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Abstract Fuzzy regression is a generalized regression

model to represent the relationship between dependent and

independent variables in a fuzzy environment. The fuzzy

linear regression analysis seeks for regression models fit-

ting well all the data based on a specific criterion. In this

paper, an adaptive neuro-fuzzy inference system (ANFIS)

is employed for the analysis and prediction of a nonpara-

metric fuzzy regression function with non-fuzzy inputs and

symmetric trapezoidal fuzzy outputs. To this end, two new

hybrid algorithms are proposed in which the fuzzy least

squares and linear programming have been used to opti-

mize the secondary weights. The algorithms are applied to

a multi-layered validation method to confirm the models’

reliability. In addition, three methods of nonparametric

fuzzy regression with crisp inputs and asymmetric trape-

zoidal fuzzy outputs, are compared. Three nonparametric

techniques in statistics, namely local linear smoothing (L-

L-S), K-nearest neighbor smoothing (K-NN) and kernel

smoothing (K-S) with trapezoidal fuzzy data have been

analyzed to obtain the best smoothing parameters. The

performance of the models is illustrated through numerical

examples and simulations. More specifically, the accuracy

of the algorithms is confirmed by exhaustive simulations.

Keywords Nonparametric fuzzy regression � Trapezoidal
fuzzy numbers � Adaptive neural fuzzy inference system

(ANFIS) � Local linear smoothing (L-L-S) � K-nearest
neighbor smoothing (K-NN) � Kernel smoothing (K-S)

Abbreviations

MFi Membership function
�
Yi

A trapezoidal fizzy number

ok:i Placed as layers

d2 ~Yi � bYi
� �

Diamond distance measures

b

eYi

� �

A predicted of a trapezoidal fuzzy number

xj xð Þ Weight sequence at x

CV Cross-validation

k(.) Kernel smoothing

1 Introduction

Regression is a very powerful method to understand the

relationship between the dependent and independent vari-

ables. The theory of fuzzy sets was introduced in 1965 by

Zadeh [1], who generalized the theory of formal and con-

ventional collections. Fuzzy sets are potentially a wider

field of operation, especially in the area of information

processing and classification patterns. Fuzzy theory is able

to infer, control, and make decisions against uncertainties,

especially, for concepts of inaccurate and vague nature.

Fuzzy regression, which firstly introduced by Tanaka et al.

[2], is a simple modification of regression that it demon-

strates the relationship among variables in a fuzzy envi-

ronment. The expression ‘‘linear regression model’’ points
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out to situations where fuzzy membership functions are

used to describe behaviors of the parameters instead of the

probability distribution functions. The concept became

more known by other researchers afterwards, for example,

fuzzy regression methods by Ishobishi [3], and the least

squares method by Diamond [4], chang and Lee [5] and

Yang et al. [6].

In 1996, Karacapulos [7] showed that fuzzy neural

systems, i.e., the integration of neural networks and fuzzy

logic, have capabilities far beyond those of either system

individually. This advantage has been mirrored in studies

such as Ishobishi and Tanaka [8], Cheng and Lee [9].

Arnold [10] combined the neural network, fuzzy logic and

genetic algorithm. Mosleh. et al. [11] used the fuzzy Neural

Networks to evaluate fuzzy linear regression, fuzzy poly-

nomial regression, fuzzy matrix equations, simulation and

evaluation of fuzzy derivative equations. Statistical non-

parametric smoothing techniques have achieved significant

development in recent years. Danesh. et al. [12] used

ANFIS in fuzzy nonparametric regression with triangular

numbers in order to predict and estimate the data based on

the least squares regression method. A regression analysis

of fuzzy trapezoidal numbers with both fuzzy inputs and

fuzzy outputs was performed by Sun and Lu [13].

Cheng and Lee [14] have extended the K-nearest

neighbor (K-NN) and kernel smoothing (K-S) methods for

the context of fuzzy nonparametric regression. Razzaghnia

et al. [15, 16] used hybrid methods in nonparametric

regression with triangular fuzzy data. Also, Razzaghnia

[17] upgraded the neural network in fuzzy linear regression

to avoid the effect of outliers. Skrjanc [18] focused on

evolving fuzzy rule-based models and neuro-fuzzy net-

works for clustering, classification and regression and

system identification, in online and real-time environments.

Junhong et al. [19] proposed a new fuzzy regression model

based on trapezoidal fuzzy number and least absolute

deviation method. Deng and Zhao [20] used The adaptive

control parameters to make the relatively uniform distri-

bution, and solved the contradiction between expanding

search and finding optimal solution. Khosravi and shahabi

[21] introduced three Multi-Criteria Decision-Making

(MCDM) analysis techniques, along with two machine

learning methods. Liu et al. [22] proposed a new algorithm

and as compared with some commonly used learning

algorithms, such as support vector machine, the k-nearest

neighbors and other combination algorithms.

In this paper, a fuzzy regression algorithm is proposed

based on ANFIS whose aim is to reduce errors compared to

other algorithms. The input data are assumed to be of fuzzy

nature. The output estimated parameters must be better or

at least overlap with the rival algorithms. The choice of

trapezoidal membership function (MF) is due to their lower

ambiguities against to the other MFs.

The advantages of the present study with respect to

many of previous works can be summarized as follows:

One of the advantage of this work is to use trapezoidal

data. In this paper, we extended the triangular fuzzy

numbers to trapezoidal fuzzy numbers for avoiding

unnecessary fuzziness of the linear fuzzy model in ANFIS.

When a large membership grades are given to many

observations, the linear fuzzy model with triangular fuzzy

coefficients tends to have large fuzziness. In some cases,

such large fuzziness numbers can be avoiding by using

trapezoidal fuzzy numbers as fuzzy coefficients. The other

advantage is to use V-fold Cross Validation technique for

training ANFIS network. The proposed method and the

smoothing methods are compared with the CV scale. The

conducted simulation of experiments are shown that the

performance of the proposed method is better than that of

the smoothing methods, which reduces the CV. In the

proposed approach when the observation numbers are

increased, compared to the existing smoothing methods,

the accuracy is increased. Generally, the proposed method

(V-fold cross validation technique with trapezoidal data)

reduces the fuzziness of the system and it has faster

adaptation.

The rest of the paper is as follows. Section 2 presents

the preliminary math of nonparametric fuzzy regression

and trapezoidal MF needed for the sections afterwards. The

validation method, smoothing methods for trapezoidal

fuzzy numbers, ANFIS and the projected hybrid algorithm

will be presented, respectively in Sects. 3 and 4 and 5.

Section 6 gives some numerical examples receptively.

Finally, Sect. 7 concludes the paper.

2 Definitions

In this section, the basic notations used in the paper are

defined. We start by trapezoidal fuzzy number.

A fuzzy number ~A is a convex normalized fuzzy subset

of the real line R with an upper semi-continuous mem-

bership function of bounded support [23].

Definition 1 A symmetric fuzzy number ~A, denoted by
~A ¼ ða:cÞL is defined as.

~A xð Þ ¼ L
x� að Þ
c

� �

c[ 0:

where a and c are the center and spread of ~A and L xð Þ; a
shape function of fuzzy numbers such that:

i. L xð Þ ¼ L �xð Þ;
ii. L 0ð Þ ¼ 1: L 1ð Þ ¼ 0;

iii L is strictly decreasing on [0, 1Þ;
iv. L is invertible on [0, 1].
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The set of all symmetric fuzzy numbers is denoted by

FL Rð Þ. Specifically, If L xð Þ ¼ 1� xj j the fuzzy number is a

symmetric triangular fuzzy number [23].

Definition 2 An asymmetric trapezoidal fuzzy number ~A,

denoted by ~A ¼ ðað1Þ; að2Þ; að3Þ; að4ÞÞ, is defined as [24]:

~A xð Þ ¼

L
a 2ð Þ � x

a 2ð Þ � a 1ð Þ

� �

; x\a 2ð Þ:

1; a 2ð Þ � x� a 3ð Þ:

R
x� a 3ð Þ

a 4ð Þ � a 3ð Þ

� �

; x[ a 3ð Þ:

8

>

>

>

>

<

>

>

>

>

:

ð1Þ

where að1Þ; að2Það3Þ; að4Þ are four parameters of the asym-

metric trapezoidal fuzzy number. (See Fig. 1).

Definition 3 For two trapezoidal fuzzy numbers ~A ¼
ða 1ð Þ:a 2ð Þ:a 3ð Þ:að4ÞÞ and ~A ¼ ðb 1ð Þ:b 2ð Þ:b 3ð Þ:bð4ÞÞ, the Dia-

mond distance [4] between ~A and ~B can be expressed as:

d2 ~A: ~B
� �

¼ a 1ð Þ � b 1ð Þ
� �2

þ a 2ð Þ � b 2ð Þ
� �2

þ a 3ð Þ � b 3ð Þ
� �2

þ a 4ð Þ � b 4ð Þ
� �2

ð2Þ

The Diamond distance measures the closeness of the MFs

of the two trapezoidal fuzzy numbers. The definition three

satisfies the distance properties, i.e.

• d2 ~A: ~B
� �

� 0;

• d2 ~A: ~B
� �

¼ 0 , ~A ¼ ~B: (i.e.að1Þ ¼ bð1Þ:að2Þ ¼ bð2Þ:

að3Þ ¼ bð3Þ:að4Þ ¼ bð4ÞÞ);
• d2 ~A: ~B

� �

� d2 ~A: ~C
� �

þ d2 ~C: ~B
� �

:

Definition 4 Suppose that F ¼ fY : Y ¼
ðY 1ð Þ:Y 2ð Þ:Y 3ð Þ:Y 4ð ÞÞg be a set of all trapezoidal fuzzy

numbers. The following univariate fuzzy regression model

is considered by,

~Y ¼ F xð Þ þf ge ¼ Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ:Y 4ð Þ xð Þ
� �

þf ge:

ð3Þ

In which, ~Y is the dependent trapezoidal fuzzy number

(output), variable X is an independent variable (input),e is
the error and fþg is an operator whose definition depends

on the applied fuzzy ranking method. X’s domain is

assumed to be D. Thus, FðxÞ is a mapping D ! F.

Definition 5 The CV is a measure for the difference

between a fuzzy regression function bY i ¼ Y
ð1Þ
i :Y

ð2Þ
i :

�

Y
ð3Þ
i :Y

ð4Þ
i Þ and its estimation b

�
Y i

¼ bY
ð1Þ
i : bY

ð2Þ
i : bY

ð3Þ
i : bY

ð4Þ
i

� �

.

Based on the Diamond distance, the CV is defined as,

CV ¼ 1

n

X
n

i¼1

d2ð eYi : beYi Þ

¼ 1

n

X
n

i¼1

Y
1ð Þ

i � Ŷ
1ð Þ

i

� �2

þ Y
2ð Þ

i � Ŷ
2ð Þ
i

� �2
�

þ Y
3ð Þ
i � Ŷ

3ð Þ
i

� �2

þ Y
4ð Þ

i � Ŷ
4ð Þ
i

� �2
�

:

ð4Þ

Remark 1 In k-fold cross-validation (CV), the original

samples are randomly partitioned into k equal size sub-

samples. Of these, one subsample is retained as the vali-

dation data for testing the model, and the remaining k - 1

subsamples are used as training data. The CV process is

then repeated k times, with each of the k subsamples used

exactly once as the validation data. The k results can then

be averaged to produce a single estimation. In total, k fit

models and k validation statistics are derived. The model

giving the best validation statistic is chosen as the final

model. This method is specifically useful for small data

sets, because it makes efficient use of the limited data

samples. In this paper we assume k ¼ 5.

3 Smoothing Methods for Trapezoidal Fuzzy
Numbers

The basic idea of smoothing is that if a function f is fairly

smooth, then the observations made at and near x should

contain information about value of x. Thus, it should be

possible to use local averaging of the data x to construct an

estimator for FðxÞ which is called the smoother. There are

several smoothing techniques. We proposed K-NNK-S and

(L-L-S) methods for trapezoidal variable in this section.

In the following discussion, asymmetric trapezoidal

fuzzy numbers are applied as asymmetric trapezoidal

membership functions for deriving nonparametric regres-

sion model based on the smoothing parameters.

These models are considered as univariate fuzzy non-

parametric regression model:

~Y ¼ F xð Þ þf ge ¼ Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ:Y 4ð Þ xð Þ
� �

þf ge:

ð5:Þ

where Y is a trapezoidal fuzzy dependent variable as output

and x is a crisp independent variable as the input whose

domain and range are assumed to be D and R. Also F xð Þ is
the mapping D ! F. The definition of the three smoothing

methods for trapezoidal fuzzy variables is as follows:
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3.1 Local Linear Smoothing Method (L-L-S)

Razzaghnia et al. [25] proposed the first linear regression

analysis with trapezoidal coefficients. The asymmetric

trapezoidal fuzzy numbers are applied as asymmetric

trapezoidal membership functions for deriving bivariate

regression model. A univariate regression model can be

expressed as

b

eYi ¼ ~A0 þ ~A1Xi

¼ a
1ð Þ
0 :a

2ð Þ
0 :a

3ð Þ
0 :a

4ð Þ
0

� �

þ a
1ð Þ
1 :a

2ð Þ
1 :a

3ð Þ
1 :a

4ð Þ
1

� �

Xi: ð6Þ

This model can be rewritten as

b

eYi ¼ a
1ð Þ
0 þ a

1ð Þ
1 Xi:a

2ð Þ
0 þ a

2ð Þ
1 Xi:a

3ð Þ
0 þ a

3ð Þ
1 Xi:a

4ð Þ
0 þ a

4ð Þ
1 Xi

� �

:

ð7Þ

where i ¼ 1:2:. . .:n, is the sample size and �
Y i

¼

Y
ð1Þ
i :Y

ð2Þ
i :Y

ð3Þ
i :Y

ð4Þ
i

� �

is the observed value for

i ¼ 1:2:. . .:n. So b�
Y i:L

and b�
Y i:R

are the left bound and right

bound of the predicted b�
Y i

at membership level h. Also �
Y i:L

and �
Y i:R

are left bound and right bounds of observed �
Y i

at

membership level h. Thereupon,

b

eY i:L ¼ ha
2ð Þ
0 þ ha

2ð Þ
1 Xi þ 1� hð Þa 1ð Þ

0 þ 1� hð Þa 1ð Þ
1 Xi: ð8Þ

b

eY i:R ¼ ha
3ð Þ
0 þ ha

3ð Þ
1 Xi þ 1� hð Þa 4ð Þ

0 þ 1� hð Þa 4ð Þ
1 Xi: ð9Þ

b

eY i:L ¼ hY
ð2Þ
i þ 1� hð ÞY 1ð Þ

i : ð10Þ
b

eY i:R ¼ hY
ð3Þ
i þ 1� hð ÞY 4ð Þ

i : ð11Þ

Let Xi:
b

eY i

� �

be a sample of the observed crisp inputs

and trapezoidal fuzzy outputs with underlying fuzzy

regression function of model (6).

FðxÞ is estimated at any x 2 D based on ðxi: ~YiÞ for

i ¼ 1:2:. . .:n. When the local linear smoothing technique is

used, we shall estimate Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ and Y ð4ÞðxÞ
for each x 2 D by using the distance proposed by Diamond

[4] as a measure of the fit. This distance is used to fit the

fuzzy nonparametric model (5).

Let Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ and Yð4ÞðxÞ have continuous

derivatives in the domain x 2 D. Then for a given x0 2 D,

The Taylor expansions of Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ and

Y ð4ÞðxÞ can be locally approximated in neighborhood of x0,

respectively by the following linear functions:

Y kð Þ xð Þ� Ŷ kð Þ xð Þ ¼ Y kð Þ x0ð Þ þ Y
0 kð Þ x0ð Þ x� x0ð Þ: k

¼ 1; 2; 3; 4: ð12Þ

where Y 0 1ð Þ x0ð Þ:Y 0 2ð Þ x0ð Þ:Y 0ð3Þðx0Þ and Y 0ð4Þðx0Þ are

respectively, the derivatives of Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ and

Y 4ð Þ xð Þ based on Diamond distance. The local linear

smoothing method estimated at x0 is:

F x0ð Þ ¼ Y 1ð Þ x0ð Þ:Y 2ð Þ x0ð Þ:Y 3ð Þ x0ð Þ:Y 4ð Þ x0ð Þ
� �

ð13Þ

by minimizing,

X
n

i¼1

d2 �
Yi

:b�
Y i

� �

¼
X
n

i¼1

d2 Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i

� �

: bY
1ð Þ
i : bY

2ð Þ
i : bY

3ð Þ
i : bY

4ð Þ
i

� �� �

Khð xi � x0j jÞ
ð14Þ

with respect to Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i and bY

1ð Þ
i : bY

2ð Þ
i : bY

3ð Þ
i : bY

4ð Þ
i

for the given kernel k (�) and the smoothing parameter h,

where Kh xi � x0j jð Þ ¼ k
xi�x0j j

h

h

� �

for i ¼ 1:2:. . .:n, are a

sequence of weights at x0. The two commonly use.

d kernel functions are parabolic shape functions:

k1ðxÞ ¼ 0:75 1� x2ð Þ; if xj j � 1 :
0; Otherwise:

�

ð15Þ

and Gaussian function:

k2 xð Þ ¼ 2pð Þ�
1
2exp

�x2

2

� �

: ð16Þ

Also, by substituting (12) into (14), the following can be

obtained

X
n

i¼1

d2 �
Yi

:b�
Y i

� �

¼
X
n

i¼1

d2 Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i

� �

: bY
1ð Þ
i : bY

2ð Þ
i : bY

3ð Þ
i : bY

4ð Þ
i

� �� �

Kh

ð xi � x0j jÞ
ð17Þ

By solving this weighted least-squares problem, the

following can be obtained for Y 1ð Þ xð Þ,Y 2ð Þ xð Þ,Y 3ð Þ xð Þ,Y 4ð Þ

xð Þ and Y
0 1ð Þ

xð Þ, Y 0 2ð Þ
xð Þ, Y 0 3ð Þ

xð Þ, Y 0 4ð Þ
xð Þ at x0. So the

estimation FðxÞ at x0 is: b�Y x0ð Þ ¼ ð b�Y
1ð Þ x0ð Þ: b�Y

2ð Þ x0ð Þ: b�Y
3ð Þ

x0ð Þ: bY 4ð Þ
x0ð ÞÞ. Equation (17) has eight unknown parame-

ters Y 1ð Þ xð Þ:Y 2ð Þ xð Þ:Y 3ð Þ xð Þ:Y 4ð Þ xð Þ and Y
0 1ð Þ

x0ð Þ:Y 0 2ð Þ
x0ð Þ:

Y
0 3ð Þ

x0ð Þ:Y 0 4ð Þ
x0ð Þ. In order to derive a formula for the

unknown parameters of nonparametric regression based on

minimizing this distance, the derivatives of Eq. (8) with respect

to the eight unknown parameters need to be derived, set to zero

and solve for the eight unknown parameters.

According to the principle of the weighted least-squares

(and utilizing matrix notations), we can obtain
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ð bY kð Þ
xð Þ: bY kð Þ

xð ÞÞ
T

¼ XT x0ð ÞW x0; hð ÞX x0ð Þ
� ��1

XT x0ð ÞW x0; hð Þ�
Y

kð Þ;

k ¼ 1; 2; 3; 4:

ð18Þ

where X x0ð Þ ¼

1 x1 � x0
1 x2 � x0
..
.

1

..

.

xn � x0

0

B

B

B

@

1

C

C

C

A

: �
Y

ðkÞ ¼

Y1
ðkÞ

Y2
ðkÞ

..

.

Yn
ðkÞ

0

B

B

B

@

1

C

C

C

A

:

k=1, 2, 3, 4, and W x0; hð Þ ¼ Diag Kh x1 � x0j jð Þ:Kh x2jðð
�x0jÞ: . . .:Kh xn � x0j jð ÞÞ: is a n� n diagonal matrix with

its diagonal elements being Khð xi � xoj jÞ for i ¼ 1:2:. . .:n.

If we suppose e1 ¼ ð1:0ÞT and H x0; hð Þ ¼ ðXT x0ð ÞW x0;ð
hÞX x0ð ÞÞ�1XT x0ð ÞW x0; hð Þ, then the estimate of FðxÞ at x0
would be:

b~Y x0ð Þ ¼ Ŷ 1ð Þðx0Þ � Ŷ 2ð Þðx0Þ � Ŷ 3ð Þðx0Þ � Ŷ 4ð Þðx0Þ
� �

¼ eT1Hðx0; hÞ ~Y ð1Þ � eT1Hðx0; hÞ ~Y ð2Þ � eT1Hðx0; hÞ ~Y ð3Þ � eT1Hðx0; hÞ ~Y ð4Þ
� �

ð19Þ

3.2 K-Nearest Neighbor Smoothing (K-NN)

The K-NN weight sequence was introduced by Loftsgaar-

den and Quesenberry [26] in the related field of density

estimation and has been used by Cover and Hart [27] for

classification purposes. The K-NN smother is defined as:

�
Yi

¼
X
n

j¼1

xj xð ÞYj: ð20Þ

wherexj xð Þ for j ¼ 1:2:. . .:n, is a the weight sequence at x

and is defined as :

xj xð Þ ¼
1

k
; j 2 J xð Þ,j ¼ 1:2:. . .:n:

0; Otherwise:

(

ð21Þ

where Jx is one of the K-nearest observations to x andc�
Yi

is

the estimate of the observations �
Yi
for i ¼ 1:2:. . .:n and

�
Y i

¼ ðY 1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i Þ, asymmetric trapezoidal fuzzy

numbers. Based on (20) and (21) we have

b�
Y i

¼
X
n

j¼1

xjY
1ð Þ
j :
X
n

j¼1

xjY
2ð Þ
j :
X
n

j¼1

xjY
3ð Þ
j :
X
n

j¼1

xjY
4ð Þ
j

 !

¼ ð1
k

X

j2JðxÞ
Y
ð1Þ
j :

1

k

X

j2JðxÞ
Y
ð2Þ
j :

1

k

X

j2JðxÞ
Y
ð3Þ
j :

1

k

X

j2JðxÞ
Y
ð4Þ
j Þ:

ð22Þ

The K-NN smoothing parameter is the neighborhood size

k. So if a relatively small neighborhood size is used, this

will increase the regression noise; on the other hand, a

relatively large neighborhood size will increase the

regression error. So Remark 1 describes leave-one-out

cross-validation for finding k optimal value which can be

obtained by minimizing cross-validation criterion.

3.3 Kernel Smoothing (K-S)

K-NN smoothing is a weighted averaging neighborhood in

which weights in neighborhood are treated equally. In kernel

smoothing S(x) is defined by a fixed neighborhood around x. It

is determined by kernel function and band of h. The fuzzy

regression equations for kernel smoothing and K-NN

smoothing are the same and represented by Eq. (20). In kernel

smoothing method, xj xoð Þ for j ¼ 1:. . .:n, is defined as

xj xoð Þ ¼
Khð xj � xo
	

	

	

	Þ
Pn

i¼1 Khð xi � xoj jÞ ¼
Kð xj�xoj j

h Þ
Pn

i¼1 Kð
xj�xoj j
h Þ

: ð23Þ

c�
Yi

¼
Pn

i¼1 Khð xj � xo
	

	

	

	Y
1ð Þ
j

Pn
i¼1 Khð xi � xoj jÞ :

Pn
i¼1 Khð xj � xo

	

	

	

	Y
2ð Þ
j

Pn
i¼1 Khð xi � xoj jÞ :

 

Pn
i¼1 Khð xj � xo

	

	

	

	Y
3ð Þ
j

Pn
i¼1 Khð xi � xoj jÞ :

Pn
i¼1 Khð xj � xo

	

	

	

	Y
4ð Þ
j

Pn
i¼1 Khð xi � xoj jÞ

!

:

ð24Þ

in which weight sequence is defined by Kh xð Þ ¼ 1
h K

x
h

� �

,

which is the kernel with scale factor. So the kernel

smoothing parameter is band h and weight depends on

smoothing parameter h.

3.4 Selection of Smoothing Parameters

The most important aspect for averaging techniques and

local linear smoothing method is selecting the size of

neighborhood to average k and parameter h. There are

different methods for selecting parameter h such as the

cross-validation method, and generalized cross validation

which are used to obtain parameter h. Let

b
�
Y

xi:hð Þ ¼ bY
1ð Þ

xi:hð Þ: bY 2ð Þ
xi:hð Þ: bY 3ð Þ

xi:hð Þ: bY 4ð Þ
xi:hð Þ

� �

:

The fuzzified cross-validation procedure (CV) for

selecting parameter h in local linear smoothing method

based on Diamond distance is defined as:

CV hð Þ ¼ 1

n

X
n

i¼1

d2 �
Yi

:b�
Y i

� �

¼ 1

n

X
n

i¼1

ððY 1ð Þ
i � b�

Y

ð1Þ

i

Þ
2

þ ðY 2ð Þ
i � b�

Y

ð2Þ

i

Þ
2

þ ðY 3ð Þ
i � b�

Y

ð3Þ

i

Þ
2

þ ðY 4ð Þ
i � b�

Y

ð4Þ

i

Þ
2

Þ: ð25Þ

where minimization gives the optimal value h,

CV h0ð Þ ¼ minh[ oCV hð Þ.
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Indeed, h can be obtained by minimization of CV hð Þ.
The selected optimal value of h by the CV hð Þ depends on
the degree of smoothness of YiL and YiR. Large value of

h leads to lack-of-fit and small value of h to an over-fit.

Also the cross validation leave-one-out technique is

used for selecting values k and h in K-NN and KS methods

that are obtained by minimization of the cross-validation

criterion. According to Stone [28], the CV criterion is

defined as

CV bð Þ ¼ 1

n

X
n

i¼1

L½ �
Yi

:b�
Yb

xi:oið Þ� ¼ 1

n

X
n

i¼1

ðDi bð Þ þ CiðbÞÞ:

ð26Þ

where b
�
Y b

xi:oið Þ ¼
Pn

j¼1j 6¼i xjðxiÞ�Y j
and Di bð Þ is the

measure of difference and Ci bð Þ is the measure of inclusion

as in:

Ci bð Þ ¼ P b�
Yb

xi:oið Þ

 �L

a

� �
Yi


 �L

a

 !

þ Q b�
Yb

xi:oið Þ

 �R

a

� �
Yi


 �R

a

 !

: ð27Þ

where P and Q are penalty terms defined as:

P ¼ 1; if �
Y i

h iL

a
� b

�
Y b

xi:oið Þ
h iL

a
:

0; Otherwise:

(

and

Q ¼ 1; if �
Y i

h iR

a
� b

�
Y b

xi:oið Þ
h iR

a
:

0; Otherwise:

(

To obtainDi bð Þ, we will use difference measure of a

trapezoidal fuzzy number A, by using the method of Chang

and Lee [5], which is defined as: OM Að Þ ¼
R 1

0
�
x ½v1 mð Þ

AL mð Þ þ v2 mð ÞAR mð Þ�dm: Thus Di bð Þ is calculated using

Eq. (26). For the calculation of parameter b, we minimize

the CV criterion Eq. (25) such that b	 ¼ argmin CVðbÞf g.
So b	 is the neighborhood size k in K-NN smoothing

method and band h in kernel smoothing method.

4 Extension of the Proposed Method
to Multivariate Input

It is straightforward to extent the proposed methods to the

case of multivariate input. In fact, let X ¼ x1:x2:. . .:xp
� �

be

a p-dimensional crisp input and Y be a trapezoidal fuzzy

output. The fuzzy nonparametric regression model can be

written as follows:

Y ¼ Y ð1Þ x1:x2:. . .:xp
� �

þ Y ð2Þ x1:x2:. . .:xp
� �

þ Yð3Þ x1:x2:. . .:xp
� �

þ Yð4Þ x1:x2:. . .:xp
� �

¼ F xð Þ þf ge: ð28Þ

4.1 K-Nearest Neighbor Smoothing (K-NN)

The K-NN smother is defined as:

~Yi ¼
X
n

j¼1

xjðxÞYj: ð29Þ

where xj xð Þ forj ¼ 1:2:. . .:n, is a the weight sequence at x

and is defined as :

xj xð Þ ¼
1

k
; j 2 J xð Þ,j ¼ 1:2:. . .:n:

0; Otherwise:

(

ð30Þ

where Jx is one of the K-nearest observations to x and c�
Y i

,

the estimate of the observations �
Y i

for i ¼ 1:2:. . .:n and

�
Y i

¼ Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i

� �

be asymmetric trapezoidal

fuzzy numbers. Based on (29) and (30) we have

b~Yi ¼
X
n

j¼1

xjY
ð1Þ
j :
X
n

j¼1

xjY
ð2Þ
j :
X
n

j¼1

xjY
ð3Þ
j :
X
n

j¼1

xjY
ð4Þ
j

 !

¼ 1

k

X

j2J xð Þ
Y
ð1Þ
j :

1

k

X

j2J xð Þ
Y
ð2Þ
j :

1

k

X

j2J xð Þ
Y
ð3Þ
j :

1

k

X

j2J xð Þ
Y
ð4Þ
j

0

@

1

A

ð31Þ

The K-NN smoothing parameter is the neighborhood

size k. b~Y i l ¼ 1:2:. . .:pð Þ are computed for

X ¼ x1:x2:. . .:xp
� �

; then c�
Y i

¼ 1
n
b
�
Y il

.

4.2 Kernel Smoothing Method

This is the same as K-Nearest neighbor smoothing method

in which xjðXoÞ for j ¼ 1:2:. . .:n, at X0 are defined as:

xj x0ð Þ ¼ Khðkxj � x0kÞ
Pn

i¼1 Khðkxi � x0kÞ
¼

Kðkxj�x0k
h Þ

Pn
i¼1 Kð

kxi�x0k
h Þ

:j

¼ 1:2:. . .:n: ð32Þ

4.3 Local Linear Smoothing

Suppose that Y 1ð Þ Xð Þ:Y 2ð Þ Xð Þ:Y 3ð Þ Xð Þ and Y 4ð Þ Xð Þ have

continuous derivatives in the domainx 2 D. Then for a

given x0 2 D and Taylor’s expansion,

Y 1ð Þ Xð Þ:Y 2ð Þ Xð Þ:Y 3ð Þ Xð Þ and Y 4ð Þ Xð Þ can be locally

approximated in neighborhood of x0, respectively by the

following linear functions:
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Y kð Þ xð Þ ’ bY
kð Þ

xð Þ
¼ Y kð Þ x0ð Þ þ Y kð Þ x1ð Þ x0ð Þ x1 � x01ð Þ þ � � �

þ Y 1kð Þ xp � x0p
� �

:k
¼ 1:2:3:4: ð33Þ

where Y 1ð Þ xjð Þ x0ð Þ:Y 2ð Þ xjð Þ x0ð Þ:Y ð3ÞðxjÞðx0Þ and Y ð4ÞðxjÞðx0Þ
are, respectively, the derivatives of Y 1ð Þ Xð Þ:Y 2ð Þ Xð Þ:Y 3ð Þ Xð Þ
and Y 4ð Þ Xð Þ with respect to xj

� �

based on Diamond dis-

tance and the local linear smoothing method is estimated at

x0,

F x0ð Þ ¼ Y 1ð Þ x0ð Þ:Y 2ð Þ x0ð Þ:Y 3ð Þ x0ð Þ:Y 4ð Þ x0ð Þ
� �

: ð34Þ

by minimizing:

X
n

i¼1

d2 �
Yi

:b�
Y i

� �

¼
X
n

i¼1

d2 Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i :Y

4ð Þ
i

� �

: bY
1ð Þ
i : bY

2ð Þ
i : bY

3ð Þ
i : bY

4ð Þ
i

� �� �

Kh kXi � X0kð Þ:
ð35Þ

with respect to Y
1ð Þ
i :Y

2ð Þ
i :Y

3ð Þ
i ; :Y

4ð Þ
i and bY

1ð Þ
i : bY

2ð Þ
i : bY

3ð Þ
i : bY

4ð Þ
i

for the given kernel k(.) and smoothing parameter h, where

Kh kXi � X0kð Þ ¼ k
kXi�X0k

h

h

� �

for i ¼ 1:2:. . .:n are a

sequence of weights atX0. Also, by substituting (33) into

(35), the following can be obtained :

X
n

i¼1

d2 ~Yi � b~Y i

� �

¼
X
n

i¼1

d2 Y
1ð Þ

i � Y 2ð Þ
i � Y 3ð Þ

i � Y 4ð Þ
i

� ��

� Ŷ
1ð Þ

i � Ŷ 2ð Þ
i � Ŷ 3ð Þ

i � Ŷ 4ð Þ
i

� ��

Khð Xi � X0k kÞ

¼
X
4

ðk¼1Þ

X
n

i¼1

Y
ðkÞ
i � YðkÞðx0Þ �

X

p

j¼1

YðkÞðxÞjðX0Þðxij � x0jÞ
 !2

Khð Xi � X0k kÞ;

ð36Þ

where kXi � X0k is Euclidean distance between Xi and X0

and

b~Y xð Þ ¼ Ŷ 1ð Þðx0Þ � Ŷ 2ð Þðx0Þ � Ŷ 3ð Þðx0Þ � Ŷ 4ð Þðx0Þ
� �

¼ eT1H X0; hð Þ ~Y 1ð Þ � eT1H X0; hð Þ ~Y 2ð Þ � eT1H X0; hð Þ ~Y 3ð Þ � eT1H X0; hð Þ ~Y 4ð Þ
� �

;

ð37Þ

where X x0ð Þ ¼

1 x11 � x01:::x1p � x0p
1 x21 � x01:::x2p � x0p

..

.

1

..

.

xn1 � x01:::xnp � x0p

0

B

B

B

@

1

C

C

C

A

: �
Y

ðkÞ ¼
Y1

ðkÞ

Y2
ðkÞ

..

.

Yn
ðkÞ

0

B

B

B

@

1

C

C

C

A

: k=1, 2, 3, 4, and W X0; hð Þ ¼

DiagðKh kX1 � X0kð Þ:Kh kX2 � X0kð Þ:. . .:KhðkXp � X0kÞÞ
is a n� n diagonal matrix with its diagonal elements

being Khðkxi � xokÞ for i ¼ 1:2:. . .:n. If we suppose e1 ¼
ð1:0ÞT and

H x0; hð Þ ¼ ðXT X0ð ÞW X0; hð ÞX X0ð ÞÞ�1
XT X0ð ÞW X0; hð Þ:

then the estimate of FðxÞ at x0is
b~Y xð Þ ¼ Ŷ 1ð Þðx0Þ � Ŷ 2ð Þðx0Þ � Ŷ 3ð Þðx0Þ � Ŷ 4ð Þðx0Þ

� �

¼ eT1Hðx0; hÞ ~Y 1ð Þ � eT1Hðx0; hÞ ~Y 2ð Þ � eT1Hðx0; hÞ ~Y 3ð Þ
�

� eT1Hðx0; hÞ ~Y 4ð Þ
�

:

ð38Þ

5 Adaptive Neural Fuzzy Inference System
(ANFIS)

ANFIS borrows its name from fuzzy deduction system

which are based on open adaptive networks or adaptive

neural fuzzy detection systems. It is a kind of artificial

neural network based on Takagi–Sugeno fuzzy inference

system. The network is a famous hybrid method, in which

combinations of nodes ok;i, are placed as layers for per-

forming specific functions (Fig. 1).

Referring to Fig. 2, the first and second layers are called, the

input and fuzzification layers. The third layer expresses the rules

and number of Sugeno fuzzy logic deduction system. The output

of each rule nodel�
A i

xj
� �

is the multiplication of membership

degrees coming from the second layer. The outputs of layer

three, then drives the layer forth whose task is calculation of

the normalized ignition level for each rule. The fifth layer is

called the debugging layer, which produces the weighted

outputs from the previous layers. The output of rules is cal-

culated for each node and the last layer takes all the outputs

then gives an algebraic summation. Table 1 presents layers of

ANFIS.

Fig. 1 A trapezoidal fuzzy number
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5.1 The Proposed Hybrid Algorithm

The proposed hybrid algorithm benefits from both post-

propagation and propagation techniques. First, the fuzzy

least squares method is used to optimize the secondary

parameters. In the second stage, when secondary parame-

ters are obtained, the initial parameters are optimized using

the slope slider algorithm. Here, we have used the

MATLAB software package to implement the algorithms.

Figure 3 shows the proposed hybrid algorithm.

Report network with the lowest error in the data output

of the test along with the corresponding results.

6 Examples

In this section, a simulation examples and a numerical one

are presented, in which the input is a crisp number and the

output, a trapezoidal fuzzy number. We estimate the values

of the parameters using ANFIS methods; then these results

are compared with each other based on CV and the charts.

Example 1 The grinding is a process in which using an

abrasive material, along with a grinding wheel. The aim is

providing surfaces with precise tolerances, create optimal

surface, creating accurate surface form and machining of

hard and brittle materials (see Fig. 4).

The trapezoidal fuzzy numbers have been constructed

using Table 3 in Ref. [29]. The �
Y i

is the roughness of a

workpiece surface and input x is the feed speed of a

grinding wheel. The output �
Y i

is measured by symmetric

trapezoidal fuzzy numbers as �
Y i

¼ Y
ð1Þ
i :Y

ð2Þ
i :Y

ð3Þ
i :Y

ð4Þ
i

� �

.

The estimation is performed using ANFIS method. Thus,

regarding this dataset, the nonparametric regression model

is an appropriate one. The proposed method is used to fit

the regression model while as before, CV is computed for

Table 1 The layers of ANFIS

First layer xj ¼ ðxj1; xj2; . . .; xjpÞ; j ¼ 1; 2; . . .; n and Rules are

If x1 is fuzzy set ~A1 and x2 is fuzzy set ~A3 then f 1 ¼ q10 þ q11x1 þ q12x2;

If x1 is fuzzy set ~A1 and x2 is fuzzy set ~A4 then f 2 ¼ q20 þ q21x1 þ q22x2;

If x1 is fuzzy set ~A2 and x2 is fuzzy set ~A3 then:f 3 ¼ q30 þ q31x1 þ q32x2;

If x1 is fuzzy set ~A2 and x2 is fuzzy set ~A4 then:f 4 ¼ q40 þ q41x1 þ q42x2;

Second layer
o2;i ¼ l ~Ai

x1ð Þ ¼ exp � x1�si
2ri

� �2

 �

, i ¼ 1; 2 and o2;i ¼ l ~Ai
x2ð Þ ¼ exp � x2�si

2ri

� �2

 �

,

Third layer i ¼ 3; 4;o3;i ¼ wi ¼ l ~Ai
x1ð Þ.l ~Ai

x2ð Þi ¼ 1; 2; 3; 4;

Fourth layer o4;i ¼ �
wi ¼

wi

w1þw2þw3þw4
i ¼ 1; 2; 3; 4;

Fifth layer o5;i ¼ �
wif i ¼ �

wi q
i
0 þ qi1x1 þ qi2x2

� �

i ¼ 1; 2; 3; 4;

Sixth layer b
�
Y j

¼ o
6;i

¼
P4

i¼1
�
wif i ¼

w1

w1þw2þw3þw4
f 1 þ w2

w1þw2þw3þw4
f 2 þ w3

w1þw2þw3þw4
f 3 þ w4

w1þw2þw3þw4
f 4

¼ �
w1f 1 þ �

w2f 2 þ �
w3f 3 þ �

w4f 4

Fig. 2 Configuration of an ANFIS
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validation purposes. In the proposed method, we use

5-layer validation technique. The results of the parameters

estimation and those of the corresponding errors are listed

in Tables 2 and 3, respectively. In this example, the net-

work was convergent and, as a justification, the error value

reaches a constant value with acceptable level after the

training. The observed values and the predicted values of

proposed method is shown in Fig. 5. The center lines, the

upper and lower boundary lines of the real function and

their estimates are plotted in the figure. The observed and

estimated values of different smoothing methods (K- S,

L-L-S and K-NN) are shown in Fig. 6, 7 and 8, respec-

tively. In these figures, the center lines, the upper and lower

boundary lines of the real function and their estimates are

plotted. Moreover, the low CV value, as shown in Table 2,

indicates that the proposed method tends to produce pre-

dicted values close to the observed values and in turn, has a

remarkable accuracy in prediction. For different fitting

methods, the different smoothing methods are applied such

as K-NN, K- S and L-L-S technique. The value of

parameter smoothing method in K-NN and K- S method is

determined by cross validation method. Table 3 shows the

values of the primary and secondary parameters of pro-

posed method.

Example 2 In this example the function is considered to

bef xð Þ ¼ x2

5
þ 2e

x
10. Suppose that xis are uniformly random

variables,within the interval [0,1] and i = 1, 2, …,100,

�
Yi

¼ Y
ð1Þ
i :Y

ð2Þ
i :Y

ð3Þ
i :Y

ð4Þ
i

� �

¼ ðyi � ei:yi þ
1

3
ei:yi þ

2

3
ei:yi þ eiÞ ð39Þ

So that yi ¼ f Xið Þ þ rand½�0:5:0:5� and ei ¼ 1=4f Xið Þþ
rand½0:1�:

Fig. 3 The proposed hybrid algorithm
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In this example we estimate the values by using the

proposed method (ANFIS). So in this dataset, the non-

parametric regression model is a convenient model. The

proposed method is used to fit the regression model and,

like the example above, we compute the amount of CV to

Fig. 4 Grinding method

Table 2 Achieved results of proposed method (ANFIS)

CV(Proposed method) 0.0055

CV (K-S) 0.0058

CV (L-L-S) 0.0057

CV (K-NN) 0.0059

Membership function type for ANFIS Gaussian

Number of training data pairs for ANFIS 15

Number of testing data pairs for ANFIS 4

Number of fuzzy rules for ANFIS 2

Table 3 The values of the

primary and secondary

parameters obtained in the

proposed method when k = 5

i ðs1:r1Þ ðs2:r2Þ ðbi0:ai0Þ ðbi1:ai1Þ

1 (2.64, 1.10)

(2.00, 5.21) (- 0.01, 0.29) (0.16, - 0.20)

2 (0.988,

0.666)

(0.929, 5.43) (- 0.005,

0.208)

(0.073, 0.035)

3 (1.50, 2.08) (2.25, 6.48) (- 0.02, 0.27) (0.06, 0.28)

4 (2.14, 1.26) (1.49, 6.102) (- 0.06, 0.30) (- 0.12, 1.14)

5 (2.33, 1.42) (1.48, 6.38) (- 0.032,

0.262)

(- 0.116,

1.137)

Fig. 5 Achieved results by ANFIS
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evaluate the model. In the proposed method, we use 5-layer

Validation technique. The low CV value, as shown in

Table 4, indicates that the proposed method tends to pro-

duce predicted values close to the observed values and in

turn, has a remarkable accuracy in prediction. The behavior

of the proposed method is shown in Fig. 9, 10, 11 and 12

(like the above example). The values of the parameters

obtained in the proposed algorithm are shown in Table 5,

respectively. In this example, this network is convergent

and, as can be seen, after the training, the error value

reaches a constant value. Linear smoothing method, K-NN

and kernel smoothing are applied to the fitting model.

Gauss and Parabolic shape kernels are used to produce the

weight sequence for local linear smoothing and kernel

smoothing methods.

7 Conclusions

The method of adaptive fuzzy inference system for fitting

non-parametric fuzzy regression model with crisp inputs

and fuzzy outputs was investigated. Then two hybrid fuzzy

regression algorithms have been proposed. Within the

algorithm, a reduction slope method was used to optimize

the initial parameters (fuzzy weights). The secondary

parameters have been estimated by least squares Diamond

method. It has been considered non-fuzzy inputs and

trapezoidal fuzzy outputs. Simulation and numerical

examples have been used to the evaluate performance of

method. Using the results, the conducted simulation

experiments are shown that the performance of the pro-

posed method is better than that of the smoothing methods,

which reduces the CV. In the proposed approach, when the

observations numbers are increased, the accuracy is

increased, in comparison with the existing smoothing

methods. These advantages would make our algorithm an

acceptable one to generate nonparametric regression

functions. Thus current proposed method reduced the

fuzziness of the system and it has faster adaptation.

Fig. 6 Achieved results by K-S method with Gausian kernel for

h = 0.65

Fig. 7 Achieved results by L-L-S method with Gausian kernel for

h = 0.69

Fig. 8 Achieved results by KNN method with K = 5
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Table 4 Achieved results of

proposed method (ANFIS)
CV Proposed method (ANFIS) 0.05197 Membership function type for ANFIS Gaussian

CV (K-S) 0.4959 Number of training data pairs for ANFIS 15

CV (L-L-S) 0.3378 Number of testing data pairs for ANFIS 4

CV (K-NN) 0.442 Number of fuzzy rules for ANFIS 2

Fig. 11 Achieved results by L-L-S method with Gausian kernel for

h = 0.43

Fig. 12 Achieved results by KNN method with k = 19

Fig. 9 Achieved results by ANFIS method

Fig. 10 Achieved results by K-S method with Gausian kernel for

h = 0.12
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