed model diminishes false alarms

up to 1.20% through detection which is a key concern in

WSNs.

Keywords Anomaly · Cluster · Outlier · Correlation · Self-

organization map · Mamdani fuzzy model · Wireless sensor

networks

1 Introduction

Wireless sensor networks (WSNs) involve numerous sen-

sor nodes arrayed in the region of interest for application-

specific areas. WSNs are diverse networks having their

standing in areas such as logistics, healthcare, weather

forecasting, military applications, robotics, security, and

surveillance. These nodes are usually of small size with

computational energy, communication ports, and sensing

capabilities. Sensor nodes communicate via short-range

wireless signals and team up among themselves to

accomplish mutual tasks.

Sensor nodes have inadequate bandwidth, power, mea-

ger memory capacity, limited processing resources, and

measurable lifetime. The core task of the sensor node is to

sense the attributes like light, heat, and temperature [1].

The analyzed report will then be forwarded to the sink or

host controller in the format specified by the administrator.

Consumption of energy by the WSNs to compute the data
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is less compared to the transmission of data. Energy uti-

lization could be minimized using the collected data and

aggregation will be performed using functions like sum(),

avg(), etc. Aggregation of data aka data aggregation is the

procedure used to collect and combine the necessary

required information related to its specific applications.

The efficiency of the data aggregation techniques could be

improved by the success rate of the communication

between nodes. Data aggregation is an effective tool

accepted by maximum researchers to reduce the energy

consumed by the individual nodes thereby saving resources

that are available in a limited manner. This technique also

has the accuracy in enhancing the network lifetime and

energy efficiency.

Data aggregation is one of the ways for conserving

energy in dense WSNs by minimizing redundant data

transfer. In the sensor deployment area, aggregators

remove the unnecessary data and send only fused infor-

mation to the base station. Hence, it removes unwanted

data transmission of incorrect data in the network and it

preserves the energy which will be utilized for the same.

Small sensor nodes are integrated to form any sort of WSN.

Within the specified range, communication happens

between the sensor nodes. As far as the power of the sensor

node is concerned, it is crucial to reduce the energy con-

sumption that will be consumed by the sensor nodes for

specific applications which effectively will increase the

lifetime of WSNs [2, 3]. Data redundancy reduction will

help in achieving the above-said lifetime of the nodes since

the maximum power is consumed by processing the

superfluous data. Therefore, the best solution to improve

the lifetime of the network as on date is to remove the

redundancy occurring in WSNs. The technique named data

aggregation is widely adopted by the maximum number of

applications that result in gathering and aggregation of data

while considering the energy efficiency and enhancing the

lifetime of the nodes.

Albeit removing the redundancy results in the increase

of the lifetime of the nodes, utmost care is needed in

fetching accurate results in WSNs. Hence, both reliability

and conservation of energy should be treated with equal

weightage. This paper mainly focuses on solving the issues

like redundancy, accuracy, communication, and computa-

tional complexity that occur in the process of aggregation

of data. The information collected from the sensor nodes

will be fused using the wireless sensor nodes that would be

deployed in certain applications. Generally, sensors are not

dependent on variable quantities which exist in the raw

dataset. Sensor nodes deployed close to one another gen-

erally have the same attributes [4]. Therefore, it is crucial

to cluster the sensor data and the data that were aggregated

using different algorithms. Monitoring the observation

retrieved from the above-said techniques, two phases are

essential for discovering and substituting inconsistent data

to recover data accuracy and the data quality in the sensor

network [5, 6].

The first phase of the proposed architecture starts with

candidate model construction, where a customized self-

organizing network partition is employed and it ends by

grouping similar and dissimilar datasets separately. In the

second phase, an adaptive fuzzy inference system (FIS)

analyses the candidate input space from the data cluster and

applies fuzzy logic rules to detect the anomaly, and also

appropriate data replacement is done to avoid data loss and

improve data quality in the sensor network.

The proposed methodology will be capable of achieving

three main objectives:

(1) efficiently clustering the sensor networks based on

data using a customized self-organizing map

(CSOM),

(2) extending network lifetime by reducing redundant

data transmission with localized data aggregation,

and

(3) increasing aggregated data accuracy by using an

efficient fuzzy-based classification of normal and

abnormal sensory values with data imputation.

The remaining part of this paper is organized as follows.

In Sect. 2, we elucidate the existing significant ideas related

to our anticipated method. Section 3 elucidates the system

model and problem assertion. In Sect. 4, the proposed

anomaly detection with the fuzzy inference model is

explained. In Sect. 5, we experimented with the related

activities to compare the performance. In Sect. 6, we confer

the conclusion.

2 Related Work

To improve the dependability of WSN data, it is critical to

detect outliers both spontaneously and correctly. In gen-

eral, outlier identification methods are of the following:

statistical-based methods, closest neighbor-based methods,

clustering-based methods, classification-based methods,

and spectral decomposition-based methods [7, 8]. Statisti-

cal approaches capture the data distribution and assess how

the data instance matches the model. If the model’s pre-

diction likelihood for a data sample is abnormally low, the

data instance is classified as an outlier. Moreover, because

of the large volume of contacts among neighbors, closest

neighbor-based approaches require unnecessary resources

at each sensor to detect outliers, potentially reducing the

lifetime of WSNs [28]. Clustering-based methods aggre-

gate data examples with comparable behaviors into the

very same cluster and define an outlier as an instance that

cannot be categorized into any cluster. Because cluster-
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based approaches can only do clustering after collecting the

entire dataset. Classification-based approaches use previ-

ous data to train the classification model, which is then

used to assess new collections online. Outlier identification

using spectral-based approaches focuses on high-dimen-

sionality data processing, which may add to the system’s

computing complexity.

Feng et al. [9] present a distributed outlier detection

strategy constructed on trustworthiness response. The

method is broken down into three stages: initial credibility

of sensor nodes will be assessed, final credibility using

credibility feedback, and the Bayesian theorem will also be

assessed. As far as the message complexity study is con-

cerned, this model eats a lot of energy. Abid et al. introduce

a real-time outlier identification approach for WSNs [10].

The method has the advantage of requiring no previous

information on the data distribution. The quality of the

generated clusters, on the other hand, has a significant

impact on outlier identification performance. The Bayesian

classifier is utilized in the first layer at each sensor node,

and the choices of different nodes are then integrated into

the second layer to identify if an outlier is present in the

various sensors [11]. Its goal is to provide an accurate

outlier classification system that is both computationally

and communicationally simple.

A hierarchical anomaly detection methodology is sug-

gested in [12] for distributed large-scale sensor networks.

To cope with anomalies in data collected by the defective

sensor, it uses principal component analysis (PCA). The

approach creates a model for sensor information, which is

then used to find outliers in a sensor node by looking at

neighboring sensor nodes. The approach is computationally

costly because it necessitates the selection of an appropri-

ate model. A WSN outlier identification approach based on

k-nearest neighbor (NN) is proposed in [13]. The term

“hyper-grid” comes to mind when thinking about this

method. The computational cost is significantly reduced by

normalizing abnormality from a hypersphere detection area

to a hypercube detection area. However, it has to be tested

on a larger number of datasets with data stream distribu-

tions. Focusing on a fuzzy clustering technique that is

almost hybrid, the authors deliver a regimented fuzzy

clustering style for Takagi–Sugeno (TS) fuzzy modeling in

[14]. For developing an effective T–S fuzzy model from

sample data, the process goes through many phases. In

[15], authors projected an active associated fuzzy system

with the temporal, attribute, and spatial correlations for

detecting multivariate outliers in sensor networks. They

have employed outlier detection during data aggregation in

the cluster head.

For distributed anomaly identification in different actual

datasets, Heshan Kumaragea et al. [16] advocated fuzzy

data modeling. When a high number of nodes are used,

scalability and sensitivity are reduced. Sensor networks

that work on the principle of routing algorithm based on

subtractive clustering are used in [17] to pick and create

clusters in areas with a high node density. Their findings

show that an appropriate cluster configuration, a prolonged

life for the initial node, and an unfluctuating continued

lifetime for the system are necessary to stabilize the energy

utilization of every node in the network. In this case, the

data density is estimated using Euclidean distance, which

does not result in an ideal cluster head. The technique in

[18] has a high false alarm rate and a low F1 score. It used

subtractive clustering in conjunction with a Sugeno FIS to

detect anomalies in a sensor network. The relative corre-

lation clustering technique is used to identify anomalies.

This model combines the comparative cascaded correlation

approach with clustering and re-clustering [19]. Vesanto

and Alhoniemi also proposed and examined various

approaches for clustering the primitive. These approaches

simply treat each model as a single feature vector, per-

forming clustering on small-scale variables derived by

SOM [20]. The U-matrix can also be used to cluster the

primitive. It has been verified to outperform conventional

clustering approaches while requiring less computing time

[21].

Erfani et al. [22] suggested a high-dimensional anomaly

identification method to lower the data’s dimensionality for

finding outliers. However, this fits best when the reduced

outliers are evenly scattered among the regular occur-

rences; otherwise, accuracy degrades. In [23], An adaptive

mountain clustering technique with data dimensionality

measures is deployed for finding outlier data that prevents

undesired transmission of data to the base station while

improving data accuracy. They concluded that on average,

the proposed system has a precision of 98.96%. Also, while

increasing the sample size from 5000 to 20,000, accuracy

remains consistent.

The approach reliably identifies anomalies while pro-

ducing a low false positive. The author established an

adaptive neural swarm practice for anomaly detection in

[24]. The method incorporates agent-based swarm intelli-

gence in a decentralized collaborative method. The swarm

agents create modular neural network models indepen-

dently, and reinforcement learning is used in the training

phase on the way to support a learning environment that is

supposed to be unsupervised. The authors of [25] proposed

a least squares support vector machine that is sliding

window-based for detecting outliers in a dynamic envi-

ronment. This method employs a replicating kernel Hilbert

space kernel which contains a radial basis function.

The authors of [26] proposed an anomaly detection

algorithm using DBSCAN and SVM. A density-based

spatial clustering algorithm was used for detecting

anomalies that are marked in low-density regions, and then
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the model is trained to classify normal and anomaly by

using an SVM classifier. The authors compared their per-

formance in each cluster. The overall accuracy was 95.5%

and they failed to focus on running time fluctuation while

increasing cluster size. The authors focused on clustering

technology-based ODCASC algorithm to forecast anoma-

lous node data while considering the spatial correlation

between node data for decision making. This ODCASC

algorithm focused only on spatial correlation. It fails to

focus on attribute relationships while considering multi-

variate data analysis. Hence, accuracy is less when

compared with our proposed method. Moreover, compu-

tational complexity is also not considered in performance

while considering a large dataset [27].

Each above-mentioned research work has been applied to

anomaly detection in WSN but these models are not able to

produce results withmultivariate attribute correlation analysis.

Moreover, these systems lack in producing anomaly detection

with various performance indicators. None of them explained

an efficient prediction of data classification by applying fuzzy

classification models and computational and memory com-

plexity are also not addressed properly. The anomaly detection

in the cluster head to make the proposed system acts proac-

tively before the aggregated data transmission process in the

network. The proposed model is designed to discover

anomalies to address some of the research difficulties in terms

of various performance indicators. Our proposed approach

produces fewer false alarms without compromising the com-

puting time of the model, which reflects the communication

complexity in the cluster head. Furthermore, the suggested

model is found to be appropriate for high-dimensional huge

datasets with good accuracy and F1 score with self-organiza-
tion map in fuzzy decisions.

3 Network Model and Problem Declaration

The forthcoming segment addresses both the network model

and the proposed problem. The main purpose of this paper is

to propose a forecasting model based on anomalies that

transmit the data without any loss or interference. Numerous

research areas are evolving exponentially that represents

models for different sensor networks. By applying the

hypothesis, we contemplate a sensor network environment in

which every node intelligences its neighbors periodically by

forwarding the data to a base station located at different

places. Sensor nodes remain diverse and concentratemore on

their energy parameters. Sensor nodes understand better

about their location. Sensor nodes are always volatile,

whereas the base station is not volatile and is fixed. Sensor

nodes act as watchdog in controlling communication

dynamically using the radio waves and their boundaries are

Fig. 1 Network topology and system model
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limited. Aggregation or fusing the data is typically used to

diminish the number of messages in the network.We believe

that combining α identical packets of size k yields a single
packet of size n as an alternative to size αn.

Consider S as the set of sensor nodes deployed randomly

at the required region R. kSk is supposed to be the entire

amount of sensor nodes. Figure 1 depicts that a compre-

hensive connected network is created with probable

numbers of distributed clusters. Every cluster would be

guided by the cluster head by eventually performing data

aggregation. Each cluster head has an anomaly forecasting

model that is used to remove anomalies before transmitting

merged data to the base station. Because a cluster is made

up of sensor nodes that can sense their surroundings, data

accuracy is ensured in each cluster head by incorporating

the proposed anomaly forecasting model, and accuracy at

the sink node is also verified at the end of the user query.

To construct the framework in this paper, the following

assumptions are taken into account.

● Nonhomogenous sensor network sensor network appli-

cations for wireless mesh network infrastructure are

assumed to consider sensor nodes with unequal initial

energy as well as dissimilar capabilities. The proposed

method is also suitable for homogeneous networks by

deploying sensors with high energy for performing

sensing, computation, sending, and receiving processes.

In a homogeneous network, all sensor nodes are having

equal initial energy and the aggregator performs the

majority of the task. However, it drops its energy and

leads to inconsistent computation.

● Tracking and event sensor report the nodes in this

network adjust their sensors and transmitters regularly

by sensing the environment and transmitting the data of

interest in response to abrupt and extreme deviations in

the value of an identified attribute.

● Closer sensors may receive more correlated data since

nodes are positioned to sense overlain zones. Sensor

networks require a way to accurately detect not each

node’s data but also aggregated data in localized

aggregation, which involves sensors in the immediate

area cooperating to cluster data and transfer aggregated

data to a sink.

4 Proposed Methodology

The proposed methodology is comprised of two parts:

candidate space partitioning and anomaly detection. In the

first part, aiming at each sensor node, the original perceived

data can be separated into multiple groups by analyzing its

spatial correlation. By testing the conventional SOM, it is

inferred that it groups the data points based on Euclidian

distance and does not concentrate on analyzing the multi-

variate data correlation. Hence, conventional SOM

considers the NN’s distance without considering correla-

tion metrics among input variables. To resolve this issue,

Mahalanobis distance is put into practice with spatial cor-

relation for grouping dissimilar regions for examining

anomalies that are most deviated from its space in the outer

layer [29].

The workflow of the anomaly forecasting process is

shown in Fig. 2. This first level of defense identified large

deviated data points by grouping them into clusters. Then

the sensor node’s data are labeled as most disbelieving
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nodes and the remaining data points sensor nodes are

labeled as believing nodes for data aggregation under the

guidance of the cluster head. In the second part, each

cluster data point is analyzed by a well-defined fuzzy

anomaly detection model. Two groups of nodes are taken

into consideration labeled as disbelieving and believing

nodes. The uncertainty fuzzy inputs are considered as

candidate input space for the anomaly detection model.

They may counter noise and channel interference or sensor

node fault so that some data are lost or damaged during

delivery. In the third part, according to received data, we

design an ensemble mechanism to impute the original

perceived data for improving data accuracy.

4.1 Customized Self-organization Map

SOM is among the popular neural network methods for

cluster analysis [31] for two reasons. First, SOM has the

features of both auto-organized and structure-preserving

topology. Closed data in the input data space will be

anticipated onto closed prototype vectors on the grid next

to the training phase so that two input vectors that were

projected onto closed prototypes belong to the same clus-

ter. The second states that SOM is very useful for

dimensionality reduction and clustering high-dimensional

data, and SOM has prominent visualization properties.

First, we will take a look at the conventional SOM.

SOM is an unsupervised learning method that accepts high-

dimensional inputs and produces lower-dimensional output

by grouping comparable input data indices together based

on their proximity [32]. The model self-organizes based on

learning rules and interactions. The main functionality of

conventional SOM can be described as follows:

a. Choose a collection of Ṋ nodes that calculate efficient

separation features of random high-dimensional

incoming inputs S(t). Each node has a d dimensional

weight vector.

b. Initialize the weight factor w=(wi1, wi2,…,wid), where i
=1, 2,…,m, which has the same size as the input

dataset.

c. Select the nodes with the largest output and set them as

tentative winner nodes.

d. Selected nodes maintain proximity relationships with

their neighbors when they are close to the input vector.

CSOM creates network clusters based on available data

sent out by sensor nodes and transmits only aggregated data

to sink nodes. CSOM is used for creating a candidate model

structure that emphasis topological sensor node arrange-

ments based on the relationship between candidate data and

feature elements in the map. The Mahalanobis distance is a

useful multiple variable distance metric for determining the

distance between two points. It is a really useful statistic

with a high degree of efficiency in multivariate anomaly

identification. In this topological structure, candidate sensor

data points similarities are analyzed and represented in the

output map using the feature element characteristics.

The CSOM consists of Ṋ nodes located in the candidate

feature surface. Nodes are connected with their neighbors

according to topological arrangements. Topological net-

work arrangements are created to connect Ṋ nodes with

their neighbor nodes. Figure 3 shows the nodes at the

specified range distances of the winner nodes’ one-hop

neighbor nodes with each input data. These winner nodes

are labeled as near and far nodes for that specific input. The

proposed CSOM can be described in the subsequent steps.

4.1.1 Step 1: Stretch Out Input Dataset

Candidate input patterns are the data points collected from

the sensor nodes denoted as S(t)={Si: i=1, 2, 3…,d}, where
d is the scale indicating the number of the input vector, and

the related weights between the input pair (i, j), the resultant
layer can be denoted asẂj(Si)={Ẃji: j=1, 2, 3,…,n& i=1, 2,
3,…,d}, where n number of nodes associated weights are

analyzed in the feature map. We have data point Si from the

sensor nodes candidate region mapping to pointsM(Si) in the
resultant output region. Every data item M(Si) in the output

region would be associated with a weight Ẃ(Mi) in the

candidate region. An input pattern S(t) is chosen informally

and assigned concurrently to all nodes.

4.1.2 Step 2: Weight Factor Initialization

Initially, all the weight vectors Ẃj(Si) 2 Ṋ nodes with a set

of n * d weight vectors are assigned. Then, the winning

occurrence factor ẘf=0 is initialized and the strength of

topological links between each node is initialized as TC(i,
j)=0.

4.1.3 Step 3: Selection of Winning Node with the Best
Matching Score

The winner node is selected using Eq. (1). The distance

between the input S(t) and the weight vector Ẃj(Si) is

calculated, and each node is given a position value Pi;

where i=0, 1,…,Ṋ. Because of the winning node distance

to the input Si, the position value Pi is assumed to be 0. The

winner node winning occurrence factor ẘf=0 is incre-

mented by one.

ð1Þ

where dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i;j¼1 si � wji

� �2q
and :b c denotes

Mahalanobis distance measure.
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Here, si and wji are the input data and weight vector of

nodes N
ˆ
with t repetitions in different time intervals.

4.1.4 Step 4: Estimation of Neighbor Nodes Spatial
Correlation

Among Ẃj(Si) inputs, tentative winning node’s ⓦ neigh-

bor’s spatial sensor nodes (Ṋ) correlation proximity is

considered. The correlation between the node in the feature

map and its neighbor node readings is analyzed for cal-

culating spatial correlation. In the spatial correlation

model, all the received sensor data from reporting node

SNiandSNj locations have been experimented and the

threshold distance Cθ and the variance r2 are determined.

Spatial correlation SCorr can be expressed as follows:

SCorr SNi; SNj

� � ¼ r2ChkSNi � SNjk: ð2Þ
The tentative winning node’s neighbor’s N(i) is

found in the feature map and the new winning node is

calculated for updating weight in Ẃj(Si) in spatially cor-

related sensor node’s data S(t).

4.1.5 Step 5: Wining Node Weight Adjustment Based
on Spatial Correlation

The topological connection strength between the winning

node and node i is increased by using Eq. (3). The relative

winning occurrence factor wfi of the node is updated using

Eq. (4).

ð3Þ

ð4Þ

The following equation is used to update the weight

vectors of the winner node and its neighbor with high

SCorr SNi; SNj

� �
.

ð5Þ
Here, k:k is Euclidian distance and Y ;Sið ÞðtÞ is the

neighbor functions described as follows:

ð6Þ

( , ) = Ꝓ + {‖Ꝓ − Ꝓ ‖2 + ( , )} ð7Þ

where Pi is the current position value of the node on the

feature map, g tð Þ is the training rate, and aðtÞ is the dis-

tance measure of the neighbor node’s radius. Both g tð Þ and
aðtÞ reduce at time t with the training period L by using

Eqs. (8) and (9).

g tð Þ ¼ g 0ð Þ: g Lð Þ
g 0ð Þ

� �t=L

; ð8Þ

Fig. 3 CSOM neighborhood input space portioning
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a tð Þ ¼ a 0ð Þ: a Lð Þ
a 0ð Þ

� � t
L

: ð9Þ

4.1.6 Step 6: Collaboration and Adaptation with Nearest
Wining Nodes

Through appropriate adjustment of the related connection

weights, the stimulated nodes reduce their values of the

dependent variable concerning the input pattern, enhancing

the reaction of the winning node to the relevant improve-

ment of a similar input. The nearest node’s weight vector is

updated using the following equation:

ð10Þ
Here, the function Y ;Skð ÞðtÞ is the spatially correlated

neighbor function and described in Eqs. (11) and (12).

ð11Þ

ð12Þ
Steps 3 to 6 are repeated for all input SðtÞ.

4.2 Multivariate Mamdani Fuzzy Inference System

FIS are approaches that communicate knowledge and

erroneous data in a way that is extremely similar to how

people think. As a result, this strategy is better used to

address problems with a dependent variable rather than

observable data. It denotes the existence of a nonlinear

connection between one or more input parameters and one

or more output variables. This can be used as a beginning

point for decision making.

The standard inference engine can accept any fuzzy or

crisp input, although it invariably creates fuzzy sets as

output [30]. Crisp output can be required, particularly

in situations when a FIS is utilized as a controller, as shown

in Fig. 4. As a result, we will need a defuzzification method

for obtaining a crisp output from a fuzzy set. FIS outfits a

nonlinear plotting from its contribution space to production

space. Many fuzzy if–then rules are used to perform this

mapping.

Multivariate Mamdani FIS (MMFIS) involves a collec-

tion of fuzzy rules where its premise part is fuzzy and the

consequent part is also fuzzy. Every stage of the inference

process is defined in detail to provide a thorough under-

standing of how a simple FIS works. The system receives

input parameters such as temperature and humidity, which

are fuzzified and processed by several IF–THEN rules

before being deputized to represent the optimal physical

phenomenon values.

The IF–THEN rules are proposed by Mamdani’s model

with a set of guidelines. The following are the definitions

of an input matrix and an output vector.

F ¼ f 1; f 2; � � � f n½ �T
f 11 f 11 � � � f 1n
f 21 f 22 � � � f 2n
f n1 f n2 � � � f nn

2
4

3
5;

G ¼ g1; g2; � � � g½ �;
where f1, f2, fn are antecedents and hn is the consequent, g1,
g2,…,gn are fuzzy membership set, and Rn is the number of

rules. MFIS functionality is described by a set of fuzzy IF–

THEN rules that denote input–output functions of infer-

ence engine. Rule Ri of the nonstop Mamdani model is of

the following form:

If f1 is g1 and f2 is g2 …. and fn is gn Then h1 is g1k

The MMFIS is meant to take four maximum inputs and

produce a single output/multi-output after fuzzification.

A Mamdani FIS approach was chosen because it is easy to

manipulate, has a well-understood rule basis, and, most

significantly, is suitable for human input because it con-

siders states that are not clearly described by computing

standards. For comparison, our MMFIS anomaly detection

process is put up against a Sugeno-based anomaly detec-

tion system in [18]. Higher-order Sugeno fuzzy models are

also used in effective classification and decision-making

processes, however, nonlinear input parameters can add

significant computational complexity to the system, low-

ering its overall efficiency. The various stages of the

MMFIS are presented using real data and sample input

variables.

Membership function 

Crisp /  

Fuzzy 

Output 

Data 

Crisp   

Input 

Data 

Mamdani Fuzzy Inference 
Engine 

Fuzzy If then Rules with Fuzzy 

Linguistic Variables 

Fuzzifier Defuzzifier

Fig. 4 MMFIS logic process
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4.2.1 Stage 1: Fuzzification of Input Parameters

The linguistic variables and the linguistic membership

values are defined using fuzzification. This is the system’s

method of using membership functions to determine suit-

able membership degree inputs corresponding to fuzzy set.

Figures 5 and 6 illustrate the input memberships with the

defined values corresponding to the linguistic limits. This is

also a set of precise numerical inputs. The crisp input is

fuzzified by assigning linguistic variables (low, medium,

high) by membership degree in the fuzzification process.

4.2.2 Stage 2: Fuzzy Rule Base and Inference Mechanism

The foundation of the rules defines a fuzzy set’s input and

output. The degree of belonging, absence of engagement

Fig. 5 Input memberships of IBRL dataset

Fig. 6 Input memberships of ISSNIP dataset
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between elements from different sets is represented by

fuzzy relationships. Linguistic variables are used as ante-

cedents and consequents in the fuzzy rules system [33].

The rule list in MMFIS-designed systems can be mod-

ified by the user to meet their logical needs. Rule base I is

created with ‘IF–Then’ statements are conditional, as

shown in Table 1 the rule that conditions that ‘IF Tem-

perature is…,’ which translates to “If Temperature is 25–

32, Humidity is 26–35, light is 30–34, and voltage is 1.9–

2.6 then Attribute Equivalence=60–100’ (High Similarity

index).” Rule base II is created with conditions that ‘IF

Distance is …,’ which translates to “If Distance is 2–5,

sensor data points cluster is in 8–10 best matching score

CSOM cluster then Spatial Equivalence=60–100’ (Near

Neighboring CSOM). Rule base III is created with condi-

tions that ‘IF Time is …,’ which translates to “If Distance

is 2–5, sensor data points cluster is in 8–10 best matching

score CSOM cluster then Spatial Equivalence=60–100’

(Near Neighboring CSOM). When the rule list is devel-

oped, it holds logical rules tailored to the system. The rule

Table 1 Rule base inferences

Rule base inferences Sample rule structure

Rule base I (Attribute

Equivalence)

IF (Temperature is High) and (Humidity is Low) and (Light is Medium) and (Voltage is High) THEN (Attribute

Equivalence is High Similarity)

Rule base II (Spatial

Equivalence)

IF (Distance is Short) and (cluster is Same) THEN (Spatial Equivalence is Near Neighbouring CSOM)

Rule base III (Time

Equivalence)

IF (Time is Long) and (cluster is overlapped) THEN (Time Equivalence is Medium Interval)

Fig. 7 Fuzzy inference membership functions
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Table 2 Decision classification of anomaly detection

Decision classification rule database

1 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute Equivalence

is Low_Similarity) THEN (Decision_Classification is Abnormal)

2 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute_Equivalence

is Medium_Similarity) THEN (Decision_Classification is Abnormal)

3 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute_Equivalence

is High_Similarity) THEN (Decision_Classification is Abnormal)

4 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

5 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Abnormal)

6 IF (Spatial_Equivallence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Abnormal)

7 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

8 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Abnormal)

9 IF (Spatial_Equivalence_from_CSOM is Near_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Abnormal)

10 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

11 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Normal)

12 IF (Spatial_Equivallence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is short_Inerval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Normal)

13 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

14 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Normal)

15 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Normal)

16 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

17 IF (Spatial_Equivallence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Normal)

18 IF (Spatial_Equivalence_from_CSOM is Mediumr_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Normal)

19 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute_Equivalence

is Low_Similarity) THEN (Decision_Classification is Abnormal)

20 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute_Equivalence

is Medium_Similarity) THEN (Decision_Classification is Normal)

21 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is short_Interval) and (Attribute_Equivalence

is High_Similarity) THEN (Decision_Classification is Normal)

22 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Low_Similarity) THEN (Decision_Classification is Abnormal)

23 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is Medium_Similarity) THEN (Decision_Classification is Normal)

24 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Medium_Interval) and

(Attribute_Equivalence is High_Similarity) THEN (Decision_Classification is Normal)

25 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and (Attribute_Equivalence

is Low_Similarity) THEN (Decision_Classification is Abnormal)

26 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and (Attribute_Equivalence

is Medium_Similaritan exactClassification is Normal)

27 IF (Spatial_Equivalence_from_CSOM is Far_Neighboring_CSOM) and (Time_Equivalence is Long_Interval) and (Attribute_Equivalence

is High_Similarity) THEN (Decision_Classification is Normal)
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set is then applied to each permutation of the fuzzified

inputs and the appropriate linguist phrases are allocated.

Figure 7 illustrates the fuzzy inference membership func-

tion for spatial, temporal, and attribute equivalences.

Table 2 confirms spatial equivalence, time equivalence,

and attribute equivalence as antecedents for stating results

in an anomaly detection system. The suggested system’s

anomaly diagnosis decision levels are classified as consis-
tent and Inconsistent. Consistent data are sent to the cluster

head or base station. Inconsistent data are disconnected,

and the associated attributed data are replaced with impu-

ted data. Finally, proper missing data are inserted, and the

dataset is examined by the cluster head for the optimization

procedure.

4.2.3 Stage 3: Defuzzification Process

Defuzzification is the reversal of the fuzzification process.

At this point, the input has already had its membership

degree determined and will be in the form of a linguistic

statement. To get a crisp numerical value as an output, the

input must be decided to revert into defuzzification.

Alternative ways for determining the defuzzification value

are possible with the Mamdani type FIS. The user can

define the defuzzification methods given below to obtain

the desired output. Centroid, bisector, mean maximum,

lowest of the maximum, and highest of the maximum are

some defuzzification strategies. The centroid method

returns a value from the fuzzy set’s center of the area.

Centroid is calculated by using the equation

FCentroid ¼
R

g xið Þ:xiR
g xið Þ:xi

, where g(xi) is the membership value for

a point. The bisector defuzzification method finds the line

that divides the fuzzy set into two equal-sized subregions,

which is usually the centroid line. Maximums in the mid-

dle, largest, and smallest are defuzzification procedures

that take the greatest value of the plateau. Our proposed

method is evaluated with available defuzzification

methods.

5 Results on Evaluation

The performance of the proposed method is compared with

the existing method, the conventional SOM, CSOM,

MMFIS without optimized input structure portioning. The

experiments related to the comparative study are performed

by using MATLAB 2017 b. In existing work [18] anomaly

detection is performed using Fuzzy C means input space

structuring and Sugeno fuzzy inference-based classification

model. The traditional SOM and CSOM have been evalu-

ated with the dataset for anomaly detection. SOM with

MMFIS and CSOM with MMFIS have been evaluated for

the comparison study. The proposed methodology is eval-

uated using two real lab datasets and scalability is

evaluated by using synthetic datasets. Table 3 describes the

experimental setup of the two real datasets.

5.1 IBRL Dataset

The Intel Berkeley Research Lab dataset (IBRL) is based

on currently accessible Intel Lab data and consists of actual

measurements taken from 54 sensors placed at the IBRL

Lab [34]. Mica2Dot sensors equipped with weather stations

gathered environmental data such as temperature, humid-

ity, light, and voltage regularly in every 31 s. Table 4

depicts the IBRL dataset outline structure.

5.2 ISSNIP Dataset

The intelligent sensors, sensor network, and information

processing (ISSNIP) dataset contain actual sensor data

gathered by motes in standard WSNs. Four sensor nodes

Table 3 Experimental setup of IBRL–ISSNIP datasets

Dataset Platform Sensor

type

Quantity Data type Features

IBRL TinyOS Mica2Dot 54 Labeled and

aggregated

Weatherboard stations sensor dataset with deployment location and aggregated

raw data values are gathered

ISSNIP TinyOS TeleoSB 4 Labeled and

normalized

Indoor and outdoor deployment dataset with single-hop and multi-hop sensor

nodes data are gathered

Table 4 IBRL dataset outline structure

Date Time Epoch Mote ID Temperature Humidity Light Voltage

28-02-2004 to 05-04-2004 Every 31 s Iterative sequence 1–54 Degrees in Celsius 0–100% Lux Volts
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are available indoor and outdoor deployment areas. The

data comprise temperature and humidity readings taken at

five-second intervals during 6 h. Probability-based cor-

ruptions were introduced randomly to generate inconsistent

data [35]. Table 5 depicts the ISSNIP dataset outline

structure. As a result, all ISSNIP anomalies are a series of

erroneous readings induced by the fault occurrence in the

dataset.

5.3 Performance Metrics

The proposed method is evaluated using the correlation

measures like accuracy, false alarm rate, precision, detec-

tion rate, specificity, F1 score, and Matthews correlation

coefficient (MCC) based on confusion matrix representing

the number of True-Positive Indexes (TPI), True-Negative

Indexes (TNI), False-Positive Indexes (FPI), and False-

Negative Indexes (FNI) are the performance measures

observed for evaluation. The performance assessment

metrics are calculated using the equations listed below:

The classification model predicts the class of each data

instance, assigning anticipated label (positive or negative)

to each sample: the confusion matrix CM ¼ TPI FNI

FPI TNI

� �

expanded in Table 6. It represents the cataloging decision

of the outcome. The real label forecasts are true-positive

indexes and true-negative indexes, while the wrong pre-

dictions are false-negative indexes and false-positive

indexes.

6 Results and Discussion

The proposed methodology is evaluated with the physical

phenomena parameters with training dataset and test

dataset of the IBRL dataset and the ISSNIP dataset is

shown in Figs. 8 and 9, respectively. The corrupted data

index in testing and the normalized data index in training is

projected along with its correlation residual threshold. It

shows the normal data index without spikes and the

abnormal anomaly data index with red color marked

spikes.

In the training phase, normalized data are considered for

fixing threshold values from input space partitioning and

fuzzy models. In CSOM, the nearest distance between the

sensor nodes is calculated and the maximum distance is

considered as threshold Td and the multivariate correlation

is used to fix threshold Tc. Minimum and maximum time

difference frequency threshold values Tt are considered by

analyzing the time interval of every sensed data. The

thresholds for the IBRL are fixed as Humidity (28 to 46),

Temperature (18 to 32), Light (26 to 34), Voltage (0.8 to

2.6), and ISSNIP dataset thresholds are fixed as Temper-

ature (22 to 38), Humidity (36 to 47). The threshold for

membership functions can be set by analyzing the mini-

mum and maximum support value of the individual

linguistics.

The proposed multivariate data analysis is used to dis-

cover anomalous data that denote the association or

relationship, which identifies the relationship between the

variables involved in the anomaly detection process.

Anomaly detection in multivariate data analysis differs

significantly from the regular study that includes the input

variables in multidimensional space.

Figures 10 and 11 show a quick representation of attri-

bute correlation, which was used in the assessment using

IBRL dataset with no data contamination probability index.

Temperature, humidity, light, and voltage are all

Table 5 ISSNIP dataset outline structure

Readings Mote ID Humidity Temperature

9th May 2010 and

10th July 2010

1–4 0–100% Degrees in Celsius

Table 6 Confusion matrix

Anticipated Positive Anticipated Negative

Real Positive True Positive

(True Index)

False Negative

(False Index)

Real Negative False Positive

(False Index)

True Negative

(True Index)

Accuracy ¼ NðTPIþ TNIÞ
NðTPIþ TNIþ FPIþ FNIÞ False AlarmRateðFARÞ ¼ NðFPIÞ

NðFPIþ TNIÞ
Precision ¼ NðTPIÞ

NðTPIþ FPIÞ Detection Rate orð ÞSensitivity ¼ NðTPIÞ
NðTPIþ FNIÞ

Specificity ¼ NðTNIÞ
NðTNIþ FPIÞ F1Score ¼ 2 � NðTPIÞ

Numberofð2 � TPIþ FPIþ FNIÞ
Mathhews correlation coefficient ¼ N TPI � TNIð Þ � NðFPI � FNIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N TPIþ FPIð Þ � N TPIþ FNIð Þ � N TNIþ FPIð Þ � NðTNI þ FNIÞp

R. Yasir Abdullah et al.: An Enhanced Anomaly Forecasting in Distributed WSN Using Fuzzy Model 3339

123



Table 8 Comparison of performance metrics of the proposed method with IBRL dataset

Techniques Accuracy Sensitivity FAR Precision Specificity F1 Score MCC

Proposed method 99.34 99.86 0.6 98.78 98.85 99.8 0.8

Existing method [18] 98.12 99 2.57 97.16 97.45 98.45 0.45

SOM with MMFIS 93.57 92.45 3.5 95.6 96.34 91.87 0.06

CSOM 89.67 87 3.5 90.7 83 91.39 0.24

DBSCAN algorithm 92.75 88 4.1 91.5 95.45 85.65 0.56

Subtractive clustering 96.76 91.78 1.4 95.87 95.92 90.34 0.64

ODCASC algorithm 85.56 88.67 4.87 94.6 86.87 88.05 0.34

Table 9 Comparison of performance metrics of the proposed method with ISSNIP dataset

Techniques Accuracy Sensitivity FAR Precision Specificity F1 Score MCC

Proposed method 99.76 98.86 1.05 99.01 99.05 98.09 0.76

Existing method [18] 98 98.67 2.95 96.9 95.15 97.89 0.37

SOM with MMFIS 95.12 85.94 6.23 93.83 96.78 91 0.48

CSOM 87.67 90.63 8.85 80.82 83.98 87.91 0.56

DBSCAN algorithm 90.09 85.67 3.98 90.89 91.29 87.89 0.43

Subtractive clustering 94.23 91.23 1.98 92.83 92.67 92.07 0.39

ODCASC algorithm 84.89 85.78 5.87 91.91 84.84 83.23 0.21

Table 10 Complexity comparison of proposed method with possible methods

Techniques Computational complexity Communication complexity

Proposed method O(ncρ+r) O(n/2)

Existing method [18] O(ndc) O(nd)

SOM with MMFIS O(nc+r2) O(n/2+α)

CSOM O(ncρ) O(n/2+α)

Table 7 Summary of the accuracy rate of the proposed method in the different datasets under different levels

Dataset Total samples Normal Anomaly Accuracy (%) Contamination index

10% 50%

IBRL 625,000 125,000 500,000 98 98.65

375,000 250,000 98 98.12

500,000 125,000 99 100

562,500 62,500 99.12 100

593,750 31,250 99.89 100

609,375 15,625 100 100

617,188 7812 100 100

Average accuracy rate 99.34

ISSNIP 4690 1550 3100 98.75 99.5

2365 2325 99.58 99.8

3528 1162 100 100

4108 582 100 100

4400 290 100 100

Average accuracy rate 99.76
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multivariate data variables that have been standardized

from the IBRL dataset. Attribute correlation threshold

values are identified and fixed as minimum, maximum, and

median correlation values.

The NN-based CSOM methodology is used to consider

spatial correlation among real datasets. For computing

spatial correlation with NNs in the clusters, dataset real

values such as temperature and humidity values sensed by

sensor nodes in the deployment region are evaluated with

correlation-based Mahalanobis distance estimation. For

examining the proposed methodology’s performance, the

cluster size could be changed. Figure 12 illustrates the

threshold distance values of the attribute in the training

phase. In Fig. 13, the NN distance with CSOM is analyzed

for estimating the spatial correlation. A solid black line

indicates the NN distance between the data indexes. At the

end of 65 iterations, similar and dissimilar data indexes are

separated with accurate spatial correlation with CSOM. For

training SOM, a total of 625,000 samples and 4690 dataset

samples are considered from the ISSNIP dataset. While

increasing dataset size, our proposed system produces good

performance in all aspects except computational

complexity.

Figure 14 depicts the results, which indicate the detec-

tion rate of the various approaches with varying

contamination percentages. The contamination probability

goes from 5 to 70%. The proposed methodology performs

well in terms of low contamination, whereas the existing

method performs poor in terms of low contamination. The

performance of the proposed method degrades marginally

as the contamination rates increases because the contami-

nated data will be considered as real, while the

contamination ratio crosses the limit of above 50% of its

original value.
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Fig. 8 Anomaly detection in IBRL dataset
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Fig. 9 Anomaly detection in ISSNIP dataset
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The tradeoffs between the resultant detection rate and

false alarm rate for five tests are depicted in Fig. 15. Every

point denotes a new contaminated training set, and the

results show the contamination ratio index. As previously

demonstrated, the existing method [18] can achieve

acceptable detection rate for moderate contaminated

training sets, but the false alar rate is also very high in

comparison to the proposed method. For low-contaminated

tests, the false alarm rate of CSOM maintains zero. Even

though MMFIS without considering the spatial neighbor

rule system of CSOM has a better performance for con-

tamination which is equal to 5%, its detection rate, and

high false alarm rate in comparison to the other methods. In

summary, the existing method, CSOM, and MFIS without

spatial rule inference have their average performances for

contamination ratio of 5 to 6%. Based on these parameters,

we may infer that CSOM–MMFIS is the more effective

methodology. The primary cause is that the training of

CSOM with the spatial distance-based weight adjustments

along with well-defined rule inferences of MMFIS from the

optimal data CSOM clusters will provide a high detection

rate for all types of anomalies.

Table 7 depicts the overall performance of the proposed

method using two datasets. CSOM with MMFIS achieves

good accuracy in different contamination indexes while

varying the number of anomalous data in the total samples.

Tables 8 and 9 show the evaluation results related to the

accuracy, sensitivity, FAR, precision, specificity, F1 score,

and MCC of the proposed CSOM with MMFIS with other

considerations and existing method that was discussed in

related work. The metric MCC infers that the model pro-

duces good results only if it classifies both positive and

negative elements.
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The proposed model’s detection performance is com-

pared with existing work discussed in Sect. 2. From

literature, the proposed CSOM with MMFIS model for

anomaly detection are considered. Tables 7 and 8 show the

comparison of proposed models with existing anomaly and

fuzzy models with respect to detection accuracy, F1 score,

MCC, etc., The overall performance of the proposed

CSOM with MMFIS achieves high accuracy, high sensi-

tivity, F1 score with a good MCC score compared to

existing techniques in IBRL and ISSNIP datasets. The

detection accuracy merely will not be a reliable indicator.

The MCC is assessed to identify the proposed model’s

capabilities in terms of efficacy to eliminate the problem of

unequal classification.

During the training phase, anomaly detection threshold

values were determined for the MMFIS Inference system’s

decision-making process. During the testing phase, several

rules are fired based on the condition of the premise, an

inference mechanism is used, and an accurate anomaly

prediction decision may be made. When the threshold
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cutoff is lower, inconsistent data begin to influence the

fuzzy model’s decision-making quality. If the number of

rules is too minimal in this scenario, the model is too weak.

When the number of rules is too excessive, the model fits

against its training data indexes and takes additional

computing time. Figure 16 depicts the accuracy of the

suggested method in several corruption indexes versus

several rules.

In Fig. 17, the proposed method scalability is compared

with existing work by varying the dataset size from 10 to

100%. It shows the accuracy of the proposed method

slightly decreases, while the dataset size reaches above

60% but the existing method scalability is poor for the

same. Moreover, the computational complexity of the

methodology might be increased while increasing the

dataset size for analysis. Our proposed method running

time is around 5.7 min on an average for the whole dataset,

whereas the existing method crosses above 15 min on an

average for computing tasks in the whole dataset.

The complexity of various approaches is explained in

Table 10. It is necessary to compare the suggested strategy

to existing anomaly detection approaches to fully com-

prehend its performance. The computational complexity,

communication overhead, and energy are all taken into

account while evaluating the efficiency of the CSOM with

the MMFIS model. Our model has a computational com-

plexity of O(ncρ+r), where n is the number of indexes in

the dataset, c is the number of similar groups or clusters

formed, ρ-correlation coefficients are the number of MFIS

rules evaluated for decision making, and r is the number of
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MFIS rules evaluated for decision making. The commu-

nication overhead is O(n/2) in base stations that handle

fused consistent dimensionality reduction data, and α
reflects the number of mispredicted data transmissions that

occur in existing approaches due to low detection rates.

When compared to other peer methods, our method has a

high level of accuracy and computational complexity,

communication complexity, memory complexity are all

marginally reduced.

7 Conclusion

We provide a customized self-organizing clustering

method using a MMFIS in this study. Sensor networks

have the property of correlating data between geographi-

cally close nodes. As a result, aggregating data in the

network and summarizing data are critical in a WSN.

Although grouping data decreases traffic and increases

network lifetime, it may reduce data accuracy. The sensor

network requires an efficient anomaly detection mecha-

nism that does not impair the accuracy of data received by

the base station. We employ correlation-based CSOM in

conjunction with MMFIS to detect inconsistent data caused

by physical phenomenon activity in the deployment region.

In two real datasets, the evaluation results show that the
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proposed method surpasses the previous work in multiple

aspects such as detection rate, accuracy, false alarm,

specificity, F1 Score, and MCC.
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