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Abstract This study’s motive is to vindicate the result of

the preservation of a transportation system for transporting

perishable items. We introduce a certain preservation

technology (PT) with preservation cost to reduce the rate of

deterioration, and then simultaneously to increase the

lifetime of such items. Here we initiate a multi-objective

solid transportation problem with a connection of PT. To

make the problem realistic, we consider various criteria,

such as transportation cost, preservation cost, time, and

deterioration under a Pythagorean fuzzy environment.

Pythagorean fuzzy sets are the extension of intuitionistic

fuzzy sets and more flexible than the fuzzy sets, intu-

itionistic fuzzy sets, or other uncertainty. We introduce two

numerical examples to elaborate the appropriateness of our

approach, which is then solved in three ways: by the e-
constraint method, by neutrosophic linear programming,

and by the fuzzy TOPSIS approach.

Keywords Multi-objective solid transportation problem �
Pythagorean fuzzy sets � Preservation technology �

e-constraint method � Neutrosophic linear programming �
Fuzzy TOPSIS approach

1 Introduction

We consider a transportation problem (TP) where the

transported items deteriorate during the time of trans-

portation. These goods include various foods, fruits, veg-

etables, flowers, blood, medicines, or fish. The lifetime of

such items may expire during long time transportation. If

the items are valuable or cannot be replaced easily (e.g.,

blood or medicines), this leads to huge losses. There exist

certain PT, such as managing the temperature, keeping

items in air tight packages, ice packeting, deep-freezing

system, or by adding a cold storage within the transporta-

tion vehicle, that help to remain the items good so that they

survive a longer time. However, the PT measures further

costs, such as freezing cost, which is an extra investment

for the transportation system. It increases the transportation

cost, but reduces the rate of deterioration of these items.

In our model formulation below we attempt to find an

optimal strategy that will keep a balance among trans-

portation cost, preservation cost, and deterioration over

time. To reduce the preservation cost, we endeavor to

connect the freezing system of the related vehicles, so that

the necessary energy can be supplied by the engine of that

vehicles. When it comes to deterioration, the disposed

items generate an economic loss, affect the environment,

and consume natural resources. The benefit of PT during

the transport is that it reduces the rate of deterioration of

transported perishable items by preventing or reducing

chemical reactions which are the cause of deterioration. By

this, the profit can be increased by getting short lifetime

items into a longer lifetime, so that more items can be sold
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at a higher price. This in turn recovers the economic loss

and helps to reduce the burden for the environment.

1.1 Survey of the Literature

The TP is a special type of a linear programming problem

introduced by Hitchcock [18]. It is also known as the

Hitchcock–Koopmans TP. When it comes to the inclusion

of PT, Pervin et al. [28] introduced an inventory model for

the deterioration of items in the presence of PT with sen-

sitive demand, including prices and stocks. Hsu et al. [19]

formulated an inventory model with deterioration and

considering PT. He and Huang [17] applied PT on an

inventory model with seasonal deterioration and analyzed

it with respect to a pricing policy.

For transporting items from one source to several des-

tinations through many incidents, different types of con-

veyances, such as trucks, goods train, ships, cargo flights,

etc., are utilized. Apart from source constraints and demand

constraints, additional constraints named as conveyance

constraints are included in classical TP, and the new type

of TP is defined as solid transportation problem (STP),

which was first established by Haley [14]. A group of

researchers considered various research analyses on STP

with different circumstances which are comprehended

here. Ghosh et al. [13] proposed STP within a fully intu-

itionistic fuzzy (IF) environment with fixed charge and

multiple objectives. Roy et al. [31] provided an STP with

fixed charges in the presence of a two-fold uncertain situ-

ation. Das et al. [8] formulated an STP using heuristic

method based on the p-facility location problem.

For an economic policy of TP, transportation cost,

preservation cost, deterioration and transporting time, etc.,

are annexed at the time of transportation of items from a

source to different destinations, but a single objective

function is not enough to describe the entire situation.

Hence the system balances the economic condition by

introducing a multi-objective optimization problem, and

then the traditional single objective TP turns into a multi-

objective transportation problem (MOTP). Whenever an

STP contains multiple objectives, then the problem is

called an MOSTP. From literature we find some research

studies on MOTP and MOSTP. A few of them is surveyed

here. Roy and Midya [30] solved the MOSTP in an IF

environment with fixed charges and a product blending

concept. Das and Roy [9] studied the effect of carbon

emissions on a multi-objective problem and treated the

variables as a neutrosophic field within a p-facility location

TP. Dalman et al. [7] discussed the MOSTP in uncer-

tain situation including multi-item and then solved by

fuzzy programming. Midya and Roy [26] presented rough

programming for solving the MOTP with fixed charges.

Maity et al. [23] briefly defined a TP with multiple

objectives and solved it within an uncertain situation. Allah

et al. [2] defined an MOTP in a neutrosophic environment.

Roy et al. [29] analyzed the MOTP in a random-rough

environment by considering fixed charges. An MOTP with

transfer station was discussed by Ghosh and Roy [12] by

considering product blending in fuzzy rough environment.

They analyzed fixed charge for the presence of truck load

constraints. A multi-objective model was introduced by

Tirkolaee et al. [35] for perishable product on intermediate

depot that related with two-echelon green routing problem.

Traditional MOTP and MOSTP are tackled by decision

maker (DM) by choosing the parameters as an imprecise

nature, because of the existence of restricted information, a

lack of evidence, competitive economic condition, or the

instability of financial market. For such realistic back-

ground there exist various uncertainties provided by the

literature, such as fuzzy, interval, stochastic, randomness,

roughness, IF, or neutrosophic. Zadeh [41] first defined

fuzzy set (FS) where uncertainty was defined by a mem-

bership grade 2 ½0; 1�. Thereafter Zimmermann [44]

introduced fuzzy programming for different objective

functions. Wang et al. [37] formulated logistic transporta-

tion by introducing polygonal fuzzy set and solved by

TOPSIS (technique for order of preference by similarity to

ideal solution) approach with ordered representation. Maity

et al. [25] defined a TP in a dual-hesitant fuzzy environ-

ment with some restrictions. Zamzamzadeh and Yaghoobi

[42] formulated a bi-objective TP by including fuzzy

objective function. After a generalization of FS, Atanassov

[3] introduced intuitionistic fuzzy set (IFS) in which the

uncertainty was defined by both a membership grade and a

non-membership grade, and their sum value has to be in the

interval [0, 1]. If a critical situation arises, such that the

sum of membership and non-membership value is greater

than 1, then FS and IFS cannot tackle this situation. In this

situation, Yager [38, 39] initiated the concept of a Pytha-

gorean fuzzy set (PFS) by a generalization of IFS, and Peng

[27] further refined it. A PFS is characterized by a mem-

bership and a non-membership degree, and the additional

criteria are that the sum of the squares of its membership

and non-membership values is less or equal to 1, and that

the sum of membership and non-membership is greater

than or less than l. PFS is capable of modeling a wider

range of applications with uncertain information. It can be

applied for multi-criteria decision making, information

measures, or aggregation operators due to its flexibility to

cope more complex uncertainty and inexactness. Our for-

mulated model on MOSTP is mainly developed within a

Pythagorean fuzzy environment named Pythagorean fuzzy

number (PFN), and we consider all the parameters as tri-

angular Pythagorean fuzzy number (TPFN).
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We now discuss some research studies on PFS in dif-

ferent directions. Abbas et al. [1] defined cubic PFS and

applied its concept to multi-attribute decision making by

considering unknown weight information. Chen [6] mod-

eled PFS with an interval for a multiple criteria decision

analysis that depends on a bridge construction method.

Ejegwa [10] applied PFS in career placements based on a

max-min-max composition. Fei and Deng [11] introduced a

Pythagorean fuzzy system for multi-criteria decision

making. Han et al. [16] gave an interval-valued Pythagor-

ean system and applied it in a multi-criteria decision-

making problem with a prioritized operator-based game

theoretical framework. Khan et al. [22] solved a multi-

criteria decision-making problems with the help of Pytha-

gorean cubic fuzzy aggregation operators. A list of some

recent remarkable articles on TP in different environments

is shown in Table 1.

1.2 Our Contribution

From the literature survey, we observe that every MOTP or

MOSTP is considered with objective functions as trans-

portation cost, time, carbon emission, deterioration, and all

of these functions are optimized. But to the best of our

knowledge, no one did so far introduce any process to

reduce the rate of deterioration. Here we include the PT to

the MOTP in a Pythagorean fuzzy environment for the first

time. Many transportation systems are considered with

general items, but without considering perishable items in a

MOTP or MOSTP with crisp or uncertain nature. They

assumed that the uncertainty is defined by a membership

value, or by both a membership and a non-membership

value, and that each of these values lies in the interval

[0, 1]. Also the sum of membership and non-membership

value lies in [0, 1]. But no study has considered the case

when the sum of membership and non-membership value is

greater than 1, which we include here.

In summary, the main focuses of this study are the

following:

• To formulate a model of MOSTP with three objective

functions as transportation cost, time and deterioration

with source, demand, and conveyance constraints.

• To introduce preservation cost and PT into MOSTP for

reducing the rate of deterioration.

• To consider a Pythagorean fuzzy environment for

tackling the uncertainty and to control the particular

contradictory situation of an IF environment.

• To display a new ranking function that transforms PFN

into crisp number.

• To utilize three progressive methods, namely the e-
constraint, neutrosophic linear programming (NLP),

and fuzzy TOPSIS.

• To include a comparative study and finding conclusions

from the discussion to justify the effectiveness of the

proposed model.

Table 1 Survey of research works of TP under various environments

References Nature of

problem

Environment No. of objective

function

Additional functions

Allah et al. [2] TP Neutrosophic Multi No

Dalman et al. [7] STP Fuzzy Multi No

Das et al. [8] STP Crisp Single No

Das et al. [9] TP Crisp Multi No

Ghosh and Roy [12] TP Fuzzy-rough Multi Fixed-charge

Ghosh et al. [13] STP IF Multi Fixed-charge

Maity et al. [23] TP Uncertain Multi No

Maity et al. [25] TP Hesitant fuzzy Single No

Midya and Roy [26] TP Rough Multi Fixed-charge

Roy et al. [29] TP Random rough Multi Fixed-charge

Roy and Midya [30] STP IF Multi Fixed-charge

Roy et al. [31] STP Twofold

uncertainty

Multi Fixed-charge

Zamzamzadeh and Yaghoobi

[42]

TP Fuzzy Multi No

Proposed model STP Pythagorean fuzzy Multi Preservation cost, preservation function

(PT)
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1.3 Outline of the Paper

The remainder of this paper is organized as follows. A

motivation of this study is described in Sect. 2. The basic

preliminaries for FS, IFS, neutrosophic sets, and PFS with

some basic properties are defined in Sect. 3. Section 4

presents notations and assumptions for the mathematical

model of MOSTP in a Pythagorean fuzzy environment in

connection with PT. The three methods, namely e-con-

straint, NLP and fuzzy TOPSIS, with related models are

illustrated in Sect. 5. Benefits including limitations of the

proposed study are depicted in Sect. 6. Two numerical

examples are described in Sect. 7. Section 8 contains the

computational results and their discussion. Conclusions

together with opportunities for future research are given in

Sect. 9.

2 Motivation for this Study

Transporting systems are designed for different transport

scenarios, such as long distance, long time, bad weather,

sudden strike, sudden accident, road block due to unnatural

situation, or bad road conditions. These situations are in

particular making the transport of perishable items more

challenging, since the suppliers or production companies

cannot supply their items properly as these items deterio-

rate after expiring their lifetime. Some particular perishable

items are very costly or cannot be easily manufactured. In

such critical conditions, these items remain good or extend

their lifetime by introducing PT. But an investment in PT

leads to preservation cost which depends on amount of

transported items, time and the preservation mode, and in

turn reduces the deterioration by some fraction. Whenever

cost increases then deterioration decreases due to adding a

PT and vice versa. Therefore cost and deterioration are

conflicting objectives, and the overall aim is to minimize

both of these functions by introducing an optimal strategy.

The scope is to reduce the transportation cost for supplying

the energy of freezing system (one of the modes of PT)

from the vehicle’s engine. For low deterioration rates, the

consumption of energy is also reduced, and a preservation

can be obtained in an environmentally sustainable way for

the perishable items.

Even when PT is in use, there is no full guarantee that

the perishable goods arrive at their destinations. The out-

come of the transport is subject to uncertainty. To model

this, we introduce a membership grade about the question

whether the arriving items are still merchantable. For

example, if the support for a ‘‘yes’’ is 0.8, and the non-

membership grade against the support to ‘‘no’’ criteria is

0.5, then the sum of 0.8 and 0.5 does not lie in [0, 1].

Therefore the general criteria of IFS fails to express the

uncertainty with membership and non-membership grades,

but ð0:8Þ2 þ ð0:5Þ2 � 1 holds. This situation is handled by

introducing PFS and decision makers take decisions with-

out modifying the provided information to meet the con-

straints of IFS. It can be seen that PFS can express more

uncertain information and gave more advantages than IFSs

in fuzzy and imprecise modeling. Also PFS can provide a

better alternative whenever FSs or IFSs have some limi-

tations on vagueness and uncertainty. Hence our motiva-

tion is to introduce a multi-objective solid transportation

model under PT in a Pythagorean fuzzy environment, and

after solving the model to obtain a compromise solution.

3 Basic Fundamental Definitions

Fuzzy sets (FSs) were introduced by Zadeh [41], and

thereafter FS theory evolved as an important tool to tackle

uncertainty and vagueness for decision-making problem.

Atanassov [3, 4] introduced intuitionistic fuzzy sets (IFSs)

by extending the FS theory. Yager [38, 39] introduced

Pythagorean fuzzy sets (PFSs) by extending the IFS. For

convenience, we introduce to definitions and fundamental

elementary operations based on FS, IFS, intuitionistic

fuzzy numbers (IFNs), neutrosophic sets, PFS and PFN.

Definition 1 [41] A FS ~A in a universal set X is charac-

terized by a membership function l ~AðxÞ which associates

with each element x in X to a real number 2 ½0; 1�. For a

triangular fuzzy number ~A ¼ ða1; a2; a3Þ, where

a1 � a2 � a3, the membership function l ~AðxÞ is defined as:

l ~AðxÞ ¼

x� a1

a2 � a1

; if a1 � x� a2

a3 � x

a3 � a2

; if a2\x� a3

0; Otherwise:

8
>><

>>:

Definition 2 [3] Let X be a universal set, then an IFS ~A
I

in

X is described as: ~A
I ¼ fðx; l ~A

I ðxÞ; c ~A
I ðxÞÞ : x 2 Xg, where

l ~A
I ðxÞ; c ~A

I ðxÞ : X ! ½0; 1� are the degrees of membership

and of non-membership with satisfying 0� l ~A
I ðxÞ þ

c ~A
I ðxÞ� 1 for all x 2 X. The degree of hesitation of an

element x in the set ~A
I

is defined as function

p ~A
I ðxÞ ¼ 1 � l ~A

I ðxÞ � c ~A
I ðxÞ. Note that when p ~A

I ðxÞ ¼
0; x 2 X then an IFS reduces to a FS.

Definition 3 A triangular IFN is of the form ~A
I ¼

ða1; a2; a3; a1; a2; a3Þ where a1 � a1 � a2 � a3 � a3, with a

membership and a non-membership functions of ~A
I

defined

as:
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l ~A
I ðxÞ ¼

x� a1

a2 � a1

; if a1 � x� a2;

a3 � x

a3 � a2

; if a2 � x� a3;

0; otherwise;

8
>>><

>>>:

and l ~A
I ðxÞ ¼

a2 � x

a2 � a1

; if �a1 � x� a2;

x� a2

a3 � a2

; if a2 � x� �a3;

1; otherwise;

8
>>><

>>>:

Definition 4 [38, 40, 43] Let X be a universal set, then a

PFS ~A
p

in X is defined as

~A
p ¼ fðx; l ~A

pðxÞ; c ~A
pðxÞÞ : x 2 Xg, where l ~A

pðxÞ; c ~A
pðxÞ :

X ! ½0; 1� are the membership and non-membership

functions, respectively, which satisfy 0� l2
~A
pðxÞ þ

c2
~A
pðxÞ� 1 for all x 2 X. The degree of indeterminacy of an

element x in the set ~A
p

is defined as the function

p ~A
pðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � l2

~A
pðxÞ � c2

~A
pðxÞ

q
.

We remark that both l ~A
pðxÞ þ c ~A

pðxÞ� 1 or l ~A
pðxÞ þ

c ~A
pðxÞ� 1 can occur, which is the main difference between

IFS and PFS. For this reason every IFS is a PFS, but the

converse does not hold.

A comparison between IFN and PFN is shown in Fig. 1,

and a comparison between IFS and PFS is given in Table 2.

Definition 5 [27] Considering two PFSs ~A
p

and ~B
p

in the

universal set X, where ~A
p

and ~B
p

are defined as ~A
p ¼

fðx; l ~A
pðxÞ; c ~A

pðxÞÞ : x 2 Xg and

~B
p ¼ fðx; l ~B

pðxÞ; c ~B
pðxÞÞ : x 2 Xg, respectively. Let r� 0.

Then the following arithmetic operations are defined:

1. Sum: ~A
p � ~B

p ¼
fðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

~A
pðxÞ þ l2

~B
pðxÞ � l2

~A
pðxÞl2

~B
pðxÞ

q
;

c ~A
pðxÞc ~B

pðxÞÞ : x 2 Xg.

2. Inner product: ~A
p � ~B

p ¼ fðx; l ~A
pðxÞl ~B

pðxÞ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
~A
pðxÞ þ c2

~B
pðxÞ � c2

~A
pðxÞc2

~B
pðxÞ

q
Þ : x 2 Xg.

3. Scalar product: r: ~A
p ¼ fðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � l2

~A
pðxÞÞr

q
,

ðc ~A
pðxÞÞrÞ : x 2 Xg.

4. Power:

ð ~ApÞr ¼ fðx; ðl ~A
pðxÞÞr;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � c2

~A
pðxÞÞr

q
Þ : x 2 Xg.

5. Complement: ð ~ApÞc ¼ fðx; c ~A
pðxÞ; l ~A

pðxÞÞ : x 2 Xg.

Definition 6 The TPFN on the real axis is defined as

~A
p ¼ fðða; b; cÞ; l ~A

pðxÞ; c ~A
pðxÞÞ : x 2 Xg, where

l ~A
pðxÞ� 0; c ~A

pðxÞ� 0, l2
~A
pðxÞ þ c2

~A
pðxÞ� 1, 0� a� b� c

and (a, b, c) is a triangular fuzzy number. The membership

and non-membership functions are defined as:

l ~A
pðxÞ ¼

x� a

b� a
; if a� x� b;

c� x

c� b
; if b\x� c;

0; Otherwise;

8
>><

>>:

and

c ~A
pðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðx� a

b� a
Þ2

r

; if a� x� b;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðc� x

c� b
Þ2

r

; if b\x� c

1; Otherwise:

8
>>>><

>>>>:

Definition 7 [33] Considering two TPFNs ~A
p

and ~B
p

in

the universal set X, where ~A
p

and ~B
p

are given as ~A
p ¼

fðða1; b1; c1Þ; l ~A
pðxÞ; c ~A

pðxÞÞ : x 2 Xg and

~B
p ¼ fðða2; b2; c2Þ; l ~B

pðxÞ; c ~B
pðxÞÞ : x 2 Xg. Let r� 0. The

following arithmetic operations are defined for TPFNs:

1. Sum: ~A
p � ~B

p ¼ fðða1 þ a2; b1 þ b2; c1 þ c2Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

~A
pðxÞ þ l2

~B
pðxÞ � l2

~A
pðxÞl2

~B
pðxÞ

q
; c ~A

pðxÞc ~B
pðxÞÞ

: x 2 Xg.

2. Inner product: ~A
p � ~B

p ¼ fðða1a2; b1b2; c1c2Þ;
l ~A

pðxÞl ~B
pðxÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
~A
pðxÞ þ c2

~B
pðxÞ � c2

~A
pðxÞc2

~B
pðxÞ

q
Þ

: x 2 Xg.Fig. 1 Graph of IFN and PFN

Table 2 Difference between IFS and PFS

IFS PFS

lA þ cA � 1 lB þ cB � 1;lB þ cB � 1

0� lA þ cA � 1 0� l2
B þ c2

B � 1

pA ¼ 1 � ðlA þ cAÞ pB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðlB2 þ cB2Þ

p

pA þ lA þ cA ¼ 1 p2
B þ l2

B þ c2
B ¼ 1
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3. Scalar product: r: ~A
p ¼ fððra; rb; rcÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � l2

~A
pðxÞÞr

q
; ðc ~A

pðxÞÞrÞ : x 2 Xg.

4. Power: ð ~ApÞr ¼ fððar; br; crÞ; ðl ~A
pðxÞÞr;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � c2

~A
pðxÞÞr

q
ÞÞ : x 2 Xg.

Definition 8 [32] Let ~A
p ¼ fðða; b; cÞ; l ~A

pðxÞ; c ~A
pðxÞÞ :

x 2 Xg be a TPFN. Then the score function Sð ~ApÞ and the

accuracy function Mð ~ApÞ of ~A
p

are defined as:

Sð ~ApÞ ¼ aþ bþ c

3
� ðl2

~A
p � c2

~A
pÞ;Mð ~ApÞ

¼ aþ bþ c

3
� ðl2

~A
p þ c2

~A
pÞ:

We remark that Sð ~ApÞ 2 ½�1; 1� and Mð ~ApÞ 2 ½0; 1�.
Next we define the defuzzified value or the ranking

index of a TPFN. Although the score function and the

accuracy function are potential types of defuzzified values,

both of them are not satisfied for any linear operation.

Consequently, we newly define a ranking function in terms

of the TPFN.

Definition 9 Let ~A
p ¼ fðða; b; cÞ; l ~A

pðxÞ; c ~A
pðxÞÞ : x 2 Xg

be a TPFN. Let k 2 ð0; 1Þ be a fixed parameter. Then the

ranking index is defined as:

Rð ~ApÞ ¼
k
R c
a xl

2
~A
pdxþ ð1 � kÞ

R c
a xc

2
~A
pdx

k
R c
a l

2
~A
pdxþ ð1 � kÞ

R c
a c

2
~A
pdx

¼ 1

4

kðaþ 2bþ cÞ þ ð1 � kÞð5a� 2bþ 5cÞ
ð2 � kÞ :

Theorem 1 Let ~A
p ¼ fðða; b; cÞ; l ~A

pðxÞ; c ~A
pðxÞÞ : x 2 Xg

be a TPFN, and a� 0. Then Rða: ~ApÞ ¼ aRð ~ApÞ.

Proof From Definition 9 we have the ranking index as

Rð ~ApÞ ¼ 1

4

kðaþ 2bþ cÞ þ ð1 � kÞð5a� 2bþ 5cÞ
ð2 � kÞ :

Now it follows that

Rða � ~A
pÞ ¼ 1

4

kðaaþ 2abþ acÞ þ ð1 � kÞð5aa� 2abþ 5acÞ
ð2 � kÞ

¼ a � 1

4

kðaþ 2bþ cÞ þ ð1 � kÞð5a� 2bþ 5cÞ
ð2 � kÞ ¼ a �Rð ~ApÞ:

h

Theorem 2 Let ~A
p ¼ fðða1; b1; c1Þ; l ~A

pðxÞ; c ~A
pðxÞÞ : x 2

Xg; ~Bp ¼ fðða2; b2; c2Þ; l ~B
pðxÞ; c ~B

pðxÞÞ : x 2 Xg are two

TPFNs. Let a; b� 0. Then

Rða: ~Ap þ b: ~B
pÞ ¼ a:Rð ~ApÞ þ b:Rð ~BpÞ.

Proof From the definition of the ranking index in Defi-

nition 9 we have that

Rða � ~Ap þ b � ~BpÞ ¼ 1

4

kðaa1 þ ba2 þ 2ab1 þ 2bb2 þ ac1

�

þbc2Þð2 � kÞ þ ð1 � kÞð5aa1 þ 5ba2 � 2ab1 � 2bb2 þ 5ac1 þ 5bc2Þ
ð2 � kÞ

�

¼ a � 1

4

kða1 þ 2b1 þ c1Þ þ ð1 � kÞð5a1 � 2b1 þ 5c1Þ
ð2 � kÞ

� �

þ b � 1

4

kða2 þ 2b2 þ c2Þ þ ð1 � kÞð5a2 � 2b2 þ 5c2Þ
ð2 � kÞ

� �

¼ a �Rð ~ApÞ þ b �Rð ~BpÞ: h

The concept of a neutrosophic set is an analytical sight

to represent the indeterminate and inconsistent information.

It can be applied in scientific and engineering applications.

Definition 10 [34] Let X be the universal set. A single

valued neutrosophic set ~A
n

over X is of the form
~An ¼ fðx; l ~A

nðxÞ; r ~AnðxÞ; c ~A
nðxÞÞ : x 2 Xg, where l ~AnðxÞ :

X ! ½0; 1�; r ~AnðxÞ : X ! ½0; 1�; c ~A
nðxÞ : X ! ½0; 1� with

0� supfl ~A
nðxÞg þ supfr ~AnðxÞg þ supfc ~A

nðxÞg� 3 for all

x 2 X. Here l ~A
nðxÞ, r ~A

nðxÞ and c ~A
nðxÞ are the degrees of

truth membership, indeterminacy membership and falsity

membership of x in ~An, respectively.

4 Problem Background

In this section, we specify a list of notations with their

intended meaning and some assumptions made in our

model of an MOSTP in a Pythagorean fuzzy environment.

Thereafter we introduce the model formulation itself in two

cases: one is a Pythagorean fuzzy MOSTP with PT, and the

other is Pythagorean fuzzy MOSTP without PT.

4.1 Notations and Assumptions of the Proposed

Study

The following notations and assumptions are considered in

the formulation of the proposed mathematical model:

i: index for sources ði ¼ 1; 2; . . .;mÞ,
j: index for destinations ðj ¼ 1; 2; . . .; nÞ,
k: index for conveyances ðk ¼ 1; 2; . . .; rÞ,
xijk: amount of items that to be transported from the ith

source to the jth destination through kth conveyance,

~cijk
p : Pythagorean fuzzy transportation cost for a unit

quantity of the items transported from the ith source

to the jth destination through kth conveyance,

~pijk
p : Pythagorean fuzzy preservation charge of the items

transported from the ith source to the jth destination

through kth conveyance,
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az: freezing function 2 ½0; 1� acts to reduce a certain

percentage of deterioration, i.e, new deterioration

rate is equivalent to az % of old deterioration rate,
~tijk
p : Pythagorean fuzzy time of transportation of the

items from the ith source to the jth destination

through kth conveyance,
~dijk
p : Pythagorean fuzzy rate of deterioration of the

transported items from the ith source to the jth

destination through kth conveyance,

gijk: binary variable taking the value 1 if xijk [ 0, and 0

otherwise,

~ai
p: Pythagorean fuzzy amount of items available at the

ith source,
~bj
p: Pythagorean fuzzy demand of items at the jth

destination,

~ek
p: Pythagorean fuzzy kth conveyance capacity,
~Zl
p: the objective function is a PFN for l ¼ 1; 2; 3,

Zl: the crisp value of objective function ~Zl
p

for

l ¼ 1; 2; 3, where Zl ¼ R½~Zl
p� and R denotes the

ranking operator.

We further make the assumptions that all transported items

are perishable, and that ~ai
p [ 0; ~bj

p
[ 0; ~ek

p [ 0 for all

i, j, k.

4.2 Model Formulation

We construct a mathematical model for the MOSTP under

PT to describe an optimal transportation scheme for per-

ishable items that tries to prevent their deterioration. We

consider xijk as continuous decision variables which denote

the amount of items transported from the ith source to the

jth destination through the kth conveyance. This transport

comes with transportation cost ~cijk
p. Here we define two

types of models, one is ‘‘Model PT’’ in which PT is

applied, and the first objective function (1a) is defined as

the total transportation cost including preservation cost.

After incorporating PT, the rate deterioration becomes

~dijk
p
:az and the total deterioration is described in the third

objective function (1c) which shows the effectiveness of

PT on deterioration. The second objective function (1b) is

chosen to model the total transportation time. ‘‘Model

w/oPT’’ is the other case, in which we present a general

MOSTP without any PT. The aim of both models is to

minimize total transportation cost (with or without freezing

cost), time and deterioration (with or without preservation)

while satisfying source, demand, and conveyance con-

straints. Due to some exceptional uncertain situations

rather than fuzzy or IF in realistic background, we consider

all the data in both models as TPFN to represent more

uncertainty. Henceforth the formulated models of MOSTP

with PT and without PT are defined in Pythagorean fuzzy

environment.

Model PT

minimize ~Zp
1ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

~cijk
pxijk

þ
Xm

i¼1

Xn

j¼1

Xr

k¼1

az~tijk
p
~pijk

pxijk ð1aÞ

minimize ~Zp
2ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

~tijk
pgijk ð1bÞ

minimize ~Zp
3ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

az ~dijk
p
xijk ð1cÞ

subject to
Xm

i¼1

Xr

k¼1

ð1 � az ~dijk
pÞxijk � ~b

p

j ðj ¼ 1; 2; . . .; nÞ;

ð1dÞ
Xn

j¼1

Xr

k¼1

xijk � ~api ði ¼ 1; 2; . . .;mÞ; ð1eÞ

Xm

i¼1

Xn

j¼1

xijk � ~epk ðk ¼ 1; 2; . . .; rÞ; ð1fÞ

xijk � 0; 8 i; j; k: ð1gÞ

gijk ¼
1; if xijk [ 0;
0; Otherwise.

�

ð1hÞ

The feasibility conditions of this TP are set as:

Xm

i¼1

~api �
Xn

j¼1

~b
p

j ; and

Xr

k¼1

~epk �
Xn

j¼1

~b
p

j :

Model w/oPT

minimize ~Zp
1ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

~cijk
pxijk ð2aÞ

minimize ~Zp
2ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

~tijk
pgijk ð2bÞ

minimize ~Zp
3ðxÞ ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

~dijk
p
xijk ð2cÞ

subject to
Xm

i¼1

Xr

k¼1

ð1 � dijkÞxijk � ~b
p

j ðj

¼ 1; 2; . . .; nÞ; constraints ð1eÞ � ð1hÞ: ð2dÞ

The feasibility conditions of this TP are same as in Model

PT.

123

S. Ghosh et al.: The Multi-objective Solid Transportation... 2693



In Model PT, the first and second term of objective

function (1a) for ~Zp
1ðxÞ represent the transportation cost and

preservation charge for transporting items from the ith

source to the jth destination using the kth conveyance,

respectively. Hence a preservation charge is considered for

investment of PT on the perishable items that to be trans-

ported and the charge depends on the time ~tijk
p
, the

preservation function az, and amount of transported items

xijk. The second objective function (1b) for ~Zp
2ðxÞ indicates

the transportation time from the ith source to the jth des-

tination using the kth conveyance. The third objective

function (1c) for ~Zp
3ðxÞ represents the total deterioration

after applying PT on the transported items from the ith

source to the jth destination using the kth conveyance.

Constraints (1d) are the demand conditions after applying

PT. The remaining constraints (1e), (1f) represent the

source and conveyance capacity, respectively.

In Model w/oPT, the first (2a), the second (2b), and the

third (2c) objective functions exist for transportation cost,

time, and deterioration, respectively, subject to source (1e),

demand (2d), and conveyance constraints (1f).

4.3 Equivalent Deterministic Model

Since all the data in the Models PT and w/oPT are TPFN,

we cannot directly obtain a solution of the MOSTP. So, we

employ a ranking operator (c.f. Definition 9) and use

Theorems 1 and 2 to transform the Pythagorean fuzzy

Models PT and w/oPT into their crisp forms Model crPT

and Model crw/oPT:

Model crPT

minimize R½ ~Zp
1 ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

R½~cijkp�xijk

þ
Xm

i¼1

Xn

j¼1

Xr

k¼1

azR½~tijkp ~pijkp�xijk

ð3aÞ

minimizeR½ ~Zp
2ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

R½~tijkp�gijk ð3bÞ

minimizeR½ ~Zp
3ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

azR½ ~dijk
p�xijk ð3cÞ

subject to
Xm

i¼1

Xr

k¼1

�
1 � azR½ ~dijk

p�
�
xijk �R½ ~bpj �ðj

¼ 1; 2; . . .; nÞ; ð3dÞ
Xn

j¼1

Xr

k¼1

xijk �R½~api �ði ¼ 1; 2; . . .;mÞ; ð3eÞ

Xm

i¼1

Xn

j¼1

xijk �R½~epk � ðk ¼ 1; 2; . . .; rÞ; constraints ð1gÞ

� ð1hÞ:
ð3fÞ

The feasibility conditions of this TP are:

Xm

i¼1

R½~api � �
Xn

j¼1

R½ ~bpj �; and

Xr

k¼1

R½~epk � �
Xn

j¼1

R½ ~bpj �:

Model crw/oPT

minimizeR½ ~Zp
1ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

R½~cijkp�xijk ð4aÞ

minimizeR½ ~Zp
2ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

R½~tijkp�gijk ð4bÞ

minimizeR½ ~Zp
3ðxÞ� ¼

Xm

i¼1

Xn

j¼1

Xr

k¼1

R½ ~dijk
p�xijk ð4cÞ

subject to
Xm

i¼1

Xr

k¼1

�
1 �R½ ~dijk

p�
�
xijk �R½ ~bpj �ðj

¼ 1; 2; . . .; nÞ; constraints ð3eÞ
� ð3f Þ; constraints ð1gÞ � ð1hÞ: ð4dÞ

The feasibility conditions of this TP are same as in Model

crPT.

5 Solution Methodology

A multi-objective optimization problem appears practically

in many real-world applications. It is recommended for

DMs not to focus on a single objective alone, but instead to

optimize all the objective functions at once and try to

explore the best optimal compromise solution. However,

due to the potentially contradictory nature of these objec-

tive functions, there exists no single solution that simul-

taneously optimizes all the objective functions. That is, the

solution will be the best for one objective function and that

may be worst with respect to another objective function. In

this case, DMs select a ‘‘most favorable’’ solution instead

of an optimal solution. Therefore, the view of optimality is

replaced by Pareto-optimality.

Definition 11 A Pareto-optimal solution of Model crPT or

crw/oPT is a feasible solution x	 ¼ fx	ijk : i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; rg such that there

exists no other feasible solution x ¼ fxijk : i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; rg with
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ZlðxÞ� Zlðx	Þ; l ¼ 1; 2; 3 and ZlðxÞ\Zlðx	Þ for at least one

l.

In other words, Pareto-optimal solutions are the ones

that cannot be upgraded in one objective function without

dominating the performances in at least one remaining

objective function. Several methods are convenient for

solving the MOSTP. To obtain a Pareto-optimal solution

we discuss the following three methods and apply them to

the proposed model:

– the e-constraint method,

– the Neutrosophic linear programming (NLP), and

– the Fuzzy TOPSIS approach.

5.1 The e-Constraint Method

The e-constraint method is a useful method introduced by

Haimes et al. [15]. This method finds the Pareto-optimal

solution by varying the value of e along the Pareto-optimal

front to each objective function. Therefore for each value

of e, there exists a new optimization problem. Whenever

we solve the crisp problem that is to minimize the ranking

function, then the MOSTP transforms into single objective

STP by choosing one objective at that time, and the

remaining objective functions are treated as constraints by

defining their aspiration levels. The necessary steps for

solving the problem are given below:

Step 1: Transform the Pythagorean fuzzy MOSTP

into a crisp MOSTP with the help of a ranking

function.

Step 2: Compute the solution of each crisp single

objective function at a time by omitting the

other objective functions and subject to the

given constraints.

Step 3: Find the best value and the worst value of

every objective function.

Step 4: Select any one objective function Zl among

Zl0 , ðl; l0 ¼ 1; 2; 3 : l 6¼ l0Þ.
Step 5: Turn the other objective functions into con-

straints and set up a single objective deter-

ministic model is as follows:

Model 5

minimize Zl0 ð5aÞ

subject to Zl � el ðl; l0 ¼ 1; 2; 3; l 6¼ l0Þ; ð5bÞ
constraints either ð3dÞ � ð3f Þ or ð3eÞ � ð3f Þ; ð4dÞ;

ð5cÞ
constraints ð1gÞ � ð1hÞ: ð5dÞ

Here the range of el is defined by the DM who represents

the maximum entrance values of the objective functions.

The DM can also vary the value of el along the Pareto-

optimal front for each objective function to find a suit-

able Pareto-optimal solution. Constraints (3d) to (3f) are

used for Model crPT, and constraints (3e) to (3f), (4d) are

chosen for Model crw/oPT.

Step 6: Compute the value of the objective function

for each case (using a solver such as LINGO),

and then find the Pareto-optimal solution of

Model crPT and Model crw/oPT.

5.2 The Neutrosophic Linear Programming (NLP)

Solving Model crPT and Model crw/oPT, we may obtain

solutions which are not overall compromise solution. So

we utilize NLP to derive a Pareto-optimal solution of a

multi-objective decision-making problem. NLP is a modi-

fied and improved programming method that finds a Par-

eto-optimal solution of multi-objective problems. The

notion of the neutrosophic set was defined by Smarandache

[34]. Khalil et al. [21] worked on neutrosophic sets and

their application to multi-objective decision-making prob-

lems. In this program, a truth membership function, an

indeterminacy membership function and a falsity mem-

bership function are formulated for every objective func-

tion. Whenever the NLP maximizes the truth and the

indeterminacy membership function and minimizes the

falsity membership function, then it is said to define the

best Pareto-optimal solution. To solve the proposed model

as a NLP, we carry out the following steps:

Step 1: Find a crisp MOSTP from the Pythagorean

fuzzy MOSTP by a ranking operator.

Step 2: Evaluate the solution of each objective func-

tion individually, subject to all constraints.

Step 3: Determine the lower bound and upper bound,

i.e., positive ideal solution (PIS) and negative

ideal solution (NIS) for each objective func-

tion from a pay-off matrix defined in Table 3.

Denoting PIS = Z	
l ¼

minfZlðX	
1Þ; ZlðX	

2Þ; ZlðX	
3Þ : l ¼ 1; 2; 3g and

NIS = Zl
0 ¼ maxfZlðX	

1Þ; ZlðX	
2Þ; ZlðX	

3Þ :
l ¼ 1; 2; 3g respectively.

Step 4: Formulate the truth membership function and

indeterminacy membership function with the

highest degree and the falsity membership

function with the lowest degree.

Step 5: Set the tolerance and then construct the truth

membership function TlðZlðxÞÞ, the indeter-

minacy membership function IlðZlðxÞÞ, and

the falsity membership function FlðZlðxÞÞ of
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each objective function ZlðxÞ according to the

bounds as:

TlðZlðxÞÞ ¼

1; if ZlðxÞ� LTl ;

1 � ZlðxÞ � LTl
UT

l � LTl
; if LTl � ZlðxÞ�UT

l ;

0; if ZlðxÞ�UT
l ;

8
>>><

>>>:

IlðZlðxÞÞ ¼

1; if ZlðxÞ� LIl ;

1 � ZlðxÞ � LIl
UI

l � LIl
; if LIl � ZlðxÞ�UI

l ;

0; if ZlðxÞ�UI
l ;

8
>>><

>>>:

FlðZlðxÞÞ ¼

0; if ZlðxÞ� LFl ;

1 � UF
l � ZlðxÞ
UF

l � LFl
; if LFl � ZlðxÞ�UF

l ;

1; if ZlðxÞ�UF
l :

8
>>><

>>>:

Here UT
l ¼ Ul = PIS for Zl, and LTl ¼ Ll =

NIS for Zl; UF
l ¼ UT

l ,

LFl ¼ LTl þ tlðUT
l � LTl Þ; LIl ¼ LTl ,

UI
l ¼ LTl þ slðUT

l � LTl Þ; tl; sl 2 ð0; 1Þ are

predetermined real numbers.

Step 6: Choose the values of l; m; c in [0, 1] for each

neutrosophic number as the truth, indetermi-

nacy, and falsity degrees, respectively.

Step 7: Constitute the following NLP:

Model 6

Maximize TlðZlðxÞÞ ðl ¼ 1; 2; 3Þ ð6aÞ
Maximize IlðZlðxÞÞ ðl ¼ 1; 2; 3Þ ð6bÞ
Minimize FlðZlðxÞÞ ðl ¼ 1; 2; 3Þ ð6cÞ

Subject to constraints either ð3dÞ
� ð3f Þ or ð3eÞ
� ð3f Þ; ð4dÞ; Constraints ð1gÞ � ð1hÞ:

ð6dÞ

Model (6) can be reduced to:

Model 7

Maximize l ð7aÞ
Maximize m ð7bÞ
Minimize c ð7cÞ

Subject to TlðZlðxÞÞ� l; ð7dÞ
IlðZlðxÞÞ� m; ð7eÞ
FlðZlðxÞÞ� c; ð7fÞ
lþ mþ c� 3; ð7gÞ
l� c; ð7hÞ
l� m; ð7iÞ
l; m; c 2 ½0; 1�; ðl ¼ 1; 2; 3Þ; ð7jÞ

Constraints either ð3dÞ � ð3f Þ or ð3eÞ
� ð3f Þ; ð4dÞ;

ð7kÞ
Constraints ð1gÞ � ð1hÞ: ð7lÞ

The NLP Model (7) that derives the Pareto-

optimal solution of the MOTP is defined as

follows:

Model 8

Maximize lþ m� c ð8aÞ

Subject to ZlðxÞ þ ðUT
l � LTl Þl�UT

l ; ð8bÞ

ZlðxÞ þ ðUI
l � LIl Þm�UI

l ; ð8cÞ

ZlðxÞ � ðUF
l � LFl Þc� LFl ; ð8dÞ

lþ mþ c� 3; ð8eÞ
l� c; ð8fÞ
l� m; ð8gÞ
l; m; c 2 ½0; 1�; ðl ¼ 1; 2; 3Þ; ð8hÞ

Constraints either ð3dÞ � ð3f Þ or ð3eÞ
� ð3f Þ; ð4dÞ;

ð8iÞ
Constraints ð1gÞ � ð1hÞ: ð8jÞ

Step 8: Solve Model (8) (for instance, by a numerical

solver such as LINGO), and obtain a Pareto-

optimal solution of Model crPT and Model

crw/oPT, respectively.

Theorem 3 If x	 ¼ fxijk : i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; n; k ¼ 1; 2; . . .; rg is an optimal solution of Model

(8) then it is also Pareto-optimal (non-dominated) solution

of Model crPT or Model crw/oPT, respectively.

Proof Let x	 be a non-Pareto-optimal (non-dominated)

solution of Model crPT or Model crw/oPT. From Defini-

tion 11, we obtain that there exists at least one x such that

Table 3 Pay-off matrix Z1 Z2 Z3

X	
1 Z1ðX	

1Þ Z2ðX	
1Þ Z3ðX	

1Þ
X	

2 Z1ðX	
2Þ Z2ðX	

2Þ Z3ðX	
2Þ

X	
3 Z1ðX	

3Þ Z2ðX	
3Þ Z3ðX	

3Þ
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ZlðxÞ� Zlðx	Þ for l ¼ 1; 2; 3, and ZlðxÞ\Zlðx	Þ for at least

one l. The truth and the indeterminacy membership func-

tions llðZlð�ÞÞ and mlðZlð�ÞÞ are strictly decreasing with

respect to the corresponding objective function Zl in [0,1],

respectively, whereas the falsity membership function

clðZlð�ÞÞ is strictly increasing with respect to the objective

function Zl in [0,1]. Hence llðZlðxÞÞ� llðZlðx	ÞÞ for all l,

and llðZlðxÞÞ[ llðZlðx	ÞÞ for at least one l. Similarly

mlðZlðxÞÞ� mlðZlðx	ÞÞ for all l, and mlðZlðxÞÞ[ mlðZlðx	ÞÞ for

at least one l. Also clðZlðxÞÞ� clðZlðx	ÞÞ for all l, and

clðZlðxÞÞ\clðZlðx	ÞÞ for at least one l. Denote by l	; m	,
and c	 the values of l; m and c at x	, respectively. Then

ðlþ m� cÞ = minfllðZlðxÞÞ; mlðZlðxÞÞ,
clðZlðxÞÞg� minfllðZlðx	ÞÞ; mlðZlðx	ÞÞ;

clðZlðx	ÞÞg ¼ ðl	 þ m	 � c	Þ, which contradicts the fact

that x	 is an optimal solution of Model (8). This completes

the proof of the theorem. h

5.3 The Fuzzy TOPSIS Approach

TOPSIS stands for technique for order preference by

similarity to ideal solution. This approach was initiated by

Hwang and Yoon [20]. TOPSIS is based on the idea of

choosing an alternative closest to PIS and the farthest to

NIS for finding a Pareto-optimal solution to a multi-at-

tribute decision-making problem. Classical TOPSIS is

often used for solving selection and ranking problems. At

first, all the alternatives from the best to worst are ranked,

and then the best alternative is selected. The extended

fuzzy TOPSIS approach generates a better Pareto-optimal

solution by transforming the multi-objective problem into a

bi-objective problem. This approach can accommodate the

large number of variables included in the MOSTP. When a

multi-objective optimization problem is reduced to a bi-

objective problem by a fuzzy TOPSIS approach, then the

new problem is called a fuzzy TOPSIS-based bi-objective

optimization problem. The steps of this approach are

defined as follows:

Step 1: Transform the Pythagorean fuzzy MOSTP

into an equivalent crisp problem by a ranking

operator.

Step 2: Solve each objective function individually,

and find the maximum and the minimum

value of each objective function with subject

to all constraints.

Step 3: Obtain the PIS (Zþ) and the NIS (Z�), which

are defined in Step 3 of Sect. 5.2. Hence

Zþ
l \Z�

l , and the range is defined as Z�
l � Zþ

l .

Step 4: Calculate the distance function dPIS
r ðxÞ and

dNIS
r ðxÞ from PIS and NIS, respectively, which

are defined as:

dPIS
r ðxÞ ¼

X3

l¼1

Wl
ZlðxÞ � Zl

þ

Z�
l � Zþ

l

� �r
" #1

r

dNIS
r ðxÞ

¼
X3

l¼1

Wl
Zl

� � ZlðxÞ
Z�
l � Zþ

l

� �r
" #1

rX3

l¼1

Wl

¼ 1;Wl � ;
8 l:

Here the parameters Wl for l ¼ 1; 2; 3 denote

the weights of objective functions. For r any

real positive number or positive infinity can

be used. Most typical choices are

r ¼ 1; r ¼ 2, or r ¼ þ1: For r ¼ 1, the dis-

tance is known as Manhattan distance; for

r ¼ 2, the distance is the Euclidean distance;

for r ¼ þ1 it defines the Tchebycheff

distance.

Step 5: Transform the crisp model into a bi-objective

problem by taking r ¼ 2:

Model 9

Minimize dPIS
2 ðxÞ ð9aÞ

Maximize dNIS
2 ðxÞ ð9bÞ

Subject to constraints either ð3dÞ
� ð3f Þ Constraints ð1gÞ � ð1hÞ: ð9cÞ

(Note that (3d) is left out and (4d) is added

for Model crw/oPT.)

Step 6: Solve Model (9) and construct a pay-off

Table 4.

Step 7: Formulate the membership functions for two

objective functions of Model (9) using the

pay-off Table 4. The functions are defined as

follows:

l1ðxÞ ¼

1; if dPIS
2 ðxÞ� ðdPIS

2 Þ	;

1 � dPIS
2 ðxÞ � ðdPIS

2 Þ	

ðdPIS
2 Þ0 � ðdPIS

2 Þ	
; if ðdPIS

2 Þ	\dPIS
2 ðxÞ

� ðdPIS
2 Þ0;

0; if ðdPIS
2 Þ0\dPIS

2 ðxÞ;

8
>>>>>><

>>>>>>:

l2ðxÞ ¼

1; if ðdNIS
2 Þ	 � dNIS

2 ðxÞ;

1 � ðdNIS
2 Þ	 � dNIS

2 ðxÞ
ðdNIS

2 Þ	 � ðdNIS
2 Þ0

; if ðdNIS
2 Þ0\dNIS

2 ðxÞ

� ðdNIS
2 Þ	;

0; if dNIS
2 ðxÞ\ðdNIS

2 Þ0:

8
>>>>>><

>>>>>>:

Step 8: Using max–min operator (introduced by Bell-

man and Zadeh [5] and further extended by

Zimmermann [44]) and the above member-

ship functions, we solve a general fuzzy

programming problem and find a Pareto-

optimal solution of Model crPT and Model
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crw/oPT, respectively:

Model 10

Maximize k ð10aÞ

Subject to l1ðxÞ� k; l2ðxÞ� k; ð10bÞ

0� k� 1; ð10cÞ

Constraints ð3dÞ � ð3f Þ; ð10dÞ

Constraints ð1gÞ � ð1gÞ: ð10eÞ

Here k ¼ minfl1ðxÞ; l2ðxÞg is the satisfac-

tory level for both the criteria of the minimum

distance from the PIS and the maximum dis-

tance from the NIS of Model crPT and Model

crw/oPT, respectively. (Note that (3d) is left

out and (4d) is added for Model crw/oPT.)

Step 9: Finally we obtain a Pareto-optimal solution of

Model crPT and Model crw/oPT, respectively,

by numerically solving the model (for exam-

ple, using LINGO as solver).

6 Benefits from and Limitations of the Proposed
Approach

In this section we discuss the main contributions and lim-

itations of our proposed model.

– We design the model for the MOSTP under PT to

reduce the rate of deterioration of perishable items

which will be transported. In order to decrease the

deterioration at the same time, the preservation cost is

included in the transportation cost. As a result, the total

cost is increased. To reduce the preservation cost, we

attempt to use the energy from the engine of running

vehicles for the preservation system. The main contri-

bution of this study is to tackle such situation by

introducing an optimal strategy for finding a Pareto-

optimal solution.

– We consider three objective functions. The first one is

the combination of the transportation cost and the

preservation cost. The second and the third objective

functions are transportation time and deterioration,

respectively. In the formulated model, we minimize the

deterioration after applying PT.

– We introduce a restriction as in constraints (1d) to

satisfy the demand of the destinations after applying

PT. Also we formulate two models which are with PT

and without PT to explicate the significance of PT.

– In the proposed model, we include a Pythagorean fuzzy

environment and consider all data as TPFN to label

strong fuzziness and ambiguity than fuzzy or intuition-

istic fuzzy or other uncertainty which explicitly defined

in Fig. 1.

– We introduce a ranking operator using membership and

non-membership functions to convert the Pythagorean

fuzzy system into a crisp system and this operator

obeys the linearity property.

– For finding a Pareto-optimal solution of the suggested

MOSTP, we include three preferable methods, which

are the e-constraint method, NLP and a fuzzy TOPSIS

approach.

– We incorporate a numerical example with a real-world

background with PT and without PT. A comparative

study is depicted to justify the appropriateness of the

proposed model. We select a method among the three

proposed methods which provides better result.

– The main limitations of the proposed MOSTP are that

we only consider for highly important perishable items,

not for any breakable items. We also do not consider

any fixed charge in the suggested model.

– Another limitation is not fix the transportation time,

which is an important part for transporting such

perishable items. Whenever the vehicles are at rest

due to some critical situations, such as a strike, bad

weather, or a road accident, then the vehicle engines

must be stopped for some durations. Then PT, such as

freezing system, will not work. Thus the rate of

deterioration will be increased, even to the point that

the items may be fully deteriorated. We do not include

such situations, and we do not consider how these

situations will be tackled.

7 Numerical Results

Example 1 In this section, we illustrate the applicability

of the described model using a suitable real-life based

example. Consider a reputed company which supplies

various types of sea fishes (such as Elisha, Prawn, or

Pomfret). There are two source points, which are situated at

West Bengal and Odisha in India from where these fishes

are supplied to two different demand points that are situ-

ated at Punjab and Himachal Pradesh in India. The com-

pany supplies these items by introducing PT (refrigeration)

to reduce the deterioration rate. The DM wants to minimize

the transportation cost, the preservation cost, the

Table 4 Pay-off matrix for PIS

and NIS
dPIS

2 dNIS
2

XPIS ðdPIS
2 Þ	 ðdNIS

2 Þ0

XNIS ðdPIS
2 Þ0 ðdNIS

2 Þ	
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transportation time and the deterioration after applying PT.

Here the transportation cost is considered in Dollar per ton,

the deterioration rate in % and the time in hour. The

preservation cost in Dollar depends on the transportation

time, the amount of transported items and the preservation

method. The supply, demand and conveyance capacity are

measured in ton. The preservation is measured in %.

Source, demand, conveyance, transportation cost, preser-

vation cost, transportation time, deterioration and all the

data are taken in TPFNs and presented in Tables 5, 6, 7, 8,

and 9. The DM wishes to transport an amount of items

from the ith source to the jth destination using the kth type

of conveyance as to satisfy the total requirement. By the

ranking operator we transform all TPFNs into crisp num-

bers and thereafter formulate two models. We consider k ¼
1
2
; a ¼ 5%; m ¼ 2; n ¼ 2; and r ¼ 2. To show the appli-

cability of PT we introduce Model A and Model B obtained

from Model crPT and Model crw/oPT, respectively, using

the tabulated data.

Model A (with PT)

minimize Z1 ¼ 21:1x111 þ 26:8x112 þ 29:4x121 þ 24x122

þ 33:35x211 þ 28:75x212 þ 31:1x221

þ 27:2x222 minimize Z2

¼ 26g111 þ 24g112 þ 28g121 þ 20g122

þ 19g211 þ 21g212 þ 22g221

þ 23g222 minimize Z3

¼ 0:0005ð8x111 þ 7x112 þ 10x121 þ 5x122

þ 4x211 þ 6x212 þ 8x221

þ 10x222Þ subject to x111 þ x112 þ x121

þ x122 � 250; x211 þ x212 þ x221

þ x222 � 275; x111 þ x211 þ x121

þ x221 � 250; x112 þ x122 þ x212

þ x222 � 265; 0:996x111 þ 0:9965x112

þ 0:998x211 þ 0:997x212 � 200; 0:995x121

þ 0:9975x122 þ 0:996x221

þ 0:995x222 � 225; xijk � 0; 8 i; j; k:

Model B (without PT)

Table 5 Supply, demand and conveyance in pythagorean fuzzy

Supply ~a1
p ¼ ð200; 250; 300Þ,

~a2
p ¼ ð250; 280; 300Þ.

Demand ~b1
p ¼ ð180; 200; 220Þ,

~b2
p ¼ ð200; 230; 250Þ.

Conveyance ~e1
p ¼ ð220; 250; 280Þ,

~e2
p ¼ ð230; 270; 300Þ.

Table 7 Transportation time ~tijk
p

(hour) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~t111
p
= (23, 25, 29), ~t211

p
= (16, 19, 22),

~t112
p
= (21, 24, 27), ~t212

p
= (18, 20, 24),

~t121
p
= (25, 27, 31), ~t221

p
= (19, 21, 25),

~t122
p
= (17, 19, 23). ~t222

p
= (20, 22, 26).

Table 8 Preservation cost ~pijk
p ($) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~p111
p= (5, 7, 9), ~p211

p= (10, 12, 16),

~p112
p= (7, 9, 11), ~p212

p= (12, 14, 18),

~p121
p= (9, 11, 13), ~p221

p= (8, 10, 14),

~p122
p= (6, 8, 10). ~p222

p= (5, 8, 11).

Table 9 Deterioration rate ~dijk
p

(%) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~d111
p
= (6, 8, 10), ~d211

p
= (2, 4, 6),

~d112
p
= (5, 7, 9), ~d212

p
= (4, 6, 8),

~d121
p
= (7, 9, 13), ~d221

p
= (5, 8, 11),

~d122
p
= (3, 5, 7). ~d222

p
= (8, 10, 12).

Table 6 Transportation cost ~cijk
p ($) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~c111
p= (10, 12, 14), ~c211

p= (19, 21, 23),

~c112
p= (14, 16, 18), ~c212

p= (11, 13, 15),

~c121
p= (11, 15, 17), ~c221

p= (16, 18, 22),

~c122
p= (13, 16, 19). ~c222

p= (15, 17, 21).
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minimize Z1 ¼ 12x111 þ 16x112 þ 14x121 þ 16x122þ
21x211 þ 13x212 þ 19x221 þ 18x222

minimize Z2 ¼ 26g111 þ 24g112 þ 28g121 þ 20g122þ
19g211 þ 21g212 þ 22g221 þ 23g222

minimize Z3 ¼ 0:01ð8x111 þ 7x112 þ 10x121 þ 5x122

þ 4x211 þ 6x212 þ 8x221 þ 10x222Þ
subject to x111 þ x112 þ x121 þ x122 � 250;

x211 þ x212 þ x221 þ x222 � 275;

0:92x111 þ 0:93x112 þ 0:96x211

þ 0:94x212 � 200;

0:90x121 þ 0:95x122 þ 0:92x221

þ 0:90x222 � 225;

x111 þ x211 þ x121 þ x221 � 250;

x112 þ x122 þ x212 þ x222 � 265;

xijk � 0; 8 i; j; k:

Example 2 We consider another example with

k ¼ 1
4
; a ¼ 2%; m ¼ 2; n ¼ 2 and r ¼ 2.

To show the applicability of PT we solve two models as

similar to Model A and Model B obtained from Model

crPT and Model crw/oPT, respectively, using the tabulated

data presented in Tables 10, 11, 12, 13, and 14.

8 Computational Results and Discussion

Here we present Pareto-optimal solutions of the numerical

example defined in previous section and solve the models

using the three methods: the e-constraint, the NLP and the

fuzzy TOPSIS approach. We compare the performance of

the methods by evaluating the obtained results. We also

discuss the applicability of PT by observing the objective

values of two models corresponding to two examples. Here

we use the notations w and wt to define the problems with

PT and without PT respectively.

8.1 The e-Constraint Method (Example 1)

We find the Pareto-optimal solution of Model A and Model

B using Model (5) by varying the value of e along Pareto-

optimal front to each objective function. The objective

values are defined in Tables 15 and 16 for two cases.

Thereafter we find the final Pareto-optimal solution for two

cases and give the objective values in Table 17. The

achieved solutions are as: x122 ¼ 225:5639, x211 ¼
200:4008 and other variables are zero for Model A.

x111 ¼ 83:1468, x122 ¼ 166:8532, x211 ¼ 32:5489,

x212 ¼ 98:1468, x221 ¼ 72:2712 and other variables are

zero for Model B.

8.2 The NLP (Example 1)

In the NLP approach, we solve Model A and Model B,

respectively, by a LINGO solver. We obtain solutions with

PT and without PT using the following parameters:

lw ¼ 0:59929, mw ¼ 0:59929, cw ¼ 0; x111 ¼ 77:0373,

x122 ¼ 172:9627, x211 ¼ 84:2533, x212 ¼ 39:3039, x222 ¼
52:7334 and other variables are zero for Model A, and

lwt ¼ 0:58293, mwt ¼ 0:58293, cwt ¼ 0; x111 ¼ 78:3602,

Table 10 Supply, demand and conveyance in Pythagorean fuzzy

Supply ~a1
p ¼ ð180; 190; 200Þ,

~a2
p ¼ ð220; 230; 240Þ.

Demand ~b1
p ¼ ð150; 160; 170Þ,

~b2
p ¼ ð140; 145; 150Þ.

Conveyance ~e1
p ¼ ð190; 200; 210Þ,

~e2
p ¼ ð165; 170; 175Þ.

Table 11 Transportation cost ~cijk
p ($) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~c111
p= (8, 10, 12), ~c211

p= (14, 16, 18),

~c112
p= (11, 14, 17), ~c212

p= (6, 8, 10),

~c121
p= (7, 11, 15), ~c221

p= (12, 14, 18),

~c122
p= (10, 13, 16). ~c222

p= (13, 15, 17).

Table 12 Transportation time ~tijk
p

(hour) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~t111
p
= (21, 22, 23), ~t211

p
= (12, 15, 18),

~t112
p
= (19, 20, 21), ~t212

p
= (16, 18, 20),

~t121
p
= (18, 19, 20), ~t221

p
= (17, 19, 21),

~t122
p
= (15, 17, 19). ~t222

p
= (14, 16, 18).

Table 13 Preservation cost ~pijk
p ($) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~p111
p= (3, 5, 7), ~p211

p= (8, 9, 10),

~p112
p= (5, 6, 7), ~p212

p= (7, 9, 11),

~p121
p= (6, 8, 10), ~p221

p= (6, 7, 8),

~p122
p= (3, 4, 5). ~p222

p= (4, 5, 6).

Table 14 Deterioration rate ~dijk
p

(%) in Pythagorean fuzzy

Conveyance ðk ¼ 1Þ Conveyance ðk ¼ 2Þ

~d111
p
= (4, 6, 8), ~d211

p
= (2, 3, 4),

~d112
p
= (2, 4, 6), ~d212

p
= (3, 4, 5),

~d121
p
= (3, 6, 9), ~d221

p
= (5, 6, 7),

~d122
p
= (3, 5, 7). ~d222

p
= (4, 7, 10).
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x122 ¼ 171:6398, x211 ¼ 41:8229, x212 ¼ 93:3602, x221 ¼
67:3285 and other variables are zero for Model B. See

Table 17 for the results.

8.3 The Fuzzy TOPSIS Approach (Example 1)

We consider the crisp problems Model A and Model B,

respectively, and use the fuzzy TOPSIS solution procedure.

We set the weights to W1 ¼ 0:25;W2 ¼ 0:25;W3 ¼ 0:5,

and r ¼ 2. We then get kw ¼ 0:5845; x111 ¼ 21:043,

x122 ¼ 225:564, x211 ¼ 179:4003 and all other variables are

zero for Model A, and kwt ¼ 0:6951; x111 ¼ 8:2399,

x122 ¼ 236:842, x211 ¼ 172:8655, x212 ¼ 28:1579 and

other variables are zero for Model B. The objective func-

tion values are again given in Table 17.

8.4 The e-Constraint Method (Example 2)

The objective values are defined in Tables 18 and 19 for

two cases and we find the final Pareto-optimal solution of

e-constraint method for two cases in Table 20. The illus-

trated solutions are as: x122 ¼ 145:1451, x211 ¼ 160:0961

and other variables are zero for Model A. x122 ¼ 152:6316,

x211 ¼ 164:9485 and other variables are zero for Model B.

8.5 The NLP (Example 2)

In the NLP, we obtain solutions for example 2 with PT and

without PT using the following parameters: lw ¼ 0:52705,

mw ¼ 0:52705, cw ¼ 0; x121 ¼ 50:6911, x122 ¼ 94:4642,

x211 ¼ 84:5754, x212 ¼ 75:5358 and other variables are

zero (similar for Model A), and lwt ¼ 0:517135,

mwt ¼ 0:517135, cwt ¼ 0; x121 ¼ 64:1055, x122 ¼ 89:2009,

x211 ¼ 84:9823, x212 ¼ 80:7991 and other variables are

zero (similar for Model B). See Table 20 for the results.

8.6 The Fuzzy TOPSIS Approach (Example 2)

Using the Fuzzy TOPSIS solution procedure and set the

weights to W1 ¼ 0:3;W2 ¼ 0:3;W3 ¼ 0:4, and r ¼ 2, we

then find kw ¼ 0:64742; x122 ¼ 145:1451,

x211 ¼ 141:3181, x212 ¼ 18:7816 and all other variables are

zero (similar for Model A), and kwt ¼ 0:65077;

x121 ¼ 2:602, x122 ¼ 150:0569, x211 ¼ 145:211, x212 ¼
19:9431 and other variables are zero (similar for Model B).

The objective function values are again given in Table 20.

8.7 Comparison and Discussion of the Obtained

Results

A comparison of the results from the three approaches is

shown in Tables 17 and 20.

Table 15 Pareto-optimal solution in e-constraint method (with PT)

Values of el Zw
1 Zw

2 Zw
3

e2 ¼ 112; e3 ¼ 1:6 10,529 112 1.6

e2 ¼ 109; e3 ¼ 1:81 11,416.61 109 1.159

e2 ¼ 90; e3 ¼ 1:81 10,,226.98 90 1.81

e2 ¼ 86; e3 ¼ 1:81 11,914 86 1.005

e2 ¼ 65; e3 ¼ 1:0 11,882.37 65 1.0

e2 ¼ 39; e3 ¼ 0:9647 12,096.90 39 0.9647

e1 ¼ 10; 226:96; e3 ¼ 1:81 10,226.91 90 1.81

e1 ¼ 10; 500; e2 ¼ 112 10,500 112 1.616

e1 ¼ 10; 900; e2 ¼ 112 10,900 112 1.396

e1 ¼ 11; 400; e2 ¼ 108 11,400 108 1.156

e1 ¼ 12; 000; e2 ¼ 65 12,000 65 0.981

The bold values are used to show the selected final Pareto-optimal

solution among other obtained solutions in €-constraint method

Table 16 Pareto-optimal solution in e-constraint method (without

PT)

Values of el Zwt
1 Zwt

2 Zwt
3

e2 ¼ 117; e3 ¼ 30 6758.233 117 30

e2 ¼ 108; e3 ¼ 25 7376.452 108 25

e2 ¼ 95; e3 ¼ 35 6326.087 95 35

e2 ¼ 86; e3 ¼ 21 7905.132 86 21

e2 ¼ 86; e3 ¼ 25 7718.526 86 22.304

e1 ¼ 6500; e3 ¼ 37:765 6500 117 37.765

e1 ¼ 7500; e3 ¼ 37:765 7500 108 24.026

e1 ¼ 8164:474; e3 ¼ 37:765 8164.474 39 20.175

e1 ¼ 7000; e2 ¼ 108 7000 108 27.967

e1 ¼ 8000; e2 ¼ 60 8000 60 20.628

e1 ¼ 8500; e2 ¼ 39 8500 39 20.175

The bold values are used to show the selected final Pareto-optimal

solution among other obtained solutions in €-constraint method

Table 17 Solutions from the e-constraint, the NLP and the Fuzzy

TOPSIS method (Example 1)

Methods Zw
1 ; Zwt

1 Zw
2 ; Zwt

2 Zw
3 ; Zwt

3

e-constraint 12096:9; 8164:474 39; 39 0:9647; 20:1754

NLP 11150.78, 7057.764 109, 108 1.2906, 27.5116

Fuzzy

TOPSIS

11840.53, 7884.58 65, 86 1.0069, 21.1054

The bold values highlight the selected a better method among other

methods

S. Ghosh et al.: The Multi-objective Solid Transportation... 2701

123



From Tables 17 and 20 we conclude that the values of

the objective functions Z2 and Z3 from the e-constraint

method are better than NLP and from the fuzzy TOPSIS

approach. This method gives most minimum value of Z2

and Z3, though Z1 is better in NLP. As our target is to

minimize deterioration and time with cost, therefore

according to the priority of second and third objective

values from these two numerical results we select e-con-

straint method as better than other two methods. This

method is defined the final results of two numerical

examples.

The novelty of this approach is as: e-constraint method

is non-fuzzy technique that has less computational burden

than two fuzzy techniques, NLP and fuzzy TOPSIS

approach. This method is confirmed to supply Pareto-op-

timal solution in its intellectual way by varying the value of

el along with Pareto-optimal front corresponding to each

objective value. Here DM has a flexibility to choose a

better Pareto-optimal solution among with several optimal

solutions. This method gives priority one objective at a

time for each case, but DM selects the most preferable case

which gives important on most objective values. Also this

method converts a multi-objective problem into a single

objective problem without violating the constraints and

without neglecting all objective functions.

The main achievements of this study are highlighted

from the numerical results. We observe that the total

investment cost Z1 increases, while the deterioration Z3

decreases due to the inclusion of PT. Some valuable items

are transported where the quality and quantity are more

important than money, then application of PT is a great

opportunity. For economically weaker supply or demand

company where the quality or quantity is not a vital matter,

then they select this MOTP without investing any PT. For

this reason the transportation systems make more profit by

choosing a suitable choice as of their economical condi-

tion. Furthermore, PT is highly applicable and suitable for

the transport of perishable items to reduce the problem of

deterioration.

9 Conclusion and Outlook to Future Research

In this manuscript, we investigated the MOSTP with a new

practical modification: the transport of perishable items.

We targeted to minimize the deterioration with PT or

without PT including time and cost. For the first time in the

course of research, we introduced the concept of PT within

MOSTP based on a Pythagorean fuzzy environment. The

practical relevance of PT in TP lies in the fact that it is very

sizeable, as the total transportation cost varies, if the effect

of PT increases or decreases, and there exists a trade-off

between the increased cost and decreased rate of deterio-

ration. For this reason the items can be sold at a higher

price, and so the profit becomes higher, which recovers the

economic loss. All the data have been chosen as TPFNs

that were transformed into their crisp counterpart by uti-

lizing a ranking operator. A Pythagorean fuzzy systems

Table 18 Pareto-optimal solution in e-constraint method (with PT)

Values of el Zw
1 Zw

2 Zw
3

e2 ¼ 51; e3 ¼ 0:3023 3838.104 51 0.3023

e2 ¼ 66; e3 ¼ 0:25 5073.928 66 0.25

e1 ¼ 3838:086; e3 ¼ 0:40 3838.086 51 0.40

e1 ¼ 4000; e3 ¼ 0:3023 4000 69 0.2921

e1 ¼ 4500; e3 ¼ 0:3023 4500 69 0.2664

e1 ¼ 5000; e3 ¼ 0:3023 5000 66 0.2653

e1 ¼ 5087:081; e3 ¼ 0:2692 5078.081 66 0.2692

e1 ¼ 5235:067; e2 ¼ 32 5078.081 32 0.2412

e1 ¼ 5235:067; e2 ¼ 48 5233.892 48 0.2689

e1 ¼ 4500; e2 ¼ 69 4500 69 0.2664

The bold values are used to show the selected final Pareto-optimal

solution among other obtained solutions in €-constraint method

Table 19 Pareto-optimal solution in e-constraint method (without

PT)

e2 ¼ 89; e3 ¼ 13:9495 3935.046 89 13.9495

e2 ¼ 50; e3 ¼ 12:59 4615.811 50 12.59

e2 ¼ 37; e3 ¼ 15:922 3030.142 37 15.922

e1 ¼ 4771:292; e3 ¼ 15:992 4771.292 48 15.922

e1 ¼ 4623:386; e3 ¼ 15:992 4623.386 32 15.992

e1 ¼ 4000; e3 ¼ 15:992 4000 69 15.922

e1 ¼ 3030:142; e3 ¼ 15:992 3030.142 37 15.992

e1 ¼ 4771:292; e2 ¼ 48 4771.292 48 13.9495

e1 ¼ 4623:386; e2 ¼ 32 4623.386 32 12.58

The bold values are used to show the selected final Pareto-optimal

solution among other obtained solutions in €-constraint method

Table 20 Solutions from the e-constraint, the NLP and the Fuzzy

TOPSIS method (Example 2)

Methods Zw
1 ; Zwt

1 Zw
2 ; Zwt

2 Zw
3 ; Zwt

3

e-constraint 5078:081; 4623:386 32; 32 0:2412; 12:58

NLP 4498.791, 3870.882 69, 69 0.2665, 14.0878

Fuzzy TOPSIS 4938.04, 4462.283 50, 69 0.2450, 12.8130

The bold values highlight the selected a better method among other

methods
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break the limitation of a fuzzy or an IFS, and provides the

use of extensive uncertain information. Pareto-optimal

solutions have been obtained by computation of the e-
constraint method, the NLP and the fuzzy TOPSIS

approach using the LINGO optimization software package.

A comparative study has been drawn among the Pareto-

optimal solutions of a real-life based numerical problem for

these three approaches. We found out that the e-constraint

method has produced a better result of a Pareto-optimal

solution than the fuzzy TOPSIS and the NLP method. We

used a PT that prevents the deterioration at the price of

preservation cost. Finally, from the applied viewpoint, we

conclude that our model is highly significant in real-life

situations and this gives a new prototype to the decision

makers.

In future studies, the content of this paper can open a

new dimension to make a separate investigation for the

MOSTP in a Pythagorean fuzzy environment. One may

consider different safety factors with limited time for

transporting breakable items in our model. Another option

is to consider a deterioration with sustainability ([24, 36])

under different uncertain environments [29], such as cubic/

interval Pythagorean fuzzy, Gaussian type-2 fuzzy, or

neutrosophic systems, to be included in the proposed

model. Also distance measures for different value indexes

r in the fuzzy TOPSIS or the intuitionistic fuzzy TOPSIS

approach can be a subject of further studies in the area of

the MOSTP with PT.
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