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Abstract Compensatory Fuzzy Logic is a transdisciplinary

axiomatic theory, different from the Classical Norm and

Conorm approach to improving interpretability by natural

language. Archimedean Compensatory Fuzzy Logic

(ACFL), introduced recently, uses different properties and

interpretations of involved truth values. Membership

functions involved are not studied explicitly in fuzzy the-

ories, even though it is essential in solving problems. The

definition of parameterized families of membership func-

tions is not rare in fuzzy literature. However, according to

our review, each of those families has the same shape

except the recently introduced Continuous Linguistic

Variables. That has been a limitation in the expressiveness

of linguistic values. Besides, except for Dombi’s theory,

these functions are often not related to logical operators.

This paper aims to use ACFL to overcome each of these

drawbacks. We generalize some fuzzy concepts, only using

the ACFL generator function. A Generalized Sigmoidal

Function and a Generalized Linguistic Modifier are

s-shaped functions generated by it. Those elements define a

parameterized family containing different shape functions

like an increasing sigmoidal, decreasing sigmoidal and

convex function; we call it a Generalized Continuous

Linguistic Variable. This paper improves ACFL by unify-

ing it into single theory elements like logic generator

functions, linguistic modifiers, membership functions, and

linguistic variables. The improved ACFL is not just a

Pluralist Logic that makes compatible the classical

approach of Norm and Conorm with CFL theory, but a

contextual pluralist logic able to select a logic that better

expresses specific contextual knowledge. This theory is

valuable in Knowledge Discovery; because it creates new

searching elements that allow selecting the ‘best logic� for
a particular dataset. We develop knowledge discovery

cases for different databases to illustrate it and show its

data sensitivity.

Keywords Membership function � Sigmoidal �
Archimedean compensatory fuzzy logic � Knowledge
discovery

1 Introduction

Membership functions are an essential part of fuzzy theory

since the seminal paper on fuzzy sets by Lotfi Zadeh [1].

Dombi is an author who paid attention to this subject [2, 3];

he included parameterized membership functions such that
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each parameter is meaningful. He also incorporated logical

operators as part of them.

However, the critical issue of explicitly defining what

kind of membership function should be used in a fuzzy

problem has been neglected in the literature. Sometimes

this is reduced to the simplest ones, the trapezoidal or tri-

angular. For practical purposes, s-shaped functions are

more appropriate to define smooth transitions in the degree

of importance or the strength of belief. The sigmoid

function is an s-shaped function with particular interest

[4–6]. The importance comes from the origin of its defi-

nition: the rate of belief of one person is defined as pro-

portional to the product of their belief and the negation of

belief.

Parameterized families of membership functions exist in

the literature. However, every one of these families is a set

of functions with the same shape, and as a consequence, it

is difficult to express possible semantics. For instance, a

family of parameterized sigmoidal functions can represent

linguistic values [7] of the type ‘high’ or ‘big’ if they are

increasing and ‘low’ or ‘small’ if they are decreasing, but

never one of the types ‘medium.’

To overcome semantics limitation, this paper presents a

new parametrized family of membership functions gener-

ated through the Archimedean Compensatory Fuzzy Logic

(ACFL), improved in this paper and previously defined in

[8]. This logic consists of one Archimedean t-norm gen-

erated by one function. ACFL serves as a generator of one

compensatory operator, one t-conorm, and other compen-

satory operator-defined from this t-conorm. Besides, it

includes the most usual negation operator and a fuzzy

order.

The original ACFL naturally extends Archimedean

t-norm to Archimedean Logic, which adds to the t-norm.

ACFL integrates its dual t-conorm and the negation oper-

ator. In [8], we demonstrate that from the same generator

function of this Archimedean Logic, it is possible to gen-

erate a Compensatory parallel Logic, according to [9].

One predicate in one ACFL, containing the operators of

conjunction, disjunction, and implication, can be consid-

ered the same in Archimedean Logic or Compensatory

Logic. The most usual definition of universal quantifiers

from t-norms has an equivalent definition in the compen-

satory operators’ framework.

The main contributions of this paper are outlined as

follows:

(1) We use an ACFL generator as a basis for defining a

sigmoidal membership function that we call the

Generalized Sigmoidal Function. From this Gener-

alized Sigmoidal Function and one Generalized

Linguistic Modifier, we also generalize the family

of parameterized membership functions called

General Continue Linguistic Variable (GLCV) [10]

to any specific ACFL, now called Generalized

Sigmoidal Functions.

(2) The GCLV can takes many shapes, depending on the

parameters. Therefore, it can represent an infinite

linguistic variable rather than a set of linguistic

values. At least three basic shapes are included in the

family, one increasing sigmoidal, one decreasing

sigmoidal, and one convex. Some convex and not

symmetric functions are part of the family, too. For

the first time, one family of functions can represent

such a variety of linguistic values.

(3) We enhance ACFL to transform it into a theory with

the new property of involving in just one theoretical

space, Fuzzy Multivalued Logics of two classes,

generators functions, and essential semantic tools

like modifiers, membership functions, and linguistic

variables. This improved ACFL is a contextual

pluralist logic able to expresses specific contextual

knowledge in a selected logic.

(4) A family of membership functions generated with

ACFL presents an advantage in the practical appli-

cation of this GCLV. For example, in Knowledge

Discovery (KD), one of these families can be fitted

from a dataset to resolve an optimization problem

over the space of continuous parameters.

(5) The results can be expressed in natural language,

where the most possible linguistic value is included,

or at least the essential ones. That is possible using

the Principle of Representation of Linguistic vari-

ables and some algorithms developed to determine

specific labels between the ones included in the

correspondent predefined linguistic variable [10].

That Principle of Representation and the correspondent

algorithms can be extended to ACFL, but it is not an

objective of the present work. It will be developed in a new

paper. This theoretical space produced by the generaliza-

tions and the study of their existence is a necessary step

towards a Generalized Principle of Representation.

The interpretability is an essential concept and a desir-

able property in fuzzy logic; in this paper, we follow the

perspective of interpretability that appears in [11]. Inter-

pretability ‘‘is the property fulfilled by a logical theory,

such that there is a two-sided relation between the results of

the calculus upon the field of such theory over its objects

using its operators, and on the other side, the meanings of

them represented in the natural or professional language.

The interchange between the logical theory calculus and

the natural or professional language representation should

be transparent, but not necessarily isomorphic, to represent

the knowledge. This is a sort of generalization of
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Knowledge Engineering. This is also one way to construct

a transdisciplinary logical theory.’’

We aim to obtain interpretable fuzzy theories according

to above definition. The interpretability of the Compen-

satory Fuzzy Logic (CFL) is a starting point for this goal.

The ACFL is a theoretical combination of two different

logics; it combines two logics according to the order and

diverse meanings. It is a way to link the classical defini-

tions of t-norm and t-conorm with CFL.

Logic Pluralism was a precedent of Scientific Pluralism,

which began with particular works of the Vienna Circle

[12] and, lastly, have reemerged in a new way and fol-

lowing those pioneer developments [2]. Bivalued Logics

like Boolean Logic, Intuitionistic Logic, Dual Logic, and

other approaches are different logic, satisfying different

logical values. Those logical approaches have a meaningful

presence in Fuzzy Logic. The understanding of the group

or individual logic as the specific way of thinking and

reasoning of different groups and persons is another out-

look of Pluralism in Logics. Another important manifes-

tation of Pluralism in Logics is Contextual Pluralism; it

considers logic should depend on the content of proposi-

tions and predicates with which logic works.

CFL emerged with a transdisciplinary axiomatic

approach, different from the Classical Norm and Conorm

approach to improving interpretability by natural language

[13]. Lastly, ACFL was introduced, harmonizing both

connectives sets by properties and different interpretations

of the truth values [8].

The unified treatment of modifiers, membership func-

tions, and Continue Linguistic Variables treated in this

paper as generalizations and useful correspondent propo-

sitions enhance that theory, joining the associated to each

ACFL logic function and Archimedean and Compensatory

connectives with these other relevant elements of Fuzzy

Logic. That is a new element that does not present till now

in Fuzzy Logic. That property is joined to the already

mentioned one, which explains the apparent contradiction

of CFL with the classical approach of Norm and Conorm of

Fuzzy Logic.

A very general approach for KD is obtained where

predicates of fuzzy logic are discovered, including

parameters concerning the membership functions and the

specific Compensatory Logic and Archimedean Logics.

This process is a practical manifestation of the Contextual

Pluralism of ACFL, allowing the selection of the particular

ACFL with the truer universal proposition of a predicate

[14, 15].

These two properties allow us to call ACFL the first

Pluralist Fuzzy Logic theory, a significant name in the

context of Knowledge Discovery, to concrete the Tolerance

Principle of Carnap, the initiator of the Logic Pluralism and

the principal creator of Logical Positivism.

This paper is organized as follows: Sect. 2 summarizes

the main concepts further used. Section 3 presents the main

results. Section 4 introduces an ACFL based on the

Exponential Logarithmic function (ACFL-ELF) and illus-

trates the application of the theory in Knowledge Discov-

ery using it with different datasets. Finally, in Sect. 5, we

state the conclusions.

2 Preliminaries

Let �R ¼ R [ �1f g [ þ1f g the extended real line of the

extended real numbers [16].

Definitions A t-norm is a function T: [0,1]�[0,1] ! [0,1]

having the following properties [17]:

(i). Commutativity T(x,y) = T(y,x).

(ii). Monotonicity (increasing) T(x,y) � T(u,v), if x

� u and y � v.

(iii). Associativity T(x,T(y,z)) = T(T(x,y),z).

(iv). One as a neutral element T(x,1) = x.

A well-known property of t-norms is T(x,y) � min (x,y).

Let gT : 0; 1 �N !� ½0; 1½ � an auxiliary recursive operator
associated with the t-norm T, defined by.

gT x; nð Þ ¼ x for n ¼ 1

T x; gT x; n� 1ð Þð Þ; for n[ 1:

�

For simplicity, we will symbolize

gT x; nð Þ ¼ T x; x; x; . . .; xð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n�times

, for n[ 1:

Definitions A t-norm T : 0; 1½ �2! 0; 1½ � is said to be

Archimedean if and only if it satisfies for every x; yð Þ 2
0; 1ð Þ2 there is a natural number n such that

T x; x; . . .; xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n times

\y.

It can be observed that:

(1) If T : 0; 1½ �2! 0; 1½ � t-norm Archimedean, then for

every x 2 0; 1ð Þ; T x; xð Þ\x.

(2) Let be T : 0; 1½ �2! 0; 1½ � t-norm. T : 0; 1½ �2! 0; 1½ � t-
norm Archimedean if and only if it satisfies for every

x 2 0; 1ð Þ, limn!1 T x; x; x; . . .; x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�times

0
@

1
A ¼ 0:

A t-norm T : 0; 1½ �2! 0; 1½ � is continuous if and only if

for every pair of convergent sequences xnf g1n¼1 and

ynf g1n¼1 in 0; 1½ �; limn!1 T xn; ynð Þ ¼ T lim
n!1

xn; lim
n!1

yn

� �
.
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For every continuous Archimedean t-norm there exists a

continuous decreasing function f : 0; 1½ � ! 0;þ1½ � satis-
fying f 1ð Þ ¼ 0, such that [17]:

T x1; . . .; xnð Þ ¼ f �1ð Þ
Xn
i¼1

f xið Þ
 !

; ð1Þ

where f �1ð Þ is the pseudo inverse of f , and

L ¼ limx!0þ f xð Þ,

f �1ð Þ zð Þ ¼ f�1 zð Þ; if z 2 f 1ð Þ; L½ Þ
0 if z 2 L;þ1½ �

�
: ð2Þ

There are operators of the form [18]:

Mf x1; . . .; xnð Þ ¼ f�1 1

n

Xn
i¼1

f xið Þ
 !

: ð3Þ

In (3), if f is a strictly monotone continuous function in

the real extended line, it corresponds to the family of the

quasi-arithmetic means, where f is the additive generator

(f is not unique) [18, 19]. This family has been studied in

detail by Kolmogorov [20] and Aczél and Alsina [21].

In (1), if f is strictly decreasing and continuous function,

T x1; . . .; xnð Þ ¼ f �1ð Þ n:f Mf x1; . . .; xnð Þ
� �� �

and

Mf x1; . . .; xnð Þ ¼ f�1 1

n
f T x1; . . .; xnð Þð Þ

� 	
:

Considering f xð Þ ¼ � ln xð Þ;

f �1ð Þ zð Þ ¼ e�z; if z 2 0;þ1½ Þ
0; if z ¼ þ1

�
, T x1; . . .; xnð Þ ¼

Qn
i¼1 xi

and Mf x1; . . .; xnð Þ ¼
Qn

i¼1 xi
� �1

n as the geometric mean.

And further f xð Þ ¼ 1
x � 1,

f �1ð Þ zð Þ ¼
1

zþ 1
; if z 2 0;þ1½ Þ

0; if z ¼ þ1

(
, T x1; . . .; xnð Þ ¼

1Pn

i¼1

1
xi
�nþ1

and Mf x1; . . .; xnð Þ ¼ nPn

i¼1

1
xi

as the harmonic

mean.

We say L ¼ cc; cT ; dc; dT ; o; nð Þ is an ACFL if we count

on the following fuzzy operators [8]:

(1) cT : 0; 1½ �2! 0; 1½ � is an Archimedean t-norm gener-

ated by some f which fulfills Eq. 1.

(2) dT : 0; 1½ �2! 0; 1½ � satisfies dT x1; x2ð Þ ¼ 1�
cT 1� x1; 1� x2ð Þ for every x ¼ x1; x2ð Þ 2 0; 1½ �2.

(3) cc : 0; 1½ �n! 0; 1½ � satisfies Eq. 3 for f used in point

1.

4) dc : 0; 1½ �n! 0; 1½ �, where for a vector x ¼
x1; x2; . . .; xnð Þ 2 0; 1½ �n, dc x1; x2; . . .; xnð Þ ¼ 1�
cc 1� x1; 1� x2; . . .; 1� xnð Þ and cc x1; x2; . . .; xnð Þ
¼ 1� dc 1� x1; 1� x2; . . .; 1� xnð Þ.

(5) o : 0; 1½ �2! 0; 1½ � is a fuzzy order, o x; yð Þ ¼
0:5 cc xð Þ � cc yð Þð Þ þ 0:5:

(6) n : 0; 1 !� ½0; 1½ � is the negation operator with equa-

tion n xð Þ ¼ 1� x.

Let be L an ACFL. The universal quantifier is defined as

the conjunction cT . That is to say, for

X ¼ x1; . . .; xnf g � 0; 1½ �, 8Txi 2 X ¼ cT x1; . . .; xnð Þ and

equivalently, 8cxi 2 X ¼ cc x1; x2; . . .; xnð Þ.
The compensatory operators satisfy the following

axioms [9]:

(i). Compensation min x1; x2; . . .; xnð Þ� cc x1; x2;ð
. . .; xnÞ�max x1; x2; . . .; xnð Þ:

(ii). Symmetry or Commutativity cc x1; x2; . . .;ð xi;

. . .; xj; . . .; xnÞ ¼ cc x1; x2; . . .; xj; . . .; xi; . . .; xn
� �

:

(iii). Strict Growth If x1 ¼ y1, x2 ¼ y2, …,

xi�1 ¼ yi�1, xiþ1 ¼ yiþ1,…, xn ¼ yn are different

to zero and xi [ yi then cc x1; x2; . . .; xnð Þ
[ cc y1; y2; . . .; ynð Þ:

(iv). Veto: If xi ¼ 0 for any i then cc xð Þ ¼ 0.

(v). Fuzzy Reciprocity o(x; y) = n[o(y,x)].

(vi). Fuzzy Transitivity If o(x,y) C 0.5 and o(y,z)

C 0.5, then o(x, z) C max(o(x,y),o(y,z)).

(vii). De Morgan’s Laws

n cc x1; x2; . . .; xnð Þð Þ ¼ dc n x1ð Þ; n x2ð Þ; . . .; n xnð Þð Þ;

n dc x1; x2; . . .; xnð Þð Þ ¼ cc n x1ð Þ; n x2ð Þ; . . .; n xnð Þð Þ:

Other properties satisfied by an ACFL are the following:

1. Compensation min x1; x2; . . .; xnð Þ� dc x1; x2; . . .; xnð Þ
�max x1; x2; . . .; xnð Þ.

2. Symmetry or Commutativity dc x1; x2; . . .; xi; . . .;ð
xj; . . .; xnÞ ¼ dc x1; x2; . . .; xj; . . .; xi; . . .; xn

� �
:

3. Strict Growth If x1 ¼ y1, x2 ¼ y2, …, xi�1 ¼ yi�1,

xiþ1 ¼ yiþ1,…, xn ¼ yn are different to one and xi [ yi
then dc x1; x2; . . .; xnð Þ[ dc y1; y2; . . .; ynð Þ:

4. Veto If xi ¼ 1 for any i then dc xð Þ ¼ 1.

Definition Let f(x) a strictly decreasing real-valued

function, X ¼ x1; . . .; xnf g � 0; 1½ �. f(x) generates an ACFL

L if f(x) generates the correspondent conjunctions cT and

dT .

Proposition 1 Let f(x) a strictly decreasing real-valued

function, which generates an ACFL L. X ¼ xi 2f
0; 1½ �; fori ¼ 1; 2; . . .; ng.

If p and q are predicates that can be evaluated in vectors

with components in X, then it is
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verified,8Txkp xkð Þ�8Txkq xkð Þ if and only if

8cxkp xkð Þ�8cxkq xkð Þ, where k is the index for the set of a

vector with components in X.

3 Generalizations in the Framework of ACFL

This section contains concepts from ACFL’s theory.

3.1 Generalized Linguistic Modifier

Definition 1 Given an ACFL L and its function gener-

ator f, we shall define a Generalized Linguistic Modifier

m x; Lð Þ by the following equation: xaL ¼ f �1ð Þ af xð Þð Þ,
where a 2 Rþ and xaL denotes m x; Lð Þ.

Let f xð Þ ¼ �g ln xð Þð Þ, for x 2 0; 1ð �; in the expression of

Generalized Linguistic Modifier. We will call g Secondary

Generator Function of L. In which case, g uð Þ ¼ �f euð Þ
for u 2 �1; 0ð �; g�1 zð Þ ¼ ln f�1 �zð Þð Þ. If a[ 0 and

x ¼ 1, then f xð Þ ¼ 0, xaL ¼ f �1ð Þ 0ð Þ ¼ 1 and g�1ð0) = 0.

Because f xð Þ is bounded and taking into account

lim
a!0þ

f �1ð Þ af xð Þð Þ = 1, we define x0L ¼ 1.

Taking into account (2) for L ¼ þ1 and extending the

definition of the pseudo inverse of g such that an odd

function results in the extended real line, we have:

g �1ð Þ zð Þ ¼
ln f�1 �zð Þð Þ; if z 2 �1; 0ð �
� ln f�1 zð Þð Þ; if z 2 0;þ1ð Þ
�1; if z ¼ �1
þ1; if z ¼ þ1:

8>><
>>:

ð4Þ

Remark 1 Let us observe that xaL generalizes de equation:

cT x; x; . . .; xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n times

¼ f �1ð Þ f xð Þ þ f xð Þ þ � � � þ f xð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

¼

f �1ð Þ nf xð Þð Þ, where n 2 N.

Supposing x; a 2 Rþ, 0\x� 1, and odd n if g xð Þ ¼ xn

and g�1 xð Þ ¼
ffiffiffi
xn

p
then f xð Þ ¼ �ðln xð ÞÞn, f�1 xð Þ ¼ e�

ffiffi
xn

p

and xaL ¼ f�1 af xð Þð Þ ¼ ea
1
n: ln xð Þ. In Fig. 1 it is observed

xaL ¼ f�1 af xð Þð Þ ? 1, when a ? 0þ. While xaL ¼
f�1 af xð Þð Þ ? x, when a ? 1�.

Another case is for x; a; b 2 Rþ, 0\x� 1 and b[ 1 and

odd natural n. If g xð Þ ¼ xn

ln bð Þð Þn, g�1 xð Þ ¼ ln bð Þ:
ffiffiffi
xn

p
then

f xð Þ ¼ � logb xð Þð Þn, f�1 xð Þ ¼ e� ln bð Þ
ffiffi
xn

p
¼ b�

ffiffi
xn

p
and xaL ¼

f�1 af xð Þð Þ ¼ x
ffiffi
an

p
does not depend on b. It is also true xaL ¼

f�1 af xð Þð Þ ? 1, when a ? 0þ. While xaL ¼ f�1 af xð Þð Þ
? x, when a ? 1�.

3.2 Generalized Sigmoidal Function

Definition 2 Let the ACFL L and g its Secondary Gen-

erator Function. We say that Sg xð Þ ¼ 1

1þe�g �1ð Þ xð Þ
is a Gen-

eralized Sigmoidal Function.

It is also well-known the theory of sigmoidal member-

ship functions that we shall use further [4–6].

Definition 3 Let the ACFL L and g its Secondary Gen-

erator Function. We say Sg x; a; cð Þ ¼ 1

1þe�g �1ð Þ a x�cð Þð Þ
is a Pa-

rameterized Generalized Sigmoidal Function.

3.3 Generalized Continuous Linguistic Variables

Definition 4 The Generalized Continuous Linguistic

Variable, with parameters a; c 2 R, a[ 0, and m 2 0; 1½ �,
generated by the secondary generator function g of an

ACFL L, is defined as follows:

GCLVL x; a; c;mð Þ ¼
CT Sg x; a; cð ÞmL ; 1� Sg x; a; cð Þ

� �1�m

L

� �
M

ð5Þ

where cT is a continuous Archimedean t-norm in L, and M

is the maximum of cT Sg x; a; cð ÞmL ; 1� Sg x; a; cð Þ
� �1�m

L

� �
in

R. Sg x; a; cð ÞmL and 1� Sg x; a; cð Þ
� �1�m

L
are the generalized

linguistic modifiers over Sg x; a; cð Þ and 1� Sg x; a; cð Þ,
respectively.

Taking into account f xð Þ ¼ �g ln xð Þð Þ is the generator

of L, we shall define the following definition.

Definition 5 Let L an ACFL and g its secondary generator

function, then the t-norm generated by g is the equation:

cT x1; x2ð Þ ¼ e�g �1ð Þ �g ln x1ð Þð Þ�g ln x2ð Þð Þð Þ: ð6Þ

Fig. 1 Graphs xaL ¼ ea
1
n �ln xð Þ, for n ¼ 3, and different values of

positive a and a ! 0þ
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From Definition 5 and recalling the definition of L we

state the following:

dT x1; x2ð Þ ¼ 1� e�g �1ð Þ �g ln 1�x1ð Þð Þ�g ln 1�x2ð Þð Þð Þ; ð7Þ

cc x1; x2; . . .; xnð Þ ¼ e
�g �1ð Þ

�
Pn

i¼1
g ln xið Þð Þ

n

� 	
; ð8Þ

and

dc x1; x2; . . .; xnð Þ ¼ 1� e
�g �1ð Þ

�
Pn

i¼1
g ln 1�xið Þð Þ
n

� 	
: ð9Þ

When it makes sense, and g �1ð Þ can be differentiated

with a continuous derivate, it is easy to check that the

Parameterized Generalized Sigmoidal Function satisfies

the following ordinary differential equation:

dSg x; a; cð Þ
dx

¼ a:
dg �1ð Þ

dx
a x� cð Þð Þ:Sg x; a; cð Þ: 1� Sg x; a; cð Þ

� �
:

ð10Þ

Although we defined the secondary generator function g

and many other terms based on this function without a

demonstration, we will prove that these definitions make

sense in the propositions below.

Proposition 2 Given g�1 : R ! R an odd, unbounded,

strictly increasing function, continuous and concave in Rþ,
such that g : 0; 1½ � ! R exists. They are sufficient and

necessary conditions to the following two properties:

(1) Sg x; a; cð Þ ¼ 1

1þe�g�1 a x�cð Þð Þ is a sigmoidal function, i.e.,

limx!þ1 Sg x; a; cð Þ ¼ 1, limx!�1 Sg x; a; cð Þ ¼ 0, it

is increasing in R; Sg xð Þ ¼ Sg x; 1; 0ð Þ concave in

Rþ, convex in R� and symmetric to (0,0.5).

(2) f xð Þ ¼ �g ln xð Þð Þ is the inverse of f�1 xð Þ ¼ e�g�1 xð Þ

and generator of a continuous Archimedean t-norm.

Proof Firstly, we shall prove the proposition for

Sg xð Þ ¼ 1

1þe�g�1 xð Þ.

Considering that g�1 is an odd function and, therefore,

also g, f 1ð Þ ¼ �g ln 1ð Þð Þ ¼ �g 0ð Þ ¼ 0.

The strictly increasing, unbounded, and continuity of

g�1 implies g is strictly increasing and continuity in R,

particularly in [0, 1]. g is strictly increasing in [0, 1] and

f(1) = 0, then f 0; 1½ �ð Þ � 0;þ1½ �. Hence, f is a generator of
a t-norm.

Besides, from the oddness of g�1, e�g�1 xð Þe�g�1 �xð Þ

¼ e� g�1 xð Þþg�1 �xð Þð Þ ¼ 1. This is equivalent to the condition
1

1þe�g�1 xð Þ þ 1

1þe�g�1 �xð Þ ¼ 1, which means that Sg xð Þ is sym-

metric respect to (0,0.5).

Let us recall that g�1 is not bounded and continuous,

then, lim
x!þ1

Sg xð Þ ¼ lim
x!þ1

1

1þe�g�1 xð Þ ¼ 1

1þe
� lim
x!þ1

g�1 xð Þ ¼ 1.

Similarly, we can demonstrate that lim
x!�1

Sg xð Þ ¼ 0.

It is easy to prove that this result can be generalized to

the parameterized sigmoidal function Sg x; a; cð Þ
¼ 1

1þe�g�1 a x�cð Þð Þ.

Let us note that g�1 is convex in R� because it is

concave in Rþ and odd.

The convexity of g�1 in R�, considering that the func-

tion y ¼ 1
1þe�x is also convex in R� and that they are

increasing, as a consequence, that the composition Sg xð Þ is
also convex in R�.

The concavity of Sg xð Þ in Rþ is a consequence of the

oddness of g�1 and its convexity in R�.
Now, let us suppose the necessary conditions are satis-

fied. f xð Þ ¼ �g ln xð Þð Þ and f xð Þ is a generator of a con-

tinuous Archimedean t-norm if f xð Þ is decreasing and

f 1ð Þ ¼ 0. Therefore, g has to be increasing and g 0ð Þ ¼ 0.

Hence, g�1 0ð Þ ¼ 0 and g�1 xð Þ are increasing. Moreover,

g�1 xð Þ is strictly increasing and continuous because of the

definition of t-norm generators.

Sg xð Þ is symmetric to the point (0,0.5) if g�1 xð Þ is odd.
Note that 1

1þe�g�1 xð Þ þ 1

1þe�g�1 �xð Þ ¼ 1 is the condition of

symmetry to the point (0,0.5), and it is equivalent to

e� g�1 xð Þþg�1 �xð Þð Þ ¼ 1 for every x 2 R or

g�1 xð Þ þ g�1 �xð Þ ¼ 0, which means that g�1 is odd.

The existence of g is a consequence of property 2.

limx!þ1 Sg xð Þ ¼ 1 and limx!�1 Sg xð Þ ¼ 0 imply

g�1 xð Þ is unbounded.
Finally, R?’s concavity has to be satisfied in an S-

shaped function, taking into account g�1 is odd and hence

Sg xð Þ is convex in R�.

Now, we shall restrict our attention to g xð Þ satisfying the
conditions in Proposition 2.

From the above, it follows that the graph Sg x; a; cð Þ is

concave downward in c;þ1ð Þ, concave up inwards

�1; cð Þ and symmetric concerning point c; 0:5ð Þ.
Let us remark that some consequences of Definition 4

are: GCLVL x; a; c; 1ð Þ ¼ Sg x; a; cð Þ and GCLVL x; a; c; 0ð Þ
¼ 1� Sg x; a; cð Þ.

In the ACFL framework, the generalization of the lin-

guistic modifier’s definitions, the sigmoidal function, and

the Generalized Continuous Linguistic Variable increase

interpretability.

Let us remark that Definition 3 under the conditions of

Proposition 2 is also a generalization of the sigmoidal

functions as a function of a distance, see [20]. u xð Þ ¼
1

1þd x;x0ð Þ is another point of view to understand this mem-

bership function, where d x; x0ð Þ is the distance of the points
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to certain point of reference x0, d x; x0ð Þ ¼ 0 if x = x0 and

d x; x0ð Þ ¼ þ1 if u(x) = 0. The expression d x; x0ð Þ can be

thought of as the result of the composition h x� x0ð Þ, where
h xð Þ ¼ xj j non-negative function. Considering x0 ¼ c, in
classical sigmoid function h xð Þ ¼ e�ax and in the general-

ization h xð Þ ¼ e�g�1 axð Þ.

Another example is due to Dombi, see [3], where d xð Þ ¼
m

1�m

� �1�k b�x
x�a

� �k
(distance between a given object and a

standard (ideal)), u xð Þ ¼ 1�mð Þ1�k x�að Þk

1�mð Þ1�k x�að Þkþmk�1 b�xð Þk ; k[ 1;

(a,b) is the interval on which u(x)[ 0, k is the sharpness

parameter, and m is the expectation level.

In the following, we illustrate the proposed theory with

some examples.

3.4 Examples

Example 1 If f xð Þ ¼ �ln xð Þ ifs given, then f�1 xð Þ ¼ e�x

and g xð Þ ¼ g�1 xð Þ ¼ id xð Þ, which generates the ACFL L,

such that cT x1; x2ð Þ ¼ x1x2 is the product t-norm and

dT x1; x2ð Þ ¼ x1 þ x2 � x1x2 is its dual t-conorm. cc is the

geometric mean and

dc x1; x2; . . .; xnð Þ ¼ 1� cc 1� x1; 1� x2; . . .; 1� xnð Þ.

If a ¼ 10 and c ¼ 5 then Sg x; 10; 5ð Þ ¼ 1
1þe�10 x�5ð Þ and

GCLVL x; 10; 5; 0:2ð Þ ¼
S0:2g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:8
maxx2R S0:2g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:8h i

GCLVL x; 10; 5;
1

2

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sg x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �q

maxx2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sg x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �qh i

GCLVL x; 10; 5; 0:8ð Þ ¼
S0:8g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:2
maxx2R S0:8g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:2h i

Let us note g xð Þ satisfies the conditions of Proposition 2,

and the generalized linguistic modifier coincides with the

classical power function (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

See the two figures below:

Example 2 For g�1 xð Þ ¼
ffiffiffi
x3

p
, g xð Þ ¼ x3, f xð Þ ¼ �ln3 xð Þ,

f�1 xð Þ ¼ e�
ffiffi
x3

p
.

cT x1; x2ð Þ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 x1ð Þþln3 x2ð Þ3

p
, dT x1; x2ð Þ ¼ 1�

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 1�x1ð Þþln3 1�x2ð Þ3

p
, cc x1; x2;���;xn

� �
¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ln3 xið Þ

n

3

q
and

dc x1; x2;...;xn
� �

¼ 1� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ln3 1�xið Þ
n

3

q
.

Sg x; 10; 5ð Þ ¼ 1

1þ e�
ffiffiffiffiffiffiffiffiffiffiffiffi
10 x�5ð Þ3

p :

xmL ¼ f�1 mf xð Þð Þ ¼ e
ffiffiffiffiffiffiffiffiffiffi
m ln3ðx3

p
Þ ¼ x

ffiffiffi
m3

p
, x1�m

L ¼ x
ffiffiffiffiffiffiffi
1�m3

p
and

hence:

GCLVL x; 10; 5; 0:2ð Þ

¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffi
0:23p� �

þln3 1�Sg x;10;5ð Þð Þ
ffiffiffiffi
0:83p

� �
3

r

maxx2R e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffi
0:23p� �

þln3 1�Sg x;10;5ð Þð Þ
ffiffiffiffi
0:83p

� �
3

r2
64

3
75

Fig. 2 Graph of a Parameterized Generalized Sigmoidal Function based on g(x) = id(x) or GCLVL x; 10; 5; 1ð Þ
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Fig. 3 From top to bottom, graphs of GCLVL x; 10; 5; 0ð Þ, GCLVL x; 10; 5; 0:2ð Þ, GCLVL x; 10; 5; 1
2

� �
and GCLVL x; 10; 5; 0:8ð Þ, based on

g(x) = id(x)

Fig. 4 Graph of a Parameterized Generalized Sigmoidal Function based on g xð Þ ¼ x3 or GCLVL x; 10; 5; 1ð Þ

Fig. 5 From top to bottom, graphs of GCLVL x; 10; 5; 0ð Þ, GCLVL x; 10; 5; 0:2ð Þ, GCLVL x; 10; 5; 1
2

� �
and GCLVL x; 10; 5; 0:8ð Þ, based on g xð Þ ¼ x3
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Fig. 6 Graph of a Parameterized Generalized Sigmoidal Function based on g xð Þ ¼ arcsinh xð Þ or GCLVL x; 10; 5; 1ð Þ

Fig. 7 From top to bottom, graphs of GCLVL x; 10; 5; 0ð Þ, GCLVL x; 10; 5; 0:2ð Þ, GCLVL x; 10; 5; 1
2

� �
and GCLVL x; 10; 5; 0:8ð Þ, based on

g xð Þ ¼ arcsinh xð Þ

Fig. 8 Graph of a Parameterized Generalized Sigmoidal Function based on g xð Þ ¼ x
ln 10ð Þ or GCLVL x; 10; 5; 1ð Þ
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GCLVL x; 10; 5;
1

2

� 	

¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffiffiffi
1=23

p� 	
þln3 1�Sg x;10;5ð Þð Þ

ffiffiffiffiffiffi
1=23

p� 	
3

s

maxx2R e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffiffiffi
1=23

p� 	
þln3 1�Sg x;10;5ð Þð Þ

ffiffiffiffiffiffi
1=23

p� 	
3

s2
6664

3
7775

GCVLL x; 10; 5; 0:8ð Þ

¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffi
0:83p� �

þln3 1�Sg x;10;5ð Þð Þ
ffiffiffiffi
0:23p

� �
3

r

maxx2R e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln3 Sg x;10;5ð Þ

ffiffiffiffi
0:83p� �

þln3 1�Sg x;10;5ð Þð Þ
ffiffiffiffi
0:23p

� �
3

r2
64

3
75

In general, secondary generator functions with formula

g�1 xð Þ ¼ x1=n are valid, where n is an odd natural number.

Example 3 For g�1 xð Þ ¼ sinh xð Þ, g xð Þ ¼ arcsinh xð Þ,
f xð Þ ¼ �arcsinh ln xð Þð Þ, f�1 xð Þ ¼ e�sinh xð Þ.

Fig. 9 From top to bottom, graphs of GCLVL x; 10; 5; 0ð Þ, GCLVL x; 10; 5; 0:2ð Þ, GCLVL x; 10; 5; 1
2

� �
and GCLVL x; 10; 5; 0:8ð Þ, based on

g xð Þ ¼ x
ln 10ð Þ

Fig. 10 Graph of a Parameterized Generalized Sigmoidal Function based on g xð Þ ¼ xn

lnn bð Þ, where b ¼ 10 and n ¼ 3 or GCLV x; 10; 5; 1ð Þ
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cT x1; x2ð Þ ¼ esinh arcsinh ln x1ð Þð Þþarcsinh ln x2ð Þð Þð Þ, dT x1; x2ð Þ ¼

1� esinh arcsinh ln 1�x1ð Þð Þþarcsinh ln 1�x2ð Þð Þð Þ, cc x1; x2;���;xn
� �

¼

e
sinh

Pn

i¼1
arcsinh ln xið Þð Þ

n

� 	
and dc x1; x2;���;xn

� �
¼ 1�

e
sinh

Pn

i¼1
arcsinh ln 1�xið Þð Þ

n

� 	
.

Sg x; 10; 5ð Þ ¼ 1

1þ e�sinh 10 x�5ð Þð Þ :

xmL ¼esinh m arcsinh ln xð Þð Þð Þ
, x1�m

L ¼esinh 1�mð Þ arcsinh ln xð Þð Þð Þ
and therefore,

GCLVL x; 10; 5; 0:2ð Þ

¼ esinh arcsinh ln Sg x;10;5ð Þ0:2Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:8
L

� �� �

maxx2R esinh arcsinh ln Sg x;10;5ð Þ0:2Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:8
L

� �� �� � :

GMMFL x; 10; 5;
1

2

� 	

¼ esinh arcsinh ln Sg x;10;5ð Þ0:5Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:5
L

� �� �

maxx2R esinh arcsinh ln Sg x;10;5ð Þ0:5Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:5
L

� �� �� � :

GMMFL x; 10; 5; 0:8ð Þ

¼ esinh arcsinh ln Sg x;10;5ð Þ0:8Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:2
L

� �� �

maxx2R esinh arcsinh ln Sg x;10;5ð Þ0:8Lð Þð Þþarcsinh ln 1�Sg x;10;5ð Þð Þ0:2
L

� �� �� � :

Example 4 For g�1 xð Þ ¼ ln 10ð Þx, g xð Þ ¼ x
ln 10ð Þ, f xð Þ ¼

� log10 x and f�1 xð Þ ¼ e�ln 10ð Þx ¼ 10�x.

cT x1; x2ð Þ ¼ 10log10 x1þlog10 x2 ¼ x1x2,

dT x1; x2ð Þ ¼ x1 þ x2 � x1x2. Like in Example 1, cc is the

geometric mean

dc x1; x2; . . .; xnð Þ ¼ 1� cc 1� x1; 1� x2; . . .; 1� xnð Þ.

Fig. 11 From top to bottom, graphs of GCLVL x; 10; 5; 0ð Þ, GCLVL x; 10; 5; 0:2ð Þ, GCLVL x; 10; 5; 1
2

� �
and GCLVL x; 10; 5; 0:8ð Þ, based on

g xð Þ ¼ xn

lnn bð Þ
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Sg x; 10; 5ð Þ ¼ 1

1þ 10�10 x�5ð Þ :

xmL ¼ xm, x1�m
L ¼ x1�m and therefore,

GCLVL x; 10; 5; 0:2ð Þ ¼
S0:2g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:8
maxx2R S0:2g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:8h i

GCLVL x; 10; 5;
1

2

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sg x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �q

maxx2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sg x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �qh i

GCLVL x; 10; 5; 0:8ð Þ ¼
S0:8g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:2
maxx2R S0:8g x; 10; 5ð Þ 1� Sg x; 10; 5ð Þ

� �0:2h i

The finite linear combination of a set of real functions g

satisfying conditions in Proposition 2 is itself a Secondary

Generator Function. The finite linear combination’s scalar

values should be non-negative, and at least one of them

should not be null.

The composition of a finite set of real functions g sat-

isfying conditions in Proposition 2 is also a Secondary

Generator Function.

g�1 xð Þ ¼ ln 10ð Þx can be generalized to g�1 xð Þ ¼ ln bð Þx,
where b is a real number, b[ 1.

Besides, we can interpret the factor g�1½ �
0
from the

differential equation
dSg x;a;cð Þ

dx ¼ a g�1½ �
0
a x� cð Þð ÞSg x; a; cð Þ 1� Sg x; a; cð Þ

� �
, as

the speed of growth of the sigmoidal function.

If Sg x; a; cð Þ is a utility function, a g�1½ �
0
xð Þ is the rate of

risk aversion for x\c and of risk propensity for x[ c.

In Example 1 g�1½ �
0
xð Þ ¼ 1, in Example 2

g�1½ �
0
xð Þ ¼ 1

3
x�2=3, in Example 3 g�1½ �

0
xð Þ ¼ cosh xð Þ and

in Example 4 g�1½ �
0
xð Þ ¼ ln 10ð Þ.

GivenW, a linguistic variable over a continuous variable

set X. Membership functions can represent W’s primary

terms and its linguistic modifiers in GCLVL(x;a,c,m), where
L is an ACFL.

The next section contains a solution to a Knowledge

Discovery problem to demonstrate the proposed theory’s

applicability developed so far.

4 Application to Knowledge Discovery

We apply ACFL to knowledge discovery. The relation of

each ACFL with modifiers and membership functions

makes the discovery and their linguistic interpretation

richer.

A generating function is constructed through the com-

position of functions related to Example 1, Example 2, and

Example 4. In this way, a generating function is obtained,

which is a composition of exponential and logarithmic

functions, generalizing those observed in the examples.

4.1 Compensatory Archimedean Fuzzy Logic Based

on an Exponential-Logarithmic Function

The result of this generalization is called an ACFL based

on an exponential-logarithmic function (ACFL-ELF).

Which hereafter will be denoted L for simplicity.

Be x; a; b 2 R, 0\x� 1, b[ 1; and n odd natural

number.

If g�1
1 xð Þ ¼

ffiffiffi
xn

p
; g1 xð Þ ¼ xn; f1 xð Þ ¼ �ðln xð ÞÞn; f�1

1 xð Þ
¼ e�

ffiffi
xn

p

and g�1
2 xð Þ ¼ ln bð Þ; g2 xð Þ ¼ x

ln bð Þ ; f2 xð Þ ¼ �logb xð Þ;
f�1
2 xð Þ ¼ e�lnbx ¼ b�x

then a new function g can be defined, as follows:

g xð Þ ¼ g1og2 xð Þ ¼ g1 g2 xð Þð Þ ¼ xn

lnn bð Þ. Thus, g�1 xð Þ ¼
ln bð Þ

ffiffiffi
xn

p
, f xð Þ ¼ � logb xð Þð Þn and f�1 xð Þ ¼ b�

ffiffi
xn

p
.

cT x1; x2ð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb x1ð Þþlognb x2ð Þn

p
,

dT x1; x2ð Þ ¼ 1� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb 1�x1ð Þþlognb 1�x2ð Þn

p
, cc x1; x2;���;xn

� �
¼

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
logn

b
xið Þ

n

n

q
and dc x1; x2;���;xn

� �
¼ 1� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
logn

b
1�xið Þ

n

n

q
.

Sg x; 10; 5ð Þ ¼ 1

1þ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10 x�5ð Þn

p

and therefore,

GCLVL x; 10; 5; 0:2ð Þ

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:2Lð Þþlognb 1�sg x;10;5ð Þ0:8Lð Þn

p

maxx2R b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:2Lð Þþlognb 1�sg x;10;5ð Þ0:8Lð Þn

p� � :

GCLVL x; 10; 5;
1

2

� 	

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:5Lð Þþlognb 1�sg x;10;5ð Þ0:5Lð Þn

p

maxx2R b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:5Lð Þþlognb 1�sg x;10;5ð Þ0:5Lð Þn

p� � :

GCLVL x; 10; 5; 0:8ð Þ

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:8Lð Þþlognb 1�sg x;10;5ð Þ0:2Lð Þn

p

maxx2R b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognb sg x;10;5ð Þ0:8Lð Þþlognb 1�sg x;10;5ð Þ0:2Lð Þn

p� � :

4.2 Algorithms for ACFL-ELF Logic

We modify the genetic algorithm based on genetic pro-

gramming (GA-GP) [21], which comprises two genetic

algorithms that work together in the predicate discovery

process and the predicate optimization. The second
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algorithm OGCLV optimizes a GCLV membership func-

tion defined in that work.

In this case, no predicates are discovered because, for a

given dataset, a predicate of type p $ q is built, whose

construction structure is described in Sect. 4.3. Further-

more, for each atom of this predicate, the parameters of its

corresponding GCLV are optimized. This process is carried

out using the modified OGCLV algorithm, called opti-

mization of a GCLV defined through an exponential-log-

arithmic function (OGCLV-ELF).

The representation structure of an individual in

OGCLV-ELF is different from the structure in OGCLV.

Having a number n of attributes, plus the attribute class,

that is part of the predicate. Each attribute i requires three

parameters (ai; ci,mi) to define its GCLV. The algorithm

can navigate between the different generating functions

f. However, for this case, it is fixed in the ACFL-ELF logic,

which requires two segments to store the base of a loga-

rithmic function b and an exponential value e. The last

segment is used to contain the truth value (TV) of the

discovered individual.

In Fig. 12, the construction of an individual with four

attributes is represented. The parameters subscript repre-

sents the corresponding attribute; besides, each individual

of a population is constructed by randomly selecting the

values of amax
min ; c

max
min ; andm

1
0.

Algorithm 1 corresponds to OGCLV-ELF, which esti-

mate the predicate parameters using the optimization pro-

cess of GA-GP) [21], but changing the individuals’

structure used for the evolution and the logic operators

used to evaluate a predicate in Lines 12 and 4. The settings

used in [21] for the genetic operators are kept in this

OGCLV-ELF algorithm.

The calculation of the true value of a predicate requires

the logic operators described in Sect. 3.2 and an implica-

tion operator, particularly the s-implication

Is x; yð Þ ¼ d n xð Þ; yð Þ, where d and n are the disjunction and

negation operators, respectively. The equivalence operator

is also defined as e x; yð Þ ¼ c i x; yð Þ; i y; xð Þð Þ, which is valid

for any implication and conjunction operator.

Furthermore, the universality quantifier, which allows us

to evaluate the truth value of a predicate p of a logic L over

the entire data set, is expressed by Eq. 11 and described in

Algorithm 2.

8 ¼ f�1

Pn
i¼1 f pið Þ
n

� 	
: ð11Þ

In Algorithm 1, for each individual obtained, containing

a set of parameters, the evaluate function in Line 12 and

implicit in Line 4 invocates Algorithm 2 to calculate the

true value of the predicate of type p $ q. Algorithm 1 uses

these parameters and the dataset on which Algorithm 1

seeks to adjust the parameters.

Fig. 12 Representation structure of an individual from the population with four attributes
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4.3 Knowledge Discovery and Interpretation

of Results Using an ACFL-ELF

An ACFL-ELF is used to discover knowledge expressed in

the form of logical predicates. From the results obtained, a

predicate is taken to express it in terms of simple natural

language.

Table 1 shows the classification datasets that were used

in the KD process by this logic. A dataset that uses l dif-

ferent qualitative values is treated to transform it into

Table 1 Datasets used in the knowledge discovery process and their descriptions

Dataset Class attribute Number of

records

Number of

attributes

Location

Car Name: class

Class type:

string

1728 7 https://archive.ics.uci.edu/ml/datasets/Car?Evaluation

Dermatology Name: class

class type:

string

366 35 https://archive.ics.uci.edu/ml/datasets/Dermatology

Logistic Name: D-mest

type: real

60 29 https://www.dropbox.com/sh/w9e3glio3ngepcp/

AAD5i0rbgWwZLGkwOGbK1hMda?dl=0

Glass Name: class

class type:

string

214 10 https://archive.ics.uci.edu/ml/datasets/Glass?Identification

Bupa Name: Drink

class type: real

345 7 https://archive.ics.uci.edu/ml/datasets/liver?disorders

Indian Name: class

class type:

integer

768 9 http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-

diabetes/

Iris Name: class

class type:

string

150 5 https://archive.ics.uci.edu/ml/datasets/Iris
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Table 2 Values of the parameters obtained after the optimization process

Dataset car

Buying Maint Doors Persons Lug Boot Safety Class

a c m a c m a c m a c m a c m a c m Singleton

0.93 50 0.62 1.52 60 0.41 1.31 48 0.45 0.58 47 0.26 1.43 64 0.54 1.32 74 0.61 Accessible car (1)

1.11 51 0.66 1.61 48 0.65 1.00 48 0.37 1.06 45 0.54 0.25 59 0.36 1.79 64 0.39 Good car(2)

2.14 46 0.49 0.33 51 0.32 1.86 42 0.55 1.51 60 0.32 1.43 64 0.47 0.79 59 0.52 Unaccessible car (3)

0.45 62 0.47 2.40 55 0.47 0.08 62 0.48 0.65 61 0.36 1.05 62 0.68 2.33 63 0.59 Very good car (4)

Dataset dermatology

Erythema Scaling Definite borders Itching Koebner Phenomenon Polygonal Papules Class

a c m a c m a c m a c m a c m a c m Singleton

1.18 48 0.71 0.32 46 0.84 1.39 78 0.55 1.33 77 0.11 1.96 40 0.00 1.72 43 0.03 Chronic dermatitis (1)

2.91 53 0.79 1.90 53 0.91 1.80 40 0.95 0.08 58 0.16 2.77 57 0.99 1.15 45 0.51 Lichen (2)

Dataset logistic

PIB1 PIB2 INF1 INF2 CPD1 CPD2 D Mest

a c m a c m a c m a c m a c m a c m a c m

1.27 77 0.80 0.19 73 0.97 1.00 55 0.92 1.13 49 0.82 0.80 68 0.00 2.17 57 0.24 0.81 59 0.00

Dataset glass

Refractive Na Mg Al Si K Class

a c m a c m a c m a c m a c m a c m Singleton

2.19 75 0.13 0.64 66 0.22 0.71 50 0.68 2.56 70 0.28 0.50 64 0.65 0.41 41 0.18 Wind float (1)

0.54 74 0.56 0.74 70 0.64 1.14 67 0.17 2.95 75 0.46 2.86 79 0.50 2.24 60 0.67 Wind not float (2)

2.23 43 0.47 1.60 42 0.00 2.80 64 0.00 2.33 45 1.00 1.40 76 0.00 1.05 65 0.11 Container (3)

1.62 50 0.57 1.17 74 0.44 0.28 44 0.58 0.54 52 0.53 1.53 61 0.47 1.27 41 0.23 Headlamps (4)

1.99 64 0.46 1.72 57 0.99 3.02 57 0.00 0.75 51 0.11 1.04 65 0.48 0.78 71 0.52 Table ware (5)

0.73 77 0.68 0.78 77 0.79 0.81 47 0.59 0.30 69 0.24 2.74 51 0.37 1.10 59 0.15 Very wind float (6)

Dataset Bupa

Mcv Alkphos Sgpt Sgot Gammagt Drinks

a c m a c m a c m a c m a c m a c m

2.23 76 1.00 1.49 48 0.33 1.44 41 0.31 0.92 40 0.00 0.23 48 0.21 3.03 74 0.68

Dataset Iris

Sepal length Sepal width Petal lenght Petal width Class

a c m a c m a c m a c m Singleton

0.56 68 0.41 0.25 74 0.30 0.13 70 0.46 0.35 69 0.36 Setosa (1)

1.06 57 0.43 1.33 52 0.62 1.95 69 0.35 1.52 65 0.44 Virginica (2)

0.35 56 0.41 0.41 44 0.60 0.41 65 0.54 2.25 47 0.55 Versicolor (3)

Dataset Indian Pima

Times pregnant Glucose concentration Blood pressure Skin thickness Insulin BMI Diabetes

a c m a c m a c m a c m a c m a c m Singleton

2.54 72 0.59 0.59 62 0.66 0.94 61 0.39 0.45 69 0.20 2.22 62 0.25 1.42 79 0.44 Diabetes (1)

488 International Journal of Fuzzy Systems, Vol. 24, No. 1, February 2022

123



integer values in the range of 1 to l. The data are nor-

malized in a range of values of [0, 100].

For classification, a predicate is defined with the form

‘‘P if and only if Q’’. The general predicate structure we

use in this searching for each dataset is the following:

8i2dataset attrib1 ið Þ ^ attrib2 ið Þ ^ attrib... ið Þ ^ attribn ið Þð Þ
$ class ið Þ:

When we refer to attribi, it means there is a linguistic

variable representing this attribute for this predicate. The

work through linguistic variables is one of this theory’s

advantages. For simplicity, when we refer to discovered

predicates, it means the set of parameters discovered

The next classification problem seeks to solve an opti-

mization problem whose problem consists of a pair (x, y),

where x is a set of attributes, and y is a set of results

associated with each vector. Moreover, in this case, for

each element x, the parameters that best fit the optimization

of each element’s parameters in y are optimized. Besides,

the objective is to show that for each dataset, a function is

better adapted to the analyzed data, which allows us to

observe this system’s sensitivity.

For a dataset with integer-type classes, the classes were

evaluated separately using a singleton membership func-

tion for each class, assigning the true value of 1.0 to the

current class and 0.0 to the other classes. For example, Iris

dataset with three classes, three independent optimizations

were performed to discover three predicates’ parameters,

one per class. In case a dataset has classes of real type, only

the parameters of one predicate were found using GCLV.

For a GCLV, the values of a, c, m, and the parameters of

the generator function ACFL-ELF are optimized; the

objective is to maximize the predicate’s true value

The parameters to be optimized are delimited employing

the following intervals a 2 :05� 3½ � where the sharpness of
the function is determined, c 2 30� 60½ � ¼ 0:5 fuzzy

value, and m 2 0; 1½ �. For the ACFL-ELF, which uses

values of the logarithmic base b and exponent n, b is taken

in the interval [1, 7], and belongs to the set of real numbers,

while n is taken in the interval [1, 15] and must be an odd

number.

The objective function also evaluates the proposed

predicate based on the data found in the data set for each

record. This is done using the quantifier 8, calculated

through a compensatory conjunction operator (c). The

algorithm performs a search for the best parameters based

on the proposed predicate, giving the best parameter

configuration.

In resume, the steps that are carried out through the

execution of an optimization algorithm to discover the best

parameters for each dataset are the following:

Step 1. Normalization of the dataset within the interval

[0,100].

Step 2. Solving of a nonlinear optimization problem with

the class of real type:

P a; c;mð Þ ¼ maxa;c;m 8x2dataset GCLVL xattrib1 ;ððf
aattrib1 ; cattrib1 ;mattrib1

�
^ GCLVL xattrib2 ; aattrib2 ;ð

cattrib2 ;mattrib2

�
^ . . . ^ GCLVL xattribn ; aattribn ;ð

cattribn ;mattribn

��
$ GCLVL xclass; aclass; cclass;mclassð Þg

Table 3 Truth values obtained through the logarithmic-exponential

function ACFL-ELF with optimized parameters of the generator

function f (logarithmic base b and exponent n)

Dataset Classes Parameter Value True value

Car Car accessible log 2.01 0.9304522

exp 15

Car good log 2.09 0.91626229

exp 15

Car unaccessible log 2.04 0.92654275

exp 15

Car very good log 2.03 0.93132237

exp 15

Dermatology Cronica log 2.02 0.55443044

exp 9

Lichen log 2.04 0.55790857

exp 9

Empresa d mest log 3.23 0.67023823

exp 3

Glass Wind float log 15 0.84416932

exp 3

Wind not float log 2.03 0.83581373

exp 15

Container log 2.01 0.65317164

exp 3

Headlamps log 2.02 0.8562308

exp 15

Tableware log 2.44 0.66706136

exp 3

v wind float log 2.05 0.79473997

exp 11

Bupa Drinks log 3.71 0.99516633

exp 1

Iris Setosa log 2 0.85640946

exp 11

Versicolor log 2.02 0.87864615

exp 15

Virginica log 2.12 0.86550224

exp 15

Indian Pima Diabetes log 2.06 0.84735278

exp 15
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a. For an integer class, the GCLV is a Singleton

membership function.

b. In this representation, for each attribute to be

optimized and according to the proposed

predicate, the GCLV is associated with an

ACFL-ELF. A value of a, c, and m is

calculated for each attribute optimized by a

GCLV. For the generator function f, the

b and n parameters are optimized.

c. For each element of the dataset, the operator

^ determines the t-norm associated with f,

the attributes’ conjunction.

d. The equivalence operator $ is also defined

by f; besides, it can be seen that the GCLV is

defined through f.

Step 3. Converting the dataset to its initial value.

The OGCLV-ELF algorithm presented in Sect. 4.2

executed the optimization process, with 30 executions per

set of parameters to discover. As an advantage, the top

predicate was selected because it is a generalization of the

if-then rule. The configuration of this algorithm is a

crossing percentage of 80% and a 20% of mutation rate.

Tables 2 and 3 shows the results obtained through the

optimization algorithm for each dataset, where for each

proposed predicate, the best parameter optimization is

obtained that adapts more accurately to the defined class.

Table 2 shows a, c, and m, while Table 3 shows b and n.

Using the optimized parameters and a universality

quantifier, the truth value, obtained through evaluating the

discovered predicate for each optimized class in the entire

dataset, is calculated; the results are presented in Table 3.

Table 3 shows that the generating function of ACFL-

ELF sensitively adapts the parameters to the data. Both the

logarithmic and exponential values are different in each

generated family through a GCLV that models the data’s

behavior. These results also show that this sensitivity

allows us to obtain truth values calculated through the

universality quantifier corresponding to high acceptance

values.

Once the optimization process results have been

obtained, the acquired knowledge can be expressed

approximately in terms of a simple natural language. As an

example, we selected the predicate generated for the

bupa.txt instance, where the predicate to optimize is the

following: mcv ^ Alkphos ^ Sgpt ^ Sgot ^ Gammagt $
Drinks: This predicate’s objective is to discover how

combinations of the results of a series of blood tests it is

possible to find out how many alcoholic beverages the test

subject has consumed.

By discovering the best parameters of GCLV and

ACFL-ELF for all the dataset records, we can express the

equivalence predicate using the parameters m and c. For
the Bupa data set, the natural lenguaje expression is below.

This expression corresponds with Fig. 13, which shows the

way in which the GCLV adapts the parameters to each of

the attributes of the dataset.

For every individual that presents a mean corpuscular

volume (mcv) that exceeds (m = 1) 94 units (c = 76) and

an alkaline phosphatase (alkpohos) that tends (m = 0.33) to

Fig. 13 GCLVs resulting from the optimization of the BUPA instance predicate parameters
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78 units (c = 48) and an alanine aminotransferase (Sgpt)

that tends (m = 0.31) towards 41 units (c = 41) and an

aspartate aminotransferase (Sgot) that is less (m = 0) than

36 units (c = 40) and a gamma-glutamyl transpeptidase

(Gammagt) that tends (m = 0.21) towards 147 units

(c = 48) equals an amount that tends (m = 0.68) to 15

alcoholic drinks (c = 74).

Table 4 provides an interpretation of the results in the

seven instances used as an example in this section. We

obtained these interpretations using the discovered

parameters and the dataset, as explained with the Bupa

dataset.

Compensatory fuzzy logic (LDC) has been used to build

models of supervised learning. In [22], the order picking

optimization problem was addressed, transformed into a

classification problem for its solution. In [23], the research

purpose was to build a classification model for tissue dis-

crimination in Magnetic Resonance brain images. In [10],

the authors applied an LDC extension to built classifiers

models for the red wine dataset and the Gas Furnace

Table 4 Equivalence predicates expressed in simple natural language through the obtained parameters

Dataset Attributes parameters

Bupa c m c m c m c m c m c m

76.00 1.00 48.00 0.33 41.00 0.31 40.00 0.00 48.00 0.21 74.00 0.68

Interpretation

For every element that has an mcv that exceeds 76 units and that its Alkphos tends to 48 units and that its sgpt tends to 41 units

and that its sgot is less than 40 units and its gammagt tends to 48 units, it is equivalent to having consumed around 74 units of

alcohol

Car c m c m c m c m c m c m

50.00 0.62 60.00 0.41 48.00 0.45 47.00 0.26 64.00 0.54 74.00 0.61

Interpretation

For every element that is buying that tends to 50 units and a maint that tends to 60 units and doors that tends to 48 units and

persons that tends to 47 units and a lug boot that tends to 64 units and safety that tends to 74 units equals one accessible car

Dermatology c m c m c m c m c m c m

48.00 0.71 46.00 0.84 78.00 0.55 77.00 0.11 40.00 0.00 43.00 0.03

Interpretation

For every element that has erythema that tends to 48 units and a scaling that tends to 46 units and a definite borders that tends to

78 units and itching that tends to 77 units and a koebner phenomenon less than 40 units and polygonal papules smaller than 43

units is equivalent to having chronic dermatitis

Logistic c m c m c m c m c m c m c m

77.00 0.80 73.00 0.97 55.00 0.92 49.00 0.82 68.00 0.00 57.00 0.24 59.00 0.00

Interpretation

Every element that GDP1 tends to 77 units and GDP2 exceeds 73 units and that INF1 exceeds 55 units and that INF2 tends to 49

units and that CPD1 is less than 68 units, and that CPD2 tends to 57 units is equivalent to having values below 59 units

Glass c m c m c m c m c m c m

75.00 0.13 66.00 0.22 67.00 0.17 75.00 0.46 64.00 0.65 41.00 0.18

Interpretation

For every element that has a refractive that tends to 75 units and a Na that tends to 66 units and an mg that tends to 50 units and an

ai that tends to 70 units, and a si that tends to 64 units, and a k that tends to 41 units is equivalent to being a wind float glass

Iris c m c m c m c m

68.00 0.41 74.00 0.30 70.00 0.46 69.00 0.36

Interpretation

Every element with a sepal length tends to 68 units and a sepal width that tends to 74 units and a petal length that tends to 70

units, and a petal width that tends to 69 units is equivalent to an iris setosa

Indian pima c m c m c m c m c m c m

72.00 0.59 62.00 0.66 61.00 0.39 69.00 0.20 62.00 0.25 79.00 0.44

Interpretation

For every item that has times pregnant that tends to 72 units and a glucose concentration that tends to 62 units and a blood

pressure that tends to 61 units and a skin thickness that tends to 69 units and insulin that tends to 62 units, and a BMI that tends

to 79 units is equivalent to having diabetes

R. A. Espı́n-Andrade et al.: Archimedean Compensatory Fuzzy Logic as a Pluralist Contextual… 491

123



dataset. The previous two research compared their work

with various literature algorithms and outperformed them.

The works reviewed uses classification accuracy measures

and others indicators. Their results show the LDC potential

in classification, and consequently, of the proposed

Archimedean—compensatory fuzzy logic. In this work, no

classification is made since it goes outside the work scope,

leaving this important task as future work.

5 Concluding Remarks

We have established by this paper a relationship between

an Archimedean Compensatory Fuzzy Logic (ACFL) and

important concepts of Fuzzy Logic. Using the generator

function of an ACFL, we defined two concepts, the Gen-

eralized Linguistic Modifier, and the Generalized Sig-

moidal Function. We demonstrated necessary and

sufficient conditions for the Generalized Sigmoidal Func-

tion to be s-shaped. These two concepts were utilized to

extend the parameterized family of membership functions,

called General Continuous Linguistic Variable (GCLV), to

any ACFL.

This association can be applied to Knowledge Discov-

ery. We illustrated that applicability in real-life examples.

Besides, we showed that specific ACFL Logics and GCLV

functions for each variable are better adapted to different

data sets. The experimental results showed sensitivity to

them.

As a result of this work, we made a theoretical

improvement to a previous ACFL to join in just one theory

the next elements: Fuzzy Multivalued Logics of two dif-

ferent classes, generators functions, and relevant semantic

tools like modifiers, membership functions, and linguistic

variables.

The improved ACFL is a contextual Pluralist Logic.

First, because it makes compatible the classical approach

of Norm and Conorm with CFL theory. Second, because it

can compare logics for expressing as better as possible

specific contextual knowledge. These properties make

ACFL the first Pluralist Fuzzy Logic theory relevant in the

context of Knowledge Discovery.

We illustrated how the proposed theory could be used to

obtain interpretable and accurate equivalence rules,

adjusting simultaneously different concepts of Fuzzy Set

and Fuzzy Logic, as the membership function and theirs

shapes, and the ACFL. We are working on obtaining better

natural language expressions for the obtained predicates.

Based on this work, it is intended to carry out tests

concerning other generating functions and explore the

results through different heuristics. Considering our pre-

vious work, we could carry out experiments that allow us to

make data inferences through the predicates learned using

ACFL.
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