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Abstract This article settles the issue of adaptive fixed-

time control of uncertain nonlinear quantized systems.

Different from the traditional study about fixed-time con-

trol for uncertain nonlinear systems, quantitative control

issue is considered in this paper, and the nonlinear term can

be unknown. The new adaptive control tactic of fixed-time

tracking control is proposed via fuzzy logic systems

approaching unknown nonlinearity, which overcomes the

existing limitation of the upper boundary of system settling

time relies on the initial condition. The closed-loop system

stability is guaranteed in a fixed time. At the end of this

paper, the availability of the strategy is proved by a

numerical simulation.

Keywords Fixed-time stability � Backstepping technique �
Adaptive fuzzy control � Nonlinear quantized systems

1 Introduction

With the development of hybrid systems, digital control

and network control systems (see [1–6]), the importance of

quantization methods has increased in recent years. These

systems need to transmit information between components

via wireless media. Because of the wireless communication

network has physical constraints, it is necessary to intro-

duce quantization technology to reduce communication

rate. Quantitative control of linear and nonlinear plants has

received much attention in the past several years, which

result in many fruitful results [4–10]. Among the above

results [4–6], are for linear quantized systems [7–11], are

for nonlinear quantized systems. Theoretically, the above

works merely ensure the expected performance as the time

variable approaches infinity. In addition, the above works

require the control system is fully known.

Due to the influence of uncertain factors, the actual

systems have nonlinearity. The nonlinear system functions,

including the bounding functions, may be completely

unknown. As we all know, the adaptive fuzzy or neural

control approaches are very useful tool to solve unknown

nonlinear problems, for instance, see [12–15]. It is worth

mentioning that the above works are realized on the basis

of infinite time stability, and the results of the asymptotic

stability has been unable to meet people’s needs. Different

from asymptotic stability, the good features of finite time

control are fast response speed, high tracking accuracy and

strong anti-interference ability. Obviously, finite time sta-

bility make the systems have better transient performance.

In recent years, the researches about finite time control has

been well developed. In [16], the terminal sliding mode

control method was raised. On that basis [17], established a

terminal sliding manifold to surmount the singularity

around the equilibrium point. Sliding mode control is a

& Fang Wang

sandywf75@126.com

Pengxu Ren

673973125@qq.com

Ruitai Zhu

Ruitai.Zhu18@student.xjtlu.edu.cn

1 School of Mathematics and Systems Science, Shandong

University of Science and Technology, Qingdao 266590,

China

2 Department of mathematics, Xi’an Jiaotong-Liverpool

University, Xi’an 215123, China

123

Int. J. Fuzzy Syst. (2021) 23(3):794–803

https://doi.org/10.1007/s40815-020-01018-1

http://orcid.org/0000-0002-0534-7316
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-020-01018-1&amp;domain=pdf
https://doi.org/10.1007/s40815-020-01018-1


useful tool to stabilize complex nonlinear systems. In [18],

the event-triggered fuzzy sliding mode control issue about

a networked control system based on a semi-Markov pro-

cess was studied. The sliding mode control problem of

nonlinear stochastic Markov jump systems with uncertain

time-varying delays was studied in [19]. The Lyapunov-

type finite-time stability theory was established firstly in

[20, 21] to solve the chattering phenomenon resulted from

the sliding mode controller. On that basis [22, 23], studied

the finite-time stability of nonlinear systems. In order to

guarantee the capability of the system under low commu-

nication rates, the quantization scheme was proposed on

basis of finite time stability. In [24], the quantitative control

problem of finite-time synthesis of nonlinear semi-Markov

switching systems based on T–S fuzzy means was studied.

In [25], the issue of finite-time quantitative cost-guaranteed

fuzzy control of nonlinear systems was discussed. The

issue of finite-time adaptive fuzzy control for nonlinear

quantized systems with unknown time delays was dis-

cussed in [26]. Even though some works about finite time

on basis of nonlinear quantized systems has made some

progress, the determination of time relies on the initial

state. Therefore, when the initial conditions are unknown,

the designer cannot accurately estimate the system stability

time, which restricts the application of finite time control.

When initial conditions are unknown or uncertain, the finite

time control methods described above have been unable to

guarantee that the systems achieve the desired performance

at a predetermined time.

To solve this problem, a sufficient condition for stability

in fixed time was raised for the first time in [27]. From [27],

the stability time of the system is connected with a constant

that has nothing to do with the initial state, and the constant

is only determined by the design parameters. The fixed-

time stability is especially important for either hybrid or

switching systems [28–30] with dwell time. According to

the theorem of stability in fixed time in [27], the fixed time

controller was constructed for nonlinear systems in [31, 32]

respectively. In [33], the issue of fixed-time stability of

strict-feedback uncertain nonlinear systems was investi-

gated [34] proposed a fixed-time adaptive control strategy

for nonlinear systems by neural network. In [35], a fixed-

time terminal sliding mode control means was raised for

momentum wheel system. A global fixed-time consistency

protocol of second-order multi-agent systems was dis-

cussed in [36]. In [35, 36], the sinusoid continuous func-

tions were introduced to eliminate the singularity. In order

to suppress chaotic oscillation in power system, a fast fixed

time non-singular terminal sliding mode control means was

proposed in [37]. However, it should be pointed out that the

results in [31–37] need to meet the hypothesis that the

nonlinear function is known. Moreover, since the signals

between the factory and the controller are realized remotely

through the communication channel with limited band-

width, the quantization of the control signals cannot be

ignored. In [38], the fixed-time attitude tracking control

issue of rigid spacecraft with external disturbances and

input quantization was investigated. It should be pointed

out that the nonlinear function of the system in [38] is

known. When the nonlinear terms of uncertain nonlinear

systems are completely unknown, the fixed time control

schemes mentioned above have been unable to apply. It is a

challenge to construct a quantitative feedback controller to

avoid chattering and ensure the system is stable at fixed

time. Inspired by the above, the adaptive fixed-time control

issue of quantized uncertain nonlinear systems is investi-

gated in this paper. The main merits are generalized below.

(1) Compared with the existing fixed-time works

[31–37] for nonlinear systems, the quantitative

control issue is considered. Compared with [38],

the nonlinear function of the system is completely

unknown in this paper. By applying the fuzzy logic

system to approximate unknown nonlinearities, a

novel fixed-time fuzzy control strategy is raised. The

proposed control strategy ensures the system perfor-

mance in fixed time.

(2) In the finite-time control schemes [20–26], the

convergence time is dependent on the initial condi-

tions. In practice, the initial condition of the system

is not easy to obtain, which makes the schemes in

[20–26] difficult to implement. Instead, by con-

structing a novel fuzzy fixed-time controller, this

limitation can be overcome in this paper. The upper

bound of convergence time is merely affected by

design parameters. The proposed control strategy is

more interesting in application.

This article is organized below. The preliminary knowl-

edge and problem description are introduced in the second

part. The third part gives the major research results of this

article. Simulation studies are conducted in the fourth part.

Finally, the fifth part summarizes the work.

2 Preliminaries and Problem Statement

According to some lemmas and definitions of fixed-time

control, important results of this article are obtained in this

part.

2.1 Preliminaries

Definition 1 [39] Think about a nonlinear system:

_x ¼ f ðx; tÞ; xð0Þ ¼ x0 ð1Þ
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where x 2 Rn represents state variable, f(x, t) is unknown

smooth nonlinear function and satisfy xð0Þ ¼ 0,

f ð0; 0Þ ¼ 0. Suppose that system (1) is stable in Lyapunov

sense. If there exist convergence time T, for 8t� T ,

xðtÞ ¼ 0, then system (1) is finite-time stability.

Definition 2 [39] If system (1) is stable in finite time, and

convergence time T has a definite upper bound Tm , and the

upper bound don’t affect by the initial state, then the sys-

tem (1) is fixed-time stability.

Lemma 1 [34] If the design constants 1; �[ 0,

p[ 1; q 2 ð0; 1Þ; g 2 ð0;1Þ, one has:

_V � � 1VpðxÞ � �VqðxÞ þ g; 8x 2 Rn ð2Þ

the system (1) is globally fixed-time stability, and settling

time Tm reckons as:

T � Tm ¼ 1

1/ðp� 1Þ þ
1

�/ð1� qÞ ð3Þ

the residual set of system (1) solution as follows:

x 2 VðxÞ�min ð g
ð1� /Þ1Þ

1
p; ð g

ð1� /Þ�Þ
1
q

� �� �
: ð4Þ

Lemma 2 [40] For any given ðx; yÞ 2 R2;

a[ 1; b[ 1; e[ 0; and ða� 1Þðb� 1Þ ¼ 1; the following

relation hold:

xy� ea

a
jxja þ 1

beb
jyjb:

Lemma 3 [41] For any given positive constants b1; b2; b3,

and real variables x and y, we have:

xj jb1 yj jb2 � b1
b1 þ b2

b3 xj jb1þb2þ b2
b1 þ b2

b
�b1

b2

3 yj jb1þb2 : ð5Þ

Lemma 4 [42] For ik 2 R; and k ¼ 1; � � � ; n; 0\u� 1,

we have:

Xn
k¼1

jikj
 !u

�
Xn
k¼1

jikju � n1�u
Xn
k¼1

jikj
 !u

:

2.2 Problem Statement

This article thinks about an uncertain nonlinear quantized

system below:

_xi ¼ xiþ1 þ fið�xiÞ; 1� i� n� 1;

_xn ¼ QðuðtÞÞ þ fnð�xnÞ;
y ¼ x1:

8><
>: ð6Þ

where �xi ¼ ½x1; x2; . . .; xi�T 2 Ri stands for system states,

ði ¼ 1; 2; . . .; nÞ, and y 2 R expresses output of system.

fið:Þ : Ri ! Rði ¼ 1; 2; . . .; nÞ is unknown smooth func-

tions. uðtÞ 2 R and Q(u(t)) denote a controller and a

quantizer, respectively.

In this article, according to [43], hysteretic quantizer is

presented to avert chattering. It follows from [44] that

quantizer Q(u(t)) is described as follows:

QðuðtÞÞ ¼

uisgnðuÞ;
ui

1þ d
\juj � ui; _u\0; or

ui\juj � ui
1� d

; _u[ 0

uið1þ dÞsgnðuÞ; ui\juj � ui
1� d

; _u\0; or

ui
1� d

\juj � uið1þ dÞ
1� d

; _u[ 0

0; 0� juj\ umin
1þ d

; _u\0; or

umin
1þ d

� juj � umin; _u[ 0

Qðuðt�ÞÞ; _u ¼ 0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð7Þ

where ui ¼ q1�iumin, i ¼ 1; 2; . . .; n, umin [ 0 and 0\q\1,

d ¼ 1�q
1þq. Thus, QðuðtÞÞ 2 U ¼ f0;�ui;�uið1þ dÞ;

i ¼ 1; 2; . . .g. umin governs the range of dead-zone. The

map of Q(u(t)) displays in Fig 1.

Remark 1 Different from the traditional research about

fixed time control of nonlinear systems, the quantization of

signals is considered firstly. An fixed-time adaptive control

strategy is provided for uncertain nonlinear quantized

systems.

Lemma 5 [45] Decomposing the quantized value Q(u(t))

as follows:

Fig. 1 Quantizer Q(u(t))

796 International Journal of Fuzzy Systems, Vol. 23, No. 3, April 2021

123



QðuðtÞÞ ¼ -ðuÞuðtÞ þ dðtÞ ð8Þ

where

1� d�-ðuÞ� 1þ d; jdðtÞj � umin: ð9Þ

2.3 Fuzzy Logic Systems

Since the system (6) contains unknown functions, we need

to introduce fuzzy logic system to approximate them.

Using the singleton point fuzzifier, the center-average

defuzzifier and the product inference, we can obtain fuzzy

rules:

Rl: IF x1 is Fl
1; . . .; xn is Fl

n,

Then: yG is Gl, l ¼ 1; 2; . . .;N where x ¼ ½x1; x2; :::; xn�T
2 Rn denotes input variable, and yG 2 R stands for fuzzy

system output. The membership functions of fuzzy set Fl
i

are signified by lFl
i
ðxiÞ. N expresses total amount of the

rules.

We can select Gaussian functions with the exponential

as the membership functions:

lFl
i
ðxÞ ¼ exp �ðxi � aliÞ

bli

� �

where ali and bli stands for the center and the width of a

fuzzy membership function, respectively.

Applying the singleton function, the center-average

defuzzification and the product inference [46], yGðxÞ is

described as:

yGðxÞ ¼
PN

l¼1 Ul

Qn
i¼1 lFl

i
ðxiÞPN

l¼1½
Qn

i¼1 lFl
i
ðxiÞ�

ð10Þ

where

Ul ¼ max
yG2R

lGlðyÞ;U ¼ ðU1;U2; . . .;UNÞT :

Let

xlðxÞ ¼
Qn

i¼1 lFl
i
ðxiÞPN

l¼1½
Qn

i¼1 lFl
i
ðxiÞ�

and xðxÞ ¼ ðx1ðxÞ;x2ðxÞ; . . .;xNðxÞÞT . Then, fuzzy logic

system is expressed as:

yGðxÞ ¼ UTxðxÞ: ð11Þ

Lemma 6 [47] If f ðxÞ 2 X is a continuous function, for

any given e[ 0, fuzzy logic system (11) makes the rela-

tional expression true:

sup
x2X

jf ðxÞ � UTxðxÞj � e: ð12Þ

The purpose of this manuscript is constructed an fuzzy

adaptive controller to ensure all closed-loop signals remain

stable for a fixed time, and system output signal y follows

the reference signal yd.

3 Adaptive Controller Design

A fixed-time adaptive controller for the system (6) is

constructed via backstepping approach in this part. Then,

the error variable is defined as follows:

z1 ¼ x1 � yd;

zi ¼ xi � ai�1; i ¼ 2; � � � ; n:
ð13Þ

where ai�1 stands for virtual controller. For convenience of

symbol operation, the ith time derivative of yd is expressed

by y
ðiÞ
d , and let �y

ðiÞ
d ¼ ½yd; yð1Þd ; . . .; y

ðiÞ
d �T , i ¼ 1; 2; . . .; n.

Remark 2 Based on backstepping technique, approxi-

mating unknown nonlinear function �fi by fuzzy logic sys-

tem UiðXiÞ. To achieve control objectives, we define a

constant hi ¼ kUik2; i ¼ 1; 2; � � � ; n, ĥ1 stands for estimate

of h1, and the parameter estimation error is ~h1 ¼ h1 � ĥ1.

Step 1. Consider the nonlinear uncertain system (6),

according to z1 ¼ x1 � yd, we have:

_z1 ¼ x2 þ f1ðx1Þ � _yd: ð14Þ

Think about the following Lyapunov function:

V1 ¼
z21
2
þ

~h21
2k1

ð15Þ

where k1 [ 0 is a design constant.

By (13), (14), one has:

_V1 ¼ z1ðz2 þ a1 þ f1ðx1Þ � _ydÞ �
~h1

_̂h1
k1

: ð16Þ

Using Young’s inequality, one has:

z1z2 �
z21
2
þ z22

2
: ð17Þ

Substituting (17) into (16) yields:

_V1 � z1ðf1 þ
z1
2
þ a1 � _ydÞ þ

z22
2
�

~h1
_̂h1

k1
: ð18Þ

Let �f1 ¼ f1 þ z1 � _yd, then (18) can be rewritten as:

_V1 � z1a1 þ z1 �f1 þ
z22
2
� z21

2
�

~h1
_̂h1

k1
: ð19Þ

Since �f1 is unknown, it cannot be obtained. Applying

Lemma 6, for 8e1 [ 0, there is a fuzzy logic system
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UT
1x1ðX1Þ as follows:
�f1 ¼ UT

1x1ðX1Þ þ d1ðX1Þ; jd1ðX1Þj � e1 ð20Þ

where X1 ¼ ðx1; yd; _ydÞ.
By applying Young’s inequality, one has:

z1 �f1 �
1

2a21
z21h1x

T
1x1 þ 1

2
a21 þ

1

2
z21 þ

1

2
e21: ð21Þ

Then, we choose the virtual controller as:

a1 ¼ � c1z
2r�1
1 � k1z

2b�1
1

� 1

2a21
ĥ1z1x

T
1x1

ð22Þ

where c1 [ 0, k1 [ 0 and a1 [ 0 are design constants.

Next, we set up the adaptive law as:

_̂h1 ¼
k1
2a21

z21x
T
1x1 � c1ĥ1 � j1ĥ1; ĥ1ð0Þ� 0 ð23Þ

where c1 and j1 are positive design constants.

Substituting (21)–(23) into (19), we have:

_V1 � � c1z
2r
1 � k1z

2b
1 þ z22

2
þ a21

2
þ e21

2
þ c1
k1

~h1ĥ1

þ j1
k1

~h1ĥ1:
ð24Þ

It is noted that:

c1
k1

~h1ĥ1 � � c1
2k1

~h21 þ
c1
2k1

h21; ð25Þ

j1
k1

~h1ĥ1 � � j1
2k1

~h21 þ
j1
2k1

h21: ð26Þ

Equation (24) can be described as:

_V1 � � c1z
2r
1 � k1z

2b
1 � c1

2k1
~h21 � j1

2k1
~h21 þ g1 þ

z22
2

ð27Þ

where g1 ¼
a2
1

2
þ e2

1

2
þ c1

2k1
h21 þ j1

k1
h21.

Step ið2� i� n� 1Þ. Based on (13) and Step 1, we

have:

_zi ¼ fið�xiÞ þ xiþ1 � _ai�1 ð28Þ

where

_ai�1 ¼
Xi�1

j¼1

oai�1

oxj

h
fjð�xjÞ þ xjþ1

i
þ
Xi�1

j¼1

oai�1

oĥj

_̂hj

þ
Xi�1

j¼0

oai�1

oy
ðjÞ
d

y
ðjþ1Þ
d :

ð29Þ

Now, think about the Lyapunov function:

Vi ¼ Vi�1 þ
1

2
z2i þ

1

2ki
~h2i ð30Þ

where ki is a positive design constant.

Then its derivative can be obtained:

_Vi ¼ _Vi�1 þ ziðziþ1 þ ai þ fið�xiÞ � _ai�1Þ � 1

ki
~hi
_̂hi:

ð31Þ

According to Lemma 2, we have:

ziziþ1 �
1

2
z2i þ

1

2
z2iþ1: ð32Þ

Substituting (32) into (31), one has:

_Vi � �
Xi�1

j¼1

ðcjz2rj þ kjz
2b
j þ

cj
2kj

~h2j þ
jj
2kj

~h2j Þ þ
Xi�1

j¼1

gj þ zi �fi þ ziai þ
1

2
z2iþ1 �

1

2
z2i �

1

ki
~hi
_̂hi

ð33Þ

where

�fi ¼ fið�xiÞ � _ai�1 þ
3

2
z2i :

Similarly, UT
i xiðXiÞ is used for approximating �fi, and Xi ¼

½�xTi ;
�̂h
T

i�1; �y
ðiÞT
d �T 2 XZi � R3i with ĥi�1 ¼ ½ĥ1; ĥ2; . . .; ĥi�1�T .

Applying Lemma 6, we have:

�fi ¼ UT
i xiðXiÞ þ diðXiÞ; jdiðXiÞj � ei ð34Þ

where ei is any given positive constant.

Using Young’s inequality, we have:

zi �fi �
1

2a2i
z2i hix

T
i xi þ

1

2
a2i þ

1

2
z2i þ

1

2
e2i : ð35Þ

Then, the virtual controller is constructed as:

ai ¼ �ciz
2r�1
i � kiz

2b�1
i � 1

2a2i
ĥizix

T
i xi ð36Þ

where ci [ 0, ki [ 0 and ai [ 0 are design constants.

Next, we set up adaptation law as:

_̂hi ¼
ki
2a2i

z2ix
T
i xi � ciĥi � jiĥi; ĥið0Þ� 0 ð37Þ

where ci and ji are positive design constants.

Much like (25), (26), we have:

ci
ki
~hiĥi � � ci

2ki
~h2i þ

ci
2ki

h2i ; ð38Þ

ji
ki

~hiĥi � � ji
2ki

~h2i þ
ji
2ki

h2i : ð39Þ

Substituting (35)–(39) into (33) yields:
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_Vi � �
Xi
j¼1

ðcjz2rj þ kjz
2b
j þ

cj
2kj

~h2j þ
jj
2kj

~h2j Þ

þ
Xi
j¼1

gj þ
1

2
z2iþ1

ð40Þ

where gj ¼
cj
2kj

h2j þ
jj
2kj

h2j þ 1
2
a2j þ 1

2
e2j ; j ¼ 1; 2; � � � ; i.

Step n. According to the analysis in step i, one has:

_zn ¼ fnð�xnÞ þ QðuðtÞÞ � _an�1 ð41Þ

where

_an�1 ¼
Xn�1

j¼1

oan�1

oxj

�
fjð�xjÞ þ xjþ1

�
þ
Xn�1

j¼1

oan�1

oĥj

_̂hj

þ
Xn�1

j¼0

oan�1

oy
ðjÞ
d

y
ðjþ1Þ
d :

Now, think about the Lyapunov function:

Vn ¼ Vn�1 þ
1

2
z2n þ

1

2kn
~h2n ð42Þ

where kn is a positive design constant.

From its derivative and Lemma 5, one has:

_Vn ¼ _Vn�1 þ znðfnð�xnÞ þ -ðuÞuðtÞ þ dðtÞ � _an�1Þ

�
~hn
kn

_̂hn
ð43Þ

Based on Young’s inequality, we have:

zndðtÞ�
1

2
z2n þ

1

2
u2min: ð44Þ

According to (40) with ði ¼ n� 1Þ, (44), one has:

_Vn � �
Xn�1

j¼1

ðcjz2rj þ kjz
2b
j þ

cj
2kj

~h2j þ
jj
2kj

~h2j Þ

þ
Xn�1

j¼1

gj þ zn �fn �
1

2
z2n þ zn-ðuÞuðtÞ

þ 1

2
u2min �

1

kn
~hn

_̂hn

ð45Þ

where

�fn ¼ fnð�xnÞ � _an�1 þ
3

2
zn: ð46Þ

Similarly, for 8en [ 0, fuzzy logic system UT
nxnðXnÞ is

adopted to approximate �fn.
From Lemma 6, we have:

�fn ¼ UT
nxnðXnÞ þ dnðXnÞ; jdnðXnÞj � en: ð47Þ

Applying Young’s inequality, we have:

zn �fn �
1

2a2n
z2nhnx

T
nxn þ

1

2
a2n þ

1

2
z2n þ

1

2
e2n: ð48Þ

Now, the actual controller is constructed as:

u ¼ �cnzn
2r�1 � knzn

2b�1 � znĥnxT
nxn

2a2n
ð49Þ

where kn [ 0,cn [ 0 and an [ 0 are design constants.

Next, we set up adaptation law as:

_̂hn ¼
kn
2a2n

z2nx
T
nxn

� cnĥn � jnĥn; ĥnðt0Þ� 0

ð50Þ

where cn is a positive design constant.

Combining (48), (9), we can obtain:

zn-ðuÞuðtÞ� � cnzn
2r � knzn

2b

� 1

2a2n
z2nĥnx

T
nxn:

ð51Þ

Substituting (48)–(51) into (45) gives:

_Vn � �
Xn�1

j¼1

ðcjz2rj þ kjz
2b
j þ

cj
2kj

~h2j þ
jj
2kj

~h2j Þ þ
Xn�1

j¼1

gj

� cnz
2r
n � knz

2b
n þ 1

2
u2min þ

1

2
a2n þ

1

2
e2n þ

cn
kn

~hnĥn

þ jn
kn

~hnĥn:

ð52Þ

Furthermore, as is the same case of (38) and (39), we have:

cn
kn

~hnĥn � � cn
2kn

~h2n þ
cn
2kn

h2n; ð53Þ

jn
kn

~hnĥn � � jn
2kn

~h2n þ
jn
2kn

h2n ð54Þ

Substituting (53), (54) into (52), one has:

_Vn � �
Xn
j¼1

ðcjz2rj þ
cj
2kj

~h2j Þ �
Xn
j¼1

ðkjz2bj þ jj
2kj

~h2j Þ þ s

ð55Þ

where s ¼
Pn

j¼1 gj þ 1
2
u2min and

gj ¼
cj
2kj

h2j þ
jj
2kj

h2j þ 1
2
a2j þ 1

2
e2j ; j ¼ 1; 2; . . .; n.

So far, the following theorem summarizes the above

work.

Theorem 1 Think about the uncertain nonlinear system

(6), preceded by hysteresis quantizer (7). Based on con-

troller (49), intermediate virtual controller (36) and

adaptive law (37), system (6) is globally fixed-time stabil-

ity. The tracking error converges to a small neighborhood

of the origin. Within a fixed time, the closed-loop system
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stability is guaranteed and convergence time has a certain

upper bound.

Proof Applying Lemma 3, one has:

�Xn
j¼1

~h2j
2kj

jBigÞr �
Xn
j¼1

~h2j
2kj

þ ð1� rÞr r
1�r; ð56Þ

�Xn
j¼1

~h2j
2kj

�b
�
Xn
j¼1

~h2j
2kj

þ ð1� bÞb
b

1�b: ð57Þ

Combining (55), (56), (57), we have:

_Vn � �
Xn
j¼1

cjz
2r
j �

Xn
j¼1

cj
� ~h2j
2kj

�r
�
Xn
j¼1

kjz
2b
j

�
Xn
j¼1

jj
� ~h2j
2kj

�b
þ .

� � c
Xn
j¼1

� 1
2
z2j

�r
� c

Xn
j¼1

� ~h2j
2kj

�r
� k

Xn
j¼1

� 1
2
z2j

�b

� k
Xn
j¼1

� ~h2j
2kj

�b
þ .

ð58Þ

where c ¼ min 2rcj; cj; j ¼ 1; . . .; n
� 	

, k ¼ minf2bkj; jj; j ¼
1; � � � ; ng; . ¼

Pn
j¼1 gj þ 1

2
u2minþ ð1� rÞr r

1�rcj þ ð1�

bÞb
b

1�bjj and gj ¼
cj
2kj

h2j þ
jj
2kj

h2j þ 1
2
a2j þ 1

2
e2j ; j ¼ 1; 2; . . .; n.

By using Lemma 4, one has:

_Vn � � c
Xn
j¼1

z2j
2
þ

~h2j
2kj

 ! !r

�k
Xn
j¼1

z2j
2
þ

~h2j
2kj

 ! !b

þ.

� � cVrðxÞ � kVbðxÞ þ .:

ð59Þ

Applying Lemma 1, we can obtain system (6) is practical

fixed-time stable and converges to a compact set

x 2 VðxÞ�min ð .
ð1� /ÞcÞ

1
r; ð .

ð1� /ÞkÞ
1
b

� �� �
ð60Þ

Then, the setting time can be obtained:

T � Tm ¼ 1

c/ðr� 1Þ þ
1

k/ð1� bÞ : ð61Þ

In addition, applying the definition of Vn, we have:

jy� ydj � 2ð .
ð1� /ÞcÞ

1
2r: ð62Þ

By choosing appropriate constant parameters, the tracking

error can reduce to an ideal range in a fixed time. h

Remark 3 From formula (61), the convergence time

boundary T is not affected by the initial state. The raised

adaptive fixed-time control tactic overcomes the limitation

of the finite-time control scheme relies on initial state and

guarantees tracking performance within a fixed-time.

4 Simulation Results

Example 1 The following second-order uncertain non-

linear quantized system is thought about:

_x1 ¼ x2 þ f1ð�x1Þ
_x2 ¼QðuÞ þ f2ð�x2Þ

y

ð63Þ

where y stands for system output, x1 and x2 denote the

systems states, Q(u) represents hysteretic quantizer as in

(7).

Then, the fuzzy membership functions are defined

below:

lF1
i
ðxÞ ¼ exp

��ðxþ 2Þ2

2

�
;

lF2
i
ðxÞ ¼ exp

��ðxþ 1:5Þ2

2

�
;

lF3
i
ðxÞ ¼ exp

��ðxþ 1Þ2

2

�
;

lF4
i
ðxÞ ¼ exp

��ðxþ 0:5Þ2

2

�
;

lF5
i
ðxÞ ¼ exp

��x2

2

�
;

lF6
i
ðxÞ ¼ exp

��ðx� 0:5Þ2

2

�
;

lF7
i
ðxÞ ¼ exp

��ðx� 1Þ2

2

�
;

lF8
i
ðxÞ ¼ exp

��ðx� 1:5Þ2

2

�
;

lF9
i
ðxÞ ¼ exp

��ðx� 2Þ2

2

�
:

According to Theorem 1, the adaptive law, the virtual

controller and the real controller are established as:

a1 ¼ � c1z
2r�1
1 � k1z

2b�1
1 � z1

2a21
ĥ1x

T
1 ðX1Þx1ðX1Þ ð64Þ

u ¼ � c2z
2r�1
2 � k2z

2b�1
2 � z2ĥ2xT

2 ðX2Þx2ðX2Þ
2a22

ð65Þ

_̂hi ¼
ki
2a2i

z2ix
T
i ðXiÞxiðXiÞ � ciĥi � jiĥi; i ¼ 1; 2 ð66Þ

where r ¼ 118=100, b ¼ 90=101, z1 ¼ x1 � yd; z2 ¼ x2 �
a1;X1 ¼ ½x1; yd; _yd�T and X2 ¼ ½�xT2 ; ĥ1; �y

ð2ÞT
d �T (Fig. 2).
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In simulation, fið�xiÞ is chosen as

f1ð�x1Þ ¼ ð1� sin2ðx1ÞÞx1,
f2ð�x2Þ ¼ cosðx1Þ2x21 þ sinðx1Þ2x22 � x1x

2
2:

To test the correctness of Theorem 1, we need to let

yd ¼ sinð0:5tÞ þ 0:5sinðtÞ. The related parameters can be

set to d ¼ 0:5, lmin ¼ 0:2, c1 ¼ c2 ¼ 8, c3 ¼ c4 ¼ 6, a1 ¼
0:8; a2 ¼ 1:2; k1 ¼ 20; k2 ¼ 25; c1 ¼ 1; c2 ¼ 2, j1 ¼ 1,

j2 ¼ 2: we choose initial conditions as ½x1ð0Þ; x2ð0Þ�T ¼
½0:05;�0:5�T ; and ½ĥ1ð0Þ; ĥ2ð0Þ�T ¼ ½0:1; 0:2�T : Simulation

results are displayed in Figs. 3, 4,5, 6, and 7. From the

simulation results, it is shown that all the signals are sta-

bilized in fixed time.

Remark 4 To further demonstrate the suitability and

availability of the proposed control tactics, we have com-

pared the results with the control results in [42]. According

to Fig. 7, we can know that the proposed fixed time control

scheme has faster convergence speed and better tracking

performance. In addition, different from [18, 19], the

control strategy can guarantee the stability of the system at

fixed time. Moreover, the upper bound of the stability time

is only influenced by the design parameters.

5 Conclusion

This article provides an adaptive fixed-time control

scheme for uncertain nonlinear quantized systems. The

fuzzy logic system is used to approximate the unknown

nonlinear function. To build the relationship of u(t) and

Q(u(t)), a nonlinear decomposition of quantized input is

introduced. The fixed time controller is constructed to get

over limitation that system convergence time relies on

initial state, and ensures tracking error converges to a small

neighborhood of the origin within a fixed time. Simulta-

neously, the closed-loop system signals are bounded, and

convergence time has a definite upper bound. Finally, the

main result is proved by simulation results. Moreover, the

time delay problem is not considered in the proposed

control strategy. How to design a quantitative feedback

controller to ensure the fixed time stability of nonlinear

systems with time delay is our future research direction.

Fig. 2 Control design process
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