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Abstract This paper is concerned with the stabilization

problem for a class of uncertain nonlinear fractional order

systems described by an interval type-2 fuzzy model, under

actuator faults. To solve the problem, a robust fault-tolerant

control (FTC) scheme composed mainly of an augmented

non-fragile observer and a new-type H1 controller is

developed. The resulting control system is with the fol-

lowing advantages. On the one hand, the system stability

domain is extended significantly, attributed to introducing

the concept of D-stability to the control design and stability

analysis, instead of the conventional indirect Lyapunov

theory. Theoretically, the stability domain can be expanded

from the original half-plane to nearly the overall plane. On

the other hand, the control system is robust against the

measurement noise and external disturbances which how-

ever are not taken into account in the related works. This is

achieved by adopting the H1 control method in a novel

way, in which a new technical lemma is presented to solve

real linear matrix inequalities (LMIs). In this way, the

robust FTC design is also simplified, wherein the number

of the required decision variables is reduced from four to

two. Besides, the control design is less restrictive: three

common requirements for the system matrix or the control

gain selection are eliminated. Finally, the simulation results

on an electrical circuit system and a numeral example both

illustrate the above theoretical findings.

Keywords Fractional order systems � Interval type-2 fuzzy

systems � Fault-tolerant control � H1 performance index

1 Introduction

Fractional order systems (FOSs) are general with respect to

integer order systems (IOSs) which are a special case of

FOSs [1–3]. On the other hand, many physical systems or

processes can be described better by fractional derivatives

and integrals such as the viscoelasticity of polymer mate-

rials [4], the fractional order electrical circuit systems [5],

and signal processing [6]. Therefore, in the past several

decades, FOSs have attracted great attention from the

control field. The stability analysis of FOSs was first

investigated [7–12]. A stability criterion for the FOSs was

provided [7] by examining the locations of the system

matrix eigenvalues. Some stability conditions were further

given [8] by solving the LMIs with complex variables, and

the approaches to transforming the complex variables to

the real variables were developed [9, 10] for ease of

solution. To this end, some brief theorems without LMIs

were further established [11, 12] that simplify the stability

analysis significantly. On the other hand, the observer and

controller designs were carried out [13–20]. A non-fragile

observer was constructed [13]; some output-feedback

controllers based on the iterative algorithms were designed

[14, 15]. To simplify the design and computational
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complexity, the LMI tool [16]- [20] or the singular value

decomposition technique [16] was skillfully adopted. For

nonlinear FOSs, the Takagi-Sugeno (T-S) fuzzy model was

employed in the control design [17–19]. And in the pres-

ence of model uncertainties, the sliding mode control

method was applied to the T-S fuzzy singular FOSs [20].

To further enhance the robustness of the control systems,

the H1 control method was applied to the FOSs success-

fully [21–23].

It should be noted that the above-mentioned results are

established in the fault-free case. With the fast develop-

ment of modern industry and information technology,

many control systems are increasingly complex. As a

result, the system is more likely to meet faults. Faults lead

to unfavorable effects on the performance and/or stability

of the control system, and even cause disastrous conse-

quences. Therefore, the control system with tolerance to

unexpected faults, especially to the actuator faults that

change the control action straightforward, is of great sig-

nificance. For this purpose, a variety of fault-tolerant

control (FTC) approaches were proposed in the literature.

In general, an observer is designed to estimate the faults for

compensation. For example, under the assumption of

known fault bounds, a sliding mode observer was con-

structed [24]. To avoid the difficulty in solving the bilinear

matrix inequalities, the fault observer and the controller

were designed separately [25, 26]. However, the compar-

ative result between the integrated and separate designs

[27] reveals that the former achieves better estimation and

control performance. On the other hand, when the full

system state is available, some FTC schemes were devel-

oped [28, 29] with respect to the energy-bounded faults.

Further, an output-feedback FTC strategy was proposed

[30]. To the FTC problem for FOSs, some solutions were

also reported in recent years [31–34]. The model uncer-

tainty was taken into consideration [31, 32], yielding some

robust FTC laws. Under the assumption that the actuator

faults are n-order differentiable, an augmented fault

observer was developed [33]. The H1 control method and

the dynamic output-feedback control design method were

combined to deal with the actuator faults [34].

Motivated by the above observation, this paper presents

a novel output-feedback FTC strategy for a class of FOSs

with actuator faults. Its advantages are as follows.

(1) The stability domain of the faulty FOS is extended

by our approach. In the existing literature on FTC of

FOSs [32], the control design and analysis are based

mainly on the indirect Lyapunov theory, that is, the

designers follow the FTC method for IOSs. This

yields the system stability domain covering only the

left half of the plane. Instead of the indirect

Lyapunov theory, the D-stability-based analysis

approach in which the nonconvex property of the

FOS is taken into account fully [8, 10], is adopted in

this paper. In this way, the system stability domain is

extended significantly.

(2) The proposed approach of fault estimation and FTC

is robust against the measurement noise and external

disturbances which however are not considered in

the existing FTC designs for FOSs [31, 32]. The

robustness is achieved by adopting the H1 control

method. Moreover, we evade the calculation of

complex matrix inequalities [21]- [23], and the

controller parameters are determined by solving real

LMIs. This reduces the design complexity of the

fault observer and the controller.

(3) In addition, the proposed output-feedback control

design for FOSs is less restrictive than the existing

ones. The output matrix is required to be of full row

rank or same [13, 16] and [28]; certain matrices in

the intermediate steps of the control design need to

be in the block diagonal form [13]. However, this

paper is without the above requirements.

Notations: In this paper, R; Rn; Rn�m and Cn�m denote the

real number field, n-dimensional Euclidean space, the set

of all n� m real matrices, and the set of all n� m complex

matrices, respectively. Re(P) and Im(P) mean the real and

image parts of complex matrix P, respectively. j is an

imaginary unit. X[ 0 ð\0Þ demonstrates that X is a

positive (negative) definite matrix. XT and X�1 stand for

the transpose and the inverse of X, respectively. The

symbols symfYg and H represent Y þ YT and the trans-

pose in the symmetric positions of a matrix, respectively. In
stands for an identity matrix with n dimensions. For

brevity, denote a ¼ sinðap
2
Þ and b ¼ cosðap

2
Þ in the sequel. A

matrix is assumed to have appropriate dimensions to be

compatible for algebraic calculus without specially

statement.

2 System Description and Preliminaries

2.1 System Description

Different from the classical T-S fuzzy model

[17–20, 35, 36], the type-2 fuzzy model is an effective way

to describe the system with model uncertainties [37–40]. In

an integer order type-2 fuzzy model, its ith fuzzy rule is:

Plant rule i: IF h1ðxðtÞÞ is Hi1 and � � � and hpðxðtÞÞ is

Hip, THEN
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_xðtÞ ¼ AixðtÞ þ BiuðtÞ þ ~Gix1ðtÞ;

yðtÞ ¼ CixðtÞ þ ~Dix2ðtÞ;
ð1Þ

for i ¼ 1; 2; . . .; r with r the number of the IF-THEN rules,

where Hig and hgðxðtÞÞ stand for the fuzzy set and the

premise variable, respectively, g ¼ 1; 2; . . .; p; xðtÞ 2 Rn,

uðtÞ 2 Rm; x1ðtÞ 2 Rn and x2ðtÞ 2 Rs are the state, control

input, external disturbance and measurement uncertainty,

respectively; yðtÞ 2 Rs is the measured output;

Ai; Bi; ~Gi; Ci and ~Di are the system matrices. Accord-

ingly, the overall fuzzy system is

_xðtÞ ¼
Xr

i¼1

hiðxðtÞÞðAixðtÞ þ BiuðtÞ þ ~Gix1ðtÞÞ;

yðtÞ ¼
Xr

i¼1

hiðxðtÞÞðCixðtÞ þ ~Dix2ðtÞÞ;
ð2Þ

where hiðxðtÞÞ are the grades of membership:

hiðxðtÞÞ ¼ kiðxðtÞÞhiðxðtÞÞ þ kiðxðtÞÞhiðxðtÞÞ; ð3Þ

where kiðxðtÞÞ and kiðxðtÞÞ are adjustable nonlinear func-

tions according to the change of uncertain parameters,

which meet

0� kiðxðtÞÞ� 1;

0� kiðxðtÞÞ� 1;

kiðxðtÞÞ þ kiðxðtÞÞ ¼ 1; i ¼ 1; � � � ; r:

And hiðxðtÞÞ and hiðxðtÞÞ are the lower and upper bounds of
the membership functions of the ith rule, respectively, with

hiðxðtÞÞ ¼
Yp

g¼1

l
Hig
ðhgðxðtÞÞÞ;

hiðxðtÞÞ ¼
Yp

g¼1

lHig
ðhgðxðtÞÞÞ;

where l
Hig
ðhgðxðtÞÞÞ and lHig

ðhgðxðtÞÞÞ denote the lower

and upper membership of hgðxðtÞÞ in Hig, respectively,

meeting

lHig
ðhsðxðtÞÞÞ� l

Hig
ðhsðxðtÞÞÞ� 0; i ¼ 1; 2; � � � ; r:

hiðxðtÞÞÞ� hiðxðtÞÞ� 0:

For simplification of notation, let hi ¼ hiðxðtÞÞ and

gi ¼ giðxðtÞÞ. Define

AðhÞ ¼
Xr

i¼1

hiAi; BðhÞ ¼
Xr

i¼1

hiBi; ~GðhÞ ¼
Xr

i¼1

hi ~Gi;

CðhÞ ¼
Xr

i¼1

hiCi; ~DðhÞ ¼
Xr

i¼1

hi ~Di:

Then, (2) becomes

_xðtÞ ¼ AðhÞxðtÞ þ BðhÞuðtÞ þ ~GðhÞx1ðtÞ;

yðtÞ ¼ CðhÞxðtÞ þ ~DðhÞx2ðtÞ:
ð4Þ

Now we consider a fractional order type-2 fuzzy model.

Usually, the Caputo definition is adopted to describe the

FOSs.

Definition 1 The a order Caputo derivative of the func-

tion g(t) is defined as [2]

DagðtÞ ¼ 1

Cðm� aÞ

Z t

0

gðmÞðsÞ
ðt � sÞaþ1�m

ds;

with m� 1\a\m for an integer m, and

CðsÞ ¼
Z 1

0

ts�1e�tdt:

Following (1), the type-2 fuzzy fractional order model is

written as:

Plant rule i: IF h1ðxðtÞÞ is Hi1 and � � � and hpðxðtÞÞ is

Hip, THEN

DaxðtÞ ¼ AixðtÞ þ BiuðtÞÞ þ ~Gix1ðtÞ;

yðtÞ ¼ CixðtÞ þ ~Dix2ðtÞ:
ð5Þ

As usual, we discuss the fixed order a with 0\a\1

[9–14]. The overall fuzzy FOS is

DaxðtÞ ¼
Xr

i¼1

hiðxðtÞÞðAixðtÞ þ BiuðtÞ þ ~Gix1ðtÞÞ;

yðtÞ ¼
Xr

i¼1

hiðxðtÞÞðCixðtÞ þ ~Dix2ðtÞÞ:
ð6Þ

The possible actuator faults are taken into account:

uf ðtÞ ¼ uðtÞ þ f ðtÞ. The faulty system is thus:

DaxðtÞ ¼
Xr

i¼1

hiðxðtÞÞðAixðtÞ þ Biuf ðtÞ þ ~Gix1ðtÞÞ;

yðtÞ ¼
Xr

i¼1

hiðxðtÞÞðCixðtÞ þ ~Dix2ðtÞÞ:
ð7Þ

Assumption 1 _f ðtÞ belongs to L2½0; 1Þ [30].

Remark 1 Besides Assumption 1, it is usually assumed in

the related works on fault estimation that f ðtÞ 2 L2½0;1Þ
[41] or that the fault bound is known [24]. In this paper,

these requirements are not involved.

For ease of exposition, rewrite (7) in the following form:
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DaxðtÞ ¼
Xr

i¼1

hiðxðtÞÞðAixðtÞ þ Biuf ðtÞ þ GixðtÞÞ;

yðtÞ ¼
Xr

i¼1

hiðxðtÞÞðCixðtÞ þ DixðtÞÞ;
ð8Þ

where xðtÞ ¼ x1ðtÞ
x2ðtÞ

� �
; Gi ¼ ~Gi I 0½ � and ~Di 0 I½ �:

The control objective for the system in (8) is stabiliza-

tion, even in the presence of actuator faults.

2.2 Preliminaries

Consider the following FOS with 0\a\1;

DaxðtÞ ¼ AxðtÞ þ GxðtÞ;

yðtÞ ¼ CxðtÞ þ DxðtÞ:
ð9Þ

In the classical H1 control designs for (9) [21, 22], the

following lemma is usually applied to solving the linear

complex matrix inequalities.

Lemma 1 The FOS in (9) meets kyðtÞk2\ckxðtÞk2 if

there exists a complex matrix P such that

P ¼ X þ Yj[ 0; ð10Þ

symfAðaX� bYÞg H H

CðaX � bYÞ � cIp H

GT DT � cIq

2

64

3

75\0: ð11Þ

Lemma 1 yields complex solutions. In general, it is

nontrivial to solve complex matrix inequalities; for exam-

ple, the complex matrix inequality is unsolvable by the

widely used mathematical tool MATLAB. This is because

the complex matrix should be mapped to a real matrix for

calculation. Motivated by this, a new lemma is established

in this paper, presented as follows.

Lemma 2 The FOS in (9) meets kyðtÞk2\ckxðtÞk2 if

there exist a symmetric matrix X and a skew-symmetric

matrix Y such that

X Y

�Y X

� �
[ 0; ð12Þ

symfATðaX� bYÞg H H

GTðaX � bYÞ � cIp H

C D � cIq

2

64

3

75\0: ð13Þ

Proof Note that kGwzðsÞk ¼ kCðsaI � AÞ�1Gþ Dk\c is

equivalent to kGT
wzðsÞk ¼ kGTðsaI � ATÞ�1CT þ DTk\c:

This yields (13), straightforward. Next, we show that P ¼
X þ Yj[ 0 if

ReðPÞ ImðPÞ
�ImðPÞ ReðPÞ

� �
[ 0: ð14Þ

Under (14), there is ImðPÞT ¼ �ImðPÞ: For any x; y 2 Rn;

there thus hold xT ImðPÞx ¼ 0 and yT ImðPÞy ¼ 0: Calcu-

lating the real part of

R ¼ ðxT � yT jÞðReðPÞ þ ImðPÞjÞðxþ yjÞ;

one has

ReððxT � yTjÞðReðPÞ þ ImðPÞjÞðxþ yjÞÞ
¼ xTReðPÞxþ yTReðPÞy� xTImðPÞyþ yTImðPÞx

¼ xT yT
� � ReðPÞ � ImðPÞ

ImðPÞ ReðPÞ

� �
x

y

� �
:

From (14), we have ReðRÞ[ 0: Calculating the imaginary

part of R, we have

ImððxT � yTjÞðReðPÞ þ ImðPÞjÞðxþ yjÞÞ
¼ xTReðPÞy� yTReðPÞxþ xTImðPÞxþ yTImðPÞy ¼ 0:

Due to R ¼ ReðRÞ þ ImðRÞj ¼ ReðRÞ[ 0; P[ 0 holds.

This completes the proof. h

As seen, Lemma 2 gives a straightforward way to solve

real matrix inequalities, yielding real solutions. Therefore,

it significantly reduces the computation complexity, sim-

plifying the H1 control design for FOSs.

In addition, two lemmas [42] are given as follows.

Lemma 3 For any constant matrices S1, S2 and S3 with

ST1 ¼ S1 and ST3 ¼ S3 [ 0, there is S1 þ S2S
�1
3 ST2\0 if and

only if

S1 S2

ST2 � S3

� �
\0:

Lemma 4 For any T, H, E and FTðrÞFðrÞ� I, there

holds

T þ HFðrÞE þ ETFTðrÞHT\0;

if and only if there exists an e[ 0 such that

T þ eHHT þ e�1ETE\0;

where r 2 H � R:

3 Control Design

To achieve the control objective, an output-feedback FTC

scheme based on a non-fragile observer is developed in this

section.
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3.1 Observer Design

To detect and estimate the actuator faults, the following

non-fragile fault observer is constructed.

Observer rule i: IF h1ðxðtÞÞ is Hi1 and � � � and hpðxðtÞÞ
is Hip, THEN

Dax̂ðtÞ ¼Aix̂ðtÞ þ BiðuðtÞ þ f̂ ðtÞÞ þ ðLi þ DLiÞðyðtÞ � ŷðtÞÞ;

ŷðtÞ ¼Cix̂ðtÞ;

Da f̂ ðtÞ ¼ðFi þ DFiÞðyðtÞ � ŷðtÞÞ;
ð15Þ

where x̂ðtÞ; ŷðtÞ and f̂ ðtÞ are the estimates of x(t), y(t) and

f(t), respectively; Li; Fi; DLi and DFi constitute the

observer gains, with

DLi DFi½ � ¼ ULiFðrÞVLi UFiFðrÞVFi½ �; ð16Þ

where Li;Fi;ULi;VLi;UFi and VFi are fixed, and FðrÞ is

variable but should meet

FTðrÞFðrÞ\I: ð17Þ

Then the overall fault observer is

Dax̂ðtÞ ¼AðhÞx̂ðtÞ þ BðhÞðuðtÞ þ f̂ ðtÞÞ

þ ðLðhÞ þ DLðhÞÞðyðtÞ � ŷðtÞÞ;

ŷðtÞ ¼CðhÞx̂ðtÞ;

Da f̂ ðtÞ ¼ðFðhÞ þ DFðhÞÞðyðtÞ � ŷðtÞÞ;

ð18Þ

where

LðhÞ ¼
Xr

i¼1

hiLi; FðhÞ ¼
Xr

i¼1

hiFi;

DLðhÞ ¼
Xr

i¼1

hiDLi ¼
Xr

i¼1

hiULiFðrÞVLi;

DFðhÞ ¼
Xr

i¼1

hiDFi ¼
Xr

i¼1

hiUFiFðrÞVFi:

Remark 2 The non-fragile observer is used to estimate the

state and the actuator faults simultaneously. The observer

gains are comprised of the fixed and variable gains such

that the non-fragile observer is still effective when tiny bias

or disturbances occur in the observer gains.

Next, we determine the observer parameters Li and Fi in

(15). It begins with analyzing the error systems. Let exðtÞ ¼
xðtÞ � x̂ðtÞ; ef ðtÞ ¼ f ðtÞ � f̂ ðtÞ; eyðtÞ ¼ yðtÞ � ŷðtÞ: From

(8) and (18), the error systems are described by

DaexðtÞ ¼ðAðhÞ � ðLðhÞ þ DLðhÞÞCðhÞÞexðtÞ þ BðhÞef ðtÞ

þ ðFðhÞ � ðLðhÞ þ DLðhÞÞDðhÞÞxðtÞ;

Daef ðtÞ ¼ � ðFðhÞ þ DFðhÞÞCðhÞexðtÞ � ðFðhÞ

þ DFðhÞÞDðhÞxðtÞ þDaf ðtÞ;

eyðtÞ ¼CðhÞexðtÞ þ DðhÞxðtÞ:
ð19Þ

By Definition 1, Assumption 1 implies that Daf ðtÞ belongs
to L2½0; 1Þ: Let

eðtÞ ¼
exðtÞ
ef ðtÞ

� �
; nðtÞ ¼

xðtÞ
Daf ðtÞ

� �
;

ÂðhÞ ¼
AðhÞ BðhÞ
0 0

� �
; L̂ðhÞ ¼

LðhÞ
FðhÞ

� �
;

ĈðhÞ ¼ CðhÞ 0½ �; D̂ðhÞ ¼ DðhÞ 0½ �;

ĜðhÞ ¼
GðhÞ 0

0 I

� �
;DL̂ðhÞ ¼

DLðhÞ
DFðhÞ

� �
¼

Xr

i¼1

hiDL̂i

¼
Xr

i¼1

hiÛiF̂ðrÞV̂i;DL̂i ¼ ÛiF̂ðrÞV̂i; Ûi ¼
ULi 0

0 UFi

� �
;

F̂ðrÞ ¼
FðrÞ 0

0 FðrÞ

� �
; V̂i ¼

VLi

VFi

� �
:

The overall error system is

DaeðtÞ ¼ðÂðhÞ � ðL̂ðhÞ þ DL̂ðhÞÞĈðhÞÞeðtÞ

þ ðĜðhÞ � ðL̂ðhÞ þ DL̂ðhÞÞD̂ðhÞÞnðtÞ;

eyðtÞ ¼ĈðhÞeðtÞ þ D̂ðhÞnðtÞ:

ð20Þ

Choose a symmetric matrix Xo; a skew-symmetric matrix

Yo; and a bank of matrices with the appropriate dimensions,

Wk; k ¼ 1; 2; � � � ; r; together with a set of positive scalars

eik; i; k ¼ 1; 2; � � � ; r; such that

Xo Yo

�Yo Xo

� �
[ 0; ð21Þ

Qii\0; ð22Þ

Qik þ Qki\0; i\k; ð23Þ

where

Qik ¼

P11ik H H H

P21ik P22ik H H

Î 0 � coI H

ÛT
k ðaXo � bYoÞ 0 0 � eikI

2
6664

3
7775;

P11ik ¼ symfÂT
i ðaXo � bYoÞ � ĈT

i Wkg þ eikĈ
T
i V̂

T
k V̂kĈi;

P21ik ¼ ĜT
i ðaXo � bYoÞ � D̂T

i Wk þ eikD̂
T
i V̂

T
k V̂kĈi;

P22ik ¼ �coI þ eikD̂
T
i V̂

T
k V̂kD̂i

Î ¼ 0 Is½ �:
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Accordingly, the observer gain is set to be

L̂i ¼ ðaXo � bYoÞ�TWT
i ; i ¼ 1; 2; � � � ; r: ð24Þ

3.2 Controller Design

With the fault estimates, we design a dynamic output

feedback fault-tolerant controller to stabilize the system in

(8).

Controller rule k: IF f1ðxðtÞÞ is Fk1 and � � � and fpðxðtÞÞ
is Fkp, THEN

uðtÞ ¼ CckwðtÞ � f̂ ðtÞ;

DawðtÞ ¼ AckwðtÞ þ BckyðtÞ;
ð25Þ

where Fkg stands for the kth fuzzy set of the function

fgðxðtÞÞ; k ¼ 1; 2; � � � ; r; g ¼ 1; 2; � � � ; p; and p is the num-

ber of the premise variables. Ack;Bck; and Cck are the

controller gains to be determined. Let

Ack ¼
Xr

i¼1

hiAcik;

and

Acðh; gÞ ¼
Xr

i¼1

Xr

k¼1

higkAcik; BcðgÞ ¼
Xr

k¼1

gkBck;

CcðgÞ ¼
Xr

k¼1

gkCck:

The overall output feedback controller is

uðtÞ ¼ CcðgÞwðtÞ � f̂ ðtÞ;

DawðtÞ ¼ Acðh; gÞwðtÞ þ BcðgÞyðtÞ;
ð26Þ

where

gkðxðtÞÞ ¼ mkðxðtÞÞgkðxðtÞÞ þ mkðxðtÞÞgkðxðtÞÞ� 0; ð27Þ

and mkðxðtÞÞ and mkðxðtÞÞ are the predefined functions that

meet

0�mkðxðtÞÞ� 1;

0�mkðxðtÞÞ� 1;

mkðxðtÞÞ þ mkðxðtÞÞ ¼ 1:

In (27), g
k
ðxðtÞÞ and gkðxðtÞÞ are the lower and upper

bounds of the membership functions of the kth rule,

respectively, with

g
k
ðxðtÞÞ ¼

Yp

g¼1

l
Fkg

ðfgðxðtÞÞÞ;

gkðxðtÞÞ ¼
Yp

g¼1

lFkg
ðfgðxðtÞÞÞ;

where l
Fkg

ðfgðxðtÞÞÞ and lFkg
ðfgðxðtÞÞÞ denote the lower and

upper memberships of fgðxðtÞÞ in Fkg, respectively, meeting

lFkg
ðfsðxðtÞÞÞ� l

Fkg
ðfsðxðtÞÞÞ� 0; i ¼ 1; 2; � � � ; r:

gkðxðtÞÞÞ� g
k
ðxðtÞÞ� 0:

Substituting (26) into (8) gives the dynamic equation of the

closed-loop system:

DauðtÞ ¼ �Aðh; gÞuðtÞ þ �Gðh; gÞmðtÞ;

yðtÞ ¼ ĈðhÞuðtÞ þ D̂ðhÞmðtÞ;
ð28Þ

where

uðtÞ ¼
xðtÞ
wðtÞ

� �
; mðtÞ ¼

xðtÞ
ef ðtÞ

� �
;

�Aðh; gÞ ¼
AðhÞ BðhÞCcðgÞ

BcðgÞCðhÞ Acðh; gÞ

� �
;

�Gðh; gÞ ¼
GðhÞ BðhÞ

BcðgÞDðhÞ 0

� �
:

A principle for the selection of the controller gains is given

as follows. Choose two symmetric matrices Xc1 and Xc2; a

skew-symmetric matrix Yc1; and two banks of matrices

with appropriate dimensions, Ui and Wi; i ¼ 1; 2; � � � ; r

such that

Xc1 Yc1 I 0

�Yc1 Xc1 0 I

I 0 Xc2 0

0 I 0 Xc2

2

6664

3

7775[ 0; ð29Þ

Nik � Di\0; ð30Þ

.iNii þ ð1� .iÞDi\0; ð31Þ

.kNik þ ð1� .kÞDi þ .iNki þ ð1� .iÞDk\0; i\k; ð32Þ

where

Accordingly, the controller gain matrices are set to be
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Acik ¼� ðaðX�1
c2 � Xc1Þ þ bYc1Þ�TðaAT

i X
�1
c2

þ ðaXc1 � bYc1ÞTðBiWkX
�1
c2 þ AiÞ þ UkCiÞ;

Bci ¼ðaðX�1
c2 � Xc1Þ þ bYc1Þ�TUi;

Cci ¼WiX
�1
c2 :

ð33Þ

4 Performance Analysis

We first show the effectiveness of the designed observer by

the following theorem.

Theorem 1 Under Assumption 1, applying the observer

in (18) with (24) to the system in (20) ensures

kef ðtÞk2\coknðtÞk2:

Proof Substituting (24) into (20) gives

DaeðtÞ¼ðÂðhÞ�ððaXo�bYoÞ�TWTðhÞþDL̂ðhÞÞĈðhÞÞeðtÞ

þðĜðhÞ�ððaXo�bYoÞ�TWTðhÞ

þDL̂ðhÞÞD̂ðhÞÞnðtÞ;
ð34Þ

where WTðhÞ¼
Pr

i¼1hiW
T
i : Note that

ef ðtÞ ¼ ÎeðtÞ; ð35Þ

with Î ¼ 0 Is½ �: Applying Lemma 3, it is obtained that

(22) is equivalent to

P11ii H H

P21ii � coI þ eiiD̂T
i V̂

T
i V̂iD̂i H

Î 0 � coI

2
64

3
75

þ 1

eii

ðaXo � bYoÞTÛi

0

0

2
64

3
75

ðaXo � bYoÞTÛi

0

0

2
64

3
75

T

¼
symfÂT

i ðaX� bYÞ � ĈT
i Wig H H

ĜT
i ðaX � bYÞ � D̂T

i Wi � coI H

Î 0 � coI

2

64

3

75

þ eii

�ĈT
i V̂

T
i

�D̂T
i V̂

T
i

0

2
64

3
75

�ĈT
i V̂

T
i

�D̂T
i V̂

T
i

0

2
64

3
75

T

þ 1

eii

ðaX � bYÞTÛi

0

0

2

64

3

75
ðaX � bYÞTÛi

0

0

2

64

3

75

T

\0:

ð36Þ

From (17), we have

F̂TðrÞF̂ðrÞ ¼
FðrÞ 0

0 FðrÞ

� �T FðrÞ 0

0 FðrÞ

� �

¼
FTðrÞFðrÞ 0

0 FTðrÞFðrÞ

� �
\I:

ð37Þ

By Lemma 4, combining (36) and (37) yields

symfÂT
i ðaXo � bYoÞ � ĈT

i Wig H H

ĜT
i ðaXo � bYoÞ � D̂T

i Wi � coI H

Î 0 � coI

2
64

3
75

þ symf
�ĈT

i V̂
T
i

�D̂T
i V̂

T
i

0

2
64

3
75F̂TðrÞ

ðaXo � bYoÞTÛi

0

0

2
64

3
75

T

g\0:

ð38Þ

Noting that

DL̂i ¼ ÛiF̂ðrÞV̂i;

(38) is rewritten as

symfÂT
i ðaXo � bYoÞ � ĈT

i Wig H H

ĜT
i ðaXo � bYoÞ � D̂T

i Wi � coI H

Î 0 � coI

2

64

3

75

þ symf
�ĈT

i

�D̂T
i

0

2
64

3
75DL̂T

i

ðaXo � bYoÞT

0

0

2
64

3
75

T

g\0:

ð39Þ

From (39), it follows that

Tii\0: ð40Þ

Similarly, from (23), we have

Tik þ Tki\0; i\k; ð41Þ

where

Tik ¼
symfðÂi � DL̂kĈiÞTðaXo � bYoÞ � ĈT

i Wig H H

ðĜi � DL̂kD̂iÞTðaXo � bYoÞ � D̂T
i Wi � coI H

Î 0 � coI

2
64

3
75:

ð42Þ

According to

Xr

i¼1

Xr

k¼1

hihkTik ¼
Xr

i¼1

h2i Tii þ
Xr�1

i¼1

Xr

k¼iþ1

hihkðTik þ TkiÞ;

it is straightforward to see by the combination of (40) and

(41) that
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P11 H H

P21 � coI H

Î 0 � coI

2
64

3
75\0; ð43Þ

where

P11 ¼ symfðÂðhÞ � DL̂ðhÞĈðhÞÞTðaXo � bYoÞ � ĈTðhÞWðhÞg;
P21 ¼ ðĜðhÞ � DL̂ðhÞD̂ðhÞÞTðaXo � bYoÞ � D̂TðhÞWðhÞ:

Following Lemma 1, we have kef ðtÞk2\coknðtÞk2: This
ends the proof. h

It is noted that the minimum H1 attenuation level of

Theorem 1 can be obtained by solving the programming

problem: minimize co subject to (21)–(23).

Next, we show the effectiveness of the designed con-

troller by the following theorem.

Theorem 2 Apply the controller in (26) with (33) to the

system in (8). Under Assumption 1 and

gk � .khk � 0; 0\.k\1; i; k ¼ 1; 2; � � � ; r, the resulting

control system in (28) is robustly stable and meets

kyðtÞk2\cckmðtÞk2:

Proof Eq. (29) shows

Xc1 Yc1

�Yc1 Xc1

� �
[ 0;

Xc2 0

0 Xc2

� �
[ 0; ð44Þ

and

Xc1 Yc1

�Yc1 Xc1

� �
�

Xc2 0

0 Xc2

� ��1

¼
Xc1 � X�1

c2 Yc1

�Yc1 Xc1 � X�1
c2

" #
[ 0:

ð45Þ

Let

Xc ¼
Xc1 X�1

c2 � Xc1

X�1
c2 � Xc1 � X�1

c2 þ Xc1

" #
; ð46Þ

Yc ¼
Yc1 � Yc1

�Yc1 Yc1

� �
; ð47Þ

and then construct the following matrix in the form of (12):

ð48Þ

Let Z ¼

I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

2
664

3
775: Then, there is

Z
Xc Yc

�Yc Xc

� �
ZT

¼

Xc1 Yc1 X�1
c2 � Xc1 � Yc1

�Yc1 Xc1 Yc1 X�1
c2 � Xc1

X�1
c2 � Xc1 � Yc1 � X�1

c2 þ Xc1 Yc1

Yc1 X�1
c2 � Xc1 � Yc1 � X�1

c2 þ Xc1

2

6664

3

7775:
ð49Þ

From (44), we have

Xc1 Yc1

�Yc1 Xc1

� �
�

X�1
c2 � Xc1 � Yc1

Yc1 X�1
c2 � Xc1

" #

�
�X�1

c2 þ Xc1 Yc1

�Yc1 � X�1
c2 þ Xc1

" #�1
X�1
c2 � Xc1 � Yc1

Yc1 X�1
c2 � Xc1

" #

Xc2 0

0 Xc2

� ��1

[ 0;

ð50Þ

which meets the condition of Lemma 3. Therefore, by

Lemma 3, we further have

Z
Xc Yc

�Yc Xc

� �
ZT [ 0; ð51Þ

which in turn means that

Xc Yc

�Yc Xc

� �
[ 0: ð52Þ

Combining (46) and (47) yields

aXc � bYc ¼
aXc1 � bYc1 aðX�1

c2 � Xc1Þ þ bYc1

aðX�1
c2 � Xc1Þ þ bYc1 � aðX�1

c2 � Xc1Þ � bYc1

" #
:

ð53Þ

Let

ð54Þ

Due to
Pr

i¼1

Pr

k¼1

hiðhk � gkÞDi ¼ 0; where Di ¼ DT
i is intro-

duced only for analysis, (54) becomes
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N ¼
Xr

i¼1

Xr

k¼1

higkNik

¼
Xr

i¼1

Xr

k¼1

higkNik þ
Xr

i¼1

Xr

k¼1

hiðhk � gkÞDi

¼
Xr

i¼1

Xr

k¼1

hiðgk þ .khk � .khkÞNik

þ
Xr

i¼1

Xr

k¼1

hiðhk � gk þ .khk � .khkÞDi

¼
Xr

i¼1

Xr

k¼1

hihkð.kNik þ ð1� .kÞDiÞ

þ
Xr

i¼1

Xr

k¼1

hiðgk � .khkÞðNik � DiÞ:

ð55Þ

Under gk � .khk � 0, from (30), we further have

N\
Xr

i¼1

Xr

k¼1

hihkð.kNik þ ð1� .kÞDiÞ

¼
Xr

i¼1

h2i ð.iNii þ ð1� .iÞDiÞ

þ
Xr

k¼1

X

i\k

hihkð.kNik þ ð1� .kÞDi

þ .iNki þ ð1� .iÞDkÞ:

ð56Þ

Note that
Pr

i¼1

Pr

k¼1

hihk ¼
Pr

i¼1

hi ¼ 1; and recall (30)–(32).

Then, (56) further meets

N\0: ð57Þ

By Lemma 3, (57) is equivalent to

Xr

i¼1

Xr

k¼1

higk
C11ik H

0 C22ik

� �

þ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
ÞT

þ ð
Xr

i¼1

Xr

k¼1

higk
C31ik C32i

C41i C42i

� �T

þ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞ

ðccI þ ð
Xr

i¼1

hi
DT

i

0

� �
Þð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞ�1

ð
Xr

i¼1

Xr

k¼1

higk
C31ik C32i

C41i C42i

� �

þ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞT\0:

ð58Þ

Then, after algebraic manipulations, we get

KTsymf �ATðh; gÞðaXc � bYcÞgK

¼
Xr

i¼1

Xr

k¼1

higkK
Tsymf

Ai BiCck

BckCi Acik

� �T

aXc1 � bYc1 aðX�1
c2 � Xc1Þ þ bYc1

aðX�1
c2 � Xc1Þ þ bYc1 � aðX�1

c2 � Xc1Þ � bYc1

" #
gK

¼
Xr

i¼1

Xr

k¼1

higkð
C11ik H

0 C22ik

� �
Þ;

ð59Þ

where

K ¼
I Xc2

0 Xc2

� �
;

and

Uk ¼ ðaðX�1
c2 � Xc1Þ þ bYc1ÞTBck;

Wk ¼ CckXc2:

Accordingly, there hold

KTððaXc � bYcÞT �Gðh; gÞ þ 1

cc
ĈTðhÞD̂ðhÞÞ

ðccI �
1

cc
D̂TðhÞD̂ðhÞÞ�1

� ð �GTðh; gÞðaXc � bYcÞ þ
1

cc
D̂TðhÞĈðhÞÞK

¼
C31ðh; gÞ C32ðhÞ
C41ðhÞ C42ðhÞ

� �T ccI �
1

cc
DTðhÞDðhÞ 0

0 ccI

2
4

3
5
�1

C31ðh; gÞ C32ðhÞ
C41ðhÞ C42ðhÞ

� �

¼ð
Xr

i¼1

Xr

k¼1

higk
C31ik C32i

C41i C42i

� �T
þ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þ

ð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞ

ðccI þ ð
Xr

i¼1

hi
DT

i

0

� �
Þð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞ�1

ð
Xr

i¼1

Xr

k¼1

higk
C31ik C32i

C41i C42i

� �

þ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þð
Xr

i¼1

hi
DT

i

0

� �
ÞTÞT ;

ð60Þ

and
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1

cc
KT ĈTðhÞ ĈðhÞK

¼ 1

cc
CðhÞ CðhÞXc2½ �T CðhÞ CðhÞXc2½ �

¼ 1

cc
ð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
Þð
Xr

i¼1

hi
CT
i

Xc2C
T
i

� �
ÞT :

ð61Þ

Now, we combine (58)–(61), and obtain

KTðsymfATðh; gÞðaXc � bYcÞg þ
1

cc
ĈTðhÞĈðhÞ

þ ððaXc � bYcÞT �Gðh; gÞ þ 1

cc
ĈTðhÞD̂ðhÞÞðccI �

1

cc
D̂TðhÞD̂ðhÞÞ�1

� ð �GTðh; gÞðaXc � bYcÞ þ
1

cc
D̂TðhÞĈðhÞÞÞK\0;

ð62Þ

which means

symfATðh; gÞðaXc � bYcÞg þ
1

cc
ĈTðhÞĈðhÞ

þ ððaXc � bYcÞT �Gðh; hÞ þ 1

cc
ĈTðhÞD̂ðhÞÞðccI �

1

cc
D̂TðhÞD̂ðhÞÞ�1

� ð �GTðh; gÞðaXc � bYcÞ þ
1

cc
D̂TðhÞĈðhÞÞ\0:

ð63Þ

According to Lemma 3, (63) is equivalent to

symfATðh; gÞðaXc � bYcÞg H H

�GTðh; hÞðaXc � bYcÞ � ccI H

ĈðhÞ D̂ðhÞ � ccI

2

64

3

75\0:

ð64Þ

This means that the closed-loop system in (28) is robustly

stable and meets the H1 performance index

kyðtÞk2\ckmðtÞk2: This completes the proof. h

It is also noted that the minimum H1 attenuation level

of Theorem 2 can be obtained by solving the programming

problem: minimize cc subject to (29)–(32).

5 Simulation Examples

In this section, two simulation examples are given to

illustrate the effectiveness of the control strategy proposed

in this paper and the performance of the resulting control

system.

5.1 Electrical Circuit System

Consider an electrical circuit system shown in Fig. 1 with

the inductor L, the capacitance C, the resistance R, and

the source voltage us. Let iL and iC denote the currents

passing through the inductor L, and the capacitance C,

respectively; let uL and uC denote the voltage on the

inductor L and on the capacitance C, respectively. As

described [3],

uLðtÞ ¼ L
daiLðtÞ
dta

;

iCðtÞ ¼C
dauCðtÞ
dta

; 0\a\1:

Further, according to the Kirchhoffs law, we have

us ¼RiL þ L
daiL
dta

þ uC;

iL ¼C
dauC
dta

:

Therefore, the electrical circuit system is described by

da

dta
uC

iL

� �
¼

0
1

C

� 1

L
� R

L

2

64

3

75
uC

iL

� �
þ

0
1

L

" #
us:

Let uf ðtÞ ¼ uðtÞ þ f ðtÞ; where

f ðtÞ ¼
0; 0\t\30;

5ð1� e30�tÞ; else;

�

simulates the actuator fault. Moreover, to test the robust-

ness of our observer, referring to Ref. [3], consider the

measurement output as

yðtÞ ¼
Xr

i¼1

hiðxðtÞÞðCixðtÞ þ ~Dix2ðtÞÞ;

with

x2ðtÞ ¼ 1=ðt þ 10Þ;

and take the external disturbance into account:

x1ðtÞ ¼ 0:1sinð5tÞ:

In the simulation, let a ¼ 0:9; L ¼ 2;C ¼ 1;R ¼
4þ 2sinðtÞ and us ¼ 1: The matrices in the fuzzy system in

(8) are selected as
Fig. 1 Electrical circuit system
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A1 ¼
0 1

�0:5 maxf�R

L
g

" #
¼

0 1

�0:5 � 1

� �
;

A2 ¼
0 1

�0:5 minf�R

L
g

" #
¼

0 1

�0:5 � 3

� �
;

B ¼
0

0:5

� �
; ~G ¼

0:1

0:2

� �
; C1 ¼ 1 � 3½ �;

~D1 ¼0:1; C2 ¼ 1 � 2½ �; ~D2 ¼ �0:2:

The corresponding membership functions are chosen as

h1 ¼ ð1� 0:5sinðtÞÞ=2 and h2 ¼ 1� h1: Note that the

above system is input-to-state stable. Thus, it is mainly

used to verify the effectiveness of our fault observer. Fol-

lowing Theorem 1, we design an non-fragile observer for

the above system. The variable gains in the observer in (18)

are determined by

UL1¼
�0:1

0:2

� �
; UL2¼

�0:1

�0:2

� �
; VL1¼0:2; VL2¼0:3;

UF1¼0:1; VF1¼�0:2; UF2¼0:5; VF2¼0:2; FðrÞ¼cosð0:2rÞ:

Set the H1 performance index to be co¼0:5: Then, the

constant observer gains are obtained by solving the LMIs

in (21)–(23):

L̂1 ¼
32:5392

8:0845

51:7311

2

64

3

75; L̂2 ¼
42:1103

11:5032

68:6017

2

64

3

75:

Applying the designed fault observer to the electrical cir-

cuit system, the simulation results are exhibited in Figs. 2,

3 and 4. It is observed that the fault estimation is achieved

by our observer, despite the presence of measurement

uncertainties and external disturbances. This thus illustrates

the effectiveness of the proposed approach for the observer

design.

5.2 Numerical Example

Now, we adopt a general example to show the effectiveness

of our control approach. Consider an FOS with a ¼ 0:8 and

with three state variables and one input,

D0:8xðtÞ ¼
2 2 � 1

2 � 2 1

4 3 2zðtÞ

2
64

3
75xðtÞ þ

1

2

�zðtÞ

2
64

3
75uðtÞ þ ~Gx1ðtÞ;

yðtÞ ¼CxðtÞ þ ~Dx2ðtÞ;
ð65Þ

where zðtÞ ¼ sinðx1ðtÞÞ þM; and M 2 ½�1; 0� is a uncer-

tain parameter. It is described by (8) with the following

rules.

Plant rule 1: IF x1ðtÞ is h1ðx1ðtÞÞ; THEN

A1 ¼
2 2 � 1

2 � 2 1

4 3 2

2

64

3

75; B1 ¼
1

2

�1

2

64

3

75;

~G1 ¼
0:01

0

0:01

2

64

3

75; C1 ¼
1 � 1 3

2 2 0

� �
; ~D1 ¼

0:001

0:002

� �
;

Plant rule 2: IF x1ðtÞ is h2ðx1ðtÞÞ; THEN

A2 ¼
2 2 � 1

2 � 2 1

4 3 2

2

64

3

75; B2 ¼
1

2

1

2

64

3

75; ~G2 ¼
0:01

0

0:01

2

64

3

75;

C2 ¼
1 � 1 3

2 2 0

� �
; ~D2 ¼

0:001

0:002

� �
:

To test the fault tolerance and robustness of our approach,

the following actuator fault is taken into account in the

simulation:

f ðtÞ ¼
0; 0\t\10;

10sinðt� 10Þ; else:

�

The external disturbance and measurement uncertainty are

the same as those in last simulation example.

Following Theorems 1 and 2, we design an FTC

scheme for the above system. We first construct a non-

fragile observer for fault estimation. The variable gains in

the observer in (18) are determined by

 Time(s)
0 10 20 30 40 50 60 70

-2

0

2

4

6

f(t)
estimate of f(t)

Fig. 2 The actuator fault and its estimate
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UL1 ¼
�0:1

0:2

0:3

2
64

3
75; UL2 ¼

�0:1

�0:2

0:1

2
64

3
75;

VL1 ¼ 0:2 0:2½ �; VL2 ¼ 0:3 0:1½ �;
UF1 ¼ 0:1; UF2 ¼ 0:5; FðrÞ ¼ sinð0:2rÞ
VF1 ¼ �0:2 0:1½ �; VF2 ¼ 0:2 0:2½ �:

The lower and upper membership functions of the type-2

fuzzy model are listed in Table 1. Then, set the corre-

sponding weights as ki ¼ ki ¼ 0:5; i ¼ 1; 2: By (3), the

membership functions of the type-2 fuzzy model can be

obtained. The lower and upper membership functions of

the type-2 fuzzy controller are listed in Table 2. Then, set

the corresponding weights as mk ¼ mk ¼ 0:5; k ¼ 1; 2:

By (27), the membership functions of the type-2 controller

can be obtained.

Set the H1 performance index as co ¼ 0:1; and then

solve the LMIs in (21)–(23). The resulting observer gain

matrices are

 Time(s)
0 10 20 30 40 50 60 70

-1

0

1

2

3

4

5

6

7

x1(t)

estimate of x1(t)

Time(s)
0 10 20 30 40 50 60 70

-3

-2

-1

0

1

x2(t)

estimate of x2(t)

Fig. 3 The system state and its estimate

Time (s)
0 10 20 30 40 50 60 70

es
tim

at
io

n 
er

ro
rs

-6

-4

-2

0

2

4

6

e1(t)

e2(t)

e3(t)

Fig. 4 The estimation errors

Table 1 Membership functions of the system

Lower membership functions Upper membership functions

h1ðx1Þ ¼ sinðx1Þþ1

3
h1ðx1Þ ¼ sinðx1Þþ2

3

h2ðx1Þ ¼ 2�sinðx1Þ
3

h2ðx1Þ ¼ 1�sinðx1Þ
3

Table 2 Membership functions of the controller

Lower membership functions Upper membership functions

g
1
ðx1Þ ¼ 0:2� 0:2

1þe
x1�2:5

4

g1ðx1Þ ¼ 0:2� 0:1

1þe
x1�4:5

4

g
3
ðx1Þ ¼ 1� g1ðx1Þ g3ðx1Þ ¼ 1� g

1
ðx1Þ
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 Time(s)
0 5 10 15 20 25 30

St
at

e

-4

-3

-2

-1

0

1

2

3

x1(t)

x2(t)

x3(t)

Fig. 5 The system state

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

γ||ν(t)||2
||y(t)||2

Fig. 6 The H1 performance with c ¼ 2:5:

0 5 10 15 20 25 30

da
ta

-4

-3

-2

-1

0

1

2

3

4

5

e1(t)

e2(t)

e3(t)

ef(t)

Fig. 7 The estimation errors

0 5 10 15 20 25 30
-15

-10

-5

0

5

10

15

u(t)
u(t)+f(t)

Fig. 8 The control signal and actuator output
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L1 ¼
�0:0298 1:3845

0:7548 1:3437

1:1579 2:1611

2
64

3
75;

E1 ¼ �158:3659 359:6916½ �;

Next, we design an output feedback controller in the form

of (26). Set cc ¼ 2:5; .1 ¼ .2 ¼ 0:2; .3 ¼ 0:3; and cal-

culate the LMIs in (29)–(32). The resulting controller gain

matrices are

Ac11 ¼
�299:9633 � 188:8278 � 172:5259

�556:1612 � 348:2801 � 326:0795

�176:6531 � 51:5066 � 188:6263

2

64

3

75;

Ac12 ¼
�302:6856 � 187:4891 � 178:6757

�561:1038 � 345:9107 � 337:1585

�178:3161 � 50:7541 � 192:2446

2

64

3

75;

Ac21 ¼
�364:4329 � 215:8316 � 242:3319

�680:7257 � 400:2992 � 461:2425

�290:0705 � 98:8483 � 311:7352

2

64

3

75;

Ac22 ¼
�367:3040 � 214:5241 � 248:7640

�685:9513 � 397:9893 � 472:8587

�291:9908 � 98:1497 � 315:8415

2

64

3

75;

Bc1 ¼
50:1776 117:5344

95:2037 214:6950

67:2869 65:0342

2

64

3

75; Bc2 ¼
52:1758 117:8556

98:7979 215:2911

68:4974 65:2640

2

64

3

75;

Cc1 ¼ �16:3667 � 6:8745 � 15:6860½ �;
Cc2 ¼ �16:4050 � 6:8826 � 15:7587½ �:

Applying the above controller to the system under con-

sideration, the simulation results are displayed in Figs. 5, 6,

7 and 8. Figure 5 shows that the stabilization of the FOS is

achieved, in spite of the measurement uncertainty, the

persistent disturbance, and the persistent fault. Specifically,

Fig. 6 clearly presents that the system output meets the

prescribed H1 performance index. Besides, Figs. 7 and 8

indicate the effectiveness of the designed observer and the

boundedness of the computed control signal and the

actuator output, respectively. Therefore, the simulation

results clarify and verify the theoretical findings estab-

lished above.

For comparison, a non-fragile control design approach

[17] for fractional order fuzzy systems is adopted. Apply it

to the system in (65) under the same simulation condition.

The result is displayed in Fig. 9, which shows that the state

convergence is lost when t� 10s, due to the actuator faults.

This in turn illustrates the superiority of our control

approach in enhancing the fault tolerance of the control

system.

6 Conclusion

This paper presents an output feedback robust fault-tolerant

control strategy for a class of interval type-2 fuzzy frac-

tional order systems subject to the possible actuator faults.

Its superiority over the existing approaches lies in three

aspects. First, the stability domain of the faulty FOS is

extended significantly. This is attributed to the introduction

of the concept of D-stability to the control design and

stability analysis, instead of the conventional indirect

Lyapunov theory. Second, the resulting control system is

robust against the measurement noise and external distur-

bances that, however, are not taken into account in the

existing FTC designs for FOSs. This is achieved by

adopting the H1 control method in a new way, in which

the controller parameters are determined by solving real

LMIs rather than complex matrix inequalities. As a

byproduct, the FTC design is simplified. Third, our design

approach is less restrictive than the existing ones: certain

requirements for the system output matrix or the structure

of the control gain matrices are eliminated. The simulation

results on an electrical circuit system and a numeral

example both illustrate the effectiveness of the proposed

approach.

Time (s)
0 5 10 15 20 25 30

St
at

e

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1(t)

x2(t)

x3(t)

Fig. 9 The state response obtained by the comparative approach [17]
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