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Abstract This paper is devoted to the research of full
implication triple I method under Pythagorean fuzzy
environment. We first propose the concepts of Pythagorean
t-norm, Pythagorean t-conorm, residual Pythagorean fuzzy
implication operator (RPFIO) and Pythagorean fuzzy
biresiduum. The full implication triple I method for
Pythagorean fuzzy modus ponens (PFMP) and Pythagorean
fuzzy modus tollens (PFMT) are also established. In
addition, the properties of full implication triple I method
of PFMP and PFMT models including the robustness,
continuity and reversibility are analyzed. Finally, a prac-
tical problem is discussed to demonstrate the effectiveness
of the Pythagorean fuzzy full implication multiple I method
in medical diagnosis. The advantages of the new method
are also explained. Overall, compared with the existing
methods, the proposed methods are based on logical rea-
soning rather than using aggregation operators, so they can
more accurately and completely express decision
information.
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1 Introduction

In order to solve various types of uncertainties and com-
plex decision-making problems, the theory of fuzzy sets
was proposed by Zadeh [30]. Later, Atanassov [1] extended
the concept of fuzzy set and introduced the intuitionistic
fuzzy set (IFS) theory. Because decision makers consider
both membership degree and nonmembership degree in
decision-making process, this theory is more accurately
deals with the uncertainties and decision-making problems
than fuzzy sets. However, the IFS needs to satisfy the
restricted condition that the sum of the degree of mem-
bership and the degree of non-membership is less than or
equal to 1. Under this restricted condition, the range of
applications of IFSs is very narrow, and there are limita-
tions in describing uncertainty and fuzziness problems. For
example, when decision makers adopt 0.6 and 0.7 as
membership degree and nonmembership degree to express
their opinions, it is obviously beyond the range of appli-
cations of IFSs. Thus, Yager [28] proposed the Pythagor-
ean fuzzy sets (PFSs) with a restricted condition that the
square of the sum of the membership degree and non-
membership degree is less than or equal to 1. Obviously,
the range of its applications of PFSs is more accurate and
sufficient than that of IFSs. Since then, many scholars have
studied the PFS and obtained a series of valuable research
results [4-6, 8, 13, 15, 26, 29]. For example, Zhang and Xu
[34] defined the related operations and properties of PFSs,
and developed a TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution) multi-attribute decision-
making method. Zhang [35] initiated an interval-valued
PFS and applied it to decision-making problems. In [13],
the authors defined the concept of Pythagorean hesitant
fuzzy sets through integrating hesitant fuzzy sets with
PFSs. Ren [17] proposed a Pythagorean fuzzy multi-
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attribute group decision-making method based on TODIM
(an acronym in Portuguese for Interactive Multi-criteria
Decision Making). Ejegwa et al. [7] established some novel
methods of computing correlation between PFSs via the
three characteristic parameters of PFS by incorporating the
ideas of Pythagorean fuzzy deviation, variance and
covariance. In [3], they also introduced some new statis-
tical techniques of computing correlation coefficient of
PFSs by using Pythagorean fuzzy variance and covariance.
In addition, through combining PFS and N-soft set, Zhang
et al. [32] initiated the theory of Pythagorean fuzzy N-soft
set and applied it to decision-making problem. Zhang and
Ma [33] developed three-way decisions with decision-
theoretic rough sets based on Pythagorean fuzzy covering
and established four methods to address the expected loss
expressed in the form of Pythagorean fuzzy numbers
(PFNs).

Approximate reasoning is one of the most important
topics for a theory dealing with uncertainty, and fuzzy
reasoning is the main component of approximate reason-
ing. It is known that the most fundamental models of fuzzy
reasoning are fuzzy modus pones (FMP) and fuzzy modus
tollens (FMT), where FMP and FMT can, respectively, be
expressed as follows:

FMP inference model: Suppose that: X — Y, and
given: X *, calculate: 17*,
FMT inference model: Suppose that: X — Y, and
given: )7*, calculate: X *,

where X , X and )7, Y are fuzzy sets over U and V,
respectively. In 1973, Zadeh [31] introduced the compo-
sition rule of inference (CRI). This method was developed
into the basic method of fuzzy reasoning. However, from
the perspective of logical semantics, the CRI method lacks
a strict logic foundation. Thus, Wang [19] provided a new
method called the full implication reasoning method (triple
I method) based on the standpoint of logical semantics in
order to establish a strict logical foundation of fuzzy rea-
soning. Since then, the triple I method has received the
widespread attention of many scholars [18, 21, 24, 27], and
yielded a series of valuable research results. For example,
the researchers investigated the approximation properties
[27] of the triple I method, including the reversibility [16]
and continuity [12, 27]. Dai and Pei [2] discussed the triple
I method for the FMP and FMT inference models, and
proved the robustness of the triple I method. Similarly, Lu
[22] discussed the robustness of triple I method based on
the fuzzy soft sets. By using the Hamming and uniform
metrics, Liu and Wang [12] discussed the continuity of
triple I method for fuzzy reasoning. Zheng and Shi [37]
investigated triple I method based on the IFS, and proposed
o-Triple I method of initionistic fuzzy reasoning. However,

regardless of whether a fuzzy set or IFS is used, the range
of applications is relatively narrow compared with that of
PFS, and there are limitations associated with describing
uncertainty and fuzziness problems. On the other hand,
there have been few studies on the combination of PFSs
with the fuzzy reasoning method. Therefore, in order to fill
the research gaps in this field, we attempt to establish a
triple I method of the PFMP and PFMT inference models.
The innovations of this article are as follows. First, we
propose the concepts of Pythagorean t-norm, Pythagorean
t-conorm, RPFIO and Pythagorean fuzzy biresiduum.
Furthermore, the degree of similarity between PFSs based
on the Pythagorean fuzzy biresiduum is also established.
Then, we construct the expressions for triple I method of
the PFMP and PFMT inference models. Finally, some
properties of triple I method based on PFMP and PFMT
inference models including the robustness and continuity
are explored.

The structure of this article is as follows. Section 2
reviews some basic definitions concerning #-norms, f-con-
orms, fuzzy implication operators and PFSs. In Sect. 3, the
concepts of Pythagorean t-norm, Pythagorean #-conorm,
and RPFIO are proposed. We construct a Pythagorean
fuzzy biresiduum and define the degree of similarity
between PFSs based on the Pythagorean fuzzy biresiduum
in Sect. 4. Section 5 establishes the triple I method for the
PFMP and PFMT inference models, constructs the
expressions for the triple I method based on the PFMP and
PFMT inference models and investigates its reversibility.
In Sect. 6, the robustness and continuity of triple I method
for PEMP and PFMT inference models based on degree of
similarity are explored. In Sect. 7, a practical example is
provided to illustrate the effectiveness and practicality of
the triple I method based on the PFMP inference model.
We conclude in Sect. 8.

2 Preliminaries

In this section, we shall provide several definitions that are
necessary for our paper. This paper relates to two kinds of
products: V-product and A-product. That is, oV ff=
max(a, ), & A f = min(a, f5), sup{o;|i € I} =\, o, and
inf{o;|i € It = /\;c; %, where I is a nonempty index set.

Definition 2.1 ([11]) Consider a function A : [0, 1}2 —
[0,1] that satisfies the following three conditions:
Ve, B,y € [0, 1]:

(1) commutative: aAff = fAq;

(2) associative: aA(fiAy) = (aAf)Ay;
(3) monotonicity: a < ff = aAy < fAY;
@ 1Ao=o.
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Then, A is said to be a f-norm. Similarly, if a function
V:[0,1* —[0,1] is the associative, commutative,
monotonic, and satisfies the condition OVa = a, then V is
said to be a t-conorm. The functions A and V are referred
to as dual #-norm and t-conorm if they satisfy the formulas
arf=1—(1—-a)V(l—p) and
aVp=1—(1—-a)a(l—p).

Definition 2.2 ([11]) Suppose that A is a #-norm, V is a ¢-
conorm and 7 is a nonempty index set. For all «, §; € [0, 1],
if anA(sup,e; fi) = sup;(aAf;), then A is called a left-
continuous  tnorm. For all o;,f€][0,1], if
(infie; o) VP = infie (0, V), then V is called a right-
continuous #-conorm.

Definition 2.3 ([11, 23]) Let A be a left-continuous #-
norm. Define an operation —:[0,1]*> —[0,1] as
o — f =sup{e € [0, 1]|eaa <} such that (A,—) forms
an adjoint pair, i.e., A <y < a < ff — y; then, — is said
to be a residual fuzzy implication operator.

Definition 2.4 ([36]) Let V be a right-continuous #-con-
orm. Define a function ©:[0,1* —1[0,1] as
o — f =inf{e € [0, 1]|a <&V} such that (V,O) forms a
co-adjoint pair, i.e., « < fVy < o © y < f, then © is said to
be a residual fuzzy difference operator.

Definition 2.5 ([36]) Suppose that (A, —) and (V,©) are
respectively the adjoint pair and co-adjoint pair, where
A,V are the dual -norm and t-conorm. Then V, —, © are
called the associated operators of A.

Theorem 2.6 ([36]) Suppose that V,—, S are the asso-
ciated operators of A. For all o, € [0, 1],

0o f=1-(1-p —(1-a).

Definition 2.7 ([11]) Let A be a t-norm and — be a
residual fuzzy implication operator. Vo, € [0, 1], if o <
p=(x— p)A(f — o), then < is said to be a biresiduum
associated with a residual fuzzy implication operator.

Theorem 2.8 ([10, 25]) Let A be a t-norm and < be a
biresiduum associated with a residual fuzzy implication
operator; then, Vo, f,y,A € [0,1] :

1) ae—=1=aq
(2) a=Bfesaef=1;
@) a=p=poun

@ (2o play < 2) <(any) < fal);
5 (xopplay =) <(x—7) < f—2);
6) (x= p)af < y) <oy

M (@ PAG o)< (@Vy) — BVA).
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Lemma 2.9 ([11]) Let X, X' : U — [0, 1] be two arbitrary
functions; then,

(M) Ao X () = X'(u)) < = (Nuev X' (w));
2 NuerX(w) = X' () <(Viey X)) < (V,ep X' ().

In [28], Yager et al. introduced the concept of PFSs.

Definition 2.10 ([28]) Let U be a universal set; then, a
PES P on U is expressed as follows:

P = {(u, up(u), np(u))|u € U},

where pp(u) and 17p(u) denote the membership degree and
nonmembership degree, respectively, with the condition

that 0 < (up(u))* + (np(u))* < 1.

We call (up
p = (un).
np(u)) € 0,
that p; = (¢, ') and p, =
Py Vhy =WV "), py Apy = (W AW V).
Definition 2.11 ([14]) Let p, = (¢, %) and p, = (¢", ")
be two PFNs. The score function and the accuracy function
of p can be defined as S(p) = > — n? and H(p) = 1> + 1>,
respectively. For p; = (¢, %) and p, = (¢, 1"),

(u),np(u)) a PEN, which can be written as
Denote P = {(up(u),

11710 < (up(u))* + (le( ))><1}.  Suppose
(1", n") are two PFNs; then,

(1) if S(py) > S(p,), then p; > p,.

@) if S(5,) = S(p,). then

if H(p,) > H(p,), then p, > p,; if H(p;)
P1 =D

- H(ﬁz), then

According to Definition 2.11, we have ' > " ' <#".
S0 1 > .

3 Pythagorean Fuzzy Implication Operator

In this current section, we shall propose the concepts of
Pythagorean t-norm, Pythagorean #-conorm, and RPFIO.

Let &= (u,n), f = (i,n') € P*. Then, we define two
binary operations Ap+ and Vp- on P* as follows:

OCAP* </ 2A,u’2 / 2V17'2
OCVP* / 2vlu/2 / 2A,7/2

Since 0< ,u2 +7*<1,0<u? + <1, it follows from
Definition 2.1 that

(Vi2ap?) + (VP Vin?)? = @2 ap® + n*Vin'?
<@Pap® + (1= @)Vl — )
= BAP 1 — A =1,
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which implies that &AP*/? € P*. By the same token, we can
prove that aVp- ﬁ € P

Theorem 3.1 Let Ap- and Vp- be two binary operations

on P*. Given that & = (u,n), 5= (,1'),7 = (W', ") are
three PFNs, then Ap- satisfies the following conditions:

(D) Gapp = papa;
@) anp(Bap7) = (@npf)op7;
(3) If < B, then aAp-§ < fApT;
4 (L0)Apa=a.
Similarly, Vp« is associative, commutative and mono-
tonic, and satisfies the condition (0,1)Vp-d = d.
Proof According to the associative law and the commu-
tative law for A and V, both Ap- and Vp: are associative

and commutative. On the one hand, when a < B, we have
w<u',n>1". On the other hand, since A,V is monotonic,
we obtain

anp G =(V 2D, PV
< (ViPau N PVn?) = popj.

Thus Ap- is monotonic. Furthermore, Ap: satisfies the
boundary conditions. In fact,

(lvo)AP*O~C = (I,O)AP*(M, ;7)

= (Va1 v/n*V0) = (u,n) = a.

Similarly, we can prove that Vp- is monotonic and satisfies
the condition (0, 1)Vp-& = 4. O

Based on Theorem 3.1, we call Ap- a Pythagorean t-
norm induced from A. And Vp- is referred to as a Pytha-
gorean t-conorm induced from V.

Theorem 3.2 Let A be a left-continuous t-norm and V be
a right-continuous t-conorm. Then, Ap+ and V p+, respec-
tively, satisfy the formulas:
oA p(sup B;) = sup(aipf;),

icl icl

(ef o)V b =ipf Ve P,

where [ is a nonempty index set.

In that case, Ap- is called a left-continuous Pythagorean
t-norm on P*, and Vp- is called a right-continuous
Pythagorean t-conorm on P*.

Definition 3.3 Let Ap- be a left-continuous Pythagorean
t-norm. If a binary operation —p- on P* satisfies & —p-
B = sup{é € P*|éAp-a < B}, then —p. is said to be an
RPFIO.

Theorem 3.4 Let Ap- be a Pythagorean t-norm and — p-
be an RPFIO; then, the following holds:

(D) japa<pei<a—p p

@ Gapa>peizd—p f

B) G>j—p feizd—p p,

@ G—p (B—p §) = (@0pP) —p 7,
5) G —p f=(1,0)a<p

©) j<d—p fea<iopf.

7 (1,0) =p & =14,

®) §—p (G —p f) =G —p (F—p B)

Proof (1) From the definition of —p:, we observe that if
YApd < f3, then y <a —p- f. When 7 < a —p+ f§, from the
left-continuity and monotonicity of Ap+, we can obtain

'?AP*OZS (& — p* ﬁ)AP*OZ
= sup{é € P*|énp-a < f}apa
= sup{(éAp:d) € P*|énp-a <} = .

(2) When y>a —ps ﬁ, from the left-continuity and
monotonicity of Ap«, we can obtain

'}’;AP*&Z (& — p* )B)AP*&
= sup{é € P*|énp-a < pYapa
= sup{(éAp-d) € P*|énp-a <} = .

On the other hand, from the definition of —p:, we have
b —p = sup{é € P*|éap-a<B}. When jAp.a>f, we
can obtain & — p- Bg 7.
(3) From the
0>7 —p B arp =P Japa> e §>0—p p
(4) Let ¥ = & —p- (f —p- 7) € P*. From the result (1),
we have

result (2), we <can obtain

K=G—p (f—p ) = G0pEi=pf—p 7§

= (GDpR)Apf =G = (XAp-G)Apf =7

= i0p(AApf) = T = X = (GAp-P) —p 7.
(5)—(8) are straightforward. O

Theorem 3.5 Suppose that —p- is an RPFIO,

& = (#77’)7[3 = (,u/ﬂ?/) S P* Then
i—p f= (i = 2 AT=?On2), V2 S p).

Proof Let E= (' ") =d—p P For all
& = (u,n!) € P*, it follows from Definition 3.3 that
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o —ps /} = sup{& € P*|gApa< ﬁ}

= sup{(s/,n}) € P*I\/ wrap <, \/ AV >}
= sup{ (4], }) € P"[1” n'iVn =0},

TSRl

By Theorem 3.4, we have

1”2

1A <'u/2 & 7’//2

Vi =0,
= 12— >l & on <
=@ = /P2 e on’ <,
L= er)>1—n> "

= V== & e <n,
N> /1— 2>l

Therefore, if £ = (1’, ") =

1—(n%cn

(', n}'), we have

=W =8 —p B< (V12— 12

AT =2 en), V> en).
On the other hand,
(V2 = 12 AT = (2 S 1P), V2 ©n?)sps

<(Vi2 = w2/ en?)sp (un)
SV (2 — w2,/ (1 © P)Vip)
= (V2 V) = (W) = .
By applying the result (1) of Theorem 3.4, we obtain
(Vi — w2 A1 - 2, Vo)
O

& —p f= (> on

Example 3.6 The following four RPFIOs were induced
by four residual fuzzy implication operators and residual
fuzzy difference operators:

(1) When A is Godel f-norm, aAgf = o A f, and its
associated operators are

17 dSﬁ?
aVeB=aVp, o—cf=
B, «>p,
07 ﬁ§“>
Og o =
#Sa {& B>
Then
(1,0), p<p <,
. s ) (WI=n?0), <, >,
*on b= (1,0), w> o <n,
('), w> ' n' >

(2) When A is Product t-norm, oA, = of, and its asso-
ciated operators are

@ Springer

1, oa<p,
oVef=o+pf—aff, o—yp=
puthoof aonf=Np
o
07 BSM7
Op ot = -
f S f_z, p>ua
Then
&HP;B
(1,0), p<u,n <n,
2 2 2
Vicn ,\/n 1 p<pn >,
VI=P /1-p
= H ’o
(—,0 ; p>pon' <n,
U
/1717/2 'u/ ;,]/2 ,72
=A—, =, u>dn >
vV1—ng u 1—n

uf

(3) When A is Einstein t-norm, oA ff = T (1= and its

associated operators are

it B 1, < B,
Oﬂvgﬁ = 5 ¢ ﬁ = ZB - Ofﬁ
14 oap —— a>f.
o+ pf—oaf
()7 ﬁ S a?
ﬁ SEAS o — ﬁ
LA F
1—af
Then
(1,0), u<u',n'<n,
T+ =2 =12 L,
( = o) u<pon >,
Eon b= (%,O) ,ou>n' <y,
2#/2 _ ullul 1 — ,12 + W,Z _ ’l2y,/2 ’]2 _ NIZ ,
( MZ+N'Z*!L2!U2/\( 1= iPn? ) 1,,#,{2)' W=
0 a4+ p<1
4) When A is Ry t -norm, aAg ff = ’ =)
“) 0 > by aANP, a4+ f>1,

and its associated operators are

1, a+f>1,
“VROﬁ{oc\/ﬁ, o+ p<l,
1, < B,
a—m”ﬁ:{(l—cx)vﬁ, o> .
0, B<a,
ﬁ@ROu:{ﬁ/\(l—a), B> o.
Then
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(1,0), w<u ' <,

5 F (WV1=n?Van A1 =n?), w<plon' >,
Ppe f=

"o (V1= Vi,0), w> o' <,

(V1 =2V IYNNT =02V, AT —=n2), w> o' >

4 Degree of Similarity Between PFSs Based
on the Pythagorean Fuzzy Biresiduum

In this section, we propose the concept of the Pythagorean
fuzzy biresiduum and define the degree of similarity
between PFSs based on the Pythagorean fuzzy biresiduum.

Definition 4.1 Given that o and B are two PENG, if o < p-
B =(a—p B)A(f—p d), then <p. is said to be a
Pythagorean fuzzy biresiduum associated with the RPFIO.
Theorem 4.2 Let Ap- be a Pythagorean t-norm, —p- be a

RPFIO and < p- be a Pythagorean fuzzy biresiduum; then,
the following holds:

(1) & —p (1,0) = 3;

2 a=podacp f=(1,0);

B Gop f=feopd

@ (@ —p B)ap (G —p A< (@0pF) —p (Bpd);

&) (@ <p B)ap (T —p D)< (@ —p 7) <p (B—p 4);
©) (& —p B)op (B op 7)<dop T

D (@ p YA G op <@V =p (BVI)

Proof Suppose that &= (ui,n),f = (1,n),7 = (', n")
and 1 = (u*,n*). From the definition of «p. and Theo-
rem 3.4, the results from (1) to (3) are straightforward.
(4) Suppose that i =1 —n,i7? =1—-y2, 7% =1~
n? and 7772 =1—y*2. From Definition 4.1 and the

concepts of the Pythagorean t-norm, we can obtain

(@ —p B)ap (7 —p )
= (G —p ) A B —p D)ap((G—p D) A(L—p 7))
= (Vi2 = @2 AR = 21— =)
ANWVW? = 12 A% = P AT =% = ) p
(Vw2 = w2 A2 — 2 /1 =2 = i)
NV = w2 AT =72,/ 1 =072 — )
= (02 = ) AP = DA = @) A T2 = 7)),
V=% o V(-7 o )
< M (12 o W) D2 o 1) A
V1 (1 = P)a@? = 12)
< <\/ (2502) = (o) A/ () = (170072),
V1 ((281?) = (o)
= (V2o /1= iPai?) —p \/u’zAu*’z Vi-i?ar?)

*2

)
(2 = 1) 6 (72 = 772),

:( /,UZA,U*Z, / 2vn*2 / /ZA'u ’2 / /ZV” ’2
= (wmap(Wn") <p (llﬁﬂ) (i)
= (a8p7) <p (Bop2).

(5) It is similar to the proof of (4).
(6) According to the definitions of «<»p- and Ap:, we
have

@ = B)op (B 7)

< (Vi = 1) ol = 1) M (P = 128 = 1),
V1 (17 = P)a@? = 12)

<(WVi? = w2 AP = i,

1= (7> = 17?))

= (Vi = w2 AV = 2 A — 2

AT =R 1= @ = ) VL= (72— )

= () = (50) A (" 0%) = (1))
—

(7) It follows from the definition of < p: that
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A G = ) A 1) A
VU2 o) v (-2 o)
<OV i) o (v )

nJEvT o
VI= (2 v < (v i)
=((uvV i nAn) —p (Vg AyT))
AN 1 Ay —pe (v it )
=V nAn) ep (W VI g AT
= @Vv7) <p (BVI)

(12 = 77?),

(T Vv i),

O
Lemma 4.3 Let X , )‘(VI be two PFSs over U; then,
(1) Auer (X (@) <p X' () < (Ayey
X)) <p (Auey X ()):
) Nucr X (@) —p X () < (Ve X (1))

op (Voew X ().

Proof 1t is similar to the proof of the result (4) of Theo-
rem 4.2. O

Definition 4.4 Suppose that —p- is an RPFIO and < p- is
a Pythagorean fuzzy biresiduum associated with RPFIO.
Given that X and X’ are two PFSs over U, and 6 € P*,

define
= N {X@) =p X'} = AM(X(w)

uclU uelU

—p X (1)) A (X (1) —p X(u)};

then, Sp(X, X') is referred to as the degree of similarity of X
and X’ induced from the RPFIO. If Sp(X,X") >, then we
say that X and X’ are d-equal, and denote X = (9)X'.

5 The Triple I Method of PFMP Model and PFMT
Model

In this section, we shall extend the full implication triple I
method of the FMP model and FMT model proposed by
Wang to the PEMP and PFMT environments, and establish
the Pythagorean fuzzy full implication triple I method.
Now, PFMP inference model is given as follows:

Suppose that X (u) —p- Y ()
And given  X*(u) (1)
Calculate Y*(v)

@ Springer

The principle of triple I method for PEMP inference model

is to seek the optimal Y over V such that the expression
(X(u) —p T(0) —p (X () —p 7' (), @)

takes the largest possible value for any v € V. That is to

say, the conclusion Y of Eq. (1) is the smallest PFS over V
satisfying

(X(u) =p Y(v)) =p (X () =p ¥ (v) = (1,0),  (3)
where —p. is a RPFIO, X (u) =

(1
(, (), 1, (), Y (v) = (i (v), n;’<v>>, and
(1, (v), 1, (v)).

Theorem 5.1 Let )?*,)? be PFSs over U, and ?*, Y be
PFESs over V, respectively. Given that Ap- is a Pythagor-
ean t-norm and —p+ is a RPFIO, then the triple I solution
of Eq. (1) can be expressed as follows:

= \VAX W ar (R(w) = (). 4)

uelU

Proof Firstly, we prove that Y (v) determined by Eq. (4)
satisfies Eq. (3). It follows from Eq. (4) that

Y (v) > X (u)dp (X(u) —p Y(v)).

By Theorem 3.4, we obtain

~x

X' ) = V(02 X(w) —=p T(0),

thus

(X(w) = F(v)) —=p (X () —p ¥'(v)) = (1,0).

Secondly, we prove that Y is the smallest PFSs over V
satisfying Eq. (3). Supposing that Z is a PFS over V sat-
isfying Eq. (3), we have

(X(w) —p F(v) —p (X () —p Z'(¥)) =

By Theorem 3.4, we obtain

(1,0).

~*

X)) —p Y(V) <X () —p Z ().
Thus

p(X(u) —p Y(v)).
In light of that, it follows from Eq. (4) that
Y'(\)<Z (v). O

Z(v)>X (u)a

Corollary 5.2 If Ap- is a Pythagorean t-norm and — p- is
a RPFIO, then the triple I solution of PFMP inference

model is Y (v) = (,u;/(v),n;’(v)) € P*, where
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=\ 8 (1 ) — (v)?)
uclU

AL = (,(v)* © 1, (1))},
o) =\ {\/n;(u)ZV(WL(V)Z o, ()*)}-

ucl

Example 5.3 Let U = {uj,up,u3} and V = {v,vp,v3}.
From PFMP model we consider the following form:

If —p+ is the RPFIO induced from Godel t-norm Ag,
then according to the Pythagorean fuzzy triple I method,
the solution Y* can be obtained as follows:

X () = {(u1,0.8,0.2), (u2,0.7,0.5), (u3,0.9,0.3)}
—p Y () = {(11,0.7,0.3), (v3,0.9,0.3), (v5,0.2,0.8)}

Suppose that

And given  X*(u) = {(u1,0.5,0.6), (us,0.9,0.2), (u3, 0.8,0.2)}
Calculate Y*

= VAX ) ap-(X(u) —p Y(11))} = (0.9,0.2),
uclU
= \/{X (@) ap (X(u) —p Y(v2))} = (0.9,0.2),
uclU
= \VA{X ()ap (X(u) —p Y(v3))} = (0.2,0.8).
uclU

Therefore, we obtain the following solution of Pythagorean
fuzzy triple I method based on PFMP inference model:

Y (v) = {(+,0.9,0.2), (v,,0.9,0.2), (v3,0.2,0.8)}.

The following theorem reveals that the triple I method
for PFMP inference model is reversible.

Theorem 5.4 Let Xv*,f be PFSs over U, and f*, Y be
PFESs over V, respectively. Given that Ap- is a Pythagor-

ean t-norm, and — p+ is a RPFIO. If)?* = )?, thenY =7Y.

Proof For all uc U, if X (u) = X(u), then it follows

from Eq. (4) that

= \/ {X(w)p (X

uelU

) —p 7))}

Noting that X (u) —p- Y (v) < X(u) —p- Y(v), then we

have
X(u)op (X(u) —p Y() S Y(v),
which implies that ¥~ (v) < Y (v).

On the other hand, suppose thatX (u) = X (u) = (1,0)
for u € U. Form Eq. (4) and Theorem 3.4, we obtain

P () > £ 0 ap (R() —p 7))
1L0)ap((1,0) —p Y(v)) = ¥(v).
Therefore, ¥ (v) = Y (v) forall v € V. O

In what follows, PFMT inference model is given as
follows:

Suppose that  X(u) ——p- Y(v)
And given Y*(v) (5)
Calculate  X*(u)

The principle of triple I method for PFMT inference model

is to seek the optimal X" over U such that the expression
Eq. (2) takes the largest possible value for any u € U. That

is to say, the conclusion X of Eq. (5) is the largest PFS
over U satisfying Eq. (3) for all u € U.

Theorem 5.5 Let X *,f be PFSs over U, and )7*, Y be
PFSs over V, respectively. Given that Ap- is a Pythagor-
ean t-norm and —p+ is a RPFIO, then the triple I solution
of Eq. (5) can be expressed as follows:

= NX @) —p Y(v) =p ¥ (1)}, (6)

veV

Proof Firstly, we prove that X *(u) determined by Eq. (6)
satisfies Eq. (3). It follows from Eq. (6) that

X () < (X(u) =p Y(v)) =p ¥ (1)

By Theorem 3.4, we obtain

~ ~ %

(X(u) —p Y(v)) —=p (X () —p ¥ (v)) = (1,0).

is the largest PFSs over U
is a PFS over U

Secondly, we prove that X
satisfying Eq. (3). Supposing that H
satisfying Eq. (3), we have

(X(u) —p Y(v) =p (H () =p ¥ (v)) = (1,0).

By Theorem 3.4, we obtain

X(u) —p Y(0) <H (u) —p ¥ (v).

Thus

A (1) < (X(u) —p 7)) —p 7' ().

In light of that, it follows from Eq. (6) that
H () <X (u). O

Corollary 5.6 If Ap- is a Pythagorean t-norm and — p- is
a RPFIO, then the triple I solution of PFMT inference

model is X (u) = (1, (u), 1, (u)) € P*, where
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= /\w(((up(u)

vev

A= 0P & () © nyw?))).
e /\{wp © () © @)}

vev

P —p g ()) A (L= ()" © 1, ()*)) —pe g1 (v)?)

Example 5.7 Let U = {u,uz,uz} and V = {v;,v,v3}.
From PFMT model we consider the following form:

X (u) = {(u1,0.5,0.5), (ug,0.9,0.4), (us,0.8,0.2)}
—p Y(v) = {(01,0.7,0.3), (v3,0.9,0.3), (v3,0.7,0.2)}
Y*(v) = {(v1,0.8,0.3), (v2,0.8,0.4), (v3,0.6,0.3)}

Suppose that

And given

Calculate X*

If —p is the RPFIO induced from Godel t-norm Ag,
then according to the Pythagorean fuzzy triple I method,
the solution X* can be obtained as follows:

= N(X(w) —p Y(v)) =p ¥ (v)} = (0.6,04),
vev

= N(X(2) =p Y(v)) =p ¥ (v)} = (0.6,04),
veV

= N {(X(z) =p Y(v)) =p ¥ (v)} = (0.6,0).

Therefore, we obtain the following solution of Pytha-
gorean fuzzy triple I method based on PFMT inference
model:

X () = {(11,0.6,0.4), (12,0.6,0.4), (u3,0.6,0)}.

The following theorem reveals that the triple I method
for PEMT inference model is reversible.

Theorem 5.8 Let )?*,)? be PFSs over U, and 17*, Y be
PFSs over V, respectively. Given that Ap- is a Pythagor-

ean t-norm and —p- is a RPFIO. Ifi/v* =Y, then X =X

Proof Forallv e V,if Y (v) = Y(v), then it follows from

Eq. (4) that
) = N{(X () =p Y(v)) =p Y(v)}.

Noting that X () —
have

P 17(\/)§5€(u) —p 17(1)), then we
X(u) < (X(u) —p Y(v)) —p Y(v),

which implies that X (1) > X (u).

On the other hand, noting that X *(u) — pr
Y(v) < }?*(u) —p. Y(v), according to the result (3) of
Theorem 3.4, we have

@ Springer

X ()< (X () —=p T(v)) —p T(v).
From Eq. (6) and Theorem 3.4, we obtain
X' () < (X(u) —p Y(v) —p V()
= X(u) —p Y(v) <X (u) —p Y (V)
= XW) > (X (W) —p T(0) —p Y () =X ().

Therefore, X (u) = X(u) for all u € U. O

6 The Robustness and Continuity Properties
of Triple I Method Based on PFMP and PFMT
Inference Models

In what follows we prove the robustness of the triple I method
based on PFMP and PFMT inference models. Let X *, X , X

and X' be PFSs over U, and )7*, 17, Y and ¥~ be PFSs over
V, respectively. Given that Ap- is a Pythagorean t-norm, — p-
is a RPFIO and < p- is a Pythagorean fuzzy biresiduum
associated with RPFIO, 61, §, and 5 are three PFNs.

Theorem 6.1 Assume that Sp()?, )?/) > 61,SP(I7, 17/) >0,
and Sp(f*,}?* ) > 03. Given that Y and Y are triple 1

solutions of PFMP (X,Y,X ) and PFMP (XV/, YI,XV*)
given by the model (1), respectively, then

Sp(Y Y ) > 81 Ap-0y2pd3.

Proof According to the results (4) and (5) of Theorem 4.2
and Eq. (4), we have

Sp(Y',Y)

= A{Y'(v) =p

A 7w}
- :E/\V{M\E/U{Y*wmp (X () —p Y(v))}
—p \G/U{X w)op (X (1) —p V' ()}
> /\ /\ {(X ()ap (X(u) —p Y(v)))
= (K0 0p (X' ) = 7 0))
> A\ N X @) =p X () 8p (X () —p Y(v))

veVuel
=~/

op (X' () —p ¥ <v>>>}
> N\ ALK @) <p X ()2 (X (1)

veVuelU

p X (W) ap (Y(v) =pe ¥ (v))}
> 51AP*52AP*53'
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Theorem 6.2 Assume that Sp(X, )?/) >01,8p(Y, 17/) >0,
and Sp(?*, f*,) > 05. Given that X and Xv*/ are triple I
solutions of PFMT (X,Y,Y') and PFMT (XVI, )7/, ?*/)
given by the model (5), vrespectively, then
Sp(X X" ) > 0,00 020035

Proof According to the result (5) of Theorem 4.2 and
Eq. (6), we have

Sp(X", f*)
= /\{X —p X /(”)}
uel
= NMAE @) =p 70)) =p 7' ()

!

> pr /\{ —>p* (V)) —p ?* (V>}}

Y(v) =p ¥ (v))

A /\{ ) =

uclUveV

Y

~x

op (X () —pr 17/(\/)) —p Y (v)}

> A\ NX @) —p Y(v)

uclUveV
!

(X' () —p ?’( D)dp(F () e 7 ()}
> N\ N K@) < X w)sp (V)

uclUveV

b4

—p

«

e V() 2p (Y (v) =p ¥ (0))}
> 01 Ap 02 Ap03.

O

Remark 6.3 According to Theorems 6.1 and 6.2, we
know that the triple I methods based on PFMP and PFMT
models have the same robustness.

Example 6.4 Assume that Sp()? XV/) > 51,Sp(?7 7) > 02,
Sp(X", X )>03, and &; = (3, 01y), (i = 1,2,3). Given
that ¥ and ¥~ are triple I solutions of PFMP (X, ¥, X ) and
PEMP (X /, ?/, X ) given by the model (1), respectively.
(1) If —p+ is a RPFIO induced by Gddel f-norm, then

Sp(Y Y7 ) > (81, A d2y A3, 01y V 02y V 03

(2) If —p- is a RPFIO induced by Product #-norm, then

Sp(77,7)

> (01,402,035 \/51,27 + 0oy + 033 — 817007 — 012057 — daday + 617022057).-

(3) If —p- is a RPFIO induced by Einstein #-norm, then

~x o~

Sp(Y', Y7

< 01402,03,
VA= 2002 = 2020 = 205 4+ 012022 + 0120% + 02205

S1y + 0o + O3, + 01702703,
1 + (3|}7($2’7 + (3|y,(53’7 + (32”53” ’

(4) If —p- is a RPFIO induced by Ry t-norm, then

Sp<?/*7 Y )> (\/5IZA52;21A53/2N \/51$V(52%V53f,>

Remark 6.5 In Example 6.4, as per Theorem 6.2 we can
also obtain the same robustness of the triple I method for
PFMT based on four RPFIOs induced by Godel f-norm,
Product #-norm, Einstein t-norm and Ry f-norm.

In what follows we prove the continuity of the triple I
method based on PFMP and PFMT inference models.
The triple I method for the PFMP inference model is a

mapping & : P*(U) — P*(V), i.e., for any input X over U,
there exists a corresponding output Y "t = h(X *) over V,

where P*(U) and P*(V) denote the set of all PFSs on the
universes U and V, respectively.

Definition 6.6 Let X, X, be PFSs over U. If for all ¢ €
P*, there exists @ € P* such that sp(h(X,),h(X})) > @
whenever sp(X,, X,) > @, then the method £ is said to be
uniformly continuous. If sp(h(X ), h(X)) > ¢ whenever
sp(X,X) > & for any X over U, then the method h is
said to be continuous at X.

Remark 6.7 1f the method # is uniformly continuous, then
the method 4 is continuous for any PFSs over U.

Theorem 6.8 Let )?lk,}?; and X be PFSs over U, and

Y T, 17; and Y be PFSs overV, respectively. Given that Ap-
is a Pythagorean t-norm. Then the triple I method for the
PFMP inference model is uniformly continuous.

Proof Forall ¢ € P*,let ® = ¢. When sP(}'(VT,}'(v;) > o,
according to Definition 4.4 and Theorem 4.2 we can obtain
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~%  ~%

Sp (YI’Y)
= N T0) = T30}

veV

. /\{\/{mm (R() = T())

veV (uelU

cp VAR 20 (K(w) —p ?wm}

uclU

> /\ /\{(}?T(M)Ap(f(u) —p Y(v)))

o (B (Rw) —p TO))))

> A\ A X i@w

veVuelU
—p Xy () ap (X () —p Y(v)) = (X() —p Y(v)))}
> A\ N X @) —p Xyw))}

veVuel

>No=o

veV

Therefore, the triple I method for the PFMP inference
model is uniformly continuous. O

The triple I method based on the PEMT inference model
is a mapping z : P*(V) — P*(U), i.e., for any input Y over
V, there exists a corresponding output X = z(?*) over U.

Definition 6.9 Let Y|, Y, be PFSs over V. If for all § €
P*, there exists @ € P* such that sp(z(Y,),2(Y,)) > @
whenever sp(Y, Y;) > @, then the method z is said to be
uniformly continuous. If sp(z(Y"),z(Y)) > @ whenever
sp(Y',Y) > @ forany Y over V, then the method z is said
to be continuous at Y.

Theorem 6.10 Let )?;,)?; and X be PFSs over U, and

Y T, f’v; and Y be PFSs over V, respectively. Given that A p-
is a Pythagorean t-norm. Then the triple I method for the
PFMT inference model is uniformly continuous.

Proof For all ¢ € P*,let ® = ¢. When sP(?T, ?;) > o
according to Definition 4.4 and Theorem 4.2 we can obtain

@ Springer
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sp(Xy, X5)

= A\ {Xi(w)

—p Y(v)) —p ¥ (v)}

_ A{ A(Fw)

uclU \\veV

pe N{(X () =p Y(v) —p ?Z@)}}
veV
Y(v) —=p Y, (v))

> [\ N =
uelUveV

o (X (u )—>px ?( )) —p Y,(v)}

> /\/\{ ) —p Y(v))

uclUveV
~x

—p (X(u) —p 17( Nap (Y1 (v) =p Y5(0)}

> A\ ALT0) <p T0)))

uelUveV

> N\ o=2o.
uclU
Therefore, the triple I method for the PFMT inference
model is uniformly continuous. O

7 Application Example

In this section, we apply the PFMP inference model to
solve medical diagnosis problem.

At the beginning of 2020, a new type of Corona Virus
Disease-2019 (COVID-19) caused the massive pandemic
situation all over the world, and many people died from
respiratory failure or other related complications. This
virus is more contagious than other viruses and can cause
greater damage to the body. Therefore, quickly identifying
infected persons and conducting isolation treatment is the
key to controlling the epidemic.

Suppose that U is a set of the symptoms with COVID-19
including fever (x;), cough (x;), fatigue (x3), trouble
breathing (x4) and sore throat (xs). Suppose that the data of
a close contact with the related symptoms is represented by

the PFS X over U, described as
X = {(xl, (0.89,0.18)), (x2, (0.91,0.17)),

(x3,(0.92,0.10)), (x4, (0.97,0.05)), (x5, (0.89, 0.19))}‘

According to the score function of PFNs, we know that the
score value of PFN (0.86, 0.20) is approximately 0.70.
Further, assume that 70% of patients with the basic
symptoms represented by X is suffering from COVID-19,
which can be described by the PFN (0.86, 0.20). Therefore,
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Table 1 Data on the related X+

X1 X2 X3 X4 X5
symptoms of vy, vy, v3 and vy
vy (0.53, 0.70) (0.63, 0.45) (0.45, 0.56) (0.42, 0.67) (0.55, 0.61)
V) (0.92, 0.15) (0.86, 0.23) (0.75, 0.26) (0.77, 0.13) (0.93, 0.20)
V3 (0.67, 0.47) (0.89, 0.13) (0.68, 0.30) (0.81, 0.23) (0.88, 0.29)
V4 (0.66, 0.45) (0.75, 0.23) (0.56, 0.87) (0.57, 0.62) (0.61, 0.43)

we can obtain a Pythagorean fuzzy inference rule
X =, Y, Y PFN,
Y = (yes, (0.86,0.20)).

Now, suppose that V = {v;,v,,v3,v4} is a family of
four different patients and their medical data of COVID-19
can be expressed as PFS X over U, which is shown in
Table 1.

In the following, we adopt two methods to solve the
medical diagnosis problem.

In Method 1, we use —p. as the Pythagorean fuzzy
implication operator. Therefore, as per Eq. (4) we can
obtain an inference result based on triple I method for

PFMP, which is expressed as the following PFS Y over V,

7 (n) = V(X ()80 (X(3) = Tlyes)))

xel

:<(0.53,0.70)Ap;((0.89, 0.18) —p. (o.se,o.zo)))

where Y is a denoted as

v <(0.63,0.45)Ap;((0.91,0.17) —p

(0.86,0.20))> v ((0.45,0.56)AP;((0.92, 0.10)

—p. (0.86, 0.20))) v <(0.42,O.67)AP;
((0.97,0.05) —p. (0,86,0.20)))

v <(0.55,0.61)Ap;((0.87,0.19) —p: (0.86,0.20)))

=(0.5121,0.7266) V (0.5954,0.5088)
V (0.4207,0.6366) \ (0.3724,0.7340) v (0.5437,0.6231)
=(0.5954,0.5088).

Similarly, we have

Y (v2) = \/{X () 8p (X(x;) —p- Y(yes))} = (0.9193,0.2253),

Y (v3) = \/{X ()8 (X (x;) —p- Y(yes))} = (0.8699,0.2230),
Y (va) = \/ {X (x)8p (X(x;) —p- Y(yes))} = (0.7088,0.3123).
xeU

Calculate the score values for all v; by the score function,
S(v1) = 0.0956, S(v,) = 0.7944,S(v3)
= 0.7070, S(v4) = 0.4049.
So we know that the possibilities of vi,v,,v3 and vy
infected with COVID-19 are 9%, 79%, 70% and 40%,
respectively.

In Method 2, by using —p: as the Pythagorean fuzzy
implication operator, we obtain the triple I solution Y* as
follows:

Y' ={(v1,(0.5898,0.4540)), (v,, (0.9208,0.1348)),
(v3, (0.8709,0.1314)), (v4, (0.7060, 0.2324))}.

Calculate the score values for all v; by the score function,
S(vl) = 0.1417,5(\/2) = 08297, S(V3) = 074117 S(V4)
= 0.4445.
So we know that the possibilities of vi,v,,v3 and vy
infected with COVID-19 are 14%, 83%, 74% and 44%,
respectively.

7.1 Comparative Analysis with the Other Methods

To expand on the advantages of the developed methods, we
compare them with the existing methods by solving the
same example, such as the Pythagorean fuzzy weighted
geometric (PFWG) [9] operator, the Pythagorean fuzzy
weighted averaging (PFWA) [9] operator, the g-rung
orthopair fuzzy weighted geometric (¢-ROFWG) [14]
operator, the g-rung orthopair fuzzy weighted averaging (g-
ROFWA) [14] operator, the g-rung orthopair fuzzy Muir-
head means (¢-ROFMM) [20] and the g-rung orthopair
fuzzy dual Muirhead means (¢g-ROFDMM) [20]. By
applying the above mentioned methods, we obtain the
comparison results shown in Table 2.

From Table 2, we observe that the optimal ranking
results by the different methods are essentially the same,
even though the score functions are different in different
methods. Therefore, the decision-making methods based on
the Pythagorean fuzzy triple I method proposed by us are
reasonable and valid. On the other hand, although the
ranking results based on the Pythagorean fuzzy triple I
method proposed by us are the same as those obtained by
using the PFWG, PFWA, ¢-ROFWG, ¢-ROFWA, ¢-
ROFMM and ¢-ROFDMM methods, these methods using
different aggregation operators to aggregate the medical
data of each patients may result in a lack of logical rea-
soning in these methods. For example, in Table 1 we can
observe that since v, has relatively high medical indicators
for the common symptoms of COVID-19, it is most likely
to be a COVID-19 patient. The medical indicators of v are
relatively normal, therefore, the possibilities of v; being a
COVID-19 patient is relatively small. However, the
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Table 2 The comparison analysis with the different methods

Methods The score function Ranking

PFWA [9] S(vi) = 0.7961, S(v2) = 0.9990, S(v3) = 0.9952, S(v4) = 0.9276 vy >3 > vy >V
PFWG [9] S(vi —0.9022,8(v2) = —0.048 S(V3) = —0.3119, S(v4) = —0.8986 vy >3 > vy >y

g-ROFWA [14] (g = 3)

S(v1) = 0.6679, S(v2) = 0.9967, S(v3) = 0.9859, S(v4) = 0.8512

Vo > V3 > Vg >V

(n) =

(n) =

(1) =
¢-ROFWG [14] (¢ = 3) S(v1) = —0.8124, S(v;) = 0.0585, S(v3) = —0.2130, S(v4) = —0.8417 vy > V3> v >
¢-ROEMM [20] (¢ = 3) S(v) = —0.0689, S(v2) = 0.7183, S(v3) = 0.5929, S(v4) = 0.1880 V2> Vs > v > v
¢-ROFDMM [20] (¢ = 3) S(vi) = —0.1175,S(v2) = 0.6679, S(v3) = 0.5025, S(v4) = —0.0200 vy >3 > vy >y
Method 1 (in this paper) S(v1) = 0.0956,S(v2) = 0.7944, S(v3) = 0.7070, S(v4) = 0.4049 Vo >3 > vs >
Method 2 (in this paper) S(v1) = 0.1417, S(v2) = 0.8297, S(v3) = 0.7411, S(v4) = 0.4445 V>3 > v > v

obtained results by using the PFWG, PFWA, ¢-ROFWG,
qg-ROFWA, ¢g-ROFMM and ¢-ROFDMM methods are not
so satisfying. For instance, the PFWG method finds that the
possibilities of v; being a COVID-19 patient is 80%, and
the possibilities of v, being a COVID-19 patient is 99%.
Obviously, this result is unreasonable and inconsistent with
the real case. Compared with these methods, the methods
we propose are based on the Pythagorean fuzzy triple I
method. In other words, the methods we propose focus on
logical reasoning, so the novel methods are more logical
and more consistent with the real case. To clarify, from
Table 2 we can know that the results obtained by the novel
methods in this paper have obvious differences. From the
result by using Method 1, we observe that the possibilities
of v; being a COVID-19 patient is 9%, and the possibilities
of v, being a COVID-19 patient is 80%, which is consistent
with the real case. However, as previously stated, the
existing methods including the PFWG, PFWA, ¢g-ROFWG,
qg-ROFWA, ¢-ROFMM and ¢g-ROFDMM methods fail in
this regard. In view of the above analysis, the advantage of
our proposed methods is that it can more easily distinguish
high-risk individuals and low-risk individuals and improve
their recognition, which is very helpful for medical pro-
fessionals to make the best choice.

8 Conclusion

In this study, we attempt to establish the triple I method for
PFMP and PFMT inference models. We first propose the
concepts of Pythagorean #-norm, Pythagorean #-conorm,
RPFIO and Pythagorean fuzzy biresiduum. Furthermore,
some of interesting properties of triple I method of PFMP
and PFMT inference models are analyzed, including the
robustness, continuity and reversibility. Finally, the triple I
method of PFMP is applied to practical problems. By
comparing the triple I method with the existing methods,
the novel method in this paper is easier to classify and rank
high-risk individuals and low-risk individuals, so it is more

@ Springer

flexible and reasonable. In the future, the research on the
fusion of PFSs and other reasoning methods is expected to
become an interesting topic, and its application is also a
topic worthy of in-depth study.
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