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Abstract We summarize the results of an intensive sim-

ulation study carried out to compare the performance of

three approaches to archetypal analysis regarded as a fuzzy

clustering tool: the original approach, namely that of Cutler

and Breiman (Technometrics 36(4):338–347, 1994), the

Ding et al. (IEEE Trans Pattern Anal Mach Intell 32(1):45–

55, 2010) proposal, and the factorized fuzzy c-means

algorithm. The artificial data we use in our experiment are

generated from polytopes in low-dimensional Rn spaces

2� n� 7ð Þ, and comprise a diversity of cluster contexts.

The simulation results show that the original proposal is

generally a more accurate method to uncover the cluster

structure hidden in the data and to reproduce the data

themselves. However, this supremacy, if any, is not clear

for the data generated from real life problems, and devoted

to unsupervised clustering problems.

Keywords Fuzzy clustering � Matrix factorization �
Archetypal analysis � Simulation

1 Introduction

The application of the matrix factorization approach to data

analysis, notably in fuzzy clustering, appeared in the lit-

erature long before the seminal work on nonnegative

matrix factorization (NMF) by Lee and Seung [26], fol-

lowing that of Paatero and Tapper [35]. Woodbury and

Clive [47] devise a method to estimate fuzzy partitions,

hypothetically underlying high-dimensional clinical cate-

gorical data, for medical diagnostic and prognostic pur-

poses. It is based on the so-called grade of membership

(GoM) model, and has since also been successfully used

beyond the medical contexts for which it was primarily

designed (e.g. [28, 38, 41, 43]). It expresses the position of

every individual in a structure set out by c� 2 pure types or

prototypes, as a convex combination of these pure types.

Independently, Mirkin and Satarov [30] propose an

extension of the GoM model to real-valued data, and it

reflects the use of matrix factorization for fuzzy cluster

analysis as we understand it nowadays. However, the

underlying model does not per se keep the prototypes close

to the observations [34]. A refinement of this model, that

potentially overcomes the referred drawback, is provided

by Cutler and Breiman [12], and called archetypal analysis

(AA). In this case, the prototypes, now archetypes, are

themselves convex combinations of data points, thus

entailing a representation of meaningful cluster centroids.

An alternative approach to the original proposal [30] is

provided by Nascimento in [33], and regarded as its smooth

version; it is known as fuzzy clustering with proportional

membership (FCPM), and is more resonant its FCPM-2

version (see also [32]).

The AA enjoyed some popularity and following in the

literature, and again attracted researchers’ attention, e.g.

[4, 7, 16–18, 31, 39, 44]. The work by Ding et al. [13] is

another exemplary application of the matrix factorization

approach to cluster analysis, notably the classical k-means.

It provides a reliable algorithm to estimate the archetypes,

and it is explored in the present study. Also of note is the

work by Thurau et al. [42], especially when it comes to

addressing massive data sets.

At this point, it is important to emphasize that the data

are analyzed differently in a matrix factorization
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framework than in a common fuzzy cluster analysis. The

popular fuzzy c-means (FCM) algorithm [3], for example,

seeks the central properties of the data and the prototypes

are therefore cluster centers. In the alternative approach,

the prototypes are instead the extreme points of a bounded

convex polyhedron or, simply, a polytope that, by

assumption, is the population from which the data are

sampled. In other words, the population is the convex hull

of the prototypes. A bridge between these two ways of

looking at the data structure is given in [37] and is called

factorized fuzzy c-means (FFCM) algorithm.

Despite the recent growing interest in AA or, more

generally, in the matrix factorization approach to fuzzy

clustering,1 the literature lacks a systematic study on the

behavior of different methods used to operationalize this

analytical tool. We will show that, under an alternating

optimization scheme, different approaches to AA differ

from each other only in the way the archetypes are esti-

mated. The estimation of the partition matrix can be

reduced to a set of independent constrained least squares

(CLS) problems and solved using a flat common solver.

This study therefore concerns the estimation of archetypes.

We must mention here the related work carried out by

Mendes and Nascimento in [29]. While these authors

explore two different ways of tackling the extremal

approach to fuzzy clustering, namely FCPM and an AA,

our study fits within the AA framework. This explains why

we do not include FCPM. Our research question can

therefore be formulated as follows: how reliable is the

matrix factorization approach to fuzzy clustering, provided

that it is an AA? In an attempt to answer this question, the

following empirical study is conducted.

We consider three different approaches to estimate the

archetypes in AA: the original proposal [12] which results

in another CLS problem, the one proposed in [13] devel-

oped under the framework of semi-nonnegative matrix

factorization (semi-NMF), and the FFCM [37]. We do not

subject the archetypes to constraints other than the one

entailed in its definition. For example, we do not require

them to be archetypoids, i.e. observed data, as in [44].

However, when this restriction is mandatory, the outcome

of our research work can be used upstream for seeding

purposes. We subject the three referred approaches to AA

to a test with synthetic data, by means of an intensive

Monte Carlo simulation, and data from real life problems

and devoted to clustering. As the simulation is computa-

tionally highly demanding, we opt to draw the synthetic

data from polytopes in low-dimensional spaces (� 7). In

this case we notice a better performance of the algorithm

proposed in [12] when compared to those in [13, 37].

However, the same does not hold when it comes to clus-

tered data. Here, the latter two algorithms outperfom the

former one. Moreover, the results are promising when we

compare their outcomes to that of the FCM algorithm. So

the output of our research work make practitioners aware

of the behavior of different methods of performing AA and,

therefore, can guide their choice for a particular method

according to the specific nature of the problem at hand.

Additionally, they can look at AA more confidently as a

credible alternative to FCM for data hypothetically orga-

nized in clusters.

Our manuscript develops as follows. In Sect. 2 we

briefly describe the theoretical framework of the matrix

factorization approach to fuzzy clustering and explain how

different forms of AA are operationalized; then we give a

detailed account of our experimental design and the results

obtained in Sect. 3; finally, Sect. 4 provides guidelines for

future work and some concluding remarks.

2 Matrix Factorization Framework

2.1 A Brief Review on NMF

An elegant form of introducing the archetypal analysis

(AA) is to frame it in a more general setting, namely under

a matrix factorization approach to data decomposition. For

pedagogical purposes, we start from the nonnegative

matrix factorization (NMF). In mathematical terms, this

approach can be formulated as follows.

Let X ¼ Xjk

� �
be an n� N real sample data matrix, and

suppose there are two matrices U ¼ Uik½ � of size c� N, and

V ¼ Vji

� �
of size n� c, where n� 2 is the dimension of the

feature space, N[ n is the sample size, and c� 2, such that

Xjk, Uik, Vji 2 Rþ0 , and

X � VU: ð1Þ

This can also be written suggestively as

Xþ� VþUþ; ð2Þ

where the plus sign in subscript highlights the nonnegative

restrictions. The product VU is called an NMF of X, and

the notation (1) emphasizes that we are seeking an

approximate factorization for the data matrix. For example,

X may be corrupted by additive noise and the product VU

is a representative of noise-free observations.

The column-wise representation of X, U and V are:

X ¼ x1 x2. . .xN½ �, U ¼ U1 U2. . .UN½ �, and V ¼ v1 v2. . .vc½ �,
respectively. The columns of V can be interpreted as basis

(generator) or component vectors whereas the matrix U

1 A special session entitled ’SS_37: Matrix Factorization for Fuzzy

Clustering and Related Approaches’ took place at 2017 IEEE

International Conference on Fuzzy Systems, in Naples, Italy:

https://www.fuzzieee2017.org/specialSessions.php.
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gathers up the representations of the data points with regard

to these vectors [24]. So we alternatively write (1) as

xk �
Xc

i¼1

Uikvi; k ¼ 1; 2; :::;N; ð3Þ

to highlight each observation xk as a nonnegative linear

combination of the component vectors. This analytical

representation tells that the data points lie (approximately)

in a (polyhedral) cone generated by the component vectors

v1; v2; :::, and vc [14]. Figure 1 exemplifies it for n ¼ 2 and

c ¼ 2. In general, the representation of data points (2) is

not unique; if a cone, say C, contains the data any other

cone C�, such that C 	 C�, also contains the data (in Fig. 1,

the data x1; x2ð Þ represented by circles are contained in both

cones: one with solid line v1 v2½ �, C in our nomenclature,

and C� with a dashed line v1� v2�½ �). The issue of non-

uniqueness of NMF is beyond the scope of this research

and therefore will not be discussed here; interested reader

may wish to consult [14], where the subject is treated in

greater detail.

Given a pre-specified value of c, the factors U and V can

be estimated by minimizing the generic criterion, loss or

objective function

Dc X VUkð Þ; ð4Þ

subject to the nonnegative constraints referred to above. In

(4), Dc :ð Þ is a divergence measure that accounts for the

difference or discrepancy between X and the product VU.

Three broad classes of divergence measures emerge in

developing an NMF [8]: the Bregman divergences, the

Amaris a-divergences and the Csiszár divergences. The

aforementioned paper explores this latter measure of

divergence; examples of the application of the two former

measures are [1] and [9], respectively. So there is great

flexibility in tackling a data decomposition problem using

an NMF approach, thus also making it possible to tailor the

divergence measure to specific purposes. For example,

Cichocki et al. [9] explore the a-divergences a ¼ 0:5; 1; 2ð Þ
in EEG data classification. Nevertheless, the least squares

or Frobenius norm, symbolically :k kF , which is a particular

case of the Bregman divergence, is perhaps the most

popular measure used in solving NMF problems. In par-

ticular, it is optimal for additive Gaussian noise [10]

(quoted in [11]). The underlying optimization problem

aims to minimize the objective function

Jc U;VjXð Þ ¼ 1

2
X
 VUk k2

F ; ð5Þ

and it is adopted in this study.

It is known that any divergence measure is individually

convex in U and V, but not necessarily in the product VU.

Therefore, an alternating optimization scheme is suit-

able for estimation purposes [2, 50]. Furthermore, this

optimization technique allows parallelization [25] and can

be very fast [2]. The convergence to a local minimum is

another issue of NMF approaches, regardless of the way

the matrices U and V are estimated. An appropriate ini-

tialization of the estimation algorithms can help mitigate

this drawback; see [5] for details on this subject. Readers

interested in a comprehensive review on NMF may refer to

[2, 50], from which we derive most of this section.

2.2 Archetypal Analysis

More recently, Ding et al. [13] extend the scope of the

application of NMF ideas, as expressed in (2), allowing the

data matrix to have mixed signs, that is Xjk 2 R. However,

this new perspective of the matrix factorization approach to

data analysis only entails the entries of the matrix V, i.e.

Vji, to have mixed signs; the matrix U remains nonnega-

tive. Formally, this modifies (2) to

X�� V�Uþ; ð6Þ

and is called semi-NMF. The above cited authors recast the

classical objective function for k-means clustering in a

matrix factorization form, provided U is an indicator

matrix, which leads its entries Uik 2 0; 1f g and, of course,

Xc

i¼1

Uik ¼ 1: ð7Þ

Subsequently, the columns of V are referred to as proto-

types. Relaxing the condition Uik 2 0; 1f g to Uik 2 0; 1½ �,
while keeping the restriction (7), potentially turns (6) into a

soft or fuzzy clustering of X.

This approach to fuzzy clustering was first proposed by

Mirkin and Satarov in [30]. Each observation (3) is now

a(n) (approximate) convex combination of c prototypes,

Fig. 1 Illustration of NMF in 2-dimensional space, for the ideal

setting X ¼ VU. The circles represent data points
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which configure a polytope and are its extreme points or

vertices (see Fig. 2a for an example of n ¼ 2 and c ¼ 6). In

fact, this polytope translates a fuzzy c-partition of the data

matrix X. From now on we refer to U as partition matrix

and Uik, usually written lik, as the membership degree of

the observation xk in fuzzy cluster i. In Fig. 2b we present

an output of the fuzzy c-means algorithm to highlight the

differences between two approaches to fuzzy clustering;

here the prototypes are represented by filled black circles.

It can be shown that, given V, the optimization of (5)

reduces to N independent constrained least squares (CLS)

problems [12], which can be solved easily and in parallel.

Specifically, minimizing Jc UjX;Vð Þ is equivalent to solving

min
Uk

1

2
xk 
 VUkk k2

� �
; 1� k�N;

s:t:
Xc

i¼1

Uik ¼ 1; 0�Uik� 1; 1� i� c;

ð8Þ

regardless of the way the matrix V is obtained. Here, :k k
symbolizes the Euclidean L2-norm. Our concern is there-

fore the estimation of V, given U, i.e. the minimization of

the objective function Jc VjX;Uð Þ.
If there is no restriction on V, we can estimate this

matrix by setting the derivative of the objective function

(5), with respect to V, equal to zero, i.e.

oJc
oV
¼ 
2 X
 VUð ÞUT ¼ 0;

which gives

V ¼ XUT UUT
� �y

; ð9Þ

where Ay symbolically denotes the pseudo-inverse matrix

of A. We call this approach unrestricted least squares

(ULSQ) solution, and will see that it does not necessarily

keep the prototypes close to the data points, as with the

proposal by Mirkin and Satarov [30].

An alternative approach to the estimation of V is pro-

posed by Cutler and Breiman in [12], and referred to as

archetypal analysis (AA). Accordingly, the prototypes,

now termed archetypes, are constrained to lie in the data

space by being convex combinations of the data points, i.e.

vi ¼
XN

k¼1

bki xk; 1� i� c; ð10Þ

or, in matricial form,

V ¼ XB; ð11Þ

where B ¼ bki½ � � b1 b2. . .bc½ �, such that bki� 0 and
PN

k¼1 bki ¼ 1. This confers the status of cluster centroids

on prototypes and potentially improves their interpretabil-

ity. The equation (6) can subsequently be rewritten as

X�� X�BþUþ;

which fits in the framework of convex-NMF [13]. As a

consequence, in AA the estimation of the matrix of pro-

totypes V converts into the estimation of N 
 1ð Þ � c of b
coefficients. This new perspective of the prototypes

strengthens the possibility of performing fuzzy clustering

via matrix factorization (see also [4]). In sum: given the

matrix B, V is updated using the relation (11). The opti-

mization process therefore alternates between the estima-

tion of U and B, and subsequently of V, until convergence.

Our study addresses the estimation of b coefficients, and

aims to examine how reliable an AA is as a fuzzy clus-

tering tool. We insist, a flat procedure, i.e. (8), can be used

to estimate U, regardless of the algorithm adopted for

obtaining the matrix B.

2.3 Estimation of b coefficients

In the original work [12], Cutler and Breiman estimate the

b coefficients using the so-called archetype algorithm,

Fig. 2 (a) An approximate convex hull of data points (grey circles) in 2-dimensional space, with c ¼ 6 vertices; (b) output of fuzzy c-means

algorithm for 6-cluster solution (the prototypes are represented by filled black circles)
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given the partition matrix U ¼ Uik½ �. It can be briefly

described as follows. Suppose va is the archetype of

interest, where 1� a� c; let

zk ¼
xk 


Pc
i¼1;i6¼a Uik vi

Uak

and the intermediate archetype

~va ¼
PN

k¼1 U
2
ak zkPN

k¼1 U
2
ak

:

A little algebra shows that the minimization of Jc VjX;Uð Þ
is equivalent to finding a solution for each of the following

c CLS problems:

min
ba

1

2
~va 
 Xbak k2

� �
; 1� a� c;

s:t: bka� 0 and
XN

k¼1

bka ¼ 1;

ð12Þ

which are formally similar to (8). After solving (12) for

each c archetypes, the V matrix is updated using formula

(11). This approach to the estimation of U and V iteratively

alternates between two least squares steps, namely (8) and

(12), and is referred to in the literature as alternating least

squares (ALS) solution [2]. In the same vein, Eugster and

Leish [17] propose a slightly different way to calculate the

intermediate archetypes ~va; later, we will illustrate how

close the two approaches can be.

The proposal by Ding et al. [13] arises from an attempt

to recast the classical k-means algorithm in the form of a

matrix factorization. The authors claim that this approach

generally works better if Uik are allowed to range over

values in 0; 1ð Þ instead of 0; 1f g, which potentially favors

fuzzy cluster analysis. To extend from an NMF approach to

semi-NMF, i.e. from Xjk 2 Rþ0 to Xjk 2 R, they consider

the positive and negative parts of a given matrix A ¼ Apq

� �
,

respectively, Aþpq and A
pq, where

Aþpq ¼ Apq

�� ��þ Apq

� �
=2 and A
pq ¼ Apq

�� ��
 Apq

� �
=2;

and deduct the following update rule for b coefficients:

bki  bki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTX
� �þ

UT
h i

ki
þ XTX

� �

BUUT

� �
ki

XTX
� �


UT
� �

ki
þ XTX

� �þ
BUUT

h i

ki

vuuut ; ð13Þ

where AT is the transpose of the matrix A. This rule can be

easily written in matrix form and efficiently implemented

in most computers, as the authors claim. We note that the

matrix product XTX and the operations involved in cal-

culating its positive and negative parts are performed only

once.

A special case of AA is proposed in [37] and is called

factorized fuzzy c-means (FFCM) algorithm. In general

terms, it aims to perform an FCM clustering using a matrix

factorization approach. Here, the archetypes are calculated

in a similar way to the prototypes in FCM and, technically,

it corresponds to setting the weighting exponent parameter

of the latter algorithm to m ¼ 1. In formal terms, the b
coefficients in FFCM clustering are calculated as follows:

bki ¼
Uik

PN
k¼1 Uik

; 1� i� c; ð14Þ

and consequently the archetypes are obtained by the for-

mula (10). We stress that (14) does not result from an

optimization procedure but rather is an effort to bridge the

two algorithms and provide practitioners with an alterna-

tive way to perform an FCM-like clustering. It is also worth

noting that the FFCM algorithm is computationally less

demanding than any of the previously reported AA meth-

ods since it essentially only requires the estimation of the

partition matrix U, i.e. solving the common CLS problems

(8).

We may therefore ask about the differences in the way

the various methods of performing AA tackle a given data

set. There is no simple or single answer to this question.

Anyhow, we use a toy data set and illustrate in Fig. 3 what

kind of data decomposition practitioners could expect from

these methods, considering a c ¼ 4 cluster solution. For

reasons that will soon become clear, we omit the solution

provided by the method proposed by Eugster and Leish

[17]; however we include the ULSQ solution (Fig. 3a) for

comparison purposes. A snapshot shows that the latter

solution takes the concept of convex hull too literally, and

elucidates what is meant by the ideal types not being ‘‘close

enough to the observed data points’’ [34]. The restriction

on prototypes (10) that gives rise to AA results in a

smoother version of the unrestricted solution (Fig. 3b), and

a simple visual inspection allows us to conclude that it

provides more insightful data decomposition. At the other

extreme, the proposal by Ding et al. [13] and the FFCM

algorithm (Figs. 3c, 3d) attempt to place the archetypes

within data clouds, according to the methodological prin-

ciple behind them, i.e. reproducing k-means or FCM,

respectively. Apparently, the polytope generated by FFCM

is more stretched.

In continuing our preliminary study, we also notice the

similar behavior of the proposals by Cutler and Breimen

[12] and by Eugster and Leish [17]. Figure 4 shows how

close the solutions provided by the two approaches to fuzzy

clustering are. We also display graduated axes to highlight

their quantitative similarity. In our massive empirical

analysis, we therefore decided to omit the latter one to save

computational time.
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We end this section with a reflection on objective

function (5). Unlike FCM, where the objective function is a

measure of the compactness of fuzzy clusters (see, e.g.,

[48]), in matrix factorization approach, the function (5) is

used to assess how the polytope generated by the arche-

types envelops the data points. To make this point clearer,

we present some numerical values associated with the

estimation of U and V behind Figs. 3 and 4. Table 1 dis-

plays the number of iterations each method took until

convergence and the respective value of the objective

function J4 (5). Looking simultaneously at these figures,

we realize that the polytope produced by the ULSQ solu-

tion covers almost all data points and, consequently, yields

the lowest value of J4. Its two smoother versions, Cutler

Fig. 3 Artificial data decomposition in c ¼ 4 clusters: (a) ULSQ; (b) Cutler and Breimen [12]; (c): Ding et al. [13]; (d) FFCM

Fig. 4 Decomposition of artificial data in c ¼ 4 clusters: (a) Cutler and Breiman; (b) Eugster and Leish
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and Breimen and Eugster and Leish, yield higher values of

J4, since more data points lie outside the polytopes they

generate. Here, too, the close relationship between these

two approaches to AA is evident. These results help

understand why the remaining two approaches provide

much greater values of the objective function.

Although this simple illustrative example gives an

indication of the behavior of different methods, we can

hardly anticipate the role played by different analytical

forms for obtaining archetypes, (12), (13) or (14), in a

fuzzy cluster analysis. We therefore opt for a stochastic

simulation study to evaluate their behavior in different

clustering scenarios, which is covered in the next section.

3 Empirical Study

3.1 Strategy

To examine the behavior of different forms of AA, we use

artificial data to perform a simulation study, and then put

them to the test with some data sets taken from real life

problems. The results of this latter test are given in Sect.

3.5; first we explain the simulation work in detail.

The flow chart of Fig. 5 systematizes the way the sim-

ulation is conducted. First, we need a polytope or a data

generator, which is characterized by c� � 2 extreme points

or vertices, v1; v2; :::, and vc� . This conforms to the

underlying assumption of the matrix factorization approach

to fuzzy clustering, in that the data are drawn from a

polytope with c� extreme points or vertices. Technically

these vertices are the columns of V matrix. Samples of

membership degrees in each c� fuzzy cluster, i.e the par-

tition matrix U, give rise to pure or noiseless data, by

means of the product P ¼ VU, that is a sample of the

convex hull of v1; v2; :::; vc� . A noise component is added

to P to mimic a real world environment, and we have the

data matrix X.

The matrices U and V are estimated from the data X; the

corresponding estimates are denoted by Û and V̂, respec-

tively. The calculation of V̂ is preceded by the estimation

of b coefficients. The matrix U is estimated solving N

independent least squares problems as expressed in (8).

The final step is to evaluate the performance of different

approaches as fuzzy clustering tools and their ability to

recover the original matrix P, as indicated in Fig. 5.

Although the term clustering is consensually accepted by

research communities as the ‘‘methods for grouping of

unlabeled data’’ [23], there are several issues associated with

the variety of structures hidden in multidimensional data

sets. These include, among others, clusters’ shape, their

spatial distribution and density, besides the number of

clusters in data and its assessment and, of course, the space

dimension. For example, the FCM algorithm may become

less reliable when addressing high dimensional data [46]. In

this study, we confine ourselves to low dimensional spaces,

concentration degrees and class imbalance; the goodness-of-

fit of cluster solutions provided by different algorithms is

assessed by means of a generalized Dice index [22] and the

reconstruction accuracy, as explained in Sect. 3.3.

3.2 Artificial Data Sets

We consider six space dimensions, n ¼ 2; 3; :::; 7, and for

each dimension we generate nine different cluster struc-

tures, c� ¼ 2; 3; :::; 10. Two software tools are used to

construct the matrix of prototypes V: polymake [21] for

c�[ n and our own software otherwise. In any case, the

prototypes, v1; v2; :::, and vc� , are located on the unit (hy-

per)sphere of Rn, centered at the origin. The partition

matrix U ¼ Uik½ � is constructed according to the following

procedure. The membership degrees Uik are generated from

0; 1½ � uniform distribution, with four threshold levels for

the belongingness in clusters: c ¼ 0:95, 0.85, 0.75, or 0.65.

For example, c ¼ 0:75 means minUik ¼ 0:75, i.e. the

membership degree of xk in fuzzy cluster i is, at least, 0.75.

This allows different concentration degrees in clusters. The

sample size is equal to N ¼ 50� c�; the partition matrix is

randomly replicated 15 times for each value of c, and each

replicate gives rise to a noiseless data set

Table 1 The value of the objective function and the number of

iterations until convergence for the toy data set (c ¼ 4)

Method Iterations J4

ULSQ 22 1.1

Cutler and Breimen 15 5.3

Eugster and Leish 14 5.5

Ding et al. 22 89.2

FFCM 19 186.0

Fig. 5 Flow chart of the simulation study (C&B means Cutler and

Breiman; the meaning of the performance measures D P̂; P
� �

and tD
is given below)
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P ¼ VU: ð15Þ

At this point, we stress that the ground truth is fuzzy rather

than crisp since we have prior knowledge of U. Therefore,

we will end by comparing two fuzzy partitions: the true

partition represented by P, as in (15), and the partition

estimated by different algorithms,

P̂ ¼ V̂Û; ð16Þ

where V̂ and Û are the estimates of V and U, respectively.

The data matrix X is constructed by contaminating P

with additive gaussian 0; rIð Þ noise, for r ¼ 0:001; 0.01 or

0.05, where I is the n� n identity matrix; so

X ¼ Pþ E; ð17Þ

where E symbolizes the error term which is simulated by

the referred gaussian noise. In sum, X is decomposed in Û

and V̂, and the accuracy of this decomposition is measured

by comparing P̂ to P and also Û and U, in terms that will

soon be clear.

To evaluate the effect of class imbalance, we consider

three different class densities: equal size, 10% and 60%

density. A 60% density means that one cluster has 0:6� N

data points and the remaining 0:4� N are evenly spread

over other c� 
 1 clusters. The same rationale applies to

10% density. In total, we have six dimensions, nine cluster

structures, four membership thresholds, three noise levels,

three densities which amount to 1, 944 cluster contexts

each one being replicated 15 times, totalling 29, 160 arti-

ficial data sets. For each cluster context, a 16th data set

provides for a flat initialization of all algorithms.

All calculations were performed in a MATLAB envi-

ronment. Using our non-optimized code, the total compu-

tational time of this simulation was about nine months. We

limited the error term, i.e. maximum absolute difference

between two membership degrees in consecutive iterations,

to 0.01. The number of clusters in the data ranged between

c ¼ 2 to c ¼ cmax ¼ max 8; 1:5� c�f g. All point-based

graphics representing simulation outcomes are smoothed

using the MATLAB smooth() function.

3.3 Assessing the Goodness-of-fit

Now we address the measurement of the discrepancy

between P̂ and P, D P̂;P
� �

, and between Û and U (Fig. 5).

For the latter case, we use the fuzzy generalization of the

Dice index proposed by Hüllermeier et al. [22], which has

proven effective in comparing data partitions [40]; we

denote the underlying measure by tD. We use the quantity

1
 R, called reconstruction accuracy (RA), where R is

given by

R ¼
P̂
 P



 


F

Pk kF
; ð18Þ

to assess the ability of P̂ to reproduce P, that is D P̂;P
� �

; the

subscript F in (18) indicates the Frobenius norm. Next we

give a brief account of how tD works. We note that tD
needs prior information about the cluster structure of the

data and is therefore called external index.

Suppose we have two crisp partitions of a given data set

X: K1 and K2, where K1 is the reference partition and K2 is

an algorithmically-generated partition of X. There is no

need for the number of clusters of K1, c1, be equal to that of

K2, c2, although the match c1 ¼ c2 is always appealing.

The aim is to evaluate how K2 mimics K1. There are four

quantities involved in this process based on
N
2

� �
pairwise

comparisons of data points:

N11 : number of pairs of data points grouped in the same

cluster in K1 and in the same cluster in K2;

N12 : number of pairs of data points grouped in the same

cluster in K1 and in different clusters in K2;

N21 : number of pairs of data points grouped in different

clusters in K1 and in the same cluster in K2; and

N22 : number of pairs of data points grouped in different

clusters in K1 and in different clusters in K2.

The Dice index is a function of the two partitions that

are being compared and is given by the quotient

tD � tD K1;K2ð Þ ¼ 2� N11

2� N11 þ N12 þ N21

; ð19Þ

and its range is the unit interval 0; 1½ �: the higher the value

of the index, the greater the efficiency of the algorithm.

Now suppose that K1 and K2 are instead two fuzzy parti-

tions of X, and we want to know how these four quantities

can be written in terms of membership degrees. The

starting point is the equivalence relation on X, by means of

a similarity measure between data points as expressed by

the respective membership degree vectors,

EK xk; xk0ð Þ ¼ 1
 1

2

Xc

i¼1

Uik 
 Uik0j j; 1� k; k0 �N; ð20Þ

where c is the number of clusters in a generic partition K,

and Uik and Uik0 are, respectively, the kth and k0th columns

of the corresponding partition matrix U. So all quantities

involved in the right hand side of (20) should be replaced

according to the partition for which it is calculated.

Hüllermeier et al. [22] propose the following fuzzy coun-

terparts of the four quantities referred to above:
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N11 k; k0ð Þ ¼ 1
 u
 vj jð Þ � u � v;
N12 k; k0ð Þ ¼ max EK1

xk; xk0ð Þ 
 EK2
xk; xk0ð Þ; 0ð Þ;

N21 k; k0ð Þ ¼ max EK2
xk; xk0ð Þ 
 EK1

xk; xk0ð Þ; 0ð Þ;
N22 k; k0ð Þ ¼ 1
 u
 vj jð Þ � 1
 u � vð Þ;

where u ¼ EK1
xk; xk0ð Þ and v ¼ EK2

xk; xk0ð Þ. These quan-

tities are alternatively used in (19) to calculate a fuzzy

version of tD. By virtue of its construction, in our case, the

reference partition K1 is also fuzzy. This is very unusual;

for instance, the class memberships of real life data sets we

use in Sect. 3.5 are crisp, i.e. either fully belong to a cluster

or do not.

The question now is how to select a fuzzy partition of

data set, given a cluster context. First we note that the

number of clusters of K1, c1, is equal to c�, and it is known

a priori. The partition K2 is selected among all fuzzy c-

partitions attempted for the data set X, and c2 is determined

by solving

c2 ¼ max
c

tD K1;K
ðcÞ
2

� �
; c ¼ 2; 3; :::; cmax;

where KðcÞ2 represents the second partition with c clusters.

In our study, cmax ¼ 8; 1:5� c�f g as referred above. The

fuzzy c2-partition, i.e. K c2ð Þ
2 is used to calculate P̂ to assess

the reconstruction accuracy (18) of every algorithm and the

quantity tD K1;K
c2ð Þ

2

� �
is the algorithm’s relative rank for

the cluster context in question. For inferential purposes, we

use the average values associated with the optimal parti-

tions over 15 replicates of a given cluster context.

3.4 Empirical Evidence

It is not easy to portray the results from an experiment

when it produces a huge amount of information. We

decided to combine the outcomes related to different class

membership and noise contamination, focusing mainly on

the effects of the space dimension, n, and the cluster

structure of the data, c�, for each class density under study:

equal, 10% and 60%. First, we elaborate on how the three

methods of performing an AA, Cutler and Breiman (C&B),

Ding et al. and FFCM behave as fuzzy clustering tools, and

then address in Sect. 3.4.4 their reconstruction accuracy.

Fig. 6 Clustering accuracy of the three methods of performing archetypal analysis as assessed through the Dice index tD, in function of the

number of clusters in the data, c�, for different dimensions and equal density
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3.4.1 AA as a Clustering Tool

With the exception of the case n ¼ 2, we realize that the

C&B method generally gives rise to fuzzy partitions that

better express the cluster structure of the data than the other

two, as assessed by tD (Figs. 6, 7 and 8). In the case of

equal (Fig. 6) and 10% density (Fig. 7), the discrepancy

apparently becomes sharper as n increases, where a

degradation of the performance with c� is also evident,

regardless of the value of n. When it comes to 60% density

class (Fig. 8), the behavior of tD seems to be stable and

almost constant from n ¼ 4, and leads us to believe that the

clustering is more accurate here. In the same vein, a closer

look at the behavior of tD in the cases of equal and 10%
density (see Figs. 6 and 7, respectively) reveals a better

performance in the latter case when the number of clusters

c� is low, but it tends to be similar to the former as long as

c� ! 10. This is consistent with what has just been said,

since the 10% class starts to be more underrepresented and

steadily increases its representation with c�, and the data

are fully balanced when c� ¼ 10. Later, we return to the

subject of data imbalance in detail. In any case, the

proposal by Ding et al. and the FFCM run closely in par-

allel; however, the former outperforms the latter for almost

all values of n. Regarding 2D data, the three methods

perform almost similarly for all values of c�.

3.4.2 Comparing Mean Differences

Although the graphical information of tD reflects the way

different data analysis methods act as clustering tools, it is

advisable to find an analytical device that allows us to

verify how significantly these methods differ from each

other. This may also lead practitioners to make a more

confident choice for one or other method. Therefore, we

conducted a single factor ANOVA to test

H0 : l 1ð Þ
tD n; dð Þ ¼ l 2ð Þ

tD n; dð Þ ¼ l 3ð Þ
tD n; dð Þ;

n ¼ 2. . .7; d ¼ equal; 10%; 60%

H1 : atleastone l ið Þ
tD

n; dð Þ 6¼ l jð Þ
tD

n; dð Þ;

where l 1ð Þ
tD , l 2ð Þ

tD and l 3ð Þ
tD are the true mean values of tD

related to C&B, Ding et al. and FFCM, respectively, for

each dimension and density. A a ¼ 0:10 significance level

Fig. 7 Clustering accuracy of the three methods of performing archetypal analysis as assessed through the Dice index tD, in function of the

number of clusters in the data, c�, for different dimensions and 10% density
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was set for all tests. Where a significant difference was

found, the specific differences between the AA methods

were further examined by a post-hoc analysis using

Tukey’s HSD test. Table 2 summarizes the results of the

ANOVA test, which also includes the F-statistic and the

associated p-value for every case. In some cases, overlap-

ping took place; this is signaled by the letters A and B, in

this table. Consider, for example, the dimension n ¼ 4 and

equal density: the Ding et al. method can be grouped with

both C&B, A, or FFCM, B.

We fail to reject the Levene’s test for equality of vari-

ances in all cases and the normality assumption for equal

and 10% density data. The latter does not hold in most

cases of 60% density data; this might not be critical, since

ANOVA is considered a robust test against that

assumption.

Looking at Table 2, we realize that when tD’s signifi-

cantly differ on average, the C&B proposal provides better

clustering accuracy; this also generally holds for n[ 2

even when it is not significantly different than that of the

Ding et al. method. We also notice the preponderance of

C&B becomes more evident as n increases. So it may be

recommended as the first choice in performing archetypal

analysis of the data drawn from polytopes.

3.4.3 Imbalanced Data

Now we address the subject of imbalanced data, in par-

ticular, the data containing one class with 60% density.

Looking again at Fig. 8, it is surprising to note that every

method performs better in the presence of imbalanced data,

when we know that class imbalance is an issue in data

mining research [6, 20, 45, 49]. We therefore need to

examine how the overrepresented class, i.e. 60% density,

influences the clustering accuracy tD. It is known that, in

such cases, several factors have interdependent effects on

minority classes, leading them to somehow be ignored;

nevertheless, the validity criterion can give the illusion of

good clustering [19, 20]. To measure the contribution of

the dominant class to tD, we compare the number of data

points that are originally grouped together in the reference

partition and those that were algorithmically grouped by

different AA methods. This task can be accomplished by

simply restricting the calculation of N11 term in the

numerator of (19), to the subset of data points that belong

Fig. 8 Clustering accuracy of the three methods of performing archetypal analysis as assessed through the Dice index tD, in function of the

number of clusters in the data, c�, for different dimensions and 60% density
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to the dominant cluster. Dividing the value thus obtained

by tD, gives the desired result.

The results achieved show no noticeable difference

between different methods and the influence of the over-

represented cluster across c� is almost the same regardless

of the value of n. We therefore select one value of n

n ¼ 2ð Þ and one method (C&B) and in Fig. 9 give a general

idea about the relative contribution of 60% density cluster

to tD. The contribution increases with c�, i.e. when the data

become more imbalanced, and can be higher than 90%. As

a consequence, we conclude that the class imbalance also

remains an issue in the context of AA.

3.4.4 Reconstruction of Data

Fuzzy cluster analysis can be seen as a technique of

information granulation and used as a mechanism of

encoding and decoding data, which altogether fit in the

framework of a reconstruction problem, as Pedrycz and

Oliveira note in [36]. In simple terms, the problem involves

grouping the data in fuzzy clusters (encoding) and

rebuilding the original data set from these clusters (de-

coding). The previously cited authors explore the recon-

struction problem in the context of Bezdek’s FCM

algorithm [3]; we do so in the context of matrix

Table 2 Summary of single-factor ANOVA comparing the mean values of mD associated with (1): C&B, (2): Ding et al. and (3): FFCM

n Density

Equal 10% 60%

2 l̂ 1ð Þ 0.77 0.79 0.88

l̂ 2ð Þ 0.78 0.79 0.88

l̂ 3ð Þ 0.76 0.78 0.86

F2;24¼0:04 F2;24¼0:03 F2;24¼0:46

p ¼ 0:96 p ¼ 0:97 p ¼ 0:64

3 l̂ 1ð Þ 0.84 0.85 0.92

l̂ 2ð Þ 0.81 0.82 0.91

l̂ 3ð Þ 0.80 0.81 0.89

F2;24¼0:62 F2;24¼0:48 F2;24¼0:92

p ¼ 0:55 p ¼ 0:62 p ¼ 0:41

4 l̂ 1ð Þ 0:89� Að Þ 0.89 0:95�

l̂ 2ð Þ 0:83 A;Bð Þ 0.84 0.92

l̂ 3ð Þ 0:82 Bð Þ 0.83 0.91

F2;24¼2:06 F2;24¼1:96 F2;24¼13:63

p ¼ 0:07 p ¼ 0:16 p ¼ 0:00

5 l̂ 1ð Þ 0:89� 0:90� Að Þ 0:95�

l̂ 2ð Þ 0.83 0:84 A;Bð Þ 0.92

l̂ 3ð Þ 0.82 0:83 Bð Þ 0.91

F2;24¼4:35 F2;24¼2:89 F2;24¼11:54

p ¼ 0:02 p ¼ 0:05 p ¼ 0:00

6 l̂ 1ð Þ 0:90� 0:90� Að Þ 0:95�

l̂ 2ð Þ 0.84 0:85 A;Bð Þ 0.92

l̂ 3ð Þ 0.83 0:83 Bð Þ 0.91

F2;24¼4:69 F2;24¼4:69 F2;24¼18:24

p ¼ 0:02 p ¼ 0:02 p ¼ 0:00

7 l̂ 1ð Þ 0:91� 0:91� 0:95�

l̂ 2ð Þ 0.84 0.84 0.93

l̂ 3ð Þ 0.83 0.84 0.92

F2;24¼5:59 F2;24¼3:79 F2;24¼29:02

p ¼ 0:01 p ¼ 0:04 p ¼ 0:00

The quantity l̂ is an estimate of the true value l. The * means significant at 10% level. The overlapping groups are signaled by the letters A and B
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Fig. 9 Influence of the overrepresented cluster on clustering accuracy

Fig. 10 Reconstruction accuracy (RA) of archetypal analysis in function of c�, given n, for equal density data

2194 International Journal of Fuzzy Systems, Vol. 23, No. 7, October 2021

123



factorization, X ’ VU (see [27] for a Bayesian approach to

this problem, including a comparison to a classical k-means

algorithm).

We use the outcomes of our simulation study to also

assess how AA behaves in the decoding process. The

reconstruction accuracy (RA), 1
 R, where R is given by

(18), is the performance index we use for this purpose. The

results of our experiment are displayed in Figs. 10, 11 and

12, for equal, 10% and 60% density data, respectively.

Here too, the original method of estimating the arche-

types, C&B, provides more reliable results compared to the

ones given by the other two methods, Ding et al. and

FFCM and, apparently, is fairly robust to class imbalance,

space dimension and the number of clusters in the data.

However, the latter algorithm seems more sensitive to class

imbalance, since it generally provides better results as the

number of clusters c� increases, in the case of 10% density;

on the other hand, its accuracy in the decoding process

tends to degrade with this factor when the data possess one

dominant cluster. Our attention is also drawn to the

behavior of the Ding et al. proposal, in particular, for n ¼ 7

and equal and 10% density data. Although we cannot take

the effect of n on it for granted, this outcome opens up

opportunities to continue the investigation on this subject.

Nevertheless, it generally performs better than FFCM.

As before, we conducted an ANOVA test to assess how

the reconstruction accuracy provided by the three methods

under study differs on average from each other. Excepting

the case n ¼ 7 and equal and 10% density data, the C&B is

ranked first, the Ding et al. second and FFCM third. In the

exceptional case, the last two are statistically ranked sec-

ond. This could somehow be anticipated as the respective

RA curves twist at c� ¼ 7 (Figs. 10 and 11).

We note that, in this ANOVA test, the normality

assumption is violated in almost all cases and the Levene

test for equality of variances is rejected in several cases.

The achievements should therefore be interpreted with

caution.

3.5 Real-life Datasets

As the final stage of our experiment, we put the three

methods of performing AA to the test with data sets from

real life problems. Here, we also consider the FCM algo-

rithm, with the weighting exponent parameter m ¼ 2, for

comparison purposes. The eight data sets presented in

Fig. 11 Reconstruction accuracy (RA) of archetypal analysis in function of c�, given n, for 10% density data
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Table 3 were downloaded from UCI Machine Learning

Repository [15], and are devoted to classification problems.

Here too we use tD (19) to assess the goodness-of-fit of the

estimated fuzzy partitions. We note, however, that the

membership degrees of the ground-truth partition K1

belong in this case to 0; 1f g, while those of K2 are fuzzy,

0; 1½ �. So for real life data, tD will be confronting a crisp

partition with a partition that is fuzzy. In Table 3, the

highest values of tD are in bold to highlight the AA method

that better unveils the cluster structure of the data. This also

Fig. 12 Reconstruction accuracy (RA) of archetypal analysis in function of c�, given n, for 60% density data

Table 3 Performance of

different AA methods and of the

FCM algorithm for data from

real life problems

tD

Data set N n c� C&B Ding et al. FFCM FCM

Forest type 523 4 4 0.46 0.50 0:51 0.46

Glass identification 214 9 6 0.41 0:46 0:46 0.44

Glass W – NW 214 9 2 0.79 0:81 0:81 0.79

Haberman’s survival 306 3 2 0:57 0.51 0.51 0.53

Hill–Valley (with noise) 606 100 2 0:61 0.60 0.59 0:61

Iris 150 4 3 0.61 0:69 0:69 0:72

Seeds 210 7 3 0.56 0.63 0:66 0.63

Wisconsin breast cancer 683 9 2 0.81 0.86 0:88 0.84

The data set referred to as Glass W–NW is the same as Glass Identification, though the glass is instead

categorized into Window and Non-window type. In the case of the Wisconsin Breast Cancer data set, the 16

observations with missing values were omitted

2196 International Journal of Fuzzy Systems, Vol. 23, No. 7, October 2021

123



applies to FCM when this algorithm attains the highest

value of tD.

Overall, and unlike when we used artificial data, there is

no clear evidence of C&B supremacy. We note that, in

most cases, the Ding et al. proposal and, particularly,

FFCM outperform any other. But to what extent is this

surprising and how far is it from expectations? In an

attempt to answer these questions, we go back to equation

(10), i.e. vi ¼
PN

k¼1 bki xk, and try to understand the

strategy underlying different approaches to AA to estimate

b coefficients and, consequently, the V matrix. For Cutler

and Breiman [12], and in sequel [17], the constraint on

archetypes to be mixture of observations serves to avoid

them being ‘‘wholly mythological’’; however, they are kept

as possible on the boundary of the convex hull of the data.

In this way, they prevent the archetypes being far from the

observations, thus circumventing the drawback of the

original work [30] to which Nascimento and Mirkin [34]

draw attention. The work by Ding et al. [13] explores the

averaging nature of archetypes (10), which captures the

cluster centroid notion, to recast the k-means clustering in

the form of matrix factorization; as a possible consequence

the archetypes are pushed to ‘‘center’’ (see again Fig. 3).

By allowing the entries of the partition matrix U to lie in

0; 1½ � interval, this approach potentially gives rise to a fuzzy

clustering. In turn, Suleman [37] provides his method with

an FCM flavor by using the same procedure as the latter

algorithm to calculate cluster centroids, here archetypes.

This may explain why these two approaches [13, 37] obtain

better results than those of [12], when addressing clustered

data.

4 Concluding Remarks

We have presented the results of a simulation study carried

out to examine the behavior of three methods for per-

forming archetypal analysis (AA), in the context of fuzzy

clustering: the original proposal by Cutler and Breiman

[12], the method proposed by Ding et al. [13] and the

factorized fuzzy c-means (FFCM) algorithm [37]. Our

experimental design included factors that can impact

clustering, namely the space dimension n, the number of

clusters in the data c�, the degree of membership, and class

density; the latter helped evaluate the effect of class

imbalance. Two measurements of the goodness-of-fit were

considered: a generalized version of the Dice index, tD
(19), and the reconstruction accuracy, 1
 R (18). We find

that, in the ideal environment, the C&B method provides

more accurate results than the other two methods, not only

in clustering but also in decoding the original data. We also

notice the effect of class imbalance; the relative contribu-

tion of the overrepresented class on tD increases with c�,
regardless of the method used in conducting an AA. Here

too, there is a need for more appropriate approaches to

tackle class imbalance. Next, we used some data sets from

the UCI Machine Learning Repository to test how the

methods behave in a more realistic environment. We also

included the FCM algorithm for comparison purposes. The

superiority of C&B over the others, if any, is not clear.

However, additional experiments must be carried out in

future to see the extent to which the methods in [13, 37]

perform better than C&B for data with different cluster

distributions or shapes; and to determine how the AA is a

credible alternative to FCM clustering in this case.

The question of how AA deals with outliers also remains

unanswered. Just out of curiosity, we added two outliers to

the toy data set used in earlier examples (see the circled

points in Fig. 13), and performed an AA using C&B and

Ding et al. methods, decomposing it into c ¼ 4 clusters.

Apparently, whereas C&B tends to incorporate the outliers

in the convex hull and, consequently, keeps some arche-

types away from the observations, Ding et al. ignores them,

as shown in Fig. 13. This demonstrates the validity of

concerns expressed by Cutler and Breiman in that the

location of the archetypes on the boundary of the convex

hull of the data can make their procedure sensitive to

outliers. Studying the effect of abnormal observations on

different methods is therefore a challenging topic for future

work.

Our research agenda on AA includes the design of a

cluster validity index and a software tool to carry out this

kind of data analysis. Suleman [39] provides an initial step

towards cluster validation, but the subject is far from

resolved; much work is needed before a conclusion can be

Fig. 13 Archetypal analysis of an artificial data set with two outliers

(circled points) using C&B and Ding et al. methods, for c ¼ 4
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drawn on the effectiveness of the proposed index. For

example, the behavior towards random partitions needs

clarification. Regarding the software tool, Eugster and

Leisch [17] provide an implementation in R, using a

method similar to C&B. We are working on a more com-

prehensive approach in MATLAB environment, which

allows users both to perform different sorts of AA and to

upgrade it with new methods when they are available. At

the present time, our concern is the design of a user-

friendly interface with the hope of making AA a more

attractive fuzzy clustering tool for practitioners.
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