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Abstract Electrically stimulated lower limb systems con-

tain higher order nonlinearities and uncertainties in their

physical parameters. Takagi-Sugeno (TS) fuzzy models are

used to model nonlinear systems. Techniques such as

parallel distributed compensation (PDC) are dependent on

the membership functions that constitute the TS fuzzy

model. When the exact representation approach is used to

electrical stimulation applications, the system’s perfor-

mance under PDC control can be deteriorated, because the

membership functions may be uncertain, besides a high

computational cost be required to compute them. In this

paper, we propose a robust switched control subject to

actuator saturation and fault (RSwASF) that effectively

handles system uncertainties and nonidealities, such as

fatigue, spasms, tremor, and muscle recruitment. Control

techniques based on TS fuzzy modeling (PDC and robust

PDC), as well as other approaches, such as sliding-mode

control, backstepping, super-twisting, gain-scheduling, and

proportional-integral-derivative (PID) control were com-

pared to RSwASF through the root-mean-squared error

(RMSE). The results indicate that RSwASF minimizes the

influence of the parametric uncertainties and presents the

lowest RMSE for healthy and paraplegic individuals.

Keywords Uncertain nonlinear system � Uncertain fuzzy

models � Linear matrix inequalities (LMIs) � Robust

switched control � Functional electrical stimulation (FES) �
Rehabilitation

1 Introduction

Every year, thousands of people around the world suffer

from spinal cord injuries resulting from traffic accidents,

acts of violence, or falls. A widely used method for motor

rehabilitation is neuromuscular electrical stimulation, pro-

moting the health and welfare of these individuals.

Current research efforts in this field are focused on

enhancing the stimulation systems by improving the con-

trollers used in the closed-loop system. Electrical stimu-

lation can act under different purposes and application to

the body. For example, in the case of lower limbs, func-

tional electrical stimulation (FES) can be used for motor

rehabilitation through knee joint control [1–7], standing up

[8–11], sitting pivot transfer [12–14], walking [15–22],

swimming [23, 24], rowing [25, 26], and cycling [27–30],

among others. In the current state-of-the-art, even simple
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motor activities still present great challenges and arouse

interest due to the therapeutic benefits derived from elec-

trical stimulation [31].

In this sense, several studies have been recently pro-

posed to regulate knee joint using techniques such as

proportional-integral-derivative (PID) control [1, 32],

neural networks [33, 34], fuzzy [3, 4, 35], predic-

tive [5, 36], adaptive [7, 37], sliding-mode con-

trol [1, 38, 39], robust control [6, 7], switched control [6],

among others. About the recent papers, a robust parallel

distributed compensation (RPDC) was proposed by Cov-

acic et al. [35] considering norm-bounded uncertainties.

However, it does not deal with uncertain nonlinear func-

tions. Gaino et al. [3] presented a PDC discretized by

emulation around a single operating point. However, it has

limitations for practical applications, and its design does

not consider plant uncertainties. Teodoro et al. [6] evalu-

ated the performance of switched and robust controllers,

for an uncertain linear model of electrical stimuli applied to

the angular position control of a knee, which presents an

uncertain term added to the control signal. Although these

authors obtained interesting results, the technique is linear

and does not consider the saturation and fault of the actu-

ator. Kirsch et al. [5] presented a predictive control model

for knee extension aiming to minimize muscular fatigue.

However, the performance of the predictive controller for

steady-state regulation was not been satisfactory for a

longer time. Finally, Gaino et al. [4] proposed a PDC

based on the TS fuzzy model that is capable of regulation

at different operating points. However, it assumes ideal

conditions in its simulations and does not consider the

uncertainties of the plant and other practical aspects.

The major challenge addressed by this paper is the

achievement of regulation in the presence of nonlinear

behavior and/or uncertainties in the musculoskeletal com-

plex. Another significant issue is the nonlinear effect of

actuator saturation in the control design. Most authors do

not consider the saturation effects. The absence of satura-

tion effects in the control design impacts the performance

results. The current trend in medical devices is miniatur-

ization, wearability, and low energy consumption. There-

fore, it is important to consider the system behavior when

the actuator fails or experiences a decrease in power due to

limitations in the power source.

This study contributes to the state-of-the-art by

improving the steady-state regulation results by switched

control, considering fatigue, spasms, tremor, muscular

recruitment, and actuator fault as plant uncertainties in an

operating region. Although the system has several nonlin-

earities and uncertainties, the proposed technique uses an

exact TS fuzzy model, but does not depend on the mem-

bership functions, which are uncertain in this case.

To the best of our knowledge, this is the first study in

which a switched controller subject to saturation using TS

fuzzy models was used in electrical stimulation of lower

limbs under nonideal conditions. The control design is

based on linear matrix inequalities (LMIs) for a nonideal

uncertain plant described by TS fuzzy model with inac-

curate membership functions. In relation to the literature,

the nondependence of uncertain membership functions is a

differential of this study for electrical stimulation appli-

cations. For the first time, the robust switched control

technique is proposed for electrical stimulation applica-

tions considering saturation and fault in the actuator.

Moreover, severe intensity levels of fatigue, spasms, and

tremor are presented. In addition, the results of other TS

fuzzy control techniques are reproduced and evaluated.

Finally, we compare our results with those obtained with

other important techniques. The results indicate that the

proposed switched control presents the lowest RMS error.

The rest of this paper is organized as follows. Sect. 2

presents the derivation of the torque-based nonlinear

dynamic model for leg extension, using electrical stimu-

lation, and the TS fuzzy modeling technique. Sect. 3

describes the switched control design subject to actuator

saturation using LMIs conditions. Sect. 4 presents the

simulation results that demonstrate the controller perfor-

mance improvement when compared with PDC in dealing

with actuator fault, muscle activation uncertainty, and

nonidealities like fatigue, spasms, and tremor. Sect. 5

concludes this study.

1.1 Notations

For a matrix X, X�1 and XT denote the inverse and the

transpose of X, respectively. The symbol � denotes the

Kronecker product. The symbol slp;j 2 R1�p denotes a row

vector whose j-th element is 1 and the others are equal to

zero, and p
� ¼ p2p�1, p > 1. For a symmetric matrix, the

symbol � denotes the symmetric blocks in relation to the

main diagonal. The set Ik ¼ 1; 2; � � � ; kf g, k 2 N. �vk k1¼

max
i2Ik

j�vij is the infinity norm of the vector �v. Let

co m1; m2; � � � ; mp

� �
denote the convex hull of the vectors

mi, that is, m 2 cofm1; m2; � � � ; mpg if and only if

m ¼
Pp

i¼1 kimi, ki > 0 and
Pp

i¼1 ki ¼ 1,

i 2 Ip ¼ 1; 2; � � � ; pf g. Besides that, 1 ¼ arg� min
i2Inr

xif g

denotes the smallest index 1 2 Inr , such that, for the set

x1; x2; � � � ; xnrf g, x1 ¼ min
i2Inr

xif g.
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2 Nonlinear Dynamic Model for Leg Extension
using Electrical Stimulation

Consider the leg extension system using electrical stimu-

lation with load cell added in the experimental apparatus,

whose mathematical model is given by

J€h ¼ HgðhÞ þ Kpðh; _hÞ þ CkeðMaÞ; ð1Þ

where h; _h; €h; and Ma 2 R are angular position, velocity,

acceleration, and torque of the lower limb (shank-foot

complex), respectively; J 2 R is the moment of inertia, and

HgðhÞ is the gravitational torque, which is given by

HgðhÞ ¼ �mgl sinðhÞ;

where m, and l 2 R are the mass and the distance between

the knee and the shank-foot complex mass center, respec-

tively, and g is the gravitational acceleration.

The passive musculoskeletal torque of the knee Kpðh; _hÞ
is expressed as

Kpðh; _hÞ ¼ �ke�Ev hþp
2ð Þ hþ p

2
� x

� �
� B _h;

where k and Ev 2 R are the coefficients of the exponential

terms related to knee stiffness, x 2 R is elastic rest angle

of the knee, and B 2 R is the viscous friction coefficient

[40].

Concerning the worst scenarios that can occur during

electrically stimulated contractions, we incorporate non-

idealities indicated in [39, 41]. The FES-induced muscle

contraction produces muscular torque CkeðMaÞ, which is

expressed as

CkeðMaÞ ¼ 1 þ jsp þ jtr
� �

jfatMa ¼ jstfMa;

where jsp; jtr, and jfat 2 R are related to spasms, tremor,

and fatigue, respectively. Three levels of spasms, tremor,

and fatigue were taken into account, that is, mild, moder-

ate, and severe. The criterion adopted for the classification

of tremor waveforms and muscle spasm was chosen con-

sidering its importance in functional movement. For

example, the occurrence of spikes in the angular position of

the knee referring to spasms is classified as (i) mild, for

amplitudes less than 10�; (ii) moderate, for amplitudes

between 10� and 20�; and (iii) severe, for amplitudes

greater than 20�. Oscillations in the knee position are due

to tremors and are classified as: (i) mild, those that modify

knee dynamics in amplitude less than 7:5�; (ii) moderate,

for amplitude less than 15�; and (iii) severe, for amplitude

greater than 15�. The fatigue severity rating was estab-

lished in such a way that (i) jfat ¼ 1 indicates the absence

of fatigue; (ii) 0\jfat\1 corresponds to partially fatigued

muscle; and (iii) jfat ¼ 0 suggests completely fatigued

muscle.

Muscle activation Ma can be modeled by a first-order

system as follows:

Ma

�uf
¼ Ĝ

ssþ 1
() _Ma ¼

1

s
�Ma þ Ĝ�uf
� �

;

where �uf 2 R is the current amplitude of the electrical

stimulation, s 2 R is time constant of muscle activation,

and Ĝ 2 R is an uncertain parameter [40].

Furthermore, a possible actuator fault is also considered

in this paper. The actuator fault is a power loss from the

stimulator power supply. In the model, this is represented

by �uf tð Þ ¼ jflt �uðtÞ, which may correspond to the following

operating conditions of the actuator: (i) jflt ¼ 1 implies

that the actuator has no fault; (ii) 0\jflt\1 implies that

there is a partial fault in the actuator; and (iii) jflt ¼ 0

represents a complete fault in the actuator.

Defining the state variables �x1 ¼ h, �x2 ¼ _h, and

�x3 ¼ Ma. Then, (1) can be written as follows:

_�x1 ¼ �x2

_�x2 ¼ 1

J
½�mgl sinð�x1Þ � ke�Ev �x1þp

2ð Þ �x1 þ
p
2
� x

� �

� B�x2 þ jstf �x3�

_�x3 ¼ � 1

s
�x3 þ

jfltĜ
s

�u:

8
>>>>>>><

>>>>>>>:

ð2Þ

The goal is to maintain the leg angle in a desired position

�x1 ¼ h ¼ hd. Considering that the equilibrium point of the

system (2) is �xe ¼ ½�x1 �x2 �x3�T ¼ ½hd 0 Md
a �

T
; there-

fore _�x1 ¼ 0, _�x2 ¼ 0, _�x3 ¼ 0, and �u ¼ �ud. From (2) it follows

that

0 ¼ 1

J
�mgl sinðhdÞ � ke�Ev hdþp

2ð Þ hd þ p
2
� x

� �h

þjstfM
d
a

�
;

Md
a ¼

mgl sinðhdÞ þ ke�Ev hdþp
2ð Þ hd þ p

2
� x

� �

jstf
:

Moreover, define �udf ¼ kflt �u
d , from (2) one can also obtain

0 ¼ � 1

s
Md

a þ
Ĝ

s
�udf ;

�ud ¼
�udf
kflt

¼ Md
a

jfltĜ
;

¼
mgl sinðhdÞ þ ke�Ev hdþp

2ð Þ hd þ p
2
� x

� �

jstfjfltĜ
:

ð3Þ

In addition, note that the equilibrium point is not the origin

½�x1 �x2 �x3�T ¼ ½0 0 0�T . Thus, for stability analysis, it

is necessary to modify the coordinates as
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x1 ¼ �x1 � hd; x2 ¼ �x2; x3 ¼ �x3 �Md
a ; u ¼ �u� �ud i:e:;

�x1 ¼ x1 þ hd; �x2 ¼ x2; �x3 ¼ x3 þMd
a ; �u ¼ uþ �ud:

It follows that _x1 ¼ _�x1, _x2 ¼ _�x2, and _x3 ¼ _�x3, so

_xðtÞ ¼

0 1 0

f 21ðzÞ � B

J
f 23ðzÞ

0 0 � 1

s

2

6664

3

7775
xðtÞ þ

0

0

g31ðzÞ

2

64

3

75uðtÞ;

f 21ðzÞ ¼
1

Jx1

�mgl sinðx1 þ hdÞ
	

� ke�Ev x1þhdþp
2ð Þ x1 þ hd þ p

2
� x

� �

þmgl sinðhdÞ þ ke�Ev hdþp
2ð Þ hd þ p

2
� x

� �i
;

f 23ðzÞ ¼
1 þ jsp þ jtr
� �

jfat
J

¼ jstf
J

;

g31ðzÞ ¼
jfltĜ
s

;

ð4Þ

where z ¼ ½x1 x3 Ĝ hd jstf jflt�T 2 R6 and

x ¼ x1 x2 x3½ �T .

Note that _x3 ¼ � 1
s x3 þ g31 zð Þ�u, u ¼ �u� �ud, and

x3 ¼ �x3 �Md
a , where �ud and Md

a are uncertain values for

different operating points hd. Section 3 presents the anal-

ysis of the control system design, considering the uncer-

tainties in the plant (4).

2.1 TS Fuzzy Models for the Exact Representation

of Nonlinear Systems

Consider an uncertain nonlinear system described by

_xðtÞ ¼ f zðtÞð ÞxðtÞ þ g zðtÞð Þ sat uðtÞð Þ; ð5Þ

where xðtÞ 2 Rnx is the state vector, uðtÞ 2 Rnu is the input

vector, fð�Þ : Rnz ! Rnx�nx , gð�Þ : Rnz ! Rnx�nu , zðtÞ 2 Rnz

is a vector with premise variables that depends on the state

vector xðtÞ and uncertain parameters or unknown variables,

and satðuðtÞÞ 2 Rnu is the saturation function of the control

input.

The sector nonlinearity approach usually employed to

construct an exact TS model of a nonlinear system is

adequate in a bounded validity domain [42]. A low per-

formance or system instability may occur when the state

trajectories do not belong to the validity domain of the

model. The validity domain can be represented by a

polyhedral set

O, xðtÞ 2 Rnx : NðhÞxðtÞ


 

 6 /ðhÞ; h 2 Ip

n o
; ð6Þ

where N ¼ NT
ð1Þ NT

ð2Þ � � �NT
ðpÞ

h iT
2 Rp�nx and / ¼

/ð1Þ /ð2Þ � � �/ðpÞ

h iT
2 Rp are known.

In region O, consider that the system (2) can be exactly

represented by a TS fuzzy model, described by the IF-

THEN rules, where the u-th fuzzy rule Ru is given by

Ru : IF z1ðtÞ is Mu
1 AND � � � AND znzðtÞ is Mu

nz
;

THEN x
: ðtÞ ¼ AuxðtÞ þ BuuðtÞ;

such that u 2 Inr , M
u
j is the j-th fuzzy set of the u-th fuzzy

rule, j 2 Inz and z1ðtÞ; � � � ; znzðtÞ are the premise variables.

More details about the exact representation of a non-

linear system by TS fuzzy models can be found in [43].

From this method, one obtains the following representation

for the system (5):

_xðtÞ ¼A að ÞxðtÞ þ B að Þ sat uðtÞð Þ; ð7Þ

A að Þ ¼
Xnr

i¼1

aiAi; B að Þ ¼
Xnr

i¼1

aiBi;
Xnr

i¼1

ai ¼ 1; ð8Þ

where i 2 Inr , Ai 2 Rnx�nx , Bi 2 Rnx�nu and ai ¼ aiðzðtÞÞ.

Remark 1 The exact representation of an uncertain non-

linear system by a TS fuzzy model is guaranteed by the

procedure presented in [44–47]. This procedure uses the

lower and upper bounds of the system nonlinearities and

uncertain linear terms considering the given operation

region of the state vector and the known range of the plant

uncertain parameters. Therefore, the TS fuzzy models

obtained with this procedure can exactly represent uncer-

tain nonlinear systems described in (5) by a TS fuzzy

model (7), which presents known local models and

uncertain normalized weights.

The next section shows the switched control design

subject to saturation and presents LMIs conditions that are

used to determine the feedback gains.

3 Robust Switched Control Design Subject
to Actuator Saturation and Fault (RSwASF)
for Fuzzy Systems

The robust switched control for the lower limb electrical

stimulation is proposed considering the actuator saturation

and fault under nonideal muscular conditions (fatigue,

spasm and tremor).

The idea is to design a set of feedback gains, with only

one gain used at each time, chosen based on a switching

law that depends on the state vector of the controlled

system. Fig. 1 shows the schema of the switched control for

electrical stimulation.

Consider a nonlinear system subject to actuator satura-

tion described by the following TS fuzzy model:
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_x ¼ AðaÞxðtÞ þ BðaÞsat uðtÞð Þ þ BðaÞdðtÞ; ð9Þ

where AðaÞ defined in (8), BðaÞ ¼ B0gðaÞ, gðaÞ > 0, for all

a,

sat uðtÞð Þ ¼ sat uð1ÞðtÞ
� �

� � � sat uðnuÞðtÞ
� �	 �T

;

sat uðlÞðtÞ
� �

¼sgn uðlÞðtÞ
� �

min qðlÞ; juðlÞðtÞj
n o

;
ð10Þ

8l 2 Inu , #1 6 dðtÞ 6 #2, qðlÞ is the actuator saturation

values.

We propose the application of the robust switched

control law subject to actuator saturation. The proposed

procedure uses a switching index 1, as described in (12,

13), which selects a state-feedback controller gain that

belongs to the set Kj 2 Rnu�nx ; j 2 Inr
� �

and an index w
that compensates uncertainty in the signal control, as

defined in (13). An index 1 is determined by auxiliary

symmetric matrices Qj, obtained by the design procedure.

The control law is defined as follows [44]:

uðtÞ ¼ sat0 u1ðtÞð Þ � #wðtÞ; ð11Þ

u1ðtÞ ¼ �K1xðtÞ; ð12Þ

1 ¼ arg� min
j2Inr

xTðtÞQjxðtÞ
� �

; 1; j 2 Inr
; ð13Þ

w ¼ arg� min
m2I2

�xTPB0#m

� �
; ð14Þ

where sat0 u1ðtÞð Þ ¼ sat0 u1ð1ÞðtÞ
� �

� � � sat0 u1ðnuÞðtÞ
� �	 �T

, and

sat0 u1ðlÞðtÞ
� �

¼ sgn u1ðlÞðtÞ
� �

min q0ðlÞ; ju1ðlÞðtÞj
n o

; ð15Þ

where q0ðlÞ ¼ qðlÞ � max
m2I2

#mj jf g, 8l 2 Inu , m 2 I2, and #m,

q, q0, B0 will be defined later. The state-feedback matrices

Kj and decision matrices Qj will be obtained in the design

procedure, ensuring the local stability of the system (9, 10,

11, 12, 13, 14 and 15) with decay rate.

In addition, consider the quadratic Lyapunov function

VðxÞ ¼ xTPx, and let the ellipsoid EðP; dÞ

EðP; dÞ ¼ fxðtÞ 2 Rnx : xðtÞTPxðtÞ 6 dg; ð16Þ

where the constant d[ 0.

An invariant region related to operating of the system is

considered. The initial condition of the system, initiated in a

suitable region within an operating region, will remain in this

region for all t > 0. In other words, determining an invariant

region, say E 	 O, 8xð0Þ 2 E, the state vector xðtÞ of (9)

remains in the operating regionO, 8t > 0. Consequently, (7)

exactly represents system (5) for t > 0 and all xð0Þ 2 E,

following the procedure described in Sect. 2.1.

Lemma 1 [42, 44] Consider a nonlinear system described

by (5) and an operating region xðtÞ 2 O, for t > 0, given in

(6). Assume a symmetric positive definite matrix X 2
Rnx�nx exists, such that

/2
ðhÞ NðhÞX

� X

" #

> 0; ð17Þ

holds 8i and h 2 Ip, and xðt1ÞTPxðt1ÞT\xðt0ÞTPxðt0ÞT for

all t1 [ t0 [ 0, where P ¼ X�1. Therefore, if

xð0Þ 2 EðP; 1Þ, given in (16), then xðtÞ 2 O, t > 0.

Proof More details are found in [42, 44]. h

Consider the polyhedral set L Hkð Þ

L Hkð Þ :¼ xðtÞ 2 Rnx : HkðlÞxðtÞ


 

 6 �qðlÞ; k 2 Inr ;

n

and l 2 I
n
�

u

o
;

ð18Þ

where �q ¼ �qð1Þ � � � �qð n� uÞ

h iT
2 R n

�

u , �qðlÞ [ 0, Hk ¼
HT

kð1Þ � � �HT

kð n� uÞ

h i
2 R n

�

u�nx are known.

Consider the set Dnu composed of 2nu diagonal matrices

Ds 2 Rnu�nu , s 2 I2nu , whose diagonal elements are either 1

or 0. For any Ds 2 Dnu , consider that D�
s ¼ Inu � Ds.

Now, the function qnu : I2nu ! I2nu�1 is defined as

follows:

qnuðisÞ ¼ qnuðis � 1Þ þ 1; Dis þ Djs 6¼ Inu ;

8js 2 Iis ; is 2 I2nu ;

qnuðisÞ ¼ qnuðisÞ; Dis þ Djs ¼ Inu ;

9js 2 Iis ; is 2 I2nu :

8
>>><

>>>:

ð19Þ

This function will be useful for convex hull representation

of saturation nonlinearity. In this paper, we adopted the

saturation representation provided by [48].

Lemma 2 [48] Let nu > 1 be a given integer and �v 2
R n

�

u be such that �vk k16 q, where �vk k1¼ max
i2I

nu
�

j�vij. Let the

Fig. 1 Electrical stimulation system of the lower limbs using robust

switched controller subject to actuator saturation and fault

W. R. B. M. Nunes et al.: Electrically stimulated lower limb using a Takagi-Sugeno fuzzy model 61

123



elements in Dnu be labeled as Ds, s 2 I2nu and the vector

sl2nu�1; qnu ðisÞ, where the function qnuðisÞ be defined in (19).

Then, for any u 2 Rnu , there holds

satðuÞ 2 co Dsu þ D�
s v

� �
; s 2 I2nu ; ð20Þ

if and only if, for any . 2 Rnu

h.; satðuÞi
 max
s2I

2nu�1

h.;Dsu þ sl2nu�1; s � D�
s

� �
�vi;

�

h.;D�
s u þ sl2nu�1; s � Ds

� �
�vi
�
;

ð21Þ

where ha1; a2i denotes the inner product of the vectors a1

and a2, �Ds 2 Rnu� n
�

u , which is defined as

�Ds ¼ sl2nu�1; qnu ðisÞ � D�
s ; 8s; is 2 I2nu : ð22Þ

Proof Further details are found in [48]. h

Remark 2 Note that Lemma 2 contains n
�

u ¼ nu2
nu�1

slack variables for the representation of the convex hull and

usually offers less conservative conditions than that pre-

sented in [49].

For example, if nu ¼ 2, then n
�

u ¼ 4, Ds, s 2 I2nu are

the matrices as follows:

satðuÞ 2 co Dsu þ D�
s v

� �
; s 2 I2nu :

D2 ¼ D1; D2; D3; D4f g;

D2 ¼
1 0

0 1

� �
;

1 0

0 0

� �
;

0 0

0 1

� �
;

0 0

0 0

� � �
:

ð23Þ

From (19), adopting q2ð0Þ ¼ 0, the associated function to

elements of the set D2 is expressed as q2ð1Þ ¼ 1,

q2ð2Þ ¼ 2, q2ð3Þ ¼ q2ð2Þ ¼ 2, and q2ð4Þ ¼ q2ð1Þ ¼ 1.

Consequently, the row vectors are sl2; q2ð1Þ ¼ 1 0½ �,
sl2; q2ð2Þ ¼ 0 1½ �, sl2; q2ð3Þ ¼ 0 1½ �, and sl2; q2ð4Þ ¼ 1 0½ �.

From (22) one obtains:

�D�
s ¼sl2; q2ðisÞ � D�

s ; 8s; is 2 I4;

�D�
2 ¼ �D

�
1 ;

�D
�
2 ;

�D
�
3 ;

�D
�
4

� �
;

�D�
2 ¼

0 0 0 0

0 0 0 0

� �
;

0 0 0 0

0 0 0 1

� �
;

0 0 1 0

0 0 0 0

� �
;

1 0 0 0

0 1 0 0

� � �
:

Thus, (20) can be written as

satðuÞ 2 co
u1

u2

� �
;

u1

v4

� �
;

v3

u2

� �
;

v1

v2

� � �
:

Remark 3 If xðtÞ 2 LðHkÞ defined in (18), k 2 Inr , then

xðtÞ 2 L Kj

� �
, j 2 Inr , and sat uð Þ can be rewritten as

sat uð Þ ¼
X2nu

s¼1

ks Dsu þ �D�
s �v

	 �
; ð24Þ

where Ds 2 D, �D�
s 2 �D�, �D�

s ¼ sl2; q2ðisÞ � D�
s , s 2 I2nu ,

and ks > 0,
P2nu

s¼1 ks ¼ 1.

Considering (15), q0ðlÞ ¼ qðlÞ � max
m2I2

#mðlÞ


 

� �

, from (11)

one obtains uðlÞðtÞ


 

 ¼ sat0 u1ðlÞðtÞ

� �
� #wðlÞ



 

 6 sat0j
u1ðlÞðtÞ
� �

j þ #wðlÞ


 

 6 q0ðlÞ þ max #iðlÞ

� �
,

q0ðlÞ þ max #iðlÞ
� �

¼ qðlÞ þ max #ij jf g � max #ij jf g ¼ qðlÞ.

Therefore

sat uðlÞðtÞ
� �

¼ sat0 u1ðlÞðtÞ
� �

� #wðlÞ; and

sat uðtÞð Þ ¼ sat0 u1ðtÞð Þ � #w:

Similarly to (24), if xðtÞ 2 L Hkð Þ, k 2 Inr , then xðtÞ 2
L K1ð Þ and sat0 �K1xð Þ one obtains

sat0 �K1xð Þ ¼
X2nu

s¼1

ks Ds �K1xð Þ þ �D�
s H1xð Þ

	 �
: ð25Þ

The following lemma provides a sufficient condition for

the constraint EðP; dÞ 	 LðHkÞ.

Lemma 3 [44, 49] Let the sets EðP; dÞ and LðHkÞ, the
constraint EðP; dÞ 	 LðHkÞ is enforced if the LMI

q2
0ðlÞd

�1 GkðlÞ

� X

" #

> 0; ð26Þ

holds for all k 2 Inr , and l 2 I
n
�

u
, where X ¼ P�1 and

GkðlÞ ¼ HkðlÞX.

Proof See [44, 49]. h

With all ellipsoids that satisfy the invariance condition,

a less conservative choice of the largest ellipsoid inside the

domain of attraction can be guaranteed considering its

shape. Let W0 	 Rnx be defined as follows:

W0 ¼ co w1
0; w2

0; � � � ;wq
0

� �
; ð27Þ

where wiw
0 2 Rnx , 8iw 2 Iq are a priori given vectors.

A guarantee that a convex hull (27) is contained in the

invariant region EðP; 1Þ is described in Lemma 4.

Lemma 4 The constraint �x W0 	 EðP; 1Þ, where

W0 ¼ co w1
0;w2

0; � � � ;wq
0

� �
, wiw

0 2 Rnx for all iw 2 Iq, is the

convex hull of known vectors w1
0, w2

0, � � �, wq
0, and the

constant �x[ 0, is enforced if

�x�2 wkT
0

wiw
0 X

" #

> 0; ð28Þ

holds for all iw 2 Iq. Thus, �x can be used as a variable to

obtain a less conservative estimate of the domain of

attraction and to search the ‘‘largest’’ ellipsoid E P; 1ð Þ.

Proof See [49, 50]. h
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On the other hand, constraints may be adopted to avoid

that the controller assumes a large norm, e.g., using Lemma

5.

Lemma 5 [44, 49] It is possible to reduce the norm of the

gain matrix Kj, j 2 Inr , increasing the region LðKjÞ
selecting appropriately n such that EðP; n�1Þ 	 LðKjÞ is

imposed if the LMI

nq�2
0ðkÞ MjðkÞ

� X

� �
> 0; ð29Þ

holds for all j 2 Inr , and k 2 Inu .

Proof See [44, 49, 51]. h

Theorem 1 [44] Let the sets EðP; 1Þ, LðHkÞ, and W0

defined in (16), (18), and (27), respectively. Consider a

nonlinear system subject to actuator saturation defined in

(9) and (10), an operating region xðtÞ 2 O, described by

(6), t > 0, q 2 Rnu ; / 2 Rp and N 2 Rp�nx are known.

Assume that there exist a symmetric positive definite matrix

X 2 Rnx�nx , symmetric matrices �Qi and �Zi 2 Rnx�nx ,

matrices Gj ¼ GT
jð1Þ G

T
jð2Þ � � �GT

jð n� uÞ

h i
, Mi 2 Rnu�nx and a

scalar b[ 0 such that

AiX þ XAT
i þ �Zi þ �Qi þ 2bX\0; ð30Þ

� BiDsMj þ Bi
�D�
s Gj � MT

j DT
s BT

i

þ GT
j
�D�T
s BT

i � �Zi � �Qj 6 0;
ð31Þ

q2
0ðlÞ GjðlÞ

� X

� �
> 0; ð32Þ

/2
ðhÞ NðhÞX

� X

" #

> 0; ð33Þ

nq�2
0ðkÞ MiðkÞ

� X

� �
> 0; ð34Þ

�w�2 �
wiw

0 X

" #

> 0; ð35Þ

hold for all i and j 2 Inr , k 2 Inu , l 2 I
n
�

u
h 2 Ip, iw 2 Iq,

s 2 I2nu , Ds 2 D and �D�
s 2 �D. Then, the control law (11,

12, 13, 14 and 15), where Ki ¼ MiX
�1 and Qi ¼

X�1 �QiX
�1 for all i 2 Inr , makes the system (9) locally

asymptotically stable with a decay rate equal to or greater

than b, 8xð0Þ 2 E P; 1ð Þ, where P ¼ X�1. Furthermore,

xðtÞ 2 O; t > 0.

Proof Based on [44], consider as Lyapunov function

candidate VðxðtÞÞ ¼ xðtÞTPxðtÞ, P ¼ PT 2 Rnx�nx ; P[ 0.

Therefore, from the system (9) and the control law (12)

_VðxÞ ¼ 2xTP _x;

¼ 2xTP AðaÞx þ BðaÞsatðuÞ þ BðaÞd½ �:
ð36Þ

Replacing (11, 12) in (36)

_VðxÞ ¼ 2xTPAðaÞx þ 2xTPBðaÞ sat0 u1ðtÞð Þ � #wðtÞ
	 �

þ 2xTPBðaÞd;
_VðxÞ ¼ 2xTPAðaÞx þ 2xTPBðaÞsat0 �K1xð Þ

þ 2xTPBðaÞ d � #wðtÞ
	 �

:

ð37Þ

Considering (25), (37) can be rewritten as

_V xð Þ ¼ 2xTPAðaÞx þ 2xTPBðaÞ d � #w

	 �

þ 2xTPBðaÞ
X2nu

s¼1

ks Ds �K1xð Þ þ �D�
s H1xð Þ

	 �
( )

:

Note that #1 6 dðtÞ 6 #2 can be described as a convex

combination
P2

m¼1 cmðtÞ ¼ 1; c1ðtÞ; c2ðtÞ > 0,

c2ðtÞ ¼
dðtÞ�#1

#2�#1
; c1ðtÞ ¼ 1 � c2ðtÞ.

Therefore, replacing BðaÞ ¼ B0gðxÞ, gðxÞ > 0, 8x 6¼ 0,

from (14), it follows that

xTPBðaÞ d � #w
	 �

¼ xTPB0

X2

m¼1

cmðtÞ#m þ min
m2I2

�xTPB0#m

� �
" #

6 xTPB0

X2

m¼1

cmðtÞ#m � xTPB0

X2

m¼1

cmðtÞ#m ¼ 0:

ð38Þ

Then, from (38) one obtains

_V xð Þ 6 xT AðaÞTP þ PAðaÞ
	 �

x

þ
X2nu

s¼1

ks Ds �K1xð Þ þ �D�
s H1xð Þ

	 �
( )T

BðaÞTPx

þ xTPBðaÞ
X2nu

s¼1

ks Ds �K1xð Þ þ �D�
s H1xð Þ

	 �
( )

:

ð39Þ

Now, assume that there exist symmetric matrices Zi and Qj

such that

�DsKj þ �D�
s Hj

	 �T
BT
i P

þ PBi �DsKj þ �D�
s Hj

	 �
6 Zi þ Qj;

ð40Þ

8i; j 2 Inr , 8Ds 2 D, and 8 �D�
s 2 �D� . Then, for j ¼ 1,

multiplying by ai, where ai > 0, and taking the sum from

i ¼ 1 to nr,
Pnr

i¼1 ai ¼ 1 and then multiplying the result by

ks, ks > 0 and taking the sum from s ¼ 1 to 2nu ,
P2nu

s¼1 ks ¼ 1, considering BðaÞ ¼
Pnr

i¼1 aiBi, ai > 0,Pnr
i¼1 ai ¼ 1, i 2 Inr one has
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X2nu

s¼1

ks �DsK1 þ �D�
s H1

	 �T
BðaÞTP

n

þPBðaÞ �DsK1 þ �D�
s H1

	 ��
6 ZðaÞ þ Q1;

ð41Þ

where ZðaÞ ¼
Pnr

i¼1 aiZi. Note that, from the control law

(13), xTQ1x ¼ min
i2Inr

xTQixf g 6
Pnr

i¼1 aix
TQix ¼ xTQðaÞx.

Thus, from (39) and (41),

_VðxÞ 6 xT AðaÞTP þ PAðaÞ þ ZðaÞ þ QðaÞ
� �

x: ð42Þ

Aiming to achieve a decay rate greater than or equal to b it

is sufficient that _VðxÞ 6 �2bVðxÞ [51]. Hence, from (42)

is sufficient that, 8i 2 Inr ,

AT
i P þ PAi þ Zi þ Qi þ 2bP 6 0: ð43Þ

Premultiplying and postmultiplying (40) and (43) by X ¼
P�1 and performing the change of variables Gj ¼ HjX,

Mj ¼ KjX, �Zi ¼ XZiX and �Qi ¼ XQiX, one obtains (30)

and (31). Note that as VðxÞ ¼ xTPx and _VðxÞ\0, x 6¼ 0,

from (16), if xð0Þ 2 E P; dð Þ then xðtÞ 2 E P; dð Þ, 8t > 0.

Considering Lemma 3 with d ¼ 1, LMI (32) ensure

EðP; 1Þ 	 L Hkð Þ, a sufficient condition such that (25)

holds. And considering Lemma 1, LMI (33) ensure

EðP; 1Þ 	 O, a sufficient condition for a state trajectory

started with an initial condition xð0Þ 2 EðP; 1Þ remains in

O for all t > 0. In addition, considering Lemma 4, LMI

(35) guarantees that the convex hull (27) is contained in the

invariant region EðP; 1Þ, and LMI (34) minimizes the norm

of the matrices Ki, selecting appropriately n such that

EðP; n�1Þ 	 LðKiÞ. The proof is complete. h

Remark 4 The Gaino et al. approach [4] treated the plant

model without uncertainties. Consequently, the values of

�ud and nominal torque Ma are not uncertain. Now,

assuming nonidealities, the state vector becomes an esti-

mate, since Md
a is uncertain. However, a term #wðtÞ that

will dominate the error from the uncertainty of the desired

torque, was added to the control signal. Thus,

�u ¼ �K1xeðtÞ þ #wðtÞ; ð44Þ

where xeðtÞ ¼ x1ðtÞ x2ðtÞ x3eðtÞ½ �T , x3eðtÞ ¼ �x3 �Md
a nom,

Ma nom is the nominal torque and K1 ¼ K11 K12 K13½ �.
Considering the following relationship

x3eðtÞ ¼ �x3 �Md
a þ DMa, DMa ¼ Md

a �Md
a nom, (44) can

be rewritten as

�u ¼ � K11 K12 K13½ �
x1

x2

x3 þ DMa

2

64

3

75þ #wðtÞ;

Therefore,

u ¼ �u� �ude ;

u ¼ � K11 K12 K13½ �
x1

x2

x3

2

64

3

75� K13DMa � �ude þ #wðtÞ;

u ¼ �K1x � �ud þ uerror þ #wðtÞ;

where uerror ¼ �ud � �ude � K13DMa

� �
will be dominated by

the term #wðtÞ from the control law (11), where

#1 6 #wðtÞ 6 #2, #1 ¼ minf�udg and #2 ¼ maxf�udg, �ud

defined in (3).

3.1 Example: Paraplegic Individual P3

Table 1 presents the parameter values for healthy and

paraplegic individuals, corresponding to experimental tests

conducted by Ferrarin et al. [40].

Consider the operating region defined in the interval

0 6 �x1ðtÞ 6 7p
18

, desired position belongs to set

hd 2 ½p=6 p=3�, maxfMd
ag ¼ 9:16, and the uncertain

parameters Ĝ 2 ½0:9Gn Gn�, jstf 2 0:1 1½ �, and

jflt 2 0:8 1½ �.
Observe that the system (4) has three uncertain nonlin-

ear functions ~f21ðzðtÞÞ, ~f23ðzðtÞÞ, and ~g31ðzðtÞÞ, conse-

quently one obtains nr ¼ 23 ¼ 8.

Table 1 Parameters from

healthy and paraplegic

individuals [40]

Parameter H1 H2 H3 H4 H5 P1 P2 P3

J [kg m2] 0.377 0.358 0.399 0.375 0.384 0.362 0.292 0.394

m [kg] 4.05 4.63 4.38 3.83 4.36 4.37 3.42 4.76

l [m] 0.253 0.239 0.248 0.237 0.243 0.238 0.231 0.233

B [N m s/rad] 0.377 0.311 0.400 0.305 0.332 0.270 0.302 0.289

k [N m/rad] 1.199 4.679 3.657 4.490 3.889 41.208 3.761 15.352

Ev [rad-1] - 0.486 0.041 - 0.031 0.257 - 0.079 2.024 1.317 1.644

x [rad] 2.548 2.427 2.710 2.701 2.412 2.918 2.520 3.896

Gn [N m/A] 266.67 266.67 256.67 266.67 333.33 283.33 83.33 76.67

s [s] 0.454 0.426 0.491 0.406 0.438 0.951 0.203 0.215
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To find the local models, the maximum and minimum

values of the uncertain nonlinear functions must be

obtained.

Considering the paraplegic individual P3, whose

parameters can be found in Table 1, and taking x ¼ �x � �xe,

the set D is obtained

D ¼ z 2 R6 : � p
3
6 x1 6

4p
18

; �Md
a 6 x3 6 Md

a ;



0:9Gn 6 Ĝ 6 Gn; 0:1 6 jstf 6 1;

0:8 6 jflt 6 1;
p
6
6 hd 6

p
3

o
:

Consequently, one obtains the local models for exact rep-

resentation of system (4) through TS fuzzy models (7),

q ¼ 150, and

A1 ¼ A2 ¼
0 1 0

25:7877 � 0:7335 2:5381

0 0 � 4:6512

2

64

3

75;

A3 ¼ A4 ¼
0 1 0

25:7877 � 0:7335 0:2538

0 0 � 4:6512

2

64

3

75;

A5 ¼ A6 ¼
0 1 0

1:6826 � 0:7335 2:5381

0 0 � 4:6512

2

64

3

75;

A7 ¼ A8 ¼
0 1 0

1:6826 � 0:7335 0:2538

0 0 � 4:6512

2

64

3

75;

B1 ¼ B3 ¼ B5 ¼ B7 ¼
0

0

1:4264 � 103

2

64

3

75;

B2 ¼ B4 ¼ B6 ¼ B8 ¼
0

0

1:0270 � 103

2

64

3

75:

The operating region O is described by (6), where p ¼ 3,

N ¼ I3, and / ¼ ½p
3

4 10�T . Moreover, note that

BðaÞ ¼ B0gðzÞ, where B0 ¼ 0 0 1½ �T , and gðzÞ > 0,

g0ðzÞ ¼ max
z2D

gðzÞf g ¼ 1:4264 � 103.

The LMIs (30) were solved using the MATLAB soft-

ware, and the modeling language YALMIP [52] with the

solver LMILab [53]. Solving the LMIs (27) presented in

Theorem 1, the aforementioned parameters, b ¼ 4:0,

q ¼ 4, w1
0 ¼ p

6
0 9:16

	 �T
, w2

0 ¼ p
6

0 � 9:16
	 �T

,

w3
0 ¼ � p

18
0 9:16

	 �T
, w4

0 ¼ � p
18

0 � 9:16
	 �T

,

#1 ¼ minf�udg ¼ 0:0149, #2 ¼ maxf�udg ¼ 0:0332, q0 ¼
0:150 minimizing �w, one obtains the gains of the proposed

RSwASF control procedure:

P ¼
7:8226 � 104 1:1754 � 104 196:7513

1:1754 � 104 2:0495 � 104 33:6308

196:7513 33:6308 0:8309

2

64

3

75;

K1 ¼ 0:5406 0:0956 0:0027½ �;
K2 ¼ 0:5365 0:0967 0:0028½ �;
K3 ¼ 0:6319 0:1082 0:0026½ �;
K4 ¼ 0:6511 0:1128 0:0027½ �;
K5 ¼ 0:5220 0:0954 0:0027½ �;
K6 ¼ 0:5129 0:0963 0:0027½ �;
K7 ¼ 0:6165 0:1091 0:0026½ �;
K8 ¼ 0:6238 0:1120 0:0027½ �:

The TS fuzzy control techniques PDC and RPDC were

comparated using the LMIs presented by Gaino et al. [4]

and Covacic et al. [35], respectively. Solving the LMIS

presented by Covacic et al. [35], considering the values

l ¼ 150 mA, b ¼ 4:0, and the constraint of the operating

region (17), one obtains the following:

Table 2 RMS error between control techniques for healthy (RMSEh)

and paraplegic (RMSEp) individuals considering nonidealities (sev-

ere). BC backstepping control, DPID double-proportional-integral-

derivative, GSC gain-scheduling control, IBC integral-backstepping

control, PDC parallel distributed compensation, PID proportional-

integral-derivative control, SMC sliding-mode control, ST super-

twisting, RSwASF robust switched control subject to actuator satu-

ration and fault. Nh and Np denote the numbers of the healthy and

paraplegic individuals. Bold font indicates best result obtained

Controller Nh Np RMSEh [deg] RMSEp [deg]

PID 1 3 12.27 14.88

GSC 1 3 11.73 12.46

SMC 1 3 7.44 13.16

DPID 1 3 8.68 9.64

BC 1 3 6.79 8.73

IBC 1 3 8.30 9.05

ST 1 3 6.69 7.25

PDC 5 3 16.09 22.37

RPDC 5 3 8.37 16.94

RSwASF 5 3 3.75 5.16
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Fig. 2 Lower limb dynamic behavior for muscle nonidealities (fatigue, spasms, and tremor) in a mild and b severe conditions and considering

actuator fault (80% of the nominal)
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Q ¼
1:9071 � 1012 2:7137 � 1011 3:5540 � 107

2:7137 � 1011 5:0976 � 1010 6:7066 � 106

3:5540 � 107 6:7066 � 106 5:3648 � 105

2

64

3

75;

K1 ¼ M1X ¼ 48:7925 9:1864 0:7267½ �;
K2 ¼ M2X ¼ 47:4738 8:9370 0:7230½ �;
�11 ¼ 1:9786 � 10�10; �12 ¼ 1:9415 � 10�10;

�22 ¼ 1:8969 � 10�10:

The LMIs presented by Gaino et al. [4] were solved

considering the values l ¼ 150 mA, b ¼ 4:0, and con-

straint for operating region (17). Consequently, one obtains

the following:

P ¼
40:6894 7:1150 1:4004

7:1150 1:3163 0:2534

1:4004 0:2534 0:0621

2

64

3

75;

F1 ¼ M1X ¼ 0:0058 0:0011 2:3611 � 10�4
	 �

;

F2 ¼ M2X ¼ 0:0047 0:0010 2:1859 � 10�4
	 �

:

4 Results and Discussion

Usually, the results of controllers from simulation consider

ideal conditions for electrical stimulation of the lower

limbs, i.e., without fatigue, tremor, spasms, and other

uncertainties. First, we present the results under ideal

conditions. Next, we evaluated the nonideal conditions. A

priori, the comparative study was carried out using TS

fuzzy-based control techniques. The results obtained from

other techniques in the literature were then compared.

4.1 Ideal Conditions

Three operating points in the time interval 0 6 t 6 30 s

were evaluated considering the plant in ideal conditions.

Fig. 2 shows the regulation performance of PDC [4], RPDC

[35], and RSwASF (proposed) control techniques, using

the gains designed in Sect. 3.1.

The root-mean-squared error value in the steady state

(SSRMSE) was rated. For the three studied controllers,

considering all individuals, the steady-state performance

was satisfactory for regulation to the desired operating

point. The null steady-state error was obtained.

4.2 Nonideal Conditions

The actuator fault, parametric uncertainty in the muscular

recruitment function, and the different levels of fatigue,

spasms, and tremor were simulated.

4.2.1 Muscle Fatigue, Tremor and Spasms

Muscle nonidealities (fatigue, spasms, and tremor) alter

muscle torque. These nonidealities were evaluated in the

time interval 30\t 6 60 s (Fig. 3). Note that the muscle

fatigue profile is a decreasing function in the temporal

domain, indicating a reduced muscular torque. Spasms

profiles are described as torque impulses, which change the

dynamics of the system for a short time. The tremor indi-

cates damped torque oscillations, and its amplitude is

strictly related to the degree of severity.

Figure 2a and b illustrate the system performance con-

sidering mild and severe condition of muscular nonideali-

ties, respectively.
Fig. 3 Muscle behavior in different nonidealities levels inserted

during the tests: a fatigue, b spasms, and c tremor
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The nonideality situations due to fatigue are listed first.

Fatigue, spasms, and tremor were assessed at three levels:

mild, moderate and severe.

Note that although the RSwASF controller reduces the

steady-state error, the fatigue precludes the null error. The

muscle torque is substantially reduced. Consequently,

maintaining the angular position and muscular activation

applied to a single motor point is a difficult task, because

the fatigue effect modifies the musculoskeletal system to

null torque. One way to get better results is to stimulate

more than one muscle activation point, switching the

channels by detecting fatigue [2] or other events.

For all individuals, the highest RMS error was obtained

for the severe fatigue situation (Fig. 4). This condition

presents a greater error than considering all nonidealities in

maximum severity degree. This behavior is due to spas-

ticity [41]. In this case, spasticity effectively increases the

knee joint stiffness, contributing to a smaller error in the

controllers’ performance.

4.2.2 Actuator Fault and Parametric Uncertainty

in the Muscle Recruitment

The actuator fault was considered as a decrease in energy

(80% of the nominal) applied to the muscles. An

uncertainty in the muscular recruitment function, expressed

by parameter Ĝ, was also assumed.

The RSwASF controller reached the desired operating point,

even in the presence of parametric uncertainties (Fig. 2b).

Regarding the results obtained among the TS fuzzy

techniques, the RSwASF controller presented the best

performance.

4.3 Comparative Analysis with Literature

The comparison between control techniques considering

the nonidealities in the plant model is considered for iso-

metric application of electrical stimulation. The knee joint

controlled in a single angular position is a therapy to obtain

muscle strength through electrical stimuli [31]. In this

sense, the goal of the closed-loop system to obtain regu-

lation with the smallest RMS error in different angular

positions.

Table 2 lists the RMSE between different control tech-

niques in the literature. Control techniques whose plant

model considered parametric uncertainties in severe con-

ditions were evaluated. Lynch and Popovic [41] initiated

this modeling approach. First, the PID and sliding-mode

(SMC) controllers were compared. In severe conditions of

fatigue, spasms, and tremor, the RMS errors were large for

Fig. 4 Comparison of RMS error between PDC [4], RPDC [35], and

RSwASF (this paper) control techniques, considering healthy (Hi) and

paraplegic (Pj) individuals in different scenarios of nonidealities:

a fatigue—mild; b fatigue—moderate; c fatigue—severe; d fatigue,

spasms, and tremor—mild; e fatigue, spasms and tremor—moderate;

and f fatigue, spasms, and tremor—severe
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both controllers. Next, Lynch and Popovic [39] proposed a

comparative analysis with the gain-scheduling controller

(GSC). Among the controllers, the PDC [4] had the worst

performance. The PDC [4] obtained a large RMS error and

was more sensitive to parametric variation. The SMC

produced a relatively large RMS error. Although it is a

robust technique, it was sensitive to parametric variation.

This result may be due to the use of the boundary layer

control, which compromised the convergence properties. In

turn, the GSC produced a better response and less sensi-

tivity to uncertainties, because it used integral control. An

unfavorable point of the GSC refers to lengthy tuning

process the multiple local controllers.

Benahmed et al. [1] proposed an analysis with other

controllers. The double-PID (DPID) reduced RMSE, when

compared to the PID, but errors persisted due to sensitivity

to plant parameters. Regarding sensitivity, backstepping

(BC), integral-backstepping (IBC), and super-twisting (ST)

were also evaluated. The sensitivity of BC to variations in

parameters was lower than IBC and ST. On the other hand,

adding integral action, there is a reduction in the RMSE

index, but the sensitivity deteriorates.

Before this study, the technique that established the least

RMSE was the ST [1]. The RSwASF controller surpassed

the ST and obtained the best result, achieving the lowest

RMSE for the angular position, considering all individuals

and in all nonideal conditions.

About TS fuzzy technique, the PDC and RPDC con-

trollers, proposed by Gaino et al. [4] and Covacic et al.

[35], respectively, present unsatisfactory behavior (Fig. 2),

since they do not deal with plant uncertainties. Although

Covacic et al. [35] proposed a norm-bounded uncertainty

control, it is worth mentioning that the authors did not

consider that the moment of inertia parameter is an

uncertainty in the nonlinear function f21ðzÞ. Consequently

the TS model of the system is inaccurate.

In relation to actuator fault and parametric uncertainty,

the results indicate a discrepancy between the knee angular

position and the desired value using the PDC [4] and

RPDC [35]. The incompatibility between the model and

control design explains the degraded performance.

4.4 Advantages and Limitations of the RSwASF

The RSwASF handled uncertainties inherent in the indi-

vidual, such as muscle fatigue, spasms, tremor, and also

features of the system such as saturation and actuator

failure. Under ideal conditions, the performance of the

PDC [4], RPDC [35], and RSwASF are similar. However,

under nonideal conditions, the RSwASF controller per-

formed better in the tests compared with the PDC [4].

Considering a nonlinear system described by the TS

fuzzy model, the PDC controller depends on the known

membership functions. The expressions of the membership

functions can be extensive and demand a high computa-

tional cost to calculate them. When dealing with uncertain

systems, the result obtained with PDC becomes unsatis-

factory, because the membership functions become

unsuitable for model uncertainties. Thus, the RSwASF

controller is presented as an advantageous proposal, since it

does not depend explicitly on the membership functions for

the convex combination of controller gains. Other switched

control applications for uncertain nonlinear plants can be

found in [44, 45, 47].

It is worth mentioning that there is chattering in the

control signal from the RSwASF under ideal conditions.

However, this behavior can be smoothed using a smooth

function, proposed by Alves et al. [44]. Nonetheless, this

function was not needed in relation to nonideal conditions.

5 Conclusions

The uncertainty of the recruitment function, actuator fault,

and other nonideality parameters add an error to the model,

specifically to nominal torque Md
a nom and in the value of �ud.

This analysis explains why different muscle torque esti-

mation-based control techniques yield regulation error.

The novelty of this study was the RSwASF control law

applied to compensate plant uncertainties. This technique

was compared to other control techniques in the literature.

Among control techniques, the PDC presented the highest

RMSE, followed by the PID and GSC. The RMS error has

been reduced through a robust approach based on TS fuzzy

models; however, its performance was below the sliding-

mode control, ST, and backstepping control. The best

performance among all reported techniques was presented

by RSwASF, which using TS fuzzy models properly dealt

with uncertainties and nonidealities of the system.

The contribution of this study was the improvement of

the performance of the isometric contraction evoked by

electrical stimuli dealing under nonideal conditions (fa-

tigue, spasms, tremor, muscular activation and actuator

saturation, and fault), as uncertainties in the control design.

Future works may investigate a new mathematical

model for the plant, relating muscle activation and kine-

matic variables appropriately without relying on muscle

torque estimation. From this study, hybrid FES systems

such as powered ankle–foot prostheses [54] can be inves-

tigated, as well as isotonic applications with insertion of

the delay effect in the plant through an approach proposed

by [55].
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