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Abstract This article settles the issue of adaptive fixed-
time control of uncertain nonlinear quantized systems.
Different from the traditional study about fixed-time con-
trol for uncertain nonlinear systems, quantitative control
issue is considered in this paper, and the nonlinear term can
be unknown. The new adaptive control tactic of fixed-time
tracking control is proposed via fuzzy logic systems
approaching unknown nonlinearity, which overcomes the
existing limitation of the upper boundary of system settling
time relies on the initial condition. The closed-loop system
stability is guaranteed in a fixed time. At the end of this
paper, the availability of the strategy is proved by a
numerical simulation.
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1 Introduction

With the development of hybrid systems, digital control
and network control systems (see [1-6]), the importance of
quantization methods has increased in recent years. These
systems need to transmit information between components
via wireless media. Because of the wireless communication
network has physical constraints, it is necessary to intro-
duce quantization technology to reduce communication
rate. Quantitative control of linear and nonlinear plants has
received much attention in the past several years, which
result in many fruitful results [4-10]. Among the above
results [4-6], are for linear quantized systems [7—11], are
for nonlinear quantized systems. Theoretically, the above
works merely ensure the expected performance as the time
variable approaches infinity. In addition, the above works
require the control system is fully known.

Due to the influence of uncertain factors, the actual
systems have nonlinearity. The nonlinear system functions,
including the bounding functions, may be completely
unknown. As we all know, the adaptive fuzzy or neural
control approaches are very useful tool to solve unknown
nonlinear problems, for instance, see [12—15]. It is worth
mentioning that the above works are realized on the basis
of infinite time stability, and the results of the asymptotic
stability has been unable to meet people’s needs. Different
from asymptotic stability, the good features of finite time
control are fast response speed, high tracking accuracy and
strong anti-interference ability. Obviously, finite time sta-
bility make the systems have better transient performance.
In recent years, the researches about finite time control has
been well developed. In [16], the terminal sliding mode
control method was raised. On that basis [17], established a
terminal sliding manifold to surmount the singularity
around the equilibrium point. Sliding mode control is a
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useful tool to stabilize complex nonlinear systems. In [18],
the event-triggered fuzzy sliding mode control issue about
a networked control system based on a semi-Markov pro-
cess was studied. The sliding mode control problem of
nonlinear stochastic Markov jump systems with uncertain
time-varying delays was studied in [19]. The Lyapunov-
type finite-time stability theory was established firstly in
[20, 21] to solve the chattering phenomenon resulted from
the sliding mode controller. On that basis [22, 23], studied
the finite-time stability of nonlinear systems. In order to
guarantee the capability of the system under low commu-
nication rates, the quantization scheme was proposed on
basis of finite time stability. In [24], the quantitative control
problem of finite-time synthesis of nonlinear semi-Markov
switching systems based on T-S fuzzy means was studied.
In [25], the issue of finite-time quantitative cost-guaranteed
fuzzy control of nonlinear systems was discussed. The
issue of finite-time adaptive fuzzy control for nonlinear
quantized systems with unknown time delays was dis-
cussed in [26]. Even though some works about finite time
on basis of nonlinear quantized systems has made some
progress, the determination of time relies on the initial
state. Therefore, when the initial conditions are unknown,
the designer cannot accurately estimate the system stability
time, which restricts the application of finite time control.
When initial conditions are unknown or uncertain, the finite
time control methods described above have been unable to
guarantee that the systems achieve the desired performance
at a predetermined time.

To solve this problem, a sufficient condition for stability
in fixed time was raised for the first time in [27]. From [27],
the stability time of the system is connected with a constant
that has nothing to do with the initial state, and the constant
is only determined by the design parameters. The fixed-
time stability is especially important for either hybrid or
switching systems [28-30] with dwell time. According to
the theorem of stability in fixed time in [27], the fixed time
controller was constructed for nonlinear systems in [31, 32]
respectively. In [33], the issue of fixed-time stability of
strict-feedback uncertain nonlinear systems was investi-
gated [34] proposed a fixed-time adaptive control strategy
for nonlinear systems by neural network. In [35], a fixed-
time terminal sliding mode control means was raised for
momentum wheel system. A global fixed-time consistency
protocol of second-order multi-agent systems was dis-
cussed in [36]. In [35, 36], the sinusoid continuous func-
tions were introduced to eliminate the singularity. In order
to suppress chaotic oscillation in power system, a fast fixed
time non-singular terminal sliding mode control means was
proposed in [37]. However, it should be pointed out that the
results in [31-37] need to meet the hypothesis that the
nonlinear function is known. Moreover, since the signals
between the factory and the controller are realized remotely

through the communication channel with limited band-
width, the quantization of the control signals cannot be
ignored. In [38], the fixed-time attitude tracking control
issue of rigid spacecraft with external disturbances and
input quantization was investigated. It should be pointed
out that the nonlinear function of the system in [38] is
known. When the nonlinear terms of uncertain nonlinear
systems are completely unknown, the fixed time control
schemes mentioned above have been unable to apply. It is a
challenge to construct a quantitative feedback controller to
avoid chattering and ensure the system is stable at fixed
time. Inspired by the above, the adaptive fixed-time control
issue of quantized uncertain nonlinear systems is investi-
gated in this paper. The main merits are generalized below.

(1) Compared with the existing fixed-time works
[31-37] for nonlinear systems, the quantitative
control issue is considered. Compared with [38],
the nonlinear function of the system is completely
unknown in this paper. By applying the fuzzy logic
system to approximate unknown nonlinearities, a
novel fixed-time fuzzy control strategy is raised. The
proposed control strategy ensures the system perfor-
mance in fixed time.

(2) In the finite-time control schemes [20-26], the
convergence time is dependent on the initial condi-
tions. In practice, the initial condition of the system
is not easy to obtain, which makes the schemes in
[20-26] difficult to implement. Instead, by con-
structing a novel fuzzy fixed-time controller, this
limitation can be overcome in this paper. The upper
bound of convergence time is merely affected by
design parameters. The proposed control strategy is
more interesting in application.

This article is organized below. The preliminary knowl-
edge and problem description are introduced in the second
part. The third part gives the major research results of this
article. Simulation studies are conducted in the fourth part.
Finally, the fifth part summarizes the work.

2 Preliminaries and Problem Statement

According to some lemmas and definitions of fixed-time
control, important results of this article are obtained in this
part.

2.1 Preliminaries

Definition 1 [39] Think about a nonlinear system:

# = f(x,1),2(0) = x0 (1)
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where x € R" represents state variable, f(x, ) is unknown
smooth nonlinear function and satisfy x(0) =0,
7(0,0) = 0. Suppose that system (1) is stable in Lyapunov
sense. If there exist convergence time 7, for Vi>T ,
x(¢) = 0, then system (1) is finite-time stability.

Definition 2 [39] If system (1) is stable in finite time, and
convergence time 7T has a definite upper bound 7, , and the
upper bound don’t affect by the initial state, then the sys-
tem (1) is fixed-time stability.

Lemma 1 [34] If the design constants ¢,e >0,
p>1,g€(0,1),n € (0,00), one has:
V< —cVP(x) — eVi(x) +n,Vx € R" (2)

the system (1) is globally fixed-time stability, and settling
time T, reckons as:

1 1
D1 dl—q)

the residual set of system (1) solution as follows:

ce{rmsml gl )@

T<T,=

(3)

Lemma 2 [40] For any given (x,y) € R?
a>1,>1,6>0,and (o — 1)(f — 1) = 1, the following
relation hold:

<—8a| |“ —l | |ﬁ
X x| + .
y= o ﬁsﬁy

Lemma 3 [41] For any given positive constants by, by, bs,
and real variables x and y, we have:

b by
e 3 < bl b B (5)
Lemma 4 [42] For tk€R, and k=1,--- ,n,0<p<1,

we have:

n ¢ n n ¢
<Z|zk|> <sz|¢<n1¢<2|lk|> .
k=1 k=1 k=1

2.2 Problem Statement

This article thinks about an uncertain nonlinear quantized
system below:

@ Springer

Xi=xi +fi(%),1<i<n—1,
x.n = Q(u(t)) +fn(_n)7 (6)

Yy =X.

where % = [x1,x2,.. .7x,-]T € R’ stands for system states,
(i=1,2,...,n), and y € R expresses output of system.
fi():R = R(i=1,2,...,n) is unknown smooth func-
tions. u(f) € R and Q(u(¢)) denote a controller and a
quantizer, respectively.

In this article, according to [43], hysteretic quantizer is
presented to avert chattering. It follows from [44] that
quantizer Q(u(?)) is described as follows:

uisgn(u), I i i, u<0,o0r
U; 5, >0
ui(1+ 5)sgn(u) i <|u| < < 5 ,u<0,o0r

Qu(n) =14 iy, ul+9)

1_5<|u|_ —s % 0

070§|u|< Umin ,u'<0,0r

1+90
lu:'_mé <|u| < tpin, i >0
Q(u(t7)),i =0

(7)

where u; = p' pin, i = 1,2,.. .0, Uiy >0and 0<p<1,

o= ﬁ Thus, O(u(t)) € U = {0, Lu;, u;(1 + 0),
i=1,2,...}. ty, governs the range of dead-zone. The

map of Q(u(r)) displays in Fig 1.

Remark 1 Different from the traditional research about
fixed time control of nonlinear systems, the quantization of
signals is considered firstly. An fixed-time adaptive control
strategy is provided for uncertain nonlinear quantized
systems.

Lemma 5 [45] Decomposing the quantized value Q(u(t))
as follows:

Olu)

Slope=1-5

w,(1+5) : =
Slope=1+5 \ —— Quamizar A

w(1+5)

Fig. 1 Quantizer Q(u())
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O(u(r)) = @(u)u(r) +d(1) (8)
where
1 -6<a@(u) <1+ 0,d(t)| < tmin- )

2.3 Fuzzy Logic Systems

Since the system (6) contains unknown functions, we need
to introduce fuzzy logic system to approximate them.
Using the singleton point fuzzifier, the center-average
defuzzifier and the product inference, we can obtain fuzzy
rules:

R TF x; is F{, ..

Then: yg is G', [ = 1,2,...,N where x = [x;, X3, ..., x,]"
€ R" denotes input variable, and yg € R stands for fuzzy

ol
oXp 18 F),

system output. The membership functions of fuzzy set F’ f
are signified by p(x;). N expresses total amount of the

rules.
We can select Gaussian functions with the exponential
as the membership functions:

!
i () = exp {— (x;;,a)}
where a! and b! stands for the center and the width of a
fuzzy membership function, respectively.

Applying the singleton function, the center-average
defuzzification and the product inference [46], yg(x) is
described as:

_ Z?/:l o IT, HF! (x:)
Z;v:l (T M ()]

ya(x) (10)

where

®; = max pg (y), ® = (B, Dy, ..., Dy)".
YGER

Let
I
27:1 (T M (xi)]

and o(x) = (w;(x), 2(x), ..., oy (x))". Then, fuzzy logic
system is expressed as:

ye(x) = O (x). (11)

Lemma 6 [47] If f(x) € Q is a continuous function, for
any given & > 0, fuzzy logic system (11) makes the rela-
tional expression true:

;(x)

sup £ (x) — 7 w(x)| <. (12)

xeQ

The purpose of this manuscript is constructed an fuzzy
adaptive controller to ensure all closed-loop signals remain
stable for a fixed time, and system output signal y follows
the reference signal y,.

3 Adaptive Controller Design

A fixed-time adaptive controller for the system (6) is
constructed via backstepping approach in this part. Then,
the error variable is defined as follows:

21 =X1 — Yd,

Zi:.Xj—OCi_],iZZ,"',n-

(13)

where o;_ stands for virtual controller. For convenience of
symbol operation, the ith time derivative of y, is expressed
by yg), and let )75) = [yd,yy),...,yg>]r, i=1,2,...n

Remark 2 Based on backstepping technique, approxi-
mating unknown nonlinear function f; by fuzzy logic sys-
tem ®;(X;). To achieve control objectives, we define a
constant 0; = ||®;||*,i =1,2,---,n, O stands for estimate

of 0, and the parameter estimation error is él =0, — 91.

Step 1. Consider the nonlinear uncertain system (6),
according to z; = x; — y4, we have:

a=x+filx) =Yg (14)
Think about the following Lyapunov function:
2 N2
i, b
v, =14 L 15
T2 T2y 13)

where 4; > 0 is a design constant.
By (13), (14), one has:

0,0,

Vi=z(z+m +f1(x1)*y'd)*/l—- (16)
1
Using Young’s inequality, one has:
2 2
a4, %
<= +=. 17
2122 S > + > (17)

Substituting (17) into (16) yields:

, 3 010
ViSalfi+5+u =) + 2 - = (18)

Let f; =fi +z1 — Y, then (18) can be rewritten as:

2 2

s ~ Zz Zl 0191 (19)
Vv, < 2_ 2 )

1_Z10€1+Z]f1+2 > )»1

Since f, is unknown, it cannot be obtained. Applying
Lemma 6, for Ve; > 0, there is a fuzzy logic system
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®'w; (X,) as follows:
fi = 0wi(X1) +81(X1),[01(X1)| < & (20)
where Xi = (x1, Y4, g)-

By applying Young’s inequality, one has:

1, 1
=z + =& (21)

1
110160 w1 —+ —a% +2 2

afi < >

Then, we choose the virtual controller as:

2p—1
oq:fclz% kZ/}

1 (22)
2 261Z1(1)T(U1

where ¢; > 0, k; > 0 and a; > 0 are design constants.
Next, we set up the adaptive law as:

A1

é f—
! 2a1

zlw oy = 9,0y —x101,0,(0)>0 (23)

where y; and x; are positive design constants.
Substituting (21)—(23) into (19), we have:

; 2 B B % 7 ~
V< —ad—ad+2 +3+3 14,0,
2 2 Al (24)
%160,
)l.l
It is noted that
15 5 Vl >
20,0, < ‘o
M = 2)1 2}1 1 (25)
K154 K1
0.0, < —
e T2y 1+2A1 (26)
Equation (24) can be described as:
2
Vi< — 122 — k2P — 92 K1 » %
1> ClZl IZ] 2}1 2/11 1 + 7’1 + 2
(27)
where 1, = _1_‘_21’)_:0% _|_1/§_:0%'

Step i(2<i<n—1). Based on (13) and Step 1, we
have:

4 = fi(%) + Xig1 — dig (28)
where
i—1
. aOC,‘_ aOC,
di—l:Z%{]( )+x]+l} -l-z Lo j
= 0x; = ag}
(29)

+Za% 1 (1+l

Now, think about the Lyapunov function:

1 N2
Vi=Vi += z+ﬁe (30)

@ Springer

where /; is a positive design constant.
Then its derivative can be obtained:

. . . 1 ~ =
Vi=Vioi +zi(zigr + o +fi(%) —oim1)  — Iez@i-
(31)
According to Lemma 2, we have:
1 1
zizig1 < EZ + 2z,+, (32)
Substituting (32) into (31), one has:
i—1 . " i—1
= (3 +kig” + 924——’92) +
— 2/ 27; 7 —
J J
_ 1 ) 1 2 ~ A
n; + zf; + zio + EZ[H - EZ,» - A_,»eiei
(33)

where

. 3
fi=fi(x%) —diz +§Z,~2.

Similarly, (I)Tw,-( ;) is used for approximating f;, and X; =

[x,,é), Yy ] EQZ CR3l with 9, 1 —[91,92,...,éi_]]r.
Applying Lemma 6, we have:
i = O] 0i(Xi) + 0:(X3), |0i(X)| < & (34)
where ¢; is any given positive constant.
Using Young’s inequality, we have:
1 1 1
2 2
zlf,_z2 9ww,+2a,+zz +6 (35)
Then, the virtual controller is constructed as:
1 4
_ 26—1 2p-1 T
o = —ciz;’  —kizi" — o 0izi0; ; (36)

i
where ¢; > 0, k; > 0 and a; > 0 are design constants.
Next, we set up adaptation law as:

Ji ,
0; = % zzw foi =0, —

k:0;,0;(0) >0 (37)

where y; and k; are positive design constants.
Much like (25), (26), we have:

Vi 5h Vi p2 Vi p2

Vigh < — Vi 0

PR 22,- Ay (38)
Kisa 32 2

M <

OB =B 4 61 (39)

Substituting (35)—(39) into (33) yields:
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i
Vi S - Z(CJ‘ZJZU + ijfﬂ +
Jj=1

i
1 2
+ Z”j 5%
j=1

"’92+ a +1 81’1 1,2,-

2_’2
220+ 6)

where 1; = < 02

Step n. Accordmg to the analys1s in step i, one has

Zn :fn(fn) + Q(u(t)) — Op1

where

G =Za°‘” = ((5) + %41 +Za°‘” !

Jj=1
aoc,,
j : 1 (1+1 )

Now, think about the Lyapunov function:

1 1 -~
Vo=V +-2+—0
1+2Z,1+2/1n .

where 4, is a positive design constant.
From its derivative and Lemma 5, one has:

V, =V, , + 20 (fn (%) + w(w)u(t) + d(t) — op—1)
Uy

/L‘il

Based on Young’s inequality, we have:

V'n< 20 k: 28 02 KJ 02
- (¢jz;” + kiz; +2/1 22/ )
n—1 B 1
+ Qi+ wfy = 57+ o (u)u(r)
j=1
1, 1 ~ 2
A i __Hngn
+2umm /1,1
where
_ B . 3
fn :ﬁt(xn) — Op—1 +§Zn~

Similarly, for Ve, > 0, fuzzy logic system (Dg(un(

adopted to approximate f,.
From Lemma 6, we have:

o= Ppon(Xa) + 0a(Xa), 104(X

Applying Young’s inequality, we have:

| < én

(41)

(46)

X,) is

(47)

1 1
an;1_ 2a 2Z 9,1(,0 wn+2an+2z +§‘On (48)

Now, the actual controller is constructed as:

5 T
2—1 z,,@,la)n Wy,

S (49)

20—-1
U= —Cun - knzn

where k, > 0,c, > 0 and a,, > 0 are design constants.
Next, we set up adaptation law as:

A A
0, = = zsza)
20, (50)
— ynén — Kn0, 0, (1) >0
where 7, is a positive design constant.
Combining (48), (9), we can obtain:

zw(wu(r) < — Cnzn’® — kyzn 2P

Substituting (48)—(51) into (45) gives:

. Vi K;
V, < 20 4 kiz)
a Jj=1 (C] i i T2 21 2)“1 + Z: U
1 1 1 y
_ 20 2p - n
cnz,” — ka2, —|—2umm+2an+28n+ 0,0,
K, ~ ~
0,0
A
(52)
Furthermore, as is the same case of (38) and (39), we have:
Tnj oA "n 2 Tn p2
20,0, < 0, + 0,
G s Ty Gt (53)
~ A Kn =~ K
0,0,< — 202+ 02
T O S T Ot U (54)

Substituting (53), (54) into (52), one has:

V'ng _Z(C]Zf”—’—z; 02) Z(k 2/f+_/92) +1
. —

j=1 j=
(55)
where T= ZJ" 1+ é uzmm and
LA L
’Lzﬁej ZAILHJ a +281,j—1,2,...,n

So far, the following theorem summarizes the above
work.

Theorem 1 Think about the uncertain nonlinear system
(6), preceded by hysteresis quantizer (7). Based on con-
troller (49), intermediate virtual controller (36) and
adaptive law (37), system (6) is globally fixed-time stabil-
ity. The tracking error converges to a small neighborhood
of the origin. Within a fixed time, the closed-loop system
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stability is guaranteed and convergence time has a certain
upper bound.

Proof Applying Lemma 3, one has:

r 2
<ZZ |Big)? Z (1—o0)o (56)

n 912 B éJZ 5
(Zzﬂhj) = Zzz (= HF. 57)
=1

)

Combining (55), (56), (57), we have:

n n é2 o
20 J
oS -
= =\

n N
_;Kf(zj“,) te
(Yo (Y (L
<2 (39) 2 (3) #2(9)

(58)
where ¢ = mm{Z ¢Vl = n} k = min{2Pk;, x;,j =
. »n}a 0= Zj:l 17] +§Mmin+ (1 - G)Gliay]' (1 -

,l?),l?l/ffﬂxjandnj:2)45;,_0_/2 o 9_2+1a2+182]71 2,.

By using Lemma 4, one has.

. n (2 2\\ (e (2 )\
< — A J _ S J
Vn = C<;<2+2Aj g ; 27 2)) T

< —cVo(x) —kVE(x) + o

(59)

Applying Lemma 1, we can obtain system (6) is practical
fixed-time stable and converges to a compact set

cefrosml ') @

Then, the setting time can be obtained:

1 1
T<T,= + . 61
o 1) kp(1- ) oy
In addition, applying the definition of V,, we have:
1Y L
y =il S2(7——5)* 62
=l €22 550 (62)

By choosing appropriate constant parameters, the tracking
error can reduce to an ideal range in a fixed time. [

Remark 3 From formula (61), the convergence time
boundary T is not affected by the initial state. The raised
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adaptive fixed-time control tactic overcomes the limitation
of the finite-time control scheme relies on initial state and
guarantees tracking performance within a fixed-time.

4 Simulation Results

Example 1 The following second-order uncertain non-
linear quantized system is thought about:

X1 =x +fi(%1)
Xy = Q(u) + fo(x2) (63)
Yy

where y stands for system output, x; and x, denote the
systems states, Q(u) represents hysteretic quantizer as in

().

Then, the fuzzy membership functions are defined
below:

Hp1 (x) = exp (@T+2)Z)
- o (2515
#r3 (x) = exp (_(XTW)
() = exp (~EE 00,
) = exp ().

s ) = exp (T2 0,
) = exp (E 10,
s ) = enp (ZEZ LY,

According to Theorem 1, the adaptive law, the virtual
controller and the real controller are established as:

o= -2 — kP - o 291(01 XDoi(X1)  (64)
_ 0T (X5 ) s (X
U= —czzgg ! kzzgﬂ L_an 2 22) 2(Xa) (65)
2a;
I i o
9,‘ = Zsz(X )wl( 1) - ’))16 K,'Q,‘,i =1,2 (66)

2a 2
where ¢ = 118/100, f =90/101, z; = x1 — yg, 20 = X2 —

o0, X, = [, ya,vgl” and X, = [, 0,57 (Fig. 2).
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In simulation, chosen as

fl(fl) = (1 — sinz(xl))xl,
f(%) = cos(x;)*x} + sin(x))*x3 — x1x3.

To test the correctness of Theorem 1, we need to let
va = sin(0.5¢) + 0.5sin(r). The related parameters can be
set to 6 = 05, Honin = 02, Cl = Cy = 8, C3 = C4 = 6, a; =
0.8,a, =12,4; =20,2, =259, =1, 7,=2, k1 =1,
K, = 2. we choose initial conditions as [x;(0),x,(0)]" =
[0.05,—0.5]", and [0,(0),0,(0)]" = [0.1,0.2]". Simulation
results are displayed in Figs. 3, 4,5, 6, and 7. From the
simulation results, it is shown that all the signals are sta-
bilized in fixed time.

filg) s

Remark 4 To further demonstrate the suitability and
availability of the proposed control tactics, we have com-
pared the results with the control results in [42]. According
to Fig. 7, we can know that the proposed fixed time control
scheme has faster convergence speed and better tracking
performance. In addition, different from [18, 19], the
control strategy can guarantee the stability of the system at
fixed time. Moreover, the upper bound of the stability time
is only influenced by the design parameters.

5 Conclusion

This article provides an adaptive fixed-time control
scheme for uncertain nonlinear quantized systems. The
fuzzy logic system is used to approximate the unknown
nonlinear function. To build the relationship of u(f) and
QO(u(?)), a nonlinear decomposition of quantized input is
introduced. The fixed time controller is constructed to get
over limitation that system convergence time relies on
initial state, and ensures tracking error converges to a small
neighborhood of the origin within a fixed time. Simulta-
neously, the closed-loop system signals are bounded, and

/_\ Reference

Uncertain System Output
nonlinear system v — vq

Q)

Hysteretic
Quantizer
Virtual
u(t) Controller

wa3s4g
91807 Azzng

Actual
Controller

Parameter
Identifier

Adaptive Law

Fig. 2 Control design process

Value

L L L L L L L L L
o 2 4 6 8 10 12 14 16 18 20
Time(sec)

Fig. 3 The tracking performance of y and y,

1.5

X2

©
)

State variable X,
o

L L L L L L L L L
o 2 4 6 8 10 12 14 16 18 20
Time(sec)

Fig. 4 State variable x;

convergence time has a definite upper bound. Finally, the
main result is proved by simulation results. Moreover, the
time delay problem is not considered in the proposed
control strategy. How to design a quantitative feedback
controller to ensure the fixed time stability of nonlinear
systems with time delay is our future research direction.
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