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Abstract Clustering is the process of grouping a set of

physical or abstract objects into multiple similar objects.

Fuzzy C-means (FCM) clustering is one of the most widely

used clustering methods, whose main research goal is to

find the optimal clustering number of data sets, which is

related to whether the data can be effectively divided. The

study of clustering validity function is the process of

evaluating the clustering quality and determining the

optimal clustering number. Based on the idea of compo-

nents, six cluster performance evaluation components are

proposed to define compactness, variation, similarity,

overlap and separation of data sets, respectively. Then a

new validity function based on FCM clustering algorithm

is synthesized by these six components. Finally, the pro-

posed validity function and eight typical validity functions

are compared on five artificial data sets and eight UCI data

sets. The simulation results show that the proposed clus-

tering validity function can evaluate the clustering results

more effectively and determine the optimal clustering

number of different data sets.

Keywords Fuzzy C-means clustering algorithm �
Clustering validity function � Clustering performance

evaluation components

1 Introduction

As an important research content in the field of data min-

ing, clustering is an unsupervised pattern recognition

method, which is to cluster data sets under the guidance of

no prior knowledge, so that the data in the same category is

as similar as possible, and the greater the difference

between different categories, the better [1]. Clustering is

mainly divided into two directions: hard clustering and

fuzzy clustering. Hard clustering, for example, k-means

clustering algorithm [2] performs clustering according to

the idea of ‘‘non-0 equals 1’’, which requires that each

sample must be clearly divided into different sub-cate-

gories, only belonging and not belonging two situations.

But in fact, most data are uncertain, and a data sample will

belong to multiple categories to varying degrees [3]. This

hard clustering method ignores the existence of overlap-

ping data samples between the two classes, which is often

not logical in application. As Ruspini [4] introduced the

concept of fuzzy division on the basis of hard clustering,

fuzzy clustering came into being. It can allocate each ele-

ment in the data set proportionally according to the size of

different membership degrees, so that the element belongs

to multiple classes. Among them, fuzzy C-means (FCM)

clustering algorithm is the most commonly used clustering

method in fuzzy clustering, which is more consistent with

the actual sample situation, convenient operation, wide

application range and other characteristics [5]. In recent

years, FCM algorithm and fuzzy logic have been contin-

uously improved, and their application fields are more and

more extensive. For example, in 2014, M. A. Sanchez et al.

[6] proposed a new fuzzy grain-size gravity clustering

algorithm for multi-variable data. Ari et al. [7] proposed

generalized Possibilistic Fuzzy C-means with Novel

Cluster Validity Indices for Clustering noisy data in 2017.
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In the same year, Elid Rubio et al. [8] extended the fuzzy

possibility C-Means (FPCM) algorithm of Type-2 fuzzy

logic technology and improved the efficiency of FPCM

algorithm. In 2018, F. V. Farahani et al. [9] proposed an

intelligent approach based on spatially focused FCM and

ensemble learning for the diagnosis of pulmonary nodules.

To solve the extended target tracking problem in PHD

filter, Bo Yan et al. [10] proposed an improved segmen-

tation algorithm based on FCM algorithm in 2019. In 2020,

Haibo Liang et al. [11] proposed the improved SVM-FCM

algorithm for rock image segmentation. However, FCM

algorithm needs to pass clustering validity verification to

judge the optimal partition result of data samples, so

finding an appropriate clustering validity function is an

important research direction in the field of FCM clustering

algorithm [12].

At present, many scholars have proposed various cluster

validity functions. However, due to the large differences in

the structure and attributes of the data sets, it is impossible

for any cluster validity functions to correctly divide all data

sets, and no one validity function is always better than

others. It is precisely because of this status quo that new

clustering validity functions continue to appear. The cur-

rent research directions of fuzzy clustering validity func-

tions are mainly concentrated in the following two

categories:

(1) Fuzzy clustering validity functions based only on

membership degree. In 1974, Bezdek et al. firstly

proposed the validity function for fuzzy clustering,

namely the partition coefficient ðVPCÞ [13]. Subse-

quently, Bezdek et al. proposed the partition entropy

ðVPEÞ based on VPC and Shannon’s theorem in

Shannon’s information theory [14]. Dave et al.

proposed an improved partition coefficient ðVMPCÞ
in 1996 [15]. In 1999, Fan et al. proposed an

improved fuzzy entropy clustering validity function

ðVMPEÞ [16], which can suppress the monotonic

change of VPC and VPE as the number of clusters

increases. Gai-yun Gong et al. redefines the fuzzy

partition matrix based on data information in 2004

and proposed a clustering validity function ðVPFÞ
based on the partition ambiguity [17]. Zalik et al.

proposed a clustering validity function ðVCOÞ that

adopts the membership to define overlap and com-

pactness in 2010 [1]. In 2019, Yong-li Liu et al.

added the degree of separation module in VCO and

proposed a novel clustering validity function [18],

which can improve the stability of VCO. Jiashun et al.

proposed a clustering validity function ðVCSÞ that can
effectively suppress noise data in 2013 [19]. Joopudi

et al. used the largest membership degree and the

second largest membership degree to measure the

overlap of data in the same year, and proposed the

clustering validity function ðVGDÞ [20]. In 2014,

Zhang et al. proposed a membership validity func-

tion based on two-part modularization [21].

(2) Fuzzy clustering validity functions based on mem-

bership degree and geometric structure of data sets.

In 1991, Xie and Beni et al. proposed VXB [22] as the

first clustering validity function that considered the

geometric structure of the data set. In 1996, Bensaid

et al. also proposed the clustering validity function

ðVSCÞ using the ratio of the degree of compactness

within a class and the degree of separation between

classes [23]. In 1998, Know et al. introduced a

penalty term on the basis of VXB and proposed the

clustering effectiveness function ðVKÞ [24]. In 2005,

Kuo-Lung Wu et al. proposed a PCAES clustering

validity function ðVPCAESÞ based on exponential

operation [25]. In 2019, Zhu et al. proposed a

clustering validity function ðVZLFÞ in the form of a

ratio [26]. Ouchicha et al. proposed a standardized

superimposed clustering validity function ðVECSÞ in

2020 [27]. Liu et al. proposed an IMI clustering

validity function ðVIMIÞ in 2021 [28]. In 2021, Hong-

Yu Wang et al. proposed a clustering validity

function ðVHYÞ based on intra-class compactness

and inter-class separation [29]. In the same year,

Wang et al. proposed a hybrid weighted combination

method (HWCVF) [30].

Any clustering validity function is composed of several

sub-parts representing different geometric meanings,

namely components. Although the excellent performance

of clustering validity function emerge in endlessly, but

there is no scholar from the view of the components of a

validity function for further study. Therefore, this paper

puts forward six components (the compactness, similarity,

variation degree, the degree of separation between data sets

and the overlap degree of clustering to realize the perfor-

mance evaluation. At the same time, the theoretical basis of

these six components is explained in details. Finally, these

six components constitute a new validity function of fuzzy

C-means clustering. This function can suppress the influ-

ence of noise data and divide high-dimensional data and

overlapping data accurately. Simulation results show that

the proposed validity function can obtain correct clustering

results on both artificial and UCI data sets.

In the second section, this article will explain the basic

theory and algorithm process of the FCM algorithm, and

finally introduce the advantages and disadvantages of tra-

ditional cluster effectiveness functions.
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2 FCM Clustering Algorithm and Cluster Validity
Functions

2.1 FCM Clustering Algorithm

FCM clustering algorithm is based on the fuzzy C-partition

of the objective function. Through iteration, the objective

function is minimized and optimized to obtain c fuzzy

subsets [31]. Suppose there are n samples in the data set,

and each sample is p-dimensional, X ¼ x1; x2; � � � ; xnf g,
X 2 Rp. V ¼ v1; v2; � � � ; vnf g is the collection of cluster

centers in the data set X, which is a matrix of c� p. The

objective function of FCM clustering algorithm was

defined as:

JmðU;VÞ ¼
Xc

i¼1

Xn

j¼1

ðuijÞm xj � vi
�� ��

2

ð1Þ

where, JmðU;VÞ is the square error criterion function, and

the minimum value of JmðU;VÞ is called the minimum

error balance point. In Eq. (1), m 2 ð1;1Þ represents the

fuzzy weighted index to control the degree of fuzzy

membership of each group of data. When m infinity

approaches 1, FCM clustering algorithm will increasingly

tend to the hard clustering algorithm. When m = 1, FCM

clustering algorithm is equivalent to the K-means cluster-

ing algorithm. On the contrary, when m tends to infinity, all

data objects xj and the cluster centers vi will overlap, and

the membership degree of the data objects xj belonging to

each cluster will be the same, whose value is 1/C. The

parameter c is the number of divisions of the fuzzy subset.

xj � vi
�� �� is the Euclidean distance between the cluster

center vi and the data point xj. uijð0� uij � 1Þ is the

membership degree of the data point xj to the cluster center

vi, where uij 2 U and U is a c� n membership matrix that

satisfies
Pc

i¼1 uij ¼ 1 and 0�
Pn

j¼1 uij � n, where

1� j� n, 1� i� c.

FCM clustering algorithm minimizes the objective

function by constantly and iteratively updating the cluster

centers and the membership matrix to find the optimal

solution for c. The steps of FCM clustering algorithm are

described as follows.

Step 1: Given the number of clusters c and the fuzzy

index m.

Step 2: Initialize the cluster center V and the member-

ship matrix U, and then obtain U0 and V0.

Step 3: Update the fuzzy cluster center V by Eq. (2)

vðtþ1Þ ¼
Pn

j¼1 ðu
ðtÞ
ij Þ

mxi
Pn

j¼1 ðu
ðtÞ
ij Þ

m
among them 1� i� c ð2Þ

Step 4: Update the fuzzy partition matrix U ¼ ðuðtþ1Þ
ij Þc�n

by Eq. (3).

u
ðtþ1Þ
ij ¼

Xc

k¼1

xj � vi
�� ��
xj � vk
�� ��

 !1=ðm� 1Þ2
4

3
5
�1

ð3Þ

where, 1� i� c, 1� j� n.
Step 5: Calculate the error e ¼ vtþ1 � vtk k. If e B e (e is

a threshold from 0.001 to 0.01), the loop ends and the final

clustering result is obtained, otherwise go to Step 2.

2.2 Clustering Validity Functions

2.2.1 Partition Coefficient ðVPCÞ and Partition Entropy

ðVPEÞ

Bezdek first proposed the partition coefficient VPC and

partition entropy VPE for fuzzy clustering as shown in

Eq. (4) and Eq. (5), respectively.

VPC ¼ 1

n

Xc

i¼1

Xn

j¼1

ðuijÞ2 ð4Þ

VPE ¼ � 1

n

Xc

i¼1

Xn

j¼1

½uij logaðuijÞ� ð5Þ

The principle of partition coefficient and partition

entropy is simple, and the amount of calculation is small.

But they only consider the similarity within the data set,

and lack the connection with the geometric structure of the

data set. As the number of clusters increases, VPC and VPE

will show a monotonic trend, which makes it impossible to

divide the data set correctly. VPC and VPE take the mini-

mum and maximum c, respectively, as the optimal number

of clusters.

2.2.2 Improved Partition Coefficient ðVMPCÞ

The improved partition coefficient VMPC corrects the

existing monotonic reduction problem of VPC , but still

lacks a direct connection with the geometric structure of

the data set. c with the maximum value of VMPC is the best

clustering result, and VMPC can be calculated by:

VMPC ¼ 1� c

c� 1
ð1� VPCÞ ð6Þ

2.2.3 Xie-Beni Clustering Validity Function ðVXBÞ

The calculation of VXB can be realized by:
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VXB ¼
Pc

i¼1

Pn
j¼1 ðuijÞ

m xj � vi
�� ��2

nmin
i 6¼j

vi � vj
�� ��2 ð7Þ

The numerator of VXB represents the tightness, and the

smaller the numerator, the tighter the data within the class.

The denominator of VXB is used to define the degree of

separation. The larger the denominator, the more separated

the data between classes. Therefore, when VXB takes the

minimum value, c is the optimal number of clusters.

However, this clustering validity function has two short-

comings. (1) When c ! n, VXB will tend to zero. (2) When

m ! 1, VXB will become infinite.

2.2.4 Knows Clustering Validity Function (VK)

Know et al. introduced a penalty term 1
c

Pc
i¼1 vi � vk k2 on

the basis of VXB, which successfully suppressed the

monotonically decreasing trend of VXB when c ! n. But

when m ! 1, VXB will become infinite. VK is also valid to

take the minimum value, and calculated by Eq. (8).

VK ¼
Pc

i¼1

Pn
j¼1 ðuijÞ

2 xj � vi
�� ��2 þ 1

c

Pc
i¼1 vi � vk k2

min
i 6¼j

vi � vj
�� ��2 ð8Þ

2.2.5 PCAES Clustering Validity Function ðVPCAESÞ

VPCAES is a clustering validity function with an exponential

operation method shown in Eq. (9). The first part of VPCAES

is the ratio of the sum of the squares of the degree of

membership and the minimum degree of membership. The

second part of VPCAES represents the relative distance

between the cluster centers, and the adoption of exponen-

tial operation can suppress the monotonic trend of

ð�min
k 6¼i

vi � vj
�� ��2Þ=bT .

VPCAES ¼
Xc

i¼1

Xn

j¼1

u2ij
uM

�
Xc

i¼1

exp

�min
k 6¼i

vi � vkk k2

bT

0
B@

1
CA ð9Þ

where, uM ¼ min
1� i� c

Pn

j¼1

u2ij, bT ¼ 1
c

Pc

i¼1

vi � vk k2, v ¼ 1
c

Pc

i¼1

vi.

The maximum value of VPCAES is valid.

2.2.6 Tang Clustering Validity Function ðVTÞ[32]

VT is a new fuzzy clustering validity function proposed by

Tang et al. which is based on VK [23]. The second term in

its numerator is a penalty term, which represents the dis-

tance between any two different cluster centers. It can also

suppress the problem of monotonically decreasing of VXB

when c ! n. But unlike VK , the penalty term 1=c in the

denominator of VT can solve this problem that VXB will

become infinite when m ! 1. This validity function can

be defined as:

VT ¼
Pc

i¼1

Pn
j¼1 u

m
ij xj � vi
�� ��2þ 1

cðcþ1Þ
Pc

i¼1

Pc
k¼1;k 6¼i vi � vkk k2

mini6¼k vi � vkk k2þ 1
c

ð10Þ

2.2.7 P clustering Validity Function ðVPÞ[33]

Chen and Links proposed a clustering validity function VP

based only on membership degree in 2004, as shown in

Eq. (11). The first half of VP represents the sum of the

maximum values of the data in each category. The larger

the value, the better the tightness of the data within the

category. The second part of VP represents the degree of

similarity between classes, and is used to judge the mem-

bership degree of the intersection between vi and vj. The

smaller the value, the more separation between classes.

When taking the maximum value of VP, c is the optimal

number of clusters.

VP ¼ 1

n

Xn

j¼1
maxiðuijÞ

� 1

k

Xc�1

i¼1

Xc

j¼iþ1

1

n

Xn

k¼1
minðuik; uikÞ

� �
ð11Þ

2.2.8 WL Clustering Validity Function ðVWLÞ[34]

VWL is a cluster validity function proposed by Chih-Hung

Wu et al., as shown in Eq. (12). The numerator of VWL

adopts the sum of the average Euclidean distances from the

data points to all cluster centers to define the compactness.

The first term of the denominator represents the compact-

ness between clusters, and the second term is the median

distance between all cluster centers. For a uniformly dis-

tributed data set, it has a better classification performance.

VWL ¼

Pc
i¼1

Pn

j¼1
u2ij xj�vik k2

Pn

j¼1
uij

� �

mini 6¼k vi � vkk k2þmedian vi � vkk k2
ð12Þ

2.2.9 FM Clustering Validity Function ðVFMÞ[35]

Taking the partition entropy ðVPEÞ and the fuzzy partition

factor ðaf Þ into consideration, the compactness and sepa-

ration of clustering are defined, as shown in Eq. (13).
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However, this clustering validity function does not perform

well on noisy data sets.

VFM ¼ af � � 1

n

Xc

i¼1

Xn

j¼1

uij logaðuijÞ
� �

( )
ð13Þ

where, af ¼
Pc

i¼1

Pn

j¼1
ðuij�1

cÞ
2 xj�vik k2

nmini6¼k vi�vkk k2 . VFM is valid with the

minimum value.

2.2.10 PBMF Clustering Validity Function ðVPBMFÞ[36]

In 2005, Pakhiar et al. proposed a cluster validity function

in the form of a product, as shown in Eq. (14). The first

item of the product is the reciprocal of the number of

clusters, and the second item of the product is used to

measure the intra-class compactness, which represents the

ratio of the intra-class distance when the entire data set is

divided into one category and classified into c. The last

item of VPBMF indicates the maximum separation. When

VPBMF takes the maximum value, c is the optimal number

of clusters.

VPBMF ¼
1

c
�

Pn
j¼1 xj�vi
�� ��

Pc
i¼1

Pn
j¼1u

m
ij xj�vi
�� ��2�maxci;j¼1 vi�vj

�� ��
 !2

ð14Þ

2.2.11 Clustering Validity Function Proposed by Zhu

ðVZLFÞ

VZLF is composed of the ratio of compactness and separa-

tion, which is shown in Eq. (15).

VZLF ¼ comp

sep
¼

Pn
j¼1

1�max
i

uijPc

i¼1
xj�vik k

Pc
k¼1

Pc
i¼1;i6¼k

vi � vkk k
.
cðc�1Þ

2

ð15Þ

where, max
i

uij is the maximum membership degree of all

samples in a certain class. If the data in the class is more

compact, max
i

uij ! 1 and ð1�max
i

uijÞ ! 0. The smaller

the value, the better the clustering performance. xj � vi
�� ��

in the numerator is the compactness within the class. The

denominator of VZLF is the average of the sum of the dis-

tances between cluster centers, which defines the degree of

separation between clusters. vi � vkk k is the distance

between cluster centers, and cðc� 1Þ=2 is the number of

distances between cluster centers. When VZLF takes the

minimum value, c is the optimal number of clusters.

2.2.12 ECS Clustering Validity Function ðVECSÞ

The VECS is proposed by Ouchicha in 2020, which is

defined in Eq. (16).

VECS ¼
SC � SCmin

SCmax � SCmin

þ PEC � PECmin

PECmax � PECmin

ð16Þ

where, the SC was defined as ð1n
Pc

i¼1

Pn
j¼1 uij xj

��

�vik2Þ= 1
c

Pc

i¼1

vi � vk k2, and the PEC was defined as

ð 1
nð1�mÞ

Pc
i¼1

Pn
j¼1 logðumij þ ð1� uijÞmÞÞ=VPC. VECS was

the normalized of SC and PEC. The minimum value of

VECS corresponds to the optimal number of clusters.

In the next section, six multiple clustering performance

evaluation components are introduced in details so as to

form a new fuzzy cluster effectiveness function VWG.

3 FCM Clustering Validity Function Based
on Multiple Clustering Performance Evaluation
Components

3.1 Clustering Performance Evaluation

Components

Based on the FCM clustering algorithm, fuzzy membership

and the geometric structure of the data set, this paper

defines six clustering performance evaluation components,

including compactness, variation, overlap, similarity, and

separation.

3.1.1 Compactness (comp)

Equation (17) is the criterion function of the FCM clus-

tering algorithm, which represents the sum of the distance

between the cluster center vi and the data sample xj. The

smaller the value, the higher the similarity of the data

within the class, and the closer the data within the class.

comp ¼
Xc

i¼1

Xn

j¼1

ðuijÞ2 xj � vi
�� ��2 ð17Þ

3.1.2 Variation (var) [37]

Equation (18) adopts the exponential function to suppress

the characteristics of noise data interference, which is used

to measure the compactness of the data within the class.
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Similarly, the smaller the value, the more compact the data

in the class.

var ¼ 1

n

Xc

i¼1

Xn

j¼1

exp�
xj � vi
�� ��2

e

 !
ð18Þ

where, e ¼ 1
n

Pn

j¼1

xj � x
�� ��2 (x ¼ 1

n

Pn
j¼1 xj is the mean value

of the data samples) represents the average sum of the

distance between the data within the class and the mean

value of the data samples. Equation (18) is used to measure

the degree of variation of the data within the class. The

smaller the calculated value, the more stable the data

within the class.

3.1.3 Overlap (overlap)

Equation (19) is based on the degree of membership to

express the degree of overlap between data sets. If the data

point xk in the overlapping part belongs to the i-th cluster,

then the membership degree uik will be close to 1, and if

the data point xk belongs to the j-th cluster, the degree of

membership ujk will be close to 0. If the data in the over-

lapping part are separated better, the difference of

uik � ujk
		 		 will be closer to 1, and the value of 1�
uik � ujk
		 		 will be smaller. Therefore, a small value for this

item indicates a better classification effect.

overlap ¼ mini6¼j
1

n

Xn

j¼1
1� uik � ujk

		 		
 �� �
ð19Þ

3.1.4 Similarity (sim)

Equation (20) represents the sum of the squares of the

membership degrees of the data point xj belonging to the

cluster center vi. The larger the value of this term, the more

similar the data within the cluster.

sim ¼ min
1� i� c

Xn

j¼1

ðuijÞ2 ð20Þ

3.1.5 Separation (sep)

Equation (21) and Eq. (22) are two clustering performance

evaluation components used to define the degree of overlap

between clusters. sep1 ¼ min
i 6¼k

vi � vkk k2 indicates the min-

imum distance between any two clusters. The larger the

value, the better the separation between classes.

sep2 ¼ 1
c

Pc
i¼1 vi � vk k2(v ¼ 1

c

Pc
i¼1 vi is the average of all

cluster centers) represents the sum of the average distances

from all cluster centers to the balance point of the cluster

centers. The larger the value, the more separated the classes

are from each other.

sep1 ¼ min
i 6¼k

vi � vkk k2 ð21Þ

sep2 ¼
1

c

Xc

i¼1

vi � vk k2 ð22Þ

3.2 FCM Clustering Validity Function Based

on Multiple Clustering Performance

Evaluation Components

Based on the six clustering performance evaluation com-

ponents (compactness, variability, overlap, similarity, and

separation), a ratio type of clustering validity function was

constituted, which is defined as follows:

VWG¼
compþvarþoverlap

simþsep1þsep2

¼
Pc

i¼1

Pn
j¼1 ðuijÞ

2 xj�vi
�� ��2þ1

n

Pc
i¼1

Pn
j¼1 expð�

xj�vik k2

e Þþmini6¼jð1n
Pn

j¼1 ð1� uik�ujk
		 		ÞÞ

min1� i�c

Pn
j¼1 ðuijÞ

2þmini6¼k vi�vkk k2þ1
c

Pc
i¼1 vi�vk k2

ð23Þ

where, e ¼ 1
n

Pn

j¼1

xj � x
�� ��2, x ¼ 1

n

Pn

j¼1

xj, v ¼ 1
c

Pc

i¼1

vi.
Then VWG is applied to the FCM clustering algorithm,

and the algorithm flowchart for obtaining the optimal

number of clusters is shown in Fig. 1. The flow of the FCM

clustering algorithm based on VWG is described as follows.

Step 1: Given the maximum number of clusters

cmaxðcmax �
ffiffiffi
n

p
Þ, the maximum number of iterations Imax,

the fuzzy index m ð1:5�m� 2:5Þ and the termination

threshold e.
Step 2: Initialize the membership matrix U, the cluster

center V and the number of clusters c.

Step 3: Update the fuzzy partition matrix Uðtþ1Þ and

cluster center V ðtþ1Þ and judge whether e ¼ vtþ1 � vtk k is

less than e. If e\e, go to Step 4. Otherwise, if e� e, then go
to Step 2.

Step 4: Let c ¼ cþ 1, use FCM clustering algorithm to

calculate the minimum value of VWG, and obtain the opti-

mal solution of c. If c\cmax, repeat Step 2. If c� cmax, go

to Step 5.

Step 5: Select the number of clusters

min VWGðU;V; coÞf g corresponding to co as the optimal

number of clusters, and finally output the value of VWG.

Next, the proposed validity function and eight typical

validity functions are compared with five artificial data sets

and eight UCI data sets to verify the effectiveness of the

proposed VWG.
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4 Simulation Experiments and Results Analysis

4.1 Testing Artificial Data Sets

In order to verify the validity of the proposed validity

function ðVWGÞ, this paper selects 8 typical cluster validity

functions (VMPC, VXB, VT , VP, VPCAES, VFM , VWL and VZLF)

for comparison experiments. According to the prior

knowledge [38], the fuzzy index 1:5�m� 2:5 and the

number of clusters 2� c�
ffiffiffi
n

p
can be determined. This

paper chooses m ¼ 2, 2� c� 14 to conduct simulation

experiments, and then judge whether the classification of

each clustering validity function is accurate when using

different data sets. Four artificial data sets selected to carry

out the simulation experiments are listed in Table 1.

Among them, Data_2_3 (noise) in the artificial data set is a

Gaussian 2-dimensional 3-category data set with 100 noise

data added, Data_2_3 (overlap) is a Gaussian 2-dimen-

sional 3-category data set with overlapping data between

classes, Data_3_3 is a 3-dimensional 3-type data set that

obeys Gaussian distribution, Data_3_6 is a 3-dimensional

6-type data set that obeys a uniform distribution. Data_2_5

is a 2-dimensional 5-type data set that obeys a uniform

distribution. The samples distributions of these four artifi-

cial data sets are shown in Fig. 2a–e.

4.2 Simulation Experiments and Results Analysis

on Artificial Data Sets

The experimental results on the artificial data sets

(Data_2_3 with noise, Data_2_3 with overlap, Data_3_3,

Data_3_6 and Data_2_5) are shown in Fig. 3a–i to Fig. 7a–

i. It can be seen from Fig. 3 that when classifying the noise

data set Data_2_3(noise), except for VPCAES and VFM , all

other clustering validity functions can find the optimal

number of clusters. Figure 4 shows that for the overlapping

data set Data_2_3(overlap), only VWG can get the optimal

number of clusters c = 3. Figure 5 shows that when the

dimension of the data set is increased to 3, VXB,VP, VZLF ,

VWG can still determine the optimal number of clusters

c = 3. As can be seen in Fig. 6, only VWG can be classified

into 6 categories. Finally, as shown in Fig. 7, only VMPC,

VP and VWG can find the optimal clustering number c = 5.

The simulation results on five artificial data sets show that

only VWG can obtain the optimal number of clusters for the

five sets of artificial data sets. Among them, VXB, VWL, and

VMPC can distinguish the optimal number of clusters for 2

sets of data sets, VP can divide 3 groups of data sets, VT and

VZLF can only divide 1 group of data sets, but for 5 sets of

artificial data sets, VPCAES and VFM cannot get the correct

number of clusters. The above experiment shows that VWG

is better than these typical clustering validity functions.

This is because when the data set is affected by noisy data,

overlapping data and high-dimensional data, VWG is less

disturbed.

In order to better observe the changing trend of each

clustering performance evaluation component of VWG on

the artificial data sets, six clustering performance evalua-

tion components of VWG are normalized and placed in the

Begin

Given the maximum number of clusters ( ≤ ); the maximum number 
of iterations ; the fuzzy index m and the termination threshold ε

Initialize membership degree matrix U; cluster center V and cluster number c

Update the fuzzy partition matrix U

and the cluster center V and judge 

whether e is less than ε

Calculate the value of and 

judge whether c is less than 

Select ( , , ) = min{ ( , , )}, and output the values of 

the optimal number of clusters and 

End

yes

yes
= + 1

(c = 2, …, )

no

no

Fig. 1 Flowchart of FCM clustering algorithm based on VWG

Table 1 Artificial data sets

Data sets Data numbers Attributes Classes

Data_2_3(noise) 400 2 3

Data_2_3(overlap) 300 2 3

Data_3_3 500 3 3

Data_3_6 500 3 6

Data_2_5 110 2 5
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(a) Data_2_3(noise)                           (b) Data_2_3(overlap)
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Fig. 2 Artificial data sets
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(a) (c=3)                (b) (c=3)                  (c) (c=3)

(d) (c=3)                (e) (c=13)               (f) (c=2)

(g) (c=3)                 (h) (c=3)                 (i) (c=3)
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Fig. 3 Change trend of clustering validity functions under Data_2_3 (noise) data set
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Fig. 4 Change trend of clustering validity functions under Data_2_3 (overlap) data set
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Fig. 5 Change trend of clustering validity functions under Data_3_3 data set
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same coordinate system, which is shown in Fig. 8a–e.

Next, The function values of VMPC, VXB, VT , VP, VPCAES,

VFM , VWL, VZLF and VWG on the artificial data sets are

placed in the normalized coordinate system, which are

shown in Fig. 9a–e. In this way, the clustering effect of

VWG and other validity functions can be compared more

Fig. 6 Change trend of clustering validity functions under Data_3_6 data set
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Fig. 7 Change trend of clustering validity functions under Data_2_5 data set
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(a) Data_2_3(noise)

(b) Data_2_3(overlap)

(c) Data_3_3
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Fig. 8 Changing trend of each component in VWG under artificial data sets
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(a) Data_2_3(noise)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

MPC XB T P PCAES

FM WL ZLF WG

(b) Data_2_3(overlap)

(c) Data_3_3

(d) Data_3_6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

MPC XB T P PCAES

FM WL ZLF WG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

MPC XB T P PCAES

FM WL ZLF WG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

MPC

FM

(e) Data_2_5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

MPC

FM

Fig. 9 Changing trend of normalized clustering validity functions under artificial data sets

Table 2 Optimal number of

clusters under different validity

functions for artificial data sets

Data Optimal c VMPC VXB VT VP VPCAES VFM VWL VZLF VWG

Data_2_3(noise) 3 3 3 3 3 13 2 3 3 3

Data_2_3(overlap) 3 2 2 2 2 14 2 2 2 3

Data_3_3 3 2 3 2 3 10 2 3 2 3

Data_3_6 6 7 3 2 7 14 2 7 3 6

Data_2_5 5 5 4 2 5 3 2 4 4 5

The significance of bold indicate that clustering validity functions achieve the optimal cluster number
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intuitively. Finally, for different artificial data sets, the

optimal number of clusters of each clustering validity are

listed in Table 2.

4.3 Simulation Experiments and Results Analysis

on UCI Data Sets

Due to the simple structure of the artificial data sets and the

small number of samples, in order to verify the effective-

ness of VWG clustering on the complex data sets, the fol-

lowing simulation experiments will be carried out using

UCI data sets. The real data sets selected in the experiment

are Iris, Seeds, Phoneme, Haberman, HTUR2, Hfcr,

Table 3 UCI data sets

Data sets Data numbers Attributes Classes

Iris 150 4 3

Seeds 210 7 3

Phoneme 300 5 2

Haberman 306 3 2

HTUR2 17,898 9 2

Hfcr 299 13 4

Segment 2310 19 7

Heart 270 13 2

Fig. 10 Change trend of clustering validity functions under Iris data set
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Segment and Heart in the UCI database. The data volume,

category and attributes of each UCI data set are listed in

Table 3. The experimental results on UCI data sets are

shown in Fig. 10–Fig. 17a–i. It can be seen from Fig. 10

that only VWG can get the optimal number of clusters c = 3.

Figure 11 shows that VP and VWG can determine the best

Fig. 11 Change trend of clustering validity functions under Seeds data set
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clustering result c = 3. It can be seen from the experi-

mental results in Fig. 10 and Fig. 11 that when processing

data sets with higher dimension such as Iris and Seeds, the

optimal number of clusters can be obtained by VWG. This

shows that the number of clusters is relatively high in the

data set. In this case, the classification ability of VWG is

better than other typical clustering validity functions. It can

be seen from Fig. 12 that only VFM and VWG can divide two

Fig. 12 Change trend of clustering validity functions under Phoneme data set
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categories. In Fig. 13, VMPC, VT , VFM , VWL and VWG can

determine the best clustering result c = 2. Figure 14 shows

that except for VPCAES, other validity functions can classify

correctly. Figure 15 shows that only VZLF and VWG can

obtain the best cluster number c = 4. Finally, in Fig. 16,

still only VWG can accurately classify 7 categories. Fig-

ures 15 and 16 are simulations for Hfcr and Segment data

sets, and only VWG can correctly classify them. This means

that when the number of samples and complexity of the

data set are relatively higher, the clustering effect of VWG is

significantly better than other validity functions. Finally, it

can be seen from the experimental results in Fig. 17 that

Fig. 13 Change trend of clustering validity functions under Haberman data set
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Fig. 14 Change trend of clustering validity functions under HTUR2 data set
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VXB, VT , VFM , VWL,VZLF and VWG can be divided into two

categories. From the experimental results in Fig. 10 to

Fig. 17, it can be seen that only VWG can find the best

classification number of all UCI data sets, and when there

are data sets with overlapping samples, noisy data, high

dimensions and a large number of samples, the ideal

number of clusters can still be found.

Fig. 15 Change trend of clustering validity functions under Hfcr data set
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Fig. 16 Change trend of clustering validity functions under Segment data set
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Fig. 17 Change trend of clustering validity functions under Heart data set
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Similarly, in order to better observe the changing trend

of each clustering performance evaluation component of

VWG when UCI data sets are adopted, six clustering per-

formance evaluation components of VWG are normalized

and placed in the same coordinate system, which are shown

in Fig. 18a-h. Then the function values of VMPC, VXB, VT ,

VP, VPCAES, VFM , VWL, VZLF and VWG on UCI data sets are

put in the normalized coordinate system, which are shown

in Fig. 19a–h. In this way, the clustering effect of VWG and

other clustering validity functions can be compared more

intuitively. Finally, for different UCI data sets, the optimal
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Fig. 18 Changing trend of each component in VWG under UCI data sets
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(g) Segment

(h) Heart
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Fig. 18 continued
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Fig. 19 Changing trend of normalized clustering validity functions under UCI data sets
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number of clusters of each cluster validity function are

listed in Table 4.

5 Conclusions

In this paper, six evaluation components of clustering

performance are defined based on compactness, variation,

overlap, similarity and separation. After combining the six

components, a new fuzzy clustering validity function VWG

is proposed, which is simulated on artificial data set and

UCI data set. The experimental results show that VWG can

get accurate clustering number in Data_2_3(noise),

Data_2_3(overlap), Data_2_5, Data_3_3, Data_3_6 and

other manual data sets. VWG for UCI data sets such as Iris,

Seeds, Phoneme, Haberman, HTUR2, Hfcr, Segment and

Heart can also be accurately divided. By comparison, it can

be seen that the classification effect of VWG is better than

other traditional validity functions in data sets with noise

data, overlapping data and high-dimensional data. Each

clustering validity function is composed of various com-

ponents, and different components play different roles in

dividing a data set. Therefore, in the future work, we will

analyze the rule of component synthesis of clustering

validity function, and discuss the function and influence of

different components through comparative experiments. At

the same time, the idea of clustering validity function

components can also be extended to the weighting and

information integration among components to divide data

sets.
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