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Abstract This paper investigates the design problem of the

proportional-plus-derivative state feedback fuzzy controller

for the Takagi–Sugeno fuzzy singular systems, which

considering the influence of internal perturbations and

external noises. To solve the perturbation problem in the

control system simply and concisely, the benefit of

employing a robust control approach is proposed. Consid-

ering the perturbed Takagi–Sugeno fuzzy singular systems

with external noises, the Lyapunov stability theory is

chosen to derive the stability conditions with passivity

constraints. To bring better transient performance for the

controlled systems, the decay rate constraint is also adop-

ted. These sufficient stability conditions can be effectively

transferred into the linear matrix inequality problem.

Finally, an example is used to verify the proposed robust

fuzzy controller design method’s applicability and

effectivity.

Keywords Fuzzy control � Robust control � Nonlinear

singular systems � Decay rate � Passivity constraints

1 Introduction

The Takagi–Sugeno (T–S) fuzzy model [1] is advantageous

in representing nonlinear systems. There have been many

successful applications in industrial fields in the past few

years [2–7]. To analyze and design the control systems, it is

necessary to produce the mathematical model for the sys-

tems first. By applying the T–S fuzzy modeling method,

the nonlinear systems with smooth nonlinearities can be

represented in a state-space set by a set of linear subsys-

tems. The set of linear subsystems is connected by the

blending of these linear models through membership

functions. After T–S fuzzy modeling, the controller can be

designed by taking full advantage of linear control theories.

In [8, 9], the T–S fuzzy system’s significant advantage is

shown that it can extend many well-established control

theories to analyze and synthesize complex nonlinear

models. In this paper, the Lyapunov stability theory was

chosen to analyze and derive the stability conditions for the

nonlinear perturbed systems with external noises. By the

way, the T–S fuzzy controller can be designed by using the

parallel distributed compensation (PDC) method [10]. The

linear controllers for each fuzzy rule of the constructed T–S

fuzzy model were designed via the PDC method. Till now,

massive efforts have been devoted to study the analysis and

synthesis problems for the T–S fuzzy control systems [11].

Singular systems have attracted the attention of many

researchers [12, 13]. The singular systems can model a lot

of special case forms in the state space, and their physical

significations are more complete than the nonsingular

systems. Therefore, singular systems often occur in many

areas, such as electrical circuit systems, robot systems, and

economic systems. Many efforts have been devoted to

singular systems because the singular system is hard to be

stable. Only when the system is regular and impulse-free
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[14], can the singular system be stabilized. The singular

systems have been extensively studied for continuous-time

and discrete-time systems [14, 15].

Recently, there are so many papers discussing perturbed

T–S fuzzy singular systems. However, most papers still

used output feedback or state feedback control for per-

turbed T–S fuzzy singular systems [16, 17]. Suppose one

used the state feedback to design the fuzzy controller. In

that case, it is necessary to ensure that the system is regular

and impulse-free first and then analyze the stability of the

system. In order to overcome the above problem, a pro-

portional-plus-derivative state feedback (PDSF) method

has been applied in [18–21].

It is well known that if state derivatives are available for

the controller design, the PDSF method is even more

important for the T–S fuzzy singular systems. Referring to

[19], the state derivative information can be utilized to

eliminate the impulse behavior of singular systems. From

[20], one can know that PDSF method can avoid the

assumptions about singularities and possible rank changes

of the derivative matrix. However, the research on PDSF

control of T–S fuzzy singular systems has not been thor-

oughly studied as far as we know. Only several studies

have been carried out on PDSF control for the singular

systems. For example, the robust decentralized stabiliza-

tion of large-scale singular systems via the PDSF method

has been studied [20]. Decentralized guaranteed cost con-

trol for uncertain large-scale singular systems via PDSF

method was studied in [21].

In the past decade, external noise has also attracted

significant attention for the researcher. In many practical

systems, perturbations and external noise usually exist and

need to be considered because they may affect the system’s

stability and performance. Usually, the external noise of

the system is inevitable, and the design of the controller

needs to consider these noises. It is well known that the

passivity constraint [22–25] can be used to inhibit external

noise problems. Therefore, passive constraints are also

discussed in the proposed fuzzy controller design problem.

In [26], the robust passive control for uncertain time-

delay singular systems has been studied. However, the

controllers designed in [26] were developed based on the

traditional state feedback approach. Hence, this paper will

investigate the robust fuzzy controller design problem

subject to passivity constraint using the PDSF method.

That is, not only the robust control theory [27, 28] was

applied to inhibit the perturbations of the systems, but also

the passivity constraint was also chosen to inhibit external

noise in this paper. Using the Lyapunov stability theory

[29], the stability conditions with a decay rate constraint

were derived with achieving passivity constraints for the

perturbed T–S fuzzy singular systems.

In this paper, the nonlinear singular systems are

expressed by the T–S fuzzy model considering the internal

perturbations and external noises. The PDSF fuzzy control

approach investigated in this paper was developed based on

the PDC method. Following the Lyapunov stability theory,

sufficient conditions can be obtained to design the robust

fuzzy controller. These sufficient stability conditions can

be transferred into the linear matrix inequality (LMI)

problem that can be solved by the convex optimal pro-

gramming algorithm [10]. Finally, a numerical example

was provided to show the applicability and effectivity of

the proposed robust fuzzy control method.

2 System Statements and Problem Descriptions

In this paper, a PDSF fuzzy controller based on the robust

control theory for the T–S singular systems is proposed.

Considering the systems with the perturbations and exter-

nal noises, the complex nonlinear perturbed singular sys-

tems can be expressed by the following perturbed T–S

fuzzy singular systems.

Plant Rule i:

IF l1 tð Þ is Mi1 and … and lik tð Þ is Mik THEN

Ni _x tð Þ ¼ Ai þ DAið Þx tð Þ þ Biu tð ÞþGiv tð Þ ð1aÞ
y tð Þ ¼ Cix tð Þ þ Div tð Þ ð1bÞ

where i ¼ 1; 2; � � � ; n and n is the rule number, Mik are

fuzzy sets, k is the number of premise variables, x tð Þ 2 <n

is the state vector, u tð Þ 2 <m is the control input vector,

y tð Þ 2 <q is the output vector, and v tð Þ 2 <z denotes the

disturbance input which belongs to L2 0;1½ Þ.
Besides, Ai 2 <n�n, Bi 2 <n�m, Gi 2 <q�z, Ci 2 <q�n,

and Di 2 <q�z are constant matrices and Ni 2 <n�n is a

constant matrix with rank Nið Þ ¼ r\n.

The perturbations in the T–S fuzzy model (1a) are

considered as DAi¼HiDiRai. Hi , and Rai denote the known

matrices, which are the composition of the perturbations

and Di denote the time-varying uncertain matrices. Con-

sidering the state vector x tð Þ and the input vector u tð Þ of the

T–S fuzzy model (1), the overall perturbed T–S fuzzy

singular model can be ‘‘blending’’ as follows:

Xn

i¼1

ni l tð Þð ÞNi _x tð Þ

¼
Xn

i¼1

ni l tð Þð Þ Ai þ DAið Þx tð Þ þ Biu tð Þ þ Giv tð Þf g
ð2aÞ

y tð Þ ¼
Xn

i¼1

ni l tð Þð Þ Cix tð Þ þ Div tð Þf g ð2bÞ
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where x tð Þ ¼
Qk

j¼1 Mij lj tð Þ
� �

, ni l tð Þð Þ ¼ x tð Þ
�Pn

i¼1 x tð Þ,
ni l tð Þð Þ� 0,

Pn
i¼1 ni l tð Þð Þ ¼ 1 , and Mij lj tð Þ

� �
is the grade

of the membership of lj tð Þ.
To address the design scheme of the PDSF controller,

some definitions are recalled. Consider the linear singular

system represented by

N _x tð Þ ¼ Ax tð Þ þ Bu tð Þ ð3Þ

Definition 1 [18, 20, 30, 31]

(1) The unforced singular system (3) is said to be regular

if det sN� Að Þ 6¼ 0.

(2) The unforced singular system (3) is said to be

impulse-free if it is regular, and

deg det sN� Að Þ½ � ¼ rank Nð Þ.
(3) The unforced singular system (3) is said to be

stable if it is regular, impulse-free, and r N;Að Þ lies

in the open left half-plane, where r N;Að Þ denotes all

the roots of det sN� Að Þ ¼ 0.

(4) The unforced singular system (3) is said to be

admissible if it is regular, impulse-free, and stable.

Definition 2 [30–32] The singular system (3) is said to be

normal and stable (NS), if there exists a PDSF controller

u tð Þ ¼ Fx tð Þ � F _x tð Þ such that its closed-loop system

Nþ BFð Þ _x tð Þ ¼ A þ BFð Þx tð Þ ð4Þ

satisfies the following requirements:

(R1) The derivative matrix Nþ BFð Þ is nonsingular

(R2) The resultant closed-loop system (4) is stable

Remark 1 [30] Clearly, if the normal condition

det sN� Að Þ 6¼ 0, holds, then the system (4) can be

rewritten as

_x tð Þ ¼ Nþ BFð Þ�1 A þ BFð Þx tð Þ ð5Þ

Obviously, the solution of the system (5) exists and is

unique. Meanwhile, the system (5) is impulse-free since it

has no infinite poles. As a result, if the system (3) could be

NS via a PDSF control law, by virtue of the above-men-

tioned definitions, one can conclude that system (3) is

admissible.

Definition 3 [22] Suppose there exist the performance

matrices Q1, Q2, Q3 for satisfying the following inequality.

In that case, the perturbed T–S fuzzy singular system is

called passive with external noise input v tð Þ and output y tð Þ
for all terminal time tp [ 0.

2

Z tp

0

yT tð ÞQ1v tð Þdt

[
Z tp

0

yT tð ÞQ2y tð Þdt þ
Z tp

0

vT tð ÞQ3v tð Þdt

ð6Þ

By setting different matrices Q1, Q2 � 0, Q3, one can

define several performance constraints from the inequality

(6). In this paper, the strictly input passive performance

constraint (SIPPC) is considered as follows:

Let Q1¼I, Q2 ¼ 0, Q3 ¼ hI , and h is a positive scalar,

then the passivity constraint (6) becomes:

2

Z tp

0

yT tð Þv tð Þdt[ h
Z tp

0

vT tð Þv tð Þdt ð7Þ

Remark 2 Recalling for any nonsymmetric matrix

Q Q 6¼ QT
� �

, Q 2 <n�n, if Q þ QT\0 then Q has full

rank.

In this paper, the critical aim of this paper is to design

the following PDC fuzzy controller to ensure the passive

stability of the closed-loop system (2). The designed fuzzy

PDSF controller shares the same fuzzy rules as the system

(2). The overall fuzzy PDSF controller can be formulated

as follows:

ControllerRulei :

IF l1 tð Þ is Mi1 and … and lik tð Þ is Mik THEN

u tð Þ ¼ �Fi _x tð Þ � x tð Þð Þ ð8Þ

Then, the overall fuzzy controller can be represented by

u tð Þ ¼ �
Xn

i¼1

ni l tð Þð ÞFi _x tð Þ � x tð Þð Þ ð9Þ

Substituting the control input (9) into the perturbed T–S

fuzzy singular model (2a), the closed-loop state equation

can be obtained as follows:

_x tð Þ ¼
Xn

i¼1

Xn

j¼1

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð Þ

� Nk þ BiFj

� ��1 ~A þ BiFj

� �
x tð Þ þ Nk þ BiFj

� ��1
Giv tð Þ

n o

ð10Þ

where ~A ¼ Ai þ DAið Þ.

Assumption 1 Considering the closed-loop fuzzy system

(10), it is assumed that the linear subsystems of (10) are

regular and NS. From Definition 1, the normal condition

det sNi � Aið Þ 6¼ 0 is assumed to be held for each linear

subsystem of (10). According to Definition 2, the derivative

matrices Nk þ BiFj

� �
are assumed to be nonsingular when

the subsystem of system (10) is admissible.
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Considering the perturbations of the T–S fuzzy model

(10), they are constructed as DAi¼HiDiRai. For these

perturbations, the following lemma is useful for the design

of the proposed robust fuzzy control approach.

Lemma [3]

Given real compatible dimension matrices A, H , and R

for any matrix X[ 0, 1[ 0 with the conditions

DTðtÞDðtÞ� I and X�nDðtÞDTðtÞ� 0, one can find two

results as follows:

HD tð ÞRþRTDTðtÞHT � 1HHTþ1�1RTR ð11Þ

and

AþHDðtÞRð ÞTX�1 AþHDðtÞRð Þ

�AT X�1HHT
� ��1

Aþ1�1RTR ð12Þ

Lemma 1 provides a method to convert the uncertain item

D in the model perturbations. The purpose of this paper is

to design the PDSF fuzzy controller, which combined the

robust control theory, decay rate constraint, and passivity

constraint to derive Lyapunov stability conditions. For

readability, the He gf g denotes shorthand notation for

gþ gT.

In order to introduce the stability conditions for the

singular systems more thoroughly, we first studied the

stability for the closed-loop singular system without

external noises in Theorem 1. From the closed-loop system

(10), one can obtain the closed-loop system without

external noise as follows:

_x tð Þ ¼
Xn

i¼1

Xn

j¼1

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð Þ

� Nk þ BiFj

� ��1 ~A þ BiFj

� �
x tð Þ

n o ð13Þ

Definition 4 [7] Consider a candidate of Lyapunov

function V x tð Þð Þ ¼ xT tð ÞPx tð Þ, where P[ 0. The fuzzy

system (13) is said to be quadratically stable with decay

rate c if there exists c[ 0 such that the Lyapunov

derivative is bounded as follows:

_V x tð Þð Þ� � 2cV x tð Þð Þ ð14Þ

for all trajectories of the system (13).

In the next section, the PDSF fuzzy controller will be

designed based on robust control theory and Lyapunov

stability theory. The sufficient conditions will be derived to

satisfy passivity constraint and decay rate constraint

simultaneously.

3 Controller Design For Perturbed T–S Fuzzy
Singular Systems via Proportional-Plus-
Derivative State Feedback Method

In this section, a robust PDSF fuzzy controller for the

closed-loop perturbed T–S fuzzy singular system is pro-

posed. Defining the Lyapunov function, one can obtain the

stability conditions by the following theorem.

Theorem 1 If there exist a positive definite matrix S and

feedback gains Ki and Kij to satisfy the following stability

conditions, then the perturbed T–S fuzzy singular system

(13) is asymptotically stable.

Uii � � �
R1 �1I � �
R2 0 �1I �

KT
i BT

i 0 0 �S=2

2
664

3
775\0 for i ¼ j ¼ k ¼ 1. . .n

ð15Þ
Uij � � �
R3 �1I � �
R4 0 �1I �

KT
ijB

T
ij 0 0 �S=2

2
664

3
775\0 for i\j ¼ k ¼ 1. . .n

ð16Þ

where * is an ellipsis for the terms that are introduced by

symmetry for symmetric block matrices and

Bij ¼ Bi þ Bj

� �
; Fij ¼ Fi þ Fj

� �
; R1 ¼ RaiSN

T
k ,

R2¼RaiK
T
i BT

i ; R3 ¼ Rai þ Raj

� �
SNT

k ,

R4¼ Rai þ Raj

� �
KT

ijB
T
ij ;Kij ¼ Fi þ Fj

� �
S,

Uii ¼ He NkSAT
i þBiKiA

T
i þBiKiN

T
k

� �
þ 21HiH

T
i , and

Uij ¼21HiH
T
i

þ He NkS AT
i þAT

j

� �
þBijKij AT

i þAT
j

� �
þBijKijN

T
k

n o

Proof To analyze the stability of the closed-loop system,

the following Lyapunov function was chosen:

V x tð Þð Þ ¼ xT tð ÞPx tð Þ ð17Þ

where P[ 0.

Taking differential of the Lyapunov function V x tð Þð Þ,
then one can get

_V x tð Þð Þ ¼ _xT tð ÞPx tð Þ þ xT tð ÞP _x tð Þ ð18Þ

From (13), the Eq. (18) can be rewritten as follows:
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_V tð Þ ¼
Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð ÞxT tð ÞKiix tð Þ

þ
Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð ÞxT tð ÞKijx tð Þ

ð19Þ

where

Kii ¼ ~A þ BiFi

� �T
Nk þ BiFið Þ�TP

þ P Nk þ BiFið Þ�1 ~A þ BiFi

� � ð20Þ

Kij ¼ ~Aij þ BijFij

� �T
Nk þ BijFij

� ��T
P

þ P Nk þ BijFij

� ��1 ~Aij þ BijFij

� � ð21Þ

~Aij ¼ Ai þ DAið Þ þ Aj þ DAj

� �

If Kii\0 and Kij\0 are satisfied, _V x tð Þð Þ\0 is also

satisfied. Then the perturbed T–S fuzzy singular system

(13) is asymptotically stable. However, Kii\0 and Kij\0

are not the LMI conditions, one cannot solve them by LMI

technology.

Now, pre-multiplying Hii ¼ Nk þ BiFið ÞP�1 and post-

multiplying HT
ii on both sides of (20), one can obtain

HiiKiiH
T
ii ¼ Nk þ BiFið ÞP�1 ~A þ BiFið ÞT

þ ~A þ BiFið ÞP�1 Nk þ BiFið ÞT

¼ He NkP�1AT
i + NkP�1DAT

i + BiFiP
�1AT

i

�

+ BiFiP
�1DAT

i + BiFiP
�1NT

k

�

+ 2BiFiP
�1FT

i BT
i

ð22Þ

Defining a new variable S ¼ P�1, S[ 0, Ki¼FiS , and

DAi¼HiDiRai, one can rewrite (22) as

HiiKiiH
T
ii ¼ He NkSAT

i + NkSRT
aiD

T
i HT

i + BiKiA
T
i þ

�

+ BiKiR
T
aiD

T
i HT

i + BiKiN
T
k

�
+ 2BiFiP

�1FT
i BT

i

ð23Þ

Based on Lemma 1, by replacing the matrices R1 ¼
RaiSN

T
k and R2¼RaiK

T
i BT

i , the following inequality can be

obtained from (23).

HiiKiiH
T
ii �Uii þ 1�1RT

1 R1 þ 1�1RT
2 R2 þ 2BiFiSFT

i BT
i

ð24Þ

where Uii ¼ He NkSAT
i þBiKiA

T
i þBiKiNT

k

� �
þ 21HiH

T
i .

By using Schur complements [10], the nonlinear

inequality can be converted into the following LMI form:

HiiKiiH
T
ii �

Uii � � �
R1 �1I � �
R2 0 �1I �

KT
i BT

i 0 0 �S=2

2

664

3

775 ð25Þ

According to the procedure from (22) to (25), pre-

multiplying Hij ¼ Nk þ BijFij

� �
P�1 and post-multiplying

HT
ij on both sides of (21), one can get the following

equation.

HijKijH
T
ij �

Uij � � �
R3 �1I � �
R4 0 �1I �

KT
ijB

T
ij 0 0 �S=2

2

664

3

775 ð26Þ

where

Kij¼FijS, R3 ¼ Rai þ Raj

� �
SNT

k , R4¼ Rai þ Raj

� �
KT

ijB
T
ij

, and

Uij ¼21HiH
T
i

þ He NkS AT
i þAT

j

� �
þBijKij AT

i þAT
j

� �
þBijKijN

T
k

n o

Obviously, if the conditions (15) and (16) in Theorem 1

are satisfied, then the Eqs. (25) and (26) meet HiiKiiH
T
ii\0

and HijKijH
T
ij\0. On the other hand, if the equations

HiiKiiH
T
ii\0 and HijKijH

T
ij\0 are satisfied, then one can

obtain Kii\0, Kij\0 , and _V x tð Þð Þ\0 from (19), and the

perturbed T–S fuzzy singular system (13) is stable. The

proof of this theorem is completed.

The feasible solutions for conditions (15) and (16) of

Theorem 1 can be solved by using the LMI technology.

First, one can solve the matrices S, Ki , and Kij from (15)

and (16) by using MATLAB LMI-Toolbox. Then,

according to Fi ¼ KiS
�1 and Fij ¼ KijS

�1, one can obtain

the feedback gains Fi and Fij.

Remark 3 Note that Kii\0 and Kij\0 imply that the

derivative matrices Nk þ BiFið Þ�1 in the system (13) are

nonsingular. That is, the closed-loop system (13) is

admissible. Thus, by Definition 2, one can conclude that the

closed-loop system (13) is NS as long as the conditions (15)

and (16) hold simultaneously.

In Theorem 1, robustness is the only performance con-

sidered in the fuzzy controller design. In the next theorem,

the decay rate will be introduced for the closed-loop sys-

tems. Decay rate constraint will bring better transient

performance for the systems. Hence, the robust perfor-

mance is combined with the decay rate constraint in the

subsequent fuzzy controller design process.

Theorem 2 If there exists a positive definite matrix S,

feedback gains Ki,Kij and given decay rate c to satisfy the

following stability conditions, then the perturbed T–S fuzzy

singular system (13) is quadratically stable with a decay

rate c.
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Uii � � � �
R1 �1I � � �
R2 0 �1I � �

KT
i BT

i 0 0 �S=2 �
HT

ii 0 0 0 �S=c

2

66664

3

77775
\0 for i ¼ j ¼ k

¼ 1:. . .n

ð27Þ
Uij � � � �
R3 �1I � � �
R4 0 �1I � �

KT
ijB

T
ij 0 0 �S=2 �

HT
ij 0 0 0 �S=c

2

66664

3

77775
\0 for i\j ¼ k

¼ 1. . .n

ð28Þ

Proof The conditions (27) and (28) can be represented as

follows by Schur complements [10].

~KiiþcHiiPH
T
ii\0 ð29Þ

and

~KijþcHijPH
T
ij\0 ð30Þ

where

~Kii ¼ Uii þ 1�1RT
1 R1 þ 1�1RT

2 R2 þ 2BiFiSFT
i BT

i ð31Þ
~Kij ¼ Uij þ 1�1RT

3 R3 þ 1�1RT
4 R4 þ 2BiFiSFT

i BT
i ð32Þ

Therefore, if the conditions (29) and (30) are satisfied,

then the following inequalities are also satisfied due to

inequality (24).

HiiKiiH
T
ii þ cHiiPH

T
ii\0 ð33Þ

and

HijKijH
T
ij þ cHijPH

T
ij\0 ð34Þ

Multiplying xT tð ÞH�1
ii and H�T

ii x tð Þ on the left-hand and

right-hand sides of (33), then one can get

xT tð ÞKiix tð Þ\� cxT tð ÞPx tð Þ ð35Þ

By the same way, the following equation can be

obtained from (34).

xT tð ÞKijx tð Þ\� cxT tð ÞPx tð Þ ð36Þ

According to
Pn

i¼1

ni l tð Þð Þ ¼ 1 and 0� ni l tð Þð Þ� 1, one can

obtain the following inequalities.

Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð ÞxT tð ÞKiix tð Þ� xT tð ÞKiix tð Þ ð37Þ

and

Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð ÞxT tð ÞKijx tð Þ

� xT tð ÞKijx tð Þ
ð38Þ

Adding (35) with (36), one can get

xT tð Þ KiiþKij

� �
x tð Þ\� 2cxT tð ÞPx tð Þ ð39Þ

Note that if Eq. (39) is satisfied, it means that the fol-

lowing equation is also satisfied due to (37) and (38).

Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð ÞxT tð ÞKiix tð Þ

þ
Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð ÞxT tð ÞKijx tð Þ

\� 2cxT tð ÞPx tð Þ

ð40Þ

According to Eq. (19), the inequality (40) can also be

expressed as _V tð Þ\� 2cV x tð Þð Þ. By Definition 4, one can

conclude that the T–S fuzzy singular system (13) is

quadratically stable with a decay rate c. Therefore, the

perturbed T–S fuzzy singular system (13) controlled by the

proportional-plus-derivative state feedback fuzzy controller

achieves decay rate constraint if conditions (27) and (28)

are satisfied.

In the next theorem, let us consider the external noises

for the controlled systems. The passivity constraint is

chosen to deal with external noises. Besides, the decay rate

is also considered in the proposed passive fuzzy controller

design process. The passivity theory is employed to treat

the external noises of systems. The sufficient stability

conditions subject to SIPPC of (7) are developed in the

following theorem.

Theorem 3 If there exists a positive definite matrix S,

controller feedback gains Ki,Kij, decay rate c and per-

formance matrices Q1, Q2 � 0 and Q3 to satisfy the fol-

lowing stability conditions, then the perturbed T–S fuzzy

singular system (10) with external noise achieves the

quadratic stability, decay rate constraint, and passivity

constraint.

CT
i Q2Ci þ Uii � � � � �

~Qi
~Q � � � �

R1 0 �1I � � �
R2 0 0 �1I � �

KT
i BT

i 0 0 0 �S=2 �
HT

ii 0 0 0 0 �S=c

2
6666666664

3
7777777775

\0 for

i ¼ j ¼ k ¼ 1. . .n

ð41Þ
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CT
i Q2Ci þUij � � � � �

~Qij
~Q � � � �

R3 0 �1I � � �
R4 0 0 �1I � �

KT
ijB

T
ij 0 0 0 �S=2 �

HT
ij 0 0 0 0 �S=c

2
66666664

3
77777775

\0 for i\j

¼ k ¼ 1. . .n

ð42Þ

where

~Qi ¼ �QT
1 Ci þ DT

i Q2Ci þ GT
i ð43Þ

~Qij ¼ �QT
1 Ci þ DT

i Q2Ci þ GT
i þ GT

j

� �
ð44Þ

and

~Q ¼ Q3 � DT
i Q1 � Q1Di þ DT

i Q2Di: ð45Þ

Proof Let us define the same Lyapunov function of (17).

According to [4–7], one can take differential of the Lya-

punov function V x tð Þð Þ, then one has

_V1 x tð Þð Þ ¼ _xT tð ÞPx tð Þ þ xT tð ÞP _x tð Þ ð46Þ

The Eq. (46) can be rewritten as follows from (10).

_V1 x tð Þð Þ ¼
Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð Þ
x tð Þ
v tð Þ

	 
T

w
x tð Þ
v tð Þ

	 


þ
Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð Þ
x tð Þ
v tð Þ

	 
T

~w
x tð Þ
v tð Þ

	 


ð47Þ

where

w ¼ Kii �
GT

i Nk þ BiFið Þ�TP 0

	 

ð48Þ

and

~w ¼
Kij �

GT
i þ GT

j

� �
Nk þ BijFij

� ��T
P 0

" #
ð49Þ

By multiplying ~Hii ¼ diag Hii I½ � and its transport on

both sides of (48), one can obtain

~Hiiw ~HT
ii ¼

HiiKiiH
T
ii �

GT
i 0

	 

ð50Þ

In the same way, multiplying ~Hij ¼ diag Hij I½ � and its

transport on (49), then one has

~Hijw ~HT
ij ¼

HijKijH
T
ij �

GT
i þ GT

j

� �
0

" #
ð51Þ

Using (50) and (51), one can define the following

Lyapunov function.

_~V1 x tð Þð Þ ¼
Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð Þ
x tð Þ
v tð Þ

	 
T

~Hiiw ~HT
ii

x tð Þ
v tð Þ

	 


þ
Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð Þ
x tð Þ
v tð Þ

	 
T

~Hij
~w ~HT

ij

x tð Þ
v tð Þ

	 


ð52Þ

To inhibit the external noise, the passivity constraint

was considered, and the following cost function was

defined with zero initial condition.

C x;v; tð Þ ¼
Z tp

0

yT tð ÞQ2y tð Þþ vT tð ÞQ3v tð Þ� 2yT tð ÞQ1v tð Þdt

¼
Z tp

0

yT tð ÞQ2y tð Þþ vT tð ÞQ3v tð Þ
�

�2yT tð ÞQ1v tð Þþ ~_V1 x tð Þð Þ
i
dt� ~V1 x tp

� �� �

�
Z tp

0

W x;v; tð Þdt

ð53Þ

where

W x; v; tð Þ ¼yT tð ÞQ2y tð Þ þ vT tð ÞQ3v tð Þ

� 2yT tð ÞQ1v tð Þ þ _~V1 x tð Þð Þ
ð54Þ

Substituting (2b) into (54), one has

W x; v; tð Þ ¼
Xn

i¼1

Xn

j¼1

ni l tð Þð Þnj l tð Þð Þ � Cix tð Þð

þDiv tð ÞÞTQ2 Cix tð Þ þ Div tð Þð Þ þ vT tð ÞQ3v tð Þ

� 2 Cix tð Þ þ Div tð Þð ÞT tð ÞQ1v tð Þ þ _~V1 x tð Þð Þ
ð55Þ

Rewriting the above Eq. (55), one can get

W x; v; tð Þ ¼
Xn

i¼1

Xn

j¼1

ni l tð Þð Þnj l tð Þð Þ

�
x tð Þ
v tð Þ

	 

X

x tð Þ
v tð Þ

	 

þ _~V1 x tð Þð Þ

ð56Þ

where

X ¼ CT
i Q2Ci �

�QT
1 Ci þDT

i Q2Ci Q3 �DT
i Q1 �Q1Di þDT

i Q2Di

	 


Substituting (52) into (56), one can obtain the Eq. (57).

1978 International Journal of Fuzzy Systems, Vol. 23, No. 7, October 2021

123



W x; v; tð Þ ¼
Xn

i¼1

Xn

j¼1

ni l tð Þð Þnj l tð Þð Þ

�
x tð Þ
v tð Þ

	 
T

x
x tð Þ
v tð Þ

	 

þ

x tð Þ
v tð Þ

	 
T

~x
x tð Þ
v tð Þ

	 
 ð57Þ

where

x ¼ CT
i Q2Ci þHiiKiiH

T
ii �

~Qi
~Q

	 

ð58Þ

~x ¼ CT
i Q2Ci þHijKijH

T
ij �

~Qij
~Q

" #
ð59Þ

and ~Qi, ~Qij and ~Q has been defined in (43)–(45).Following

the same derivation form (23) to (25), the Eqs. (58) and

(59) can be rewritten as follows by the Schur complement

[10].

xs ¼

CT
i Q2Ci þ Uii � � � �

~Qi
~Q � � �

R1 0 �1I � �
R2 0 0 �1I �

KT
i BT

i 0 0 0 �S=2

2
66664

3
77775

ð60Þ

and

~xs ¼

CT
i Q2Ci þ Uij � � � �

~Qij
~Q � � �

R3 0 �1I � �
R4 0 0 �1I �

KT
ijB

T
ij 0 0 0 �S=2

2

66664

3

77775
ð61Þ

Applying the Schur complements [10] for conditions

(41) and (42), one can obtain the following equations.

CT
i Q2Ci þ Uii � � � � �

~Qi
~Q � � � �

R1 0 �1I � � �
R2 0 0 �1I � �

KT
i BT

i 0 0 0 �S=2 �
HT

ii 0 0 0 0 �S=c

2
6666666664

3
7777777775

and ¼ xs þ

cHiiPH
T
ii � � �

0 0 � �
0 0 0 �
0 0 0 0

2
6664

3
7775

ð62Þ

and

CT
i Q2Ci þ Uij � � � � �

~Qij
~Q � � � �

R3 0 �1I � � �
R4 0 0 �1I � �

KT
ijB

T
ij 0 0 0 �S=2 �

HT
ij 0 0 0 0 �S=c

2
66666664

3
77777775

¼ ~xs þ
cHijPH

T
ij � � �

0 0 � �
0 0 0 �
0 0 0 0

2
664

3
775 ð63Þ

Thus, if the conditions (41) and (42) are satisfied, then

x\0 and ~x\0 that implies W x; v; tð Þ\0 via (57). Notice

that W x; v; tð Þ\0 implies

C x; v; tð Þ\0 ð64Þ

and

2

Z tp

0

yT tð ÞQ1v tð Þdt

[
Z tp

0

yT tð ÞQ2y tð Þdt þ
Z tp

0

vT tð ÞQ3v tð Þdt

ð65Þ

That is, if the conditions (41) and (42) are satisfied, then the

passivity constraint (6) is achieved. In order to discuss the

stability of the closed-loop system, let us assume that

v tð Þ ¼ 0. Then, one can obtain the following inequality

from (54) due to W x; v; tð Þ\0 and v tð Þ ¼ 0.

_~V1 x tð Þð Þ\� yT tð ÞQ2y tð Þ ð66Þ

Because Q2 � 0, one has _~V1 x tð Þð Þ\0 from (64).

Besides, the conditions (41) and (42) can be represented

by the following inequalities by the Schur complement

[10].

CT
i Q2Ci þ ~Kii �

~Qij
~Q

	 

þ cHiiPHT

ii �
0 0

	 

\0 ð67Þ

and

CT
i Q2Ci þ ~Kij �

~Qij
~Q

	 

þ cHijPHT

ij �
0 0

	 

\0 ð68Þ

where ~Kii and ~Kij have been defined in (31) and (32). From

(24), (67), and (68), the following inequalities can be

obtained because Q2 � 0.

HiiKiiH
T
ii �CT

i Q2Ci þ ~Kii ð69Þ

and

HijKijH
T
ij �CT

i Q2Ci þ ~Kij ð70Þ

Therefore, if the conditions (67) and (68) are satisfied, the

following inequalities are also satisfied due to (69) and

(70).
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HiiKiiH
T
ii �

~Qi
~Q

	 

þ cHiiPHT

ii �
0 0

	 

\0 ð71Þ

and

HijKijH
T
ij �

~Qij
~Q

" #
þ cHijPH

T
ij �

0 0

	 

\0 ð72Þ

Now, multiplying
x tð Þ
v tð Þ

	 
T

~H�1
ii and ~H�T

ii

x tð Þ
v tð Þ

	 

on the left-

hand and right-hand sides of (71), where
~H�1

ii ¼ diag H�1
ii I

� �
, then one can get

x tð Þ
v tð Þ

	 
T
Kii �

~QiH
�T
ii

~Q

	 

x tð Þ
v tð Þ

	 


þ x tð Þ
v tð Þ

	 
T
cP �
0 0

	 

x tð Þ
v tð Þ

	 

\0 ð73Þ

By the same way, multiplying
x tð Þ
v tð Þ

	 
T

~H�1
ij and

~H�T
ij

x tð Þ
v tð Þ

	 

on the left-hand and right-hand sides of (72),

then one has

x tð Þ
v tð Þ

	 
T Kij �
~QiH

�T
ii

~Q

	 

x tð Þ
v tð Þ

	 


þ x tð Þ
v tð Þ

	 
T
cP �
0 0

	 

x tð Þ
v tð Þ

	 

\0 ð74Þ

Due to v tð Þ ¼ 0, the Eqs. (73) and (74) can be rewritten

as follows:

xT tð ÞKiix tð Þ þ xT tð Þ cPð Þx tð Þ\0 ð75Þ

and

xT tð ÞKijx tð Þ þ xT tð Þ cPð Þx tð Þ\0 ð76Þ

According to
Pn

i¼1

ni l tð Þð Þ ¼ 1 and 0� ni l tð Þð Þ� 1, one can

obtain the following inequalities.

Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð ÞxT tð ÞKiix tð Þ

� xT tð ÞKiix tð Þ
ð77Þ

and

Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð ÞxT tð ÞKijx tð Þ� xT tð ÞKijx tð Þ

ð78Þ

Adding (75) with (76), one can get

xT tð Þ Kii þ Kij

� �
x tð Þ\� 2cxT tð ÞPx tð Þ ð79Þ

According to (77) and (78), if Eq. (79) is satisfied, it means

the following equation is also satisfied.

Xn

i¼1

Xn

k¼1

ni l tð Þð Þ2nk l tð Þð ÞxT tð ÞKiix tð Þ

þ
Xn

i¼1;i\j

Xn

k¼1

ni l tð Þð Þnj l tð Þð Þnk l tð Þð ÞxT tð ÞKijx tð Þ

\� 2cxT tð ÞPx tð Þ ð80Þ

According to Eq. (19), the inequality (80) can also be

rewritten as follows:

_V tð Þ\� 2cV x tð Þð Þ ð81Þ

From (81), one can conclude that the closed-loop system

is quadratically stable by Definition 4. Thus, if the condi-

tions (41) and (42) of Theorem 3 are satisfied, the singular

system (10) is quadratically stable and satisfies the decay

rate constraint and passivity constraint simultaneously.

By solving the stability conditions provided in Theo-

rem 3, the PDSF fuzzy controller (9) can be designed for

the perturbed T–S fuzzy singular system with external

noises (10). In this section, we considered the passivity

constraints to inhibit the external noises. Therefore, the

nonlinear singular systems can obtain better performance

under external noises.

It is evident that the conditions of Theorem 3 belong to

the LMI problem that MATLAB LMI-Toolbox can directly

solve for seeking feasible solutions. To solve the feasible

solutions of the above problem, the following design pro-

cedure is proposed for Theorem 3.

Design Procedure

Step 1: Set up the scalar c[ 0 and performance

matrices Q1, Q2 � 0, Q3.

Step 2: Solve the conditions of Theorem 3 to obtain

the variables S[ 0, Ki and Kij by using

MATLAB LMI-Toolbox.

Step 3: According to Fi ¼ KiS
�1 and Fij ¼ KijS

�1,

one can find the feedback gains Fi and Fij.

Step 4: Ensure the satisfaction of Assumption 1 for

the closed-loop fuzzy system (10).

Step 5: Based on the gains obtained by Step 3, the

corresponding controller (9) can be con-

structed to establish the PDSF fuzzy

controller.

Based on the above design procedure, the PDSF fuzzy

controller (9) can be designed to guarantee the stability of
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the perturbed T–S fuzzy singular system (10) with external

noises subject to decay rate and passivity constraint. In the

next section, a numerical example was applied to verify the

proposed fuzzy controller design method’s availability and

effectiveness.

4 A Numerical Example and Simulations

In this section, Theorem3 is used to verify the applicability

for the proposed robust fuzzy control method, and some

comparisons will be given. Let us consider a nonlinear

perturbed singular system with external noises, which is

represented by the perturbed T–S fuzzy singular model

with external noises as follows:

X2

i¼1

ni l tð Þð ÞNi _x tð Þ ¼
X2

i¼1

X2

j¼1

ni l tð Þð Þnj l tð Þð Þ

� ~Ax tð Þ � BiFj _x tð Þ � x tð Þð Þ þ Giv tð Þ
� �

ð82aÞ

~y tð Þ ¼
X2

i¼1

ni l tð Þð Þ Cix tð Þ þ Div tð Þf g þ yref tð Þ ð82bÞ

y tð Þ ¼ ~y tð Þ � yref tð Þ ¼
X2

i¼1

ni l tð Þð Þ Cix tð Þ þ Div tð Þf g

ð82cÞ

where

A1 ¼
�1 0:5 �0:8

�1 �2 �0:6

0:2 1 �2

2
64

3
75;A2 ¼

�2 0:5 �0:8

�1 �2 0

0:2 1 �5

2
64

3
75

B1 ¼B2 ¼
0 0

1 0

0 1

2
64

3
75;C1 ¼ C2 ¼ 0 0 1½ �;D1 ¼ D2 ¼ 1;G1 ¼

0:1

0

0

2
64

3
75

N1¼N2¼
1 0 0

0 1 0

0 0 0

2
64

3
75;H1¼H2¼

0:1 0 0

0 0:5 0

0 0 0:1

2
64

3
75

Ra1 ¼
0 0:1 0

0 0:2 0

0 0 0:2

2
64

3
75;Ra2 ¼

0:1 0 0

0 0:2 0

0:1 0 0:2

2
64

3
75

D tð Þ ¼
U 0 0

0 U 0

0 0 U

2
64

3
75;U = sin tð Þ

The perturbations of T–S fuzzy singular system (10) are

described by DAi ¼ HiD tð ÞRai, where

DA1 tð Þ ¼
0 0:01sin tð Þ 0

0 0:1sin tð Þ 0

0 0 0:02sin tð Þ

2
4

3
5

andDA2 tð Þ ¼
0:01sin tð Þ 0 0

0 0:1sin tð Þ 0

0:01sin tð Þ 0 0:02sin tð Þ

2
4

3
5.It is

assumed that the disturbance v tð Þ has the following form:

v tð Þ ¼ 0:1 sin 2tð Þ; 0� t� 5

0; else


ð83Þ

In this example, we also consider the output tracking

problem. The output signals ~y tð Þ and yref tð Þ described in

(82b) are the real output and reference output, respectively.

In order to discuss the passivity constraint and decay rate

constraint, this example will first study the regulation

design that considered the output y tð Þ given in (82c). Then,

the reference output is assigned as yref tð Þ ¼ 3 sin tð Þ for the

subsequent tracking case.

Considering the membership functions of x1 tð Þ stated in

Fig. 1, then the perturbed T–S fuzzy singular model with

external noises can be constructed as follows:

Rule 1:IF x1 tð Þ is about 0 THEN

Ni _x tð Þ ¼ A1þDA1ð Þx tð Þ þ B1u tð Þ þ G1v tð Þ
y tð Þ ¼C1x tð Þ þ D1v tð Þ

ð84aÞ

Rule 2:IF x1 tð Þ is about 	3 THEN

Ni _x tð Þ ¼ A2þDA2ð Þx tð Þ þ B2u tð Þ þ G2v tð Þ
y tð Þ ¼C2x tð Þ þ D2v tð Þ

ð84bÞ

Choose the decay rate as c ¼ 5. The proposed PDSF fuzzy

controller can be designed by following the design proce-

dure provided in Section III. By using MATLAB LMI-

Toolbox to solve the conditions (41) and (42) of Theo-

rem 3, the common positive definite matrix P can be

obtained as follows.

Fig. 1 The membership functions of state x1 tð Þ

W.-J. Chang et al.: Multi-constrained Fuzzy Control for Perturbed T–S Fuzzy Singular 1981

123



P¼
0:0618 0:0100 �0:0018

0:0100 0:0059 �0:0004

�0:0018 �0:0004 0:0011

2
4

3
5 ð85aÞ

F1 ¼ 0:5718 �0:0883 0:0394

1:1308 0:0715 0:0120

	 

ð85bÞ

F2 ¼ �0:3790 �0:3458 �0:0241

0:5296 �0:0088 0:0455

	 

ð85cÞ

According to the above feedback gains, the propor-

tional-plus-derivative state feedback fuzzy controller can

be constructed by using the PDC method as follows:

Rule 1:IF x1 tð Þ is about 0 THEN

u tð Þ ¼ �F1 _x tð Þ � x tð Þð Þ ð86aÞ

Rule 2:IF x1 tð Þ is about 	3 THEN

u tð Þ ¼ �F2 _x tð Þ � x tð Þð Þ ð86bÞ

In order to show the advantage and effectiveness of the

proposed fuzzy controller design approach, it was com-

pared with the previous fuzzy control method developed in

[18]. Considering the LMI conditions investigated in [18],

one can define the following controller.

Rule 1:IF x1 tð Þ is about 0 THEN

u tð Þ ¼ KA1x tð Þ þ KE1 _x tð Þ ð87aÞ

Rule 2:IF x1 tð Þ is about 	3 THEN

u tð Þ ¼ KA2x tð Þ þ KE2 _x tð Þ ð87bÞ

The feedback gain solutions can be obtained by solving the

conditions of Theorem3 in [18] as follows:

P¼
0:1190 0:0007 0:0186

0:0007 0:1360 �0:0706

0:0186 �0:0706 0:2752

2

4

3

5 ð88aÞ

KA1 ¼ �5:9272 25:8382 �100:2359

�0:2762 50:5893 �28:9038

	 

ð88bÞ

KA2 ¼ �4:3933 19:9369 �75:6675

�0:1861 37:7173 �19:4467

	 

ð88cÞ

KE1 ¼ �2:0660 �2:2052 53:3642

�3:9703 �54:7086 4:2383

	 

ð88dÞ

KE2 ¼ �0:8263 �1:7485 40:2966

�3:3649 �41:0998 3:6430

	 

ð88eÞ

For the simulations, let us choose the initial condition as

x 0ð Þ ¼ 1 0 �2½ �T. The state responses for the fuzzy

controllers (86) and (87) are shown in Figs. 2, 3, 4.

Referring to Figs. 2, 3, 4, it can be found the proposed

fuzzy controller (86) has a smaller setting time than the

fuzzy controller (87) developed in [18] because decay rate

constraint was considered in the proposed design approach.

Besides, the following specific values can be calculated to

verify the SIPPC of (7).

For proposed method:
2
R tp

0
yT tð Þv tð Þdt

R tp
0

vT tð Þv tð Þdt
¼ 2:8625 ð89aÞ

For method of 18½ � :
2
R tp

0
yT tð Þv tð Þdt

R tp
0

vT tð Þv tð Þdt
¼ �2:7353 ð89bÞ

It can be found that the value of (89a) is bigger than 1 and

(89b) is not bigger than 1. It implies that the closed-loop

system achieving the SIPPC via the proposed fuzzy con-

troller (86), but the fuzzy controller (87) developed in [18]

does not achieve the SIPPC constraint. In conclusion, the

proposed fuzzy control method provides better state

responses than the fuzzy control approach investigated in

Fig. 2 The responses of state x1 tð Þ

Fig. 3 The responses of state x2 tð Þ
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[18], and fuzzy controller (87) developed in [18] does not

achieve the SIPPC constraint. Next, let us compare the

output tracking responses for the proposed fuzzy control

method and the fuzzy control approach of [18]. In order to

make a clear comparison, it is assumed v tð Þ ¼ 0, and the

reference output is defined as yref tð Þ ¼ 3 sin tð Þ. That is, the

real output tracks the sinusoidal function ~y tð Þ without

considering external noises. Figure 5 presents the simula-

tion results for the output responses driven by fuzzy con-

trollers (86) and (87), respectively. The results show that

the proposed fuzzy control approach achieves better

tracking performance than the design method developed in

[18]. From the comparisons of this example, one can find

that the proposed fuzzy controller designed by PDSF has a

shorter settling time than the fuzzy control method of [18].

And the passivity constraint can be used to successfully

inhibit the external noise by using the proposed fuzzy

controller. Via the proposed PDSF fuzzy controller design

method, the perturbed T–S fuzzy singular systems can be

controlled to simultaneously satisfy stability, robustness,

passivity, and decay rate constraint.

5 Conclusions

In this paper, a PDSF fuzzy controller with multiple con-

straints has been designed for the perturbed T–S fuzzy

singular systems with external noises. The performance

requirements described in this approach included the sys-

tem stability, robust constraint, decay rate constraint, and

passivity constraint. This paper’s advantage is that the

stability conditions developed by the proposed fuzzy con-

trol method are more straightforward than those derived by

using the state feedback control method. The simulated

comparison results show that the proposed PDSF fuzzy

control approach provided better state responses and output

tracking performance. The problem of extending the pro-

posed PDSF fuzzy controller design approach to discrete-

time cases can be studied and discussed in the future.
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