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Abstract For the uncertain structural system with fuzzy

uncertainties as well as random ones, a new approach is

proposed to assess the reliability of the mixed uncertain

structure, which the membership levels of the different

fuzzy input variables are treated as random variables with

independent and uniform distributions. The possible com-

bination of the membership levels of the different fuzzy

variables was considered, which contains more available

information. By analyzing the relationship between the

proposed approach and traditional approaches, the

rationality and advancement of the proposed approach are

verified. In order to improve the computation efficiency of

the proposed approach, a highly efficient kriging-based

solution is established in this paper. Furthermore, two

practical engineering examples are used to demonstrate the

feasibility of the proposed approach and the efficiency of

the proposed solution.

Keywords Fuzzy uncertainty � Membership function �
Random uncertainty � Reliability analysis � Failure
probability

List of Symbols

M Output response

gð�Þ Performance function

X Input variables

XF Fuzzy variables

XR Random variables

lð�Þ Membership function of the fuzzy variable

f ð�Þ Probability density function

nf Number of the fuzzy variables

nr Number of the random variables

n Number of the input variables

k Cut level

XFðkÞ Fuzzy variable at cut level k
XL
F ðkÞ Lower bound of the fuzzy variable XF(k)

XU
F ðkÞ Upper bound of the fuzzy variable XF(k)

Pf Failure probability

Pf�g Probability operator

Y Interval variables

g Non-probabilistic reliability index

M(2) Second level performance response

nwPf Failure probability of the proposed approach

nwPU
f

Upper bound of the failure probability nwPf

nwPL
f

Lower bound of the failure probability nwPf

1 Introduction

Random uncertainty extensively exists in engineering

applications, which comes from the inherent variation and

the unapparent causal relationship. However, due to a lack

of sufficient data and insufficient knowledge, there is a lot

of non-random uncertainty in structural systems [1–3].
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Numerous non-random methods have been developed to

deal with the non-random uncertainty, such as interval

analysis [4, 5], Dempster–Shafer evidence theory, DSET

[6–8], and fuzzy theory [9–11]. Among these methods,

fuzzy theory was proved to be an effective method to deal

with the fuzzy uncertainty [12].

Based on probability and mathematical statistics theory,

the structural reliability analysis approach under the ran-

dom uncertainty has been widely researched and applied in

engineering and academia, such as the first-order reliability

method, FORM [13], Monte Carlo simulation, MCS [14],

variance reduction techniques [15], etc. However, these

random reliability methods are not capable of analyzing the

fuzzy uncertain structural system. For this purpose, based

on fuzzy theory [9, 16], extensive efforts have been done

by researchers to establish fuzzy reliability methods

[11, 17–20]. Among them, the membership levels method

[21–23] is common, which represents fuzzy variables by

membership functions based on their possibility of occur-

rence or level of confidence. In light of this, a series of

reliability methods have been developed for dealing with

fuzzy variables, such as the vertex method [24], opti-

mization techniques [25, 26]. Recently, Li et al. [27] pro-

posed a new approach for the fuzzy reliability problem

only containing fuzzy uncertainty based on probability

perspective, which measures the reliability of a structural

system with the failure probability. And Deng and Deng

[11] proposed a new approach to measure the information

volume of fuzzy membership function including the first-

order and the higher-order information volume, which can

be used to assess the safety of the fuzzy structural system.

The above research methods consider only one case of

fuzzy uncertainties or random ones, but do not accommo-

date a combination of the two types of uncertainties.

However, fuzzy and random uncertainties often present in

engineering applications simultaneously. To address this

issue, Baudrit et al. [28, 29] a hybrid approach for the

system with fuzzy and random uncertainties, which can use

to extract the final random fuzzy set and average lower and

upper cumulative distributions of the output with respect to

a threshold. However, the generalized reliability and dis-

tribution of output are more concerned by designers [30].

Möller et al. [31] formulated a fuzzy FORM (FFORM) to

analyze the mixed uncertain structural system. The mem-

bership function of the reliability index can be estimated

using this method, but the failure probability cannot be

obtained from the safety index values. Adduri and Pen-

metsa [32, 33] presented a new technique based on the

response surface models and transformations of possibility

functions, which does not apply to the performance

function including cross items of the fuzzy and the random

uncertainties. In order to improve the computational effi-

ciency of the membership function of the fuzzy reliability,

Li et al. [34] proposed the saddlepoint approximation

approach based on the line sampling method, Ebenuwa and

Tee [35] presented a numerical strategy using a fuzzy-

based optimized subset simulation (SS) approach, and You

et al. [36] employed a random fuzzy support vector

machine based on the particle swarm optimization (PSO)

method to obtain the membership function of reliability.

These methods above obtaining the analysis result are

the membership function of reliability, while engineering

designers are more likely to understand probability than

membership function. In addition, the above methods

regard membership levels of different fuzzy uncertain

inputs as the same value as shown in Fig. 1a, without

considering the case that membership levels of different

fuzzy variables have different values as shown in Fig. 1b.

In the Fig. 1, lXFi
xFið Þ i ¼ 1; 2; . . .; nf

� �
denote the mem-

bership functions of the fuzzy input variables

(a)

(b)

Fig. 1 The diagram for the combination of the membership levels of

the different fuzzy variables
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XF ¼ ðXF1; XF2; . . .;XFnf Þ, and ki i ¼ 1; 2; . . .; nf
� �

denotes the membership lever (cut level) of XFi.

In this paper, a new mixed uncertain reliability approach

is proposed, which given the assessment result is an

interval value of failure probability or reliability. And the

possible combinations of the different fuzzy variables with

different membership levels can be considered. The

membership level taking value [0, 1] of the fuzzy variable

is treated as the random variable obeying standard uniform

distribution. According to the fuzzy cut set theory, the

fuzzy variable can be represented as the interval variable at

each membership level. Then, the fuzzy and random mixed

uncertain structural system is converted into the interval

variables (at the given membership level) and the random

mixed structural system. The non-probabilistic reliability

model [37] is employed to deal with the interval and ran-

dom mixed uncertain system. Considering to the mem-

bership level obeying standard uniform distribution, the

second level performance function [37] (relative to the

original performance function) containing original random

variables and standard uniformly variables is successive

established. By taking the membership levels of the dif-

ferent fuzzy input variables as the same uniform distribu-

tion, the relationship between the traditional approaches

and the proposed approach is rigorously verified in theory.

By the several engineering examples, the rationality and

feasibility of the proposed approach are testified.

The remainder of this paper is organized as follows: In

Sect. 2 the description of uncertainty propagation from

fuzzy and random variables to the structural response is

introduced. A new reliability approach based on uniformly

distributed membership level is proposed for the mixed

uncertain system and the relationship with the traditional

approaches is discussed in Sect. 3. In Sect. 4 a highly

efficient kriging-based solution is introduced for the pro-

posed approach. In Sect. 5 two practical examples are

employed to test the rationality and superiority of the

proposed approach, and the applicability of the kriging-

based solution. Finally, the conclusion comes at the end of

this paper.

2 The Propagation of the Fuzzy and Random
Uncertainties

Since the fuzzy and random variables exist in a structural

system simultaneously, the output response of a structure

would be fuzzy and random.

Denote the performance function of a structural system

determined by the failure criterion as follows:

M ¼ g Xð Þ ¼ g XF; XRð Þ
¼ g XF1; XF2; . . .;XFnf ; XR1; XR2; . . .;XRnr

� �
; ð1Þ

where M is the output response and g Xð Þ is the perfor-

mance function of a structural system. X ¼
ðX1; X2; . . .;XnÞ are input variables, in which XF ¼
ðXF1; XF2; . . .;XFnf Þ are fuzzy input variables represented

by membership functions lXFi
xFið Þ i ¼ 1; 2; . . .; nf

� �
, and

XR ¼ ðXR1; XR2; . . .;XRnrÞ are random input variables with

the corresponding probability density functions (PDFs)

fXRj
ðxRjÞ ðj ¼ 1; 2; . . .; nrÞ, and nf þ nr ¼ n.

According to the content of cut sets, at each cut level

(membership level) k, the variation of the fuzzy variable is

defined by a lower bound and an upper bound,

i.e., XFðkÞ 2 ½XL
F ðkÞ; XU

F ðkÞ� at cut level k. For the relia-

bility model in the presence of both the fuzzy variables and

the random ones, the output response will also be an

interval at each cut level. The effect of the fuzzy uncer-

tainties on the performance function at the cut level k is

expressed by Eq. (2). For the case of two random variables,

the effect of the fuzzy variables on the performance func-

tion is shown in Fig. 2.

g XFðkÞ; XRð Þ 2 ½gmin XFðkÞ; XRð Þ; gmax XFðkÞ; XRð Þ�:
ð2Þ

Furthermore, according to random reliability analysis

and probabilistic knowledge, the bounds of the failure

probability of the mixed structural system can be obtained

as:

PL
f kð Þ ¼ P gmax XFðkÞ; XRð Þ� 0f g; ð3Þ

PU
f kð Þ ¼ P gmin XFðkÞ; XRð Þ� 0f g; ð4Þ

Fig. 2 The effect of the fuzzy uncertainties on the performance function
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where Pf�g means the probability of the given inequality.

The membership function of the failure probability for

the traditional approach can be obtained by calculating the

lower and upper bounds of the failure probability at each

membership level. Figure 3 shows the fuzzy uncertainties

propagation from input variables to failure probability of

the mixed uncertain system, in which, the possibility dis-

tribution of the fuzzy failure probability is described by the

fuzzy membership function lPf
ðPfÞ. Pf ¼ GðXFÞ means

Pf ¼ P g XF; XRð Þ� 0f g ¼
R
g XF;ð

XRÞ� 0fXR
ðxRÞdxR ¼ GðXFÞ. PL

f kð Þ and PU
f kð Þ mean the

lower bound and upper of the fuzzy failure probabilities

with respect to membership level k.

3 A New Reliability Approach for the Mixed
Uncertain Structural System

The traditional approaches for a mixed uncertain structural

system take the membership levels of the different fuzzy

variables as the same value. As discussed above, for each

cut level k, the fuzzy variable XFi degenerates into an

interval variable ½XL
Fi
ðkÞ; XU

Fi
ðkÞ�, so it changes into a

problem that contains the interval variables and random

ones at membership level k. The membership levels are

taken multiple values in region [0, 1]. By calculating the

bounds of the failure probabilities at corresponding mem-

bership levels, the membership function of the failure

probability can be obtained.

The membership levels of the fuzzy variables are treated

as the random variables obeying standard uniform distri-

bution, i.e., ki �Uð0; 1Þ. The relationship between the

membership interval of the fuzzy variable and the random

variable k is shown in Fig. 4.

When k and XR are fixed at their realization values k�

and X�
R, respectively, the performance function can be

rewritten as:

M ¼ g XFðk�Þ; X�
R

� �
; ð5Þ

where XFðk�Þ are interval variables at the membership

levels k�, i.e., XFðk�Þ 2 ½XL
Fðk�Þ; XU

F ðk�Þ�.
There are only interval variables in the performance

function Eq. (5). The non-probabilistic reliability model

[38, 39] based on interval analysis is a good tool to deal

with interval uncertain problem. Next, the detail of the non-

probabilistic reliability model will be briefly reviewed as

follows.

3.1 A Review of the Non-probabilistic Reliability

Model

Denote Y ¼ ðY1; Y2; . . .; YmÞ as the set of the interval

variables for a structural system whose performance

function is expressed as:

MI ¼ g Yð Þ ¼ g Y1; Y2; . . .; Ymð Þ; ð6Þ

Fig. 3 The propagation of the fuzzy uncertainties for the failure

probability
Fig. 4 The membership interval of the fuzzy variable at the

realization k�
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where Yk 2 ½YL
k ; Y

U
k � k ¼ 1; 2; . . .;mð Þ, YL

k and YU
k are the

lower and upper bounds of the interval variable Yk,

respectively. Thus, the center and radius of the interval

variable can be formulated as YC
k ¼ ðYL

k þ YU
k Þ

�
2 and

YR
k ¼ ðYU

k � YL
k Þ
�
2, respectively.

The response MI is also an interval variable with the

lower and upper bounds ½ML
I ; M

U
I � on the condition that

gð�Þ is a continuum function of the input interval variables

Y. The center and radius of the interval response M are

expressed by MC
I ¼ ðML

I þMU
I Þ
�
2 and

MR
I ¼ ðMU

I �ML
I Þ
�
2, respectively.

The following formulation is proposed to measure the

safety of the structural system with interval variables

[38, 39], which is called non-probabilistic reliability index:

g ¼ MC
I =M

R
I ¼ ML

I þMU
I

� �
= MU

I �ML
I

� �
: ð7Þ

According to reliability theory, the hypersurface g Yð Þ ¼
0 is defined as the limit state surface, which divides the

input variable space into the failure domain Xf ¼
Y : gðYÞ\0f g and the safe domain Xs ¼ Y : gðYÞ[ 0f g.

According to Eq. (7), the following conclusions can be

drawn.

(1) If the inequality g[ 1 holds, namely, ML
I [ 0, then

gðYÞ[ 0 for any Yk. This means that the structural system

must be safe, and the bigger g is, the more reliable the

structural system is, as shown in Fig. 5a.

(2) If the inequality g\� 1 holds, namely MU
I \0, then

gðYÞ\0 for any Yk, which indicates an unavoidable fail-

ure, as shown in Fig. 5c.

(3) If the inequality �1� g� 1, then gðYÞ[ 0 or

gðYÞ\0, which means whether the structural system is

safe or not cannot be distinguished, and this case is shown

in Fig. 5b.

If the performance function Eq. (6) is linear, it can be

rewritten as:

MI ¼ g Yð Þ ¼ a0 þ
Xm

k¼1

akYk ðk ¼ 1; 2; . . .;mÞ: ð8Þ

The analytic expression of the non-probabilistic relia-

bility index g can be derived as:

g ¼ a0 þ
Pm

k¼1 akY
C
kPm

k¼1 akj jYR
k

: ð9Þ

3.2 The Mixed Uncertain Reliability Approach Based

on the Uniformly Distributed Membership Level

According to the discussion in Sect. 3.1, the non-proba-

bilistic reliability index of Eq. (5) can be obtained as:

gðk�; X�
RÞ ¼ MCðk�; X�

RÞ=MRðk�; X�
RÞ: ð10Þ

Considering realizations of k� and X�
R vary in the range

of the random variables k and XR, respectively, a new

performance function can be formulated, which is called

the second level performance function to distinguish from

the original performance function in this paper, as:

M 2ð Þ ¼ gðk; XRÞ: ð11Þ

Mð2Þ is the function of the random variables XR and

random variables k following uniform distribution in [0, 1].

As mentioned in Sect. 3.1, if inequality gðk; XRÞ[ 1

holds, the structural system must be safe; if inequality

gðk; XRÞ\� 1 holds, the structural system must be fail-

ure. Following the two conditions, two limit state equations

can be obtained as:

M 2ð Þ � 1 ¼ 0; i.e. gðk; XRÞ � 1 ¼ 0; ð12Þ

M 2ð Þ þ 1 ¼ 0; i.e.gðk; XRÞ þ 1 ¼ 0: ð13Þ

The upper bound of the failure probability of the

structural system can be obtained by the limit state equa-

tion gðk; XRÞ � 1 ¼ 0, while the lower bound of failure

probability can be obtained by the limit state equation

gðk; XRÞ þ 1 ¼ 0. According to random reliability theory,

the bounds can be expressed, respectively, as:

nwPU
f ¼ P gðk; XRÞ � 1� 0f g

¼
Z

gðk; XRÞ�1� 0

fkðkÞfXR
ðxRÞdkdxR; ð14Þ

nwPL
f ¼ P gðk; XRÞ þ 1� 0f g

¼
Z

gðk; XRÞþ1� 0

fkðkÞfXR
ðxRÞdkdxR; ð15Þ

where fkðkÞ and fXR
ðxRÞ are the joint PDF of the random

variables k and XR, respectively, and dk ¼ dk1dk2 � � � dknf ,
dxR ¼ dxR1dxR2 � � � dxRnr .

For an uncertain structural system with fuzzy and ran-

dom variables, the precise failure probability cannot be

(a) (b) (c)

Fig. 5 The significance of the non-probabilistic reliability index
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obtained like the random reliability problem. This proposed

approach uses the interval of failure probability

½nwPL
f ; nwP

U
f � to assess the reliability of the mixed system

instead of the traditional membership function of failure

probability. This proposed approach can implement the

combination of the membership levels of the different

fuzzy variables.

If the performance function of the mixed uncertain

structural system Eq. (1) is linear, it can be expressed as:

M ¼ g XF; XRð Þ ¼
Xnf

i¼1

aiXFi þ
Xnr

j¼1

bjXRj: ð16Þ

After introducing the standard uniform distributions into

the membership levels of the fuzzy input variables,

Eq. (16) can be rewritten as:

M ¼ g k; XRð Þ ¼
Xnf

i¼1

aiXFiðkiÞ þ
Xnr

j¼1

bjXRj: ð17Þ

The second level performance function, i.e., the non-

probabilistic index function, of Eq. (17) can be derived as:

M 2ð Þ¼gðk; XRÞ ¼
Pnf

i¼1 aiX
C
FiðkiÞ þ

Pnr
j¼1 bjXRj

Pnf
i¼1 aij jXR

FiðkiÞ
: ð18Þ

Assuming the membership function of the fuzzy vari-

able XFi be the normal type, i.e.,

lXFi
ðxFiÞ ¼ exp � xFi � mXFi

ð Þ2

2r2XFi

( )

; ð19Þ

where mXFi
and rXFi

are the mean value and deviation of the

fuzzy variable XFi, respectively.

The center and radius of the interval variable XFiðkiÞ at
the membership level ki can be expressed as:

XC
FiðkiÞ ¼ mXFi

;

XR
FiðkiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln ki

p
rXFi

:

(

ð20Þ

Submitting Eq. (20) into Eq. (18), the second level

performance function can be expressed as:

Mð2Þ¼gðk; XRÞ¼
Pnf

i¼1 aimXFi
þ
Pnr

j¼1 bjXRj
Pnf

i¼1 aij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln ki

p
rXFi

: ð21Þ

Fig. 6 The flowchart of the proposed new approach
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For Eq. (21), random reliability approaches can be used

to implement the reliability analysis.

The flowchart of the proposed approach for the mixed

uncertain structural system is given in Fig. 6.

3.3 The Relationship Between the Proposed

Approach and the Traditional Ones

In order to discuss the relationship between the proposed

approach and traditional approaches, a special situation of

the proposed approach where the membership levels of the

fuzzy variables are taken as the same value,

i.e., k1¼k2¼ � � � ¼knf¼k k�Uð0; 1Þ, is considered. And

the process of taking k by the traditional approaches can be

seen as a random process which takes the value following

the uniform distribution in [0, 1].

Firstly, the upper bound of the failure probability is

discussed. Because k1¼k2¼ � � � ¼knf¼k, the upper bound

of the failure probability Eq. (14) is rewritten as:

nwPU
f ¼

Z

gðk; XRÞ�1� 0

fkðkÞfXR
ðxRÞdkdxR: ð22Þ

In Eq. (22), changing the integral order, it can be

expressed as:

nwPU
f ¼

Z 1

0

Z
� � �

Z

gðk; XRÞ�1� 0

fXR1
ðxR1ÞfXR2

ðxR2Þ � � � fXRnr
ðxRnr ÞdxR1dxR2 � � � dxRnr

" #

f ðkÞdk:

ð23Þ

The integral term inner bracket of the right side of

Eq. (23) can be expressed as:
Z

� � �
Z

gðk; XRÞ�1� 0

fXR1
ðxR1ÞfXR2

ðxR2Þ � � � fXRnr
ðxRnrÞdxR1dxR2 � � � dxRnr ¼ P gðk; XRÞ � 1� 0f g:

ð24Þ

According to the defined of the non-probabilistic relia-

bility index, gðk; XRÞ � 1 can be expanded as:

gðk; XRÞ � 1 ¼ MLðk; XRÞ þMUðk; XRÞ
MUðk; XRÞ �MLðk; XRÞ

� 1

¼ 2MLðk; XRÞ
MUðk; XRÞ �MLðk; XRÞ

: ð25Þ

It can be seen that MUðk; XRÞ �MLðk; XRÞ in Eq. (25)

is always large than zero. If inequality gðk; XRÞ � 1� 0

satisfies, inequality MLðk; XRÞ� 0 must hold,

i.e., gmin XR; XFðkÞð Þ� 0 holds. So the following equation

can be derived as:

P gðk; XRÞ � 1� 0f g ¼ P MLðk; XRÞ� 0
� �

¼ P gmin XR; XFðkÞð Þ� 0f g: ð26Þ

Then, Eq. (24) can be rewritten as:

Z
� � �

Z

gðk; XRÞ�1� 0

fXR1
ðxR1ÞfXR2

ðxR2Þ � � � fXRnr

ðxRnrÞdxR1dxR2 � � � dxRnr

¼ P gmin XR; XFðkÞð Þ� 0f g ¼ PU
f kð Þ;

ð27Þ

where PU
f kð Þ is the upper bound of the failure probability at

the membership level k. And it also denotes the left branch

of the membership function of the failure probability for

the traditional approaches.

Substituting Eq. (27) into Eq. (23), the following

equation can be obtained as:

nwPUf ¼
Z 1

0

PU
f kð Þf ðkÞdk ¼ E½PU

f kð Þ�: ð28Þ

The same conclusion for the lower bound of the failure

probability can be derived as:

nwPLf ¼
Z 1

0

PL
f kð Þf ðkÞdk ¼ E½PL

f kð Þ�; ð29Þ

where PL
f kð Þ is the right branch of the membership function

of the failure probability.

In the traditional approaches, the membership level is

discretized into uniform values in [0, 1], and the mem-

bership function of the failure probability can be regarded

as the failure probability interval at the different mem-

bership levels. Through the above proof, the following

conclusion can be obtained as: the lower and upper bounds

of the failure probability obtained under the membership

levels of the different fuzzy variables taking as the same

random value are numerically equal to the mathematical

expectation of the left and right branches of the member-

ship function of the failure probability calculated by the

traditional approaches, respectively.

The proposed approach provides the interval value of

failure probability, which can guide the engineer to realize

the failure of the mixed structural system from the proba-

bilistic perspective. Furthermore, when the membership

levels of the different fuzzy variables are taken different

values, the results more accurately reflect the essence of the

mixed uncertain structural system and provide more valu-

able information for the reliability analysis.

4 The Solution for the Proposed Approach

Since there are only random variables k and XR in the

second level performance function, the solution for the

proposed approach is a random reliability problem. How-

ever, it is worth pointing that if the original performance

function is non-monotonic with respect to the fuzzy vari-

ables, the optimization method should be employed to

calculate the corresponding non-probabilistic reliability

G. Li et al.: A New Reliability Approach for the Fuzzy and Random Structure... 2759
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index. The approximation methods of the random relia-

bility, such as the FORM and the second-order reliability

method (SORM) are widely adopted in the random relia-

bility analysis. But these methods are not appropriate for

the case of multiple most probable points (MPPs), besides,

they depend on MPP convergence and the estimated results

are affected by the precision of the performance function

approximation. MCS is a basic reference approach and is

widely used in reliability analysis. However, for the

implicit structural systems where the finite element method

(FEM) is needed to obtain output, the applications of MCS

are restricted by the large computational cost. The surro-

gate model approaches which can use small sample points

to well fit the original performance function are a good

choice for the reliability analysis, among which the kriging

method has been deeply researched and widely applied to

the structural reliability analysis [40–43].

In order to efficiently solve the proposed approach, the

kriging method [42] as an available alternative is employed

to construct the surrogate model of the second level per-

formance function. Using the constructed surrogate model

to evaluate the bounds of the failure probability no longer

calls the original performance function. The expected

feasibility function, EFF [40] is used to ensure the surro-

gate model accuracy in this paper.

The procedure of the kriging-based solution to solve the

proposed approach is simply introduced as follows:

(1) Use the Latin hypercube sampling (LHS) to generate

N ¼ nþ 1ð Þ nþ 2ð Þ=2 samples ðkt; xRtÞ ¼
ðk1;t; . . .; knf ;t; xR1;t; . . .; xRr ;tÞ ðt ¼ 1; 2; . . .;NÞ of

the random variables k and random input variables

XR according to their joint PDF, where n ¼ nf þ nr.
(2) Calculate the non-probabilistic reliability indices

gt ðt ¼ 1; 2; . . .;NÞ corresponding to these sample

points. If performance function M is non-monotonic

with respect to the fuzzy variables, the optimization

method is employed to compute gt in this step.

(3) Construct an initial surrogate model of the second

level performance function, which is denoted as

M̂ð2Þ
.

(4) Find the point U with maximum EFF using the

global optimizer. And judge whether the maximum

value is less than the given threshold (taking 0.001 in

this paper). If so, turn to step 6 directly.

(5) Compute non-probabilistic reliability index at this

point U. And add this new sample to experiment

points and loop back to step 3.

(6) Use the surrogate model M̂ð2Þ to evaluate the bounds

of the failure probability by MCS.

The procedure of the kriging-based solution for the

proposed approach is shown in Fig. 7.

The kriging-based solution developed by this paper is

one of the efficient approaches. Certainly, other efficient

random reliability approaches all can be used to solve the

interval of failure probability.

5 Examples

Two engineering examples in this subsection are used to

demonstrate the rationality advantages of the proposed

approach.

Example 1 A roof truss shown in Fig. 8 is investigated,

the top boom and the compression bars are reinforced by

concrete, and the bottom boom and the tension bars are

made of steel. Assume the uniformly distributed load q is

applied on the roof truss, and the uniformly distributed load

can be transformed into the nodal load P = ql/4. The per-

pendicular deflection DC of the node C can be obtained by

the mechanical analysis, and it is the function of the input

variables, i.e., DC ¼ ql2

2
3:81
ACEC

þ 1:13
ASES

� 	
, where

AC; AS; EC; ES and l respectively represent the sectional

area, elastic modulus, length of the concrete, and that of the

steel bars. Considering the safety and the applicability, DC

of the node C not exceeding 3 cm is taken as the constraint

condition, the performance function can be constructed by

g ¼ 0:03� DC. The variables AC, AS and q are assumed as

the independently normal random variables with the dis-

tribution parameters given in Table 1. l (m), EC (MPa) and

ES (MPa) are assumed as the fuzzy input variables with the

membership functions as follows:

llðlÞ ¼ exp � l� 12ð Þ2

2� 0:122

( )

;

lEC
ðECÞ ¼

ðEC � 1:88� 1010Þ=1:2� 109 1:88� 1010 �EC � 2� 1010;

ðEC � 2:12� 1010Þ=ð�1:2� 109Þ 2� 1010 �EC � 2:12� 1010;




lES
ðESÞ ¼ ðES � 0:94� 1011Þ=6� 109 0:94� 1011 �ES � 1� 1011;

ðES � 1:06� 1011Þ=ð�6� 109Þ 1� 1011 �ES � 1:06� 1011:




The results of the fuzzy reliability analysis computed by

the kriging-based solution and MCS method are listed in

Table 2.

Table 2 shows that the kriging-based solution is highly

efficient and accurate to solve the proposed approach. It

can be seen from Table 2 that the interval width of the

failure probability under the membership levels of the

different fuzzy variables taking different random variables

is less than the one where the membership levels of the

different fuzzy variables take the same random variable,

which means the former uncertainty is less than the latter

one because of the width of an interval variable represents

an uncertain extent. This illustrates more available
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information is adopted for the case of the membership

levels treated as independently standard uniform distribu-

tions. The proposed approach considers the possible com-

bination of the membership levels of the different fuzzy

variables.

Furthermore, in order to illustrate the relationship

between the proposed approach and the traditional

approaches more clearly, the bounds of the failure proba-

bility obtained by the proposed approach and the mem-

bership function of the failure probability by traditional

approaches are shown in Fig. 9, where nwPfðk1 ¼ k2 ¼
� � � ¼ knf Þ denotes the failure probability with the mem-

bership levels of the fuzzy variables treated as the same

random variable i.e., k1 ¼ k2 ¼ � � � ¼ knf ; nwPfðkÞ
denotes the failure probability with the membership levels

of the different fuzzy variables being treated as the inde-

pendently standard uniform distributions. The proposed

approach assesses the failure of the mixed structural system

from the probabilistic perspective, which is more familiar

to the engineer than the membership function of failure

probability.

To show the effect of the fuzzy variables l, EC and ES on

the output response of the structural system, the upper and

lower bounds of cumulative distribution function (CDF) of

g are computed by the kriging-based solution and plotted in

Fig. 10. The gap between the two curves reflects the effect

of the fuzzy variables on g. Since the gap between the two

curves is great, the effect of the fuzzy variables l, EC and

ES is significant. The significance of this graph is to remind

the engineer to pay more attention to the fuzzy variables,

Fig. 7 The flowchart of the kriging-based solution
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Fig. 8 The schematic diagram of the roof truss
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and collect more information to decrease the uncertainty of

the fuzzy variables for reducing the gap of the CDFs.

Example 2 A ten-bar truss as shown in Fig. 11 is con-

sidered to estimate its failure probability. The length and

sectional areas of horizontal and vertical bars are denoted

as L and Ai ði ¼ 1; . . .; 6Þ, the length and sectional areas of

the diagonal bar are
ffiffiffi
2

p
L and Ai ði ¼ 7; . . .; 10Þ respec-

tively, the elastic modulus of all bars is E; P1 and P2 are the

external loads. Assume that the input variables L, Ai ði ¼
1; . . .; 10Þ and E are the normal input random variables

with the distribution parameters listed in Table 3. P1 (kN),

P2 (kN) and P3 (kN) are assumed as the fuzzy variables

with the triangular membership functions as follows:

lP1
ðP1Þ ¼

ðP1 � 76� 103Þ=4� 103

76� 103 �P1 � 80� 103;
ðP1 � 84� 103Þ=ð�4� 103Þ
80� 103 �P1 � 84� 103;

8
>><

>>:

lP2
ðP2Þ ¼

ðP2 � 9:5� 103Þ=0:5� 103

9:5� 103 �P2 � 10� 103;
ðP2 � 10:5� 103Þ=ð�0:5� 103Þ
10� 103 �P2 � 10:5� 103;

8
>><

>>:

lP3
ðP3Þ ¼

ðP3 � 9:5� 103Þ=0:5� 103

9:5� 103 �P3 � 10� 103;
ðP3 � 10:5� 103Þ=ð�0:5� 103Þ
10� 103 �P3 � 10:5� 103:

8
>><

>>:

According to the mechanics analysis, taking the per-

pendicular displacement of the node 2 not exceeding 4 mm

Table 2 The results of the

reliability analysis for Example

1

k1 ¼ k2 ¼ � � � ¼ knf * k ¼ ðk1; k2; . . .; knf Þ**

MCS Kriging-based solution MCS Kriging-based solution

nwPLf 1.816910-4 1.7863910-4 1.4574910-4 1.4350910-4

nwPUf 5.9834910 -3 5.7985910-3 4.9725910-3 5.1296910-3

Sample points 59106 694 59106 755

*The membership levels of the different fuzzy variables taken the same value

**The membership levels of the different fuzzy variables taken different values
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Fig. 10 The CDF bound of the output response for the roof truss
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Fig. 9 The failure probability results for the roof truss

Table 1 The distribution

parameters of the input random

variables for Example 1

Random variable Mean value Standard deviation Coefficient of variation

q (N/m) 20,000 2000 0.10

AS (m2) 9.82 9 10-4 5.892 9 10-5 0.06

AC (m2) 0.04 0.0048 0.12
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as the constraint condition, the following performance

function can be constructed, Y ¼ g ¼ 0:004� jD2j, where
D2 is an implicit function of input variables,

i.e., D2 ¼ D L; Ai; E; P1; P2; P3ð Þ ði ¼ 1; 2; . . .; 10Þ, and
is determined by the FEM. The finite element model of the

ten-bar truss is shown in Fig. 12.

The comparisons of the failure probability of the ten-bar

truss obtained by the kriging-based solution and MCS

method are listed in Table 4.

It can be seen from Table 4 that the kriging-based

solution is applicable to the proposed approach for the

implicit performance function. The membership function

of the failure probability of this example obtained by the

traditional approaches and the interval of failure proba-

bility obtained by the proposed approach are also shown in

Fig. 13, same as Example 1, nwPfðk1 ¼ k2 ¼ � � � ¼ knf Þ
and nwPfðkÞ represent the cases where the membership

levels of the different fuzzy variables take the same and

different values, respectively.

It can be seen from Table 4 and Fig. 14 that the results

of the membership levels of the fuzzy variables taking the

same value are very near to that obtained by taking dif-

ferent values of the membership levels of the different

fuzzy variables. According to the results, it can be rea-

sonably speculated that the effect of one of the fuzzy

variables on the failure probability is dominant, and the

other two fuzzy variables are secondary. The CDF bounds

of output response are plotted in Fig. 13. To discuss the

effect of fuzzy variables on the output response, P1 is fixed

at nominal value 80 9 103 (i.e., the membership level of

P1 is equal to 1) to eliminate its fuzzy uncertainty. Then the

CDF bounds of the output response of the structural system

are calculated by the kriging-based solution and plotted in

Fig. 15. Comparing Figs. 14 and 15, it can be seen that the

gap between the two CDF curves in Fig. 15 is obviously

less than the one in Fig. 14, which means that the uncertain

reduction of the output response is very obvious after

eliminating the uncertainty of the fuzzy variable P1. In

other words, the effect of the fuzzy variable P1 on the

output response is very large, which verifies our previous

speculation.

The designer can identify the effect of the fuzzy vari-

ables on the output response of the structural system by the

gap between the CDF bounds and the CDF values, and pay

more attention to the most critical input variables.

Fig. 11 The diagram of the ten-bar truss

Table 3 The distribution parameters of the input random variables

for Example 2

Random

variable

Mean

value

Standard

deviation

Coefficients of

variation

L (m2) 1 0.1 0.1

Ai (m
2) 0.001 5 9 10-5 0.05

E (GPa) 100 10 0.1

Table 4 The results of the reliability analysis for Example 2

k1 ¼ k2 ¼ � � � ¼ knf * k ¼ ðk1; k2; . . .; knf Þ**

MCS Kriging-based

solution

MCS Kriging-based

solution

nwPL
f

0.002566 0.002551 0.002451 0.002369

nwPU
f

0.007403 0.007384 0.007194 0.007223

Sample

points

106 983 106 1055

*The membership levels of the different fuzzy variables taken the

same value

**The membership levels of the different fuzzy variables taken dif-

ferent values

Fig. 12 The finite element model of the ten-bar truss
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6 Conclusions

In the current study, a new reliability approach is proposed

for the mixed uncertain structural system. By introducing

the standard uniform distribution into the membership level

of the fuzzy variable, the reliability of the mixed uncertain

structures is measured by the probability interval instead of

the traditional reliability membership function. Compared

with the reliability membership function, the obtained

probability value from the proposed approach is easier to

be understood by engineers. Another advantage of the

proposed approach is that the combination of different

membership levels of the fuzzy variables with different

values is considered, and the fuzzy input information is

used more fully, which is proved by engineering examples

in this paper. When a fuzzy variable is fixed at a given

value, the CDF bounds of output response can be obtained

by the proposed approach. Then the influence of the fuzzy

uncertainty on output response can be qualitatively iden-

tified. Additionally, the established kriging-based solution

process is given in this paper, which can calculate the

proposed approach efficiently.

It is important to identify the influence of input uncer-

tainties on output response in reliability assessment and

engineering design. As was stated previously, the proposed

approach can only qualitatively identify the influence of the

fuzzy uncertainties on the output response. Therefore, in

future work, based on the proposed approach, the quanti-

tative approach that can measure the influence of the fuzzy

input variables and random input variables on output

response should be developed.
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