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Abstract This paper addresses the finite-time adaptive

fuzzy control for multi-input and multi-output (MIMO)

nonstrict-feedback nonlinear systems with fuzzy dead

zones. Combining the semi-global practical finite-time

stability criterion with the condition of variable partition, a

feasible finite-time adaptive fuzzy control scheme is pro-

posed for the developed MIMO system. The designed

control algorithm guarantees that the tracking error con-

verges to a small neighborhood of the origin in finite time.

Compared with existing research results, the main advan-

tage of this paper lies in that the finite-time control issue is

considered for MIMO nonstrict-feedback systems with

input nonlinearities. Two simulation examples are provided

to illustrate the effectiveness of the suggested approach.

Keywords Finite-time � Adaptive fuzzy control � Multi-

input and multi-output � Nonstrict-feedback nonlinear

systems � Fuzzy dead zones

1 Introduction

Due to the fact that most of the practical systems are

multivariable, tightly coupled and nonlinear, many back-

stepping-based adaptive control methods have been widely

developed for uncertain MIMO nonlinear systems in the

past decades. By utilizing fuzzy logic systems or neural

networks (NNs) to approximate the unknown nonlinear

functions, many feasible works have been carried out such

as [1–8]. A serious of adaptive fuzzy or NN control

schemes for deterministic MIMO nonlinear systems with

unknown nonlinearities were considered in [1–5]. And, the

controlled MIMO nonlinear systems developed in [6–8]

were extended to MIMO stochastic systems. It should be

pointed out that although some significant results have

been achieved in the aforementioned studies, these

researches have three limitations. First, the fuzzy dead zone

problems are not taken into consideration. Second, the

proposed control methods depend on the system strict-

feedback structures, if the structures of the controlled

nonlinear systems are in nonstrict-feedback forms, the

designed controller cannot work. Third, the aforemen-

tioned control strategies are considered with the general

infinite time control problems, and they cannot guarantee

the desired finite-time performance.

Dead zone nonlinearity is common in many practical

systems, and the existence of such nonlinearity may cause

severe deterioration of the system performance or even the

instability of system. In [9], a smooth inverse function of

the dead zone was introduced to achieve the adaptive

output control design. Without constructing the dead zone

inverse, an adaptive compensation algorithm was

employed in [10] for uncertain dynamical systems pre-

ceded by a non-symmetric dead zone input. In [11],

observer-based adaptive fuzzy-neural control was studied

for a class of single input and single output (SISO) systems

with completely unknown functions and unknown dead

zone inputs. Then, combining with backstepping tech-

niques, dead zone nonlinearities were considered in refer-

ences [12–14] for SISO strict-feedback system, switched

nonlinear system and MIMO strict-feedback nonlinear

system, respectively. However, the results obtained in

[9–14] are feasible under the presupposition that the dead
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zone output of the actuator is certain and precise in char-

acter, that is, the actuator output is a deterministic value for

a given actuator input signal. To remove the restrictive

condition posed on dead zone model in [9–14], the authors

of [15] employed a center-of-gravity method to overcome

the difficulty caused by the uncertainty in the dead zone

input of the nonlinear system. However, the systems under

consideration in the above existing works were assumed to

be in strict-feedback forms or in pure-feedback forms, that

is, the controlled nonlinear systems were in low-triangular

structures.

In nonstrict-feedback nonlinear systems, all the state

variables are contained in the system functions, therefore,

the controller design for this form of nonlinear system is

different from pure-feedback or strict-feedback systems,

and it yields much more difficulty in stability analysis and

controller design, especially for MIMO nonlinear systems.

To deal with the difficulty caused by nonstrict-feedback

structure, a variable separation method was applied in [16]

for nonstrict-feedback stochastic nonlinear systems with

input saturation and prescribed performance. The problems

of adaptive neural control were considered in [17] for

nonstrict-feedback systems with dynamic uncertainties and

in [18] for nonstrict-feedback stochastic systems, respec-

tively. Then, in [19–21], approximation-based adaptive

tracking control was developed for a class of nonstrict-

feedback systems with input nonlinearities such as dead

zone, time delays and input saturation. It is noted that the

controlled systems in [16–21] are all SISO rather than

MIMO. The problem of adaptive fuzzy control for a class

of MIMO nonstrict-feedback nonlinear systems was

investigated in [22]. Based on the common Lyapunov

function method, adaptive fuzzy tracking controllers were

designed in [23] for MIMO uncertain switched nonstrict-

feedback nonlinear systems with arbitrary switchings.

Although, the existing results in [16–23] are for nonstrict-

feedback nonlinear systems, the control schemes proposed

in these works are considered with the infinite time stability

and tracking control problems.

In recent years, the issue of finite-time control has

received increasing attention. Based on Lyapunov theory,

the finite-time stability for nonlinear systems was first

considered in [24, 25]. Since then, many useful and valu-

able results have been achieved in [26–30] for the study of

the finite-time stability of nonlinear systems based on the

Lyapunov function method. However, the earlier results in

[24–30] for finite-time controller design were obtained

under certain restrictive conditions, if these completely

unknown nonlinear functions that do not meet some growth

conditions are taken into account, the control algorithms

designed in [24–30] will not work. Recently, a novel

contributing criterion of finite-time semi-global practical

stability was established in [31] for nonlinear pure-

feedback systems, and many follow-up studies [32–34]

were discussed based on the stability criterion in [31].

However, the existing useful finite-time control schemes

are only considered for SISO strict-feedback systems

[32, 33] or SISO nonstrict-feedback systems [34], but not

for more complicated systems such as MIMO nonstrict-

feedback systems with fuzzy input nonlinearities.

However, on one hand, the control algorithms in

[16, 18] were the stabilization problems for SISO nonstrict-

feedback systems rather than the finite-time tracking

problem. On the other hand, the existing result in [3] for

MIMO system requires that the structure of the system is

strict-feedback, that is, each subsystem function in the

controlled system cannot contain the whole state variables.

In addition, meeting practical constraints may degrade the

system performance. To the best of our knowledge, there

are still few results available for the finite-time tracking

control of MIMO nonstrict-feedback system with fuzzy

dead zones, which is the motivation of our work.

Based on the above discussion, this paper concentrates

on the finite-time adaptive fuzzy control problem for

MIMO nonstrict-feedback nonlinear systems with fuzzy

dead zones. Compared with the existing works, the main

contributions of our proposed control scheme are summa-

rized as follows.

(i) Compared with existing results in [22, 23] for

infinite time control of MIMO nonstrict-feedback

uncertain nonlinear systems, this paper investi-

gates the finite-time control problem of MIMO

nonstrict-feedback systems subject to fuzzy dead

zones for the first time.

(ii) The existing adaptive control methods designed in

[16, 18] for SISO nonstrict-feedback systems only

guarantee the stabilization of the system, and the

adaptive fuzzy or neural control strategies in

[19–21] for SISO nonstrict-feedback systems are

concerned with the tracking problem in infinite

time. In our paper, the desired tracking perfor-

mance is obtained in finite time. On one hand,

stabilization problem, i.e., ydj ¼ 0, is a special

case of tracking problem, on the other hand, the

finite-time stability analysis is different from the

infinite time stability analysis. Therefore, conven-

tional adaptive fuzzy control scheme cannot be

directly used for the finite-time tracking control in

our paper.

(iii) Compared with previous results in [31–34], in

which the finite-time control issue is considered

for kinds of SISO nonlinear systems, this paper

extends the results to more general MIMO non-

strict-feedback systems with fuzzy dead zones.
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Under the proposed control approach, system

performance is guaranteed in finite time.

2 Problem Formulation and Preliminaries

2.1 Problem Statement

Consider the following MIMO nonlinear nonstrict-feed-

back systems with M subsystems. The jth ðj ¼ 1; 2; . . .;MÞ
subsystem is described as

_xj;p ¼ xj;pþ1 þ fj;pðXÞ; 1� p� nj � 1;

_xj;nj ¼ wjðujÞ þ fj;njðXÞ;
yj ¼ xj;1;

8
>>>><

>>>>:

ð1Þ

where X ¼ ½xT1 ; xT2 ; . . .; xTM �
T
denotes the state vector with

xj ¼ ½xj;1; xj;2; . . .; xj;nj �
T 2 Rnj and

�xj;p ¼ ½xj;1; xj;2; . . .; xj;p�T 2 Rp, uj 2 R and yj 2 R denote

the jth nonlinear subsystem control input and output,

respectively. fj;pð�Þðj ¼ 1; 2; . . .;M; p ¼ 1; 2; . . .; njÞ are

unknown nonlinear smooth functions with fj;pð0Þ ¼ 0.

wjðujÞ denotes the fuzzy dead zone input and is expressed

as the following form

wj uj
� �

¼

~kj uj � bj;r
� �

; uj � bj;r;

0; bj;l\uj\bj;r;

~kj uj � bj;l
� �

; uj � bj;l;

8
><

>:
ð2Þ

where bj;r [ 0 and bj;l\0 are the breakpoints of the input

nonlinearity. The slope ~kj is given as

~kj ¼
kj;1
1j;1

þ kj;2
1j;2

þ � � � þ kj;c
1j;c

;

where kj;qðj ¼ 1; 2; . . .;M; q ¼ 1; 2; . . .; cÞ are possible

values, which are taken by ~kjðj ¼ 1; 2; . . .;MÞ, 1j;q denotes

the fuzzy grade of kj;q with kj;q 6¼ 0. Generally, it is

assumed that kj;q [ 0 and kj;1\kj;2\ � � �\kj;c.

‘‘ðkj;q=1j;qÞ’’ represents the relationship between the map-

ping of kj;q and 1j;q, and ‘‘?’’ denotes a collection in the

universe of discourse Uj ¼ fkj;1; kj;2; . . .; kj;cg.
As the value of the dead zone output wjðujÞ is vague, we

cannot design controller directly. To cope with the term

wjðujÞ, we apply the following center-of-gravity method.

Defu wj uj
� �� �

¼
�kj uj � bj;r
� �

; uj � bj;r;

0; bj;l\uj\bj;r;

�kj uj � bj;l
� �

; uj � bj;l;

8
><

>:
ð3Þ

where Defuð�Þ is a center-of-gravity defuzzification oper-

ation for wjðujÞ, and the defuzzified value �kj satisfies

�kj ¼
Pc

q¼1 1j;qkj;q
Pc

q¼1 1j;q
:

Then, the defuzzified dead zone model can be further

expressed as

Defu wj uj
� �� �

¼ �kjuj þ �djðtÞ; ð4Þ

where

�djðtÞ ¼
� �kjbj;r; uj � bj;r;

� �kjuj; bj;l\uj\bj;r;

� �kjbj;l; uj � bj;l:

8
><

>:

Obviously, �djðtÞ is bounded and satisfies

j �djðtÞj � maxfkj;cjbj;rj; kj;cjbj;ljg:

The objective of this paper is to construct an adaptive fuzzy

controller for MIMO system (1) to guarantee that the

system output yj locates a small area of the desired refer-

ence signal ydj in finite time. For convenience of the sub-

sequent controller design process, the following

assumptions are required.

Assumption 1 The desired trajectory ydjðj ¼ 1; 2. . .;MÞ
and their time derivatives up to the njth order y

ðnjÞ
dj are

continuous and bounded. Furthermore, there exists a pos-

itive constant d0 such that jydjðtÞj � d0.

Assumption 2 For nonlinear function fj;pðXÞ, there exists

a strict increasing smooth function vj;pð�Þ : Rþ ! Rþ with

vj;pð0Þ ¼ 0 satisfying

jfj;pðXÞj � vj;pðkXkÞ:

Remark 1 In Assumption 2, the monotony property of

vj;pð�Þ implies vj;pð
Pn

k¼1 bkÞ�
Pn

k¼1 vj;pðnbkÞ with bk � 0.

Based on the property of vj;pðsÞ, there exists a smooth

function zj;pðsÞ such that vj;pðsÞ ¼ szj;pðsÞ, which yields

vj;p
Xn

k¼1

bk

 !

�
Xn

k¼1

nbkzj;pðnbkÞ: ð5Þ
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2.2 Preliminaries for Finite Time Stability Analysis

To facilitate the finite-time control design, some useful

definition and Lemmas are introduced.

Definition 1 [31] Let x ¼ 0 be the equilibrium of the

nonlinear system _x ¼ f ðx; uÞ. If for all initial condition

xðt0Þ ¼ x0, there exists a positive constant s and a settling

time Tðs;x0Þ\þ1 such that kxðtÞk\s for all

t� t0 þ T , then the nonlinear system is semi-global prac-

tical finite-time stable (SGPFS).

Lemma 1 [35] For bj 2 R, 0\t� 1, the following rela-

tion holds:

Xm

j¼1

jbjj
 !t

�
Xm

j¼1

jbjjt �m1�t
Xm

j¼1

jbjj
 !t

: ð6Þ

Lemma 2 [32] Consider the differential equation

_-ðtÞ ¼ �a-ðtÞ þ bvðtÞ. If a, b are positive constants and

vðtÞ[ 0, then -ðt0Þ� 0 means -ðtÞ� 0 for 8t� t0.

Lemma 3 [36] For 8r[ 0 and 8i 2 R, the following

inequality holds:

0� jij � i tanh

�
i
r

�

� j1r; j1 ¼ 0:2785: ð7Þ

Lemma 4 [37] For any real variables a; b and any con-

stants k[ 0; m[ 0; o[ 0, the following inequality holds

jajkjbjm � k
kþ m

ojajkþm þ m
kþ m

o�
k
mjbjkþm:

Lemma 5 [31] Suppose that there exist scalars a1 [ 0,

0\t\1 and b1 [ 0, for the system _x ¼ f ðx; uÞ, the time

derivation of the smooth positive definite function VðxÞ
satisfies the following equation

_VðxÞ� � a1V
tðxÞ þ b1; t� 0; ð8Þ

and let Tr ¼ 1
ð1�tÞja1 ½V

1�tðxð0ÞÞ � ð b1
ð1�jÞa1Þ

1�t
t � with

Vðxð0ÞÞ being the initial condition of VðxÞ , and 0\j� 1 ,

then the nonlinear system _x ¼ f ðx; uÞ is SGPFS for

8t� Tr.

Remark 2 It should be pointed out that although some

similar works have been done for finite-time adaptive

control in [31–34] or for nonlinear systems with fuzzy dead

zones in [15, 38], where the presented control algorithms

are considered for SISO nonlinear systems and they cannot

guarantee the system tracking performance for MIMO

systems. The system (1) under study is in MIMO nonstrict-

feedback form, which is more complicated and general

than SISO systems. So far, there is no finite-time adaptive

fuzzy control results to be reported for MIMO system (1).

2.3 Fuzzy Logic Systems

To approximate the continuous function f(x) defined on a

compact set X, a fuzzy logic system needs to be designed.

Define the following If-Then fuzzy rules:

Rl: If x1 is Fl
1 and . . . and xn is Fl

n, then y is Gl, l ¼
1; 2; . . .;K; where x ¼ ½x1; . . .; xn�T and y are the input and

output of the fuzzy system, respectively. Fuzzy sets Fl
j and

Gl are associate with the fuzzy membership functions

lFl
j
ðxjÞ and lGlðyÞ, respectively. K is the number of rules.

The output of the fuzzy system can be expressed as [39]

yðxÞ ¼
PK

l¼1 pl
Qn

j¼1 lFl
j
ðxjÞ

PK
l¼1

Qn
j¼1 lFl

j
ðxjÞ

h i ;

where pl ¼ maxy2R lGlðyÞ. Simultaneously, we define the

fuzzy basis function as

glðxÞ ¼
Qn

j¼1 lFl
j
ðxjÞ

PK
l¼1

Qn
j¼1 lFl

j
ðxjÞ

h i ;

then the fuzzy logic system can be expressed as

yðxÞ ¼ pTgðxÞ; ð9Þ

where

p ¼ ½p1; p2; . . .; pK �T; gðxÞ ¼ ½g1ðxÞ; g2ðxÞ; . . .; gKðxÞ�
T:

Lemma 6 [39] Let f(x) be a continuous function defined

on a compact set X. Then, for any positive constant s, there
exists a fuzzy logic system (9) such that

sup
x2X

jf ðxÞ � pTgðxÞj� s: ð10Þ

3 Adaptive Fuzzy Controller Design

In this section, a backstepping-based control design

scheme will be presented. Define Zj;p ¼ ½�xTj;p;
�̂/
T
j;p; �y

ðpÞT
dj �T

with
�̂/j;p ¼ ½/̂j;1; . . .; /̂j;p�

T
and �y

ðpÞ
dj ¼ ½ydj; _ydj; . . .; y

ðpÞ
dj �

T
.

/̂j;p is the estimation of an unknown constant /j;p, which is

defined as /j;p ¼ kpj;pk2, and

~/j;p ¼ /j;p � /̂j;pðj ¼ 1; . . .;M; p ¼ 1; . . .; njÞ. In the fol-

lowing, the virtual control signals fj;pðj ¼ 1; . . .;M; p ¼
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1; . . .; nj � 1Þ and the controller ujðj ¼ 1; . . .;MÞ are

respectively designed as

fj;p ¼ �qj;p#
2t�1
j;p �

/̂j;p

2l2j;p
#j;pg

T
j;pðZj;pÞgj;pðZj;pÞ; ð11Þ

uj ¼ � 1
�kj

qj;nj#
2t�1
j;nj

þ
/̂j;nj

l2j;nj
#j;njg

T
j;nj
ðZj;njÞgj;njðZj;njÞ

" #

;

ð12Þ

with qj;p and lj;p being positive constants. t ¼ ½ð2n�
1Þ=ð2nþ 1Þ� with n� 2 being the natural number,

ð1=2Þ\t\1. #j;p is defined in the following coordinate

transformation

#j;p ¼ xj;p � fj;p�1 ð13Þ

with fj;0 ¼ ydj. The parameter adaptive laws are designed

as

_̂/j;p ¼
dj;p
2l2j;p

#2
j;pg

T
j;pðZj;pÞgj;pðZj;pÞ � ej;p/̂j;p; /̂j;pð0Þ� 0;

ð14Þ

where dj;p and ej;p are positive design constants.

Lemma 7 From #j;p ¼ xj;p � fj;p�1ð1� j�M; 1� p� njÞ,
the following inequality holds

kXk�
XM

j¼1

Xnj

p¼1

Cj;p #j;p; /̂j;p

� �
j#j;pj þ �d0; ð15Þ

where �d0 ¼ Md0, Cj;pð#j;p; /̂j;pÞ ¼ 1þ qj;p#
2t�2
j;p þ

ð/̂j;p=ð2l2j;pÞÞ with 1� j�M, 1� p� nj � 1, and /̂j;nj ¼ 1.

Theorem 1 Consider the MIMO nonstrict-feedback non-

linear systems (1), under Assumptions 1–2, the controller

uj (12), together with the intermediate control signal fj;p

(11) and parameter adaptive law
_̂/j;p (14).

(i) For the defuzzified value �kj, all the signals of the

closed-loop system are bounded, and the tracking errors

converge to a small neighborhood of the origin in finite

time.

(ii) For the fuzzy value ~kj, ~kj 2 ½ �kj � Nj; �kj þ Nj�, Nj is a

bounded disturbance, if 0\Nj �ðkj;1=2Þ, then all the

signals of the closed-loop system are bounded, and the

tracking errors converge to a small neighborhood of the

origin in finite time.

3.1 Proof Case 1: Consider the Defuzzification

Value �kj

Step 1 Design the following Lyapunov function candidate

Vj;1 ¼
1

2
#2
j;1 þ

1

2dj;1
~/
2

j;1: ð16Þ

Based on #j;1 ¼ xj;1 � ydj, the time derivative of Vj;1 is

calculated as

_Vj;1 ¼ #j;1ðxj;2 þ fj;1ðXÞ � _ydjÞ �
~/j;1

dj;1
_̂/j;1

¼ #j;1ð#j;2 þ fj;1 þ fj;1ðXÞ � _ydjÞ �
~/j;1

dj;1
_̂/j;1:

ð17Þ

By applying Assumption 2, (5) and Lemma 7, we obtain

#j;1fj;1ðXÞ
� j#j;1jjfj;1ðXÞj� j#j;1jvj;1ðkXkÞ

� j#j;1jvj;1
�
XM

l¼1

Xnl

s¼1

Cl;sð/̂l;sÞj#l;sj þ �d0

�

� j#j;1j
XM

l¼1

Xnl

s¼1

vj;1

�

.0j#l;sjCl;sð/̂l;sÞ
�

þ j#j;1jvj;1ð.0 �d0Þ

�
XM

l¼1

Xnl

s¼1

j#j;1j.0j#l;sjCl;sð/̂l;sÞ

� zj;1

�

.0j#l;sjCl;sð/̂l;sÞ
�

þ j#j;1jvj;1ð.0 �d0Þ

� 1

2
�K#2

j;1 þ
XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;1ð#l;s; /̂l;sÞ þ j#j;1jvj;1ð.0 �d0Þ;

ð18Þ

where �v2j;1ð#l;s; /̂l;sÞ ¼ .20C
2
l;sð/̂l;sÞz2j;1

�

.0j#l;sjCl;sð/̂l;sÞ
�

,

�K ¼
PM

l¼1 nl, and .0 ¼ 1þ
PM

l¼1 nl .

Let Hj;1 ¼ vj;1ð.0 �d0Þ, and applying Lemma 3, we have

j#j;1jHj;1 � #j;1Hj;1 tanh

�
#j;1Hj;1

rj;1

�

� j1rj;1; ð19Þ

where rj;1 is a positive constant. Substituting (18) and (19)

into (17) results in

_Vj;1 �#j;1ð#j;2 þ fj;1 � _ydjÞ þ
1

2
�K#2

j;1 þ j1rj;1

þ
XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;1ð#l;s; /̂l;sÞ �

~/j;1

dj;1
_̂/j;1

þ #j;1Hj;1 tanh

�
#j;1Hj;1

rj;1

�

:

ð20Þ

Step 2 From (13), the time derivative of #j;2 is given as
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_#j;2 ¼ _xj;2 � _fj;1

¼ xj;3 þ fj;2ðXÞ �
ofj;1
oxj;1

ðxj;2 þ fj;1ðXÞÞ

�
X1

m¼0

ofj;1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

ofj;1

o/̂j;1

_̂/j;1:

ð21Þ

Choose the following Lyapunov function candidate

Vj;2 ¼
1

2
#2
j;2 þ

1

2dj;2
~/
2

j;2: ð22Þ

The time derivative of Vj;2 is calculated as

_Vj;2 ¼ #j;2

�

xj;3 þ fj;2ðXÞ �
ofj;1
oxj;1

ðxj;2 þ fj;1ðXÞÞ

�
X1

m¼0

ofj;1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

ofj;1

o/̂j;1

_̂/j;1

	

�
~/j;2

dj;2
_̂/j;2:

ð23Þ

Similarly to the analysis in (18), we have

�#j;2

ofj;1
oxj;1

fj;1ðXÞ� j#j;2jj
ofj;1
oxj;1

jvj;1ðkXkÞ

� 1

2
�K#2

j;2

ofj;1
oxj;1

� �2

þ
XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;1ð#l;s; /̂l;sÞ

þ j#j;2jj
ofj;1
oxj;1

jvj;1ð.0 �d0Þ;

ð24Þ

#j;2fj;2ðXÞ�
1

2
�K#2

j;2 þ
XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;2ð#l;s; /̂l;sÞ

þ j#j;2jvj;2ð.0 �d0Þ;
ð25Þ

where �v2j;mð#l;s; /̂l;sÞ ¼ .20C
2
l;sð/̂l;sÞz2j;m

�

.0j#l;sjCl;sð/̂l;sÞ
�

,

m ¼ 1; 2.

Let Hj;2 ¼ j ofj;1
oxj;1

jvj;1ð.0 �d0Þ þ vj;2ð.0 �d0Þ. From Lemma 3,

one has

j#j;2jHj;2 � #j;2Hj;2 tanh

�
#j;2Hj;2

rj;2

�

� j1rj;2; ð26Þ

where rj;2 is a positive constant. Substituting (24)–(26) into

(23), we have

_Vj;2 �#j;2

�

#j;3 þ fj;2 �
ofj;1
oxj;1

xj;2 �
X1

m¼0

ofj;1

oy
ðmÞ
dj

y
ðmþ1Þ
dj

�
ofj;1

o/̂j;1

_̂/j;1

	

þ 1

2
�K#2

j;2

�
ofj;1
oxj;1

�2

þ 1

2
�K#2

j;2 þ j1rj;2

þ
X2

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ �

~/j;2

dj;2
_̂/j;2

þ #j;2Hj;2 tanh

�
#j;2Hj;2

rj;2

�

:

ð27Þ

Step p (3� p� nj � 1): Similarly, the time derivative of

#j;p is shown as

_#j;p ¼ _xj;p � _fj;p�1

¼ xj;pþ1 þ fj;pðXÞ �
Xp�1

m¼1

ofj;p�1

oxj;m
ðxj;mþ1 þ fj;mðXÞÞ

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m:

ð28Þ

Consider the following Lyapunov function candidate

Vj;p ¼
1

2
#2
j;p þ

1

2dj;p
~/
2

j;p: ð29Þ

Then, differentiating Vj;p yields

_Vj;p ¼ #j;p

�

xj;pþ1 þ fj;pðXÞ �
Xp�1

m¼1

ofj;p�1

oxj;m
ðxj;mþ1 þ fj;mðXÞÞ

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m

	

�
~/j;p

dj;p
_̂/j;p:

ð30Þ

Similarly to the analysis in (24) and (25), we have

� #j;p

Xp�1

m¼1

ofj;p�1

oxj;m
fj;mðXÞ

� 1

2
�K#2

j;p

Xp�1

m¼1

�
ofj;p�1

oxj;m

�2

þ
Xp�1

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ

þ j#j;pj
Xp�1

m¼1

j
ofj;p�1

oxj;m
jvj;mð.0 �d0Þ;

ð31Þ

#j;pfj;pðXÞ�
1

2
�K#2

j;p þ
XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;pð#l;s; /̂l;sÞ

þ j#j;pjvj;pð.0 �d0Þ;
ð32Þ

where �v2j;mð#l;s; /̂l;sÞ ¼ .20C
2
l;sð/̂l;sÞz2j;m

�

.0j#l;sjCl;sð/̂l;sÞ
�

,

m ¼ 1; . . .; p.
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Let Hj;p ¼
Pp�1

m¼1 j
ofj;p�1

oxj;m
jvj;mð.0 �d0Þ þ vj;mð.0 �d0Þ.

According to Lemma 3, one has

j#j;pjHj;p � #j;pHj;p tanh

�
#j;pHj;p

rj;p

�

� j1rj;p; ð33Þ

where rj;p [ 0 is a constant. Substituting (31)–(33) into

(30), one has

_Vj;p �#j;p

�

#j;pþ1 þ fj;p �
Xp�1

m¼1

ofj;p�1

oxj;m
xj;mþ1

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m

	

�
~/j;p

dj;p
_̂/j;p

þ 1

2
�K#2

j;p

Xp�1

m¼1

�
ofj;p�1

oxj;m

�2

þ 1

2
�K#2

j;p þ j1rj;p

þ
Xp

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ

þ #j;pHj;p tanh

�
#j;pHj;p

rj;p

�

:

ð34Þ

Step nj: Choose the following Lyapunov function

Vj;nj ¼
1

2
#2
j;nj

þ 1

2dj;nj
~/
2

j;nj
: ð35Þ

As #j;nj ¼ xj;nj � fj;nj�1, then the time derivative of Vj;nj is

given as

_Vj;nj ¼ #j;nj

�

�kjuj þ fj;njðXÞ �
Xnj�1

m¼1

ofj;nj�1

oxj;m
ðxj;mþ1 þ fj;mðXÞÞ

�
Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

	

�
~/j;nj

dj;nj

_̂/j;nj :

ð36Þ

A similar procedure in (31)–(34) is employed for step nj,

we have

_Vj;nj �#j;nj

�

�kjuj �
Xnj�1

m¼1

ofj;nj�1

oxj;m
xj;mþ1 �

Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj

�
Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

	

þ 1

2
�K#2

j;nj

Xnj�1

m¼1

�
ofj;nj�1

oxj;m

�2

þ 1

2
�K#2

j;nj
þ j1rj;nj þ

Xnj

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ

þ #j;njHj;nj tanh

�
#j;njHj;nj

rj;nj

�

�
~/j;nj

dj;nj

_̂/j;nj :

ð37Þ

Subsequently, design the following Lyapunov function for

the whole systems

V ¼
XM

j¼1

Xnj

p¼1

Vj;p ¼
XM

j¼1

Xnj

p¼1

1

2
#2
j;p þ

Xnj

p¼1

1

2dj;p
~/
2

j;p

 !

:

ð38Þ

From _Vj;1 (20), _Vj;2 (27), _Vj;pð3� p� nj � 1Þ (34) and _Vj;nj

(37), we obtain

_V � �
XM

j¼1

Xnj

p¼1

~/j;p

dj;p
_̂/j;p þ

XM

j¼1

#j;1

�

#j;2 þ fj;1 � _ydj

þ 1

2
�K#j;1 þHj;1 tanh

�
#j;1Hj;1

rj;1

�	

þ
XM

j¼1

Xnj�1

p¼2

#j;p

�

#j;pþ1 þ fj;p �
Xp�1

m¼1

ofj;p�1

oxj;m
xj;mþ1

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;p þ

1

2
�K#j;p

Xp�1

m¼1

�
ofj;p�1

oxj;m

�2

þHj;p tanh

�
#j;pHj;p

rj;p

�	

þ
XM

j¼1

#j;nj

�

�kjuj �
Xnj�1

m¼1

ofj;nj�1

oxj;m
xj;mþ1

�
Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;nj

Xnj�1

m¼1

�
ofj;nj�1

oxj;m

�2

þ 1

2
�K#j;nj

þHj;nj tanh

�
#j;njHj;nj

rj;nj

�	

þ
XM

j¼1

Xnj

p¼1

j1rj;p

þ
XM

j¼1

Xnj

p¼1

Xp

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ:

ð39Þ

By rearranging sequence, one has
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XM

j¼1

Xnj

p¼1

Xp

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ

¼
XM

j¼1

Xnj

p¼1

1

2
#2
j;p

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;p; /̂j;pÞ:
ð40Þ

On the other hand, for j ¼ 1; . . .;M; p ¼ 1; . . .; nj � 1, the

following inequality holds

#j;p#j;pþ1 �
#2
j;p

2
þ
#2
j;pþ1

2
: ð41Þ

Then substituting (40) and (41) into (39), we have

_V �
XM

j¼1

#j;1

�

fj;1 þ
1

2
�K#j;1 þ #j;1

þ 1

2
#j;1

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;1; /̂j;1Þ

� _ydj þHj;1 tanh

�
#j;1Hj;1

rj;1

�	

�
XM

j¼1

#2
j;1

2

þ
XM

j¼1

Xnj�1

p¼2

#j;p

�

fj;p þ
3

2
#j;p �

Xp�1

m¼1

ofj;p�1

oxj;m
xj;mþ1

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;p þ

1

2
�K#j;p

Xp�1

m¼1

�
ofj;p�1

oxj;m

�2

þ 1

2
#2
j;p

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;p; /̂j;pÞ

þHj;p tanh

�
#j;pHj;p

rj;p

�	

�
XM

j¼1

Xnj�1

p¼2

#2
j;p

2

þ
XM

j¼1

#j;nj

�

�kjuj �
Xnj�1

m¼1

ofj;nj�1

oxj;m
xj;mþ1 þ #j;nj

�
Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;nj

Xnj�1

m¼1

�
ofj;nj�1

oxj;m

�2

þ 1

2
�K#j;nj

þ 1

2
#2
j;nj

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;nj ; /̂j;njÞ

þHj;nj tanh

�
#j;njHj;nj

rj;nj

�	

�
XM

j¼1

#2
j;nj

2

þ
XM

j¼1

Xnj

p¼1

j1rj;p �
XM

j¼1

Xnj

p¼1

~/j;p

dj;p
_̂/j;p:

ð42Þ

Subsequently, _V is rewritten as

_V �
XM

j¼1

#j;1ðfj;1 þ �f j;1ðZj;1ÞÞ

þ
XM

j¼1

Xnj�1

p¼2

#j;pðfj;p þ �f j;pðZj;pÞÞ

þ
XM

j¼1

#j;njð �kjuj þ �f j;njðZj;njÞÞ �
XM

j¼1

Xnj

p¼1

#2
j;p

2

þ
XM

j¼1

Xnj

p¼1

j1rj;p �
XM

j¼1

Xnj

p¼1

~/j;p

dj;p
_̂/j;p;

ð43Þ

where

�f j;1ðZj;1Þ ¼
1

2
�K#j;1 þ #j;1 � _ydj þHj;1 tanh

�
#j;1Hj;1

rj;1

�

þ 1

2
#j;1

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;1; /̂j;1Þ;

�f j;pðZj;pÞ ¼
3

2
#j;p �

Xp�1

m¼1

ofj;p�1

oxj;m
xj;mþ1

�
Xp�1

m¼0

ofj;p�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xp�1

m¼1

ofj;p�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;p þ

1

2
�K#j;p

Xp�1

m¼1

�
ofj;p�1

oxj;m

�2

þ 1

2
#2
j;p

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;p; /̂j;pÞ

þHj;p tanh

�
#j;pHj;p

rj;p

�

;

�f j;njðZj;njÞ ¼ #j;nj �
Xnj�1

m¼1

ofj;nj�1

oxj;m
xj;mþ1

�
Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

þ 1

2
�K#j;nj

Xnj�1

m¼1

�
ofj;nj�1

oxj;m

�2

þ 1

2
�K#j;nj

þ 1

2
#2
j;nj

XM

l¼1

Xnl

s¼1

Xs

m¼1

�v2l;mð#j;nj ; /̂j;njÞ

þHj;nj tanh

�
#j;njHj;nj

rj;nj

�

:

From Lemma 6, for any given sj;p [ 0, there is a fuzzy

logic system pTj;pgj;pðZj;pÞ such that

�f j;pðZj;pÞ ¼ pTj;pgj;pðZj;pÞ þ Uj;pðZj;pÞ; jUj;pðZj;pÞj � sj;p

ð44Þ

with Uj;p being the approximation error. According to

Young’s inequality, we have
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#j;p
�f j;pðZj;pÞ�

/j;p

2l2j;p
#2
j;pg

T
j;pgj;p þ

l2j;p
2

þ
#2
j;p

2
þ
s2j;p
2

; ð45Þ

where /j;p ¼ kpj;pk2, j ¼ 1; . . .;M; p ¼ 1; . . .; nj. Substi-

tuting (45) into (43), one has

_V �
XM

j¼1

#j;1 fj;1 þ
/̂j;1

2l2j;1
#2
j;1g

T
j;1gj;1

 !

þ
XM

j¼1

Xnj�1

p¼2

#j;pðfj;p þ
/̂j;p

2l2j;p
#2
j;pg

T
j;pgj;pÞ

þ
XM

j¼1

#j;njð �kjuj þ
/̂j;nj

2l2j;nj
#2
j;nj
gTj;njgj;njÞ

�
XM

j¼1

Xnj

p¼1

~/j;p

dj;p

�
_̂/j;p �

dj;p
2l2j;p

#2
j;pg

T
j;pgj;p

�

þ
XM

j¼1

Xnj

p¼1

�

j1rj;p þ
l2j;p
2

þ
s2j;p
2

�

:

ð46Þ

From (14) and Lemma 2, we know that /̂j;pð0Þ� 0 implies

that /̂j;pðtÞ� 0 for all t� 0. Therefore, the following result

holds

�
/̂j;nj

l2j;nj
#2
j;nj
gTj;njgj;nj � �

/̂j;nj

2l2j;nj
#2
j;nj
gTj;njgj;nj : ð47Þ

It is noted that

~/j;p

dj;p
/̂j;p � �

~/
2

j;p

2dj;p
þ

/2
j;p

2dj;p
: ð48Þ

Substituting (11), (12), (14), (47) and (48) into (46), we can

obtain

_V � �
XM

j¼1

Xnj

p¼1

�

qj;p#
2t
j;p þ

ej;p
2dj;p

~/
2

j;p

�

þ
XM

j¼1

Xnj

p¼1

�
ej;p
2dj;p

/2
j;p þ j1rj;p þ

l2j;p
2

þ
s2j;p
2

�

� � q0
XM

j¼1

Xnj

p¼1

#2t
j;p � q0

XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

þ
XM

j¼1

Xnj

p¼1

�
ej;p
2dj;p

/2
j;p þ j1rj;p þ

l2j;p
2

þ
s2j;p
2

�

;

ð49Þ

where q0 ¼ minfqj;p; ej;p; 1� j�M; 1� p� njg.
Based on Lemma 4, let a ¼ 1,

b ¼
�
PM

j¼1

Pnj
p¼1

~/
2

j;p

2dj;p

�t

, k ¼ 1� t, m ¼ t and o ¼ t
t

1�t,

we get

�
XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

�t

�ð1� tÞt t
1�t þ

XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p
: ð50Þ

Substituting (50) into (49), one has

_V � � q0
XM

j¼1

Xnj

p¼1

#2t
j;p � q0

�
XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

�t

þ n0

� � 2tq0
XM

j¼1

Xnj

p¼1

�
#2
j;p

2

�t

� q0

�
XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

�t

þ n0;

ð51Þ

where n0 ¼ ð1� tÞt t
1�t þ

PM
j¼1

Pnj
p¼1

�
ej;p
2dj;p

/2
j;p þ j1rj;pþ

l2j;p
2
þ s2j;p

2

�

. Then applying Lemma 1, we have

_V � � 2tq0

�
XM

j¼1

Xnj

p¼1

#2
j;p

2

�t

� q0

�
XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

�t

þ n0

� � q0V
t þ n0:

ð52Þ

Let Tr ¼ 1
ð1�tÞjq0 ½V

1�tðfjð0Þ; ~/jð0ÞÞ � ð n0
ð1�jÞq0Þ

1�t
t � with

fjð0Þ ¼ ½fj;1ð0Þ; . . .; fj;njð0Þ�
T
, ~/jð0Þ ¼ ½ ~/j;1ð0Þ; . . . ~/j;njð0Þ�

T

and 0\j� 1. According to Lemma 5, for t� Tr,

Vtðfj; ~/jÞ� n0
ð1�jÞq0, which implies that all the signals in the

closed-loop system are SGPFS. In addition, from the def-

inition of V, for 8t� Tr, we have

jyj � ydjj �
ffiffiffi
2

p �
n0

ð1� jÞq0

� 1
2t

; ð53Þ

which means that the tracking error remains in a small

neighborhood of the origin after the finite time Tr.

3.2 Case 2: Consider the Fuzzy Value
~kj 2 ½ �kj � Nj; �kj þ Nj�

The discussion in step pð1� p� nj � 1Þ is the same as that

in (16)–(34). For Vj;nj defined in (35), _Vj;nj is calculated as
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_Vj;nj �#j;nj

�

~kjuj �
Xnj�1

m¼1

ofj;nj�1

oxj;m
xj;mþ1

�
Xnj�1

m¼0

ofj;nj�1

oy
ðmÞ
dj

y
ðmþ1Þ
dj �

Xnj�1

m¼1

ofj;nj�1

o/̂j;m

_̂/j;m

	

þ 1

2
�K#2

j;nj

Xnj�1

m¼1

�
ofj;nj�1

oxj;m

�2

þ 1

2
�K#2

j;nj
þ j1rj;nj

þ
Xnj

m¼1

XM

l¼1

Xnl

s¼1

1

2
#2
l;s�v

2
j;mð#l;s; /̂l;sÞ

þ #j;njHj;nj tanh

�
#j;njHj;nj

rj;nj

�

�
~/j;nj

dj;nj

_̂/j;nj :

ð54Þ

Then, similarly to the above process in (38)–(45), we have

_V �
XM

j¼1

#j;1 fj;1 þ
/̂j;1

2l2j;1
#2
j;1g

T
j;1gj;1

 !

þ
XM

j¼1

Xnj�1

p¼2

#j;p fj;p þ
/̂j;p

2l2j;p
#2
j;pg

T
j;pgj;p

 !

þ
XM

j¼1

#j;nj
~kjuj þ

/̂j;nj

2l2j;nj
#2
j;nj
gTj;njgj;nj

 !

�
XM

j¼1

Xnj

p¼1

~/j;p

dj;p
_̂/j;p �

dj;p
2l2j;p

#2
j;pg

T
j;pgj;p

 !

þ
XM

j¼1

Xnj

p¼1

j1rj;p þ
l2j;p
2

þ
s2j;p
2

 !

:

ð55Þ

As �kj 2 ½kj;1; kj;c� and 0\Nj � kj;1
2
, the following inequality

holds

~kj
�kj
�

�kj � Nj

�kj
� 1� kj;1

2 �kj
� 1

2
: ð56Þ

Combining (47) with (56), we obtain

�
~kj
�kj

/̂j;nj

l2j;nj
#2
j;nj
gTj;njgj;nj � �

/̂j;nj

2l2j;nj
#2
j;nj
gTj;njgj;nj : ð57Þ

Substituting (11), (12), (14), (48), (56) and (57) into (55),

the time derivative of Vj;nj is rewritten as

_V � �
XM

j¼1

Xnj�1

p¼1

qj;p#
2t
j;p �

XM

j¼1

qj;nj
2

#2t
j;nj

�
XM

j¼1

Xnj

p¼1

ej;p
2dj;p

~/
2

j;p

þ
XM

j¼1

Xnj

p¼1

ej;p
2dj;p

/2
j;p þ j1rj;p þ

l2j;p
2

þ
s2j;p
2

 !

� � q0
XM

j¼1

Xnj

p¼1

#2t
j;p � q0

XM

j¼1

Xnj

p¼1

~/
2

j;p

2dj;p

þ
XM

j¼1

Xnj

p¼1

ej;p
2dj;p

/2
j;p þ j1rj;p þ

l2j;p
2

þ
s2j;p
2

 !

;

ð58Þ

where q0 ¼ minfqj;pð1� j�M; 1� p� nj � 1Þ;
qj;nj
2
; ej;p

ð1� j�M; 1� p� njÞg.
Then, by repeating the same way applied in the process

in (50)–(52), we can get

_V � � q0V
t þ n0 ð59Þ

with n0 being defined in (51). Consequently, similarly to

the previous analysis in Case 1, for a fuzzy value
~kj 2 ½ �kj � Nj; �kj þ Nj�, all the signals in the closed-loop

system are SGPFS, and the tracking error converges to a

small neighborhood of the origin and remains there after

the finite time Tr. The proof is completed. h

Remark 3 From (53) and the definitions of n0 and q0, we
know that the tracking error jyj � ydjj is governed by the

main design parameters qj;p, dj;p and lj;p. Obviously,

smaller tracking error can be achieved by selecting larger

parameters qj;p and dj;p and smaller parameter lj;p.

Remark 4 Note that several results on MIMO nonlinear

systems have been obtained in [3, 14, 22]. The main dif-

ferences between our result and the ones in [3, 14, 22] are

concluded as follows.

(i) The tracking errors in [3, 14, 22] are guaranteed to

be small enough as the time variable goes to

infinity. Unlike these works, in this paper, the

proposed control method makes the tracking

errors as small as possible in finite time.

(ii) From the controlled MIMO system models, the

presented control methods in [3, 14] are developed

in the sense of MIMO strict-feedback systems, and

this paper is concerned with the finite-time

tracking control problem for MIMO nonlinear

systems in nonstrict-feedback structures.

(iii) Compared with [22], where adaptive fuzzy control

methods are investigated for MIMO nonstrict-

feedback systems, the effects of fuzzy dead zones

are considered in our paper. Therefore, the

developed MIMO nonlinear system in this paper

is more general.
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4 Simulation Examples

In this section, the effectiveness of the proposed finite-time

control approach is testified by the following two

examples.

Example 1 Consider the following two continuous stirred

tank reactor process system [22], as shown in Fig. 1. The

model can be described by the following differential

equations:

_x1;1 ¼ d1;1x1;2; y1 ¼ x1;1;

_x1;2 ¼ d1;2u1;

_x2;1 ¼ d2;1x2;2 þ u2;1ðx1;1; x2;1Þ þ D2;1;

_x2;2 ¼ d2;2u2 þ u2;2ðx2;1; x2;2Þ; y2 ¼ x2;1;

_x3;1 ¼ d3;1x3;2 þ u3;1ðx2;1; x3;1Þ þ D3;1;

_x3;2 ¼ d3;2u3 þ u3;2ðx3;1; x3;2Þ; y3 ¼ x3;1; ð60Þ

where d1;1 ¼ 1, d1;2 ¼ 1, d2;1 ¼ UA=qcqV , d2;2 ¼ Fj2=Vj,

d3;1 ¼ UA=qcqV , d3;2 ¼ Fj1=Vj, C ¼ ðF þ FRÞ=V ,
W ¼ F0=V , u2;1 ¼ ððF þ FRÞ=VÞTd

1� ½ððF þ FRÞ=VÞ
ðx2;1 þ Td

2 Þ�� ½ðak=qcqÞðx1;1 þ Cd
A2Þe �ðE=ðRðx2;1þ

Td
2 ÞÞÞ�� ðUA=qcqVÞðx2;1 þ Td

2 � Td
j2Þ, u2;2 ¼ ðFj2=VjÞ

ðTd
j20� x2;2 � Td

j2Þ þ ðUA=qjcjVjÞðx2;1 þ Cd
2 � x2;2 � Td

j2Þ,
u3;1 ¼ F0T

d
0 =V � ððF þ FRÞ=VÞ ðx3;1 þ Td

1 Þ þ ðFR=VÞ
ðx2;1 þ Td

2 Þ � akCA1e �E=ðRðx3;1 þ Td
1 ÞÞ= qcq �

UAðx3;1 þ Td
1 � x3;2� Td

j1Þ=qjcjVj, u3;2 ¼ ðFj1 =VjÞðTd
j10�

x3;2 � Td
j;1Þ þ ðUA=qjcjVjÞ ðx3;1 þ Td

1 � x3;2 � Td
j1Þ, CA1 ¼

ðV=ðF þ FRÞÞðx1;2þ ððF þ FRÞ=VÞðx1;1 þ Cd
A2Þþ aðx1;1þ

Cd
A2Þe�E=ðRðx2;1þTd

2
ÞÞÞ. The terms D2;1 and D3;1 denote the

unknown connections between the subsystems, and D2;1 ¼
Cx3;1 and D3;1 ¼ W-. In addition, Vj1 ¼ Vj2 ¼ V ,

V1 ¼ V2 ¼ V , F0 ¼ F2 ¼ F, - ¼ e�0:15t sinðtÞ and the

values of the parameters are selected same as [22].

In this paper, we consider the practical two continuous

stirred tank reactor process system with fuzzy dead zones,

as the parameters of the dead zones are usually uncertain.

By defining the following coordinate changes: �x1;1 ¼ x1;1,

�x1;2 ¼ d1;1x1;2, �x2;1 ¼ x2;1, �x2;2 ¼ d2;1x2;2, �x3;1 ¼ x3;1, and

�x3;2 ¼ d3;1x3;2, the state space equations of (60) can be

rewritten as

_�x1;1 ¼ �x1;2; y1 ¼ �x1;1;

_�x1;2 ¼ �u1;

_�x2;1 ¼ �x2;2 þ �u2;1ð�x1;1; �x2;1Þ þ �D2;1;

_�x2;2 ¼ �u2 þ �u2;2ð�x2;1; �x2;2Þ; y2 ¼ �x2;1;

_�x3;1 ¼ �x3;2 þ �u3;1ð�x2;1; �x3;1Þ þ �D3;1;

_�x3;2 ¼ �u3 þ �u3;2ð�x3;1; �x3;2Þ; y3 ¼ �x3;1;

ð61Þ

where

�u1 ¼ d1;1d1;2w1ðu1Þ; �u2 ¼ d2;1d2;2w2ðu2Þ;
�u3 ¼ d3;1d3;2w3ðu3Þ; �u2;1ð�x1;1; �x2;1Þ ¼ u2;1ðx1;1; x2;1Þ;
�u2;2ð�x2;1; �x2;2Þ ¼ d2;1u2;2ðx2;1; d2;1x2;2Þ;
�u3;1ð�x2;1; �x3;1Þ ¼ u3;1ðx2;1; x3;1Þ;
�u3;2ð�x3;1; �x3;2Þ ¼ d3;1u3;2ðx3;1; d3;1x3;2Þ;
�D2;1 ¼ D2;1 þ �u2;1 �x1;2 �x2;2 �x3;2;

�D3;1 ¼ D3;1 þ �u2;1 �x3;1 �x1;2 �x2;2
ffiffiffiffiffiffiffi
�x3;23

p
:

w1ðu1Þ, w2ðu2Þ and w3ðu3Þ are the outputs of the dead

zones. The parameters of the dead zones are designed as

b1;r ¼ b3;r ¼ 0:8, b1;l ¼ b3;l ¼ �0:8, b2;r ¼ 1 and

b2;l ¼ �1. We assume that the universe of discourse of ~kj is

Uj ¼ f1; 1:5; 2g, i.e., k1;1 ¼ k2;1 ¼ k3;1 ¼ 1,

k1;2 ¼ k2;2 ¼ k3;2 ¼ 1:5, k1;3 ¼ k2;3 ¼ k3;3 ¼ 2. The fuzzy

grade of kj;q is designed as ljðkj;qÞ ¼ 1ffiffiffiffi
2p

p
rj
expð�ðkj;q�1:5Þ2

2r2j
Þ

with rj ¼ 1
6
. The reference signals are designed as

yd1 ¼ sinð1:5tÞ, yd2 ¼ sinðtÞ þ sinð1:5tÞ, and yd3 ¼ sinðtÞ.

Remark 5 It should be pointed out that �D2;1 and �D3;1 in [3]

are chosen as �D2;1 ¼ D2;1 and �D3;1 ¼ D3;1, because the

applied control scheme in [3] requires that the controlled

system is in strict-feedback structure. Unlike [3], this paper

is concerned with the tracking control issue for MIMO

nonlinear systems with nonstrict-feedback structures.

Therefore, the existing control approaches cannot be

applied to this system as they are considered just for

nonlinear strict-feedback systems, which means that our

proposed scheme can be used to more general classes of

MIMO systems.

In the simulation, nine fuzzy sets are defined over

interval ½�8; 8� for �x1;1, �x1;2, �x2;1, �x2;2, �x3;1 and �x3;2, and by

choosing partitioning points as �8, �6, �4, �2, 0, 2, 4, 6,

8. The fuzzy membership function are designed as follows:
Fig. 1 Two continuous stirred tank reactor
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lFl
j;p
ð�xj;pÞ ¼ expð�0:5ð�xj;p � wlÞ2Þ; l ¼ 1; 2; . . .; 9

with w1 ¼ �8, w2 ¼ �6, w3 ¼ �4, w4 ¼ �2, w5 ¼ 0,

w6 ¼ 2, w7 ¼ 4, w8 ¼ 6, w9 ¼ 8.

The design parameters in the virtual control signals,

actuator controller and parameters adaptive laws are

designed as q1;1 ¼ 58, q1;2 ¼ 60, q2;1 ¼ q3;1 ¼ 52,

q2;2 ¼ q3;2 ¼ 54, l2;1 ¼ l2;2 ¼ l3;1 ¼ l3;2 ¼ 2,

d2;1 ¼ d2;2 ¼ d3;1 ¼ d3;2 ¼ 1, e2;1 ¼ e2;2 ¼ e3;1 ¼ e3;2 ¼ 1,

and t ¼ 9999
10001

. The initial conditions are chosen as

�x1;1ð0Þ ¼ 0:01, �x1;2ð0Þ ¼ 0:05, �x2;1ð0Þ ¼ �0:1,

�x2;2ð0Þ ¼ 0:2, �x3;1ð0Þ ¼ 0:05, �x3;2ð0Þ ¼ 0:1,

/̂2;1ð0Þ ¼ /̂3;1ð0Þ ¼ 0:03, /̂2;2ð0Þ ¼ /̂3;2ð0Þ ¼ 0. The

simulation results are depicted in Figs. 2, 3, 4, 5, 6, 7, 8 and

9. Figures 2, 3 and 4 address the trajectories of tacking

errors for ~k1, ~k2 and ~k3, respectively. Figures 5, 6 and 7

illustrate the trajectories of control signals u1, u2 and u3,

respectively. Figures 8 and 9 show the trajectories of

adaptive parameters /̂2;1, /̂2;2, /̂3;1 and /̂3;2. From these

Fig. 2 Tracking error y1 � yd1 for Example 1 Fig. 6 Control signal u2 for Example 1

Fig. 7 Control signal u3 for Example 1

Fig. 8 Adaptive parameters /̂2;1 and /̂2;2 for Example 1

Fig. 3 Tracking error y2 � yd2 for Example 1

Fig. 4 Tracking error y3 � yd3 for Example 1

Fig. 5 Control signal u1 for Example 1
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simulation results, it is observed that the proposed finite-

time control scheme cannot only guarantee the stability of

the controlled MIMO nonlinear system in finite time but

also obtain desired tracking control performances.

Example 2 Consider the following MIMO nonstrict-

feedback system with fuzzy dead zones described by:

_x1;1 ¼ x1;2 þ
x1;1x2;1

2þ x21;2x2;2 þ x22;1
;

_x1;2 ¼ w1ðu1Þ þ x1;1x1;2x2;1 þ x1;2x
2
2;2;

y1 ¼ x1;1;

_x2;1 ¼ x2;2 þ 2x22;1 þ x1;1x1;2 sinðx2;2Þ;
_x2;2 ¼ w2ðu2Þ þ x1;1x2;2 þ x22;1 sinðx1;2Þ;
y2 ¼ x2;1; ð62Þ

8
>>>>>>>>>><

>>>>>>>>>>:

where w1ðu1Þ and w2ðu2Þ are the outputs of the dead zones.

The parameters of the dead zones are selected as b1;r ¼ 0:8,

b1;l ¼ �0:8, b2;r ¼ 0:6, b2;l ¼ �0:6. We assume that the

universe of discourse of ~kj is Uj ¼ f1; 1:5; 2g, i.e., k1;1 ¼ 1,

k1;2 ¼ 1:5, k1;3 ¼ 2, k2;1 ¼ 1, k2;2 ¼ 1:5, k2;3 ¼ 2. The

fuzzy grade of kj;q is represented as ljðkj;qÞ ¼
1ffiffiffiffi
2p

p
rj
expð�ðkj;q�1:5Þ2

2r2j
Þ with rj ¼ 1

6
. The reference signals are

given as yd1 ¼ sinð1:5tÞ, yd2 ¼ sinðtÞ þ sinð1:5tÞ.

Fig. 9 Adaptive parameters /̂3;1 and /̂3;2 for Example 1 Fig. 12 Adaptive parameters d̂1;jðj ¼ 1; 2Þ for Example 2

Fig. 13 Adaptive parameters d̂2;jðj ¼ 1; 2Þ for Example 2

Fig. 10 Tracking errors yj � ydjðj ¼ 1; 2Þ for Example 2

Fig. 11 Control signals ujðj ¼ 1; 2Þ for Example 2
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In this simulation, seven fuzzy sets are defined over

interval ½�3; 3� by choosing the partitioning points as �3,

�2, �1, 0, 1, 2, 3 for all state variables

xj;pðj ¼ 1; 2; p ¼ 1; 2Þ. The fuzzy membership functions

are designed as follows

lFl
j;p
ðxj;pÞ ¼ expð�0:5ðxj;p � wlÞ2Þ; l ¼ 1; 2; . . .; 7;

where w1 ¼ �3, w2 ¼ �2, w3 ¼ �1, w4 ¼ 0, w5 ¼ 1,

w6 ¼ 2, w7 ¼ 3. Choose the design virtual control signals

fj;1ðj ¼ 1; 2Þ (11), the actual controllers ujðj ¼ 1; 2Þ (12),

and the parameter adaptive laws /̂j;pðj ¼ 1; 2; p ¼ 1; 2Þ
(14).

The design parameters are chosen as q1;1 ¼ 63,

q1;2 ¼ 65, q2;1 ¼ 62, q2;2 ¼ 64, l1;1 ¼ 1:2, l1;2 ¼ 1:2,

l2;1 ¼ 1:5, l2;2 ¼ 1:5, d1;1 ¼ 0:5, d1;2 ¼ 0:6, d2;1 ¼ 0:7,

d2;2 ¼ 0:6, e1;1 ¼ 1, e1;2 ¼ 1, e2;1 ¼ 1, e2;2 ¼ 1, t ¼ 9999
10001

.

The simulation is carried out with the initial conditions

x1;1ð0Þ ¼ 0:01, x1;2ð0Þ ¼ 0:05, x2;1ð0Þ ¼ �0:1,

x2;2ð0Þ ¼ 0:2, /̂1;1ð0Þ ¼ 0:05, /̂1;2ð0Þ ¼ 0, /̂2;1ð0Þ ¼ 0:03,

/̂2;2ð0Þ ¼ 0. The simulation results are shown in Figs. 10

and 11. The trajectories of tracking errors and control

signals are depicted in Figs. 10 and 11, respectively. The

trajectories of adaptive parameters /̂1;j and /̂2;j for j ¼ 1; 2

are given in Figs. 12 and 13, respectively.

5 Conclusion

The finite-time adaptive fuzzy control problem has been

investigated for a class of MIMO nonstrict-feedback non-

linear systems with fuzzy dead zones in this paper. By

applying the variable partition approach and fuzzy logic

systems, an adaptive fuzzy control scheme is formed for

the considered MIMO nonlinear system. Under the pro-

posed control strategy, the tracking error is located in a

small neighborhood of the origin in finite time. Finally, the

validity of the proposed control method is verified by the

simulation results. In our follow-up study, we will inves-

tigate the finite-time control for MIMO stochastic non-

strict-feedback nonlinear systems.
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