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Abstract This paper investigates the multiobjective sup-

plier selection problem (SSP) with type-2 fuzzy parame-

ters. All the involved parameters such as aggregate

demand, budget allocation, quota flexibility, rating values,

are depicted as type-2 triangular fuzzy (T-2TF) parameters.

To tackle the T-2TF, first, critical values (CV)-based

reduction method is introduced, and then chance-con-

strained programming is modeled to obtain the crisp ver-

sion of the multiobjective SSP. Secondly, an interval-based

approximation method is also developed for defuzzifying

the T-2TF parameters. Further, a novel interactive neutro-

sophic programming approach is also suggested to solve

the deterministic multiobjective SSP, which allows the

decision-makers to incorporate the neutral thoughts or

indeterminacy degrees efficiently. The computational study

is presented to verify and validate the defuzzfied tech-

niques and the proposed solution approach. An ample

opportunity to select the most desired compromise solution

with maximum overall satisfaction level is also addressed.

Finally, the conclusions and future research direction are

revealed based on the discussed work.

Keywords Type-2 fuzzy parameters � Nearest interval
approximation � Interactive neutrosophic programming

approach � Supplier selection problem

1 Introduction

The existence of uncertainty is trivial in real-life problems.

Many decision-making scenarios inevitably yield an

uncertain environment while modeling optimization prob-

lems. The incomplete, inconsistent, and inappropriate

information about the system leads to uncertainty.

Vagueness and ambiguousness among the different

parameters’ values are represented using the fuzzy set (FS)

theory. Firstly, Zadeh [37] investigated the FS that tackles

the membership function of an element into the feasible

decision set. For complex data, the depiction of vagueness

or ambiguity through a single membership function are not

equally feasible. The abrupt fluctuation among the values

of imprecise parameters occurs according to the changes in

the decision-making environment. Due to the complexity

of real-life problems, it may not be feasible to depict the

fuzzy parameters with a single membership function.

However, a set of corresponding membership grades can be

a better representative of the degree of belongingness in a

more appropriate way. Thus, the extension of FS with a set

membership degree is introduced by Zadeh [38] and named

as the type-2 fuzzy set (T-2FS). The T-2FS allows the

decision-maker to convey the parameters with a set of

membership grades into the FS (or type-1 fuzzy set).

Therefore, the concept of type-1 and type-2 membership

functions came into existence. For each type-1 membership

function (or only membership function), there is a type-2

membership function associated with it and ensures the

wholesome alignment of uncertainty degrees in the T-2FS.
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In the area of T-2FS, many researchers have made a sig-

nificant contribution to both the theoretical and application-

level domain. Liang andMendel [17] performed a theoretical

study on type-2 fuzzy parameters. Mendel and John [21] also

examined the necessary operations on type-2 fuzzy sets. Uncu

and Turksen [32] discussed the discrete interval type-2 fuzzy

models in learning parameters using uncertainty. Wu and

Mendel [33] also investigated the uncertainty measures in

interval type-2 fuzzy parameters. Juang and Tsao [12] dis-

cussed the interval type-2 fuzzy neural network for online

learning. Nie and Tan [24] contributed to the reduction

method of type-2 fuzzy parameters. Lamand Seneviratne [16]

performed a stability analysis of the interval type-2 fuzzy

model under the control system. Kundu et al. [13–15] have

also attempted to solve the different sorts of transportation

problems under interval type-2 fuzzy parameters. Muhuri

et al. [23] studied a reliability redundancyproblemunder type-

2 fuzzy uncertainty. Olivas et al. [25] presented an ant bee

colony optimization technique with type-2 fuzzy uncertainty.

Qin et al. [26] generalized the multicriteria group decision-

making problem for the green supplier selection with interval

type-2 fuzzy parameters. Liu et al. [20] also addressed a novel

green supplier selection technique by combining quality

function deployment.

The supplier selection problem is a well-known and

integral component of the supply chain planning problems.

The selection of best suppliers depends on various criteria

such as overall performance ratings, less rejection of items,

timely delivery, fulfilling aggregate demand. The literature

suggested that a large part is dedicated to SSP as a multi-

criteria decision-making problem in interval type-2 fuzzy

uncertainty. Türk et al. [31] investigated the application of

interval type-2 fuzzy parameters in supplier selection prob-

lems. Sang and Liu [27] presented an interval type-2 fuzzy

multicriteria decision-making problem with an application

in supplier selection problems. Ghorabaee et al. [10] studied

a green supplier selection by considering interval type-2

fuzzy parameters in multicriteria decision-making. Hei-

darzade et al. [11] also presented the supplier selection

technique using the clustering method with interval type-2

fuzzy parameters. Mousakhani et al. [22] also implemented

type-2 fuzzy parameters in the green supplier selection

problem. Liu et al. [19] developed an integrated supplier

selection model under the type-2 fuzzy parameters.

Recently, Wu et al. [34] investigated an extended green

supplier selection problem with type-2 fuzzy uncertainty.

A neutrosophic set (NS) is the extension and general-

ization of FS and intuitionistic fuzzy set (IFS), which is

presented by Smarandache [29]. It manages the indeter-

minacy degrees or neutral thoughts while making deci-

sions. Thus the marginal evaluations of each objective

function are determined by truth, indeterminacy, and falsity

degrees under the neutrosophic decision set. Based on NS,

Ahmad and Adhami [3, 4], Ahmad et al. [5, 7] addressed

neutrosophic programming approach for solving the mul-

tiobjective optimization problems. Many researchers such

as Abdel-Basset et al. [1], Adhami and Ahmad [2], Ye [36]

also contributed in the neutrosophic research domain. Here,

we have developed an interactive neutrosophic program-

ming approach (INPA) to solve the multiobjective SSP

with type-2 fuzzy parameters. The proposed INPA can be

considered as the extension of Ahmad et al. [6, 7], Torabi

and Hassini [30], respectively. We have discussed the

multiobjective SSP while ensuring the flow of the ordered

quantity of items to different suppliers with type-2 fuzzy

parameters. A novel solution approach is suggested for

solving multiobjective SSP based on the neutrosophic set.

Various decision-making problems inherently contain

vagueness or ambiguousness in the data-set. This incomplete

information is conveyed either in the form of approximate

intervals or linguistic terms. In SSP, the system parameters’

available data/possible values cannot always be precisely

determined and known. For instance, the price of a unit item at

a supplier is ‘‘about 510$’’, say between 450$ and 560$, the

available supply quantity of a supplier is ‘‘around 350–380

units’’, etc. Thus due to irregularities and inconsistencies like

lack of input information, inappropriate and incomplete

knowledge, noise in data, flawed statistical analysis, etc., it is

sometimes hard to identify exact membership grades and,

hence, model the problems in terms of type-1 fuzzy sets. As a

result, T2-FS has emerged due to fuzziness in themembership

function. Usually, the experts’ possible values of parameters

in approximate intervals, linguistic terms, etc. Also, each of

the points in a given interval may not have the same impor-

tance or possibility. For a large data-set of a specific parameter

collected from previous experiments, generally, all the points

are not equally possible. Such types of linguistic information,

approximate intervals, and blurred data-set can be expressed

byT2-FSs,where themembership degree of eachpoint cannot

be precisely determined. The three-dimensional nature of a

T2-FS gives an extra degree of freedom to represent uncer-

tainty over the type-1 fuzzy set.

For themultiobjective SSPwith fuzzy information,wehave

two motivations to explore this problem within the type-2

fuzzy set theory framework. Firstly, it is more advanced and

typical to treat some critical parameters as type-2 fuzzy vari-

ables because of the practical difficulties in determining their

crispmembership functions. Secondly,when some parameters

are assumed to be T2-FS, designing an effective method to

handle the optimization problem is also challenging.

The main contribution to this research can be regarded

as follows:

• Most of the supplier selection problems are studied as

multicriteria decision-making problems under T2-FSs,

but here, we have presented multiobjective SSP with
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continuous type-2 fuzzy parameters at different degrees

of vagueness.

• The continuous type-2 fuzzy parameters are dealt with

two different techniques, such as critical values reduc-

tion and nearest interval approximation methods for

obtaining the corresponding crisp version.

• An interactive neutrosophic programming approach

(INPA) is proposed to solve the crisp multiobjective

SSP, which considered the degree of indeterminacy

while making decisions.

• Opportunity for generating the desired solution results

by tuning the degree of vagueness (a) and compensa-

tion co-efficient (g) is also suggested.

The remaining portion of the manuscript is presented as

follows: In Sect. 2, the concept of type-2 fuzzy set is dis-

cussed while Sect. 3 represents the formulation of multi-

objective SSP under type-2 fuzzy parameters. The

proposed INPA is presented in Sect. 4. In Sect. 5, a com-

putational study is addressed to verify the applicability and

validity of the proposed solution approach. The conclu-

sions and future research opportunities are discussed in

Sect. 6.

2 Preliminaries

In this section, we have discussed some basic concepts

related to Type-2 fuzzy set.

Definition 1 [37] (Fuzzy set or type-1 fuzzy set) Suppose a

universal set X, then a fuzzy set (FS) eA in X can be defined

as follows:

eA ¼ fx; l
eA
ðxÞ j x 2 Xg

where l
eA
ðxÞ : x ! ½0; 1� denotes the membership func-

tion of the element x into the set eA, with the condition

0 � l
eA
ðxÞ � 1.

Definition 2 [21] (Type-2 fuzzy set) An FS is said to be

Type-2 fuzzy set (T-2FS) if the membership function

(degree of belongingness) is also fuzzy, it means that the

membership function for each element into the set is not a

crisp value but represented by a fuzzy set. Such a mem-

bership degree is known as the type-2 membership func-

tion. Thus, a T-2FS eA can be stated as follows:

eA ¼ ðx;wÞ l
eA
ðx;wÞ

� �

j x 2 X; w 2 Vx � ½0; 1�
n o

where l
eA
ðx;wÞ : ðx;wÞ ! ½0; 1� denotes the type-2

membership function, Vx is the type-1 membership func-

tion of x 2 X which is the domain of type-2 membership

function l
eA
ðxÞ into the set eA and can be defined as follows:

eA ¼
Z

x2X

Z

w2Vx

l
eA
ðx;wÞ=ðx;wÞ; w 2 Vx � ½0; 1�

where
R R

represent the union over entire permissible x and

w. For discrete universal discourse,
R

is interchanged by
P

.

For each x, assume x ¼ x
0
, the type-2 membership

function [21], represented by l
eA
ðx ¼ x

0
;wÞ; w 2 Vx �

½0; 1� can be depicted as follows:

l
eA
ðx0

;wÞ ¼ l
eA
ðx0 Þ ¼

Z

w2V
x
0

fx0 ðwÞ=w;

where 0 � fx0 ðwÞ � 1. In particular, w ¼ w
0 2

Vx
0 ; fx0 ðw

0 Þ ¼ l
eA
ðx0

;w
0 Þ is known as type-2 membership

function. Therefore, eA can be represented as follows:

eA ¼ fx; el
eA
ðxÞ j x 2 Xg

or

eA ¼
Z

x2X
el
eA
ðxÞ=x ¼

Z

x2X

Z

w2Vx

fxðwÞ=w
� �

=x

If all the type-2 membership functions are 1 (e.g.,

fxðwÞ ¼ 1; 8 x;w), the T-2FS is reduced into interval type-2

fuzzy set (IT-2FS) [21]. The characterization of an IT-2FS

using footprint of uncertainty (FOU) depicts a two-di-

mensional plane containing points x and their type-1

membership functions Vx. More precisely, FOU admit the

uncertainty in the type-1 membership functions of an IT-

2FS.

Example 1 Suppose X ¼ f4; 5; 6g and the type-1 mem-

bership functions of the elements of X are

V4 ¼ f0:3; 0:4; 0:6g, V5 ¼ f0:6; 0:8; 0:9g and V6 ¼
f0:5; 0:6; 0:7; 0:8g respectively. Now, one can obtained the

type-2 membership function of the element 4 as follows:

el
eA
ð4Þ ¼ l

eA
ð4;wÞ

¼ ð0:6=0:3Þ þ ð1:0=0:4Þ þ ð0:7=0:6Þ

g
0:3; 0:4; 0:6

0:6; 1:0; 0:7

� �

More specifically, l
eA
ð4; 0:3Þ ¼ 0:6, l

eA
ð4; 0:4Þ ¼ 1:0 and

l
eA
ð4; 0:6Þ ¼ 0:7. Furthermore l

eA
ð4; 0:3Þ ¼ 0:6 means

membership function (type-2) of the element 4 having the

membership grade (type-1) 0.3 is 0.6. Thus eA comply on

the value 4 with membership
0:3; 0:4; 0:6
0:6; 1:0; 0:7

� �

, which

depicts a random fuzzy variable.
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Similarly,

el
eA
ð5Þ ¼ l

eA
ð5;wÞ

¼ ð0:7=0:6Þ þ ð1:0=0:8Þ þ ð0:8=0:9Þ;
el
eA
ð6Þ ¼ l

eA
ð6;wÞ

¼ ð0:3=0:5Þ þ ð0:4=0:6Þ þ ð1:0=0:7Þ þ ð0:5=0:8Þ

Hence, the discrete type-2 fuzzy variable eA can be pre-

sented as follows:

eA ¼ ð0:6=0:3Þ=4þ ð1:0=0:4Þ=4þ ð0:7=0:6Þ=4
þ ð0:7=0:6Þ=5þ ð1:0=0:8Þ=5þ ð0:8=0:9Þ=5
þ ð0:3=0:5Þ=6þ ð0:4=0:6Þ=6þ ð1:0=0:7Þ=6
þ ð0:5=0:8Þ=6;

Definition 3 [21] (Type-2 triangular fuzzy variable) A

type-2 triangular fuzzy variable ew is depicted by

ðs1; s2; s3; gl; grÞ, where s1; s2; s3 are the real numbers and

gl; gr 2 ½0; 1� are the two parameters identifying the degree

of vagueness or ambiguity that ew takes a value x and the

secondary possibility distribution function el
ew
ðxÞ of ew is

depicted by

el
ew
ðxÞ ¼ x� s1

s2 � s1

�

� gl min
x� s1

s2 � s1
;
s2 � x

s2 � s1

� �

;
x� s1

s2 � s1
;
x� s1

s2 � s1

þ grmin
x� s1

s2 � s1
;
s2 � x

s2 � s1

� ��

ð1Þ

for any x 2 ðs1; s2Þ, and

el
ew
ðxÞ ¼ s3 � x

s3 � s2

�

�gl min
s3 � x

s3 � s2
;
x� s2

s3 � s2

� �

;
s3 � x

s3 � s2
;
s3 � x

s3 � s2

þ gr min
s3 � x

s3 � s2
;
x� s2

s3 � s2

� ��

ð2Þ

A type-2 triangular fuzzy variable (T-2TFV) can be con-

sidered as the generalization of a triangular fuzzy variable

(TFV). In TFV ðs1; s2; s3Þ, the degree of belongingness

(membership function) of each element is a fixed point in

½0; 1�. Moreover, the type-1 membership function in a T-

2TFV ew ¼ ðs1; s2; s3; gl; grÞ is not a fixed value and having

a specified interval between 0 and 1. The parameters gl and
gr depicts the periphery of T-2TFV. Intuitionally, if

gl ¼ gr ¼ 0, then T-2TFV ew changes into a TFV and,

Eqs. (1) and (2) represents the membership function of

TFV. With the aid of Eqs. (1) and (2), el
ew
ðxÞ can be

depicted as follows:

el
ew
ðxÞ

¼

x� s1
s2 � s1

� gl
x� s1
s2 � s1

;
x� s1
s2 � s1

;
x� s1
s2 � s1

þ gr
x� s1
s2 � s1

� �

; if s1 � x� s1 þ s2

2
;

x� s1
s2 � s1

� gl
s2 � x

s2 � s1
;
x� s1
s2 � s1

;
x� s1
s2 � s1

þ gr
s2 � x

s2 � s1

� �

; if
s1 þ s2

2
� x� s2;

s3 � x

s3 � s2
� gl

x� s2
s3 � s2

;
s3 � x

s3 � s2
;
s3 � x

s3 � s2
þ gr

x� s2
s3 � s2

� �

; if s2 � x� s2 þ s3

2
;

s3 � x

s3 � s2
� gl

s3 � x

s3 � s2
;
s3 � x

s3 � s2
;
s3 � x

s3 � s2
þ gr

s3 � x

s3 � s2

� �

; if
s2 þ s3

2
� x� s3;

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Thus, the T-2TFV ew is represented by

ew ¼ ðs1; s2; s3; gl; grÞ. For instance, suppose a T-2TFV

ew ¼ ð2; 3; 4; 0:5; 0:8Þ then its type-2 membership function

can be depicted as follows:

el
ew
ðxÞ

¼

ð0:5ðx� 2Þ; x� 2; 1:8ðx� 2ÞÞ; if 2� x� 2:5;

ððx� 2Þ � 0:5ð3� xÞ; x� 2; ðx� 2Þ þ 0:8ð3� xÞÞ; if 2:5� x� 3;

ðð4� xÞ � 0:5ðx� 3Þ; 4� x; ð4� xÞ þ 0:8ðx� 3ÞÞ; if 3� x� 3:5;

ð0:5ð4� xÞ; 4� x; 1:8ð4� xÞÞ; if 3:5� x� 4:

8

>

>

>

<

>

>

>

:

Hence the membership function for each point of x is a

TFV, e.g., el
ew
ð2:5Þ ¼ ð0:25; 0:5; 0:9Þ,

el
ew
ð3:2Þ ¼ ð0:7; 0:8; 0:96Þ, and so on. The domain of type-

2 membership function el
ew
ð2:5Þ, i.e., V2:5 ranges from 0.25

to 0.9 and el
ew
ð3:2Þ ranges from 0.7 to 0.96, respectively.

The domain of type-2 membership function of all the ele-

ments elicit the FOU.

Definition 4 (Critical values for random fuzzy variables)

Qin et al. [26] investigated three types of critical values

(CV) of a random fuzzy variable ew. They can be summa-

rized as follows:

(i) the optimistic CV of ew, represented by CVðewÞ, is
depicted as

CVðewÞ ¼ sup
a2½0; 1�

a \ Pos ew� a
� �h i

ð3Þ

(ii) the pessimistic CV of ew, represented by CVðewÞ, is
depicted as

CVðewÞ ¼ sup
a2½0; 1�

a \ Nec ew� a
� �h i

ð4Þ

(iii) the CV of ew, represented by CVðewÞ, is depicted as

CVðewÞ ¼ sup
a2½0; 1�

a \ Cr ew� a
� �h i

; ð5Þ
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2.1 Reduction Method for T-2FVs Based on CV

Firstly, Qin et al. [26] propounded a reduction method

based on CV that transforms a type-2 fuzzy variable into a

type-1 fuzzy variable (or simply a fuzzy variable). Suppose

ew be a type-2 fuzzy variable with type-2 membership

function el
ew
ðxÞ (a random fuzzy variable). Here, we tried to

incorporate the CVs as a depicting value for random fuzzy

variable el
ew
ðxÞ, i.e., CVðewÞ, CVðewÞ, and CVðewÞ. Thus

these methods of reduction are known as optimistic CV

reduction, pessimistic CV reduction, and CV reduction

methods, respectively.

Example 2 Suppose a type-2 fuzzy variable eA. With the

aid of Eq. (3), we have CVðel
eA
ð4ÞÞ ¼

sup
a2½0; 1�

a \ Pos el
eA
ð4Þ� a

� �h i

, where

Pos el
eA
ð4Þ� a

� �

¼
1; if a� 0:4;

0:7; if 0:4� a� 0:6

0; if 0:6� a� 1:

8

>

<

>

:

such that

CVðel
eA
ð4ÞÞ ¼ sup

a2½0; 0:4�
½a \ 1� [ sup

a2½0:4; 0:6�
½a \ 0:7�

[ sup
a2½0:6; 1�

½a \ 0�

¼ 0:4 [ 0:6 [ 0 ¼ 0:6

Similarly, using Eqs. (3), (4), and (5), we have

CVðel
eA
ð4ÞÞ ¼ 0:6; CVðel

eA
ð5ÞÞ ¼ 0:8;

CVðel
eA
ð6ÞÞ ¼ 0:6

CVðel
eA
ð4ÞÞ ¼ 0:4; CVðel

eA
ð5ÞÞ ¼ 0:6;

CVðel
eA
ð6ÞÞ ¼ 0:6

CVðel
eA
ð4ÞÞ ¼ 0:4; CVðel

eA
ð5ÞÞ ¼ 0:65;

CVðel
eA
ð6ÞÞ ¼ 0:6

On implementing optimistic CV, pessimistic CV and CV

reduction methods, the type-2 fuzzy variable eA deduced

into the following fuzzy variables
4; 5; 6

0:6; 0:8; 0:6

� �

,

4; 5; 6
0:4; 0:6; 0:6

� �

and
4; 5; 6

0:4; 0:65; 0:6

� �

.

Theorem 1 [26] Consider a T-2TFV
ew ¼ ðs1; s2; s3; gl; grÞ, then we have

(i) Using the optimistic CV reduction method, the

reduction w1 of ew has the following possibility

distribution

lw1
ðxÞ ¼

ð1þ grÞðx� s1Þ
s2 � s1 þ grðx� s1Þ

; if s1 � x� s1 þ s2

2
;

ð1þ grÞxþ grs2 � s1
s2 � s1 þ grðs2 � xÞ ; if

s1 þ s2

2
� x� s2;

ð�1þ grÞx� grs2 � s3
s3 � s2 þ grðx� s2Þ

; if s2 � x� s2 þ s3

2
;

ð1þ grÞðs3 � xÞ
s3 � s2 þ grðs3 � xÞ ; if

s2 þ s3

2
� x� s3;

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð6Þ

(ii) Using the pessimistic CV reduction method, the

reduction w2 of ew has the following possibility

distribution

lw2
ðxÞ ¼

ðx� s1Þ
s2 � s1 þ glðx� s1Þ

; if s1 � x� s1 þ s2

2
;

ðx� s1Þ
s2 � s1 þ glðs2 � xÞ ; if

s1 þ s2

2
� x� s2;

ðs3 � xÞ
s3 � s2 þ glðx� s2Þ

; if s2 � x� s2 þ s3

2
;

ðs3 � xÞ
s3 � s2 þ glðs3 � xÞ ; if

s2 þ s3

2
� x� s3;

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð7Þ

(iii) Using the CV reduction method, the reduction w3

of ew has the following possibility distribution

lw3
ðxÞ ¼

ð1þ grÞðx� s1Þ
s2 � s1 þ 2grðx� s1Þ

; if s1 � x� s1 þ s2

2
;

ð1� glÞxþ gls2 � s1
s2 � s1 þ 2glðs2 � xÞ ; if

s1 þ s2

2
� x� s2;

ð�1þ glÞx� gls2 � s3
s3 � s2 þ 2glðx� s2Þ

; if s2 � x� s2 þ s3

2
;

ð1þ grÞðs3 � xÞ
s3 � s2 þ 2grðs3 � xÞ ; if

s2 þ s3

2
� x� s3;

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

Theorem 2 (Qin et al. [26]) Consider wi be the reduction

of the type-2 fuzzy variable ewi ¼ ðsi1; si2; si3; gl;i; gr;iÞ derived
from the CV reduction method for i ¼ 1; 2; . . .; n. Also, let

w1;w2; . . .;wn are mutually independent, and ki � 0 for all

i ¼ 1; 2; . . .; n.

Proof Please visit [26]. h

2.2 Nearest Interval Approximation of Continuous

T-2FVs

The nearest interval approximation method provides the

crisp interval for a continuous T-2FVs. To present this, we

first obtain the CV-based reduction of the T-2FVs. After

that, we determine the corresponding a-cuts of these CV-

based reductions. Ultimately, on applying interval

approximation method to the a-cuts, we get the approxi-

mate crisp intervals.
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Here, we demonstrate the nearest interval approximation

method with T-2FV. Suppose there be a T-2FV

ew ¼ ðs1; s2; s3; gl; grÞ. Using Theorem 1, we have the

optimistic CV reduction, pessimistic CV reduction, and CV

reduction of ew as w1;w2 and w3 with possibility distribu-

tion functions depicted by Eqs. (6)–(8). Applying the

concept of a-cuts of a fuzzy variable Wu and Mendel [33],

we obtain the a-cuts of the reductions of ew.

a-cut of the optimistic CV reduction w1 of ew: Using
the definition of a-cut of a fuzzy variable, we get the a-cut
of the reduction w1 as w1LðaÞ;w1RðaÞ½ �, where

w1LðaÞ ¼

ð1þ grÞs1 þ ðs2 � s1 � grs1Þa
ð1þ grÞ � gra

; if 0� a� 0:5;

ðs1 � grs2Þ þ ðs2 � s1 þ grs2Þa
ð1� grÞ þ gra

; if 0:5� a� 1

8

>

>

<

>

>

:

ð9Þ

w1RðaÞ ¼

ðs3 � grs2Þ � ðs3 � s2 � grs2Þa
ð1� grÞ þ gra

; if 0:5� a� 1;

ð1þ grÞs3 � ðs3 � s2 þ grs3Þa
ð1þ grÞ � gra

; if 0� a� 0:5

8

>

>

<

>

>

:

ð10Þ

a-cut of the pessimistic CV reduction w2 of ew: The a-cut
of the reduction w2 is determined as w2LðaÞ;w2RðaÞ½ �,
where

w2LðaÞ ¼

s1 þ ðs2 � s1 � gls1Þa
1� gla

; if 0� a� 0:5;

s1 þ ðs2 � s1 þ gls2Þa
1þ gla

; if 0:5� a� 1

8

>

>

<

>

>

:

ð11Þ

w2RðaÞ ¼

s3 � ðs3 � s2 � gls2Þa
1þ gla

; if 0:5� a� 1;

s3 � ðs3 � s2 þ gls3Þa
1� gla

; if 0� a� 0:5

8

>

>

<

>

>

:

ð12Þ

a-cut of the CV reduction w3 of ew: The a-cut of the
reduction w3 is determined as w3LðaÞ;w3RðaÞ½ �, where

w3LðaÞ ¼

ð1þ grÞs1 þ ðs2 � s1 � 2grs1Þa
ð1þ grÞ � 2gra

; if 0� a� 0:5;

ðs1 � gls2Þ þ ðs2 � s1 þ 2gls2Þa
ð1� glÞ þ 2gla

; if 0:5� a� 1

8

>

>

<

>

>

:

ð13Þ

w3RðaÞ ¼

ðs3 � gls2Þ � ðs3 � s2 � 2gls2Þa
ð1� glÞ þ 2gla

; if 0:5� a� 1;

ð1þ grÞs3 � ðs3 � s2 þ 2grs3Þa
ð1þ grÞ � 2gra

; if 0� a� 0:5

8

>

>

<

>

>

:

ð14Þ

It is well-known that nearest interval approximation of a

fuzzy number [21] eA with the distance metric d is repre-

sented by Cdð eAÞ ¼ CL;CR½ �, such that CL ¼
R 1

0
ALðaÞda

and CR ¼
R 1

0
ARðaÞda, where distance metric d measure the

distance of eA from Cdð eAÞ and can be depicted as follows:

d eA;Cdð eAÞ
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z 1

0

ALðaÞ � CLð Þ2daþ
Z 1

0

ARðaÞ � CRð Þ2da

s

Applying this method for the a-cuts of optimistic CV,

pessimistic CV and CV reduction of ew, we can obtain the

nearest interval approximation of ew.

Nearest interval approximation of ew using a-cut of

the optimistic CV reduction w1 of ew: For this, the

nearest interval approximation of ew can be stated as

CL;CR½ � follows:

CL ¼
Z 1

0

w1LdðaÞ

¼
Z 0:5

0

ð1þ grÞs1 þ ðs2 � s1 � grs1Þa
ð1þ grÞ � gra

dðaÞ

þ
Z 1

0:5

ðs1 � grs2Þ þ ðs2 � s1 þ grs2Þa
ð1� grÞ þ gra

dðaÞ

¼ CL1 þ CL2

CL1 ¼
ð1þ grÞs1

gr
ln

1þ gr
1þ 0:5gr

� �

� s2 � s1 � grs1
g2r

0:5gr � ð1þ grÞ ln
1þ gr

1þ 0:5gr

� �� �

CL2 ¼ � s1 � grs2
gr

lnð1� 0:5grÞ

þ s2 � s1 þ grs2
g2r

0:5gr þ ð1� grÞ lnð1� 0:5grÞ½ �

ð15Þ
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CR ¼
Z 1

0

w1RdðaÞ

¼
Z 0:5

0

ð1þ grÞs3 � ðs3 � s2 þ grs3Þa
ð1þ grÞ � gra

dðaÞ

þ
Z 1

0:5

ðs3 � grs2Þ � ðs3 � s2 � grs2Þa
ð1� grÞ þ gra

dðaÞ

¼ CR1 þ CR2

CR1 ¼
ð1þ grÞs3

gr

� ln
1þ gr

1þ 0:5gr

� �

þ s3 � s2 � grs3
g2r

0:5gr � ð1þ grÞ ln
1þ gr

1þ 0:5gr

� �� �

CR2 ¼ � s3 � grs2
gr

� lnð1� 0:5grÞ �
s3 � s2 þ grs2

g2r
� 0:5gr þ ð1� grÞ lnð1� 0:5grÞ½ �

ð16Þ

The intervals given by Eqs. (15) and (16) are called opti-

mistic nearest interval approximation of ew.

Nearest interval approximation of ew using a-cut of

the pessimistic CV reduction w2 of ew: In this case, the

nearest interval approximation of ew can be stated as

CL;CR½ � follows:

CL ¼
Z 1

0

w2LdðaÞ

¼
Z 0:5

0

s1 þ ðs2 � s1 � gls1Þa
1� gla

dðaÞ

þ
Z 1

0:5

s1 þ ðs2 � s1 þ gls2Þa
1þ gla

dðaÞ

¼ CL1 þ CL2

CL1 ¼ � s1
gl

� lnð1� 0:5glÞ �
s2 � s1 � gls1

g2l
� 0:5gl þ lnð1� 0:5grÞ½ �

CL2 ¼
s1
gl
ln

1þ gl
1þ 0:5gl

� �

þ s2 � s1 þ grs2
g2r

� 0:5gl � ln
1þ gl

1þ 0:5gl

� �� �

ð17Þ

CR ¼
Z 1

0

w2RdðaÞ

¼
Z 0:5

0

s3 � ðs3 � s2 þ gls3Þa
1� gla

dðaÞ

þ
Z 1

0:5

s3 � ðs3 � s2 � gls2Þa
1þ gla

dðaÞ

¼ CR1 þ CR2

CR1 ¼ � s3
gl
lnð1� 0:5glÞ

þ s3 � s2 þ gls3
g2l

0:5gl þ lnð1� 0:5glÞ½ �

CR2 ¼
s3
gl
ln

1þ gl
1þ 0:5gl

� �

� s3 � s2 þ gls2
glr

0:5gl � ln
1þ gl

1þ 0:5gl

� �� �

s

ð18Þ

The intervals given by Eqs. (17) and (18) are called pes-

simistic nearest interval approximation of ew.

Nearest interval approximation of ew using a-cut of

the CV reduction w3 of ew: In this case, the nearest

interval approximation of ew can be stated as CL;CR½ �
follows:

CL ¼
R 1

0
w3LdðaÞ

¼
R 0:5
0

ð1þ grÞs1 þ ðs2 � s1 � 2grs1Þa
ð1þ grÞ � 2gra

dðaÞ

þ
R 1

0:5

ðs1 � gls2Þ þ ðs2 � s1 þ 2gls2Þa
ð1� glÞ þ 2gla

dðaÞ

¼ CL1 þ CL2

CL1 ¼ ð1þ grÞs1
gr

� lnð1þ grÞ �
s2 � s1 � 2grs1

4g2r
� gr � ð1þ grÞ lnð1þ grÞ½ �

CL2 ¼ s1 � gls2
2gl

lnð1þ glÞ

þ s2 � s1 þ 2gls2
4g2l

gl � ð1� glÞ lnð1þ glÞ½ �

ð19Þ
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CR ¼
R 1

0
w3RdðaÞ

¼
R 0:5

0

ð1þ grÞs3 � ðs3 � s2 þ 2grs3Þa
ð1þ grÞ � 2gra

dðaÞ

þ
R 1

0:5

ðs3 � gls2Þ � ðs3 � s2 � 2gls2Þa
ð1� glÞ þ 2gla

dðaÞ

¼ CR1 þ CR2

CR1 ¼ ð1þ grÞs3
gr

� lnð1þ grÞ �
s3 � s2 þ 2grs3

4g2r
� gr � ð1þ grÞ lnð1þ grÞ½ �

CR2 ¼ s3 � gls2
2gl

lnð1þ glÞ

þ s3 � s2 � 2gls2
4g2l

gl � ð1� glÞ lnð1þ glÞ½ �

ð20Þ

The intervals given by Eqs. (19) and (20) are called cred-

ibilistic nearest interval approximation of ew.

Example 3 Suppose a T-2TFV ew ¼ ð2; 3; 4; 0:5; 0:8Þ,
then we can obtain the nearest interval approximation of ew.
Taking the advantage of Eqs. (15) and (16) the optimistic,

Eqs. (17) and (18) the pessimistic and Eqs. (19) and (20)

the credibilistic nearest interval approximation of ew are

depicted as

½2:4086; 3:5913�; ½2:5567; 3:4432� and ½2:4925; 3:504�,
respectively.

3 Supplier Selection Problem

The multiobjective SSP is considered under the uncer-

tain situation. It is assumed that an automobile company

places an ordered quantity to the different suppliers for

multiple parts to identify the quota allocation in a supply

chain. For this purpose, the decision-makers are strictly

against the shortage of parts, specific with the different

capacities and budget allocation. Due to real-life com-

plexity, vagueness and ambiguousness among the param-

eters are taken as type-2 triangular fuzzy numbers, which is

more realistic. The decision-makers’ main aim is to handle

the T-2TF parameters so that the minimum total cost

associated with ordering the aggregate demand, the rejec-

ted items of the suppliers, and the late delivered items are

obtained. The relevant notions and descriptions are sum-

marized in Table 1.

Objective functions

The total cost of ordering in SSP has significant

importance while allocating the budgets. For minimizing

the total cost for ordering the aggregate demand, the first

objective function is depicted. Mathematically, it can be

shown in Eq. (21).

MinimizeO1 ¼
X

i

X

j

y j
i � eP j

i � x j
i

	 


8 i; j: ð21Þ

The second objective function represents the total rejection

while handling the items. Thus, the second objective

function ensures the minimization of the vendors’ total

rejected items over a planning period. The mathematical

Table 1 Notions

and descriptions
Indices Descriptions

i Denotes the number of suppliers ði ¼ 1; 2; . . .; IÞ
j Denotes the number of items ðj ¼ 1; 2; . . .; JÞ
Decision variable

x ji Units order quantity assigned to supplier i

y ji Represents the binary variable such that y ji ¼
1; if x ji [ 0

0; if otherwise

�

Parameters

fTD j Total aggregate demand quantity of item type j over a fixed planning period (units)

eP j
i

Price of unit item type j of the ordered quantity to the supplier i ($/unit)

eR j
i

Percentage of rejected items j delivered by the supplier i

fLD j
i

Percentage of late delivered items j by the supplier i

fUL j
i

Maximum limit of available quantity of item type j for the supplier i (units)

fRVi
Rating value for supplier i

fPC Minimum purchasing value that a vendor can have

fQFi
Quota flexibility value for supplier i

eS Minimum flexibility value in supply quota that a vendor should have

eBi Total budget allocation to the supplier i ($)
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expression for the total rejected items is presented in

Eq. (22).

Minimize O2 ¼
X

i

X

j

y j
i � eR j

i � x j
i

	 


8 i; j: ð22Þ

To survive in the competitive market, on-time delivery of

the items is an essential criterion for the suppliers. It

enhances the market values and good-will of the vendors.

Hence, the third objective function minimizes the total of

late delivered items of the suppliers. The mathematical

expression for the minimization of late delivery is stated in

Eq. (23).

Minimize O3 ¼
X

i

X

j

y j
i � fLD j

i � x j
i

� �

8 i; j: ð23Þ

Constraints
The aggregated demand of the item type j from each

supplier i must be fulfilled; and can be represented in

constraint (24).
X

i

X

j

y j
i � x j

i ¼ fTD j 8 i; j: ð24Þ

The constraint (25) ensures that the available maximum

capacity of item type j must be less than the ordered

quantity given to the supplier i.
X

i

X

j

y j
i � x j

i � fULi 8 i; j: ð25Þ

The total purchasing value of item type j is represented in

constraint (26).

X

i

X

j

y j
i � fRVi � x j

i

� �

� fPC 8 i; j: ð26Þ

The constraint (27) provides the essential flexibility needed

with vendors’ quota.

X

i

X

j

y j
i � fQFi � x j

i

� �

� eS 8 i; j: ð27Þ

The restrictions over maximum budget amount allocated to

suppliers is represented by constraint (28).
X

i

X

j

y j
i � eP j

i � x j
i

	 


� eBi 8 i; j: ð28Þ

The constraints (29) reveal the flow status of items.

x j
i ¼ y j

i ¼ 1 or 0
� 

8 i; j: ð29Þ

The non-negativity restrictions over ordered quantity given

to suppliers is represented in constraint (30).

x j
i � 0 8 i; j: ð30Þ

Thus the formulation of SSP with type-2 fuzzy parameters

can be summarized as follows (31):

MinimizeO1 ¼
P

i

P

j y
j
i � eP j

i � x j
i

	 


Minimize O2 ¼
P

i

P

j y
j
i � eR j

i � x j
i

	 


Minimize O3 ¼
P

i

P

j y
j
i � fLD j

i � x j
i

� �

subject to
P

i

P

j y
j
i � x j

i ¼ fTD j

P

i

P

j y
j
i � x j

i � fULi

P

i

P

j y
j
i � fRVi � x j

i

� �

� fPC

P

i

P

j y
j
i � fQFi � x j

i

� �

� eS
P

i

P

j y
j
i � eP j

i � x j
i

	 


� eBi

x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð31Þ

where fð�Þ; ð� ¼ TD;P;R; LD;UL;RV ;PC;QF; S;BÞ repre-

sent the type-2 triangular fuzzy parameters involved in the

objective functions and constraints, respectively. The

transformation of SSP into its deterministic form can be

presented in the following sub-sections:

3.1 Chance-Constrained Programming Problem

Using Generalized Credibility

Let us consider that all the type-2 triangular fuzzy

parameters fð�Þ are transformed into the equivalent type-1

fuzzy (or only fuzzy) parameters fð�0 Þ using the CV-based

reduction method. To solve the proposed SSP with type-2

fuzzy parameters, we present a chance-constrained pro-

gramming (CCP) model with these reduced fuzzy param-

eters. The working principle of chance-constrained

programming is based on the chance (or confidence) level

associated with the risk violation. In CCP, the vague or

uncertain constraints are permitted to be violated such that

it must be satisfied at some confidence level (or chances).

Firstly, the CCP with type-1 (fuzzy) parameters was

introduced by Liu and Chen [18], Mendel and John [21],

Yang and Liu [35] using credibility-based measures. Since

the transformed fuzzy parameters fð�0 Þ may not be nor-

malized, hence the actual credibility measure cannot be

applied. Therefore, with the aid of generalized credibility

measures, as the multiobjective SSP (31) is of minimiza-

tion-type problem, the equivalent CCP model can be for-

mulated of the SSP (31) as follows:
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MinxðMin
ez1
ez1Þ ¼ fCr

P

i

P

j y
j
i � eP0 j

i � x j
i

� �

� ez1

h i

� a

MinxðMin
ez2
ez2Þ ¼ fCr

P

i

P

j y
j
i � eR0 j

i � x j
i

� �

� ez2

h i

� a

MinxðMin
ez3
ez3Þ ¼ fCr

P

i

P

j y
j
i � gLD0 j

i � x j
i

� �

� ez3

h i

� a

subject to

fCr
P

i

P

j y
j
i � x j

i ¼ gTD0 j
h i

� a j
i1

fCr
P

i

P

j y
j
i � x j

i � gUL0 i
h i

� a j
i2

fCr
P

i

P

j y
j
i � gRV 0

i � x j
i

� �

� gPC0
h i

� a j
i3

fCr
P

i

P

j y
j
i � gQF0

i � x j
i

� �

� eS0
h i

� a j
i4

fCr
P

i

P

j y
j
i � eP0 j

i � x j
i

� �

� eB0
i

h i

� a j
i5

x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð32Þ

where Minez� represent the minimum possible deterministic

form that the objective function attains with generalized

credibility at least að0� a� 1Þ. More precisely, a corre-

sponds to the minimization of the a-critical value Mendel

and John [21] of the objective functions. Further,

a j
i�ð0� a j

i� � 1Þ are the pre-determined generalized credi-

bility satisfaction levels of the respective constraints for all

i, j, respectively. All the constraints signify that the

restriction imposed over ordered quantity of items type j

given to supplier i must be satisfied at the credibility level

by at least a j
i�.

3.1.1 Crisp Equivalance

Suppose that fð�Þ are mutually independent the type-2 tri-

angular fuzzy variables depicted as

fð�Þ ¼ ð�Þ1; ð�Þ2; ð�Þ3; gl;�; gr;�
� �

. Using Theorem 2, the

chance-constrained SSP model (32) is transformed into the

following deterministic equivalent parametric program-

ming problems:

Case I When 0� a� 0:25, the equivalent parametric

programming problem for model (32) is given as follows

(33):

MinimizeO1 ¼
P

i

P

j y
j
i

�
1� 2aþ ð1� 4aÞg j

r;i

� �

P1j
i x

j
i þ 2aP2j

i x
j
i

1þ ð1� 4aÞg j
r;i

2

4

3

5

Minimize O2 ¼
P

i

P

j y
j
i

�
1� 2aþ ð1� 4aÞg j

r;i

� �

R1j
i x

j
i þ 2aR2j

i x
j
i

1þ ð1� 4aÞg j
r;i

2

4

3

5

Minimize O3 ¼
P

i

P

j y
j
i

�
1� 2aþ ð1� 4aÞg j

r;i

� �

LD1j
i x

j
i þ 2aLD2j

i x
j
i

1þ ð1� 4aÞg j
r;i

2

4

3

5

subject to
P

i

P

j y
j
i � x j

i ¼ DTDj

P

i

P

j y
j
i � x j

i �DULi

sumi

P

j y
j
i � DRVi � x j

i

	 


�DPC
P

i

P

j y
j
i � DQFi � x j

i

	 


�DS

P

i

P

j y
j
i � DPj

i
� x j

i

� �

�DBi

x j
i ¼ y j

i ¼ 1 or 0
� 

; x j
i � 0:

ð33Þ

where DTDj ;DULi ;DRVi ;DPC;DQFi ;DS;DPj
i
;DBi

are depic-

ted in Eqs. (37)–(44), respectively.

Case II When 0:25� a� 0:5, the equivalent parametric

programming problem for model (32) is given as follows

(34):

MinimizeO1 ¼
P

i

P

j y
j
i

�
ð1� 2aÞP1j

i x
j
i þ ð2aþ ð4a� 1Þg j

l;iÞP
2j
i x

j
i

1þ ð4a� 1Þg j
l;i

" #

Minimize O2 ¼
P

i

P

j y
j
i

�
ð1� 2aÞR1j

i x
j
i þ ð2aþ ð4a� 1Þg j

l;iÞR
2j
i x

j
i

1þ ð4a� 1Þg j
l;i

" #

Minimize O3 ¼
P

i

P

j y
j
i

�
ð1� 2aÞLD1j

i x
j
i þ ð2aþ ð4a� 1Þg j

l;iÞLD
2j
i x

j
i

1þ ð4a� 1Þg j
l;i

" #

subject to
P

i

P

j y
j
i � x ji ¼ DTDj

P

i

P

j y
j
i � x ji �DULi

P

i

P

j y
j
i � DRVi � x j

i

	 


�DPC
P

i

P

j y
j
i � DQFi � x ji

	 


�DS

P

i

P

j y
j
i � DPj

i
� x j

i

� �

�DBi

x j
i ¼ y ji ¼ 1 or 0

� 

x ji � 0:

ð34Þ
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Case III When 0:5� a� 0:75, the equivalent parametric

programming problem for model (32) is given as follows

(35):

MinimizeO1 ¼
P

i

P

j y
j
i

�
ð2a� 1ÞP3j

i x
j
i þ ð2ð1� aÞ þ ð3� 4aÞg j

l;iÞP
2j
i x

j
i

1þ ð3� 4aÞg j
l;i

" #

Minimize O2 ¼
P

i

P

j y
j
i

�
ð2a� 1ÞR3j

i x
j
i þ ð2ð1� aÞ þ ð3� 4aÞg j

l;iÞR
2j
i x

j
i

1þ ð3� 4aÞg j
l;i

" #

Minimize O3 ¼
P

i

P

j y
j
i

�
ð2a� 1ÞLD3j

i x
j
i þ ð2ð1� aÞ þ ð3� 4aÞg j

l;iÞLD
2j
i x

j
i

1þ ð3� 4aÞg j
l;i

" #

subject to
P

i

P

j y
j
i � x j

i ¼ DTDj

P

i

P

j y
j
i � x j

i �DULi

P

i

P

j y
j
i � DRVi � x j

i

	 


�DPC
P

i

P

j y
j
i � DQFi � x j

i

	 


�DS

P

i

P

j y
j
i � DPj

i
� x j

i

� �

�DBi

x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð35Þ

Case IV When 0:75� a� 1, the equivalent parametric

programming problem for model (32) is given as follows

(36):

MinimizeO1 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞP
3j
i x

j
i þ 2ð1� aÞP2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

Minimize O2 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞR
3j
i x

j
i þ 2ð1� aÞR2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

Minimize O3 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞLD
3j
i x

j
i þ 2ð1� aÞLD2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

subject to
P

i

P

j y
j
i � x j

i ¼ DTDj

P

i

P

j y
j
i � x j

i �DULi

P

i

P

j y
j
i � DRVi � x j

i

	 


�DPC
P

i

P

j y
j
i � DQFi � x j

i

	 


�DS

P

i

P

j y
j
i � DPj

i
� x j

i

� �

�DBi

x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð36Þ

where

DTDj

¼

ð1� 2a j
i1 þ ð1� 4a j

i1Þg
j
l;iÞTDj3 þ 2a j

i1TD
j2

1þ ð1� 4a j
i1Þg

j
l;i

; if 0� a j
i1 � 0:25;

ð1� 2a j
i1ÞTDj3 þ ð2a j

i1 þ ð4a j
i1 � 1Þg j

l;iÞTDj2

1þ ð4a j
i1 � 1Þg j

r;i

; if 0:25� a j
i1 � 0:5;

ð2a j
i1 � 1ÞTDj1 þ ð2ð1� a j

i1Þ þ ð3� 4a j
i1Þg

j
r;iÞTDj2

1þ ð3� 4a j
i1Þg

j
r;i

; if 0:5� a j
i1 � 0:75;

ð2a j
i1 � 1þ ð4a j

i1 � 3Þg j
l;iÞTDj3 þ 2ð1� a j

i1ÞTDj2

1þ ð4a j
i1 � 3Þg j

l;i

; if 0:75� a j
i1 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð37Þ
DULi

¼

ð1� 2a j
i2 þ ð1� 4a j

i2Þg
j
l;iÞULi3 þ 2a j

i2UL
i2

1þ ð1� 4a j
i2Þg

j
l;i

; if 0� a j
i2 � 0:25;

ð1� 2a j
i2ÞULi3 þ ð2a j

i2 þ ð4a j
i2 � 1Þg j

l;iÞULi2

1þ ð4a j
i2 � 1Þg j

r;i

; if 0:25� a j
i2 � 0:5;

ð2a j
i2 � 1ÞULi1 þ ð2ð1� a j

i2Þ þ ð3� 4a j
i2Þg

j
r;iÞULi2

1þ ð3� 4a j
i2Þg

j
r;i

; if 0:5� a j
i2 � 0:75;

ð2a j
i2 � 1þ ð4a j

i2 � 3Þg j
l;iÞULi3 þ 2ð1� a j

i2ÞULi2

1þ ð4a j
i2 � 3Þg j

l;i

; if 0:75� a j
i2 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð38Þ
DRVi

¼

ð1� 2a j
i3 þ ð1� 4a j

i3Þg
j
l;iÞRVi3 þ 2a j

i3RV
i2

1þ ð1� 4a j
i3Þg

j
l;i

; if 0� a j
i3 � 0:25;

ð1� 2a j
i3ÞRVi3 þ ð2a j

i3 þ ð4a j
i3 � 1Þg j

l;iÞRVi2

1þ ð4a j
i3 � 1Þg j

r;i

; if 0:25� a j
i3 � 0:5;

ð2a j
i3 � 1ÞRVi1 þ ð2ð1� a j

i3Þ þ ð3� 4a j
i3Þg

j
r;iÞRVi2

1þ ð3� 4a j
i3Þg

j
r;i

; if 0:5� a j
i3 � 0:75;

ð2a j
i3 � 1þ ð4a j

i3 � 3Þg j
l;iÞRVi3 þ 2ð1� a j

i3ÞRVi2

1þ ð4a j
i3 � 3Þg j

l;i

; if 0:75� a j
i3 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð39Þ
DPC

¼

ð1� 2a j
i3 þ ð1� 4a j

i3Þg
j
l;iÞPC3 þ 2a j

i3PC
2

1þ ð1� 4a j
i3Þg

j
l;i

; if 0� a j
i3 � 0:25;

ð1� 2a j
i3ÞPC3 þ ð2a j

i3 þ ð4a j
i3 � 1Þg j

l;iÞPC2

1þ ð4a j
i3 � 1Þg j

r;i

; if 0:25� a j
i3 � 0:5;

ð2a j
i3 � 1ÞPC1 þ ð2ð1� a j

i3Þ þ ð3� 4a j
i3Þg

j
r;iÞPC2

1þ ð3� 4a j
i3Þg

j
r;i

; if 0:5� a j
i3 � 0:75;

ð2a j
i3 � 1þ ð4a j

i3 � 3Þg j
l;iÞPC3 þ 2ð1� a j

i3ÞPC2

1þ ð4a j
i3 � 3Þg j

l;i

; if 0:75� a j
i3 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð40Þ
DQFi

¼

ð1� 2a j
i4 þ ð1� 4a j

i4Þg
j
l;iÞQFi3 þ 2a j

i4QF
i2

1þ ð1� 4a j
i4Þg

j
l;i

; if 0� a j
i4 � 0:25;

ð1� 2a j
i4ÞQFi3 þ ð2a j

i4 þ ð4a j
i4 � 1Þg j

l;iÞQFi2

1þ ð4a j
i4 � 1Þg j

r;i

; if 0:25� a j
i4 � 0:5;

ð2a j
i4 � 1ÞQFi1 þ ð2ð1� a j

i4Þ þ ð3� 4a j
i4Þg

j
r;iÞQFi2

1þ ð3� 4a j
i4Þg

j
r;i

; if 0:5� a j
i4 � 0:75;

ð2a j
i4 � 1þ ð4a j

i4 � 3Þg j
l;iÞQFi3 þ 2ð1� a j

i4ÞQFi2

1þ ð4a j
i4 � 3Þg j

l;i

; if 0:75� a j
i4 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð41Þ

F. Ahmad: Supplier Selection Problem with Type-2 Fuzzy Parameters: A Neutrosophic Optimization Approach 765

123



DS

¼

ð1� 2a j
i4 þ ð1� 4a j

i4Þg
j
l;iÞS3 þ 2a j

i4S
2

1þ ð1� 4a j
i4Þg

j
l;i

; if 0� a j
i4 � 0:25;

ð1� 2a j
i4ÞS3 þ ð2a j

i4 þ ð4a j
i4 � 1Þg j

l;iÞS2

1þ ð4a j
i4 � 1Þg j

r;i

; if 0:25� a j
i4 � 0:5;

ð2a j
i4 � 1ÞS1 þ ð2ð1� a j

i4Þ þ ð3� 4a j
i4Þg

j
r;iÞS2

1þ ð3� 4a j
i4Þg

j
r;i

; if 0:5� a j
i4 � 0:75;

ð2a j
i4 � 1þ ð4a j

i4 � 3Þg j
l;iÞS3 þ 2ð1� a j

i4ÞS2

1þ ð4a j
i4 � 3Þg j

l;i

; if 0:75� a j
i4 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð42Þ
DPj

i

¼

ð1� 2a j
i5 þ ð1� 4a j

i5Þg
j
l;iÞP

j3
i þ 2a j

i5P
j2
i

1þ ð1� 4a j
i5Þg

j
l;i

; if 0� a j
i5 � 0:25;

ð1� 2a j
i5ÞP

j3
i þ ð2a j

i5 þ ð4a j
i5 � 1Þg j

l;iÞP
j2
i

1þ ð4a j
i5 � 1Þg j

r;i

; if 0:25� a j
i5 � 0:5;

ð2a j
i5 � 1ÞPj1

i þ ð2ð1� a j
i5Þ þ ð3� 4a j

i5Þg
j
r;iÞP

j2
i

1þ ð3� 4a j
i5Þg

j
r;i

; if 0:5� a j
i5 � 0:75;

ð2a j
i5 � 1þ ð4a j

i5 � 3Þg j
l;iÞP

j3
i þ 2ð1� a j

i5ÞP
j2
i

1þ ð4a j
i5 � 3Þg j

l;i

; if 0:75� a j
i5 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð43Þ
DBi

¼

ð1� 2a j
i5 þ ð1� 4a j

i5Þg
j
l;iÞB3

i þ 2a j
i5B

2
i

1þ ð1� 4a j
i5Þg

j
l;i

; if 0� a j
i5 � 0:25;

ð1� 2a j
i5ÞB3

i þ ð2a j
i5 þ ð4a j

i5 � 1Þg j
l;iÞB2

i

1þ ð4a j
i5 � 1Þg j

r;i

; if 0:25� a j
i5 � 0:5;

ð2a j
i5 � 1ÞB1

i þ ð2ð1� a j
i5Þ þ ð3� 4a j

i5Þg
j
r;iÞB2

i

1þ ð3� 4a j
i5Þg

j
r;i

; if 0:5� a j
i5 � 0:75;

ð2a j
i5 � 1þ ð4a j

i5 � 3Þg j
l;iÞB3

i þ 2ð1� a j
i5ÞB2

i

1þ ð4a j
i5 � 3Þg j

l;i

; if 0:75� a j
i5 � 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð44Þ

Finally, the crisp version of multiobjective SSP (32) using

generalized credibility method is summarized in models

(33), (34), (35) and (36) depending on the range of a. One
can select the desired range of a, and after that the corre-

sponding crisp multiobjective SSP can be depicted for

further solution.

3.2 Using Nearest Interval Approximation

Suppose that fð�Þ are mutually independent the type-2 tri-

angular fuzzy variables depicted as

fð�Þ ¼ ð�Þ1; ð�Þ2; ð�Þ3; gl;�; gr;�
� �

. We obtain the nearest

interval approximations (credibilistic interval approxima-

tion, sub-section 2.2) of fð�Þ. Let us assume that the nearest

interval approximations of fð�Þ is represented by ð�ÞL; ð�ÞR
� �

.

Using these nearest interval approximations, the multiob-

jective SSP (31) is transformed into the following interval

programming problem (45):

MinimizeO1 ¼
P

i

P

j y
j
i � Pj

iL;P
j
iR

� �

� x j
i

	 


Minimize O2 ¼
P

i

P

j y
j
i � Rj

iL;R
j
iR

� �

� x j
i

	 


Minimize O3 ¼
P

i

P

j y
j
i � LDj

iL;LD
j
iR

� �

� x j
i

	 


subject to
P

i

P

j y
j
i � x j

i ¼ TDj
L; TD

j
R

� �

P

i

P

j y
j
i � x j

i � ULiL;UL
i
R

� �

P

i

P

j y
j
i � RVi

L;RV
i
R

� �

� x j
i

	 


� PCL;PCR½ �
P

i

P

j y
j
i � QFiL;QFiR½ � � x j

i

	 


� SL; SR½ �
P

i

P

j y
j
i � Pj

iL;P
j
iR

� �

� x j
i

	 


� BiL;BiR½ �
x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð45Þ

3.2.1 Deterministic Version

Firstly, we determine the deterministic version of the

uncertain constraints using the concept of possibility

degree of interval number [39] depicting a certain degree

by which one interval is more substantial or smaller than

the other. Here, we define the expressions for all the con-

straints of the multiobjective SSP (45) by achieving the

possibility of satisfaction degrees or marginal evaluations

of each interval parameters and can be given as follows:
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CTDj � TDj
L;TD

j
R½ �

¼

1; if TD j �TD
j
L;

TDj
R � TDj

TDj
R � TDj

L

; if TD
j
L �TDj �TD

j
R;

0; if TD j �TD
j
R

8

>

>

>

>

<

>

>

>

>

:

CULi � ULiL;UL
i
R½ �

¼

1; if ULi �ULi
L;

ULiR � ULi

ULiR � ULiL
; if ULi

L �ULi �ULi
R;

0; if ULi �ULi
R

8

>

>

>

<

>

>

>

:

CRVi � RVi
L;RV

i
R½ �

¼

1; if RVi �RVi
L;

RVi
R � RVi

RVi
R � RVi

L

; if RVi
L �RVi �RVi

R;

0; if RVi �RVi
R

8

>

>

>

<

>

>

>

:

CPC� PCL;PCR½ �

¼

0; if PC� PCL;

PC � PCL

PCR � PCL
; if PCL � PC� PCR;

1; if PC� PCR

8

>

>

<

>

>

:

CQFi � QFiL;QFiR½ �

¼

0; if QFi �QFiL;

QFi � QFiL

QFiR � QFiL

; if QFiL �QFi �QFiR;

1; if QFi �QFiR

8

>

>

<

>

>

:

CS� SL;SR½ �

¼

1; if S� SL;

SR � S

SR � SL
; if SL � S� SR;

0; if S� SR

8

>

>

<

>

>

:

CPj
i � P j

iL;P
j
iR½ �

¼

0; if P
j
i � P

j
iL;

Pj
i � Pj

iL

P j
iR � Pj

iL

; if P
j
iL � P

j
i � P

j
iR;

1; if P
j
i � P

j
iR

8

>

>

>

>

<

>

>

>

>

:

CBi � BiL;BiR½ �

¼

1; if Bi �BiL;
BiR � Bi

BiR � BiL
; if BiL �Bi �BiR;

0; if Bi �BiR

8

>

>

<

>

>

:

If all the constraints are permitted to be satisfied with some

specified possibility level between 0 and 1, such as,

CTDj � TDj
L;TD

j
R½ � � a j

i1; CULi � ULiL;UL
i
R½ � � a j

i2; CRVi � RVi
L;RV

i
R½ �

� a j
i3; CPC� PCL;PCR½ � � a j

i3; CQFi � QFiL;QFiR½ � � a j
i4; CS� SL;SR½ �

� a j
i4; CPj

i � Pj
iL;P

j
iR½ � � a j

i5 and CBi � BiL;BiR½ � � a j
i5, then the

equivalent deterministic inequalities of the respective

constraints are depicted as follows:

TDj � TDj
R � a j

i1 TDj
R � TDj

L

� �

; 8 i; j: ð46Þ

ULi �ULiR � a j
i2 ULiR � ULiL
� �

; 8 i; j: ð47Þ

RVi �RVi
R � a j

i3 RVi
R � RVi

L

� �

; 8 i; j: ð48Þ

PC�PCL þ a j
i3 PCR � PCL½ �; 8 i; j: ð49Þ

QFi �QFR þ a j
i4 QFR � QFL½ �; 8 i; j: ð50Þ

S� SR � a j
i4 SR � SL½ �; 8 i; j: ð51Þ

Pj
i �Pj

iR þ a j
i5 Pj

iR � Pj
iL

� �

; 8 i; j: ð52Þ

Bi �BiR � a j
i5 BiR � BiL½ �; 8 i; j: ð53Þ

We have transformed each objective function into two

different sub-objective while dealing with the interval

parameters. A lower/minimum value of each objective is

calculated by O1;O2 and O3 whereas the upper/maximum

values are determined by O1;O2 and O3, respectively. We

have solved for the following individual objective function

under the constraints (46)–(53).

O1 ¼ MinP j
iL �Pj

i �Pj
iR

Min
X

i

X

j

y j
i � Pj

i � x j
i

	 


" #

;

O1 ¼ MaxP j
iL �P j

i �P j
iR

Min
X

i

X

j

y j
i � Pj

i � x j
i

	 


" #

O2 ¼ MinR j
iL �Rj

i �Rj
iR

Min
X

i

X

j

y j
i � Rj

i � x j
i

	 


" #

;

O2 ¼ MaxR j
iL �R j

i �R j
iR

Min
X

i

X

j

y j
i � Rj

i � x j
i

	 


" #

O3 ¼ MinLD j
iL � LDj

i � LDj
iR

Min
X

i

X

j

y j
i � LDj

i � x j
i

	 


" #

;

O3 ¼ MaxLDj
iL � LD j

i � LDj
iR

Min
X

i

X

j

y j
i � LDj

i � x j
i

	 


" #

Thus the equivalent deterministic interval multiobjective

SSP (45) can be stated as follows (54):
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O1 ¼ MinPj
iL �Pj

i �Pj
iR

Min
P

i

P

j y
j
i � Pj

i � x j
i

	 


h i

O1 ¼ MaxP j
iL �P j

i �P j
iR

Min
P

i

P

j y
j
i � Pj

i � x j
i

	 


h i

O2 ¼ MinRj
iL �Rj

i �Rj
iR

Min
P

i

P

j y
j
i � Rj

i � x j
i

	 


h i

O2 ¼ MaxR j
iL �R j

i �R j
iR

Min
P

i

P

j y
j
i � Rj

i � x j
i

	 


h i

O3 ¼ MinLDj
iL �LDj

i �LD j
iR

Min
P

i

P

j y
j
i � LDj

i � x j
i

	 


h i

O3 ¼ MaxLD j
iL �LDj

i � LDj
iR

Min
P

i

P

j y
j
i � LDj

i � x j
i

	 


h i

subject to

constraints ð46Þ�ð53Þ
x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð54Þ

Hence the obtained multiobjective SSP (54) can be solved

to determine the optimal compromise solution for each

objective function.

4 Proposed Interactive Neutrosophic
Programming Approach

Many multiobjective optimization techniques are popular

among researchers. Based on the fuzzy set, different fuzzy

optimization method came into existence. In the fuzzy

programming approach, the marginal evaluation of each

objective function is depicted by only the membership

functions and can be achieved by maximizing it. The

extension of the fuzzy optimization method is presented by

introducing intuitionistic fuzzy optimization techniques. It

is comparatively more advanced than the fuzzy technique

because the marginal evaluation of each objective function

is depicted by the membership and non-membership

functions, which can be achieved by maximizing the

membership and minimizing the non-membership func-

tions, respectively. The real-life complexity most often

creates the indeterminacy situation or neutral thoughts

while making optimal decisions. Apart from the acceptance

and rejection degrees in the decision-making process, the

indeterminacy degree also has much importance. Thus to

cover the neutral thoughts or indeterminacy degree of the

element into the feasible solution set, Smarandache [29]

investigated a neutrosophic set. The name ‘‘neutrosophic’’

is the advance combination of two explicit terms, namely;

‘‘neutre’’ extracted from French means, neutral, and

‘‘sophia’’ adopted from Greek means, skill/wisdom, that

unanimously provide the definition ‘‘knowledge of neutral

thoughts’’ (see Smarandache [29], Ahmad and Adhami

[3]). The NS considers three sorts of membership func-

tions, such as truth (degree of belongingness),

indeterminacy (degree of belongingness up to some

extent), and a falsity (degree of non-belongingness)

degrees into the feasible solution set. The idea of inde-

pendent, neutral thoughts differs the NS with all the

uncertain decision sets such as FS and IFS. The updated

literature work solely highlights that many practitioners or

researchers have taken the deep interest in the neutrosophic

research field (see, Ahmad and Adhami [4], Ahmad et al.

[5], Ahmad et al. [6]). The NS research domain would get

exposure in the future and assist in dealing with indeter-

minacy or neutral thoughts in the decision-making process.

This study also fetches the novel ideas of neutrosophic

optimization techniques based on the NS. A novel inter-

active neutrosophic programming approach is developed to

solve the multiobjective SSP under type-2 fuzzy parame-

ters. The marginal evaluation of each objective function is

quantified by the truth, indeterminacy, and falsity mem-

bership functions under the neutrosophic decision set. Thus

the NS plays a vital role while optimizing the multiob-

jective optimization problems by incorporating, executing,

and implementing the neutral thoughts. Consider the gen-

eral formulation of multiobjective programming problem

(MOPP) with k objectives as follows:

Minimize ðO1ðxÞ;O2ðxÞ; . . .;OkðxÞÞ
s:t:

HðxÞ� 0; x� 0

ð55Þ

where OkðxÞ is the kth objective functions and; H(x) and

x are the real valued function and a set of decision

variables.

Bellman and Zadeh [8] first propounded the idea of a

fuzzy decision set. After that, it is widely adopted by many

researchers. The fuzzy decision concept comprises fuzzy

decision (D), fuzzy goal (G), and fuzzy constraints (C),

respectively. Here, we recall the most extensively used

fuzzy decision set with the aid of following mathematical

expressions:

D ¼ O \ C

Consequently, we also depict the neutrosophic decision set

DN , which contemplate over neutrosophic objectives and

constraints as follows: Consequently, we also depict the

neutrosophic decision set DN , which contemplate over

neutrosophic objectives and constraints as follows:

DN ¼ ð\K
k¼1OkÞð\I

i¼1CiÞ
¼ ðx; lDðxÞ; kDðxÞ; mDðxÞÞ

where
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lDðxÞ ¼ min
lO1

ðxÞ; lO2
ðxÞ; . . .; lOk

ðxÞ
lC1

ðxÞ; lC2
ðxÞ; . . .; lCi

ðxÞ

� �

8 x 2 X

kDðxÞ ¼ max
kO1

ðxÞ; kO2
ðxÞ; . . .; kOk

ðxÞ
kC1

ðxÞ; kC2
ðxÞ; . . .; kCi

ðxÞ

� �

8 x 2 X

mDðxÞ ¼ max
mO1

ðxÞ; mO2
ðxÞ; . . .; mOk

ðxÞ
mC1

ðxÞ; mC2
ðxÞ; . . .; mCi

ðxÞ

� �

8 x 2 X

where lDðxÞ; kDðxÞ and mDðxÞ are the truth, indeterminacy

and a falsity membership functions of neutrosophic deci-

sion set DN , respectively.

In order to depict the different membership functions for

MOPP (55), the minimum and maximum values of each

objective functions have been represented by Lk and Uk

and; can be obtained as follows:

Uk ¼ max ½OkðxÞ� and Lk ¼ min ½OkðxÞ� 8 k ¼ 1; 2; 3; . . .;K:

ð56Þ

The bounds for kth objective function under the neutro-

sophic environment can be obtained as follows:

Ul
k ¼ Uk; Llk ¼ Lk

Uk
k ¼ Llk þ sk; Lkk ¼ Llk

Um
k ¼ Ul

k ; Lmk ¼ Llk þ tk

where sk and tk 2 ð0; 1Þ are pre-determined real numbers

prescribed by decision-makers.

The linear-type truth lkðOkðxÞÞ, indeterminacy

kkðOkðxÞÞ and a falsity mkðOkðxÞÞ membership functions

under neutrosophic environment can be furnished as

follows:

lkðOkðxÞÞ

¼

1 if OkðxÞ� Llk
Ul

k � OkðxÞ
Ul

k � Llk
if Llk �OkðxÞ�Ul

k

0 if OkðxÞ�Ul
k

8

>

>

>

<

>

>

>

:

ð57Þ

kkðOkðxÞÞ

¼

1 if OkðxÞ� Lkk

Uk
k � OkðxÞ
Uk

k � Lkk
if Lkk �OkðxÞ�Uk

k

0 if OkðxÞ�Uk
k

8

>

>

>

<

>

>

>

:

ð58Þ

mkðOkðxÞÞ

¼

0 if OkðxÞ� Lmk
OkðxÞ � Lmk
Um

k � Lmk
if Lmk �OkðxÞ�Um

k

1 if OkðxÞ�Um
k

8

>

>

>

<

>

>

>

:

ð59Þ

In the above case, Lk 6¼ Uk for all k objective function. If

for any membership Lk ¼ Uk, then the value of these

membership will be equal to 1.

Introducing the idea of [8], we maximize the overall

achievement function to reach the optimal solution of each

objectives. The mathematical expression for achievement

function is defined as follows:

Max mink¼1;2;3;...;K lkðOkðxÞÞ
Min maxk¼1;2;3;...;K kkðOkðxÞÞ
Min maxk¼1;2;3;...;K mkðOkðxÞÞ

subject to

all the constraints ofð55Þ

ð60Þ

Also, assume that lkðOkðxÞÞ� d, kkðOkðxÞÞ� b and

mkðOkðxÞÞ� c, for all k.
With the aid of auxiliary parameters d; b and c, the

problem (60) can be transformed into the following prob-

lem (61):

ðINPAÞ MaxwðxÞ ¼ h d� b� cð Þ þ 1� hð Þ
PK

k¼1 lkðOkðxÞÞ � kkðOkðxÞÞ � mkðOkðxÞÞð Þ
subject to

lkðOkðxÞÞ� d;

kkðOkðxÞÞ� b;

mkðOkðxÞÞ� c;

d� b; 0� dþ bþ c� 3;

d; b; c 2 0; 1½ �
all the constraints ofð55Þ

ð61Þ

where h is the compensation co-efficient between the

overall satisfaction level and the sum of individual mar-

ginal evaluation of each objective function in neutrosophic

environment. Thus the development of proposed INPA

(61) has a new achievement function which is represented

by a convex combination of differences among the bounds

for truth, indeterminacy and falsity degrees of objective

function ðd� b� cÞ, and the sum of differences among

these achievement degrees

lkðOkðxÞÞ � kkðOkðxÞÞ � mkðOkðxÞÞð Þ to make sure gener-

ating an established balanced compromise solution.

Definition 5 A vector x	 2 X is said to be an optimal

solution to proposed INPA (61) or an efficient solution to

the crisp MOPP (55) if and only if there does not exist any

x 2 X such that, lkðxÞ� lkðx	Þ, kkðxÞ� kkðx	Þ and

mkðxÞ� mkðx	Þ; 8 k ¼ 1; 2; . . .;K.

Theorem 3 A unique optimal solution of proposed INPA

(61) is also an efficient solution to the crisp MOPP (55).

Proof Consider that x	 be a unique optimal solution of

proposed INPA (61) which is not an efficient solution to

crisp MOPP (55). It means that there must be an efficient

solution, say x		, for the crisp MOPP (55) so that we can

have: lkðx		Þ� lkðx	Þ, kkðx		Þ� kkðx	Þ and
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mkðx		Þ� mkðx	Þ; 8 k ¼ 1; 2; . . .;K. Thus for the overall

satisfaction level of each objective functions in x	 and x		

solutions, we would have

d� b� cð Þðx		Þ � d� b� cð Þðx	Þ, and concerning the

related objective values we would have the following

inequalities:

wðx	Þ ¼ h d� b� cð Þðx	Þ

þ 1� hð Þ
X

K

k¼1

lkðOkðx	ÞÞð
"

� kkðOkðx	ÞÞ � mkðOkðx	ÞÞÞ�
\h d� b� cð Þðx		Þ

þ 1� hð Þ
X

k 6¼t

lkðOkðx		ÞÞð
"

�kkðOkðx		ÞÞ � mkðOkðx		ÞÞÞ�
¼ wðx		Þ:

Hence, we have arrived at a contradiction that x	 is not a

unique optimal solution of proposed INPA (61). This

completes the proof of Theorem 3. h

5 Computational Study

Consider an automobile company orders the number of

different parts to various suppliers. The outer purchases of

the parts approximately in turn into 76% of the total cost,

which is quite large. The available resources for manu-

facturing purposes are limited. Therefore, to select the

suppliers based on the different purchasing behavior, sev-

eral experts are assigned. The experts have designed the

selection criteria based on the certain ordered quality with

its limitations. The experts have suggested the various

parameters as type-2 triangular fuzzy numbers because of

the existence of primary and secondary possibility degrees

of each element into the feasible decision set. The proposed

multiobjective SSP is implemented with the three different

objectives comprising the minimization of total ordering

cost, rejection rate, and delivery time of the items under a

set of available resources. The crisp multiobjective SSP is

written in AMPL, and solution results are obtained using

Knitro 10.3.0 through NEOS server version 5.0, accessed

allowed by Wisconsin Institutes for Discovery, University

of Wisconsin, Madison See, Dolan [9], Server [28].

5.1 Solution Results Using Chance-Constrained

Programming Method

We have represented the chance-constrained programming

problem for multiobjective SSP (32). For each objective

function and constraints, we have defined the pre-

determined credibility levels such as a ¼ ai1 ¼ ai2 ¼ ai3 ¼
ai4 ¼ ai5 ¼ 0:9; 8 i ¼ 1; 2; �; 5; j ¼ 1; 2; 3. Table 2 depicts

the type-2 triangular fuzzy parameters for the proposed

mulltiobjective SSP.

With the aid of model (36), the corresponding crisp form

of the SSP can be given as follows (62):

MinimizeO1 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞP
3j
i x

j
i þ 2ð1� aÞP2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

Minimize O2 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞR
3j
i x

j
i þ 2ð1� aÞR2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

Minimize O3 ¼
P

i

P

j y
j
i

�
ð2a� 1þ ð4a� 3Þg j

r;iÞLD
3j
i x

j
i þ 2ð1� aÞLD2j

i x
j
i

1þ ð4a� 3Þg j
r;i

" #

subject to
P

i

P

j y
j
i � x j

i ¼ DTDj

P

i

P

j y
j
i � x j

i �DULi

P

i

P

j y
j
i � DRVi � x j

i

	 


�DPC
P

i

P

j y
j
i � DQFi � x j

i

	 


�DS

P

i

P

j y
j
i � DPj

i
� x j

i

� �

�DBi

x j
i ¼ y j

i ¼ 1 or 0
� 

x j
i � 0:

ð62Þ

where DTDj ;DULi ;DRVi ;DPC;DQFi ;DS;DPj
i
;DBi

8 i & j are

calculated using Eqs. (37)–(44), respectively.

On solving the problem (62) using proposed INPA, we

get the optimal objective values as O1 ¼ 62138; O2 ¼ 436

and O3 ¼ 784 with the overall satisfaction level

wðxÞ ¼ 0:7216. The total computational time was 1.3642

sec.

5.2 Solution Results Using Nearest Interval

Approximation

The credibilistic nearest interval approximation of the type-

2 fuzzy parameters are determined with the help of

Eqs. (19) and (20). All the equivalent data in the interval

form are summarized in Table 3.

Suppose that the satisfaction level with the possible

degree of each parameter in the constraints is 0.85. Thus

the corresponding crisp version of all the constraints is

determined with the help of Eqs. (46)–(53). On applying

the proposed INPA, the compromise solution of the mul-

tiobjective SSP (54) is obtained as follows:
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O1 ¼ 59021; O1 ¼ 82513, O2 ¼ 389; O2 ¼ 552 and O3 ¼
693; O3 ¼ 936 with the overall satisfaction level

wðxÞ ¼ 0:6909. The total computational time was 0.9651

sec.

5.3 Discussions

The two defuzzified technique for the type-2 fuzzy

parameters inherently focuses on the different aspects of

decision-makers’ choices. The CV-based reduction method

and nearest interval approximation technique are used to

obtain the equivalent type-1 fuzzy parameters (or fuzzy) of

the type-2 fuzzy parameters at an a-value. Since the

defuzzified values are different, the outcomes are also

conflicting. For the CV-based reduction method, all the

objective values fall within the optimal range of the solu-

tion results obtained by the nearest interval approximation

techniques. So, it is not worthy of commenting on the

performances of the defuzzification techniques. The

primary reason may be the different defuzzified values of

the type-2 triangular fuzzy parameters, which yield dif-

ferent objective values. Further, the various solution results

can be generated by tuning the values of a. Implementation

of the proposed INPA can also assist the decision-makers

to select the best optimal outcomes of the multiobjective

SSP.

After getting the global solution result using the pro-

posed INPA, there is still an ample opportunity to obtain

more specific and comprehensive outcomes by tuning

additional parameters ðaÞ (vagueness degree) present in

vague constraints. Table 4 illustrates an overall satisfaction

level solution for single value of vagueness degree at

a ¼ 0:9. Hence it would be worth useful for managers to

record the influence of parameter a with the overall satis-

faction level d� b� cð Þ which is graphically represented

in Figure 1. For linear-type membership functions, the

parameter a is tuned for different values. As Table 4 and

Figure 1 reveal that when parameter a increases, the overall

Table 2 Supplier source data type-2 fuzzy parameters

Parameters No. of items

(j)
No. of suppliers (i)

1 2 3 4 5

eP j
i ð$=unitsÞ 1 (12,15,18; 0.54,0.61) (14,16,18; 0.32,0.65) (16,18,20; 0.65,0.47) (28,30,32; 0.74,0.98) (36,40,44; 0.64,0.85)

2 (18,20,22; 0.52,0.75) (22,25,28; 0.54,0.86) (25,27,29; 0.75,0.68) (16,18,22; 0.23,0.67) (27,29,31; 0.24,0.26)

3 (28,30,32; 0.62,0.81) (36,40,44; 0.32,0.52) (40,43,46; 0.41,0.16) (10,12,14; 0.45,0.64) (12,14,16; 0.75,0.68)

eR j
i ð%Þ 1 (0.12,0.15,0.18;

0.23,0.56)

(0.14,0.16,0.18;

0.32,0.85)

(0.16,0.18,0.20;

0.35,0.65)

(0.28,0.30,0.32;

0.54,0.87)

(0.36,0.40,0.44;

0.65,0.95)

2 (0.18,0.20,0.22;

0.64,0.83)

(0.22,0.25,0.28;

0.95,0.24)

(0.25,0.27,0.29;

0.62,0.57)

(0.36,0.68,0.10;

0.65,0.48)

(0.27,0.49,0.11;

0.42,0.36)

3 (0.28,0.30,0.32;

0.43,0.57)

(0.36,0.40,0.44;

0.64,0.92)

(0.40,0.43,0.46;

0.64,0.63)

(0.10,0.12,0.14;

0.85,0.94)

(0.12,0.14,0.16;

0.16,0.65)

fUL j
i ðunitsÞ 1 (10,12,14; 0.45,0.64) (25,27,29; 0.75,0.68) (40,43,46; 0.41,0.16) (36,40,44; 0.64,0.85) (36,40,44; 0.32,0.52)

2 (12,14,16; 0.75,0.68) (18,20,22; 0.52,0.75) (36,40,44; 0.32,0.52) (28,30,32; 0.62,0.81) (14,16,18; 0.32,0.65)

3 (28,30,32; 0.62,0.81) (22,25,28; 0.54,0.86) (25,27,29; 0.75,0.68) (18,20,22; 0.52,0.75) (12,15,18; 0.54,0.61)

fLD j
i ð%Þ 1 (0.61,0.54,0.21;

0.65,0.61)

(0.21,0.35,0.34;

0.62,0.61)

(0.36,0.40,0.44;

0.64,0.92)

(0.40,0.43,0.46;

0.64,0.63)

(0.22,0.25,0.28;

0.95,0.24)

2 (0.27,0.49,0.11;

0.42,0.36)

(0.21,0.12,0.14;

0.39,0.37)

(0.28,0.30,0.32;

0.43,0.57)

(0.12,0.14,0.16;

0.16,0.65)

(0.14,0.16,0.18;

0.32,0.85)

3 (0.12,0.24,0.52;

0.31,0.36)

(0.11,0.31,0.45;

0.65,0.85)

(0.21,0.31,0.36;

0.65,0.45)

(0.34,0.61,0.42;

0.61,0.86)

(0.21,0.63,0.45;

0.65,0.89)

fRVi
(18,20,22; 0.21,0.65) (22,25,28; 0.61,0.86) (25,27,29; 0.75,0.64) (26,28,29; 0.81,0.67) (37,39,41; 0.64,0.83)

fQFi
(40,45,50; 0.42,0.64) (45,50,55; 0.64,0.86) (65,70,75; 0.64,0.82) (12,15,18; 0.64,0.46) (14,16,18; 0.64,0.76)

eBið$Þ (56,52,34; 0.64,0.83) (83,86,89; 0.64,0.46) (78,84,96; 0.67,0.48) (46,52,56; 0.64,0.98) (64,68,74; 0.94,0.86)

No. of items (j)

1 2 3

fTD jðunitsÞ (125, 165, 195; 0.60,0.70) (215, 235, 245; 0.35,0.75) (320, 345, 385; 0.45,0.85)

fPC (45230, 57840, 61250; 0.6, 0.8)

eS (944750, 965840, 985470; 0.4, 0.7)
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satisfaction degree of managers decreases. It may be con-

cluded that the nearer the a values reaches to 0, the more

likely the problem be to a crisp SSP model, and the overall

degree of satisfaction will always 1. This same behavior is

noticed for different compensation co-efficient h values,

the only difference being the initial point for the minimum

vagueness degrees. For a ¼ 0:9; h ¼ 0:1, the satisfaction

level is found to be 0.8289 and reaches towards its worst at

a ¼ 0:9; h ¼ 0:9 which is 0.7518. As discussed before, a

higher overall satisfaction level d� b� cð Þ can be attained

with higher compensation co-efficient h values. The

downward trend is shown for the parameter a means that an

increment in these values will lead to the reduction in

overall satisfaction level d� b� cð Þ and vice-versa. To

Table 3 Supplier source data in

interval form
Parameters No. of items (j) No. of suppliers (i)

1 2 3 4 5

eP j
i ð$=unitsÞ 1 (12, 61) (14, 65) (16, 47) (28, 98) (36, 85)

2 (18, 75) (22, 86) (25, 68) (16, 67) (27, 56)

3 (28, 81) (36, 52) (40, 86) (10, 64) (12, 68)

eR j
i ð%Þ 1 (0.12, 0.56) (0.14, 0.85) (0.16, 0.65) (0.28, 0.87) (0.36, 0.95)

2 (0.18, 0.83) (0.22, 0.64) (0.25, 0.57) (0.36, 0.58) (0.27, 0.66)

3 (0.28, 0.57) (0.36, 0.92) (0.40, 0.63) (0.10, 0.94) (0.12, 0.65)

fUL j
i ðunitsÞ 1 (10, 64) (25, 68) (40, 16) (36, 85) (36, 52)

2 (12, 68) (18, 75) (36, 52) (28, 81) (14, 65)

3 (28, 81) (22, 86) (25, 68) (18, 75) (12, 61)

fLD j
i ð%Þ 1 (0.61, 0.86) (0.62, 0.78) (0.36, 0.92) (0.40, 0.63) (0.22, 0.78)

2 (0.27, 0.36) (0.21, 0.37) (0.28, 0.57) (0.12, 0.65) (0.14, 0.85)

3 (0.12, 0.36) (0.11, 0.85) (0.21, 0.45) (0.61, 0.86) (0.65, 0.89)

fRVi
(16, 58) (60, 78) (28, 62) (32, 68) (36, 86)

fQFi
(26, 48) (43, 57) (44, 65) (45, 68) (48, 26)

eBið$Þ (62, 76) (54, 86) (24, 56) (57, 81) (73, 92)

No. of items (j)

1 2 3

fTD jðunitsÞ (120, 180) (210, 260) (300, 340)

fPC (47840, 49562)

eS (925647, 945681)

Table 4 Overall satisfaction

level d� b� cð Þ achieved
using INPA

Degree of vagueness Compensation co-efficient

a h ¼ 0:1 h ¼ 0:3 h ¼ 0:5 h ¼ 0:7 h ¼ 0:9

0.1 0.8289 0.8277 0.8268 0.8261 0.8156

0.2 0.8187 0.8179 0.8171 0.8167 0.8156

0.3 0.8121 0.8113 0.8198 0.8187 0.8173

0.4 0.8076 0.8064 0.8059 0.8056 0.8049

0.5 0.8027 0.8022 0.8013 0.8005 0.7986

0.6 0.7931 0.7919 0.7902 0.7989 0.7971

0.7 0.7822 0.7809 0.7896 0.7881 0.7873

0.8 0.7788 0.7781 0.7776 0.7771 0.7767

0.9 0.7667 0.7653 0.7641 0.7635 0.7622

1 0.7543 0.7534 0.7531 0.7524 0.7518
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determine the best possible outcomes in the proposed INPA

methods, managers have to identify the most appropriate

parameters a. Thus, the presented INPA is more flexible,

versatile, and convenient for optimal global solutions.

Consequently, the proposed INPA is the most promising

and reliable solving the SSP model.

Additionally, the multiobjective SSP is also solved by

considering the type-1 fuzzy parameters. We have used the

same data-set as summarized in Table 2 with single

membership grades. The type-1 fuzzy parameters are

transformed into their respective crisp version using the

concept of [7]. The multiobjective SSP with type-1 fuzzy

parameters is then solved using proposed INPA, and

solution results are presented in Table 5. The various

outcomes are generated at different degrees of vagueness

(a). From Table 5, it can be observed that the values of all

the objective function falls within the optimal ranges

O1 ¼ 59021; O1 ¼ 82513, O2 ¼ 389; O2 ¼ 552 and O3 ¼
693; O3 ¼ 936 , respectively. Moreover, Table 5 reflects

that using the type-2 fuzzy parameters, all the objectives’

values are better than the type-1 fuzzy parameters. Since

type-2 fuzzy parameters involve a set of secondary mem-

bership grades, the possibility or chances for risk violation

becomes very less or negligible as compared to type-1

fuzzy parameters. In the type-1 fuzzy set, the correspond-

ing membership grades are depicted by a single value,

which is constant, whereas in the type-2 fuzzy system, a set

of secondary membership grades corresponding to each

primary membership function is considered. In both cases

(using type-2 and type-1 fuzzy parameters), as the degree

of vagueness increases, the objective functions reach their

worst solution and vice-versa. When the decision-

maker(s) is much concerned about the uncertainty and pays

more attention to the risk violation, the objectives yield in

worst outcomes due to the less achievement in the overall

satisfaction level. By considering the type-2 fuzzy param-

eters, the decision-makers can determine the better solution

results and overall satisfaction level.

6 Conclusions

This study presented the multiobjective SSP with type-2

triangular fuzzy parameters. The two defuzzification

methods are suggested to transform the T-2TF parameters

into the usual fuzzy one. First, the CV-based reduction

method and another one are based on the nearest interval

approximation technique with their robustness properties.

Both the techniques are applied to convert the T-2TF

parameters into their crisp version. The opportunity to

generate the various solution results at a different values of

a is presented. Further, a novel INPA is proposed to solve

the crisp multiobjective SSP under the neutrosophic envi-

ronment. The indeterminacy degree is incorporated while

obtaining optimal global solutions. A variety of overall

satisfaction levels at different compensation co-efficients h
is also depicted for selecting the most promising solution

set.
Fig. 1 Overall satisfaction level d� b� cð Þ

Table 5 Comparison of

solution results with respect to

type-2 and type-1 fuzzy

parameters

Degree of vagueness Using type-2 fuzzy parameters Using type-1 fuzzy parameters

a Min. O1 Min. O2 Min. O3 Min. O1 Min. O2 Min. O3

0.1 59184 393.04 701.63 60023 405.62 723.91

0.2 59191 402.68 722.96 61289 421.65 751.23

0.3 59706 417.27 763.91 62914 434.44 782.36

0.4 62389 429.51 788.31 63952 451.63 797.12

0.5 65028 443.89 804.29 67215 476.95 816.89

0.6 69384 471.41 831.47 71427 487.32 842.96

0.7 73906 494.13 866.22 75263 501.23 881.49

0.8 77826 511.34 895.61 79724 519.85 907.24

0.9 80508 531.45 911.76 81927 539.67 919.41

1 82229 543.25 927.68 82481 549.87 932.56
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Some more metrics regarding the type-2 fuzzy param-

eters, such as the defuzzification technique using the cen-

troid method, are left untouched. For future research, it can

be further extended for interval-valued T-2TF parameters.

The presented study can be applied to different real-life

problems such as inventory control, transportation and

assignment problems, supply chain management to manage

the possibility of degrees under hesitation.
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31. Türk, S., John, R., Özcan, E.: Interval type-2 fuzzy sets in sup-

plier selection. In: proceedings of the 2014 14th UK workshop on

computational intelligence (UKCI), pp. 1–7. IEEE (2014)

774 International Journal of Fuzzy Systems, Vol. 23, No. 3, April 2021

123

https://doi.org/10.1080/17509653.2020.1783381


32. Uncu, O., Turksen, I.: Discrete interval type 2 fuzzy system

models using uncertainty in learning parameters. IEEE Trans.

Fuzzy Syst. 15(1), 90–106 (2007)

33. Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2

fuzzy sets. Inf. Sci. 177(23), 5378–5393 (2007)

34. Wu, Q., Zhou, L., Chen, Y., Chen, H.: An integrated approach to

green supplier selection based on the interval type-2 fuzzy best-

worst and extended vikor methods. Inf. Sci. 502, 394–417 (2019)

35. Yang, L., Liu, L.: Fuzzy fixed charge solid transportation prob-

lem and algorithm. Appl. Soft Comput. 7(3), 879–889 (2007)

36. Ye, J.: Neutrosophic number linear programming method and its

application under neutrosophic number environments. Soft

Comput. 22(14), 4639–4646 (2018)

37. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

38. Zadeh, L.A.: The concept of a linguistic variable and its appli-

cation to approximate reasoning—i. Inf. Sci. 8(3), 199–249

(1975)

39. Zhang, Q., Fan, Z., Pan, D., et al.: A ranking approach for interval

numbers in uncertain multiple attribute decision making prob-

lems. Syst. Eng. Theory Pract. 19, 129–133 (1999)

Shafiq Ahmad received the

PhD degree from RMIT

University, Melbourne, Aus-

tralia. He is currently working

as an Associate Professor at

Industrial Engineering Depart-

ment, College of Engineering

King Saud University Riyadh

Saudi Arabia. He has more than

two decades working experi-

ence both in industry and aca-

demia in Australia, Europe and

Asia. He has published a

research book and several

research articles in international

journals and refereed conferences. His research interests are related to

smart manufacturing, IIOT and data analytics, multivariate statistical

quality control; process monitoring and performance analysis; oper-

ations research models and bibliometric network analysis. He is also a

certified practitioner in Six Sigma business improvement model.

Firoz Ahmad was born in Jan-

uary, 1994 in Dhanbad (Jhark-

hand). Received Bachelor’s

degree in Science (Statistics) in

2013 and Master’s degree in

Science (Operations Research)

in 2015 from Aligarh Muslim

University Aligarh (India).

Awarded with University Gold

Medal for standing first in

Master’s degree program.

Recently, completed his Ph.D.

in Operations Research from

Aligarh Muslim University and

actively involved in research

activity. He has published more than eight (08) research articles and

seven (07) chapters in reputed national and international journals and

edited book. He is the recipient of Best Paper Presentation award in

international conference. He is also a lifetime member of ISPS since

2017.

Mohamed Sharaf received the

PhD degree in industrial engi-

neering from Chubu University,

JAPAN. He is currently Profes-

sor at Industrial Engineering

Department and head of devel-

opment and quality unit at col-

lege of engineering, King Saud

University. Dr Sharaf has pub-

lished more than 30 research

papers in the areas of spare parts

control, quality management,

maintenance, six sigma

methodology, and academic

accreditation.

F. Ahmad: Supplier Selection Problem with Type-2 Fuzzy Parameters: A Neutrosophic Optimization Approach 775

123


	Supplier Selection Problem with Type-2 Fuzzy Parameters: A Neutrosophic Optimization Approach
	Abstract
	Introduction
	Preliminaries
	Reduction Method for T-2FVs Based on CV
	Nearest Interval Approximation of Continuous T-2FVs

	Supplier Selection Problem
	Chance-Constrained Programming Problem Using Generalized Credibility
	Crisp Equivalance

	Using Nearest Interval Approximation
	Deterministic Version


	Proposed Interactive Neutrosophic Programming Approach
	Computational Study
	Solution Results Using Chance-Constrained Programming Method
	Solution Results Using Nearest Interval Approximation
	Discussions

	Conclusions
	Acknowledgements
	References




