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Abstract With the deepening of the research on clustering

algorithm, clustering validity has become an indispensable

part of cluster analysis. However, due to the complexity of

data structure and different attributes, any clustering

validity function cannot be applied to all datasets, so

clustering validity function has been bringing forth new

ones. Therefore, this paper proposes a clustering validity

function fusion model based on D–S evidence theory (DS-

CVFFM), which adopts FCM clustering algorithm as the

base algorithm, calculates the values of different validity

functions, and then uses the values of different clustering

validity functions as the evidence source to construct the

basic probability assignment function (BPA). Finally, it

integrates with the fusion rules of D–S evidence theory,

and outputs the optimal clustering number according to the

decision conditions. DS-CVFFM uses the information

fusion of multiple clustering validity functions to judge the

number of optimal clusters without the need to propose

complex validity functions, and avoid the influence of

expert factors in the weighted combination clustering

validity evaluation method. Finally, 4 sets of artificial

datasets and 14 sets of UCI datasets are selected to verify

the effectiveness of the proposed model. The experimental

results show that compared with the traditional clustering

validity evaluation methods, the proposed fusion model has

a significant improvement in the accuracy of judging the

optimal number of clusters, and the stability is improved

under different values of fuzzy exponent, which can

overcome the shortcomings of traditional clustering valid-

ity evaluation methods.

Keywords D–S evidence theory � FCM clustering

algorithm � Clustering validity function � Information

fusion

1 Introduction

Cluster analysis is an important research topic in the field

of machine learning and pattern recognition. As an unsu-

pervised learning method, cluster analysis is to divide

similar samples into one category and dissimilar samples

into different categories for data without prior knowledge,

so that the samples of the same category are as similar as

possible and the samples of different categories are as

different as possible [1]. Clustering methods are mainly

divided into hierarchy-based clustering, partition-based

clustering, density-based clustering, model-based cluster-

ing and more [2–5]. FCM clustering algorithm [6], as one

of the algorithms for partition clustering, introduces the

concept of fuzzy set [8] into K-means clustering algorithm

[7], so that hard clustering can be extended to fuzzy clus-

tering. In this way, data samples that are similar between

classes have a better basis for division, and the clustering

results become better and more closer to the practical needs

[9]. FCM clustering algorithm has become one of the most

widely used clustering algorithms by virtue of its simple

principle, fast calculation speed and wide range of problem

solving [10]. However, FCM clustering algorithm needs to

verify the effectiveness of clustering, so as to determine the

optimal number of clusters and judge the quality of clus-

tering results. From the current research point of view, the

research of clustering validity can be roughly divided into
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the research of clustering validity function and the research

of combined clustering validity evaluation method.

The research on clustering validity function mainly

focuses on the following two aspects: (1) Fuzzy clustering

validity function based on membership degree only. For

example, Bezdek proposed the partition coefficient [11],

which was the first index to describe the validity of fuzzy

clustering by the coincidence degree of data objects.

Referring to the partition coefficient and Shannon’s infor-

mation theory [12], the partition entropy [13] was pro-

posed. Dave proposed the modified partition coefficient

[14] to suppress the monotonous change of the partition

entropy and partition coefficient with the number of clus-

ters, and the P index [15] proposed by Chen and Links in

2004. (2) Fuzzy clustering validity function based on

membership degree and geometric structure of data set. For

example, Xie-Beni validity function [16], Fakuyame-

Sugeno validity function proposed in 1989 [17], clustering

validity function proposed by Knows [18], the clustering

validity function proposed by Wang [19], the clustering

validity function [20] proposed by Zhu and more. How-

ever, due to the complexity of data structure and different

attributes, any clustering validity function cannot be

applied to all datasets. Because of this, the validity function

of fuzzy clustering has been bringing forth new ideas,

which also leads to the more and more complex structure

design of the fuzzy clustering validity function.

The research on the validity evaluation method of

combinatorial clustering mainly focuses on the weighted

combination method. Weighted sum validity function

(WSVF) proposed by Sheng in 2005 is a combination of

hard clustering validity functions [21]. Xu also studied the

combination method of hard clustering validity function

[22]. Dong proposed the fuzzy weighted sum validity

function (FWSVF) based on the idea of Sheng [23]. After

that, Wu changed the weighted method of FWSVF and

proposed a dynamic weighted sum validity function

(DWSVF) [24]. Li extended the index of FWSVF to the

combination of 10 validity functions and proposed

weighted sum type of cluster validity index (WSCVI) [25].

Wang proposed a hybrid weighted method combining

subjective weighted and objective weighted, which bal-

anced the influence of subjectivity and objectivity on the

results, which is named as the hybrid weighted clustering

validity function (HWCVF) [26]. Compared with the

clustering validity functions, the combined clustering

validity method only needs the weighted combination of

the existing validity functions. Its form is simple and easy

to understand, but the weighted factor is often difficult to

determine.

Since the cluster analysis is to cluster the data set

without labels, after clustering the data set using the FCM

clustering algorithm, it is necessary to evaluate the validity

of the final result to obtain the best number of clusters and

then judge the clustering results are good or bad. Single

clustering validity function will fail with the number of

data samples, the change of dimensions, and the influence

of noise data and overlapping data, meanwhile, the clus-

tering validity function will become more and more com-

plex with the advent of the era of big data. Combined

clustering validity evaluation method will be difficult to

select the weighting method, and prone to over fitting

problems. In order to improve the accuracy of the clus-

tering results of the FCM clustering algorithm and the

judgment of the optimal number of clusters, it is not fea-

sible to rely only on a single validity function and a

combined validity evaluation method. It is necessary to find

a method that can be applied to a large amount of data

which can be used to judge the final clustering result. For

this reason, this paper starts from the perspective of fusing

multiple validity functions to determine the optimal num-

ber of clusters and improving the stability and accuracy of

cluster validity evaluation. A fusion model (DS-CVFFM)

based on D–S evidence theory [27–29] is proposed to

integrate the information of multiple clustering validity

functions.

Based on the idea of D–S evidence theory, this paper

proposes a fusion model (DS-CVFFM) based on the

information of clustering validity functions. The main idea

of DS-CVFFM is to fuse multiple validity functions using

D–S evidence theory. Firstly, FCM clustering algorithm is

used to cluster the data set, and then several validity

functions are used to judge the validity of the clustering

results. There are some differences in the optimal cluster

number of the same data set by different validity functions,

and then normalize the values of different validity func-

tions. The normalized values are used as propositions to

construct the basic probability assignment function (BPA)

of the validity function. Finally, the BPA value of the

validity functions is taken as the input, and the D–S evi-

dence theory is used to judge the confidence. The number

of clusters corresponding to the maximum confidence

value is the optimal number of clusters.

Finally, the feasibility of DS-CVFFM is verified by

experimental simulation. The artificial data sets and UCI

data sets are selected for experiments, and the proposed

fusion model DS-CVFFM is compared with the traditional

validity evaluation methods. The experimental results show

that the accuracy of DS-CVFFM is significantly better than

the traditional validity evaluation methods under the same

data sets and experimental parameters. The experimental

results show that DS-CVFFM has best stability under dif-

ferent values of fuzzy weighted. Therefore, DS-CVFFM

can effectively avoid the influence of human factors caused

by subjective weighting and the problem of objective

weighting selection. It can also avoid the problem that a
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single cluster validity function is easy to fail in the face of

datasets with different structures. At the same time, it does

not need to design a complex structure validity function,

while taking into account the advantages of multiple

validity functions, which provides a new solution for the

research of fuzzy clustering effectiveness evaluation

method.

2 FCM Clustering Algorithm and Clustering
Validity Functions

2.1 FCM Clustering Algorithm

The fuzzy C-means (FCM) clustering algorithm proposed

by Bezdek is the most representative one of the fuzzy

clustering methods, and is also the most widely used one of

the clustering algorithms. FCM clustering algorithm

divides n objects x1, x2; . . .; xn of data X into c fuzzy

clusters by finding the minimum objective function, which

is defined as follows [30]:

Jm U;Vð Þ ¼
Xc

i¼1

Xn

j¼1

uij
� �m

xj � v2
i

�� �� ð1Þ

where Jm U;Vð Þ is the square error clustering criterion and

the minimum value of Jm U;Vð Þ is called the minimum

square error stationary point, V = {v1; v2; . . .; vn} is the

corresponding cluster center divided on the data set X,

parameter c represents the number of clusters. The

parameter m is the fuzzy weighted, which is used to control

the degree of fuzziness within the scope m� (1, 1), xj � vi
represents the European distance between the data object xj
and cluster center vi, uij (0 B uij B 1) is the membership

degree of data object xj of cluster center vi. In Eq. (1), uij 2
U, where in U is a membership matrix with fuzzy division

of c� n that must satisfy the following conditions, and U0

is called the initial membership matrix:
Pc

i¼1

uij ¼ 1(j = 1,

2,…, n) and 0\
Pc

j¼1

uij\n(i = 1, 2, …, c).

The clustering validity is a problem of finding the

optimal solution of c under the condition of Jm minimiza-

tion. In fact, more attention must be paid to the clustering

validity if cluster analysis is to make a great contribution to

engineering applications. Since Jm decreases monotoni-

cally with the decrease of c, an effective partition evalua-

tion criterion is needed. The process of FCM clustering

algorithm is described as follows [31]:

Step 1: Fix the cluster parameter c and fuzzy weighted m

(usually between 1.5 and 2.5). When m = 1,

FCM clustering algorithm is equivalent to K-

means clustering algorithm, when m approaches

1 indefinitely, FCM tends to be more and more

clustering algorithm of hardening fraction. On

the contrary, when m tends to be infinite, all data

objects xj and cluster center vi will coincide,

while data object xj belongs to each cluster will

have the same membership degree, with the

value of 1/c.

Step 2: Initialize fuzzy division membership matrix.

Step 3: According to Eq. (2), update the cluster centers

V ¼ v1; v2; . . .; vcf g.

vi ¼
Pn

j¼1 u
tð Þm
ij � xi

Pn
j¼1 u

tð Þm
ij

ð2Þ

Step 4: According to Eq. (3), update the fuzzy partition

matrix U ¼ uij
� �

c�n
;

uij ¼
Xc

k¼1

xj � v2
i

xj � v2
k

� �2= m�1ð Þ" #�1

ð3Þ

For i ¼ 1; 2; . . .; c and j ¼ 1; 2; . . .; n:

Step 5: Calculate e = Vtþ1 � Vt. If e B e(e is a threshold

value usually from 0.001 to 0.01), the algorithm

is stopped and the final clustering result is

calculated, otherwise t = t ? 1 and repeat Step 2.

FCM clustering algorithm has been widely concerned by

scholars since it came out, and now it has formed a very

mature theory. However, it also has many defects, such as

the complex calculation process, the need to calculate all

the samples in the data set, and facing the complex datasets

easy to fail and so on. Therefore, scholars improve and

optimize FCM clustering algorithm from different per-

spectives. In 1994, Park combined gradient descent with

FCM and proposed a Gradient based fuzzy c-means

(GBFCM) algorithm (GBFCM) [32], which can speed up

the convergence of the algorithm. Wu proposed a new

FCM clustering algorithm based on Mercer kernel function

(FKCM) [33], which improved the stability of FCM algo-

rithm. Sanchez proposed the Fuzzy Granular Gravitational

Clustering Algorithm (FGGCA) in 2014 [34], which uses

Newtonian gravity and granular computing to analyze the

similarity of data set samples. Based on Wu’s idea, Ding

proposed Gauss kernel based FCM (KFCM) [35] in 2016

using Gauss kernel function and genetic algorithm to

update membership and optimize FCM. Rubio used type-2

fuzzy logic techniques to optimize fuzzy Possibilistic

C-means (FPCM) algorithm [36] in 2017 to improve the
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accuracy of PFCM. Kuo proposed a new clustering algo-

rithm by combining heuristic algorithm with kernel func-

tion [37]. A design methodology for a Mamdani based

Interval Type-2 Fuzzy Logic System (MAM-IT2FLS) with

Center-Of-Sets defuzzification was proposed by Moreno in

2020[38], which adopts the descriptive statistics and

granular computing theory to better define the limits of

uncertainty within the Interval Type-2 Membership Func-

tions (IT2MF) as extracted from available data.

2.2 Clustering Validity Functions

The clustering validity functions can be roughly divided

into two categories. One is based on membership degree

only and the other is based on membership degree and

geometric structure of data set. The clustering validity

functions based on membership degree lack the connection

with the geometric structure of the data set, so the final

results are often one-sided and the accuracy needs to be

improved. At present, clustering validity functions based

on membership degree and geometric structure is a popular

research direction. This paper lists some of the more

common clustering validity functions (the name of the

function, the definition formula, and the criteria to deter-

mine the optimal number of c) as shown in Tables 1 and 2.

For the clustering validity functions shown in Tables 1

and 2, uij indicates the fuzzy membership matrix, n indi-

cates the number of data samples, c indicates clustering

number, m indicates fuzzy index, xj indicates data samples,

vi indicates the clustering center, vi � xj indicates the dis-

tance between clustering center and the sample data,

v ¼
Pc

i¼1

vi=c, umj ¼ min
1� i� c

Pn

j¼1

u2
ij, bT ¼ 1

c

Pc

i¼1

vi � v2,

medianvi � v2
k represents the median of the distance

between two cluster centers.

In addition to the clustering validity function listed

above, the validity function of fuzzy clustering has always

been a hot topic in the study of cluster validity evaluation.

For example, Feng proposed a validity function based on

compactness and overlap degree in 2016 [43]. The HF

validity function proposed by Haouas in 2017 [44] with the

improvement of VWL. Geng also defined the overlap degree

in 2019, and proposed a new validity function for three

variables of compactness and variability [45]. Ouchica

proposed an ECS validity function to standardize separa-

tion and compactness in 2020 [46]. Liu proposed a new

validity function, which is the combination of VWL and HF

combination [47]. From the above study of validity func-

tion, the single validity function is more and more complex

because of the different data set structure. Most of the

validity functions are based on compactness, separation

degree and overlap degree, but only different calculation

methods. Because of the diversity of datasets, there is no

one validity function that can be used for all datasets,

which is also the reason why fuzzy clustering validity

functions emerge endlessly.

2.3 Combination Clustering Validity Evaluation

Methods

Sheng proposed WSVF [21] composite clustering effec-

tiveness evaluation method for hard clustering algorithm is

defined as follows Eq. (4).

maxWSVF ¼
Xm

i¼1

wifi xð Þ ð4Þ

where m = 6,
Pm

i¼1

wi ¼ 1;w1 ¼ w2 ¼ w3 ¼ w4 ¼ w5 ¼ w6 ¼ 1
6
, fi xð Þ is

consist of 1/VDB, VSIL, VD, V33, VCH and VPBM:

Dong proposed FWSVF by introducing the Sheng’s

WSVF into the fuzzy clustering. The definition is described

as Eq. (5).

maxFWSVF ¼
Xr

i¼1

wifi xð Þ ð5Þ

Table 1 Cluster validity function based on membership degree

Validity Index Function description Optimal c

Partition coefficient [11]
VPC ¼ 1

n

Pc

i¼1

Pn

j¼1

u2
ij

Max

Partition entropy [13]
VPE ¼ � 1

n

Pc

i¼1

Pn

j¼1

uij loga uij
� �� � Min

Modification of partition coefficient [14] VMPC ¼ 1 � c
c�1

1 � VPCð Þ Max

P-index [15]
VP ¼ 1

n

Pn

j¼1

max
i
ðuijÞ � 1

k

Pc�1

i¼1

Pc

j¼iþ1

1
n

Pn

k¼1

min uik; ujk
� �	 


Max
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where r = 4, fi xð Þ is consist of 1/VXB, 1/VPE, VPC and

VPBMF , and wi is consisted of different options based on

different datasets.

WSCVI proposed by Li [25] is defined as Eq. (6).

minWSCVI ¼
XN

i¼1
wiCVIi ð6Þ

where N = 10 and
PN

i¼1

wi ¼ 1; 0�w� 1, where CVIi is

consisted of 1/VPC , 1/VNPC , VPE, VNPE, VXB, VK , 1/VPBMF ,

VFS, VT and VSC .

DWSVF proposed by Wu can be defined as Eq. (7).

minDWSVF ¼
Xm

i¼1

wifi xð Þ ð7Þ

where wi ¼ sumfi�fi
sumfi

, wi is a dynamic weighting that can be

weighted based on the values of different indicators, and

fi xð Þ is composed of 1/VMPC ,VXB and VPBMF .

Wang et al. proposed a hybrid weighted combination

method HWCVF [26]. The definition of HWCVF is shown

in Eq. (8).

minHWCVF ¼
Xm

i¼1

whybridFi xð Þ ð8Þ

where expert weighted and information entropy weighted

are combined, that is to say that whybrid ¼
hwobject þ 1 � hð Þwsubject, where wobject is the expert

weighted [48], wsubject is information entropy weighted

[49], h is balance factor, and Fi xð Þ are the clustering

validity functions after standardization. The evaluation

method is based on the idea of linear superposition of

combined function with the VMPC,

VXB,VK ,VP,VPBMF ,VWL,VZ and VHY .

At present, the research based on combinatorial validity

function is not very deep, but from the above research

status, most of the research on combinatorial validity

function is based on weighted combination. Weighted is

also a method of information fusion of validity functions,

but the weighted factors are often difficult to determine.

For example, the selection of subjective weighted is easily

affected by the factors of decision-makers, and the objec-

tive weighted will ignore the accuracy of each validity

function. Therefore, it is difficult to choose an appropriate

weighting factor.

3 FCM Clustering Validity Function Fusion Based
on D–S Evidence Theory

3.1 Basic Concepts and Combination Rules of D–S

Evidence Theory

Dempster used the upper and lower limit probability to

solve the problem of multi valued mapping at first [50].

After that, Shafer introduced the concept of trust function

Table 2 Clustering validity function based on geometric structure and membership degree

Validity Index Function description Optimal c

Xie and Beni [16]
VXB ¼

1
n

Pc

i¼1

Pn

j¼1
umij vi�x2

j

min
i 6¼j

vi�v2
j

Min

Separation coefficient [39]
VSC ¼

Pc

i¼1

Pn

j¼1
uijvi�x2

j

ni
Pc

i¼1
vi�v2

j

Min

Fukuyama and Sugeno [17]
VFS ¼

Pc

i¼1

Pn

j¼1

umj1 xj � v2
i � vi � m2

� � Min

Kwons [18]
VK ¼

Pc

i¼1

Pn

j¼1
u2
ijxj�v2

i þ1
c

Pc

i¼1
vi�v2

min
i 6¼k

vi�v2
k

Min

Partition coefficient and exponential separation [40]
VPCAES ¼

Pc

i¼1

Pn

j¼1

u2
ij

umj
�
Pc

i¼1

exp
�min

k 6¼i
vi�v2

k

bT

� �
Max

Pakhira–Bandyopadhyay–Maulik [41]

VPBMF ¼ 1
K � E1

EK
� DK

� �2

¼
Pn

j¼1
u1jxj�v1� max

i;j¼1;...;k
vi�vj

k�
Pk

i¼1

Pn

j¼1
uijxj�vj

 !2 Max

Chib-Hung Wu [42]

VWL ¼

Pc

i¼1

Pn

j¼1
u2
ij
xj�v2

iPn

j¼1
uij

� �

min
i 6¼k

vi�v2
k
þmedianvi�v2

k

Min

Ling-Feng Zhu [20]

VZ ¼ comp
sep ¼

Pn

j¼1

1�min
i

uijPc

i¼1
xj�viPc

k¼1

Pc
i¼1;i 6¼k vi � v

.
c c�1ð Þ

2

Min

Hong-Yu Wang

VHY ¼
Pc

i¼1

Pn

j¼1
u2
ijxj�v2

i þ1
k

Pc�1

i¼1

Pc

k¼iþ1

1
n

Pn

j¼1
min uij ;ukjð Þ

h i

min
1� i� c

Pn

j¼1
u2
ijþmin

i 6¼k
vi�v2

k

Min
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to further develop evidence theory, and formed a set of

mathematical methods to deal with uncertain reasoning

problems, which also marks that evidence theory has offi-

cially become a complete theory to deal with uncertain

problems. Then Yager proposed an improved evidence

theory [51] by considering the problem of evidence con-

flict. Nowadays, evidence theory has been widely used in

the field of information fusion [52–55]. This section will

introduce the basic concepts and combination rules of D–S

evidence theory [56]. In D–S evidence theory, set is used to

represent proposition. If H is a finite set, then H is called

the recognition framework, which contains c mutually

exclusive elements. 2H is the power set of H, which is

defined as Eq. (9)

2H ¼ AjA � Hf g
H ¼ h1; h2; . . .; hcf g


ð9Þ

The basic probability assignment function (BPA) on the

recognition framework is a function m that maps from 2H

to [0, 1]. Under the condition of Eq. (10), m is called the

mass function of the recognition framework.
P
A�H

m Að Þ ¼ 1

m ;ð Þ ¼ 0

(
ð10Þ

where m Að Þ indicates the degree to which a subset belongs

to a set A. If m Að Þ[ 0, the set A is called focus element,

and specially m ;ð Þ ¼ 0 indicates that the truth value does

not belong to the trust degree of the recognition framework

H. The m Hð Þ indicates the degree of trust that truth value

belongs to H, but it can’t determine which element it is.

Given the mass function m, the corresponding belief

function (Bel) and plausibility function (PL) can be

obtained. Bel and PL definitions are respectively shown as

Eq. (11 and 12):

Bel Að Þ ¼
X

B�A

m Bð Þ ð11Þ

Pl Að Þ ¼
X

B\A 6¼;
m Bð Þ ð12Þ

Bel Að Þ;Pl Að Þ½ � indicate the belief interval and the

degree of trust in each hypothesis. There are one-to-one

correspondence among the m, Bel and Pl. For 8A � H and

n numbers of m (m1;m2; . . .;mn) on H, the D–S fusion rule

is shown in Eq. (13).

m1 	 m2 	 . . .	 mnð Þ Að Þ ¼ 1

k

X

A1\A2\...\An¼A

m1 A1ð Þ

� m2 A2ð Þ � . . . � mn Anð Þ ð13Þ

where A1;A2; . . .;An � H, and k is a probability of conflict,

which is defined as Eq. (14).

k ¼ m1 	 m2 	 . . .	 mnð Þ ;ð Þ
¼

X

A1\A2\...\An¼;
m1 A1ð Þ � m2 A2ð Þ � . . . � mn Anð Þ ð14Þ

D–S evidence theory can be widely concerned and

applied, which is inseparable from the advantages of data

analysis. Its main advantages include the ability to deal

with uncertain and incomplete information efficiently. The

information of the target and the subset of the recognition

framework is corresponding and transformed into a math-

ematical model, which is convenient for data fusion. The

support of evidence can be described by the evidence

interval, and the unclear problems can be well expressed.

When the evidence data are fused, the target prior knowl-

edge is not needed. With the continuous expansion of the

application of D–S evidence theory, it is found that the

evidence theory also has some shortcomings that cannot be

ignored. For example, the problem of information source

independence, the problem of calculation explosion, the

method of obtaining basic probability and the inability to

deal with evidence conflict [57].

3.2 Construction of BPA Matrix of Clustering

Validity Function

In the process of cluster validity fusion, for the judgment of

the best cluster number of the same data set under m cluster

validity functions, there are m results, that is to say that

there are m possible types of targets. The value of c is

generally 2;
ffiffiffiffiffiffiffiffiffiffiffi
nmax

p
½ �, where nmax is the number of sam-

ples in the data set, so let n ¼
ffiffiffiffiffiffiffiffiffiffiffi
nmax

p
, the validity function

is set up for this purpose, and the BPA matrix is defined as

Mn�m, as shown in Eq. (15).

M ¼

M1

M2

..

.

Mn

2

6664

3

7775 ¼

m11 m12 � � � m1m

m21 m22 � � � m2m

..

.

mn1

..

.

mn2

� � � ..
.

� � � mnm

2

6664

3

7775 ð15Þ

where m11 is the confidence degree of the first cluster

validity function to c ¼ 2, when n ¼ 1. And so on, mnm is

the confidence degree of the m-th cluster validity function

for c ¼ n when n ¼
ffiffiffiffiffiffiffiffiffiffiffi
nmax

p
. The sum of the confidence

degree of the identification result of the number of clusters

by the same cluster validity function should be 1, that is
Pn

i¼2

mij = 1, where j ¼ 1; 2; . . .;m:..

Different cluster validity functions vary greatly in the

range of judging the number of clusters. Therefore, the

cluster validity functions should be normalized and stan-

dardized to make the interval fall into [0, 1], which is

realized by Eq. (16).
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fi ¼
Fi � Fmin

i xð Þ
Fmax
i xð Þ � Fmin

i xð Þ : ð16Þ

where Fi is the value of validity function, Fmin
i xð Þ is the

minimum value of the validity function, Fmax
i xð Þ is the

maximum value of the validity function, fi is the value of

validity function after normalization.

wever, directly inputting the value of the normalized

validity function into the confidence matrix cannot satisfy

the
Pn

i¼1

mij = 1, and clustering validity functions are maxi-

mum efficiency and some are minimum efficiency. When

the cluster validity function takes the maximum value of c,

the BPA function is mij ¼ fi
sum fi

. When the cluster validity

function takes the minimum value of c as efficient, the

minimum value of c should be transformed into the max-

imum validity, so the BPA function is mij ¼ 1�fi
sum 1�fi

. After

the transformation, the sum of confidence degree results is

1.

A new matrix Am�m can be obtained by multiplying one

row of M with another row, ant the definition of Am�m is

shown in Eq. (17).

A ¼ MT
i �Mj

¼

mi1 � mj1 mi1 � mj2 . . . mi1 � mjm

mi2 � mj1

..

.

mim � mj1

mi2 � mj2 . . . mi2 � mjm

..

.

mim � mj2

..

.

. . .

..

.

mim � mjm

2
6664

3
7775

ð17Þ

where the main diagonal element is the cumulative confi-

dence of the i-th and j-th clustering validity function for

target recognition with the best number of clusters, which

defined as Z ¼ mip � mjq p ¼ qð Þ, the sum of non-principal

diagonals constitutes the normalization factor k of evi-

dence, which is defined as Eq. (18).

k ¼
X

p6¼q

mip � mjqp; q ¼ 1; 2; 3; . . .;mð Þ ð18Þ

3.3 Clustering Validity Function Ensemble Model

and Algorithm Flowchart

As shown in Fig. 1, DS-CVFFM is a fusion model of

clustering validity functions proposed in this paper. In the

research process of clustering validity, the clustering

validity functions are independent of each other, and they

have their own advantages and disadvantages for different

types of datasets. In order to apply the clustering validity

method to more datasets as much as possible, DS-CVFFM

regards each clustering validity function as an independent

evidence. Firstly, the clustering data set are input, and the

value of clustering validity function is obtained by FCM

clustering algorithm. Then the values of cluster validity

functions are normalized, and the BPA is constructed by

the results of cluster validity functions. Finally, the infor-

mation from different cluster validity functions is fused

using D–S evidence theory and the optimal number of

clusters c is given using decision module. On the basis of

FCM clustering algorithm, considering the advantages of

adapting to different data, the fusion strategy of multiple

clustering validity functions can better adapt to different

types of data.

When designing the decision module for DS-CVFFM,

set Ai i ¼ 1; 2; . . .; nð Þ is the number of clusters, Ax is the

target type, and after get the mij hð Þ about Ai that in H, the

design of decision module should comply with the

Validity functions 

Construction BPA matrix 

DS 

fusion 

Optimal 

c

Data

sets 
FCM 

Fig. 1 D–S evidence theory-based clustering validity function fusion model (DS-CVFFM)
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Fig. 2 Algorithm flowchart of DS-CVFFM
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following rules: (1) m Axð Þ ¼ max m Aið Þð Þ, that is, the tar-

get type (the best number of clusters) with maximum

confidence. (2) m Axð Þ � m Aið Þ[ e; ðe[ 0Þ, that is, the

reliability difference between the target class and other

classes must be greater than a set threshold. The

flowchart of DS-CVFFM is shown in Fig. 2.

It can be seen from Fig. 2 that DS-CVFFM uses FCM

algorithm as the base algorithm to judge the clustering

center V and membership matrix U, and then calculates

multiple fuzzy clustering validity functions Fi under dif-

ferent clustering number c value conditions. By calculating

different Fi, in this case, Fi has judged the validity of FCM

clustering results, but the value of the best cluster number

is different. Therefore, BPA function is constructed and

different Fi is normalized so that the optimal number of

clusters corresponding to Fi is the maximum effective, that

is, the maximum probability of BPA function corresponds

to the optimal c. At this time, DS-CVFFM has judged the

probability of the optimal c for Fi under different number

of clusters. However, when judging the optimal c, it is

often based on the change trend and peak value of the

validity function.

Sometimes the local minimum or maximum value cor-

responds to the optimal c, so that the next highest proba-

bility value corresponds to the optimal c. Therefore, the D–

S evidence theory is used to fuse the probabilities of dif-

ferent Fi under different cluster numbers. In this way, even

if the individual validity function is second maximum

(a) data_2_3 (b) data_2_5

(c) data_3_3 (d) data_3_6

Fig. 3 Scatter plot of artificial datasets
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validity, it will be determine the optimal number of clusters

because other validity functions are modified at the maxi-

mum validity. In the Sect. 4, the paper will carry out

simulation experiments on DS-CVFFM to prove the fea-

sibility of the scheme.

4 Experimental Simulation and Result Analysis

4.1 Selection of Datasets and Experimental

Parameters

In order to verify the effectiveness of DS-CVFFM, this

paper selects 4 sets of artificial datasets and 14 sets of UCI

datasets for experiments. The number of clusters selected

in the experiment is 2� c� 14, and the value of fuzzy

weighted m is different according to different designs. The

threshold of D–S decision module is e ¼ 0:1. The experi-

mental environment is Windows 10 operating system and

the experimental platform is Matlab 2018a. The artificial

datasets are shown in Fig. 3a–d, where data_2_3 is a set of

2-D and 3-class data set which obey Uniform distribution,

data_2_5 is a set of 2-D and 5-class data set which obey

Gaussian distribution, data_3_3 is a set of 3-D and 3-class

data set which obey Gaussian distribution, and data_3_6 is

a set of 3-D and 6-class data set with Uniform distribution.

UCI datasets are shown in Table 3. The first list shows the

name of the data set, the second list shows the number of

Table 3 Information introduction of UCI data set

Datasets Instances Attributes Classes Source

iris 150 4 3 http://archive.ics.uci.edu/ml/datasets/iris

Seeds 210 7 3 http://archive.ics.uci.edu/ml/datasets/seeds

Heart 270 13 2 http://archive.ics.uci.edu/ml/datasets/Statlog?%28Heart%29

Ionosphere 351 34 2 http://archive.ics.uci.edu/ml/datasets/Ionosphere

wpbc 198 34 2 http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/

Balance 625 4 3 http://archive.ics.uci.edu/ml/support/balance?scale

bupa 345 6 2 http://archive.ics.uci.edu/ml/datasets/Liver?Disorders

Breast 286 9 2 http://archive.ics.uci.edu/ml/datasets/Breast?Cancer

hfcr 299 13 4 http://archive.ics.uci.edu/ml/datasets/Heart?failure?clinical?records#

German 1000 20 2 http://archive.ics.uci.edu/ml/datasets/Statlog?(German?Credit?Data)

Satimage 6435 36 7 http://archive.ics.uci.edu/ml/datasets/Statlog?%28Landsat?Satellite%29

Led7 500 7 10 http://archive.ics.uci.edu/ml/datasets/LED?Display?Domain

Segment 2310 19 7 http://archive.ics.uci.edu/ml/datasets/Image?Segmentation

Pageblocks 5473 10 5 http://archive.ics.uci.edu/ml/datasets/Page?Blocks?Classification

Table 4 Feasibility of DS-

CVFFM under different datasets
c data_2_3 data_2_5 data_3_3 data_3_6 iris seeds

2 0.019609 0.004253 0.10901 0.006952 0.085826 0.061925

3 0.679854 0.04754 0.473281 0.091551 0.404787 0.58405

4 0.045133 0.211176 0.18756 0.17827 0.121695 0.224173

5 0.067632 0.39839 0.136499 0.181614 0.115372 0.070289

6 0.042748 0.049924 0.05367 0.267893 0.11509 0.018198

7 0.034925 0.043026 0.018572 0.072134 0.026748 0.007646

8 0.03592 0.047484 0.011697 0.131049 0.034771 0.002865

9 0.034293 0.025086 0.005653 0.024006 0.048921 0.016006

10 0.01926 0.069768 0.000924 0.029795 0.031844 0.010854

11 0.006622 0.04409 0.002287 0.00623 0.011494 0.002533

12 0.013626 0.059262 0.000786 0.009299 0.002889 0.00139

13 0.000379 0 6.04E-05 0.001206 0.000563 7.21E-05

14 0 0 0 0 0 0

Conclusion Right Right Right Right Right Right

Bold font indicates the validity function value corresponding to the optimal cluster number
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samples of the data set, the third list shows the attributes of

the data set, the fourth list shows the number of classifi-

cation of the data, and the fifth list shows the source of the

data set.

4.2 Verify the feasibility of DS-CVFFM

In this section, 4 artificial datasets and 2 UCI datasets (iris

and seeds) are selected to test the feasibility of DS-

CVFFM. The structure and attributes of artificial data set

are relatively simple, and it is easy to identify the best

number of clusters. Iris and seeds datasets are the most

frequently used datasets to verify the effectiveness of

clustering. Four clustering validity functions

(VMPC;VP;VZ ;VHY ) are selected to fusion. The fuzzy

weighted m ¼ 2:0 is selected, and the simulation results are

shown in Table 4 and Fig. 4.

It can be found in Table 4 that the confidence degree is

the highest for data_2_3 when c ¼ 3, the confidence degree

is the highest for data_2_3 when c ¼ 5, the confidence

degree is the highest for data_3_6 when c ¼ 6, and the

confidence degree is the highest for iris and seeds when

c ¼ 3. The confidence of the six selected datasets is the

highest when the number of clusters is the optimal, the

results show that DS-CVFFM is feasible and can find the

correct number of clusters. In order to intuitively see the
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Fig. 4 Feasibility of DS-CVFFM verified by different datasets

Table 5 Confidence values of c for DS-CVFFM under different datasets and V ¼ 4

c iris seeds heart balance german breast bupa sonar

2 0.118051 0.09895 0.571641 0.569742 0.519773 0.522242 0.494763 0.429013

3 0.445434 0.524318 0.23172 0.218145 0.235701 0.222788 0.229007 0.373859

4 0.15599 0.22895 0.086798 0.129179 0.1031 0.154714 0.15615 0.034793

5 0.165534 0.088572 0.036622 0.043722 0.086778 0.051521 0.06899 0.070132

6 0.067119 0.026893 0.056513 0.018868 0.0352 0.030379 0.025825 0.051773

7 0.019101 0.013852 0.006658 0.0154 0.012365 0.009591 0.013026 0.024536

8 0.017506 0.009156 0.002398 0.001879 0.004327 0.005216 0.008133 0.007085

9 0.006593 0.005552 0.000647 0.002566 0.001756 0.00194 0.002261 0.005219

10 0.002875 0.002271 0.005278 0.000136 0.000634 0.000721 0.00122 0.002339

11 0.001325 0.001162 0.00054 3.51E-04 0.000333 0.000651 0.000513 0.000925

12 0.000472 0.00032 0.001166 1.38E-05 3.19E-05 0.000235 0.000107 0.000319

13 1.23E-06 3.47E-06 1.93E-05 0.00E ? 00 8.36E-08 2.34E-06 4.51E-06 5.30E-06

14 0 0 0 0 0 0 0 0

Conclusion Right Right Right False Right Right Right False

Bold font indicates the validity function value corresponding to the optimal cluster number
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confidence change of each data set to c under the judgment

of DS-CVFFM, the data in Table 4 is plotted as a scatter

diagram, as shown in Fig. 4.

4.3 Influence of Different Number of Clustering

Validity Functions on DS-CVFFM

DS-CVFFM can obtain the final number of clusters by

fusion multiple cluster validity functions. Therefore, the

selection of the number of cluster validity functions will

affect the final clustering results. For this reason, this

section selects 4, 6, 8, 10 cluster validity functions for

experiments to observe the influence on the final clustering

results when selecting different number of cluster validity

functions. Because the structure of artificial datasets are

simple, only 8 sets of UCI datasets are used in this

experiment, and the fuzzy weighted m ¼ 2. The experi-

mental results are shown in Tables 5, 6, 7, and 8.

Table 5 shows that when the number of cluster validity

functions is 4 (VPC;VPE;VMPC;VP), the confidence result of

c. The results show that DS-CVFFM cannot judge the

correct number of clusters for balance and sonar when

V ¼ 4. For sonar, although the maximum confidence value

is found at c ¼ 2 which is in line with the selection of the

best number of clusters, the difference between the confi-

dence value and the maximum confidence value at c ¼ 3 is

Table 6 Confidence values of c
for DS-CVFFM under different

datasets and V ¼ 6

c Iris Seeds Heart Balance German Breast bupa Sonar

2 0.112914 0.055718 0.492762 0.225519 0.480163 0.312745 0.197208 0.609621

3 0.735986 0.61812 0.267742 0.355748 0.211172 0.342495 0.253516 0.067375

4 0.005908 0.243411 0.114723 0.2497 0.052527 0.160215 0.398797 0.093264

5 0.030801 0.048586 0.054873 0.13038 0.194641 0.083613 0.119198 0.086497

6 0.043273 0.025496 0.026331 0.014908 0.052471 0.05129 0.017226 0.081266

7 0.03938 0.005072 0.011969 0.011993 0.007242 0.026787 0.008924 0.0405

8 0.019045 0.00196 0.014186 0.007659 0.000801 0.013902 0.004723 0.006918

9 0.008986 0.000679 0.007559 0.002138 0.00045 0.005413 0.00025 0.008743

10 0.002998 0.000775 0.007669 0.001138 0.000185 0.002256 6.36E-05 0.003847

11 0.000689 0.000154 0.001859 0.000555 0.000313 0.00107 3.64E-05 0.001556

12 2.14E-05 2.99E-05 0.000302 0.000263 3.37E-05 0.000213 5.74E-05 0.00041

13 0 0 2.39E-05 0 6.93E-08 1.64E-06 8.17E-08 1.98E-06

14 0 0 0 0 0 0 0 0

Conclusion Right Right Right Right Right False False Right

Bold font indicates the validity function value corresponding to the optimal cluster number

Table 7 Confidence values of c for DS-CVFFM under different datasets and V ¼ 8

c Iris Seeds Heart Balance German Breast bupa Sonar

2 0.102221 0.07317 0.547626 0.2137 0.573361 0.44406 0.242389 0.399016

3 0.707233 0.710988 0.278987 0.521442 0.168691 0.35104 0.251651 0.199162

4 0.020025 0.181549 0.100799 0.138887 0.052028 0.13741 0.377052 0.260894

5 0.160836 0.023132 0.041663 0.064831 0.162643 0.01921 0.114704 0.110647

6 3.46E-05 0.008472 0.017139 0.03555 0.038409 0.02804 0.005195 0.024567

7 0.000941 0.001921 0.001544 0.019151 0.004098 0.01186 0.006233 0.002366

8 0.007419 0.000278 0.001973 3.98E-03 0.00051 0.00568 0.002713 0.002306

9 0.001244 0.000134 0.004431 0.001792 1.41E-05 0.00209 4.80E-05 0.000718

10 2.08E-05 0.000315 0.003353 0.000432 0.000195 0.00046 9.56E-06 0.000211

11 3.73E-06 3.71E-05 0.001981 0.000173 4.69E-05 6.84E-05 5.19E-06 7.92E-05

12 2.22E-05 3.32E-06 0.000502 5.92E-05 3.40E-06 6.97E-05 1.07E-06 3.36E-05

13 0 8.17E-10 3.54E-07 5.06E-08 4.57E-09 3.96E-08 1.24E-10 0

14 0 0 0 0 0 0 0 0

Conclusion Right Right Right Right Right Right False Right

Bold font indicates the validity function value corresponding to the optimal cluster number
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Table 8 Confidence values of c for DS-CVFFM under different datasets and V ¼ 10

c iris seeds heart balance german breast bupa sonar

2 0.125069 0.083453 0.55746 0.07793 0.73571 0.234987 0.259001 0.154502

3 0.713212 0.733263 0.265808 0.578955 0.11986 0.146249 0.254292 0.309436

4 0.06989 0.141669 0.094624 0.160863 0.003477 0.388979 0.354511 0.165942

5 0.079517 0.030642 0.019203 0.109562 0.122668 0.076552 0.11497 0.040994

6 0.004986 0.008805 0.010865 0.041234 0.017823 0.08892 0.008195 0.007835

7 0.00037 0.001573 0.003475 0.027199 0.000401 0.04851 0.006349 0.309342

8 0.006559 0.000236 0.005911 0.002779 2.27E-06 0.002611 0.002518 0.000984

9 0.000142 0.000313 0.014853 0.000695 2.61E-05 0.012365 0.000141 0.00053

10 0.00017 8.07E-07 0.001452 0.000686 2.55E-05 7.06E-05 2.14E-05 0.000357

11 8.19E-05 4.07E-05 0.006811 6.40E-05 5.26E-06 0.000732 1.18E-06 0.002367

12 3.06E-06 3.97E-06 0.019539 3.26E-05 1.40E-06 2.47E-05 1.01E-06 0.00771

13 0 0 1.69E-07 0.00E ? 00 0 2.87E-09 2.14E-09 2.46E-08

14 0 0 0 0 0 0 0 0

Conclusion Right Right Right Right Right False False False

Bold font indicates the validity function value corresponding to the optimal cluster number
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Fig. 5 Confidence values of c with the increase of the number of validity functions for iris data set
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less than the threshold value, so the correct number of

clusters cannot be output. Therefore, under the condition of

V ¼ 4, DS-CVFFM can find the optimal number of clusters

for 6 datasets. Table 6 shows that when the number of

cluster validity functions is 6

(VPC;VPE;VMPC;VP;VXB;VFS), the confidence result of c.

The results show that DS-CVFFM cannot judge the correct

number of clusters for bupa and breast under the condition

of V ¼ 6. Therefore, under the condition of V ¼ 6, DS-

CVFFM can find the optimal number of clusters for 6

datasets. Table 7 shows that when the number of cluster

validity functions is 8

(VPC;VPE;VMPC;VP;VXB;VFS;VZ ;VHY ), the confidence

result of c. The results show that DS-CVFFM cannot judge

the correct number of clusters for bupa only under the

condition of V ¼ 8, so DS-CVFFM can find the best

number of clusters for 7 datasets under the condition of

V ¼ 8. Table 8 shows that when the number of cluster

validity functions is 10

(VPC;VPE;VMPC;VP;VXB;VFS;VZ ;VHY ;VWL;VPCAES), the

confidence result of c. The results show that DS-CVFFM

cannot judge the correct number of clusters for breast, bupa

and sonar under the condition of V ¼ 10, so DS-CVFFM

can find the best number of clusters for 5 datasets under the

condition of V ¼ 10.

According to the experimental results listed in Tables 5,

6, 7, and 8, it can be found that DS-CVFFM has the highest

accuracy in judging the optimal number of clusters for

different datasets under the condition of V ¼ 8, with only

one error, and the lowest accuracy under the condition of

V ¼ 10. Under the condition of V ¼ 4 and V ¼ 6, there are

two errors. Compared with V ¼ 8, the variety of the correct

rate of judging the optimal number of clusters is not very

significant. In order to distinguish the influence of V ¼ 4,

V ¼ 6 and V ¼ 8 on DS-CVFFM, the number of V is

determined by judging the difference between the maxi-

mum and the second largest value of c. when the difference

between the maximum and the second largest value is

larger, the value of c corresponding to the maximum

confidence of c can be regarded as the optimal number of
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Fig. 6 Confidence values of c with the increase of the number of validity functions for seeds data set
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clusters. For this reason, 4 experimental datasets (iris,

seeds, heart, german) which can still obtain the optimal

number of clusters after fusing the clustering validity

functions with different numbers are selected from the

above four groups of experiments for comparison, as

shown in Figs. 5, 6, 7, and 8a–d.

As shown in Fig. 5a–d, the selected experimental data

set is iris. When V ¼ 4, the difference between the maxi-

mum and the second largest value of c confidence is 0.2799

(approximate to four decimal places). Similarly, when

V ¼ 6, the difference between the maximum and the sec-

ond largest value of c confidence is 0.6231, V ¼ 8 is

0.5664, and V ¼ 10 is 0.5881. When the selected data set is

seeds, the experimental results are shown in Fig. 6a–d.

When V is 4, 6, 8 and 10, respectively, the corresponding

differences are 0.2944, 0.3747, 0.5295 and 0.5916. When

the selected data set is heart, the experimental results are

shown in Fig. 7a–d. When V is 4, 6, 8 and 10, respectively,

the corresponding differences are 0.3404, 0.2251, 0.2696

and 0.2917. When the selected data set is german, the

experimental results are shown in Fig. 8a–d. When V is 4,

6, 8 and 10, the corresponding differences are 0.2814,

0.2690, 0.4108 and 0.6130. The difference summary is

shown in Table 9. When V ¼ 10, there are three datasets

with the largest difference, and V ¼ 6 has 1 data set with

the largest difference. However, when V ¼ 8, although

there is no maximum difference, the difference is second

only to V ¼ 10. According to the comprehensive experi-

mental results in Tables 5, 6, 7, 8, and 9, V ¼ 8 is the most

appropriate number of clustering effectiveness functions.

4.4 Influence of Fuzzy Weighted on DS-CVFFM

The selection of fuzzy weighted m has a certain impact on

the final clustering results. In the past research process, m is

usually taken as m ¼ 2, but it is not suitable for all datasets

and clustering algorithms. In order to improve the ability of

DS-CVFFM to find the optimal number of clusters, select

multiple m for the same group of cluster validity functions,

and then fusion the values of the final validity functions to

make the final results more reliable. Therefore, different

values of m are changed to observe the fusion results of
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Fig. 7 Confidence values of c with the increase of the number of validity functions for heart data set
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DS-CVFFM on different datasets. The experimental results

are shown in Tables 10, 11, and 12.

As shown in Table 10, When m ¼ 2:0, set the fusion

period T ¼ 1, and select the number of clustering validity

functions V ¼ 8. DS-CVFFM cannot get the correct num-

ber of clusters for haberman and sonar datasets and the

correct number of clusters can be obtained for the other 6

datasets. When m ¼ 1:5; 2:0 and 3:0, as shown in Table 11,

set the fusion period T ¼ 3, and select the number of

clustering validity functions V ¼ 8. DS-CVFFM cannot get

the correct number of clusters for haberman, blast, bupa

and sonar datasets and the correct number of clusters can

be obtained for the other 4 datasets. When

m ¼ 1:5; 1:75; 2:0; 2:5 and 3:0, as shown in Table 12, set

the fusion period T ¼ 5 and select the number of clustering

validity functions V ¼ 8. DS-CVFFM can get the correct

number of clusters for 8 datasets.

According to Tables 10, 11, and 12, it can be found that

when m ¼ 2:0 is indeed the most appropriate value of

fuzzy weighted. When m ¼ 1:5, m ¼ 3:0, there will be

some interference to the final fusion results, resulting in

some data cannot find the correct number of clusters.

However, when we continue to expand the value condition

of m, it can find that taking m ¼ 1:75 and m ¼ 2:5 in the

left and right fluctuation of m ¼ 2 can improve the accu-

racy of the final clustering results. And when

m ¼ 1:5; 1:75; 2:0; 2:5 and 3:0, DS-CVFFM gets the high-

est number of datasets. In order to better observe the

change of confidence of DS-CVFFM under different m

values, Tables 10, 11, and 12 can also be shown in the form

of Figs. 9, 10, and 11.
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Fig. 8 Confidence values of c with the increase of the number of validity functions for german data set

Table 9 Difference between maximum value and second maximum

value of the confidence for different c when selecting different

numbers of cluster validity functions

iris seeds heart german

V ¼ 4 0.2799 0.2944 0.3404 0.2814

V ¼ 6 0.6231 0.3747 0.2251 0.2690

V ¼ 8 0.5664 0.5295 0.2696 0.4108

V ¼ 10 0.5881 0.5916 0.2917 0.6130
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4.5 Comparison of DS-CVFFM and Traditional

Clustering Validity Evaluation Methods

In order to verify that the result of DS-CVFFM is more

accurate than that of clustering validity functions and

combined validity evaluation methods in judging the

optimal number of clusters of data set, DS-CVFFM is

selected to compare with clustering validity functions

(VMPC, VXB, VK , VP, VWL, VZ , VHY ) and combined clus-

tering validity evaluation methods (DWSVF, FWSVF,

WSCVI, HWCVF). The comparative experimental results

of DS-CVFFM and clustering validity functions are shown

in Tables 13 and 14, and the comparative experimental

results of DS-CVFFM and combined clustering validity

evaluation methods are shown in Figs. 12 and 13.

Select DS-CVFFM and VMPC, VXB, VK , VP, VWL, VZ ,

VHY was compared in 14 UCI datasets, and the experi-

mental results are shown in Tables 13 and 14. Table 13

shows the experiment of selecting the data set with the best

number of clusters c\ 5, and Table 14 shows the experi-

ment of selecting the data set with the best number of

clusters 5\ c\ 10. The table only intercepts the value of

Table 10 Confidence values of c for DS-CVFFM under different datasets and m ¼ 2:0

c Haberman wpbc Balance German Ionosphere Breast bupa Sonar

2 0.05225 0.589444 0.07793 0.73571 0.55966 0.234987 0.259001 0.154502

3 0.116626 0.251063 0.578955 0.11986 0.274062 0.146249 0.254292 0.309436

4 0.506713 0.109726 0.160863 0.003477 0.08923 0.388979 0.354511 0.165942

5 0.175709 0.028946 0.109562 0.122668 0.04393 0.076552 0.11497 0.040994

6 0.111474 0.014355 0.041234 0.017823 0.018519 0.08892 0.008195 0.007835

7 0.034224 0.0045 0.027199 0.000401 0.003257 0.04851 0.006349 0.309342

8 1.67E-04 0.001372 0.002779 2.27E-06 0.007729 0.002611 0.002518 0.000984

9 1.83E-03 0.000419 0.000695 2.61E-05 0.002646 0.012365 0.000141 0.00053

10 0.000759 0.000145 0.000686 2.55E-05 0.000837 7.06E-05 2.14E-05 0.000357

11 2.51E-04 2.82E-05 6.40E-05 5.26E-06 8.91E-05 0.000732 1.18E-06 0.002367

12 1.28E-06 2.71E-06 3.26E-05 1.40E-06 4.15E-05 2.47E-05 1.01E-06 0.00771

13 1.45E-09 0 0.00E ? 00 0 6.30E-09 2.87E-09 2.14E-09 2.46E-08

14 0 0 0 0 0 0 0 0

Conclusion False Right Right Right Right Right Right False

Table 11 Confidence values of c for DS-CVFFM under different datasets and m ¼ 1:5; 2:0 and 3:0

c haberman wpbc balance german ionosphere breast bupa sonar

2 0.188451 0.705052 0.277337 0.924333 0.674215 0.25727 0.146694 0.001555

3 0.050535 0.260343 0.629261 0.067085 0.295807 0.486345 0.799251 0.006106

4 0.729413 0.033566 0.082375 2.67E-05 0.022039 0.253178 0.046615 0.000659

5 0.026825 0.000877 0.010416 0.008469 0.007642 0.002534 0.00744 9.12E-06

6 0.004718 0.000151 0.000579 8.66E-05 0.000269 0.00058 7.02E-08 1.64E-10

7 3.26E-05 1.06E-05 1.09E-05 1.91E-07 1.93E-05 8.13E-06 4.25E-08 0.991671

8 2.63E-05 7.09E-07 2.11E-05 1.48E-09 6.27E-06 8.29E-05 6.98E-08 1.51E-08

9 2.21E-09 3.24E-08 4.74E-07 1.29E-10 2.75E-06 8.75E-07 5.05E-09 1.05E-13

10 8.29E-08 4.94E-09 1.28E-06 2.44E-12 1.40E-07 2.50E-07 1.68E-12 9.72E-14

11 9.89E-11 1.41E-10 8.13E-10 1.94E-12 2.41E-09 1.51E-09 1.34E-13 6.44E-13

12 1.83E-10 2.33E-11 2.72E-11 8.41E-15 1.32E-11 4.04E-09 1.87E-18 4.92E-16

13 1.43E-20 0 0 0 0 7.44E-22 0 0

14 0 0 0 0 0 0 0 0

Conclusion False Right Right Right Right False False False
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c, and reserves the data results that provide comparison for

the experiment. As shown in Table 13 (a–j), for iris data

set, DS-CVFFM and VHY can judge the optimal number of

clusters. For seeds data set, DS-CVFFM, VMPC, VP and VHY

can judge the optimal number of clusters. For heart,

ionosphere, wpbc, bupa 4 data set, only VMPC cannot judge

the optimal number of clusters. For balance data set, DS-

CVFFM and VMPC can judge the optimal number of clus-

ters. For sonar data set, DS-CVFFM, VXB, VK , VZ and VHY

can judge the optimal number of clusters. For hfcr data set,

DS-CVFFM, VXB and VZ can judge the optimal number of

clusters. As shown in Table 14 (a–d), satimage and Led7

datasets can be found the correct clustering number by DS-

CVFFM, VWL and VHY . For segment dataset VXB, VK , VWL

and DS-CVFFM can judge the correct number of clusters.

For the pageblocks dataset, VXB, VK , VZ and DS-CVFFM

can judge the correct number of clusters. According to the

experimental results in Tables 13 and 14. The results show

that DS-CVFFM can find the correct number of clusters for

all 14 datasets, VHY and VXB can find 8 datasets, VZ , VK and

VWL can find 7 datasets, VP can find 5 datasets, VMPC can

find 2 datasets. Thus, the performance of DS-CVFFM is

Table 12 Confidence values of c for DS-CVFFM under different datasets and m ¼ 1:5; 1:75; 2:0; 2:5and3:0

c Haberman wpbc Balance German Ionosphere Breast bupa Sonar

2 0.64333 0.812528 0.055149 0.977629 0.902627 0.122977 0.87066 0.911098

3 0.000434 0.166291 0.931496 0.02134 0.096661 0.750553 0.105597 0.053815

4 0.248068 0.020616 0.012826 5.56E-07 0.000655 0.122287 0.023212 0.030756

5 0.106904 6.13E-06 0.000525 0.00103 3.68E-05 0.003907 0.000531 0.00012

6 0.001263 0.000558 4.39E-06 6.58E-07 1.77E-06 9.58E-05 3.51E-08 1.06E-09

7 6.50E-09 3.21E-07 3.72E-07 1.43E-11 1.36E-05 0.000179 2.11E-13 0.004211

8 5.87E-10 2.41E-09 6.54E-09 1.69E-14 4.94E-06 4.99E-08 5.99E-14 3.79E-11

9 1.39E-11 1.61E-11 2.37E-11 3.32E-18 6.43E-12 1.01E-08 8.41E-18 2.33E-14

10 2.91E-14 1.29E-13 3.78E-12 4.00E-19 2.24E-09 5.53E-11 1.85E-20 1.58E-16

11 3.61E-18 4.00E-13 3.63E-14 2.43E-20 2.05E-17 1.95E-15 2.80E-30 1.92E-17

12 2.24E-19 6.08E-21 3.55E-18 1.95E-27 4.60E-23 3.86E-17 8.09E-27 5.14E-22

13 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

Conclusion Right Right Right Right Right Right Right Right
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Fig. 9 Confidence values of c for DS-CVFFM under different datasets and m ¼ 2:0
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significantly better than that of single clustering validity

function.

DS-CVFFM is selected to compare with DWSVF,

FWSCF, WSCVI, HWCVF in 15 UCI datasets, and the

results are shown in Figs. 12 and 13. Figure 12 shows the

experiment of selecting the data set with the best number of

clusters c\ 5, and Fig. 13 shows the experiment of

selecting the data set with the best number of clusters

5\ c\ 10. The abscissa is the number of clusters, and the

ordinate is the value of each method. For iris, seeds and

balance data set, only FWSCF cannot find the correct

optimal number of clusters. For heart, ionosphere and sonar

datasets, only DWSVF cannot find the correct optimal

number of clusters. For wpbc and bupa datasets, DWSVF

and WSCVI cannot find the correct number of clusters. For

hfcr dataset, DWSVF and FWSCF cannot find the correct

optimal number of clusters. For the german dataset, all

methods can determine the optimal number of clusters. As

shown in Fig. 13, only DS-CVFFM can find the correct

optimal cluster number for the data set of satimage and

led7. DWSVF, WSCVI and DS-CVFFM can judge the

optimal clustering number for pageblocks dataset.
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Fig. 10 Confidence values of c for DS-CVFFM under different datasets and m ¼ 1:5; 2:0 and 3:0
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Table 13 Comparison between DS-CVFFM and single cluster validity function, when the selected data set cluster is c\ 5

Datasets c MPC XB VK VP VWL VZ VHY DS-CVFFM

Iris 2 - 1.41358 0.056458 8.593358 0.858337 0.052668 0.004407 2.037941 0.009093

3 -1.05798 0.126879 19.60584 0.81187 0.090402 0.016634 1.593598 0.989377

4 - 1.09369 0.269549 41.92238 0.751594 0.14561 0.044469 2.452269 0.00153

5 - 1.09734 0.41106 65.54202 0.720105 0.107521 0.066233 2.611343 8.00E-08

Seeds 2 - 1.643508 0.102115 21.52627 0.734575 0.102528 0.0035714 7.551749 0.001205

3 -1.249509 0.151415 32.02605 0.739776 0.166908 0.005858 6.885022 0.998587

4 - 1.254923 0.164044 34.77424 0.692544 0.211557 0.0069858 10.62651 0.000207

5 - 1.301568 0.264412 56.26118 0.654337 0.205666 0.0120681 11.39837 1.30E-07

Heart 2 - 2.25676 1.05217 319.427 0.31311 1.05276 0.52444 2.57002 0.930425

3 -2.0374 163.8319 49,786.29 0.195901 1.713673 91.19391 3.80866 0.043352

4 - 2.07519 4067.82 1,236,999 0.148596 3.10733 2369.782 5.309402 0.009787

5 - 2.15117 3022.462 919,689.4 0.132415 17.45175 1775.245 6.857363 0.001279

Ionosphere 2 - 2.05485 0.73807 259.264 0.46948 0.76549 0.04329 17.7678 0.674215

3 -1.83559 282,275.9 99,185,326 0.333412 1.473044 19,968.06 30.93041 0.295807

4 - 1.8655 12.28319 4317.294 0.316001 3.570514 0.853357 40.50212 0.022039

5 - 1.93885 6.36E ? 09 2.24E ? 12 0.271125 3.398134 4.62E ? 08 52.06155 0.007642

wpbc 2 - 2.30723 2.00464 397.936 0.24316 2.00584 1.56284 1.88817 0.705052

3 -2.09046 17.41653 3460.809 0.155392 4.42135 14.56786 2.784114 0.260343

4 - 2.12829 295.4459 58,791.09 0.117321 6.619864 250.7506 3.777422 0.033566

5 - 2.21278 2952.327 588,225 0.088789 4.970808 2552.701 4.683525 0.000877

bupa 2 - 1.576106 0.12612 43.5184 0.77606 0.18561 1.46E-05 43.3033 0.494763

3 - 1.432179 0.589929 203.576 0.632274 0.264043 0.0001 200.5302 0.229007

4 -1.39465 0.661272 228.2321 0.601669 0.311896 0.000115 225.5318 0.15615

5 - 1.503332 0.488328 168.5624 0.545977 0.3976 9.62E-05 166.9205 0.06899

Balance 2 - 2.385692 273.8465 171,158.2 0.019745 273.8465 3.36E 1 01 15.99203 0.055149

3 -2.147072 249.9714 156,239.3 0.018687 266.9815 30.550503 23.99005 0.931496

4 - 2.179824 244.271 152,680 0.018208 252.0499 29.779576 31.9939 0.012826

5 - 2.258389 225.5505 140,981.4 0.016551 289.5852 2.75E ? 01 40.01161 0.000525

Sonar 2 0.680532 0 0 0.829182 7.98E-05 0 0 0.053815

3 1 1 1 1 0 1 0.082477 0.911098

4 0.953789 7.82E-05 7.82E-05 0.625697 7.50E-05 7.93E-05 0.166112 0.030756

5 0.850442 0.000701 0.000702 0.467349 0.012787 0.0007149 0.24943 0.00012

HFCR 2 - 1.59518 0.152988 45.74348 0.758688 0.170223 5.35E-12 45.74347 0.009408

3 - 1.09735 0.16226 48.51561 0.784963 0.207819 5.71E-12 48.51561 0.004624

4 - 0.93998 0.110531 33.04893 0.804485 0.175338 3.67E-12 33.04891 0.359076

5 - 0.86632 0.214297 64.0749 0.807848 0.250148 7.37E-12 64.07487 0.012239

6 - 0.79959 0.148822 44.49774 0.818496 0.119479 5.40E-12 44.49769 0.064041

7 - 0.77483 0.139861 41.81854 0.816947 0.139168 5.36E-12 41.81847 0.207208

8 - 0.76987 0.270992 81.02684 0.819283 0.23492 8.34E-12 81.02675 0.195032

9 - 0.72467 0.094827 28.35322 0.823217 0.112558 4.18E-12 28.35314 0.098257

10 -0.7195 0.110981 33.18348 0.823372 0.143777 5.22E-12 33.18337 0.050115

11 - 0.7753 0.26122 78.10506 0.814801 0.128178 1.32E-11 78.10475 6.34E-14

12 - 0.74477 0.359942 107.6232 0.817206 0.147883 1.84E-11 107.6227 4.50E-10
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HWCVF, WSCVI and DS-CVFFM can judge the optimal

clustering number for segment data set. From Figs. 12 and

13, it can be seen that DS-CVFFM is more accurate than

the weighted cluster validity evaluation method.

5 Conclusions

In this paper, a novel clustering validity evaluation method

is proposed, which combines D–S evidence theory with

multiple clustering validity functions. By standardizing the

Table 14 Comparison between DS-CVFFM and single cluster validity function, when the selected data set cluster is 5\ c\ 10

Datasets c MPC XB VK VP VWL VZ VHY DS-CVFFM

Satimiage 2 - 2.23695 1.298768 1930.182 0.283356 1.308576 10.70647 0.431999 0.000727

3 - 2.02133 12.71356 18,910.63 0.223545 2.204941 112.9902 0.249214 0.064173

4 -1.96662 6.404124 9544.446 0.322485 1.494781 50.39918 0.295718 0.040935

5 - 2.02838 28.44829 42,465.52 0.248927 1.257219 225.9657 0.328284 0.101419

6 - 2.12299 47.33898 70,743.22 0.215836 1.199033 388.8797 0.359071 0.074272

7 - 2.22178 188.965 282,605.8 0.18313 1.166976 1604.076 0.171883 0.718276

8 - 2.31655 183.1075 274,007.8 0.159437 5.89938 1596.255 0.509584 0.000199

9 - 2.40437 996.2908 1,491,857 0.142911 5.425206 8842.979 0.594398 1.72E-07

10 - 2.48299 3479.173 5,213,916 0.135062 6.67682 31,303.76 0.668938 2.43E-07

Led7 2 - 2.29307 1.474364 737.8931 0.255255 1.477769 0.752648 2.961281 0.000916

3 - 2.02304 8.191963 4103.64 0.230195 1.522349 4.141228 3.852237 0.00945

4 - 2.0597 109,978.2 55,120,209 0.142804 2.212272 61,220.3 5.145121 0.17031

5 -1.98764 31,967.1 16,046,002 0.2687 1.706431 14,731.3 6.710202 0.004175

6 - 2.21738 1,075,684 5.39E ? 08 0.104607 42,932.42 633,950.3 8.065039 0.0022

7 - 2.15376 2,017,453 1.01E ? 09 0.179595 1.924358 1,079,579 9.606212 8.22E-05

8 - 2.36186 19,434,138 9.75E ? 09 0.093391 633.327 11,744,762 11.00071 0.007331

9 - 2.25836 3.09E ? 08 1.55E ? 11 0.181523 12.28297 1.68E ? 08 12.72086 0.001034

10 - 2.32061 1.27E ? 08 6.39E ? 10 0.163481 2341.189 71,884,211 14.07261 0.79371

11 - 2.37533 6,184,500 3.11E ? 09 0.160069 1590.15 3,539,687 15.57659 0.001034

12 - 2.27011 34,132,067 1.72E ? 10 0.21244 69,608.56 18,578,239 15.42733 1.85E-04

segment 2 - 1.95535 0.359261 829.8965 0.565913 2395.608 0.380263 7.38E-06 0.108856

3 -1.54013 0.433397 1001.155 0.600328 870.2199 0.291297 8.46E-06 0.011671

4 - 1.5688 0.56036 1294.445 0.537328 291.9352 0.48948 1.23E-05 0.052074

5 - 1.65965 0.853424 1971.434 0.483214 118.4338 0.674654 1.99E-05 0.098813

6 - 1.70729 0.568778 1313.897 0.478632 69.3486 0.639538 1.32E-05 0.085876

7 - 1.68937 0.340593 786.7865 0.489912 42.5733 0.492979 7.36E-06 0.64186

8 - 1.8046 0.504003 1164.27 0.469069 18.36192 0.794681 1.14E-05 0.000411

9 - 1.83086 0.400353 924.836 0.472434 12.22728 0.727572 8.91E-06 0.000386

10 - 1.8679 0.559687 1292.915 0.446245 6.844587 0.737305 1.28E-05 5.78E-05

Pageblocks 2 - 1.85931 0.461255 1065.534 0.47292 7.778437 0.694348 1.01E-05 0.015733

3 - 1.90357 0.484211 1118.566 0.469721 5.458754 0.70802 1.06E-05 7.90E-05

4 - 1.91058 0.270441 27.43066 0.614269 1.542048 0.286675 1.04E-02 0.020439

5 - 1.35218 0.145559 14.87953 0.666474 0.583084 0.159405 5.87E-03 0.953877

6 -1.12435 0.164623 16.9702 0.742137 0.123593 0.159605 6.26E-03 0.008686

7 - 1.13066 0.134844 13.96071 0.728711 0.064746 0.23902 5.09E-03 2.60E-05

8 - 1.15339 0.224578 23.48546 0.726273 0.034424 0.179744 8.83E-03 0.000169

9 - 1.15965 0.177088 18.65366 0.72846 0.025901 0.225359 6.78E-03 1.18E-06

10 - 1.25776 0.823846 86.96238 0.671386 0.015574 0.32561 3.41E-02 0.000571

11 - 1.2197 0.751351 80.44176 0.646945 0.006623 0.180493 3.31E-02 0.000411

12 - 1.13526 0.542651 58.17192 0.702824 0.007478 0.255017 2.24E-02 7.26E-06
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values of clustering validity functions, the basic probability

assignment function (BPA) is constructed, the integration

is carried out according to the fusion rules of D–S evidence

theory, and the optimal number of clusters is output by

decision module. Finally, the validity of the proposed

model (DS-CVFFM) is verified by artificial data set and
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Fig. 12 Comparison between DS-CVFFM and combined validity evaluation methods, when the selected data set cluster is c\ 5
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UCI data set. The accuracy of DS-CVFFM is judged by

comparing DS-CVFFM with traditional validity evaluation

methods, and then the stability of DS-CVFFM is judged by

changing the fuzzy weight. The experimental results show

that DS-CVFFM has better stability and accuracy than the

traditional clustering validity evaluation methods under

different datasets.

However, D–S evidence theory has some limitations,

such as large amount of calculation, easy failure and evi-

dence conflict in the face of independent information

sources, which makes it impossible to determine the opti-

mal number of clusters. Therefore, other optimization

techniques can be used to replace D–S evidence theory to

avoid the above problems. Some clustering validity func-

tions are only suitable for datasets with a small number of

clusters. This also causes DS-CVFFM to fail to obtain the

optimal number of clusters for datasets with a high number

of clusters. We can preprocess the data set and then

improve the accuracy of the final model. FCM algorithm

also has some defects in updating the membership and

clustering center. Therefore, in the future work, we will

also consider using multiple FCM clustering algorithms

combined with multiple validity functions to obtain the

final optimal number of clusters, so as to optimize the DS-
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CVFFM model and improve the stability and accuracy of

the model.
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