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Abstract Failure modes and effects analysis (FMEA), as a

practical and easy-to-use reliability assessment tool, has

been widely applied across various fields of researches. At

the same time, it also receives criticisms for its limited

selection of risk factors as well as its discrete numerical

ordinal scales. In an attempt to fill in this gap, this paper

proposes an improved FMEA method based on analytic

network process (ANP) with probabilistic linguistic term

sets (PLTSs). Firstly, the three risk factors of FMEA,

namely occurrence, severity and detection, are broken

down to more elaborate and specific sub-factors, and a

network representing the influential relationship between

these sub-factors is constructed. ANP is then utilized to

derive the relative weights of factors, sub-factors and

failure modes by making pairwise comparisons with the

help of PLTS. To verify the rationality and applicability of

our proposed method, a case study of hospital information

system reliability assessment is carried out. Comparative

analyses with other existing FMEA methods are also

undertaken to highlight the differences and advantages of

our proposed method.

Keywords Failure modes and effects analysis � Analytic
network process � Probabilistic linguistic term set �
Reliability assessment

1 Introduction

Failure modes and effects analysis, FMEA [1–3] is the

process of systematically identifying and reviewing all

potential failure modes in a given system and their resultant

effects on system operations. It is first introduced by the US

military to serve as a reliability assessment tool to deter-

mine the effect of equipment failures in 1949 [4]. Then in

the 1960s, the United States National Aeronautics and

Space Administration (NASA) adopts the FMEA method

in a series of programs including Apollo, Voyager, Galileo

and etc. to ensure the desired reliability of space systems

[5]. Due to its effectiveness and easy implementation,

FMEA has been widely utilized in many different indus-

tries, such as aerospace [6, 7], nuclear power [8–10],

automotive [11–13], medical [14–17], wind turbines [18],

information security [2, 19, 20], etc.

The aim of FMEA is to guarantee that the potential

failure modes that may threat the system’s normal func-

tioning are well-addressed. To analyze the risk associated

with such failure modes, the risk prioritization number

(RPN) methodology is adopted in FMEA. Each failure

mode is evaluated with respect to its ‘‘probability of

occurrence (O)’’, ‘‘severity (S)’’ and ‘‘likelihood of detec-

tion (D)’’, each assessed with a discrete numerical scale of

1 to 10. The ratings of these three risk factors are multi-

plicated to obtain the RPN, i.e., RPN ¼ O� S� D. The
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failure modes with higher RPNs are regarded to be more

urgent and thus needing more immediate remedial action.

Despite its wide application, there still exists some

criticisms of the classical FMEA method [4]. One of the

shortcomings of FMEA is that it only considers three risk

factors (O, S and D). However, the concepts of these three

factors are broad and vague, often varying considerably

according to the context and application. For instance, one

failure mode of the transportation system may lead to the

delay of cargo’s delivery, while another failure mode of the

same transportation system may result in personnel inju-

ries. It is very hard, if not entirely impossible, to rate the

time losses and human casualties uniformly under the risk

factor severity.

Another disadvantage of classical FMEA method is that

the risk factors’ relative weights are neglected. In other

words, the equal importance of three risk factors translates

to equal weight in the determination of RPN. Conse-

quently, the same RPN may correspond to different com-

bination of ratings on O, S, and D. This may cause the

problem of indistinguishability that the failure mode with

higher occurrence probability and lower severity is

assigned the same RPN with the failure mode with lower

probability of occurrence and higher severity.

Last but not least, the classical FMEA method is also

criticized for its rating scale. Generally speaking, the rat-

ings of risk factors are conducted with a discrete numerical

scale of 1 to 10. For starter, this numerical scale of 1 to 10

is, in its essence, ordinal. Which is to say, the physical

meanings of intervals between different consecutive ratings

are not uniform. Besides, a change in the ratings of risk

factors can cause significant change in the overall RPN,

seeing that the multiplication operation is very sensitive to

variation. What’s more, in practice, the rating of risk fac-

tors is inherently a human cognitive process, because it is

conducted by experts and/or stakeholders whose opinion

expression is bound to contain information uncertainty. It is

very difficult to directly give an exact numerical evaluation

on intangible factors such as O, S, and D, especially so

under the circumstance that the definition and implication

of these factors are vague and unclear.

Based on the above considerations, this paper proposes

an improved FMEA method based on analytic network

process, ANP [21–24] with probabilistic linguistic term

sets, PLTSs [25] information. The three risk factors O, S,

and D are all broken down to more specific and precise

sub-factors, and a network structure is constructed to rep-

resent the influential relationship between these sub-fac-

tors. Then ANP is taken advantage of to derive the relative

weights of three main factors and failure modes by making

pairwise comparisons. PLTS is made use of to facilitate the

comparison process, where the expert can appoint a prob-

ability distribution over all possible comparison outcomes

that he/she feels appropriate. A super-matrix is constructed

and raised to very large powers to acquire the stable long-

term weighting vector of sub-factors. Finally, RPN is cal-

culated based on the relative weights obtained before, and

failure modes can be prioritized accordingly.

The main contribution of our proposed method is three-

fold:

(1) The risk factors Occurrence, Severity and Detection

are broken down to sub-factors, to accommodate the

needs of practical applications, the relative weights

of which are derived via ANP with full consideration

of their influential relationships.

(2) The PLTS is integrated into our proposed model to

facilitate the pairwise comparisons between risk

factors, sub-factors and failure modes, providing the

necessary tools for the experts to express their

uncertainty.

(3) A case study of risk assessment for hospital infor-

mation systems (HISs) is undertaken to verify the

applicability. Comparative analysis with existing

approaches also demonstrates the robustness of our

proposed method.

The rest of this paper is organized as follows: Sect. 2

reviews some related works and latest developments of

FMEA methods; in Sect. 3, some preliminaries of PLTS

and the detailed calculation process of the proposed ANP-

FMEA method is described; a case study of HIS reliability

assessment is conducted in Sect. 4 to demonstrate the

applicability of our proposed method; comparative analy-

ses and experiments with other existing FMEA methods are

carried out in Sect. 5; and finally, Sect. 6 marks the end of

this paper with some concluding remarks.

2 Related Works

The traditional FMEA procedure can roughly be catego-

rized into five steps [26]: (1) failure modes identification;

(2) rating of risk factors; (3) total RPN calculation; (4)

critical failure mode identification; and (5) corrective or

prevention action. As mentioned before, the criticisms of

classical FMEA methods are mainly directed to the second

and third steps, where only three risk factors are being

considered, the rating is performed with a numerical scale

of 1 to 10, and equal weights are assigned to all the risk

factors. Therefore, in this section, the related works of

FMEA methods are briefly reviewed in three aspects: risk

factor selection, weight determination, and information

uncertainty.

To be more comprehensive, many researchers have

proposed to take other risk factors into consideration as an

improvement on classical FMEA method. Lo and Liou [27]
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integrated the expected cost of prevention actions as another

risk factor to be evaluated in the FMEA procedure, and the

weights of these risk factors are calculated via best–worst

method (BWM) and RPN is obtained through Grey relation

analysis (GRA). Similarly, in [28], Huai-Wei Lo et al. pro-

posed to consider both the expected cost and the environ-

mental awareness as risk factors. In the evaluation of

agricultural risk management, Zandi et al. [29] broke down

the risk factor severity to sub-factors, namely cost severity,

time severity and quality of the project severity. Then the

authors adopted fuzzy technique for order preference by

similarity to an ideal solution (TOPSIS) and fuzzy analytic

hierarchy process (AHP) to derive the weights associated

with these risk factors. For oil and gas projects, in addition to

three main risk factors O, S, and D, Khalilzadeh et al. [30]

identified response time, cost and quality of remedy action to

failures as risk factors. In [31], Kumar Dadsena et al. pro-

posed to include the reduction of risk by implementing

mitigation strategy as another risk factor.

Seeing that there are multiple factors that can impact the

ranking of failure modes, and that treating all the risk

factors with equal importance is unrealistic, a great deal of

researches have undertaken the multi-criteria decision-

making (MCDM) approaches to the weight determination

problem in FMEA procedure. In [32], Kiani Aslani Reza

et al. developed a mathematical model to determine the

optimal weights of the three main risk factors based on

AHP technique, and applied it to a real-world case study of

alternator failure causes. Li et al. [33] integrated the fuzzy

Petri nets with PLTS for the prioritization of failure modes

in a marine-ship system. Kutlu and Ekmekçioğlu [34]

combined the fuzzy TOPSIS and fuzzy AHP to assign

weights to the risk factors based on expert judgements. For

ship navigation safety, Başhan et al. [35] proposed a

FMEA-based TOPSIS method under single-valued neu-

trosophic sets. Mete [36] incorporated the AHP–MOORA

method under Pythagorean fuzzy environment into FMEA,

and evaluated the occupational risks in a natural gas

pipeline construction project. Huang et al. [37] devised a

new FMEA model where TOPSIS was utilized to deter-

mine the relative weights of risk factors, and TODIM (an

acronym in Portuguese for interactive MCDM) was used to

obtain the priority ranking of failure modes. In [38], Yazdi

M. utilized both the fuzzy AHP and entropy technique to

derive the subjective and objective weights of the risk

factors, and applied this method to the risk assessment of a

gas refinery. To reflect the conditionality between failure

modes, Yucesan et al. [39] proposed to derive the proba-

bility of failure occurrence with fuzzy Bayesian network,

and BWM is used to weight the risk factors. Fattahi and

Khalilzadeh [40] extended the fuzzy multiple multi-ob-

jective optimization by ratio analysis (MULTIMOORA) to

compute the weights of failure modes, along with the

weights of risk factors acquired through fuzzy AHP, a

fuzzy weighted RPN is proposed.

To handle the uncertainty of experts’ evaluations, various

types of fuzzy sets are taken advantage of. Liu et al. [41]

proposed to use intuitionistic fuzzy hybrid Euclidean dis-

tance operator for the failure modes’ prioritization. Bhat-

tacharjee et al. [42] transformed the FMEA process into a

logistic regression model, where the risk factors are evalu-

ated with interval numbers. In [43], Abdelgawad M. and A.

R. Fayek utilized linguistic fuzzy sets with corresponding

triangular fuzzy numbers (TFN) to overcome the limitation

of classical FMEA method. Sayyadi Tooranloo and Saghafi

[44] extended the FMEA method to the interval-valued

intuitionistic fuzzy environment, and evaluated the failure

causes of health information system implementation. In [45],

Qin J. et al. combined the interval type-2 fuzzy sets with

evidential reasoning to provide a more precise assessment of

risk factors, and to gain their relative weights. Li et al. [46]

presented an advanced FMEA method based on interval

2-tuple linguistic variables and TOPSIS method. Ko [47]

exploited the 2-tuple linguistic representational model for

the house of quality-based FMEA method. Chang et al. [48]

integrates the ordered weighted geometric operator with

hesitant fuzzy linguistic term sets (LTSs) to increase the

effectiveness of soft FMEA.

The recent developments of FMEA methods mentioned

above and their differences are summarized in Table 1. It is

worthwhile to point out there are still some limitations to

these existing approaches.

For one thing, in most literature, only the risk factor

severity is broken down to more elaborate and specific sub-

factors, while the factors occurrence and detection remain

the same as in the classical FMEA. This hardly fits the

demands of practical applications. For example, in the

hospital service evaluation in [49], Huang Jia broke down

the risk factor of occurrence into two sub-factors, fre-

quency and repeatability. As for the risk factor of detection,

it was also broken down to two sub-factors, chance of non-

detection and difficulty of proactive inspection. It is rea-

sonable to believe that FMEA woulds benefit a lot more if

all three of the risk factors can be broken down and eval-

uated at a finer granularity.

For another, in the existing approaches, the influential

relationship between sub-factors is also overlooked. Here

we would like to argue that there are two types of depen-

dence in the sub-factors of FMEA. One is the intra-de-

pendence between the sub-factors within the same

category. For instance, in the category of severity, envi-

ronmental damage may lead to reputation damage, infor-

mation loss may lead to financial loss; while in the category

of detection, there is a trade-off relationship between false

alarm and miss rate, the improvement of one index will

inevitably lead to the deterioration of the other. The other is
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the outer-dependence between the sub-factors in different

categories. For example, for failure modes causing infor-

mation or time losses, a certain degree of miss rate or delay

of detection is somewhat acceptable; but for failure mode

that may lead to personnel casualties, the timeliness of

detection is critical and a high degree of false alarm may be

desired because otherwise the unfortunate outcome is

unbearable. Failing to take these dependence relationships

into consideration may result in unsatisfactory weight

assignment to sub-factors, which is essential to the deter-

mination of the final RPNs.

Moreover, to help experts to express their evaluation

results, the existing approaches mostly utilizes different

types of fuzzy number, including the TFN, trapezoidal

fuzzy number, intuitionistic fuzzy number and so on. But

seeing that the experts’ evaluation is inherently a process of

human thinking, it is more natural to use linguistic terms

rather than numerical values like the one adopted in

[46–48]. On top of that, in practical applications the

experts’ opinion expression may come with a certain

degree of hesitancy, thus it is preferable that the experts

express their assessment results with a probability degree

rather than settling on one certain value.

In an attempt to fill in this gap, this paper proposes an

improved FMEA method based on ANP with PLTS, the

details of which are described in the next section.

3 ANP-FMEA Method with PLTS

3.1 Preliminaries of PLTS

First, some preliminary concepts, notations and operators of

PLTS are introduced. The concept of linguistic variable is first

introduced by Zadeh [50] in 1975 to model the linguistic

expressions verbalized by decisionmakers. Up till now, it has

been developed and adopted by many researchers in various

fields. Among them, the most widely used is the additive LTS

[51], the formal definition of which is as follows:

T ¼ ftaja ¼ 0; 1; . . .; sg; ð1Þ

where ta denotes a possible value for linguistic variable,

and s is a positive integer. The LTS has the following

property and operators:

(1) The set is order: ta [ tb, if a\b;
(2) The negation operator is defined: negðtaÞ ¼ tb s.t.

aþ b ¼ s;
(3) The maximum operator is defined: maxðta; tbÞ ¼ ta,

if ta [ tb;

(4) The minimum operator is defined: minðta; tbÞ ¼ ta,

if ta\tb.

Furthermore, for the convenience of calculation, in [52]

Xu extended the discrete LTS to a continuous variation

T ¼ ftaja 2 ½0; s�g.
Similar to hesitant fuzzy set, which is a generalization

on classical fuzzy set, in [53] Rdoriguez et al. proposed to

generalize LTS to hesitant LTS (HLTS), to accommodate

the situation where decision makers may hesitate between

several possible values for linguistic variable.

Definition 1 [53] Let T ¼ ftaja ¼ 0; 1; . . .; sg be a LTS,

then a HLTS bT is an ordered finite subset of consecutive

linguistic terms of T :

However, there are several underlying assumptions in

HLTS that hampers its potential application. For one thing,

by definition, the linguistic terms in HLTS must be con-

secutive in order, which may limit the free expression of

decision makers. For another thing, in HLTS all possible

values provided by decision makers are assumed to have

equal importance or weight, which is not in accordance to

real-life scenarios. In light of this, to better model the

uncertainty in linguistic decision-making problems, in [25]

Pang et al. further extended HLTS and proposed the con-

cept of PLTS, which is defined as follows.

Definition 2 [25] Let T ¼ ftaja ¼ 0; 1; . . .; sg be a LTS,

a PLTS LðpÞ is defined as:

LðpÞ ¼ LðkÞðpðkÞÞjLðkÞ 2 T ; pðkÞ �0; k¼ 1; 2; . . .;#LðpÞ;
X#LðpÞ

k¼1

pðkÞ �1

( )
;

ð2Þ

where LðkÞðpðkÞÞ is the linguistic term LðkÞ associated with

probability pðkÞ, and #LðpÞ is the number of all different

linguistic terms in LðpÞ.

From the definition, it is easy to see that HLTS can be

regarded as a special type of PLTS consecutive linguistic

terms and equal probabilities divided among them. Also

note that the definition of PLTS only requires the sum of

probabilities associated with linguistic terms is not greater

than 1, i.e.,
P#LðpÞ

k¼1 pðkÞ � 1. When
P#LðpÞ

k¼1 pðkÞ ¼ 1, it

means that we have complete information regarding the

probabilistic distribution of all probable linguistic terms;

and when
P#LðpÞ

k¼1 pðkÞ\1, it represents the partial igno-

rance situation where the information currently available

for the decision maker is not sufficient for him/her to

provide a complete evaluation result, which is not rare in

decision-making problems.

Finally, to facilitate the calculation of principal eigen-

vectors in ANP, here we introduce the defuzzification

function that can transform the PLTS to numerical scales.

Definition 3 [54] Let LðpÞ ¼ fLðkÞðpðkÞÞjk ¼
1; 2; . . .;#LðpÞg be a PLTS, suppose vðkÞ is the subscript
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of linguistic term LðkÞ, then the numerical score of LðpÞ is
defined as:

g LðpÞð Þ ¼
X#LðpÞ

k¼1

vðkÞpðkÞ

,
X#LðpÞ

k¼1

pðkÞ: ð3Þ

Admittedly, there are a number of fuzzy sets in various

forms. In this paper, PLTS is chosen mainly for the fol-

lowing reasons. On one hand, in FMEA procedure, the

rating of risk factors is usually conducted by a group of

stakeholders and/or experts in relative fields, based on their

professional opinions. In this process, LTSs can better

facilitate the expression of their judgements. Because for

other type of fuzzy sets such as TFN, trapezoidal fuzzy

number or intuitionistic fuzzy number, the experts usually

need to convert their practical assessments to various types

of fuzzy numbers based on a set of pre-determined rules.

For experts who are not previously familiar with the fuzzy

set theory, this conversion may be troublesome. On the

other hand, compare to the HLTS, the unnecessary

assumptions of consecutive linguistic terms and equal

weights divided among them are lifted. This way, PLTS

can provide the experts with more room to express their

assessments, by associating the LTS with a probability

distribution. Next, an illustrative example is given to

demonstrate the calculation of PLTS’s numerical score.

Example 1 Let T be a LTS with following linguistic

terms:

T ¼
t0 ¼ extremely low; t1 ¼ low; t2 ¼ slightly low; t3 ¼ fair;

t4 ¼ slightly high; t5 ¼ high; t6 ¼ extremely high

( )
:

Suppose a client is invited to review the hospitality of

the reception, then a PLTS LðpÞ ¼ ft4ð0:3Þ; t5ð0:5Þg
means that this client is 30% sure that the receptionist’s

hospitality is ‘‘slightly high’’, and 50% sure that the

receptionist’s hospitality is ‘‘high’’. Then via Eq. (3), the

PLTS can be transformed into a numerical scale:

gðLðpÞÞ ¼ ð5� 0:3þ 6� 0:5Þ=ð0:3þ 0:5Þ ¼ 5:625.

3.2 Proposed Method

In this subsection, the ANP-FMEA method with PLTS

information is proposed. Suppose Z experts denoted as

ezðz ¼ 1 : ZÞ are gathered together to prioritize several

potential failure modes of a certain system. After careful

consideration and evaluation, the experts are able to iden-

tify M failure modes FMm ðm ¼ 1 : MÞ that may have

serious impact on system performance. Under the guidance

of FMEA, the experts are supposed to evaluate each and

every failure mode according to three main risk factors,

namely ‘‘Occurrence (O)’’, ‘‘Severity (S)’’, and ‘‘Detection

(D)’’. As depicted in Fig. 1, the calculating process of

ANP-FMEA is summarized below.

Step 1: Sub-factors selection and network construction.

Experts collectively select appropriate sub-

factors under the category of Occurrence,

Severity, and Detection, and construct the

network structure of sub-factors.

Step 2: Individual evaluation.

Step 2.1: Experts make pairwise comparisons of risk

factors Occurrence, Severity, and Detection,

and obtain the corresponding weighting vector;

Step 2.2: Experts make pairwise comparisons of the

importance of the same category’s sub-factors,

and obtain the corresponding normalized

principal eigenvector;

Step 2.3: Experts construct the super-matrix by making

pairwise comparisons of the influences of sub-

factors on each other, and calculating the

normalized principal eigenvector. Then the

stable long-term weighting vector is obtained

by raising the super-matrix to large powers;

Step 2.4: Experts make pairwise comparisons of

different failure modes under each sub-factor,

and obtain the individual weighting vector of

failure modes;

Step 2.5: Experts obtain the RPN of different failure

modes;

Step 3: Group aggregation. The group opinion is

derived via the weighted average operator on

the basis of the individual evaluation results,

and the failure modes are prioritized

accordingly.

The computation procedures are detailed as follows.

Step 1: Sub-factors selection and network construction.

To better reflect the failure modes’ adverse effects on

system performance, several sub-factors under the category

Occurrence O, Severity S, and Detection D are selected

appropriately according to the specific application scenario,

which can be denoted as Oi ði ¼ 1 : hOÞ, Si ði ¼ 1 : hSÞ,
and Di ði ¼ 1 : hDÞ respectively. Then experts need to

construct the network structure that can properly reflect the

dependence between the sub-factors like depicted in Fig. 2.

Step 2: Individual evaluation.

In step 2, each expert evaluates the effects of potential

failure modes individually, the results of which are later

aggregated into a collective group assessment result in Step

3. For brevity, in Step 2 the subscript z of ez ðz ¼ 1 : ZÞ is
left out. It is assumed that all the calculation processes are

carried out for each expert ez ðz ¼ 1 : ZÞ.
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Step 2.1: Comparison of the importance of three main

risk factors. Each expert makes pairwise comparisons

regarding the importance of risk factors Occurrence O,

Severity S and Detection D, and verbalize his/her com-

parison results A with the help of PLTS:

ð4Þ

where LijðpÞ ¼ fLðkÞij ðpðkÞij ÞjLðkÞij 2 T ; p
ðkÞ
ij � 0; k ¼ 1; 2; . . .;

#LijðpÞ;
P#LijðpÞ

k¼1 p
ðkÞ
ij � 1g. Note that entry LijðpÞ repre-

sents the result of comparing the ith risk factor to the jth

risk factor, whereas the entry LjiðpÞ stands for the result of
comparing the jth risk factor to the ith risk factor. By

definition, between these two entries that are symmetric

Fig. 1 The computation process of ANP-FMEA method with PLTS

Fig. 2 The network structure of ANP-FMEA
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with respect to the diagonal of the comparison matrix, there

should exist a reciprocal relationship:

LjiðpÞ ¼ LijðpÞ ¼ L
ðkÞ
ij ðpðkÞij ÞjLðkÞij ¼ negðLðkÞij Þ

n o
: ð5Þ

Also note that the entries on the diagonal of the com-

parison matrix, LiiðpÞ, represents the pairwise comparison

result of one factor to itself. Therefore, we always have

LiiðpÞ ¼ ft#LðPÞ=2ð1Þg, which stands for absolute equality.

Besides the above two properties, consistency is another

desirable characteristic of the comparison matrix. It is

stemmed from the idea that if the ith risk factor is preferred

over the rth risk factor, and rth risk factor outweighs the jth

risk factor during their pairwise comparison, then it is only

natural the expert would favor the ith risk factor over the jth

risk factor. Following this intuition, next we give the formal

definition of consistency level for PLTS comparison matrix.

Definition 4 [54] Assume that A ¼ ½LijðpÞ�n�n and

GðAÞ ¼ gðLijðpÞÞ
� �

n�n
are a comparison matrix with PLTS

entries and its defuzzied form via Eq. (3). The consistent

preference of the ith element over the jth element through

the rth element is defined as:

CLr
ij ¼ gðLirðpÞÞ þ gðLrjðpÞÞ �#LðPÞ=2;
8i; j; r ¼ 1 : n:

ð6Þ

Then the consistency level of A is defined as:

Consistency ðGðAÞÞ ¼ Ri6¼jDLij

n2 � n
; ð7Þ

where

DLij ¼
Rr 6¼i;jjGðLijÞ � CLr

ijj
n� 2

ð8i; j ¼ 1 : nÞ: ð8Þ

From the definition, it can be seen that the more con-

sistent the comparison matrix, the smaller the consistency

level. A is said to be completely consistent if

Consistency ðGðAÞÞ ¼ 0.

Like depicted in Fig. 1, after experts provide the pair-

wise comparison matrix, a consistency check must be

performed where the experts are advised to revise their

evaluation results if the consistency level exceeds a certain

threshold c. This consistency check procedure is carried out
for every comparison matrix provided by the experts. In the

subsequent processes, the consistency checks are left out

for brevity, and all comparison matrices are assumed to

have passed the consistency test.

Then the comparison matrix A is defuzzied via Eq. (3),

and the normalized principal eigenvector ofGðAÞ is taken as
the weighting vector of three main risk factors

w ¼ ðwO; wS; wDÞT.

Step 2.2: Comparison of the importance of sub-factors.

Under each risk factor, O, S or D, pairwise comparisons of

sub-factors are performed by each expert to determine their

importance in their respective categories. For instance, in

the category of main risk factor Severity S, each expert

provides the comparison results of sub-factors Si ði ¼ 1 :

hSÞ in the form of PLTS, and the consequent comparison

matrix takes the form:

ð9Þ

Similarly, AS is also defuzzied via function G in Eq. (3),

then the normalized principal eigenvector of GðASÞ is

calculated and denoted as xS ¼ ðxS
1; x

S
2; . . .;x

S
hS
ÞT. Iden-

tical calculations are also carried out for main risk factors

O and D, xO and xD are obtained accordingly.

Step 2.3: Comparison of the influence of sub-factors.

Next the experts evaluate the influences of elements in the

network on other elements by means of pairwise compar-

ison, the result of which can be expressed as a super-matrix:

Q ¼
QO

O QS
O QD

O

QO
S QS

S QD
S

QO
D QS

D QD
D

2
4

3
5; ð10Þ

where a typical entry of the super-matrix, called a block of

super-matrix, is also a matrix of the form:

QO
O ¼

_xO1
O1 _xO2

O1 � � � _xOhO
O1

_xO1
O2 _xO2

O2 � � � _xOhO
O2

..

. ..
. . .

. ..
.

_xO1
OhO

_xO2
OhO

� � � _xOhO
OhO

2

66664

3

77775
: ð11Þ

Here each column of QO
O is a normalized principal

eigenvector representing the relative influences of the sub-

factors in the category of Occurrence on one certain sub-

factor in the same category. Which is to say, 8i ¼ 1 : hO,

the expert makes pairwise comparisons of sub-factors

Oj ðj ¼ 1 : hOÞ regarding their influences on sub-factors Oi,

the resulting comparison matrix is:

ð12Þ
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Then via the calculation of the normalized principal

eigenvector of GðAOiÞ, the ith column in the block

ð _xOi
O1; _x

Oi
O2; :::; _x

Oi
OhO

ÞT is obtained. Similar computation

procedures are also carried out to obtain the other blocks in

the super-matrix. The final super-matrix should take the

form of:

ð13Þ

It is worthy to point out that since the primary purpose

of the super-matrix is to describe the influence relationship

between the elements in the network, if some sub-factor is

determined to have zero influence on some other sub-fac-

tor, i.e., there is no link between these sub-factors in the

network structure constructed in Step 1, then the pairwise

comparison can be omitted for these sub-factors to simplify

the computation process. In other words, the experts only

need to perform comparison on sub-factors that have been

previously identified as having potential non-zero influ-

ences on some other sub-factors.

Then the super-matrix Q is raised to very large powers

to obtain a long-term stable set of weights. Which is to say,

a positive integer c is found so that jjQc � Qc�1jj2 � e, then
the column vector of Qc is taken as the long-term

stable weight vector of sub-factors, denoted as

€x ¼ ð €xO
1 ; . . .; €x

O
hO
; €xS

1; . . .; €x
S
hS
; €xD

1 ; . . .; €x
D
hD
ÞT.

Step 2.4: Comparison of failure modes. In this step, the

failure modes FMm ðm ¼ 1 : MÞ are evaluated under each

sub-factor. For instance, under sub-factors Oi ði ¼ 1 : hOÞ,
the experts express their assessment results with PLTS in

the comparison matrix:

ð14Þ

Then via defuzzification and normalized principal

eigenvector calculation, the weight of failure modes

FMm ðm ¼ 1 : MÞ with respect to sub-factors Oi ði ¼ 1 :

hOÞ is obtained as -Oi ¼ ð-Oi

1 ; -Oi

2 ; . . .;-Oi
M ÞT. Similar

results are also derived for other sub-factors Si ði ¼ 1 : hSÞ
and Di ði ¼ 1 : hDÞ.

Step 2.5: Calculation of RPN. Now with the weighting

vectors obtained in the previous steps, the RPN of each

failure mode FMm ðm ¼ 1 : MÞ can be defined as:

RPNm ¼ wO
XhO

i¼1

xO
i €xO

i -
Oi
m þ wS

XhS

i¼1

xS
i €x

S
i-

Si
m

þ wD
XhD

i¼1

xD
i €xD

i -
Di
m ; ð15Þ

where wO, wS, and wD are the importance weights of the

three main risk factors; xO
i , x

S
i , and xD

i are the respective

importance weights of the sub-factors under the category

Occurrence, Severity, and Detection; €xO
i , €xS

i , and €xD
i are

the sub-factors’ weights of influence on other sub-factors in

the network; -Oi
m , -Si

m , and -Di
m are the failure mode FMm’s

relative weights with respect to sub-factors Oi, Si, and Di.

Step 3: Group aggregation.

As indicated before, identical computation procedures in

Step 2 are carried out for all experts involved in the risk

prioritization task. Suppose under the evaluation of expert

ez ðz ¼ 1 : ZÞ the RPN of each failure mode FMm ðm ¼
1 : MÞ is denoted as RPNz

m, and the weighting vector that

reflects the experts’ credibility and trustworthiness is

g ¼ ðg1; g2; . . .; gZÞ
T
. Then the individual evaluation

results of each expert ez ðz ¼ 1 : ZÞ are aggregated into a

group collective assessment via the weighted average

operator:

RPNC
m ¼ WAðg1; RPN1

m; . . .; gZ ; RPN
Z
mÞ ¼

XZ

z¼1

gzRPN
z
m:

ð16Þ

Then the failure modes can be ranked accordingly.

4 Case Study: Hospital Information System
Reliability Analysis

4.1 Empirical Experiment

This study case is adapted from [49] and [55]. HIS [56–59]

is a customized information system specifically designed to

satisfy the needs of patients, physicians, nurses and other

parties in a hospital, by collecting, recording, storing,

managing and transmitting information about medical

history of individual patients and treatment activities of

medical staffs [44]. HIS can help to reduce medical errors,

boost treatment efficiency, support timely decisions, and

improve the overall health service qualities. In a word, the
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reliability of HIS is crucial to normal functioning of hos-

pital and the well-beings of its patients. And in this section,

our proposed method is applied to evaluate the reliability of

one HIS.

Five experts, denoted as ez ðz ¼ 1 : 5Þ, are consulted to

evaluate the reliability of HIS according to their expertise.

This expert committee includes two experts in safety engi-

neeringwho has beenworking as risk auditors of information

systems for more than 5 years, one practicing physician with

more than 10 years of experiences, one senior management

representative of the hospital, and one consultant as well as

trainer for HIS. After conducting several interviews and a

series of questionnaires in the preliminary assessment, as

enlisted in Table 2, 14 potential failure modes are identified

from 4 dimensions: database, network, software and hard-

ware. Next the experts are guided to evaluate the reliability of

the HIS via the ANP-FMEA method proposed in this paper,

the specific steps are detailed as follows.

Step 1: Sub-factors selection and network construction.

Under the category of Occurrence, Severity and Detection,

a total of 11 relevant sub-factors are identified as listed in

Table 3. These sub-factors are selected through reviewing

existing literature on HIS risk assessment and brainstorm-

ing by said five experts. In [55], the authors identified

seven factors that may influence the HIS’s failure modes’

impacts, including growth rate, non-detectability degree,

human casualties/losses, financial losses, time losses, rep-

utation losses and environmental degradation, which cor-

responds to the sub-factors O3, S1 to S5 and D1 in Table 3.

Then in [49], the author broke down the risk factor

Occurrence to sub-factors frequency and repeatability,

which are included in Table 3 as O1 and O2. On this basis,

the expert team have added sub-factors ‘‘false alarm’’ and

‘‘timeliness’’ as D2 and D3 under the category of risk factor

Detection in Table 3. Here, the sub-factor ‘‘false alarm’’ is

selected because if only the non-detectability degree is

considered, then in the extreme case, a HIS that automat-

ically reports all events as failures would be considered

‘‘best’’ in the aspect of detection. However, a high degree

of false alarm rate may cause work overload for the

emergence response team, or divert valuable resources

away from legitimate emergencies. As for the ‘‘timeliness’’

of detection, here we would like to argue that for safety–

critical systems like HIS, the time between the occurrence

and detection of its failure modes is crucial, because the

sooner the failures are detected, the sooner can mitigation

or remedy actions can be taken, and the less damage can be

done. Therefore, this paper takes the non-detection degree,

false alarm and timeliness all into consideration, offering a

more comprehensive view on HIS risk assessment in the

aspect of Detection. The network structure representing the

dependence relations between these sub-factors is depicted

in Fig. 3.

It can be seen from Fig. 3, the sub-factors of category

Occurrence, Severity and Detection are interdependent on

other sub-factors in the same category. For example, in the

category of Detection, there is a trade-off relationship

between the sub-factors miss rate and the sub-factors false

alarm; also, to achieve lower miss rate may require more

sophisticated and comprehensive inspection, which would

inevitably prolong the time needed for detection. It can also

be seen from Fig. 3 that there exists a bi-directional

influential relationship between the sub-factors of the cat-

egory Severity and Detection. Naturally, on one hand, a

timelier detection of failure modes may prevent the situa-

tion from escalating and mitigate the subsequent damages;

on the other hand, the greater the damages, or the broader

the affected range, the more easily can a failure mode be

detected since it may disrupt the normal functioning of the

hospital.

Table 2 Potential failure

modes in the HIS
Dimension Failure mode

Database FM1: Server down (power loss, overheating, etc.)

FM2: Inadequate storage space

FM3: Database attacks (injection, leakage, etc.)

Network FM4: Unsecure networks

FM5: Network congestion

FM6: Connection failure

FM7: Network maintenance error

Software FM8: Disruption by the service provider

FM9: Outdated system and application software

FM10: Software maintenance error and equipment failure

Hardware FM11: Power failure (server, equipment, etc.)

FM12: Outdated hardware (lack of hardware capabilities)

FM13: Hardware maintenance error and equipment failure

FM14: Natural disasters (earthquake, hurricane, etc.)
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Step 2: Individual evaluations. Here we make an illus-

trative example of expert e1, similar computations are also

carried out for other experts ez ðz ¼ 2 : 5Þ, but left out here
for brevity.

Step 2.1: With the linguistic terms defined in Table 4,

expert e1 makes pairwise comparisons of risk factors

Occurrence, Severity and Detection. Here the pairwise

comparison aims to answer the question: ‘‘In the determi-

nation of failure modes’ risk priority number, which one of

the pair is more important, and to what extent?’’

The evaluation result of expert e1 is listed in Table 5.

The entry on the first row and second column

ft4ð0:3Þ; t5ð0:6Þg represents that expert e1 is 30% confi-

dent that risk factor Occurrence is ‘‘slightly less important’’

than risk factor Severity, and 60% sure that risk factor

Occurrence is ‘‘equally important’’ than risk factor Sever-

ity. Note that every entry on the diagonal of the comparison

matrix is ft4ð1Þg, which is the linguistic term for ‘‘equally

important’’, because naturally the comparison of one risk

factor to itself should yield equal result.

Let c ¼ 0:1, via Eqs. (6), (7) and (8), the consistency

level of this comparison matrix is calculated as 0:075\0:1,

passing the consistency test. Thus, the calculation process

carries on. The last row in Table 5 represents the normal-

ized principal eigenvector of the defuzzied comparison

matrix, which also serves as the weighting vector of risk

factors Occurrence, Severity, and Detection.

Step 2.2: Next expert e1 makes pairwise comparisons

regarding the importance of the sub-factors in the same

category. Take category Occurrence for instance, given any

Table 3 Sub-factors in the HIS reliability assessment and the corresponding descriptions

Category Sub-factors Description

Occurrence O1: Frequency How frequently the failure happens

O2: Repeatability Does the failure happen repeatedly

O3: Growth rate Does the failure rate ascend or descend

Severity S1: Time losses Time that is lost due to the failure mode, including the delayed activities and the recovery time

S2: Financial losses Financial losses caused by the occurrence of the failure mode, including expenses and recovery cost

S3: Environmental losses The degree of environmental degradation caused by the failure mode

S4: Reputation losses Loss of reputation due to the failure mode

S5: Human casualties Human casualties caused by the failure mode

Detection D1: Non-detection The chance of failing to detect a failure mode’s occurrence

D2: False alarm The chance of falsely reporting a failure mode

D3: Timeliness The length of time between when the failure mode occurs and when it is detected

Table 4 Linguistic terms for

pairwise comparisons
Linguistic terms Description

t0 Extremely less Element i is extremely less important/influential than element j

t1 Clearly less Element i is clearly less important/influential than element j

t2 Less Element i is less important/influential than element j

t3 Slightly less Element i is slightly less important/influential than element j

t4 Equal Element i is equally important/influential than element j

t5 Slightly more Element i is slightly more important/influential than element j

t6 More Element i is more important/influential than element j

t7 Clearly more Element i is clearly more important/influential than element j

t8 Extremely more Element i is extremely more important/influential than element j

Table 5 Expert e1’s pairwise
comparison result of the three

main risk factors

Occurrence Severity Detection

Occurrence ft4ð1Þg ft3ð0:3Þ; t4ð0:6Þg ft5ð0:8Þ; t6ð0:1Þ; t7ð0:1Þg
Severity ft4ð0:6Þ; t5ð0:3Þg ft4ð1Þg ft5ð0:1Þ; t6ð0:8Þg
Detection ft1ð0:1Þ; t2ð0:1Þ; t3ð0:8Þg ft2ð0:8Þ; t3ð0:1Þg ft4ð1Þg
w 0.3667 0.3879 0.2454
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two sub-factors under the category of Occurrence, expert e1
needs to answer the question: ‘‘In the determination of the

failure modes’ occurrence, which one of the pair is more

important, and to what extent?’’.

The comparison matrix and the corresponding weighting

vector are listed in Tables 6, 7, and 8 for Occurrence,

Severity, and Detection respectively, with consistency

level of 0:0499, 0:0754, and 0:0833, all passing the con-

sistency test.

Step 2.3: According to the network structure constructed

in Step 1, there exist interdependence relationships among

the sub-factors in the same category, as well as bi-direc-

tional influential relationships between the sub-factors

Si ði ¼ 1 : 5Þ and Di ði ¼ 1 : 3Þ. Therefore, expert e1 are

instructed to make pairwise comparisons of the relative

influences of these sub-factors.

Take the sub-factors of the category Occurrence as an

example. Given a sub-factor Oi ði ¼ 1 : 3Þ, expert e1 needs
to make pairwise comparisons between any two other sub-

factors Or and Oj. The question that expert e1 is supposed

to answer is: ‘‘With respect to sub-factor Oi, which one of

the pair ðOr; OjÞ is more influential, and to what extent?’’

The resulting comparison results are listed in Tables 9, 10

and 11. Since the comparison matrices only have two

elements, by definition the consistency level is 1.

Similar comparisons are also carried out for the other

influential relationships in the network depicted in Fig. 3,

but for the compactness of presentation, the results are left

out for the time being.

On the basis of the computation results obtained, a

super-matrix representing the influential relationships

between all sub-factors can be constructed for expert e1, as

listed in Table 12. Setting e ¼ 10e� 8, we have

jjQ43 � Q42jj\e. In other words, approximately, the super-

matrix reaches convergence after raising it to the power 43.

The super-matrix after convergence is listed in Table 13,

where each column can be viewed as the stable long-term

Table 6 Expert e1’s pairwise
comparison result of sub-factors

in the category of Occurrence

O1: Frequency O2: Repeatability O3: Growth rate

O1 ft4ð1Þg ft3ð0:7Þ; t4ð0:2Þ; t5ð0:1Þg ft5ð0:9Þ; t6ð0:1Þg
O2 ft3ð0:1Þ; t4ð0:2Þ; t5ð0:7Þg ft4ð1Þg ft5ð0:7Þ; t6ð0:3Þg
O3 ft2ð0:1Þ; t3ð0:9Þg ft2ð0:3Þ; t3ð0:7Þg ft4ð1Þg
xO 0.3461 0.3883 0.2656

Table 7 Expert e1’s pairwise comparison result of sub-factors in the category of Severity

S1: Time losses S2: Financial losses S3: Environmental losses S4: Reputation losses S5: Human casualties

S1 ft4ð1Þg ft5ð0:5Þ; t6ð0:2Þg ft4ð0:1Þ; t5ð0:7Þg ft4ð0:1Þ; t5ð0:7Þg ft2ð0:8Þ; t3ð0:2Þg
S2 ft2ð0:2Þ; t3ð0:5Þg ft4ð1Þg ft1ð0:2Þ; t2ð0:3Þg ft1ð0:4Þ; t2ð0:5Þg ft0ð0:7Þ; t1ð0:2Þg
S3 ft3ð0:7Þ; t4ð0:1Þg ft6ð0:3Þ; t7ð0:2Þg ft4ð1Þg ft2ð0:2Þ; t3ð0:3Þg ft0ð0:6Þ; t1ð0:4Þg
S4 ft3ð0:7Þ; t4ð0:1Þg ft6ð0:5Þ; t7ð0:4Þg ft5ð0:3Þ; t6ð0:2Þg ft4ð1Þg ft0ð0:9Þ; t1ð0:1Þg
S5 ft5ð0:2Þ; t6ð0:8Þg ft7ð0:2Þ; t8ð0:7Þg ft7ð0:4Þ; t8ð0:6Þg ft7ð0:1Þ; t8ð0:9Þg ft4ð1Þg
xS 0.2322 0.0846 0.1233 0.1475 0.4124

Table 8 Expert e1’s pairwise comparison result of sub-factors in the category of Detection

D1: Miss rate D2: False alarm D3: Timeliness

D1 ft4ð1Þg ft6ð0:8Þ; t7ð0:2Þg ft4ð0:1Þ; t5ð0:9Þg
D2 ft1ð0:2Þ; t2ð0:8Þg ft4ð1Þg ft2ð0:1Þ; t3ð0:8Þg
D3 ft3ð0:9Þ; t4ð0:1Þg ft5ð0:8Þ; t6ð0:1Þg ft4ð1Þg
xO 0.4319 0.2315 0.3366

Table 9 Expert e1’s pairwise comparison result of sub-factors with

respect to sub-factor O1

w.r.t O1 O2: Repeatability O3: Growth rate

O2 ft4ð1Þg ft1ð0:5Þ; t2ð0:2Þ; t3ð0:2Þg
O3 ft5ð0:2Þ; t6ð0:2Þ; t7ð0:5Þg ft4ð1Þg
_xO1

O
0.3391 0.6609
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weighting vector reflecting sub-factors’ influences in the

network.

Step 2.4: Next expert e1 makes pairwise comparisons of

different failure modes with respect to each sub-factor.

Take the sub-factor O1 as an example, the question that

expert e1 is asked is: ‘‘Which one of the failure modes’

occurrences is more frequent?’’ For brevity, in Table 14 we

only list the normalized principal eigenvector, and left out

the comparison matrices.

Step 2.5: With the weighting vector obtained in Steps

2.1–2.4, now the RPN of each failure mode can be calcu-

lated via Eq. (15). The normalized results are as shown in

the first row of Table 15.

Step 3: Group aggregation. Up till now, the calculation

process from Steps 2.1 to 2.5 are under the evaluations of

expert e1. The other 4 experts also undergo similar com-

putation procedures, but the details are omitted, only the

final RPN of different failure modes are listed in the second

to fifth rows in Table 15.

Then, with the expert weights setting to be equal, i.e.,

g ¼ ð1=5; 1=5; 1=5; 1=5; 1=5ÞT, the individual evalua-

tions of these 5 experts are aggregated via the weighted

average operator in Eq. (16), the result of which is shown

in the second last row of Table 15. Now with the group

collective RPNC
m ðm ¼ 1 : 14Þ, the failure modes can be

prioritized accordingly:

FM14 � FM13 � FM1 � FM7 � FM4 � FM10 � FM6

� FM11 � FM5 � FM12 � FM3 � FM8 � FM9 � FM2:.

4.2 Managerial Insights and Practical Implications

In this section, the risk assessment of HIS is investigated,

with special attention paid to various types of risk sub-

factors and their influential relationships. For hospital staff,

the results in the above subsection offer some insights

regarding HIS’s operation management. For one thing,

when comparing the importance of sub-factors under the

Table 10 Expert e1’s pairwise comparison result of sub-factors with

respect to sub-factor O2

W.r.t.O2 O1: Frequency O3: Growth rate

O1 ft4ð1Þg ft3ð0:7Þ; t4ð0:1Þg
O3 ft4ð0:1Þ; t5ð0:7Þg ft4ð1Þg
_xO2

O
0.4464 0.5554

Table 11 Expert e1’s pairwise comparison result of sub-factors with

respect to sub-factor O3

W.r.t.O3 O1: Frequency O2: Repeatability

O1 ft4ð1Þg ft5ð0:5Þ; t6ð0:5Þg
O2 ft2ð0:5Þ; t3ð0:5Þg ft4ð1Þg
_xO3

O
0.5973 0.4027

Table 12 The weighted original super-matrix before convergence

O1 O2 O3 S1 S2 S3 S4 S5 D1 D2 D3

O1 0 0.444642 0.597300 0 0 0 0 0 0 0 0

O2 0.339057 0 0.402700 0 0 0 0 0 0 0 0

O3 0.660943 0.555358 0 0 0 0 0 0 0 0 0

S1 0 0 0 0 0.151404 0.136031 0.058975 0.195232 0.107324 0.062125 0.186704

S2 0 0 0 0.102962 0 0.114188 0.027986 0.084022 0.149971 0.053733 0.034933

S3 0 0 0 0.127975 0.086654 0 0.198613 0.148733 0.030858 0.130913 0.038791

S4 0 0 0 0.041624 0.088669 0.101184 0 0.072012 0.095535 0.077599 0.068258

S5 0 0 0 0.227439 0.173273 0.148597 0.214427 0 0.116312 0.175631 0.171315

D1 0 0 0 0.134362 0.206264 0.192943 0.220213 0.166322 0 0.260435 0.263932

D2 0 0 0 0.152898 0.136338 0.119582 0.075413 0.154688 0.295179 0 0.236068

D3 0 0 0 0.212740 0.157397 0.187475 0.204374 0.178990 0.204821 0.239565 0

Fig. 3 The network structure of sub-factors for HIS reliability

assessment
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category of O, the expert committee deemed ‘‘Repeata-

bility’’ as the most significant. Failure modes that happen

repeatedly often lacks sufficient prevention strategy,

therefore, corresponding mitigation actions are advised to

be put in place. For another thing, in this paper ‘‘False

alarm’’ and ‘‘Timeliness’’ are included as sub-factors in the

category of D. The former is recommended because a high

degree of false alarm will bring unnecessary workload to

the medical staff, and the resulting fatigue may lead to the

increase of misconducts. The latter is suggested because in

the particular environment of hospital, any delay in the

treatment of patients may incur devastating events. What’s

Table 13 The limit matrix after convergence

O1 O2 O3 S1 S2 S3 S4 S5 D1 D2 D3

O1 0.348015 0.348015 0.348015 0 0 0 0 0 0 0 0

O2 0.271299 0.271299 0.271299 0 0 0 0 0 0 0 0

O3 0.380686 0.380686 0.380686 0 0 0 0 0 0 0 0

S1 0 0 0 0.116308 0.116308 0.116308 0.116308 0.116308 0.116308 0.116308 0.116308

S2 0 0 0 0.076928 0.076928 0.076928 0.076928 0.076928 0.076928 0.076928 0.076928

S3 0 0 0 0.089934 0.089934 0.089934 0.089934 0.089934 0.089934 0.089934 0.089934

S4 0 0 0 0.071578 0.071578 0.071578 0.071578 0.071578 0.071578 0.071578 0.071578

S5 0 0 0 0.145252 0.145252 0.145252 0.145252 0.145252 0.145252 0.145252 0.145252

D1 0 0 0 0.174204 0.174204 0.174204 0.174204 0.174204 0.174204 0.174204 0.174204

D2 0 0 0 0.157939 0.157939 0.157939 0.157939 0.157939 0.157939 0.157939 0.157939

D3 0 0 0 0.167857 0.167857 0.167857 0.167857 0.167857 0.167857 0.167857 0.167857

Table 14 Expert e1’s pairwise comparison result of failure modes with respect to different sub-factor

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

O1 0.0743 0.0425 0.1129 0.0448 0.0986 0.0962 0.0933 0.0262 0.0331 0.0233 0.0523 0.0567 0.1247 0.1211

O2 0.0824 0.0287 0.0460 0.0958 0.0381 0.0328 0.0347 0.0450 0.0966 0.1139 0.0715 0.0424 0.1506 0.1216

O3 0.0774 0.0694 0.0388 0.1017 0.0330 0.0920 0.0536 0.0873 0.0493 0.0998 0.1307 0.0285 0.0631 0.0753

S1 0.0589 0.0276 0.0319 0.0173 0.1109 0.0214 0.0895 0.0621 0.0945 0.0339 0.1117 0.1579 0.0842 0.0981

S2 0.0693 0.0163 0.0091 0.0176 0.0623 0.0305 0.0537 0.0653 0.1599 0.0935 0.1304 0.0820 0.1257 0.0843

S3 0.0730 0.0853 0.1061 0.0441 0.1003 0.0237 0.0885 0.0526 0.1009 0.0694 0.0308 0.0674 0.0878 0.0699

S4 0.0484 0.0114 0.0800 0.0981 0.0536 0.0393 0.1137 0.0193 0.1213 0.1049 0.0461 0.0805 0.1414 0.0419

S5 0.0585 0.0852 0.0500 0.0933 0.0632 0.0728 0.0176 0.1032 0.0206 0.0623 0.0498 0.1312 0.0535 0.1386

D1 0.0922 0.0277 0.0502 0.0527 0.0305 0.0637 0.1412 0.0376 0.0410 0.0756 0.0852 0.1307 0.0714 0.1004

D2 0.0602 0.0425 0.0790 0.0419 0.0837 0.0136 0.0776 0.1127 0.0515 0.0667 0.0777 0.1259 0.0961 0.0710

D3 0.0790 0.0313 0.0420 0.0520 0.0277 0.1062 0.0739 0.0305 0.0311 0.1453 0.1229 0.1137 0.0575 0.0871

Table 15 The RPN of different failure modes under different experts’ evaluation and the final group assessment result

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

e1 0.0745 0.0467 0.0618 0.0705 0.0592 0.0678 0.0685 0.0572 0.0558 0.0773 0.0820 0.0770 0.0974 0.1043

e2 0.0894 0.0584 0.0655 0.0886 0.0812 0.0884 0.0665 0.0188 0.0351 0.0625 0.0587 0.0966 0.0972 0.0935

e3 0.1127 0.0064 0.0637 0.1116 0.0978 0.0842 0.0820 0.0948 0.0320 0.0570 0.0469 0.0322 0.0947 0.0840

e4 0.1078 0.0890 0.0708 0.0208 0.0954 0.0539 0.1001 0.0740 0.0069 0.1181 0.0751 0.0257 0.0559 0.1064

e5 0.0385 0.0077 0.0562 0.1119 0.0129 0.0946 0.0964 0.0460 0.0862 0.0744 0.0864 0.1019 0.0843 0.1025

RPNC 0.0846 0.0416 0.0636 0.0807 0.0693 0.0778 0.0827 0.0581 0.0432 0.0778 0.0698 0.0667 0.0859 0.0982

Rank 3 14 11 5 9 7 4 12 13 6 8 10 2 1
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more, according to the RPNs derived via our proposed

method, the top three ranking failure modes are ‘‘Natural

disasters’’, ‘‘Hardware maintenance error and equipment

failure’’ and ‘‘Server down’’. This result suggests that

important data should have back-ups in clouds, in case of

hardware and equipment failures. Besides, in the unfortu-

nate circumstance that HIS server is unavailable because of

power outage or natural disasters, some paper records

would also be very helpful.

5 Comparative Analyses

In this section, to highlight the differences and advantages

of our proposed method, some comparative analyses with

existing FMEA methods are performed. Without loss of

generality, we only compare the evaluation result of expert

e1. What’s more, for the compactness of presentation, here

only the computation results are provided, the detailed

computation process can be found in ‘‘Appendix 2’’.

5.1 Comparison with Classical FMEA

In the classical FMEA method, the expert is instructed to

evaluate the failure modes’ criticality in three aspects:

occurrence, severity and detection, with a discrete numer-

ical scale of 1–10. To make fair comparison between the

classical FMEA and our proposed method, firstly, expert

e1’s comparison matrices of failure modes under different

sub-factors need to be converted to the numerical scale of

1–10. For instance, for the comparison matrix in Eq. (14),

the first row can be seen as the criticality of failure mode

FM1 compared to all other failure modes with respect to

sub-factor Oi ði ¼ 1 : 3Þ. Thus, through defuzzification, the

arithmetic mean of the entries in the first row of GðAOi
FMÞ

can be seen as the criticality of failure mode FM1 with

respect to sub-factor Oi. Then the failure mode FM1’s

criticality degrees under different Oi ði ¼ 1 : 3Þ is aggre-

gated via the average operator to obtain the overall criti-

cality degree in the aspect of occurrence.

Similar conversion procedures are also carried out for

other failure modes and sub-factors, and the final RPN of

classical FMEA method is listed in the second row of

Table 16, along with the corresponding prioritization rank.

From Fig. 4, it can be seen that the prioritization result

obtained through our proposed method is in near accord

with the one obtained via classical FMEA, with failure

modes FM14, FM13 and FM10 ranking as the failure modes

with the highest criticality, and failure modes FM2 and

FM9 ranking as the lowest ones, verifying the rationality of

our proposed model. Compared with the classical FMEA,

our proposed method has the following advantages:

(1) The classical FMEA method only considers failure

modes’ criticality in three main aspects, namely

occurrence, severity, and detection. This type of

over-generalization can result in troubling difficul-

ties in the practical applications. For one thing, the

concepts of these three main risk factors are too

broad for experts to provide meaningful evaluation

results, certain additional specifications are often

needed in practical applications. For another thing,

different failure modes may lead to different type of

consequences with various categorizations of mag-

nitudes, making it very hard to evaluate their

criticality with a uniform numerical scale. Thus, it

is safe to say that compared to the classical FMEA,

our proposed method can provide a more through

Table 16 The failure modes’

RPNs and ranks of different

methods

Classical FMEA Method in [32] Method in [43] Method in [29] Our proposed method

RPN Rank RPN Rank RPN Rank RPN Rank RPN Rank

FM1 36 6 2.72 8 36.61 7 1.84 6 0.07 6

FM2 8 14 1.65 14 13.34 13 0.92 14 0.05 14

FM3 27 8 2.25 11 21.06 11 1.37 12 0.06 10

FM4 24 10 2.56 10 29.04 8 1.60 9 0.07 7

FM5 24 11 2.57 9 19.51 12 1.57 10 0.06 11

FM6 18 13 1.96 12 22.89 10 1.48 11 0.07 9

FM7 36 7 2.93 7 23.88 9 1.67 8 0.07 8

FM8 27 9 1.83 13 36.99 6 1.11 13 0.06 12

FM9 24 12 3.02 6 12.68 14 1.78 7 0.06 13

FM10 48 3 3.40 3 50.70 3 2.13 3 0.08 4

FM11 48 4 3.39 4 48.28 4 2.10 4 0.08 3

FM12 40 5 3.19 5 47.43 5 1.94 5 0.08 5

FM13 60 2 3.76 2 53.61 2 2.81 1 0.10 2

FM14 80 1 3.88 1 102.2 1 2.54 2 0.10 1
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and comprehensive evaluation result, seeing that

different sub-factors can be identified and selected

based on the specific demands of application

scenario.

(2) In the classical FMEA method, the RPN of failure

mode is defined as the product of criticality degrees

of occurrence, severity, and detection. In other

words, it is assumed that these three risk factors

are equally important in the determination of failure

modes’ RPN, thus sharing the same weight, which is

rarely the case in practical applications. Besides, the

equal weight also means that different combinations

of occurrence, severity and detection may corre-

spond to the same RPN, making it very difficult to

distinguish between these particular failure modes.

While in our proposed method, different weights are

assigned to different risk factors based on the

pairwise comparison matrix, reflecting their relative

importance in the determination of overall RPN.

(3) In the classical FMEA the experts’ evaluations

results are represented with a numerical scale of

1–10, while in our proposed method the experts are

instructed to express their assessment in the form of

PLTS. On one hand, the linguistic terms are easier to

utilize and fits more closely to the human way of

thinking. On the other hand, the probability distri-

bution in the PLTS allows more room for experts to

express their hesitancy, providing more information

to be processed.

5.2 Comparison with AHP-FMEA

(1) Comparative analysis with Kiani Aslani et al.’s method

[32]: In [32] Kiani Aslani R. et al. proposed to apply the

fuzzy AHP to determine the relative weights of risk factors

occurrence, severity and detection, and defined the RPN as

the weighted sum of these three factors. To ensure the

fairness of comparison, the PLTS entries in the comparison

matrix in Table 5 is converted to the form of TFNs, by

setting the lower and higher bounds of TFN as

minfkjLðkÞðpðkÞÞ 2 LðpÞg and maxfkjLðkÞðpðkÞÞ 2 LðpÞg
respectively, and the center of TFN as gðLðpÞÞ. The entries
in the comparison matrices of failure modes are also con-

verted to the form of TFN, then aggregated in the similar

procedure as described in Sect. 5.1. The final defuzzied

RPN and the corresponding prioritization ranks of failure

modes are shown in Table 16, as well as Fig. 4. It is easy to

see that evaluation results obtained via Kiani Aslani R.

et al.’s method and our proposed method is mostly con-

sistent with each other. The primary differences between

our proposed method and Kiani Aslani R. et al.’s are

reflected in the following aspects:

(1) Same as the classical FMEA, Kiani Aslani R. et al.’s

method only takes into account the three broad risk

factors, occurrence, severity and detection, without

dividing them into more specific and comprehensive

sub-factors.

Fig. 4 Different methods’ normalized RPNs of failure modes

2920 International Journal of Fuzzy Systems, Vol. 24, No. 6, September 2022

123



(2) The criticality degree of Kiani Aslani R. et al.’s

method is directly given by the experts, whereas in

our proposed method the weights of failure modes

are derived from the pairwise comparison matrices.

It has been a common understanding that as opposed

to directly assigning a proper weight to each

element, the pairwise comparisons are easier to

conduct because the human mind is not very

adequate at processing a lot of information at the

same time [60, 61].

(2) Comparative analysis with Abdelgawad and Fayek’s

method [43]: In [43], Abdelgawad M. and Fayek A. R.

explored the concept of fuzzy expert system to map the

relationship between risk factors occurrence, severity,

detection and the overall RPN. Among these, the severity is

further divided to sub-factors cost impact, time impact and

scope/quality impact, the weights of which are determined

by AHP. Similar to the conversion utilized in comparative

analysis with Kiani Aslani R. et al.’s method, the com-

parison matrix with PLTS in Table 7 is defuzzied to form

the comparison matrix for Abdelgawad M. and Fayek A.

R.’s method. The resulting RPN and ranking of different

failure modes are listed in sixth and seventh columns of

Table 16, which are mostly in line with the results obtained

via our proposed methods. That being said, our proposed

method still shows some merits:

(1) Abdelgawad M. and Fayek A. R.’s method only

considers sub-factors under the category of severity,

at the same time maintaining the broad concept of

occurrence and detection as before. Whereas our

proposed method divides all three main risk factors

into more elaborate and specific sub-factors, making

the evaluation results more comprehensive.

(2) Abdelgawad M. and Fayek A. R.’s method only

assigns different weight to the sub-factors, and

assumes equal importance to the three main risk

factors, same as the classical FMEA method. Just

like discussed before, this over-simplification may

lead to practical problems since expert’s emphasis

on risk factors varies according to the application

scenarios.

(3) In Abdelgawad M. and Fayek A. R.’s method, the

evaluation result of failure modes is expressed with

crisp-valued real numbers. While in our proposed

method PLTS is utilized, which not only better

facilitates the experts’ opinion expression, but also

allows the situation of hesitancy and incomplete

information.

(3) Comparative analysis with Zandi et al.’s method

[29]: In [29] Zandi P. et al. proposed to break down the risk

factor severity to three sub-factors including severity on

cost, severity on time, and severity on quality. Then Zandi

P. et al. utilize AHP to derive the weights of both the main

risk factors and the sub-factors. To make a fair comparison,

the matrices in Tables 5 and 7 are converted as follows: for

a PTLS LðpÞ, it is first defuzzied via Eq. (3), then gðLðpÞÞ is
rounded to an integer gðLðpÞÞb c. The TFN corresponding to

the linguistic term t gðLðpÞÞb c as described in [29] is then

taken as the conversion result. In Table 16, the eighth and

ninth column represents the calculation results for Zandi P.

et al.’s method. It can be seen from Fig. 4 that the results

are basically consistent with the ones obtained via our

proposed method. Apart from that, our proposed method

also possesses the following desirable properties:

(a) Like in [43], Zandi P. et al.’s method only considers

the specification of risk factor severity, while our

proposed method further breaks down the risk

factors occurrence and detection as well.

(b) Zandi P. et al.’s method adopts AHP for the weight

assignment of risk factors and sub-factors, while our

proposed method takes advantage of ANP for the

same task. Seeing that AHP can only model the

hierarchical architecture where the elements in the

same level are independent from each other, ANP is

a generalization developed on the basis on AHP,

which can also model the dependence relationship

between the elements in the same level. In the

particular scenario of FMEA, this means that ANP

can model and reflect the influential relationship

between the sub-factors. For instance, a timelier

detection may lead to lower financial losses, or a

human casualty may cause serious damages to the

organization’s reputation. The existence of these

influential relationship makes ANP more suitable for

the task of weight determination in FMEA, thus it is

safe to say that the assessment result obtained

through our proposed method is more reasonable

and comprehensive.

5.3 Comparison with Crisp-Valued ANP-FMEA

In [62, 63], the authors also proposed to make use of ANP

to improve the performance of FMEA. However, our

proposed method inherently differs from the one put for-

ward in [62, 63] in the following aspects. For starter, the

methods in [62, 63] only considers the three main risk

factors, same as the classical FMEA. Besides, in [62, 63]

the authors utilizes crisp-valued real number as the opinion

expression tool, while our proposed method makes use of

PLTS. What’s more, the method in [62, 63] utilizes ANP to
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derive the relative weights of different failure modes with

respect to the goal of failure mode prioritization. The

network structures in [62, 63] represents the dependence

relationship between the failure modes, i.e., the probability

that one failure mode may lead to another. While in our

proposed method, the network structure is constructed for

the sub-factors, where a link exists if there is an influential

relationship between said sub-factors. In other words, the

methods in [62, 63] focuses on the common-cause phe-

nomenon in FMEA, while our proposed method emphasis

on the appropriate weight assignment to sub-factors in

FMEA. Because of the different application field and the

lack of necessary data, our proposed method cannot be

applied to the case study in [62, 63], and vice versa.

6 Concluding Remarks

Classical FMEA method only considers three broad risk

factors (occurrence, severity, and detection), and uses a

discrete numerical scale of 1–10, which greatly limits its

applicability and rationality. In light of this, this paper

proposes an improved FMEA method based on ANP and

PLTS. The three main risk factors are broken down to more

elaborate and specific-to-application sub-factors, and a

network is constructed to reflect the influential relationship

between these sub-factors. ANP is taken advantage of to

derive the relative weights of the main risk factors, sub-

factors and failure modes with respect to the goal of failure

mode prioritization. PLTS is utilized to facilitate the

experts’ opinion expression, which allows for hesitancy

and incomplete information. A case study on the reliability

assessment of HIS, as well as comparative analysis with

other existing FMEA methods, are carried out to demon-

strate the applicability and rationality of our proposed

method. The main findings of this paper are three-fold:

(1) The specification of sub-factors and the considera-

tion of their influential relationship help the experts

tailor the evaluation process to better fit the appli-

cation scenario, at the same time also improves the

comprehensiveness of evaluation results.

(2) The use of PLTS can better capture the subjectivity

and ambiguity of the experts, maintaining more

information during the evaluation process.

(3) The case study of HIS risk assessment proves the

applicability of our proposed method, further, com-

parative analyses with existing approaches validates

its robustness.

However, there are also some limitations to our pro-

posed method. In this paper, the calculation of RPNs

follows the definition in classical FMEA method, with

weights reflecting the relative importance of the risk fac-

tors. However, as discussed in Sect. 2, there are currently a

number of researches that focus on integrating MCDM

methods with FMEA process. The utilization of ANP in

combination with other MCDM methods such as TOPSIS

or VIKOR could be the future direction of our work.

What’s more, the method proposed in this paper does not

consider the common-cause failure effect often seen in

application scenarios, which will be the future direction of

our work. Last but not least, the risk assessment result

provided in Sect. 4 are derived from the professional

opinions of a committee consisting of five experts.

Admittedly, the experiment results may differ if some other

experts are consulted on this issue. Although this does not

bring into question the rationality of our proposed method,

in our future work a greater number of experts can be

consulted with some techniques from social network group

decision-making.

Appendix 1: Abbreviation and Notation List

Abbreviation list

AHP Analytic hierarchy process

ANP Analytic network process

BWM Best–worst method

COPRAS COmplex PRoportional ASsessment of

alternatives

FMEA Failure modes and effects analysis

GRA Grey relation analysis

HLTS Hesitant linguistic term set

HIS Hospital information system

LTS Linguistic term set

MCDM Multi-criteria decision making

MOORA Multi-objective optimization by ratio analysis

MULTIMOORA Multiple multi-objective optimization by ratio

analysis

NASA National Aeronautics and Space Administration

PLTS Probabilistic linguistic term set

RPN Risk prioritization number

SAW Simple additive weighting

TFN Triangular fuzzy numbers

TODIM An acronym in Portuguese for interactive multi-

criteria decision making

TOPSIS Technique for order preference by similarity to an

ideal solution

VIKOR Vlse kriterijumska optimizacija kompromisno

resenje
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Appendix 2: Computation Process of Comparative
Methods

Classical FMEA Method

As explained before, in classical FMEAmethod, the expert is

instructed to rate the failure modes with a discrete numerical

scale of 1–10. To ensure the fairness of comparison, the first

step is to convert the entries in failure modes’ comparison

matrix from PLTS to the numerical scale.

For example, the comparison of failure mode FM1 to

failure model FM2 under sub-factor O1 is

ft5ð0:8Þ; t6ð0:2Þg, then via Eq. (3) this entry is defuzzied

to 5� 0:8þ 6� 0:2 ¼ 5:2, then rounded to 5 because the

ratings in classical FMEA is required to be integers. With

similar calculations, expert e1’s comparison matrices of

failure modes with respect to sub-factor O1 is obtained, as

shown in Table 17.

In Table 17, the entries in the first row represents the

criticality of failure mode FM1 compared to all other

failure modes with respect to sub-factor O1. Thus, the

arithmetic mean of the entries in the first row of Table 17

can be seen as the criticality rating of failure mode FM1

with respect to sub-factor O1. The same argument goes for

other failure modes, and their criticality ratings are list in

the first row of Table 18. Corresponding calculation results

for sub-factor O2 and O3 are also listed in the second and

third row of Table 18, with their calculation process

omitted for compactness.

Seeing that in classical FMEA method, only three main

risk factors are considered, the criticality ratings of failure

modes under sub-factors Oi ði ¼ 1 : 3Þ need to be further

aggregated via the average operator, to derive the ratings

under the main risk factor O, the result of which is listed in

the first row of Table 19. Similar computations are also

carried out for main risk factors S and D, as shown in the

second and third rows of Table 19. Finally, the RPN can be

calculated, and the ranking of failure modes via classical

FMEA method can be obtained:

FM14 � FM13 � FM10 � FM11 � FM12 � FM1 � FM7

� FM3 � FM8 � FM4 � FM5 � FM9 � FM6 � FM2:

Notation list

O Probability of occurrence

S Severity

D Likelihood of detection

RPN Risk prioritization number

ta Linguistic terms

T Additive linguistic term set

T Continuous linguistic term set

negðtaÞ Negation operator of linguistic term set

maxðta; tbÞ Maximum operator of linguistic term set

minðta; tbÞ Minimum operator of linguistic term set

bT Hesitant linguistic term set

LðpÞ Probabilistic linguistic term set

LðkÞðpðkÞÞ Linguistic term LðkÞ associated with

probability pðkÞ

#LðpÞ Number of all different linguistic terms in

LðpÞ
g LðpÞð Þ Numerical score of LðpÞ
ez ðz ¼ 1 : ZÞ The zth expert

FMm ðm ¼ 1 : MÞ The mth failure mode

Oi ði ¼ 1 : hOÞ The ith sub-factors under the category

Occurrence O

Si ði ¼ 1 : hSÞ The ith sub-factors under the category

Severity S

Di ði ¼ 1 : hDÞ The ith sub-factors under the category

Detection D

A Comparison matrix of risk factors O, S and

D

LijðpÞ Comparing result of the ith risk factor to the

jth risk factor

LijðpÞ Negation of LijðpÞ
GðAÞ Crisp-valued matrix obtained by calculating

the numerical score

CLr
ij Consistent preference of the ith element

over the jth element through the rth
element

Consistency ðGðAÞÞ Consistency level of A

c Required consistency level threshold

w Weighting vector of three main risk factors

AO; AS; AD Comparison matrix of sub-factors

xO; xS; xD Weighting vector of sub-factors

Q Super-matrix representing the influence of

sub-factors

AOi Comparison matrix of sub-factors regarding

their influences on Oi

ð _xOi
O1; _xOi

O2; . . .; _xOi
OhO

ÞT Normalized principal eigenvector of GðAOiÞ

jjQc � Qc�1jj2 Euclidean norm of the deviation between Qc

and Qc�1

€x Long-term stable weight vector of sub-

factors

AOi
FM

Comparison matrix of failure modes

regarding the ith sub-factor Oi

-Oi Weight of failure modes with respect to the

ith sub-factor Oi

continued

RPNm RPN of the mth failure mode

RPNC
m

group assessment of the RPN of the mth failure mode

uðLðkÞÞ Transformation function from linguistic terms to AHP scale

ûðqÞ Transformation function from PLTS numerical score to

TFN scale
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Kiani Aslani et al.’s Method [32]

To counter the problem of equal weight assumption, Kiani

Aslani R. et al. took the advantage of AHP to derive the

relative weights of main risk factors, and defined the RPN

as the weighted sum of these three factors. In [32], TFN is

utilized to accommodate the uncertainty of expert judge-

ments. Therefore, the comparison matrix in Table 5 needs

to be converted into TFN to ensure the fairness of com-

parison. This conversion process is carried out in two steps.

Firstly, the PLTS is converted into triangular forms by

setting the lower and higher bounds as LðminfkjLðkÞðpðkÞÞ2LðpÞgÞ

and LðmaxfkjLðkÞðpðkÞÞ2LðpÞgÞ respectively, and the center as

LðgðLðpÞÞÞ. For instance, in Table 5, the comparison result of

risk factor O to risk factor S is ft3ð0:3Þ; t4ð0:6Þg. It is easy
to see that minf3; 4g ¼ 3, maxf3; 4g ¼ 4 and

gðLðpÞÞ ¼ 3� 0:3þ4� 0:6 ¼ 3:3. Hence, the triangular

form of ft3ð0:3Þ; t4ð0:6Þg is ðt3; t3:3; t4Þ.
Secondly, the triangular form of PLTS is transformed to

TFN according to their practical meanings. In AHP method

[64], the pairwise comparison of two elements are con-

ducted with instructions in Table 20.

Thus, according to the practical meanings in Table 4, the

linguistic terms can be translated to the scale of AHP with

the following equation:

uðLðkÞÞ ¼
2ðk � 4Þ þ 1; k� 4;

1

2ð4� kÞ þ 1
; otherwise:

8
<

: ð17Þ

Table 17 Comparison matrix of failure modes w.r.t. O1 for classical FMEA method

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

FM1 – 5 1 4 1 1 2 7 6 8 5 5 1 2

FM2 3 – 1 3 1 1 1 5 5 6 4 2 1 1

FM3 7 8 – 7 1 2 4 7 6 7 4 2 3 4

FM4 3 4 1 – 1 1 1 4 3 6 5 2 1 1

FM5 5 8 1 6 – 2 3 7 8 7 6 5 1 2

FM6 4 5 2 8 5 – 2 6 6 5 5 4 1 2

FM7 4 4 2 6 5 4 – 3 6 2 5 5 1 1

FM8 1 3 1 2 1 1 1 – 3 4 1 1 1 1

FM9 1 2 1 1 1 2 1 4 – 4 2 1 1 1

FM10 1 2 1 2 1 1 1 3 4 – 2 1 1 1

FM11 3 4 1 3 1 3 2 2 6 6 – 2 1 1

FM12 2 4 1 2 3 2 3 3 7 7 2 – 1 1

FM13 7 6 5 7 5 3 4 6 6 7 4 7 – 1

FM14 5 8 4 7 4 3 4 7 8 7 5 7 1 –

Table 18 Criticality rating of failure modes w.r.t. Oi ði ¼ 1 : 3Þ for classical FMEA method

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

O1 4 3 5 3 5 4 4 2 2 2 3 3 5 5

O2 4 2 2 4 2 2 2 3 5 5 4 2 6 5

O3 4 2 2 4 2 3 3 4 3 4 5 2 3 4

Table 19 Criticality ratings and RPNs of failure modes

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

O 4 2 3 4 3 3 3 3 3 4 4 2 5 5

S 3 2 3 3 4 2 3 3 4 3 3 4 4 4

D 3 2 3 2 2 3 4 3 2 4 4 5 3 4

RPN 36 8 27 24 24 18 36 27 24 48 48 40 60 80
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And the TFN obtained after conversion is:

uðminfkjLðkÞðpðkÞÞ 2 LðpÞgÞ; uðgðLðpÞÞÞ;
�

uðmaxfkjLðkÞðpðkÞÞ 2 LðpÞgÞ
�
:

ð18Þ

Continuing with the above instance, via Eq. (17) the

linguistic terms t3, t3:3 and t4 are translated to:

uðt3Þ ¼ 1=ð2� ð4� 3Þ þ 1Þ ¼ 1=3 	 0:33;

uðt3:3Þ ¼ 1=ð2� ð4� 3:3Þ þ 1Þ ¼ 1=2:4 	 0:42;

uðt4Þ ¼ 1=ð2� ð4� 4Þ þ 1Þ ¼ 1=1 ¼ 1:

Therefore, the PLTS ft3ð0:3Þ; t4ð0:6Þg can be converted

to a TFN ð0:33; 0:42; 1Þ. Identical conversions are also

carried out for other entries in Table 5, the results are

presented in Table 21.

For two TFNs k1 ¼ ða1; b1; c1Þ and k2 ¼ ða2; b2; c2Þ,
their operation laws [65] are defined as:

(1) ða1; b1; c1Þ 
 ða2; b2; c2Þ ¼
ða1 þ a2; b1 þ b2; c1 þ c2Þ;

(2) ða1; b1; c1Þ � ða2; b2; c2Þ ¼ ða1a2; b1b2; c1c2Þ;
(3) l� ða1; b1; c1Þ ¼ ðla1; lb1; lc1Þ;
(4) ða1; b1; c1Þ�1 ¼ ð1=c1; 1=b1; 1=a1Þ;
(5) ~gðk1Þ ¼ ða1 þ 4b1 þ c1Þ=6.

Suppose the pairwise comparison matrix is ~A ¼ k j
i

� �
n�n

,

then the TFN weight of each element is calculated with the

following formula [65]:

~wi ¼
Xn

j¼1

k j
i �

Xn

i¼1

Xn

j¼1

k j
i

" #�1

: ð19Þ

Thus, according to the comparison matrix in Table 21,

the TFN weights of the three risk factors can be calculated

via Eq. (19):

~wO ¼ 4:33; 5:02; 9ð Þ � 1

19:66
;

1

12:1
;

1

10:49

� �

¼ 0:22; 0:41; 0:86ð Þ;

~wS ¼ 4:83; 5:60; 9ð Þ � 1

19:66
;

1

12:1
;

1

10:49

� �

¼ 0:25; 0:46; 0:86ð Þ;

~wD ¼ 1:33; 1:48; 1:66ð Þ � 1

19:66
;

1

12:1
;

1

10:49

� �

¼ 0:07; 0:12; 0:16ð Þ:

Similar aggregation process as described in ‘‘Appendix

2.1’’ is also undertaken to derive the ratings of failure

modes with respect to three main risk factors. The only

difference is that in ‘‘Appendix 2.1’’ the ratings are given

in integers, while here the ratings are transformed to TFNs,

as shown in the second to fourth columns of Table 22.

Suppose the ratings of failure modes under risk factors

O, S and D are kO, kS and kD, respectively, then the RPN of

failure modes are defined as:

RPNi ¼ ~g ð ~wO � kOÞ 
 ð ~wS � kSÞ 
 ð ~wD � kDÞ
� 	

:

The calculation results are shown in the last two col-

umns of Table 22, and finally the ranking of failure modes

can be obtained for Kiani Aslani R. et al.’s method [32]:

Table 20 Practical meanings of pairwise comparison result for AHP

Scale Meaning

1 Equally important/influential

3 Slightly more important/influential

5 More important/influential

7 Clearly more important/influential

9 Extremely more important/influential

2, 4, 6, 8 Intermediate

Table 21 Pairwise comparison matrix of the three main risk factors

for method in [32]

Occurrence Severity Detection

Occurrence ð1; 1; 1Þ ð0:33; 0:42; 1Þ ð3; 3:60; 7Þ
Severity ð0:83; 1; 3Þ ð1; 1; 1Þ ð3; 3:60; 5Þ
Detection ð0:14; 0:28; 0:33Þ ð0:19; 0:2; 0:33Þ ð1; 1; 1Þ

Table 22 Ratings and RPNs of failure modes for Kiani Aslani

et al.’s method [32]

Rating Weighted sum RPN

O S D

FM1 (2, 3, 3) (2, 2, 3) (2, 2, 3) (1.07, 2.41, 5.62) 2.72

FM2 (1, 1, 2) (1, 2, 2) (1, 1, 1) (0.47, 1.46, 3.59) 1.65

FM3 (1, 2, 3) (1, 2, 3) (1, 1, 2) (0.53, 1.88, 5.46) 2.25

FM4 (2, 3, 4) (1, 2, 3) (1, 1, 2) (0.75, 2.29, 5.46) 2.56

FM5 (1, 2, 2) (2, 3, 4) (1, 1, 1) (0.78, 2.34, 5.30) 2.57

FM6 (2, 2, 3) (1, 1, 2) (2, 2, 3) (0081, 1.54, 4.76) 1.96

FM7 (1, 2, 2) (2, 3, 4) (2, 4, 5) (0.85, 2.70, 5.94) 2.93

FM8 (1, 1, 2) (1, 2, 3) (1, 1, 2) (0.53, 1.46, 4.60) 1.83

FM9 (1, 2, 2) (2, 4, 5) (1, 1, 1) (0.78, 2.80, 6.16) 3.02

FM10 (2, 3, 4) (2, 3, 3) (3, 4, 5) (1.14, 3.12, 6.79) 3.40

FM11 (2, 3, 4) (2, 3, 3) (2, 4, 5) (1.07, 3.012, 6.79) 3.39

FM12 (1, 1, 1) (2, 4, 5) (3, 6, 7) (0.92, 3.0, 6.25) 3.19

FM13 (3, 4, 5) (2, 3, 4) (1, 2, 3) (1.22, 3.29, 8.19) 3.76

FM14 (3, 4, 5) (2, 3, 4) (2, 3, 4) (1.28, 3.41, 8.35) 3.88
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FM14 � FM13 � FM10 � FM11 � FM12 � FM9 �
FM7 � FM1 � FM5 � FM4 � FM3 � FM6 � FM8

� FM2:.

Abdelgawad and Fayek’s Method [43]

In [43], the authors broke down risk factor S to sub-factors

and utilized classical AHP to derive their relative weights.

Similar to the conversion process in ‘‘Appendix 2.2’’, the

entries of comparison matrix in Table 7 are first defuzzied

via Eq. (3), then translated to the scale of AHP method via

Eq. (17). Take the comparison result of sub-factor S1 to

sub-factor S2 as an example, ft5ð0:5Þ; t6ð0:2Þg is first

converted to 5� 0:5þ 6� 0:2 ¼ 3:7. Then according to

the practical meanings listed in Table 20, linguistic term

t3:7 corresponds to 1=ð2� ð4� 3:7Þ þ 1Þ ¼ 1=1:6 ¼ 0:625

in classical AHP method. The converted comparison

matrix is as shown in Table 23. Moreover, the entries of the

same column in Table 23 are normalized, then entries of

the same row are summed together, which are then nor-

malized to obtain the weights of corresponding sub-factors,

as listed in the last column in Table 23.

Similar as in ‘‘Appendix 2.1’’, the ratings of failure

modes under different sub-factors are derived by calculat-

ing the arithmetic mean of the entries in the same row of

the pairwise comparison matrices like Table 17. Because in

[43] only the risk factor S is broken down to sub-factors

while O and D remains the same as in classical FMEA

method, here the ratings of failure modes under risk factor

S is calculated as the weighted sum of ratings under Si ði ¼
1 : 5Þ with the weighting vector from Table 23. The ratings

under risk factors O and D are the same as in ‘‘Appendix

2.1’’, where sub-factors Oi ði ¼ 3Þ and Di ði ¼ 1 : 3Þ are

assigned equal importance. The calculation results are as

listed in Table 24.

With the ratings under O, S and D obtained, the RPNs of

failure modes can be calculated, as shown in the last col-

umn of Table 24. Thus, the ranking of failure modes via

Abdelgawad and Fayek’s method [43] is:

FM14 � FM13 � FM10 � FM11 � FM12 � FM8 � FM1

� FM4 � FM7 � FM6 � FM3 � FM5 � FM2 � FM9:

Zandi et al.’s Method [29]

In [29], Zandi P. et al. broke down the risk factor S to sub-

factors and utilized AHP to derive both the weights of three

main risk factors and the weights of sub-factors under the

category of S. Seeing that in [29] the experts express their

assessments in the form of TFNs, to ensure the fairness of

comparison, first the comparison matrices in Tables 5 and 7

need to be converted to relevant forms.

As described in Table 25, a special kind of TFN scale is

used in [29] where the deviation between lower bound and

center of the TFN, as well as the deviation between the

center and higher bound of the TFN is 2. In order to con-

form to this norm, first the PLTS entries in Tables 5 and 7

is defuzzied via the numerical score function in Eq. (3),

then rounded to a positive integer. Suppose q ¼ gðLðpÞÞb c,
then the conversion is completed by the following function:

û qð Þ ¼
2ðq� 4Þ � 1; 2ðq� 4Þ þ 1; min 2ðq� 4Þ þ 3; 9ð Þð Þ; q[ 4;

1; 1; 1ð Þ; q ¼ 4;
ð1=min 2ð4� qÞ þ 3; 9ð Þ; 1=ð2ð4� qÞ þ 1Þ; 1=ð2ð4� qÞ � 1ÞÞ; otherwise:

0
@

ð20Þ

Table 23 Comparison matrix and the corresponding weights of

sub-factors for AHP method

S1 S2 S3 S4 S5 Weight

S1 1 0.63 0.83 0.83 0.22 0.10

S2 0.19 1 0.14 0.16 0.12 0.04

S3 0.25 0.38 1 0.16 0.12 0.05

S4 0.25 4.60 0.28 1 0.11 0.11

S5 4.60 7 8.2 8.8 1 0.69

Table 24 Ratings and RPNs of failure modes for method in [43]

S1 S2 S3 S4 S5 S O D RPN

FM1 3 3 4 3 3 3.05 4 3 36.61

FM2 2 1 4 1 4 3.34 2 2 13.34

FM3 2 1 5 4 2 2.34 3 3 21.06

FM4 1 2 2 5 4 3.63 4 2 29.04

FM5 5 3 4 3 3 3.25 3 2 19.51

FM6 1 2 1 2 3 2.54 3 3 22.89

FM7 4 3 4 5 1 1.99 3 4 23.88

FM8 3 3 2 1 5 4.11 3 3 36.99

FM9 4 6 4 5 1 2.11 3 2 12.68

FM10 2 4 3 5 3 3.17 4 4 50.70

FM11 4 5 2 2 3 3.02 4 4 48.28

FM12 5 4 3 4 5 4.74 2 5 47.43

FM13 4 5 4 6 3 3.57 5 3 53.61

FM14 4 4 3 2 6 5.11 5 4 102.2

Table 25 Practical meaning of TFN scales used in [29]

Scale Meaning

(1, 1, 1) Equally important/influential

(1, 3, 5) Slightly more important/influential

(3, 5, 7) More important/influential

(5, 7, 9) Clearly more important/influential

(7, 9, 9) Extremely more important/influential
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The comparison result of risk factor O to risk factor S in

Table 5, ft3ð0:3Þ; t4ð0:6Þg, is taken once again as an

example. It is easy to see that g LðpÞð Þ ¼ 3� 0:3þ
4� 0:6 ¼ 3:3, then q ¼ gðLðpÞÞb c¼ 3. Via Eq. (20), the

TFN scale after conversion is:

û qð Þ ¼ ð1=min 2ð4� 3Þ þ 3; 9ð Þ; 1=ð2ð4� 3Þ
þ 1Þ; 1=ð2ð4� 3Þ � 1ÞÞ

¼ ð1=5; 1=3; 1Þ:

Likewise, other entries in Tables 5 and 7 are converted

following the above procedures, the results are presented in

Tables 26 and 27.

Here, we introduce the principle of comparing TFNs.

For any two TFNs k1 ¼ ða1; b1; c1Þ and k2 ¼ ða2; b2; c2Þ,
the possibility degree of k1 � k2 is defined as:

r k1 � k2ð Þ ¼
1; b1 � b2;

a2 � c1
ðb1 � c1Þ � ðb2 � a2Þ

; otherwise:

(
ð21Þ

Moreover, the possibility degree that one TFN k ¼
ða; b; cÞ is greater than k other TFNs ki ði ¼ 1 : kÞ is

defined as:

r k� k1; . . .; kkð Þ ¼ min rðk� k1Þ; . . .; rðk� kkÞð Þ: ð22Þ

Next, let us suppose the pairwise comparison matrix is

Â ¼ k̂ j
i

h i

n�n
, then the synthetic extent with respect to the

ith element is defined as:

Vi ¼
Xn

j¼1

k̂ j
i �

Xn

i¼1

Xn

j¼1

k̂ j
i

" #�1

: ð23Þ

Then, the normalized possibility degree of Vi �Vj ðj 6¼
iÞ is regarded as the weight of the ith element derived from

comparison matrix.

For instance, according to the comparison matrix in

Table 26, via Eq. (23) we have:

V1 ¼ 2:2; 4:33; 7ð Þ � 1

6:54
;

1

10:86
;

1

16:33

� �

¼ 0:13; 0:40; 1:07ð Þ;

V2 ¼ 3; 5; 7ð Þ � 1

6:54
;

1

10:86
;

1

16:33

� �

¼ 0:18; 0:46; 1:07ð Þ;

V3 ¼ 1:34; 1:53; 2:33ð Þ � 1

6:54
;

1

10:86
;

1

16:33

� �

¼ 0:08; 0:14; 0:36ð Þ:

Using Eqs. (21) and (22),

rðV1 �V2Þ ¼
0:18� 1:07

ð0:40� 1:07Þ � ð0:46� 0:18Þ 	 0:94;

rðV1 �V3Þ ¼ 1; rðV2 �V1Þ ¼ 1; rðV2 �V3Þ ¼ 1;

rðV3 �V1Þ ¼
0:13� 0:36

ð0:14� 0:36Þ � ð0:40� 0:13Þ 	 0:46;

rðV3 �V2Þ ¼
0:18� 0:36

ð0:14� 0:36Þ � ð0:46� 0:18Þ 	 0:35;

rðV1 �V2; V3Þ ¼ minð0:94; 1Þ ¼ 0:94;

rðV2 �V1; V3Þ ¼ minð1; 1Þ ¼ 1;

rðV3 �V1; V2Þ ¼ minð0:46; 0:35Þ ¼ 0:35:

Furthermore, the vector ð0:94; 1; 0:35ÞT is normalized

to ð0:41; 0:44; 0:15ÞT, which serves as the weighting

vector of the three main risk factors. The same computing

process is also performed for the comparison matrix in

Table 27, the result of which is shown in the first row of

Table 28. Same as in ‘‘Appendix 2.3’’, the ratings of failure

modes are transformed to TFN then defuzzied, as shown in

Table 28. Then, the RPN of failure modes can be defined as

their weighted sum, as presented in the last column of

Table 28. Finally, the ranking of failure modes via Zandi

et al.’s method [29] is obtained:

FM13 � FM14 � FM10 � FM11 � FM12 � FM1 �
FM9 � FM7 � FM4 � FM5 � FM6 � FM3 � FM8 �
FM2:.

Table 26 Pairwise comparison matrix of the three main risk factors

for method in [29]

Occurrence Severity Detection

Occurrence (1, 1, 1) (0.2, 0.33, 1) (1, 3, 5)

Severity (1, 1, 1) (1, 1, 1) (1, 3, 5)

Detection (0.2, 0.33, 1) (0.14, 0.2, 0.33) (1, 1, 1)

Table 27 Pairwise comparison

matrix of sub-factors for method

in [29]

S1 S2 S3 S4 S5

S1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.14, 0.2, 0.33)

S2 (0.14, 0.2, 0.33) (1, 1, 1) (0.11, 0.14, 0.2) (0.11, 0.14, 0.2) (0.11, 0.11, 0.14)

S3 (0.14, 0.2, 0.33) (0.2, 0.33, 1) (1, 1, 1) (0.11, 0.14, 0.2) (0.11, 0.11, 0.14)

S4 (0.14, 0.2, 0.33) (3, 5, 7) (0.2, 0.33, 1) (1, 1, 1) (0.11, 0.11, 0.14)

S5 (3, 5, 7) (5, 7, 9) (7, 9, 9) (7, 9, 9) (1, 1, 1)
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