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Abstract In this paper, the problem of adaptive fuzzy

proportional-integral output feedback tracking control is

investigated for a class of uncertain switched nonlinear

systems with dead-zone output, unknown control coeffi-

cients, and unmodeled dynamics. The unknown parameter

of the dead-zone output is processed using adaptive esti-

mation technique. A set of switched filters are developed to

estimate unmeasurable states. Then, by combining fuzzy

logic systems and backstepping technique, an adaptive

output feedback PI tracking controller is developed, which

has intuitive structure and a strong physical meaning.

Finally, the boundedness of the tracking error and all sig-

nals in the closed-loop system is demonstrated via a mul-

tiple Lyapunov function. The effectiveness of the proposed

scheme is confirmed through two examples.

Keywords Backstepping � Dead-zone output � FLSs � PI
control � Switched nonlinear system � Unmodeled dynamics

1 Introduction

In recent decades, switched systems are investigated

because they can be used to model many practical systems

[1–15], such as, robot control systems [16–18], flight sys-

tems [19, 20], and network systems [21–24]. It is well-

known that switched systems consist of multiple subsys-

tems and a switching rule. Because the stability of a sub-

system does not determine the stability of the switched

system, a variety of stability analysis tools are developed to

analyze the stability of switched systems, such as common

Lyapunov function, multiple Lyapunov function, and sin-

gle Lyapunov function. Subsequently, a large number of

research results are reported. For example, in [25], the

tracking control problem is researched for switched non-

linear systems by adopting the common Lyapunov func-

tion. By designing a set of switched state observers to

estimate the unknown states, an adaptive fuzzy output-

feedback controller is constructed in [26] for nonstrict

feedback switched nonlinear systems. In [27], the tracking

control problem is investigated for switched nonlinear

systems via dynamic surface control method. Recently, the

adaptive neural tracking control problem for a class of

nonlower triangular uncertain switched stochastic nonlin-

ear pure feedback systems is studied in [28]. In [29], an

adaptive nonlinear disturbance observer strategy is pro-

posed for switched uncertain pure feedback nonlinear

systems with mismatched external disturbances and arbi-

trary switching. However, the above literature does not

take into account unmodeled dynamics.

Unmodeled dynamics is common in engineering envi-

ronment owing to the wide existence of modeling errors

and external disturbances. If the unmodeled dynamics are

neglected, the closed-loop system performance will be

destroyed [30]. Therefore, numerous studies are researched

for switched nonlinear systems with unmodeled dynamics

[31–34]. In [31], a novel robust adaptive stabilization

control scheme is proposed by employing a small-gain

approach. Two types of unmodeled dynamics, namely

stable and unstable, are considered by constructing the

multiple Lyapunov function in [32]. Aiming at time-delay
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systems, an adaptive fuzzy prescribed performance control

scheme is introduced in [33]. An adaptive neural tracking

controller is developed for interconnected switched sys-

tems in [34]. On the other hand, unknown control coeffi-

cients are one of the serious uncertainties in nonlinear

systems. In [25], a tracking control scheme is developed for

switched nonlinear systems with unknown control coeffi-

cients. The problem of output feedback bounded control is

studied for a class of switched nonlinear uncertain systems

in [35]. However, the aforementioned studies are restricted;

they do not consider the influence of system constraints.

System constraints, such as actuator saturation, state con-

straints, and dead-zone output. These constraints widely

exist in practical engineering systems. Owing to the limi-

tations in the physical properties of the components, the

dead-zone as one of the nonsmooth nonlinearities often

found in physical systems. The existing dead-zone may

seriously affect the system performance. This inspires

studies on the control problem of nonlinear systems with a

dead-zone output. For instance, an adaptive fuzzy output

feedback dynamic surface control scheme is developed for

nonlinear systems in [36]. In [37], an adaptive tracking

controller is designed for nonstrict feedback nonlinear

systems with input saturation and unknown output dead-

zone by introducing the Nussbaum-type function. In [38],

the adaptive neural tracking control problem is studied for

switched nonlinear systems with unknown backlash-like

hysteresis and output dead-zone. Although good control

performance is obtained in the aforementioned schemes,

the effect of unmodeled dynamics is not considered and the

controller is relatively complex.

PI control, as a control scheme with a simple and intu-

itive structure and strong physical significance, is popular

in practical engineering applications. In the early days, a

novel compensator identification scheme is proposed in

[39] to address the problem of factory identification. Sub-

sequently, for linear systems, a proportional-integral-dif-

ferential (PID) gain self-tuning technique is proposed in

[40]. In [41], a PI/PID control scheme is first developed for

nonlinear systems. However, derivative control has an

evident drawback, i.e., it is easy to introduce high-fre-

quency noise. Therefore, many studies focus on PI control,

which not only avoids the aforementioned defects, but also

simplifies the controller structure and significantly reduces

the calculation cost. In [42, 43], the intelligent PI (iPI)

controllers are investigated for a class of flexible-link

manipulator. For the purpose of addressing the tracking

control problem for multiple-input-multiple-output

(MIMO) nonlinear system with dead-zone input, a PI

control scheme is designed in [44]. Aiming at non-affine

systems with actuator and sensor faults, a PI controller is

proposed to handle the tracking control problem in [45]. In

[46], a PI structure controller is constructed by defining the

generalized error at each step of the backstepping method.

In recent years, a decentralized adaptive neural network PI

tracking control scheme is proposed in [47] for intercon-

nected nonlinear systems with input quantization and

dynamic uncertainty. Note that the aforementioned studies

on the problem of PI control does not involve switched

systems, which inspires us to investigate the PI control

problem of the switched nonlinear systems. To sum up, it is

necessary to study the problem of PI control for switched

nonlinear systems with unmodeled dynamics, unknown

control coefficients, and dead-zone output. To solve this

problem, three key points need to be addressed: (i) how to

design a controller with a PI structure for switched non-

linear systems with unmodeled dynamics, unknown control

coefficients, and dead-zone output? (ii) how to deal with

unknown information of the dead-zone output and

unknown control coefficient? (iii) how to compensate the

nonlinear term caused by the construction of the virtual

control law and controller at each step?

This paper addresses the problem of adaptive fuzzy PI

output feedback control for a class of uncertain switched

nonlinear systems with unmodeled dynamics, unknown

control coefficients, and dead-zone output. An adaptive

fuzzy PI output feedback controller is proposed by apply-

ing the backstepping method and FLSs. The boundedness

of the tracking error and all signals in the closed-loop

system are demonstrated via Lyapunov stability theory.

The main contributions can be summarized as follows.

• An adaptive fuzzy PI controller for uncertain switched

nonlinear systems with unmodeled dynamics, unknown

control coefficients, and dead-zone output is proposed

for the first time; this controller features an intuitive

structure and a strong physical meaning.

• The difficulty of unknown parameter of the dead-zone

is overcome by adaptive estimation.

• The properties of the hyperbolic tangent function and

FLSs are flexibly employed to deal with the nonlinear

terms generated by constructing the virtual control law

and control law.

The remainder of this paper is organised as follows. Sec-

tion 2 presents the problem formulation. In Sect. 3, the

switched filters, adaptive fuzzy PI controller and stability

analysis of the closed-loop systems are presented. Sec-

tion 4 provides two examples that verify the effectiveness

of the scheme. Section 5 concludes the paper.
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2 Problem Formulation and Preliminaries

2.1 Problem Formulation

Consider the following switched nonlinear systems with

unmodeled dynamics

_1 ¼ qrðtÞð1; y; dðtÞÞ;
_x1 ¼ h1x2 þ f1;rðtÞðx1Þ þ D1;rðtÞð1; y; dðtÞÞ;
_x2 ¼ h2x3 þ f2;rðtÞðx1; x2Þ þ D2;rðtÞð1; y; dðtÞÞ;

..

.

_xn ¼ hnuþ fn;rðtÞðx1; x2; . . .; xnÞ þ Dn;rðtÞð1; y; dðtÞÞ;
y ¼Dðx1Þ;

ð1Þ

where x ¼ ½x1; x2; . . .; xn�T 2 Rn are the system states, u is

the control input and y ¼ Dðx1Þ denotes the output with

dead-zone, 1 represents an unmodeled dynamic, and

h1; h2; . . .; hn are positive constants that represents the

unknown control coefficients. Besides, rðtÞ : ½0;þ1Þ !
P ¼ f1; 2; . . .; pg denotes the switching signal. For any i ¼
1; 2; . . .; n and k 2 P, fi;k and qkð1; y; dðtÞÞ are uncertain

functions, and Di;kð1; y; dðtÞÞ represent unknown functions

called non-parametric uncertainties, d(t) means an

unknown disturbance.

In system (1), the dead-zone output y is represented as

y ¼ Dðx1Þ ¼
lðx1 � vÞ; x1 [ v
0; � v� x1 � v
lðx1 þ vÞ; x1\� v;

8
<

:
ð2Þ

where l[ 0 denotes the slope of the dead-zone and v[ 0

represents the width parameter.

Similar to the treatment of the dead-zone output in [38],

(2) can be approximated as

x1 ¼
y

l
þ 2v

p
arctanðayÞ; ð3Þ

where a is a positive constant. Then

dx1
dy

¼ 1

l
þ 2v

p
a

1þ ðayÞ2
: ð4Þ

We can further obtain _y ¼ dy

dx1
_x1 ¼ �b _x1,

lp
pþ2val � �b ¼ dy

dx1
\l.

Remark 1 Note that (2) is a non-smooth model. The non-

smooth dead-zone nonlinearity in (2) can be approximated

by (3). As the parameter a increases, the model represented

by (3) is closer to the system output (2), as shown in Fig. 1.

Remark 2 Define h ¼ h1h2. . .hn. It is clear that �bh is

bounded. Consequently, there exist two positive constants

�b1 and �b2 such that �b1\�bh\�b2.

Adaptive PI fuzzy output feedback tracking control

problem: In this paper, an adaptive PI fuzzy output feed-

back tracking controller will be designed by the back-

stepping method for system (1), such that the system output

y tracks the reference signal yd and all signals of the closed-

loop system are bounded.

Assumption 1 yd; _yd; . . .; y
ðnÞ
d are smooth and bounded.

Assumption 2 [33] The subsystem _1 ¼ qrðtÞð1; y; dðtÞÞ is
input-to-state stable(ISS) with input y. An ISS-Lyapunov

functon V1 satisfies

b1ðj1jÞ �V1ð1Þ� b2ðj1jÞ;
oV1

o1
_1� � a0V1 þ n0cðjyjÞ; ð5Þ

where b1, b2, c belong to class-K1, a0 and n0 [ 0 are

unknown positive constants, where cðsÞ ¼ Oðs2Þ, and ‘‘O’’

denotes that there exist m[ 0 and n[ 0, for any jsj\n,

such that jcðsÞj �mjs2j.

Assumption 3 [48] The nonlinear function Di;kð1; y; dðtÞÞ
satisfies

jDi;kð1; y; dðtÞÞj �wikui1ðj1jÞ þ wikui2ðyÞ; ð6Þ

where wik are unknown constants, ui1ðj1jÞ, and ui2ðyÞ are
smooth functions that satisfy ui1ð0Þ ¼ 0, ui2ð0Þ ¼ 0.

Similar to [48], we can obtain ui2ðyÞ ¼ y �ui2ðyÞ ( �ui2ðyÞ is a
smooth function) and the following property [33] holds

lim
t!0þ

sup
u2
i;1ðj1jÞ
V1

\þ1: ð7Þ

Lemma 1 [49] f(X) is a continuous function defined on a

compact set K, and there exists FLSs y ¼ UTSðXÞ such that

supX2Kjf ðXÞ � UTSðXÞj � e; ð8Þ

where U represents the weight of the FLSs, S(X) is a basis

function vector, and e[ 0 is a prescribed accuracy.

Lemma 2 [50] For any 1� i� n, define the set as

Evi ¼ fvij kvik\ı-ig, where ı ¼ 0:8814 and -i [ 0: Then,

if vi 62 Evi , the inequality ½1� 2 tanh2ðvi-i
Þ�� 0 holds.

Remark 3 Note that many studies have been investigated

on PI control for nonswitched nonlinear systems [47, 51].

However, in practical situations, switching behavior and

unmodeled dynamics widely exist in many systems. Hence,

it is important to study PI control for switched nonlinear

systems with unmodeled dynamics.

Remark 4 From Lemma 1, we can conclude that the

following conclusion: f ðvÞ ¼ UTSðXÞ þ #, where # is a

bounded function that satisfies j#j � e and S(X) satisfies:

0\SðXÞTSðXÞ� 1.
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3 Main Results

3.1 Design of Filters

To manage unknown control coefficients, the following

variables are defined

fi ¼
xi

hi. . .hn
; f �i;k ¼

fi;k
hi. . .hn

; D�
i;k ¼

Di;k

hi. . .hn
:

Then we have

_f1 ¼f2 þ f �1;k þ D�
1;k;

_f2 ¼f3 þ f �2;k þ D�
2;k;

� � �
_fn ¼uþ f �n;k þ D�

n;k:

ð9Þ

Construct a set of filters as

_̂f1 ¼f̂2 � l1;kf̂1;

_̂f2 ¼f̂3 � l2;kf̂1;

� � �
_̂fn ¼u� ln;k f̂1;

ð10Þ

where l1;k; l2;k; . . .; ln;k are positive constants. Define the

error variables as ~fi ¼ fi � f̂i. Combining (9) with (10)

leads to

_~f ¼ Ak
~fþ F�

k þ D�
k þ

1

h
Ukx1; ð11Þ

where Ak ¼
�l1;k
..
.

In�1

mun;k � � � 0

0

B
@

1

C
A, F�

k ¼
f �1;k

..

.

f �n;k

0

B
@

1

C
A,

D�
k ¼

D�
1;k

..

.

D�
n;k

0

B
@

1

C
A, Uk ¼

l1;k
..
.

ln;k

0

B
@

1

C
A.

Define w� ¼ maxf1; wi;k

hi���hn ;
1
hg and e ¼ 1

w�
~f. Then one has

_1 ¼ qrðtÞð1; yÞ;

_e ¼Akeþ
1

w� F
�
k þ

1

w� D
�
k þ

1

w�
1

h
Ukx1;

_x1 ¼ hf̂2 þ hw�e2 þ f �1;k þ D�
1;k;

_̂f1 ¼ f̂2 � l1;kf̂1;

_̂f2 ¼ f̂3 � l2;kf̂1;

� � �
_̂fn ¼ u� ln;k f̂1:

ð12Þ

Choose the appropriate parameter li;k such that Ak is a

Hurwitz matrix. Hence there exists a positive definite

symmetric matrix Pk such that

AT
k Pk þ PkAk ¼ �2I: ð13Þ

Choosing V�
k ¼ eTPke and calculating the derivative of V�

k

yield

_V
�
k ¼ �2eTeþ 2eTPk

1

w� F
�
k þ 2eTPk

1

w� D
�
k þ 2eTPk

1

w�
1

h
Ukx1:

ð14Þ

According to Remark 4, we obtain F�
k ¼ UT

0;kS0;k þ #0;k,

U0;k ¼ ½U01;k;U02;k; . . .;U0n;k�, S0;k is a basis function vec-

tor, #0;k ¼ ½#01;k; #02;k; . . .; #0n;k�, where U0i;k are the

weights, and #0i;k are bounded functions that satisfy

k#0;kk� e0;k, where e0;k is a positive constant. Then the

following inequations is derived

Fig. 1 Curves of y when a ¼ 2 and a ¼ 20
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2eTPk
1

w� F
�
k ¼ 2eTPk

1

w� ðU
T
0;kS0 þ #0;kÞ

¼ 2eTPk
1

w� U
T
0;kS0 þ 2eTPk

1

w� #0;k

� 1

4
eTeþ 8kPkk2

1

w�2 ðhþ e20;kÞ;

ð15Þ

2eTPk
1

w� D
�
k �

1

4
eTeþ 8kPkk2

Xn

i¼1

u2
i;1ðj1jÞ

þ 8kPkk2
Xn

i¼1

y2 �u2
i;2ðyÞ;

ð16Þ

2eTPk
1

w�
1

h
Ukx1 ¼2eTPk

1

w�
1

h
Ukð

y

l
þ 2v

p
arctanðayÞÞ

� 1

4
eTeþ 8kPkk2kUkk2

1

l2
y2 þ 8kPkk2kUkk2v2;

ð17Þ

051001050
Time

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30
Time

-1

-0.5

0

0.5

1

Fig. 2 Curves of y and yd for Example 1

Fig. 3 Curve of tracking error y� yd for Example 1
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where h ¼ maxfkUi;kk2 : 0� i� n; k 2 Pg, and Ui;k mean

the weights of FLSs.

Combining (14), (15), (16) with (17) leads to

_V
�
k � � eTeþ bky

2ð
Xn

i¼1

�u2
i;2ðyÞ þ 1Þ

þ8kPkk2
Xn

i¼1

u2
i;1ðj1jÞ þ d0;k;

ð18Þ

where bk ¼ 8kPkk2 �maxf1; 1
l2
kUkk2g, d0;k ¼ 8kPkk2 1

w�2

ðhþ e20;kÞ þ 8kPkk2kUkk2v2.

Fig. 4 Curves of x1, x2, x3 and 1 for Example 1

Fig. 5 Curves of f̂1; f̂2 and f̂3 for Example 1
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3.2 Controller Design

First, a set of coordinate transformations are defined:

r1 ¼ y� yd;

r2 ¼ f̂2 � a1;

..

.

rn ¼ f̂n � an�1;

where a1; . . .; an�1 are the virtual control laws and the

following generalized errors are further introduced:

v1 ¼ r1 þ s1

Z t

0

r1ds;

v2 ¼ r2 þ s2

Z t

0

r2ds;

..

.

vn ¼ rn þ sn

Z t

0

rnds;

where s1; . . .; sn are positive constants.

In this paper, the virtual control laws are constructed as

a1 ¼ b̂�a1; ð19Þ

Fig. 6 Curve of ĥ for Example 1

Fig. 7 Curve of b̂ for Example 1
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�a1 ¼� ðgP1
þ MgP1

ð�ÞÞr1 � ðgI1 þ MgI1ð�ÞÞ
Z t

0

r1ds;

ð20Þ

ai ¼� ðgPi
þ MgPi

ð�ÞÞri � ðgIi þ MgIið�ÞÞ
Z t

0

rids; ð21Þ

for any i ¼ 1; . . .; n� 1, gPi
¼ ci, gIi ¼ sigPi

, DgPi
ð�Þ ¼ ĥ

2a2i
,

DgIið�Þ ¼ siMgPi
ð�Þ, ĥ is the estimation of h, b̂ is the esti-

mation of b, where b ¼ 1
�b1
. ai, ci are the positive constants.

The adaptive PI controller is designed as

u ¼ �ðgPn
þ MgPn

ð�ÞÞrn � ðgIn þ MgInð�ÞÞ
Z t

0

rnds; ð22Þ

where gPn
¼ cn, gIn ¼ sngPn

, DgPn
ð�Þ ¼ ĥ

2a2n
,

DgInð�Þ ¼ snMgPn
ð�Þ, an, cn are the positive constants.

The adaptive laws are designed as:

_̂h ¼
Xn

i¼1

|v2i
2a2i

� �hĥ; ð23Þ

_̂b ¼Projðb̂ðtÞ;NÞ; ð24Þ

Projðb̂ðtÞ;NÞ ¼
0; if b̂ ¼ b̂max ^ N[ 0

0; if b̂ ¼ b̂min ^ N\0

N; otherwise

8
><

>:
; ð25Þ

where N ¼ ðc1 þ ĥ
2a2

1

Þv21 � ıb̂, |, �h, ı are positive constants.

Fig. 8 Curve of control input u for Example 1

Time
051001050

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 9 Curve of the switching signal for Example 1
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Remark 5 In [42, 43], the intelligent proportional-integral

(iPI) controllers are proposed for flexible joint manipulator

and the iPI controllers can obtain better disturbance and

noise rejection performance. Compared with the proposed

control scheme in this paper, some differences are listed as

follows. First, the gains of the iPI controller in [42, 43] are

constants while in this paper the gains of the proposed

controller contains two parts: constant part and time-

varying part. Second, the iPI controllers are designed for a

second-system while in this paper we consider a n-order

system and the generalized error is defined to derive the PI

controller.

Remark 6 According to [52], we know the projection

operator has two properties: (i) b̂min � b̂� b̂max. (ii)

~bProjðb̂;NÞ� ~bN.

Next, the PI controller is designed using the backstep-

ping method.

Step 1: The first-order derivative v1 is presented as

Fig. 10 Curves of y and yd for scheme 2 in Example 1

Fig. 11 Curve of tracking error y�yd for scheme 2 in Example 1
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_v1 ¼ _r1 þ s1r1

¼ _y� _yd þ s1ðy� ydÞ
¼�b _x1 � _yd þ s1ðy� ydÞ
¼�bðhf̂2 þ hw�e2 þ f �1;k þ D�

1;kÞ � _yd þ s1ðy� ydÞ:
ð26Þ

Choose the Lyapunov function as

V1 ¼
1

2
v21: ð27Þ

Computing the derivative of V1 leads to

Fig. 12 Curve of control input u for scheme 2 in Example 1

Fig. 13 Comparison of tracking performance between scheme 1 and scheme 2
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_V1 ¼ v1 _v1

¼ v1ð�bðhf̂2 þ hw�e2 þ f �1;k þ D�
1;kÞ � _yd þ s1ðy� ydÞÞ:

ð28Þ

To structure a1, the nonlinear function is defined as follows

W1;k ¼
v1
2
þ 1

2
v1l

2h2w�2 þ �bf �1;k þ
1

4
l2v1w

2
1k

þ �bw1ku12ðyÞ � _yd þ s1ðy� ydÞ

� �bhs2

Z t

0

r2dsþ
2

v1
tanh2

� v1
-1

�
g1;kðyÞ;

ð29Þ

Fig. 14 Comparison of controlled quantity between scheme 1 and scheme 2

Fig. 15 Curve of the tracking error under the parameter perturbation
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where g1;kðyÞ ¼ bky
2 �u2

12ðyÞ.
Using FLSs, we have

W1;k ¼ UT
1;kS1;k þ #1;k; ð30Þ

where U1;k denotes the weight of the FLSs W1;k , SðXÞ1;k is
a basis function vector, and #1;k is a bounded function that

satisfies j#1;kj � e1;k, where e1;k is a positive constant.

Then one has

_V1 � v1ð�bhf̂2 þW1;k �
v1
2
þ �bhw�e2 �

1

2
v1l

2h2w�2

þ �bD�
1;k �

1

4
l2v1w

2
1k � �bw1ku12ðyÞ

þ �bhs2

Z t

0

r2ds�
2

v1
tanh2

� v1
-1

�
g1;kðyÞÞ:

ð31Þ

Using Youngs inequality and Assumption 3 leads to

v1 �bhw
�e2 �

1

2
v21l

2h2w�2 þ 1

2
eTe; ð32Þ

v1 �bD
�
1;k � v1 �bw1ku11ðj1jÞ þ v1 �bw1ku12ðyÞ

� 1

4
v21l

2w2
1k þ u2

11ðj1jÞ þ v1 �bw1ku12ðyÞ;
ð33Þ

Substituting (32) and (33) into (31),we have

_V1 � v1 �bhða1 þ v2Þ þ v1W1;k �
v21
2
þ 1

2
eTeþ u2

11ðj1jÞ

� 2 tanh2ðv1
-1

Þg1;kðyÞ

� v1 �bha1 þ �bhv1v2 þ
v21h
2a21

þ
a21 þ e21;k

2
þ 1

2
eTe

þ u2
11ðj1jÞ � 2 tanh2

� v1
-1

�
g1;kðyÞ:

ð34Þ

Substituting the a1 into (34) yields

_V1 � � �b1v
2
1b̂
�
c1 þ

ĥ
2a21

�
þ �bhv1v2 þ

v21h
2a21

þ
a21 þ e21;k

2

þ 1

2
eTeþ u2

11ðj1jÞ � 2 tanh2
� v1
-1

�
g1;kðyÞ

¼
~bv21
b

�
c1 þ

ĥ

2a21

�
þ v21~h

2a21
þ 1

2
eTeþ u2

11ðj1jÞ � c1v
2
1

þ
a21 þ e21;k

2
þ �bhv1v2

� 2 tanh2
� v1
-1

�
g1;kðyÞ:

ð35Þ

Step 2: By computing the derivative of v2, we can obtain

_v2 ¼ _r2 þ s2r2

¼ _̂f2 � _a1 þ s2ðf̂2 � a1Þ
¼ f̂3 � l2;kf̂1 � _a1 þ s2ðf̂2 � a1Þ:

ð36Þ

Select Lyapunov function as

V2 ¼ V1 þ
1

2
v22: ð37Þ

The derivative of V2 is

_V2 ¼ _V1 þ v2ðf̂3 � l2;k f̂1 � _a1 þ s2ðf̂2 � a1ÞÞ: ð38Þ

The nonlinear function W2;k is defined as

W2;k ¼
v2
2
� l2;k f̂1 � _a1 þ s2ðf̂2 � a1Þ

� s3

Z t

0

r3dsþ �bhv1 þ
2

v2
tanh2ðv2

-2

Þg2;kðyÞ;
ð39Þ

where g2;kðyÞ ¼ bky
2 �u2

22ðyÞ; which is estimated by FLSs

W2;k ¼ UT
2;kS2;k þ #2;k; ð40Þ

where U2;k is weight of FLSs W2;k , SðXÞ2;k is a basis

function vector, #2;k is a bounded function satisfies

j#2;kj � e2;k, e2;k is a positive constant.

Similar to step 1, we have

_V2 ¼ _V1 þ v2ðf̂3 � l2;k f̂1 � _a1 þ s2ðf̂2 � a1ÞÞ

¼ _V1 þ v2ðf̂3 þW2;k �
v2
2
þ s3

Z t

0

r3ds� �bhv1

� 2

v2
tanh2

� v2
-2

�
g2;kðyÞÞ

� _V1 þ v2a2 þ v2v3 þ
v22h

2a22
þ
a22 þ e22;k

2
� �bhv1v2

� 2 tanh2
� v2
-2

�
g2;kðyÞ:

ð41Þ

Substituting a2 into (41) leads to

_V2 � _V1 þ v2v3 þ
v22
~h

2a22
� c2v

2
2 þ

a22 þ e22;k
2

� �bhv1v2

� 2 tanh2
� v2
-2

�
g2;kðyÞ

�
~bv21
b

�
c1 þ

ĥ

2a21

�
þ 1

2
eTeþ u2

11ðj1jÞ þ v2v3

þ
X2

j¼1

n v2j
~h

2a2j
� cjv

2
j þ

a2j þ e2j;k
2

� 2 tanh2
� vj
-j

�
gj;kðyÞ

o
:

ð42Þ

Step i(3� i� n� 1): By calculating the derivative of vi,
one has
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_vi ¼ _ri þ siri

¼ _̂fi � _ai�1 þ siðf̂i � ai�1Þ
¼ f̂iþ1 � li;kf̂1 � _ai�1 þ siðf̂i � ai�1Þ:

ð43Þ

Through the previous analysis, the derivative of Vi�1 is

expressed as:

_Vi�1 �
~bv21
b

�
c1 þ

ĥ

2a21

�
þ 1

2
eTeþ u2

11ðj1jÞ þ vi�1vi

þ
Xi�1

j¼1

n v2j ~h

2a2j
� cjv

2
j þ

a2j þ e2j;k
2

� 2 tanh2
� vj
-j

�
gj;kðyÞ

o
:

ð44Þ

The Lyapunov function of step i can be selected as

Vi ¼ Vi�1 þ
1

2
v2i : ð45Þ

The derivative of Vi is

_Vi ¼ _Vi�1 þ vi _vi

¼ _Vi�1 þ viðf̂iþ1 � li;k f̂1 � _ai�1 þ siðf̂i � ai�1ÞÞ:
ð46Þ

The nonlinear function Wi;k is defined as

Wi;k ¼
vi
2
� li;kf̂1 � _ai�1 þ siðf̂i � ai�1Þ

� siþ1

Z t

0

riþ1dsþ vi�1 þ
2

vi
tanh2ðvi

-i
Þgi;kðyÞ;

ð47Þ

where gi;kðyÞ ¼ bky
2 �u2

i;2ðyÞ; which is estimated by FLSs

Wi;k ¼ UT
i;kSi;k þ #i;k; ð48Þ

where Ui;k are the weights of the FLSs Wi;k, SðXÞi;k are

basis function vectors, and #i;k is a bounded functions that

satisfies j#i;kj � ei;k, where ei;k is a positive constant.

Then, we have

_Vi ¼ _Vi�1 þ viðf̂iþ1 � li;kf̂1 � _ai�1 þ siðf̂i � ai�1ÞÞ

¼ _Vi�1 þ viðf̂iþ1 þWi;k �
vi
2
þ siþ1

Z t

0

riþ1ds

� vi�1 �
2

vi
tanh2ðvi

-i
Þgi;kðyÞÞ

� _Vi�1 þ viai þ viviþ1 þ
v2i h

2a2i
þ
a2i þ e2i;k

2
� vi�1vi

� 2 tanh2ðvi
-i
Þgi;kðyÞ:

ð49Þ

Substituting ai into (49) gives

_Vi �
~bv21
b

�
c1 þ

ĥ

2a21

�
þ 1

2
eTeþ u2

11ðj1jÞ þ vi�1vi

þ
Xi�1

j¼1

n v2j ~h

2a2j
� cjv

2
j þ

a2j þ e2j;k
2

� 2 tanh2ð
vj
-j
Þgj;kðyÞ

o

þ viai þ viviþ1 þ
v2i h

2a2i
þ
a2i þ e2i;k

2
� vi�1vi

� 2 tanh2
� vi
-i

�
gi;kðyÞ

�
~bv21
b

�
c1 þ

ĥ
2a21

�
þ 1

2
eTeþ u2

11ðj1jÞ þ viviþ1

þ
Xi

j¼1

n v2j
~h

2a2j
� cjv

2
j þ

a2j þ e2j;k
2

� 2 tanh2ð
vj
-j
Þgj;kðyÞ

o
:

ð50Þ

Step n: Calculating the derivative of vn gets

_vn ¼ _rn þ snrn

¼ _̂fn � _an�1 þ snðf̂n � an�1Þ
¼ u� ln;kf̂1 � _an�1 þ snðf̂n � an�1Þ:

ð51Þ

Select the Lyapunov function as

Vn;k ¼ V�
k þ �V þ Vn�1 þ

1

2
v2n þ

1

2|
~h
2 þ 1

2b
~b
2
; ð52Þ

where �V ¼
R V1

0
qðsÞds is a new function which is used to

deal with state 1ðtÞ and qðsÞ[ 0 is a smooth decreasing

function satisfying qð0Þ ¼ 0.

Unknown function Wn;k in this step is defined as

Wn;k ¼
vn
2
� ln;kf̂1 � _an�1 þ snðf̂n � an�1Þ þ vn�1

þ 2

vn
tanh2

� vn
-n

�
gn;kðyÞ;

ð53Þ

where gn;kðyÞ ¼ bky
2ð �u2

n2ðyÞ þ 1Þ þ qð4n0cðjyjÞa0
Þn0cðjyjÞ.

Bsing FLSs, one has

Wn;k ¼ UT
n;kSn;k þ #n;k; ð54Þ

where Un;k is the weight of the FLSsWn;k , SðXÞn;k is a basis
function vector, and #n;k is a bounded function that satisfies

j#n;kj � en;k, where en;k is a positive constant.

The derivative of Vn;k is calculated as
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_Vn;k ¼ _V
�
k þ _�V þ _Vn�1 þ vnðu� ln;kf̂1 � _an�1

þ snðf̂n � an�1ÞÞ �
1

|
~h _̂h� 1

b
~b _̂b

¼ _V
�
k þ _�V þ _Vn�1 þ vnðuþ /n;k �

vn
2
� vn�1

� 2

vn
tanh2ðvn

-n
Þgn;kðyÞÞ �

1

|
~h _̂h� 1

b
~b _̂b

� _V
�
k þ _�V þ _Vn�1 þ vnuþ

v2nh
2a2n

þ
a2n þ e2n;k

2

� vn�1vn � 2 tanh2
� vn
-n

�
gn;kðyÞ �

1

|
~h _̂h� 1

b
~b _̂b:

ð55Þ

Substituting (18) (22) (24) (25) into (55) leads to

_Vn;k � � eTeþ bky
2
�Xn

i¼1

�u2
i;2ðyÞ þ 1

�

þ 8kPkk2
Xn

i¼1

u2
i;1ðj1jÞ þ d0;k

þ qðV1Þ½�a0V1ð1Þ þ n0cðjyjÞ� þ
1

2
eTe

þ u2
11ðj1jÞ þ

Xn

i¼1

n
� civ

2
i

þ
a2i þ e2i;k

2
� 2 tanh2

� vi
-i

�
gi;kðyÞ

o
þ �h

|
~hĥþ ı

b
~bb̂:

ð56Þ

Note that �V ¼
R V1

0
qðsÞds�V1ð1ÞqðV1ð1ÞÞ: The following

inequality holds

qðV1Þ½�a0V1ð1Þ þ n0cðjyjÞ�
¼ �a0qðV1ÞV1ð1Þ þ qðV1Þn0cðjyjÞ

¼ � 1

2
a0 �V � 1

4
a0qðV1ÞV1ð1Þ

� 1

4
a0qðV1ÞV1ð1Þ þ qðV1Þn0cðjyjÞ:

ð57Þ

Case 1 n0cðjyjÞ\ 1
4
a0V1ð1Þ. We have

qðV1Þ½�a0V1ð1Þ þ n0cðjyjÞ�

� � 1

2
a0 �V � 1

4
a0qðV1ÞV1ð1Þ:

ð58Þ

Case 2 n0cðjyjÞ � 1
4
a0V1ð1Þ. Then V1ð1Þ� 4n0cðjyjÞ

a0
, one has

qðV1Þ½�a0V1ð1Þ þ n0cðjyjÞ�

� � 1

2
a0 �V � 1

4
a0qðV1ÞV1ð1Þ þ q

� 4n0cðjyjÞ
a0

�
n0cðjyjÞ:

ð59Þ

By combining (58) with (59), (56) can be transformed as

_Vn;k � � eTeþ bky
2
�Xn

i¼1

�u2
i;2ðyÞ þ 1

�

þ 8kPkk2
Xn

i¼1

u2
i;1ðj1jÞ þ d0;k �

1

2
a0 �V

� 1

4
a0qðV1ÞV1ð1Þ þ q

� 4n0cðjyjÞ
a0

�
n0cðjyjÞ

þ 1

2
eTeþ u2

11ðj1jÞ þ
Xn

i¼1

f�civ
2
i

þ
a2i þ e2i;k

2
� 2 tanh2

� vi
-i

�
gi;kðyÞg þ

�h

|
~hĥþ ı

b
~bb̂:

ð60Þ

Choose the appropriate function q such that

8kPkk2
Xn

i¼1

u2
i;1ðj1jÞ þ u2

11ðj1jÞ �
1

4
a0qðV1ÞV1ð1Þ: ð61Þ

Notice that the following inequalities hold

~hĥ ¼ ~hðh� ~hÞ� � 1

2
~h
2 þ 1

2
h2;

~bb̂ ¼ ~bðb� ~bÞ� � 1

2
~b
2 þ 1

2
b2:

ð62Þ

Then we have

_Vn;k � � p1Vn;k þ p2 þ gkðyÞ þ
Xn

i¼1

n
� 2 tanh2

� vi
-i

�
gi;kðyÞ

o

¼� p1Vn;k þ p2 þ
Xn

i¼1

n�
1� 2 tanh2

� vi
-i

��
gi;kðyÞ

o
:

ð63Þ

where p1 ¼ minf 1
2kmaxðPkÞ ; 2ci; �h; ı;

1
2
a0g, p2 ¼ maxfd0;kþ

a2i þe2i;k
2

þ �h
2| h

2 þ ı
2
bg, gkðyÞ ¼ g1;kðyÞ þ g2;kðyÞ þ � � � þ

gn;kðyÞ ¼
Pn

i¼1 bky
2ð
Pn

i¼1 �u2
i2ðyÞ þ 1Þ þ qð4n0cðjyjÞa0

Þn0cðjyjÞ:

Remark 7 The controller designed in this paper has a PI

form that features a simple structure and a more explicit

physical meaning. To achieve the above objectives, the gen-

eralized errors are introduced, and the nonlinear functionsWi;k

are intelligently constructed in each step. These functions

can be approximated via FLSs because of their continuity.

Remark 8 The polynomial 1
2
v1l

2h2w�2 þ 1
4
l2v1w

2
1k þ

�bw1ku12ðyÞ is introduced in W1;k to counteract the nonlinear

functions 1
2
v21l

2h2w�2, 1
4
l2v21w

2
1k and v1 �bw1ku12ðyÞ produced

in (32) and (33).

Remark 9 The function
vi
2
is introduced in Wi;k to coun-

teract the function
v2i
2
produced vi#i;k � v2i

2
þ e2i;k

2
; in order to

construct the virtual control laws with a PI structure and
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deal with the function gkðyÞ, the polynomial

�siþ1

R t

0
riþ1dsþ 2

vi
tanh2ðvi-i

Þgi;kðyÞ is introduced.

Remark 10 To estimate the nonlinear term gkðyÞ, the

function tanh2ðvi-i
Þ is introduced because of lim

vi!0

tanh2ðvi-iÞ
vi

¼ 0,

thus, it can be reconstructed using FLSs. As a result, the

difficulty caused by the existence of the nonlinear function

gkðyÞ is solved.

3.3 Stability Analysis

Theorem 1 Consider an uncertain switched nonlinear

system (1) with Assumptions 1–3 and an average dwell time

sa [ lnl
p1
ðl ¼ maxfkmaxðPkÞ

kminðPlÞg; k; l 2 P; p1 ¼ minf 1
2kmaxðPkÞ ;

2ci; �h; ı;
1
2
a0gÞ, the PI controller (22) and the adaptive laws

(24)–(25) can guarantee that all the signals in the closed-

loop system and tracking error are bounded.

Proof We will discuss the stability of the system in three

cases.

Case 1 If vi 62 Evi ; i ¼ 1; 2; . . .; n, by applying Lemma 2,

(63) is rewritten as

_Vn;k � � p1Vn;k þ p2 þ
Xn

i¼1

n�
1� 2 tanh2

� vi
-i

��
gi;kðyÞ

o

� � p1Vn;k þ p2:

ð64Þ

Integrating both sides of (64) on ½tj; tjþ1Þ yields

Vn;kðtÞ� e�p1ðt�tjÞVn;kðtjÞ þ p2

Z t

tj

e�p1ðt�sÞds; ð65Þ

where tj denotes switching time, j ¼ 0; 1; . . .;Nrðt; 0Þ � 1.

We know that Vn;k � lVn;l in [53], where k; l 2 P, and

l ¼ maxfkmaxðPkÞ
kminðPlÞg� 1:

Let t0 ¼ 0. For any t[ 0, iterating the (65) leads to

Vn;kðtÞ� e�p1ðt�tNrðt;0ÞÞVn;kðtNrðt;0ÞÞ þ p2

Z t

tNrðt;0Þ

e�p1ðt�sÞds

�le�p1ðt�tNrðt;0ÞÞVn;rðt�Nrðt;0ÞÞ þ p2

Z t

tNrðt;0Þ

e�p1ðt�sÞds

�le�p1ðt�tNrðt;0ÞÞ½e�p1ðtNrðt;0Þ�tNrðt;0Þ�1ÞVðtNrðt;0Þ�1Þ

þ p2

Z tNrðt;0Þ

tNrðt;0Þ�1

e�p1ðtNrðt;0Þ�sÞds� þ p2

Z t

tNrðt;0Þ

e�p1ðt�sÞds

� � � �

�lNrðt;0Þe�p1tVn;rð0Þð0Þ þ p2

Z t

0

lNrðt;sÞe�p1ðt�sÞds:

ð66Þ

Choose sa [ ln l
p1
. According to the definition of the average

dwell time [53, 54] and for arbitrary c 2 ð0; p1 � ln l
sa
Þ, we

have

Nrðt; 0Þ�N0 þ
ðp1 � cÞt

ln l
: ð67Þ

Taking (67) into (66) yields

Vn;rðtÞ� lN0þðp1�cÞt
ln l e�p1tVrð0Þð0Þ

þ p2

Z t

0

lN0þðp1�cÞðt�sÞ
lnl e�p1ðt�sÞds

¼lN0eðp1�cÞte�p1tVrð0Þð0Þ

þ lN0p2

Z t

0

eðp1�cÞðt�sÞe�p1ðt�sÞds

¼lN0e�ctVrð0Þð0Þ þ lN0
p2
c
ð1� e�ctÞ:

ð68Þ

Thus, we can obtain Vn;rðtÞ� lN0 p2
c when t ! 1. There-

fore, ei; vi and ~h, i ¼ 1; 2; . . .; n are bounded; then, a1,

a2; . . .; an�1, u, ĥ, b̂ are bounded. Then we can further

obtain ri, ~fi, f̂i, fi, y, 1, and xi are bounded.

According to the above analysis, the following

inequality holds

1

2
v21 � lN0

p2
c
; ð69Þ

so

jv1j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

: ð70Þ

Note that

v1 ¼ r1 þ s1

Z t

0

r1ds: ð71Þ

Let p ¼
R t

0
r1ds. We have

v1 ¼ _pþ s1p: ð72Þ

Furthermore, we obtain

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

� _pþ s1p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

: ð73Þ

Multiplying both sides by expðs1tÞ produces

�expðs1tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

� dðpexpðs1tÞÞ
dt

� expðs1tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

:

ð74Þ

Integrating (74) leads to
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�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lN0

p2
c

q

s1
þ
�

pð0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lN0

p2
c

q

s1

�

expð�s1tÞ� p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lN0

p2
c

q

s1
þ
�

pð0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lN0

p2
c

q

s1

�

expð�s1tÞ:

ð75Þ

Thus we have

jpj �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lN0

p2
c

q

s1
: ð76Þ

Combining (72) with (76) gives

lim
t!1

jy� ydj ¼ jr1j � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

: ð77Þ

Case 2 If vi 2 Evi , i ¼ 1; 2; . . .; n, thus jvij � i-i is boun-

ded. Furthermore, from the choice of the adaptive laws ĥ in

(23), we can infer that ĥ is bounded for any bounded vi,

which means that ~h is also bounded. Similar to Case 1, a1,

a2; . . .; an�1, u, ri, 1, f̂ and y are bounded, and given that

�ui;2ðyÞ and ui;1ðj1jÞ are smooth functions, then �ui;2ðyÞ and
ui;1ðj1jÞ are bounded, and ~fi, fi and xi are bounded when sa

satisfies sa [ ln l
p1
. There exist some positive constants Mi,

such that maxk2Pfgi;kg�Mi, and we can further obtain

ð1� 2 tanh2ðvi-i
ÞÞgi;k � 3Mi. Then (63) can be written as

_Vn;k � �p2 � p1Vn;k; ð78Þ

where �p2 ¼ p2 þ 3
Pn

i¼1 Mi.

Similar to Case 1, we can get

lim
t!1

jy� ydj ¼ jr1j � 2i-1: ð79Þ

Case 3. If vj 62 Evj and vi 2 Evi , i 6¼ j: (63) can be rewritten

as

_Vn;k � � p1Vn;k þ p2 þ
Xn

i¼1

n�
1� 2 tanh2

� vi
-i

��
gi;kðyÞ

o
:

¼� p1Vn;k þ p2 þ Rvj 62Evj

n�
1� 2 tanh2

� vj
-j

��
gj;kðyÞ

o

þ Rvi2Evi

n�
1� 2 tanh2

� vi
-i

��
gi;kðyÞ

o
:

ð80Þ

Combining Case 1 with Case 2 yields

lim
t!1

jy� ydj � max

�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lN0
p2
c

r

; 2i-1

�

: ð81Þ

Based on the discussed above, Theorem 1 is proved.

The specific implementation steps are summarized as

follows:

1. Choose the appropriate parameters li;k such that Ak is a

Hurwitz matrix, i ¼ 1; 2; . . .; n:

2. Calculate the corresponding Pk through (13).

3. Select the positive constants �h, |, c1, ı and ai to

determine the adaptive law ĥ, b̂.
4. Choose the parameters ci [ 0, si [ 0 to determine the

virtual control functions ai, i ¼ 1; 2; . . .; n� 1:

5. Select the parameters cn [ 0, sn [ 0 to determine the

controller u.

6. Choose the average dwell time sa by calculating lnl
p1
.

Remark 9 According to (81), to achieve a good control

performance, we can add the value of c and reduce the

value of p2 by adjusting the correlative parameters. How-

ever, this adjustment may also influence other performance

aspects such as the resulting large controlled quantity.

Thus, a specific control performance and control action are

achieved via regulation parameters.

4 Simulation Results

In this section, two examples are given to demonstrate the

effectiveness of the developed method.

Example 1 Consider the following switched nonlinear

systems with unmodeled dynamics:

_1 ¼ qrðtÞð1; y; dðtÞÞ;
_x1 ¼ h1x2 þ f1;rðtÞðx1Þ þ D1;rðtÞð1; y; dðtÞÞ;
_x2 ¼ h2x3 þ f2;rðtÞðx1; x2Þ þ D2;rðtÞð1; y; dðtÞÞ;
_xn ¼ h3uþ f3;rðtÞðx1; x2; x3Þ þ D3;rðtÞð1; y; dðtÞÞ;
y ¼Dðx1Þ;

ð82Þ

where q1 ¼ �1þ 0:125y2 cos2ðyÞ, q2 ¼ �21þ 0:05y2

sin2ðyÞ, f1;1 ¼ 0:1 sinðx1Þ, f1;2 ¼ 0:1 cosðx1Þ, f2;1 ¼ 0:1

sinðx1x2Þ, f2;2 ¼ 0:1 sinðx1Þ cosðx2Þ, f3;1 ¼ 0:1 cosðx21x2x3Þ,
f3;2 ¼ 0:1 sinðx1x2Þ cosðx3Þ, D1;1 ¼ 0:1 sinðy1Þ þ 0:1e�t2 ,

D1;2 ¼ 0:1 cosðy1Þ � 0:1e�t2 , D2;1 ¼ 0:1 sinðy1Þ þ 0:2 sin

ðt2Þ, D2;2 ¼ 0:1 sinðy21Þ þ 0:2 cosðt4Þ, D3;1 ¼ 0:1 sinðy1Þ
þe�t4 , D3;2 ¼ 0:1 cosðy1Þ þ 0:5e�t2 . We choose the track-

ing signal as yd ¼ 0:5 cosð0:5tÞ þ sinð0:5tÞ. Choose

l1;1 ¼ l1;2 ¼ 3, l2;1 ¼ l2;2 ¼ 5, l3;1 ¼ l3;2 ¼ 2,

sa ¼ 29:03[ ln 13:8392=0:0905. choose the initial con-

ditions x1ð0Þ ¼ 0:2, x2ð0Þ ¼ 0:3, x3ð0Þ ¼ �0:2,

f̂1ð0Þ ¼ f̂2ð0Þ ¼ f̂3ð0Þ ¼ 0, ĥð0Þ ¼ 0, b̂ð0Þ ¼ 0:03. Select

the parameters as: l ¼ 0:2, v ¼ 0:01, |1 ¼ 2:5, �h ¼ 0:1,

ı ¼ 0:001, a1 ¼ 2, a2 ¼ 1, a3 ¼ 3, s1 ¼ s2 ¼ s3 ¼ 2,

c1 ¼ 2, c2 ¼ 7, c3 ¼ 100, h1 ¼ 1, h2 ¼ 3, h3 ¼ 70. The

simulation results are shown in Figs. 2, 3, 4, 5, 6, 7, 8, and

9. Figure 2 gives the trajectories of y and yd whereas Fig. 3
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shows the curve of tracking error. From Figs. 2 and 3, we

can distinctly observe that the system has a good tracking

performance. Figure 4 presents the curves of x1, x2, x3 and

1. Curves of f̂1, f̂2, and f̂3 are shown in Fig. 5. Figures 6

and 7 depict curves of the adaptive parameters ĥ and b̂,
respectively. Figure 8 shows curve of the control input u.

Figure 9 depicts the switching signal. To prove the supe-

riority of the proposed scheme, we compare the simulation

results with [55]. For convenience, the scheme proposed in

this paper is denoted as scheme 1, whereas the

scheme proposed in [55] is denoted as scheme 2. To ensure

a fair comparison, we choose the same qk, fi;k,Di;k, and hi.

The simulation results for scheme 2 are shown in Figs. 10,

11, and 12. Figure 10 shows curves of the y and yd. Curve

of tracking error is presented in Fig. 10, and 12 depicts the

trajectories of u. Figures 13 and 14 show the comparison of

tracking performance and control quantity between

scheme 1 and scheme 2. It can be observed that scheme 1

has better tracking performance than scheme 2 provided

that the two control quantities are close to each other.

In order to verify the robustness of the proposed scheme,

we choose the nonlinear functions as f1;1 ¼ 0:1 sinðx1Þ,
f1;2 ¼ 0:1 cosðx1Þ, f2;1 ¼ 0:1 sinðx1x2Þ, f2;2 ¼ 0:1 sinðx1Þ cos
ðx2Þ, f3;1 ¼ 0:1 cosðx21x2x3Þ, f3;2 ¼ 0:1 sinðx1x2Þ cosðx3Þ
when t\75s; while t� 75s; the nonlinear functions are

selected as f1;1 ¼ 0:3 sinðx1Þ, f1;2 ¼ 0:3 cosðx1Þ, f2;1 ¼
0:3 sinðx1x2Þ, f2;2 ¼ 0:3 sinðx1Þ cosðx2Þ, f3;1 ¼ 0:3 cos

ðx21x2x3Þ, f3;2 ¼ 0:3 sinðx1x2Þ cosðx3Þ. The tracking perfor-

mance under parameter perturbation is shown in Fig. 15,

which demonstrates that the proposed scheme has a

significant robustness. Finally, we investigate the noise

rejection performance of the system. A noise with an SNR

of 60 dB is added to the output channel (82). Curves of

system tracking error with sensor noise is depicted in

Fig. 16. Curve of the input u is shown in Fig. 17. It can be

clearly observed that the tracking error has a satisfactory

performance when the systems are subject to sensor noise.

Example 2 (Electromechanical system). An electrome-

chanical system [56] can be modeled as follows

P€zþM _zþ Q sinðzÞ ¼ I

L _I ¼ U� � RI � KB _z;
ð83Þ

where P ¼ N
Ks
þ m0l

2

3Ks
þ m1l

2

Ks
þ 2m1R

2
0

5Ks
, Q ¼ m0lG

2Ks
þ m1lG

Ks
,

M ¼ D0

Ks
, z is angular motor position, I represents motor

armature current, L ¼ 1:429� 10�2H denotes armature

inductance, U� means the input control voltage, R ¼
1� 10�2X is called armature resistance, KB ¼
2� 10�3Nm=A is back-emf coefficient, Ks ¼ 0:9Nm=A is a

coefficient which means the electromechanical conversion

of armature current to torque, N ¼ 16:25� 10�2kgm2

represents the rotor inertia, m0 ¼ 5:06� 10�2kg and m1 ¼
4:34� 10�2kg denote link mass and load mass, respec-

tively. l ¼ 5� 10�2m is the link length, R0 ¼ 2:3� 10�2m

is called radius of the load, G ¼ 9:8m=s2 represents the

gravity coefficient, and D0 ¼ 1:625� 10�3Nms=rad rep-

resents the coefficient of viscous friction at the joint. Let

x1 ¼ z; x2 ¼ _z; x3 ¼ I
P ; u ¼ U�. Considering the

Fig. 16 Curve of tracking error with noise
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disturbances, unmodeled dynamics and dead-zone output,

the system (83) can be expressed as

_1 ¼ qrðtÞð1; y; dðtÞÞ;
_x1 ¼ h1x2 þ f1;rðtÞðx1Þ þ D1;rðtÞð1; y; dðtÞÞ;
_x2 ¼ h2x3 þ f2;rðtÞðx1; x2Þ þ D2;rðtÞð1; y; dðtÞÞ;
_xn ¼ h3uþ f3;rðtÞðx1; x2; x3Þ þ D3;rðtÞð1; y; dðtÞÞ;
y ¼Dðx1Þ;

ð84Þ

where q1 ¼ �1þ 0:05y2 sin2ðyÞ, q2 ¼ �0:11þ 0:1y2 cos2

ðyÞ, f1;1 ¼ f1;2 ¼ 0, f2;1 ¼ � Q
P sinðx1Þ � M

P x2, f2;2 ¼
� Q

P sinðx1Þ � M
P x2 þ 0:2 sinðx1Þ cosðx2Þ, f3;1 ¼ � KB

PL x2�
R
L x3, f3;2 ¼ � KB

PL x2 � R
L x3 þ 0:1 sinðx1x2Þ cosðx3Þ, D1;1 ¼

0:1 sinðy1Þ þ 0:1e�t2 , D1;2 ¼ 0:1 cosðy1Þ � 0:1e�t2 , D2;1

¼ 0:1 sinðy12Þ þ 0:2 sinðt2Þ, D2;2 ¼ 0:1 sinðy21Þ þ 0:2 cos

ðt4Þ, D3;1 ¼ D3;2 ¼ 0, h1 ¼ h2 ¼ 1, h3 ¼ 1
PL.

Fig. 17 Curve of controller u with noise

Fig. 18 Curves of y and yd for Example 2
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In this example, yd ¼ 0:5 cosð0:5tÞ þ sinð0:5tÞ. Select

the initial conditions x1ð0Þ ¼ 0:2, x2ð0Þ ¼ 0:3,

x3ð0Þ ¼ �0:2, f̂1ð0Þ ¼ f̂2ð0Þ ¼ f̂3ð0Þ ¼ 0, ĥð0Þ ¼ 0,

b̂ð0Þ ¼ 0:03. We choose l1;1 ¼ l1;2 ¼ 3, l2;1 ¼ l2;2 ¼ 5,

l3;1 ¼ l3;2 ¼ 2, sa ¼ 29:03[ ln 13:8392=0:0905. l ¼ 0:2,

v ¼ 0:01, |1 ¼ 2:5, �h ¼ 0:1, ı ¼ 0:001, a1 ¼ 2, a2 ¼ 1,

a3 ¼ 3, s1 ¼ s2 ¼ s3 ¼ 2, c1 ¼ 4, c2 ¼ 9, c3 ¼ 120. The

simulation results are given in Figs. 18, 19, 20, 21, 22, 23,

24, and 25. The trajectories of y and yd are depicted in

Figs. 18, and 19 shows curve of the tracking error, we can

see that the tracking error tends to be in a small

neighborhood of the origin. Figure 20 shows curves of

x1, x2, x3 and 1. Figure 21 shows curves of f̂1, f̂2, and f̂3.

Figure 22, 23 and 24 depict adaptive parameters ĥ, b̂ and

control input u, respectively. Figure 25 shows the switching

signal.

Fig. 19 Curve of tracking error y� yd for Example 2

Fig. 20 Curves of x1, x2, x3 and 1 for Example 2
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5 Conclusions

In this paper, the problem of adaptive fuzzy PI output

feedback tracking control for a class of uncertain switched

nonlinear systems with unmodeled dynamics, unknown

control coefficients and dead-zone output has been

addressed. The proposed controller has a PI structure,

which constitutes a more intuitive structure and has a

stronger physical sense. The boundedness of all signals and

tracking error of the closed-loop system has been analyzed

using the Lyapunov stability theory. The validity of the

scheme has been demonstrated through two examples.

Fig. 21 Curves of f̂1; f̂2 and f̂3 for Example 2

Fig. 22 Curve of ĥ for Example 2
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Fig. 23 Curve of b̂ for Example 2

Fig. 24 Curve of control input u for Example 2
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