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Abstract This article focuses on adaptive fuzzy output

feedback control for a class of fractional-order uncertain

nonlinear strict-feedback systems with unmeasured states

and full-state constraints. Fuzzy-logic systems are

employed to approximate uncertain nonlinear functions,

and a fractional-order fuzzy state observer based on the

structure of the considered systems is framed to estimate

the unmeasurable states. In each step of backstepping

procedure, a barrier Lyapunov function is introduced in the

design of the controller and the adaptation laws to satisfy

the condition of the state constraints. Based on the frac-

tional-order Lyapunov stability theory, a fractional-order

adaptive fuzzy controller is constructed to guarantee that

all the states remain in their constraint bounds, the tracking

error converges to a bounded compact set containing the

origin, and all signals in the closed-loop system are ensured

to be bounded. Finally, a simulation example verifies the

effectiveness of the proposed control design.

Keywords Fractional-order nonlinear system � Output
feedback control � Full-state constraints � Fuzzy adaptive

control � Barrier Lyapunov function

1 Introduction

Due to the remarkable adapting ability for dealing with

structural and parametric uncertainties, adaptive control

theory for nonlinear systems as a research hotspot has

attracted more and more attentions and interests in both

academic and engineering fields [1], in which an accurate

mathematical model is hard to build because of the com-

plexity of the practical engineering systems. In addition,

Fuzzy-logic systems (FLSs) [2–4] or artificial neural net-

works [5–7] as universal approximators are used to

approximate any unknown functions for adaptive approa-

ches to any desired accuracy, such as the ideal controller or

the uncertain nonlinear dynamics without prior knowledge

of the nonlinear systems. Therefore, intelligent adaptive

control methods for uncertain nonlinear systems have

developed rapidly in recent years [8–12], in which different

types of control problem for nonlinear systems are pre-

sented by backstepping design technique.

Owing to the state constraints often appear in practical

plants, the control stability of systems with the state con-

straints is an important issue for the control design. For the

problem the system state constraints, the full-state-con-

strained nonlinear system under actuator faults are con-

trolled in [13] by constructing barrier Lyapunov functions

(BLFs). In [14], the practical output tracking control is

provided for high-order uncertain nonlinear systems with

& Changhui Wang

wang_chaghui@126.com

& Shuai Lu

lushuai405@163.com

Mei Liang

mmglm@163.com

Yaowen Chang

changyaowen123@foxmail.com

Fuyi Zhang

1319301483@qq.com

Shouli Wang

1319903956@qq.com

Yantao Wang

tomsmarter@163.com

1 School of Electromechanical and Automotive Engineering,

Yantai University, 32 Qingquan Road, Laishan District,

Yantai, People’s Republic of China

123

Int. J. Fuzzy Syst. (2022) 24(2):1046–1058

https://doi.org/10.1007/s40815-021-01189-5

http://orcid.org/0000-0001-5505-7846
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-021-01189-5&amp;domain=pdf
https://doi.org/10.1007/s40815-021-01189-5


full-state constraints via employing a BLF to guarantee that

the constraints limit are not transgressed. For nonlinear

strict-feedback systems guided by multiple dynamic lead-

ers subject to full-state constraints, the authors in [15]

proposed the distributed adaptive control method

using the FLS approximation. In [16], the controller

design is provided for nonlinear multi-input multi-output

(MIMO) systems under asymmetric full-state constraints

by employing a BLF to guarantee that all the states con-

straints are not to violate their constraints. The output

feedback control for strict-feedback MIMO nonlinear sys-

tems with full-state constraints and hysteresis input is made

in [17] via constructing an adaptive radial basis function

neural network mechanism.

Many real-world engineering plants and process

behaviors, such as viscoelastic structures or heat conduc-

tion, can be modeled concisely and precisely using frac-

tional-order dynamics [18]. Moreover, there are more

potential advantages and design freedom for fractional-

order controllers than integer-order controllers, which has

many interesting properties and some potential applications

receiving lots of attention from engineers [19–24].

Recently, a large volume of the fractional-order nonlinear

systems regarding theory and applications are growing

continuously [25–30]. Due to the existence of model

uncertainties and external disturbance, the control design

for uncertain fractional-order system have been attracted in

research field, and many research results can be found,

such as the neural network control [31, 32], the fuzzy

control [33–35], the sliding mode control [36–40] and

adaptive control [41–44].

To achieve the performance of the fractional-order with

state constraints, the event-triggered control has been

designed by introducing the BLF in [45]. For the incom-

mensurate fractional-order chaotic model of the permanent

magnet synchronous motors with full-state constraints and

parameter uncertainties, the authors in [46] design an

adaptive neural network controller using command filter-

ing, where the BLFs are presented to solve the problem of

state constraints. Although some achievements on frac-

tional-order nonlinear constraint systems with the unmea-

sured states are obtained, there still are some important

issues, such as how to design the output feedback control

for fractional-order nonlinear systems with the full-state

constraints, unknown functions and unmeasurable states.

Motivated by this purpose, the paper will try to design

an observer-based adaptive fuzzy control for uncertain

fractional-order nonlinear systems, to solve some problems

appeared in the constraint control. The main contributions

are summarized as

(1) Based on adaptive backstepping recursive algorithm,

both full-state constraints and uncertainties are

considered in the design process for the fractional-

order nonlinear systems, which is more general for

application in practical engineering.

(2) To estimate the unmeasurable state variables of the

fractional-order nonlinear system, a fractional-order

fuzzy state observer is constructed, which is much

more precise than the general linear observer design.

(3) Based on the fractional-order Lyapunov stability

criterion, an adaptive fuzzy control scheme is

designed for the triangular structure fractional-order

nonlinear systems with constrained states, in which

all signals of the closed-loop systems are bounded,

and the tracking error converges to the origin with a

small scale. The remainder of this article is orga-

nized as follows.

In Sect. 2, the preliminaries of this article including

fuzzy-logic systems, fractional integrals and derivatives,

and the preliminary results on fractional-order systems are

presented. In Sect. 3, the description of the fractional-order

system with full-state constraints are presented. The

detailed observer and controller design of the fractional-

order control system as well as the stability analysis are

given in Sect. 4. Section 5 shows the simulation example to

illustrate the effectiveness of theoretical results. Section 6

concludes this article.

2 Preliminary

2.1 Fuzzy-Logic Systems

Due to the fact that there are the uncertainties and unknown

nonlinear functions of the considered system, the fuzzy-

logic systems (FLSs) will be introduced in this sec-

tion. There are four main components in a FLS [47]: (1)

knowledge base; (2) fuzzifier; (3) fuzzy inference engine

using fuzzy rules; and (4) defuzzifier. The knowledge base

of FLS is made up of a series of fuzzy The IF-THEN rules

used to make up the knowledge base of FLS are presented

as follows: Rl : if x1 is F
l
1 and x2 is F

l
2 � � � and xn is Fl

n; then

y is Gl; l ¼ 1; 2; . . .; N, where x ¼ ½x1; :::; xn�T is the FLS

input, and y is FLS output. N is the number of inference

rules. lFl
i
xið Þ and lGl yð Þ are the membership functions of

fuzzy sets Fl
i and Gl, respectively.

Combining the methods of the Singleton function, cen-

ter average defuzzification, and product inference, the

output of the FLS can be expressed as follows:

y xð Þ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
xið Þ

� �

PN
l¼1

Qn
i¼1 lFl

i
xið Þ

� � ð1Þ

M. Liang et al.: Observer-Based Adaptive Fuzzy Output Feedback Control for a... 1047

123



where �yl ¼ max
y2R

lGl yð Þ.
Denoting hT ¼ �y1; �y2; :::; yN½ � ¼ h1; h2; :::; hN½ � and

uðxÞ ¼ u1ðxÞ;u2ðxÞ; :::;uNðxÞ½ �T, where ul xð Þ ¼
Qn

i¼1 lFl
i
xið Þ
�PN

l¼1

Qn
i¼1 lFl

i
xið Þ

� �
; l ¼ 1; 2; . . .;N. Then,

FLS (1) can be rewritten as

y xð Þ ¼ hTu xð Þ ð2Þ

Lemma 1 [48]. Let f(x) be a continuous function defined

on a compact set X. Then, for 8e[ 0, there exists an FLS

(2) such that sup
x2X

f xð Þ � h�Tu xð Þ
�
�

�
�� e.

2.2 Fractional Calculus and Related Lemmas

In this section, we will introduce some definitions of

fractional calculus and several important lemmas. For more

details, please refer to the book [19, 49].

The fractional-order integral of continuous function f tð Þ
with respect to t and the lower terminal t0 is defined as

follow:

Iat0 f tð Þ ¼ 1

C að Þ

Z t

t0

f sð Þ
t � sð Þ1�a ds ð3Þ

where C að Þ ¼
R1
0

e�tta�1dt is the Eulers Gamma function.

The ath Caputo fractional derivative is expressed by

Da
t0
f tð Þ ¼ 1

C n� að Þ

Z t

t0

f nð Þ tð Þ
t � sð Þaþ1�n

ds ð4Þ

where n� 1\a\n; n is a positive integer. t0
Da

t is abbre-

viated as Da, when t0 ¼ 0.

The one-parameter Mittag–Leffler function is defined as

Ea;c fð Þ ¼
X1

k¼0

fk

C ak � cð Þ ð5Þ

where f is a complex number, and a; c are positive con-

stants. Note that Ea;1 fð Þ ¼ Ea fð Þ and E1;1 fð Þ ¼ ef.

Lemma 2 [19]. If / 2 pa
2
; pa

� �
, then there exists ![ 0,

such that the Mittag–Leffler function is bounded by

Ea;c fð Þ
�
�

�
�� !

1þ fj j ; c� arg fð Þj j � p; fj j � 0 ð6Þ

Lemma 3 [50]. Let the ath derivative of a smooth func-

tion V tð Þ : Rþ ! R satisfy

DaV tð Þ þ gV tð Þ� l ð7Þ

where a 2 0; 1ð Þ; g[ 0, and l� 0. Then, the following

holds

V tð Þ�V 0ð ÞE a;1ð Þ �gtað Þ þ l#
g

ð8Þ

where # ¼ max 1;!f g and ! is defined in Lemma 2.

Lemma 4 [51]. Let x tð Þ 2 Rn be a vector of differentiable

function. Then, Da xT tð Þx tð Þð Þ� 2xT tð ÞDa x tð Þð Þ holds for

any time instant t� t0 and a 2 0; 1ð �.

Lemma 5 [21]. Let x tð Þ 2 Rn be a vector of differentiable

functions. Then, the relationship Da xT tð ÞPx tð Þð Þ�2xT tð Þ
PDa x tð Þð Þ holds for any time instant t�t0 and a2 0;1ð �,
where P¼PT[0 is a positive-definite matrix.

Lemma 6 [52]. Let h1 �ð Þ 2 R and h2 �ð Þ 2 R be smooth

functions. Assume that the function h1 h2ð Þ is convex (i.e.,

o2h1 h2ð Þ
�
oh22 � 0), then, using the Caputo definition of

fractional derivatives, one can obtain

Dah1 h2ð Þ� oh1 h2ð Þ
�
oh2 � Dah2 for 8t� 0 and a 2 0; 1ð �.

Lemma 7 [53, 54]. For existing the arbitrary positive

constant kb0 , the following inequality holds

ln
k2b0

k2b0 � 12 tð Þ �
12 tð Þ

k2b0 � 12 tð Þ ð9Þ

if all 1 tð Þ in the interval 1 tð Þj j � kb0 .

3 System Descriptions

Consider a class of fractional-order nonlinear systems with

state constraints described as follows:

Daxi ¼ xiþ1 þ fi xið Þ þ di tð Þ; i ¼ 1; 2; . . .; n� 1

Daxn ¼ uþ fn xð Þ þ dn tð Þ
y ¼ x1

8
><

>:
ð10Þ

where a 2 0; 1ð � is the system fractional-order, x ¼
x1 x2 . . . xnð ÞT 2 Rn and i ¼ x1 x2 . . . xið ÞT 2

Ri are the system state vectors, u 2 R is the control input,

y 2 R is the measurable output, fi xið Þ is an unknown

smooth function, and di tð Þ is the bounded disturbance,

i ¼ 1; 2; . . .; n. In this paper, it is assumed that

xi; i ¼ 2; 3; . . .; n, are unmeasurable and all the states are

constrained in the compact sets, i.e.,

xi 2 xij xij j\kci ; kci [ 0f g; i ¼ 1; 2; . . .; n.

Remark 1 It’s worth noting that the integer-order calculus

is a special case of the fractional-order one when a¼1, and

a large class of real-world systems, such as mechanical

systems [55], power systems [30, 56], robotic systems [57]

and Chaotic systems [19], can be presented using frac-

tional-order system (8).

Rewriting (10) in the following form
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Dax ¼ Axþ Lyþ
Xn

i¼1

Bi fi xið Þ þ di tð Þð Þ þ Bu ð11Þ

where

A ¼
�l1

..

.
I

�ln 0 � � � 0

0

B
B
@

1

C
C
A; L ¼

�l1

..

.

�ln

0

B
B
@

1

C
C
A;B ¼

0

..

.

1

0

B
@

1

C
A

Bi ¼ 0 � � � 1 � � � 0ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

i

ð12Þ

and A is a strict Hurwitz matrix by selecting the appropriate

L. Then, there is ATPþ PA ¼ �2Q where PT¼P[ 0 and

QT¼Q[ 0, and A can be obtained by solving matrix

inequality ATPþ PA� � 2Q in MATLAB.

Define the desired trajectory as yr tð Þ, which is known

and bounded, and the output tracking error is described as

v1 ¼ y� yr tð Þ. The control objective is to design an

adaptive fuzzy controller with the observer to guarantee

that (1) a fuzzy observer is designed to estimate the

unmeasured states xi; i ¼ 2; 3; . . .; n, and the tracking error

v1 ¼ y� yr tð Þ converges to a bounded compact set; (2) all

the signals in the closed-loop system are guaranteed to be

bounded, and (3) all the states are not to transgress their

constrained sets.

Assumption 1 For 8kci [ 0, there exist the positive

constants A1 and Yi; i ¼ 1; 2; . . .; n, such that the desired

trajectory yr tð Þ and its ith order derivatives Diayr tð Þ [49]

are assumed to satisfy yr tð Þj j �A1\kci and Diayr tð Þ
�
�

�
�� Yi.

4 Fuzzy Observer and Controller Designs

In this part, it is assumed that the states of (10) are not

available and an observer is framed to estimate the states.

Then, an observer-based fuzzy adaptive control is

established.

By the FLSs, the nonlinear terms in (10) can be

approximated as fi xijhið Þ ¼ hTi ui xið Þ and f̂ i x̂ijhið Þ ¼
hTi u x̂ið Þ where x̂i ¼ x̂1 x̂2 . . . x̂ið ÞT is the estimation

of xi. Define the variables errors ei ¼ fi xið Þ � f̂ i x̂ijh�i
� �

and

di ¼ fi xið Þ � f̂ i x̂ijhið Þ where h�i is the optimal parameter

vectors, and define e0i ¼ ei þ di tð Þ and d0i ¼ di þ di tð Þ.

Assumption 2 There exist the constants �ei and �di, such
that e0ij j � �ei and d0ij j � �di, i ¼ 1; 2; . . .; n.

Design a fractional-order fuzzy state observer as follows

Dax̂ ¼ Ax̂þ Lyþ
Pn

i¼1

Bi f̂ i x̂ijhið Þ
� �

þ Bu

ŷ ¼ x̂1

ð13Þ

Due to the nonlinear term Lyþ
Pn

i¼1

Bi f̂ i x̂ijhið Þ
� �

, the pro-

posed nonlinear observer has higher estimation accuracy

comparing with the fractional-order linear observer.

Let ~x ¼ x� x̂ ¼ ~x1 � � � ~xnð ÞT be the observer error,

and due to (11) and (13) we obtain

Da ~x ¼ A~xþ
Xn

i¼1

Bi fi xið Þ � f̂ i x̂ijhið Þ þ di tð Þ
� �

¼ A~xþ d

ð14Þ

where d ¼ d01 � � � d0n
� �T

. let �d ¼ dk k2 ¼
Pn

i¼1

�d
2

i .

The following steps present the detailed design proce-

dures of fuzzy adaptive output feedback controller.

Step 1: Using x2 ¼ x̂2 þ ~x2, the ath Caputo fractional

derivative of the tracking error v1 ¼ y� yr tð Þ is
Dav1 ¼ x2 þ f1 x1ð Þ þ d1 tð Þ � Dayr tð Þ
¼ x̂2 þ ~x2 þ hT1u1 x̂1ð Þ þ ~h

T

1u1 x̂1ð Þ þ e01 � Dayr tð Þ
ð15Þ

where ~h1 ¼ h�1 � h1. Taking x̂2 as a virtual control, and

define v2 ¼ x̂2 � a1 � Dayr tð Þ. Then, we have

Dav1 ¼ v2 þ a1 þ Dayr tð Þ þ ~x2

þ hT1u1 x̂1ð Þ þ ~h
T

1u1 x̂1ð Þ þ e01 � Dayr tð Þ

¼ v2 þ a1 þ ~x2 þ hT1u1 x̂1ð Þ þ ~h
T

1u1 x̂1ð Þ þ e01

ð16Þ

Consider the following Lyapunov function

V1 ¼
1

2
~xTP~xþ 1

2
ln

k2b1
k2b1 � v21

þ 1

2c1
~h
T

1
~h1 ð17Þ

where c1 [ 0 is a design parameter and v1j j � kb1 with

kb1 ¼ kc1 � A1.

Remark 2 The V1 is positive-definite and continuous in

the region v1j j\kb1 , which is introduced to limit the

tracking error v1 and constrain the system state x1.

From Eqs. (14), (16), Lemmas 4, 5 and 6, the ath
Caputo fractional derivative of V1 is

DaV1 � ~xTPDa ~xþ 1

2
Da ln

k2b1
k2b1 � v21

 !

þ 1

c1
~h
T

1D
a~h1 ð18Þ

According to Lemma 6 and ln
k2b1

k2
b1
�v2

1

is convex when

h1 ¼ ln
k2b1

k2
b1
�v2

1

; h2 ¼ v1, we obtain

1

2
Da ln

k2b1
k2b1 � v21

 !

� v1
k2b1 � v21

Dav1 ð19Þ

Then we have
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DaV1� ~xTPDa ~xþ v1
k2b1 �v21

Dav1þ
1

c1
~h
T

1D
a~h1

� 1

2
~xT PATþAP
� �

~xþ ~xTPdþ 1

c1
~h
T

1D
a~h1

þ v1
k2b1 �v21

v2þa1þ ~x2þhT1u1 x̂1ð Þþ ~h
T

1u1 x̂1ð Þþe01
� �

�� ~xT Qð Þ~xþ ~xTPdþ v1
k2b1 �v21

v2þa1þhT1u1 x̂1ð Þþ e01
� �

þ v1
k2b1 �v21

~x2þ
v1

k2b1 �v21
~h
T

1u1 x̂1ð Þþ 1

c1
~h
T

1D
a~h1

ð20Þ

According to the Youngs inequality and Assumption 2, we

get

~xTPdþ v1
k2b1 � v21

e01 þ
v1

k2b1 � v21
~x2

� 1

2
~xk k2þ Pdk k2

� �
þ 1

2

v21

k2b1 � v21

� �2 þ e01j j2
0

B
@

1

C
A

þ 1

2

v21

k2b1 � v21

� �2 þ ~x2j j2

0

B
@

1

C
A

� 1

2
~xk k2þ Pdk k2þ ~x2j j2þe21

� �
þ v21

k2b1 � v21

� �2

� 1

2
~xk k2þ Pdk k2þ ~xk k2þe21

� �
þ v21

k2b1 � v21

� �2

� 1

2
Pdk k2þe21

� �
þ ~xk k2þ v21

k2b1 � v21

� �2

ð21Þ

Substituting (21) into (20), one can obtain

DaV1 � � ~xT Qð Þ~xþ 1

2
Pdk k2þe21

� �
þ ~xk k2þ v21

k2b1 � v21

� �2

þ v1
k2b1 � v21

v2 þ a1 þ hT1u1 x̂1ð Þ
� �

þ v1
k2b1 � v21

~h
T

1u1 x̂1ð Þ

þ 1

c1
~h
T

1D
a~h1

� � kmin Qð Þ � 1ð Þ ~xk k2 þ 1

2
Pdk k2þe21

� �
þ v21

k2b1 � v21

� �2

þ v1
k2b1 � v21

v2 þ a1 þ hT1u1 x̂1ð Þ
� �

þ 1

c1
~h
T

1

c1v1
k2b1 � v21

u1 x̂1ð Þ � Dah1

 !

ð22Þ

Design virtual controller a1 and the adaptation law h1 as

a1 ¼� c1v1 � hT1u1 x̂1ð Þ � v1
k2b1 � v21

ð23Þ

Dah1 ¼
c1v1

k2b1 � v21
u1 x̂1ð Þ � r1h1 ð24Þ

where c1 [ 0 and r1 [ 0 are the design parameters.

Substituting (23) and (24) into (22) results in

DaV1 � � kmin Qð Þ � 1ð Þ ~xk k2 þ q1þ
v1v2

k2b1 � v21

� c1v21
k2b1 � v21

þ r1
c1

~h
T

1h1

ð25Þ

where q1 ¼ 1
2

Pdk k2þe21

� �
.

Step 2: Differentiating v2 ¼ x̂2 � a1 � Dayr tð Þ yields
Dav2 ¼ x̂3 þ l2 ~x1 þ hT2u2 x̂2ð Þ � Daa1 � D2ayr tð Þ

¼ x̂3 þ l2 ~x1 þ hT2u2 x̂2ð Þ þ ~h
T

2u2 x̂2ð Þ þ e2
� d2 � Daa1 � D2ayr tð Þ

ð26Þ

Consider the following Lyapunov function

V2 ¼ V1 þ
1

2
ln

k2b2
k2b2 � v22

þ 1

2c2
~h
T

2
~h2 ð27Þ

where c2 [ 0 is a design parameter and kb2 is defined later.

According to Lemma 6, (25) and (26), we have the ath
Caputo fractional derivative of V2 as
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DaV2�DaV1þ
v2

k2b2 �v22
Dav2þ

1

c2
~h
T

2D
a~h2

�� kmin Qð Þ�1ð Þ ~xk k2þq1�
c1v21

k2b1 �v21
þr1
c1

~h
T

1h1þ
1

c2
~h
T

2D
a~h2

þ v2
k2b2 �v22

x̂3þ l2 ~x1þ
k2b2 �v22
k2b1 �v21

v1þhT2u2 x̂2ð Þþ~hT2u2 x̂2ð Þ
 !

þ v2
k2b2 �v22

e2�d2�Daa1�D2ayr tð Þ
� �

�� kmin Qð Þ�1ð Þ ~xk k2þq1þ
v1v2

k2b1 �v21
� c1v21
k2b1 �v21

þr1
c1

~hT1h1

þ v2
k2b2 �v22

x̂3þ l2 ~x1þ
k2b2 �v22
k2b1 �v21

v1þhT2u2 x̂2ð Þ
 !

þ v2
k2b2 �v22

e2�d2�Daa1�D2ayr tð Þ
� �

þ 1

c2
~h
T

2

c2v2
k2b2 �v22

u2 x̂2ð Þ�Dah2

 !

ð28Þ

Due to the Youngs inequality, we have

v2
k2b2 � v22

e2 � d2ð Þ� v22

k2b2 � v22

� �2 þ
1

2
e22þ

1

2
d22 ð29Þ

Substituting (29) into (28) yields

DaV2 � � kmin Qð Þ � 1ð Þ ~xk k2 þ q1 �
c1v21

k2b1 � v21
þ r1

c1
~h
T

1h1

þ v2
k2b2 � v22

x̂3 þ l2 ~x1þ
k2b2 � v22
k2b1 � v21

v1 þ hT2u2 x̂2ð Þ
 !

þ v2
k2b2 � v22

e2 � d2 � Daa1 � D2ayr tð Þ
� �

þ 1

c2
~h
T

2

c2v2
k2b2 � v22

u2 x̂2ð Þ � Dah2

 !

� � kmin Qð Þ � 1ð Þ ~xk k2 þ q1 �
c1v21

k2b1 � v21
þ r1

c1
~h
T

1h1

þ v2
k2b2 � v22

x̂3 þ l2 ~x1þ
k2b2 � v22
k2b1 � v21

v1 þ hT2u2 x̂2ð Þ
 !

þ v2
k2b2 � v22

�Daa1 � D2ayr tð Þþ v2
k2b2 � v22

 !

þ 1

2
e22þ

1

2
d22 þ

1

c2
~hT2

c2v2
k2b2 � v22

u2 x̂2ð Þ � Dah2

 !

ð30Þ

Define the variable as v3 ¼ x̂3 � a2 � D2ayr tð Þ, and choose

the virtual controller a2 and the adaptation law h2 as

a2 ¼ �c2v2 � hT2u2 x̂2ð Þ �
k2b2 � v22
k2b1 � v21

v1

� v2
k2b2 � v22

þDaa1 � l2~x1

ð31Þ

Dah2 ¼
c2v2

k2b2 � v22
u2 x̂2ð Þ � r2h2 ð32Þ

where c2 [ 0 and r2 [ 0 are the design parameters.

From (30), (31) and (32), we have

DaV2 � � kmin Qð Þ � 1ð Þ ~xk k2 þ q1 �
c1v21

k2b1 � v21
þ r1

c1
~h
T

1h1

þ v2
k2b2 � v22

v3 � c2v2ð Þþ 1

2
e22þ

1

2
d22 þ r2

1

c2
~hT2h2

� � kmin Qð Þ � 1ð Þ ~xk k2 þ v2v3
k2b2 � v22

�
X2

k¼1

ckv2k
k2bk � v2k

þ
P2

k¼1

rk
ck

~h
T

k hk þ q2

ð33Þ

where q2¼q1þ 1
2
e22þ 1

2
d22.

Step i; 3� i� n� 1: Using a similar procedure recur-

sively in each step, define vi ¼ x̂i � ai�1 � D i�1ð Þayr tð Þ and
we get

Davi ¼ x̂iþ1 þ li ~x1 þ hTi ui x̂ið Þ � Daai�1 � Diayr tð Þ

¼ x̂iþ1 þ li ~x1 þ hTi ui x̂ið Þ þ ~h
T

i ui x̂ið Þ
þ ei � di � Daai�1 � Diayr tð Þ

ð34Þ

Consider the following Lyapunov function

Vi ¼ Vi�1 þ
1

2
ln

k2bi
k2bi � v2i

þ 1

2ci
~h
T

i
~hi ð35Þ

where ci [ 0 is a design parameter and kbi is defined later.

By (34) and (35), we have the ath Caputo fractional

derivative of Vi as

M. Liang et al.: Observer-Based Adaptive Fuzzy Output Feedback Control for a... 1051

123



DaVi�� kmin Qð Þ�1ð Þ ~xk k2þqi�1�
ci�1v2i�1

k2bi�1
�v2i�1

þri�1

ci�1

~h
T

i�1hi�1þ
1

ci
~h
T

i D
a~hi

þ vi
k2bi �v2i

x̂iþ1þ li ~x1þ
k2bi �v2i

k2bi�1
�v2i�1

vi�1þhTi ui x̂ið Þ
 

þ~h
T

i ui x̂ið Þ
�

þ vi
k2bi �v2i

ei�di�D i�1ð Þaai�1�Diayr tð Þ
� �

�� kmin Qð Þ�1ð Þ ~xk k2þqi�1þ
vi�1vi

k2bi�1
�v2i�1

� ci�1v2i�1

k2bi�1
�v2i�1

þri�1

ci�1

~h
T

i�1hi�1

þ vi
k2bi �v2i

x̂iþ1þ li ~x1þ
k2bi �v2i

k2bi�1
�v2i�1

vi�1þhTi ui x̂ið Þ
 !

þ vi
k2bi �v2i

ei�di�D i�1ð Þaai�1�Diayr tð Þ
� �

þ 1

ci
~h
T

i

civi
k2bi �v2i

ui x̂ið Þ�Dahi

 !

ð36Þ

Using the Youngs inequality, we have

vi
k2bi � v2i

ei � dið Þ� v2i

k2bi � v2i
� �2 þ

1

2
e2iþ

1

2
d2i ð37Þ

Substituting (37) into (36) yields

DaVi�� kmin Qð Þ�1ð Þ ~xk k2þqi�1�
ci�1v2i�1

k2bi�1
�v2i�1

þri�1

ci�1

~h
T

i�1hi�1

þ vi
k2bi �v2i

x̂iþ1þ li ~x1þ
k2bi �v2i

k2bi�1
�v2i�1

vi�1þhTi ui x̂ið Þ
 !

þ vi
k2bi �v2i

�D i�1ð Þaai�1�Diayr tð Þ
� �

þ v2i

k2bi �v2i

� �2þ
1

2
e2iþ

1

2
d2i þ

1

ci
~hTi

civi
k2bi �v2i

ui x̂ið Þ�Dahi

 !

�� kmin Qð Þ�1ð Þ ~xk k2þqi�1�
ci�1v2i�1

k2bi�1
�v2i�1

þri�1

ci�1

~h
T

i�1hi�1

þ vi
k2bi �v2i

x̂iþ1þ li ~x1þ
k2bi �v2i

k2bi�1
�v2i�1

vi�1þhTi ui x̂ið Þ
 !

þ vi
k2bi �v2i

�D i�1ð Þaai�1�Diayr tð Þþ vi
k2bi �v2i

 !

þ1

2
e2iþ

1

2
d2i þ

1

ci
~hTi

civi
k2bi �v2i

ui x̂ið Þ�Dahi

 !

ð38Þ

Let viþ1¼ x̂iþ1�ai�Diayr tð Þ, and design the virtual con-

troller ai and adaptation law hi as

ai ¼ �civi � hTi ui x̂ið Þ �
k2bi � v2i

k2bi�1
� v2i�1

vi�1

� vi
k2bi � v2i

þD i�1ð Þaai�1 � li~x1

ð39Þ

Dahi ¼
civi

k2bi � v2i
ui x̂ið Þ � rihi ð40Þ

where ci [ 0 and ri [ 0 are the design parameters.

From (38), (39) and (40), we have

DaVi � � kmin Qð Þ � 1ð Þ ~xk k2 þ qi�1 �
ci�1v2i�1

k2bi�1
� v2i�1

þ ri�1

ci�1

~h
T

i�1hi�1

þ vi
k2bi � v2i

viþ1 � civi
� �

þ 1

2
e2iþ

1

2
d2i þ ri

1

ci
~hTi hi

� � kmin Qð Þ � 1ð Þ ~xk k2 þ viviþ1

k2bi � v2i
�
Xi

k¼1

ckv2k
k2bk � v2k

þ
Pi

k¼1

rk
ck

~h
T

k hk þ qi

ð41Þ

where qi¼qi�1þ 1
2
e2iþ 1

2
d2i .

Step n: In this final step, the actual controller u will be

designed. Let vn ¼ x̂n � an�1 � D n�1ð Þayr tð Þ, and we obtain

Davn ¼ uþ ln ~x1 þ hTnun x̂nð Þ þ ~h
T

nun x̂nð Þ
þ en � dn � Daan�1 � Dnayr tð Þ

ð42Þ

Consider the Lyapunov function as follow

Vn ¼ Vn�1 þ
1

2
ln

k2bn
k2bn � v2n

þ 1

2cn
~h
T

n
~hn ð43Þ

where cn [ 0 is a design parameter and kbn is defined later.

According to (42) and (43), we have the ath Caputo

fractional derivative of Vn as
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DaVn � � kmin Qð Þ � 1ð Þ ~xk k2 þ vn�1vn
k2bn�1

� v2n�1

�
Pn�1

k¼1

ckv2k
k2bk � v2k

þ
Pn�1

k¼1

rk
ck

~h
T

k hk þ qn�1 þ
1

cn
~h
T

nD
a~hn

vn
k2bn � v2n

uþ ln ~x1 þ hTnun x̂nð Þ þ ~h
T

nun x̂nð Þ
� �

vn
k2bn � v2n

en � dn � Daan�1 � Dnayr tð Þð Þ

� � kmin Qð Þ � 1ð Þ ~xk k2 �
Pn�1

k¼1

ckv2k
k2bk � v2k

þ
Pn�1

k¼1

rk
ck

~h
T

k hk þ qn�1

vn
k2bn � v2n

uþ ln ~x1 þ
k2bn � v2n

k2bn�1
� v2n�1

vn�1 þ hTnun x̂nð Þ
 !

vn
k2bn � v2n

en � dn � Daan�1 � Dnayr tð Þð Þ

þ 1

cn
~h
T

n

cnvn
k2bn � v2n

un x̂nð Þ þ Da~hn

 !

ð44Þ

Using the Youngs inequality, we get

vn
k2bn � v2n

en � dnð Þ� v2n

k2bn � v2n

� �2 þ
1

2
e2nþ

1

2
d2n ð45Þ

Substituting (45) into (44) yields

DaVn � � kmin Qð Þ � 1ð Þ ~xk k2 �
Pn�1

k¼1

ckv2k
k2bk � v2k

þ
Pn�1

k¼1

rk
ck

~h
T

k hk þ qn�1

vn
k2bn � v2n

uþ ln ~x1 þ
k2bn � v2n

k2bn�1
� v2n�1

vn�1 þ
vn

k2bn � v2n

 !

vn
k2bn � v2n

hTnun x̂nð Þ � Daan�1 � Dnayr tð Þ
� �

þ 1

2
e2nþ

1

2
d2n þ

1

cn
~hTn

cnvn
k2bn � v2n

un x̂nð Þ þ Da~hn

 !

ð46Þ

Design the control u and the adaptation law hn as

u ¼ �cnvn � hTnun x̂nð Þ �
k2bn � v2n

k2bn�1
� v2n�1

vn�1

� vn
k2bn � v2n

þDaan�1þDnayr tð Þ � ln~x1

ð47Þ

Dahn ¼
cnvn

k2bn � v2n
un x̂nð Þ � rnhn ð48Þ

where cn [ 0 and rn [ 0 are the design parameters.

From (46), (47) and (48), we have

DaVn � � kmin Qð Þ � 1ð Þ ~xk k2 �
Xn

k¼1

ckv2k
k2bk � v2k

þ
Xn

k¼1

rk
ck

~h
T

k hk þ qn

ð49Þ

where qn¼qn�1þ 1
2
e2nþ 1

2
d2n.

Based on the Youngs inequality, we obtain

rk
ck

~h
T

k hk ¼ � rk
ck

~h
T

k
~hk þ

rk
ck

~h
T

k h
�
k

� � rk
2ck

~h
T

k
~hk þ

rk
2ck

h�k
	
	
	
	2

ð50Þ

Using Lemma 7, we have

� ckv2k
k2bk � v2k

� � ck ln
k2bk

k2bk � v2k
ð51Þ

Then, we have

DaVn � � kmin Qð Þ � 1ð Þ ~xk k2 �
Pn

k¼1

ck ln
k2bk

k2bk � v2k

�
Pn

k¼1

rk
2ck

~h
T

k
~hk þ

Pn

k¼1

rk
2ck

h�k
	
	
	
	2 þ qn

ð52Þ

From (17), (27), (35) and (43), we have

Vn ¼
1

2
~xTP~xþ 1

2

Xn

k¼1

ln
k2bk

k2bk � v2k
þ
Xn

k¼1

1

2cn
~h
T

k
~hk ð53Þ

Let

c ¼ min
2 kmin Qð Þ � 1ð Þ

kmax Pð Þ ; 2ci; ri; i ¼ 1; 2; . . .; n


 �

; kmin Qð Þ[ 1

k ¼
Pn

k¼1

rk
2ck

h�k
	
	
	
	2 þ qn

ð54Þ

Then, (52) becomes

DaVn � � cVn þ k ð55Þ

Theorem 1 Using Assumption 1, 2 and if the initial

conditions satisfy xi 0ð Þ 2 Xx ¼ xij xi 0ð Þj j\kcif g, the

adaptive fuzzy control scheme described by the state

observer (13), the adaptive controller (47) with virtual

controllers (23), (31) and (39), and adaptation laws (24),

(32), (40), and (48) guarantee that (1) the all the signals of

the closed-loop system are bounded; (2) all the states x tð Þ
of system are never violated; (3) the closed-loop error

signal vi will remain within the compact set Xv ¼
vij vij j �f kbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2Vn 0ð ÞE a;1ð Þ �ctað Þ�2k#c

p
; i ¼ 1; 2; . . .; ng.

Proof According to Lemma 3 and (55), it is easily to

obtain
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Vn tð Þ�Vn 0ð ÞE a;1ð Þ �ctað Þ þ k#
c

ð56Þ

Using Lemma 2, we have

Vn tð Þ� k#
c
; 8t ! 1 ð57Þ

From (43) and the inequation (57), we obtain the bound-

edness of ln
k2bk

k2
bi
�v2i

, thus vi
�
�
�
� remains in the set vi

�
�
�
�\kbi .

Also, it holds that ~x and ~hi are bounded, i ¼ 1; 2; . . .; n.

Then x̂ and hi are bounded since x̂ ¼ x� ~x and

hi ¼ h�i � ~hi.
As v1 and yr tð Þ are bounded and x1 ¼ v1 þ yr tð Þ, we

obtain that the state x1 is bounded. Due to (23), virtual

controller a1 is the function of v1; h
T
1 , and x̂1. Then, virtual

controller a1 is also bounded and the supremum �a1 of a1
exists. From the definition of v2 ¼ x2 � a1 we can know

that x2 is bounded. Similarly, the boundedness of system

states xi; i ¼ 3; . . .; n, the virtual controllers ai; i ¼ 2; . . .; n
and the actual controller u are obtained.

From x1 ¼ v1 þ yr tð Þ and yr tð Þj j �A1, we have

x1j j � v1j j þ yr tð Þj j\kb1 þ A1. Define kb1 ¼ kc1 � A1, and

we get x1j j\kc1 . As x2 ¼ v2 þ a1 and a1j j � �a1, it can

obtain that x2j j � v2j j þ a1j j\kb2 þ �a1. Define

kb2 ¼ kc2 � �a1, and we get x2j j � kc2 . Likewise, we can in

turn prove that xij j � kci , i ¼ 3; . . .; n. Thus, the system

states are not violated.

On the other hand, the following inequalities hold from

(53) and (56)

1

2
ln

k2bi
k2bi � v2i

�Vn 0ð ÞE a;1ð Þ �ctað Þ þ k#
c

1

2
~xTP~x�Vn 0ð ÞE a;1ð Þ �ctað Þ þ k#

c

ð58Þ

These imply that

vkj j � kbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2Vn 0ð ÞE a;1ð Þ �ctað Þ�2k#c

p

~xk k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

kmin Pð Þ Vn 0ð ÞE a;1ð Þ �ctað Þ þ k#
c


 �s ð59Þ

Then, we obtain that vi and ~x can be made arbitrarily small

by selecting the design parameters appropriately. In sum-

mary, all the signals in the closed-loop system are bounded.

This completes the proof. h

5 Simulation

Consider the fractional-order nonlinear systems as follows

Dax1¼x2 þ x1e
0:3x1 þ 0:8x21 þ 0:1 cos tð Þ

Dax2¼ 0:75x1x
2
2 þ uþ 0:03 sin tð Þ

y ¼ x1

ð60Þ

where x1 and x2 are the system states, u is the control input,

y is the output of systems, 0:1 cos tð Þ and 0:03 sin tð Þ are the
external disturbances, and a¼0:8. The state constraints are

given as kc1¼1 and kc2¼1:5. The reference signal is defined

as yr tð Þ ¼ 0:6 sin tð Þ, and the initial states are chosen as

x1 0ð Þ ¼ 0 and x2 0ð Þ ¼ 0. The fuzzy state observer is

designed as

Dax̂1 ¼ x̂2 þ hT1u1 x̂1ð Þ þ l1 y� x̂1ð Þ
Dax̂2 ¼ hT2u2 x̂1; x̂2ð Þ þ uþ l2 y� x̂1ð Þ

ð61Þ

where the initial values are chosen as x̂1 0ð Þ ¼ 0 and

x̂2 0ð Þ ¼ 0.

Choose the fuzzy membership functions as

lFi
x̂1ð Þ ¼ exp � x̂1 þ 2� 0:5ið Þ2

2

 !

lFi
x̂1; x̂2ð Þ ¼ exp � x̂1 þ 2� 0:5ið Þ2

2

 !

exp � x̂2 þ 2� 0:5jð Þ2

2

 !

i ¼ 1; 2; . . .; 7; j ¼ 1; 2; . . .; 7

ð62Þ

Adaptive fuzzy controller with adaptation laws is designed

as

u ¼ �c2v2 � hT2u2 x̂1; x̂2ð Þ �
k2b2 � v22
k2b1 � v21

v1

� v2
k2b2 � v22

þDaa1þD2ayr tð Þ � l2~x1

a1 ¼ �c1v1 � hT1u1 x̂1ð Þ � v1
k2b1 � v21

Dah1 ¼
c1v1

k2b1 � v21
u1 x̂1ð Þ � r1h1

Dah2 ¼
c2v2

k2b2 � v22
u2 x̂1; x̂2ð Þ � r2h2

ð63Þ

where v1 ¼ y� yr tð Þ; v2 ¼ x̂2 � a1 � Dayr tð Þ. The initial

values of adaptation laws are chosen as h1 0ð Þ ¼ 07�1 and

h2 0ð Þ ¼ 049�1.

The design parameters are chosen as l1 ¼ 110; l2 ¼
115; c1 ¼ c2 ¼ 0:5; r1 ¼ r1 ¼ 0:1; c1 ¼ c2 ¼ 1, and we

can obtain kb1 ¼ kc1 � A1 and kb2 ¼ kc2 � A2 according to

the Matlab routine.

Figures 1, 2, 3, 4, and 5 show corresponding simulation

results by the proposed controller. Figure 1 is shown to

explain the system tracking trajectories of system output y

and reference signal yr tð Þ, and it can be observed from this

1054 International Journal of Fuzzy Systems, Vol. 24, No. 2, March 2022

123



figure that a good tracking performance for rapid conver-

gence is implemented. Figures 2 and 3 are used to illustrate

the trajectories of the system states x1 and x2, and the

designed observer states x̂1 and x̂2. It can be seen that x̂1
and x̂2 are designed to estimate x1 and x2, respectively, and

the state variables are not to violate their constraint bounds.

The controller input u and the norm of parameters esti-

mation of the FLS are diagrammed in Figs. 4 and 5, and

they are bounded in the closed-loop adaptive system.

6 Conclusion

An adaptive output feedback scheme for triangular uncer-

tain fractional-order nonlinear systems subject to full-state

constraints and unmeasurable states has been developed in

this article. Using the FLSs, a fractional-order adaptive

fuzzy state observer is constructed to overcome the diffi-

culty of the unmeasured states, and a novel controller is

designed on the basis of the backstepping recursive pro-

cedure using Barrier Lyapunov method. All the signals in
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Fig. 2 State trajectory x1 and the tracking signal x̂1
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Fig. 1 Trajectories of system output y and tracking signal yr tð Þ
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Fig. 3 State trajectory x2 and the tracking signal x̂2
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Fig. 4 Evolution of the norm of the parameters estimation of the FLS
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Fig. 5 Evolution of the control input
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the closed-loop system including the tracking errors, the

observer error, the fuzzy parameters and the controller are

bounded. The tracking performance and all fractional-order

states constrained in the given sets can be guaranteed.

Finally, the simulation results illustrate the performances of

the proposed control approach.
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