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Abstract Although fuzzy system (FS) is highly inter-

pretable, it is difficult to address high-dimensional big data

due to the curse of dimensionality. On the contrary, deep

neural network (DNN), a fashion deep learning algorithm,

can deal with high-dimensional big data with shortcomings

of complex model, huge calculation, and poor inter-

pretability. We present a model of random locally opti-

mized deep fuzzy system (RLODFS) and four specific

heuristic implementation algorithms, which combines the

advantages of high interpretability of FS and great ability

of processing high-dimensional big data of DNN. This

method takes Wang-Mendel (WM) algorithm as the basic

module, to construct a RLODFS by bottom-up parallel

structure. Through hierarchical, random group and com-

bination-based learning, and input sharing, it can retain the

interpretability and dramatically improve the computa-

tional efficiency. The input variables of the low-

dimensional FS are randomly grouped by isometric sam-

pling. Four implementation algorithms of RLODFS based

on random local search for optimal combination, group

learning, and deep structure with 0, 1, 2, and 3 input

sharing, respectively, named as RLODFS-S0, RLODFS-

S1, RLODFS-S2, and RLODFS-S3, are developed for

regression-oriented problems. Using local loops to find the

best combination of parameters, our final algorithms,

RLODFS, can achieve fast convergence in training phase,

and also superior generalization performance in testing.

Compared with six classic algorithms in 12 datasets, the

proposed RLODFS algorithms are not only highly inter-

pretable with just some fuzzy rules but also can achieve

higher precision, less complexity, and better generalization.

Furthermore, it can be used for training fuzzy systems on

datasets of any size, particularly for big datasets. Rela-

tively, RLODFS-S3 and RLODFS-S2 achieve the best in

comprehensive performance. More importantly, the pro-

posed RLODFS is a new promising method of deep

learning with good interpretability and high accuracy.

Keywords Group learning � Input sharing � Layer-by-layer
scheme � Random locally optimized deep fuzzy system �
Complexity reduction � Regression-oriented problems

1 Article Highlights

• A random locally optimized hierarchical fuzzy model is

proposed and three specific implementation algorithms

are developed, which apply deep learning and input

sharing to construct the hierarchical RLODFS model.

• The model is constructed by bottom-up layer-by-layer

approach and the complexity of the model is reduced
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through hierarchical, grouping and input sharing

learning.

• Compared with some classic and latest algorithms, the

proposed algorithms achieved fast convergence, higher

precision, better generalization, less time consuming,

and the number of rules which is much lower than that

of the single-layer fuzzy system.

2 Introduction

Compared with other artificial intelligence methods, i.e.,

deep belief networks (DBN) [1], deep restricted Boltzmann

machines (DBM) [2], and evolutionary algorithms (EAs)

[3], one of the outstanding advantages of fuzzy system (FS)

is that it is constructed based on a series of IF-THEN rules

[4]. Its structure and parameters have clear physical sig-

nificance and it has the advantages of fastness and flexi-

bility. Despite that, it often suffers from combinatorial rule

explosion, so it is crucial for a model to extract fuzzy rules.

Very recently, the generation of rules from data has

caused great concern. The main reason is that simple sys-

tems can generate fuzzy rules based on expert knowledge,

but when the variables increase, the fuzzy rules will

increase too many to obtain fuzzy rules only by relying on

expert experience. Therefore, automatic generation of

fuzzy rules based on the genetic algorithm (GA) [5], fuzzy

clustering (FC) [6], neural networks (NNs) [7], and data

mining (DM) [8], has been proposed. However, these

methods are time-consuming with iterative learning, so it is

hard to implement in engineering.

Therefore, it is extremely important to construct a FS

with good performance, but it is not an easy task [9]. There

are many challenges in designing an optimal FS [10], e.g.,

too many rules, optimization, interpretability, curse of

dimension, generalization performance, etc. FS can be

optimized by the EAs [11], gradient descent algorithm

(GDA) and combining gradient descent with least square

estimation (GDA?LSE) [12]. However, each method has

its shortcomings. EAs are too expensive to be suitable for

big data analysis [13]. Conventional GDA is very sensitive

to learning parameters and LSE is difficult to optimize non-

linear parameters [14]. Hence, it is necessary to develop

more efficient and fast optimization algorithms for gener-

ating FS, especially for big data applications [15].

In addition to the methods aforementioned, Kosko and

Wang [13, 14] have proved that both NNs and FS have the

ability of non-linear mapping. If the NNs are combined

with the fuzzy logic, the advantages of the two can be fully

utilized to avoid the shortcomings. The key of fuzzy

modeling is the acquisition of fuzzy rules. Wang proved in

1992 that a class of FSs is a universal approximator [8],

which opened up the field of fuzzy approximation. In the

same year, Wang and Mendel [14] jointly proposed a

algorithm of obtaining fuzzy rules from samples, which can

obtain a fuzzy rule base from a small-scale sample set.

However, there are following weak points in Wang-Mendel

(WM) algorithm: (1) lack of good completeness and

robustness of its fuzzy rule base, leading to low accuracy of

fuzzy model, (2) the efficiency of the algorithm drops

rapidly with increasing data,and, (3) rules increase expo-

nentially as dimension increases, which is called as ‘‘curse

of dimensionality.’’ To solve these problems, researchers

have put forward many improved algorithms, i.e., Leski

[16] proposed a fuzzy C-means clustering (FCM) algo-

rithm, which reduces the sample size and improves the

completeness and robustness of FS,Fan et al. [17] presented

a two-layer WM fuzzy method to improve the approxi-

mation ability of the FS and obtain higher robustness and

accuracy. EAs have also been used as a new tool for

building compact FSs. Both GA [18] and EA [19] have

been introduced to reduce the complexity of fuzzy rules.

Apart from the above efforts on an efficient rule structure,

Wang [20] proposed a deep convolution fuzzy system,

which has achieved encouraging results in reducing the

amount of computation, but it is not suitable to handle the

high-dimensional datasets.

Hierarchical fuzzy systems were original proposed by

Raju et al. [21], Wang et al. [22] proved the basic prop-

erties of hierarchical fuzzy systems. Then, the study of

fuzzy hierarchical system has become prosperous-the same

period when Hinton et al. proposed new strategies for deep

neural networks in 2006 [23], during which many new

methods for designing hierarchical fuzzy systems were

proposed [24–29]. Since then, hierarchical fuzzy systems

were widely applied in many practical problems, such as

milling process [26], target tracking [27], climate moni-

toring [28], and risk assessment [29].

In recent years, the deep convolution neural network

(DCNN) [30] has achieved great success in many practical

problems [31, 32], which reveals the powerful expressive

ability of multi-layer structure in representing complex

models. The main problem of DCNN is that the massive

network parameters are difficult to explain [33], hence, its

applications in the security fields are subject to certain

restrictions.

Existing regression methods based on FS mainly use

shallow regression models and are still unsatisfying for

many real-world applications. This situation inspires us to

rethink the regression problems based on deep architecture

models with big data. Combined with the advantages of

DCNN and FS, the deep structure and learning algorithms

of random locally optimized deep fuzzy system model-

ing(RLODF)were constructed in a bottom-up layer-by-

layer fashion.
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Based on deep learning and big data, taking AlphaGo as

a typical application has set off a third development wave

of artificial intelligence (AI) [34–37], which has achieved a

notable momentum. We intend to develop a deep fuzzy

modeling for interpretable AI [34, 35] and big data, to

develop a new deep learning method with higher precision,

lower complexity, and better interpretability, thus adding a

new form of implementation to AI.

This paper narrows the gap in efficient and effective

training of deep fuzzy modeling, particularly for big data

regression problems. The main contributions are as fol-

lows: (1) Inspired by the advantages of both DCNN and FS,

we construct a RLODFS by bottom-up parallel fashion. (2)

We combine three novel techniques ( hierarchical, random

group and combination-based learning, and input sharing)

specifically for training deep fuzzy systems. (3) Four

algorithms, RLODFS-S0, RLODFS-S1, RLODFS-S2,

and RLODFS-S3, are developed for regression-oriented

problems; 12 real-world datasets from various applications,

with varying size and dimensionality, are selected to

demonstrate the method’s superiority.

The remainder of this paper is organized as follows:

Sect. 2 introduces the structure of the RLODFS. Section 3

describes the implementation details of the four algorithms

of RLODFS. Section 4 presents 12 examples on the pro-

posed algorithms. Section 5 draws conclusion and points

out some future research directions.

3 The Definition and Structure of RLODFS

To facilitate description and clarity, here we only consider

the case of multi-dimensional inputs and single-dimen-

sional output. The basic structure of a RLODFS is illus-

trated in Fig. 1, and the whole RLODFS is described as a

series of IF-THEN rules, which can be linked together to

explain how the results are produced.

The structure of the FSs Ski ði ¼ 1; 2; � � � ; nk; k ¼
1; 2; � � � ; LÞ is as follows: for each input xk�1

i ; . . .; xk�1
n 2 Fk

i

to the FS, first define p fuzzy sets F1;F2; � � � ;Fp, and the

membership functions are shown in the abscissa of Fig. 2.

Specifically, suppose p fuzzy sets have pd rules of (4) in d-

dimensional space, there has three input variables xi(i =1,

2, 3) ,then the j fuzzy rule is

Rj : IF isF1j; x2 is F2j; x3 is F3j; THEN y is Bj; ð1Þ

where Fij (i= 1, 2, 3) are fuzzy sets for input xi in rule j , Bj

is a fuzzy set for the output y. If no input appears in the

antecedent, the rule is removed.

Assume that the FS to be designed is given by

y ¼
Xp

jd¼1
� � �

Xp

jd¼1
zj1���jd

Yp

jd¼1
Fjd gjd xk�1

dþi�1

� �� �h i

ð2Þ

gjd ¼ exp � xi � xi
l=rli

� �2� �
ð3Þ

where k = 1,2,� � �, L-1, and the top FSL with n L-1 input

variables.

The FS is constructed by the following pd rules.

IF xk�1
i is Fz1 and ..., and xk�1

iþd�1 is Fzd , THEN y is

Bj1;...;jd ð4Þ

where xli and r
l
i are the center and width of the Gauss fuzzy

set of the rule premise, respectively, which are determined

by gradient descent method [8].zj
0
is the center of the rule

consequent,this paper mainly determines zj
0
.

Figure 2 depicts an example of p=3 and d=2, where a

2-dimensional input space is divided into pd=32 = 9 fuzzy

regions. To ensure the completeness of the rule base, it

must contain the following nine rules, and the premise of

the nine rules should be composed of all possible combi-

nations of F1, F2, and F3.

For any given input ðx0
1; x

0
2Þ in Fig. 2, FS yðx0

1; x
0
2Þ can be

described as the fuzzy rule: IF x
0
1 is F3 and x

0
2 is F3, THEN

y is B22. In other words, FS takes single operation with one

rule responsible mainly for one region [20]. So for any

given input ðxk�1
i ; . . .; xk�1

dþi�1Þ, the FS (2) can be repre-

sented by a parameter zj1���jd that represents the fuzzy rule in
the form of (4).

The advantage of FS is that there are ways to choose

better parameters. Since, each fuzzy subsystem in Fig. 1

can be represented by a single parameter zj1���jd , and thus,

the whole action of the RLODFS on any given input can be

interpreted by connected zj1���jd ’s. Given a FS of (2), the

physical meaning of zj
0
,xli and rli cannot only be used to

repair the fuzzy IF-THEN rule of constructing the FS but

also it can explain the FS in a user-friendly way. If the

RLODFS in Fig. 1 obtains an error output xL1, we can easily

find out which rule causes the error output according to

Fig. 2, then we can take corresponding measures to avoid

the problem from happening again. On the contrary, the

main problem of DCNN is that the input–output transition is

a black box with poor interpretability, if something goes

wrong, we do not know which part of the DCNN should be

corrected. Compared with the RLODFS, the DCNN model is

complex, the connections between neurons are complex,

and the correlation between features and results is difficult

to interpret. In addition, it is difficult to understand what

feature selection and why such feature selection is per-

formed in deep learning.
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4 The Proposed Algorithm

RLODFS constructs a deep structure by dividing subsys-

tems and grouping learning strategies, learns rules from

local data to extract data features, and integrates layer-by-

layer to approach the final target. Different from other

algorithms, the group operations of RLODFS reduce the

complexity of the model. While making the most of the

data, data-rule changes become traceable.

4.1 Training Algorithms for RLODFS

This paper mainly discusses the algorithms of deep hier-

archical to solve the defect that shallow FS is difficult to

deal with high-dimensional with big data.

The basic structure of RLODFS is shown in Fig. 1,

where x01ðiÞ; . . .; x0nðiÞ 2 Rn input to the features space are

usually high-dimensional features, and the output xL1 is a

Fig. 1 The deep structure of RLODFS based on grouping and input sharing

Fig. 2 Interpretation of RLODFS
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vector. F1
1 ; . . .;F

1
n1
and FS11; . . .;FS

1
n1
are the fuzzy sets and

fuzzy subsystems of the first Level, respectively (n1 is the

number of fuzzy sets or fuzzy subsystems). Once the

F1
1 ; . . .;F

1
n1

are input to the FS11; . . .;FS
1
n1
, then a new

dataset is generated. The k-th Level FS is composed of nk

fuzzy subsystems (k=1, 2,…, L), whose input is obtained

from the output of the (k-1)-th Level. Suppose the FSs from

Level 1 to Level L-1 have been designed, then the final

input of the Level L is obtained from the previous L-1

Level’s output.

For a given set of M input–output data pairs,

½x01 ið Þ; x02 ið Þ; � � � ; x0n ið Þ; y0n ið Þ� i ¼ 1; 2; � � � ;M ð5Þ

To design a RLODFS in Fig. 1 to match these data pairs

(5). Firstly, the input variables x01ðiÞ; . . .; x0nðiÞ are randomly

divided into several groups and input them to the

F1
1 ; . . .;F

1
n1

to perform the fuzzification,then input these

fuzzy sets to the FSs FS11; . . .;FS
1
n1
, design the Level 1 FS

(2). By passing the training data into the first-Level FSs, a

new dataset is generated, and then obtain the first Level’s

output x11ðiÞ; . . .; x1nðiÞ. And Level 2 FSs are designed in a

similar way as designing the first Level’s. Similarly,

through the input of the k-th Level (that is, (k-1)-th Level’s

output)xk�1
1 ðiÞ; . . .; xk�1

n ðiÞ, input these variables to the

F1
1 ; . . .;F

1
nk

and FS11; . . .;FS
1
n1
, the outputs xk1ðiÞ; . . .; xknkðiÞ

are obtained. Suppose the FSs from Level 1 to Level k have

been designed, this process continues, until the whole

RLODFS is constructed.

4.2 The Detail Implementation Steps

The implementation steps of RLODFS are as follows:

Step 1: Determine the structure of RLODFS as shown

in Fig. 1. Firstly, select the basic training unit h ¼ 4, and

the Level k ( k =1, 2,���, L).
Step 2:2.1) Replace the original data x01ðiÞ; . . .; x0nðiÞ by
the regularized data x01

0ðiÞ; . . .; x0n0ðiÞ.
2.2) Divide the x01

0ðiÞ; . . .; x0n0ðiÞ into training set Ttrain

and test set Ttest.

Step 3: The input variables x01
0ðiÞ; . . .; x0n0ðiÞ are ran-

domly grouped by isometric sampling according to the h.
3.1) Using correlation coefficients to rank different

feature groups, subsystems below the correlation thresh-

old are discarded; otherwise, it will enter the next

iteration.

Step 4: The input–output data pairs (5) are used to

design the Level 1 FS in the form of (2).

4.1) For each region, set the initial values of the

weighting factor aj1;...;jd ¼ 0 and the weighting factor of

the output layer bj1;...;jd ¼ 0.

Step 5: Define p fuzzy sets F1; . . .;Fp, and select the

nodes as follows:

min xk�1
j ¼ min xk�1

j ðiÞji ¼ 1; 2; . . .;M; j ¼ t; t þ 1; t þ 2
� �

max xk�1
j ¼ max xk�1

j ðiÞji ¼ 1; 2; . . .;M; j ¼ t; t þ 1; t þ 2
� �

ð6Þ

where min xk�1
j and max xk�1

j are determined by the

training data.

Step 6: For each data pairs of (5) starting from i = 1,

determine the membership value F
0

1; . . .;F
0

p of the

p fuzzy sets F1; . . .;Fp that reach the maximum value.

Step 7: Each sub-fuzzy system in Level 1 was trained (in

parallel ) according to the WM algorithm [26] to get the

outputs x11ðiÞ; . . .; x1n1ðiÞ, and use the first Level’s output

as the second Level’s input.

Step 8: Repeat steps 3–7 to build the (k?1)-th Level and

input xk1ðiÞ; . . .; xknkðiÞ to (k?1)-th Level, calculate the

each fuzzy set Fk
1; . . .;F

k
nk
, and then input these fuzzy

sets to the corresponding subsystems FS11; . . .;FS
1
n1
.

8.1) Update aj1;...;jd and bj1;...;jd in phase 1.

Step 9: Using WM algorithm to train and get outputs

xk1ðiÞ; . . .; xknkðiÞ, extracting fuzzy rules and creating

fuzzy rule base.

9.1) Perform a local loop search from Level 1 to Level

L-1 to delete feature combinations and corresponding

subsystems with low correlation.

9.2) Determine the parameter zj1���jd in the FS of (2), such

that zj1���jd ¼ aj1���jd
�
bj1���jd .

Fig. 3 Basic structure of RLODFS based on grouping and input

sharing (8 dimensions as an example)
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Step 10: Repeat steps 5–6, Levels 1 to L-1 are

constructed until the final output is only one FS.

10.1) The final xL1 is the output of RLODFS.

For any given input ðx0
1; x

0
2Þ, fuzzy system can be

represented by a parameter z22.

Figure 3 depicts an example of automatic layering from

the bottom-up with 8-dimensional input, whose variables

are divided into several groups [ namely RLODFS-Sd (d =

0, 1, 2, 3) with or without input sharing ] to reduce the data

dimension and computation. Fig. 3a–d demonstrates the

cases of non-input sharing (RLODF-S0), one input sharing

(RLODFS-S1), two input sharing (RLODFS-S2), and

three input sharing (RLODFS-S3), respectively.

Let the grouping scheme h = 4 ( 3BhB9, user-specified),

where the number of levels of RLODFS-S0, RLODFS-S1,

RLODFS-S2, and RLODFS-S3 are, respectively,

n=4b c, n�1ð Þ=3b c, n=2b c � 1, and n� n=2d e, where n is the

number of features .

Remark The number of input variables of each fuzzy

subsystem h is set to 4 for the following reasons:

1. The accuracy of the model.

2. The complexity of the subsystem will increase with

more inputs.

3. As input variables increase, the number of rules

increase exponentially in basic WM algorithm, which

will violate the original intention of improving inter-

pretability and reducing model complexity.

5 Case Study

This section presents simulation results to demonstrate the

performance of proposed RLODFS-Sd. By dividing a

large-scale problem into several sub-problems to solve, the

total rules extracted by the deep fuzzy system is different

due to the different sharing strategies among each sub-

system. If the input sharing between subsystems is simply

required, the influence of several important data charac-

teristics may be diluted, resulting in insufficient extraction

rules or weakening the influence of important rules. At the

same time, similar inputs will cause the two sub-fuzzy

systems to extract the similar partial rules, which will

increase computational cost.

5.1 Datasets

To illustrate the proposed method in this paper in an even

better fashion, Table 1 presents the 12 real-world datasets

with varying size and dimensionality. Their features range

from small to large. The original datasets are downloaded

from https://archive.ics.uci.edu/ml/datasets.php. For each

dataset, we randomly selected 60% examples for training,

and the remaining 40% for test. For space limitations, we

focus on showing the effect of the test sets. WM was trained

in one single pass on all training examples, and then its root

mean squared error (RMSE) on the test examples was

computed. The other eight algorithms were iterative. The

maximum iterations was 450. Since there was randomness

involved, each algorithm was repeated 15 times on each

dataset, and the average test results are reported next.

11 datasets have numerical features. Each numerical

feature was mapminmax normalized to have zero mean

and unit variance, and the output mean was also subtracted.

Table 1 Summary of the 12 regression datasets used in the simulations.

Dataset Source No. of examples No. of raw features No. of numerical features

Abalone UCI 4177 9 8

Winequality-Red UCI 1599 12 12

Winequality-White UCI 4898 12 12

SmartWatch UCI 12000 13 12

Housing UCI 506 14 14

SkillCraft UCI 3395 20 19

OnlineNewsPopularity(ONP) UCI 20000 60 58

MEU Mobile UCI 2856 72 72

SUPData UCI 10000 82 82

Bias Correction UCI 4000 85 85

Residential Building (RB) UCI 372 109 108

Blog Feedback UCI 32018 281 281
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Classic fuzzy systems have difficulty dealing with high-

dimensional data, but owing to the hierarchical and the

random grouping structure that we proposed overcome the

dimension constrains, we do not constrained the maximum

feature dimensionality. Due to the curse of dimensionality,

the WM failed to analyze the datasets after Housing in

Table 1, so it was removed from the comparison in the

following examples and replaced with a better performing

GRNN.

Specifically, assuming the MFs is r, and the input

dimension has 2 and 3, then the system’s rules are as fol-

lows:r2
PL

k¼1 level2 kð Þ þ r3
PL

k¼1 level3 kð Þ, where k is the

number of layers. We can see from (5) that each system FSi
has pm free parameters to be designed and stored in the

computer memory. The complexity of RLODFS-S0 is

approximately O N þ pd
� �PL

k¼1 n
k. The complexity of

RLODFS-S1 , RLODFS-S2, and RLODFS-S3 is

x N
PL

k¼1 n
k þ pdL

� �
, where OðNÞ accounts for the one-

pass of data in (5)–(6), OðpdÞ accounts for the computation

of zj1���jd in steps 7–9, and
PL

k¼1 n
k is the number of fuzzy

systems in the L level of RLODFS-Sd .

5.2 Algorithms

To evaluate the proposed RLODFS algorithms, we intro-

duced the classical shallow prediction algorithms, i.e.,

BP(Back Propagation), RBF(Radial Basis

Function), and the commonly used deep neural network

algorithms GRNN (Generalized Regression Neu-

ral Network), LSTM (Long Short-Term Memory),

DBN (Deep Belief Networks), and other algorithms

for comparison.

1. BP network, the parameters increase dramatically

as the number of dimensions increases; therefore, no

one can well explain the relationship between the

characteristics of a NN and an actual problem. And

because of the ‘‘ black box ’’ nature of the network,

people will not know how the network will produce

results, let alone why it will produce such results.

2. RBF network can approximate arbitrary non-linear

functions and has good generalization ability. Unlike

BP’s activation function sigmoid (or Relu), the former

is a radial basis function.

3. GRNN is a special form of RBF, which was essentially

identical to RBF; it does not have weights, but with

good approximation ability, learning speed, and fault

tolerance. spread = 0.5 was used.

4. LSTM network [38], as one of the deep learning

methods, can avoid the problem of gradient vanishing

or gradient expansion by increasing the input thresh-

old, forgetting threshold and output threshold. Max

epochs = 200, gradient threshold=1, initial rate =

0.005, and drop factor = 0.2 were used.

5. DBN network [39], as the most important multi-layer

network structure in deep learning, adopts semi-

supervised learning algorithm. The network consists

of Restricted Boltzmann machine and BP, and the

optimal solution can be achieved by fine tuning, but the

learning process is slow. LayerMin = 2, 20, 50, and 70

samples per batch, net1Index2 = 0, and the minimum

neurons in each layer is 2. The target error and max

epochs are 0 and 200, respectively.

6. WM method [40], which can extract rules from data

and improve rules to construct the input–output

mapping, makes the fuzzy system more inter-

pretable than NN, but it often encounters rule

explosion.

7. RLODFS-Sd is based on the random local loop

optimization strategy and WM algorithm, and cuts

into the construction of the deep structure from the

perspective of the random division subsystem calcu-

lation. Compared with other algorithms that directly

complete the input–output mapping from the data as a

whole, it starts from the local integration rules and then

deduces to the whole. RLODFS-Sd learns rules from

data and completes the mapping between input and

output through IF-THEN rules, which is easy to

understand and overcome the poor interpretability of

DNN.

In addition, once the output is wrong, the later can trace

the source according to the IF-THEN rule, and quickly

find the wrong rule and correct it, which opens a new way

for fuzzy system to solve the problem of high-dimensional

big data. Compared with the classical fuzzy systems that

directly address the entire dataset, the complexity of this

method is greatly reduced, and the accuracy has been

significantly improved, on which currently no other effi-

cient training algorithms exist. It can be used for training

deep fuzzy systems on datasets of any size.

5.3 Index of Performance

There are some limitations in the analysis of experiments

from the perspective of visual effects. In order to avoid

artificial subjectivity and empiricism, mean absolute error

(MAE), mean squared error (MSE), and standard deviation

(STD), are selected as the objective evaluation. They are

defined as follows:

MSE ¼ 1

N

XN

i¼1
ŷi � yið Þ2; ð7Þ
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RMSE ¼ 1

N

XN

i¼1
ŷi � yið Þ2

� �1=2

; ð8Þ

MAE ¼ 1

N

XN

i¼1
ŷi � yij j; ð9Þ

STD ¼ 1

N

XN

i¼1
xi � uð Þ2

� �1=2

; ð10Þ

Errormax ¼ max ŷi � yi i ¼ 1; 2; . . .;Njf g; ð11Þ
Errormin ¼ min ŷi � yi i ¼ 1; 2; . . .;Njf g; ð12Þ

SMAPE ¼ 100%

N

XN

i¼1

2 ŷi � yij j
ŷij j þ yij jð Þ; ð13Þ

where N and u are the size of the dataset and the mean

value, respectively. u ¼ x1 þ x2 þ � � � þ xNð Þ=N,ŷi � yi is

the deviation between the observed value ŷi and the true

value yi. We define an evaluation system to evaluate each

model. The final score of the model is the sum of the scores

of each index. The higher the score, the better the com-

prehensive performance.

The time taken to finish 450 training iterations for the

RLODFS-Sd-based algorithms on the 12 datasets is shown

in Table 2. The experimental software and operating

environment of all methods are Matlab 2019a(App

Designer) and Windows 10 Enterprise 64x, with Intel Core

i7-8700K CPU @ 3.70 GHz, 16GB memory, and 512GB

solid-state drive. Not surprisingly, RLODFS-S0 was the

fastest, one reason is that group learning, layering, and

none input sharing, which reduced the number of param-

eters to be adjusted in each iteration. Although WM just one

pass through the data solution, and no iteration was needed,

its rules increase exponentially. Among the four RLODFS-

based algorithms and WM, feature dimensions and MFs are

the most important factors. Additional, combined with

Tables 2 and 5, we can observe that the computational cost

largely depends on number of MFs, parameters, variables,

and samples. From 12 datasets in Table 2, as parameters

and features increase, the time required for each algorithm

increases exponentially. Furthermore, the features and

parameters has a greater impact on running time than

samples.

5.4 Experimental Results

The performance and the average test RMSEs of each

algorithm are shown in Fig. 4 (the horizontal axis and the

vertical axis, respectively, represent the sample label and

the test output) and 5, respectively. We can see from fig-

ure as follows:

1. There are several abnormal prediction values that

significantly deviate from the target value in the BP

and RLODFS-S0, RLODFS-S1( especially Smart

watch, Skill Craft and ONP), and the overall perfor-

mance of each algorithm is good.

2. The average test MSE, MAE, STD, SMAPE, Errormin,

and Errormax on the 12 datasets are shown in Table 3.

From the indicators of STD, MSE, and SMAPE, the gap

between DBN, RLODFS-S2 and RLODFS-S3 is

small, and the fluctuation between the predicted value

and the true value of the model is small and relatively

stable. The Errormin and Errormax of WM are the most

obvious, meanwhile, we found that WM had the

smallest average SMAPE, but its accuracy was not the

best. It reflects indirectly SMAPE’s failure to charac-

terize the problem well. The LSTM and BP algorithms

are relatively close to RLODFS in MAE, reflecting their

Table 2 Computational cost (seconds) of different algorithms on the 12 regression datasets

Datasets BP RBF WM GRNN LSTM DBN RLODFS-S0 RLODFS-S1 RLODFS-S2 RLODFS-S3

Abalone 20.205 149.272 66.402 – 2.230 11.369 0.375 0.443 1.029 1.768

Winequality-Red 14.778 7.051 601.219 – 5.839 21.873 0.522 1.113 1.284 1.883

Winequality-White 6.439 3.328 621.665 – 12.942 39.819 0.870 1.294 1.627 2.087

Smart Watch 264.927 593.452 3523 – 112.645 35.935 1.962 4.223 5.466 8.316

Housing 4.689 1.966 – 0.056 6.011 2.540 1.993 5.081 5.931 10.841

Skill Craft 7.569 21.171 – 0.049 672.020 46.102 0.654 0.583 4.829 11.057

ONP 1297 230.505 – 0.119 349.018 143.768 6.338 8.930 165.438 177.184

MEU Mobile 2.529 6.313 – 0.048 433.522 55.282 2.993 7.199 98.225 101.540

SUP Data 8.637 90.706 – 0.036 622.315 321.649 13.952 19.631 127.369 146.085

Bias Correction 55.725 34.682 – 1.893 37.624 37.746 5.542 6.669 98.313 102.822

RB 4.997 3.154 – 0.609 1318 10.507 11.859 22.731 38.733 43.371

Blog feedback 450.628 889.206 – 2.339 2271 527.885 22.392 36.785 49.816 80.462

Bold numbers indicate the algorithm has the shortest running time
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Fig. 4 Comparison of the results of eight algorithms in 12 datasets (a)–(l).
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high overall accuracy in the prediction. We can see

from Table 3 that the four algorithms of RLODFS

outperformed the other four algorithms (smaller MSE,

RMSE and STD), which verifies the effectiveness of the

proposed method.

Fig. 4 continued
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3. RLODFS-S1, RLODFS-S2, and RLODFS-S3 had

comparable performance with BP, RBF, and LSTM.

All of them were worse than the RLODFS on 10 out of

the 12 datasets, suggesting that a model with much

more parameters and non-linearity does necessarily

outperform a simple linear regression model, if prop-

erly trained.

4. RLODFS-S2 and RLODFS-S3 performed the best

among the 10 algorithms. On nine out of the 12

datasets (except Winequality-white, ONP and SUP ),

RLODFS’s best test RMSEs were smaller than BP and

RBF. On all 12 datasets, RLODFS-S3’s best test

RMSEs were smaller than RBF. RLODFS-S2 and

RLODFS-S1 also converged much faster than BP,

RBF, LSTM, and DBN. As the final RLODFS trained

from the four RLODFS-based algorithms had the

similar structures and parameters, these results suggest

that RLODFS-S2 and RLODFS-S3 were indeed very

effective in dealing with high-dimensional data, which

in turn helped obtain better learning performances.

5. The rules for WM is 38 = 6561, while the RLODFS-S0,

RLODFS-S1, RLODFS-S2, and RLODFS-S3 have

two Levels, two Levels, three Levels, and four levels,

respectively. The rules are 3492?32 =171, 3493?33 =

270, 3494?34?32 = 414, and 7934?32 = 576,

respectively, which account for 2.606%, 4.115% ,

6.310%, and 8.779% of WM’s rules. Herein the rules of

four algorithms of the RLODFS are far lower than the

WM’s, which thus reflects the advantages of the

proposed algorithms in terms of interpretability.

From the evaluation indicators in Table 3, RLODFS-S2

and RLODFS-S3 occupy the main advantage of being the

most ideal prediction model, while WM has the worst per-

formance and the lowest score. Based on Fig. 4 and

Table 3 Average test evaluation indexes of 10 algorithms on 12 datasets.

Methods MSE MAE STD SMAPE (%) Errormin Errormax Score

BP 3.220910-2 9.879910-2 6.340910-2 15.688 - 4.438910-1 5.24331021 22.08

RBF 3.215910-2 6.205910-2 6.377910-2 16.015 - 4.771910-1 2.860910-1 21.32

WM 1.496910-1 1.316910-1 9.198910-2 11.618 - 1.286 4.333910-1 11.51

GRNN 3.354910-2 6.295910-2 1.629910-1 13.828 - 5.769910-2 2.455910-1 18.03

LSTM 2.768910-2 6.630910-2 1.058910-1 15.840 - 5.873910-1 2.507910-1 17.51

DBN 2.702910-2 5.133310-2 1.484910-1 14.967 - 5.821910-1 3.074910-1 18.23

RLODFS-S0 3.254910-2 1.850910-1 1.761910-1 15.086 - 6.674910-1 2.642910-1 19.81

RLODFS-S1 2.640910-2 6.054910-2 5.120910-2 14.297 - 4.758910-1 6.837910-1 21.32

RLODFS-S2 2.473910-2 6.088910-2 5.430910-2 13.802 - 5.824910-1 4.446910-1 22.69

RLODFS-S3 2.382310-2 6.002910-2 5.108310-2 13.254 - 6.447910-1 3.917910-1 23.46

Bold numbers indicate the algorithm has the best indicators

Table 4 The average number of layers(levels) of each algorithm in 12 datasets.

Dataset BP RBF WM GRNN LSTM DBN RLODFS

-S0

RLODFS

-S1

RLODFS

-S2

RLODFS

-S3

Abalone 3 3 1 – 2 3 2 2 3 4

Wine-Red 3 3 1 – 2 3 2 2 3 5

Wine-White 3 3 1 – 2 3 2 2 3 5

Smartwatch 4 3 1 – 2 3 2 2 3 6

Housing 4 3 – 4 2 4 2 2 3 6

Skill Craft 4 3 – 4 3 4 2 3 4 9

ONP 4 3 – 4 3 4 3 4 5 29

MEUMobile 5 3 – 4 3 5 3 4 6 35

SUP Data 5 3 – 4 3 5 3 4 6 40

Bias Correction 5 3 – 4 3 4 3 4 6 42

RB 6 3 – 4 3 5 4 5 6 55

Blog Feedback 6 3 – 4 3 5 4 5 8 140

Average levels 4 3 1 4 3 4 3 4 5 32
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Table 3, RLODFS-S0 and RLODFS-S1 have more

advantages in low-dimensional problems. As dimension

increases, RLODFS-S2 has certain advantages in predic-

tion accuracy, with few obvious abnormalities. In general,

the prediction models of RLODFS-S1, RLODFS-S2, and

RLODFS-S3 are more stable than other competing

methods.

The average number of layers (levels) of each algorithm

on the 12 datasets is shown in Table 4. RLODFS-S3 has

140 layers on the BlogFeedback dataset, with an average of

32 layers. RBF, LSTM, and RLODFS-S0 have a lower

average layers, all of which are 3 layers.

The selection of hidden layer nodes not only has a great

impact on the established model but also is the direct cause

of overfitting [41]. As shown in Table 5, the enumeration

method [42] was adopted to determine the optimal number

of nodes and iterations among BP, RBF, DBN, and LSTM.

The results of Tables 2, 3, and 4 objectively illustrate the

differences between the various algorithms. We can

observe that:

1. The complexity of each algorithm is as follows: GRNN

\ RLODFS-S0 B RLODFS-S1 B RLODFS-S2 \
RLODFS-S3\BP\RBF\DBN\LSTM\WM.

2. Although BP and LSTM always achieved the smallest

training RMSE, their test RMSE was almost always

the largest, and had large oscillations. This suggests

that they had significant overfitting.

3. The DBN, RLODFS-S2, and RLODFS-S3 show good

predicted performance during the test phase, of which

DBN and RLODFS-S3 are the most obvious.

4. Although LSTM, BP, and RBF all have achieved

pretty good prediction, their test errors are not as good

as DBN and RLODFS. The superiority of RLODFS-S3

is further revealed as dimension increases. From Fig. 5,

the RLODFS-S3 also occupies the commanding

heights, which is significant in accuracy and stability.

The RLODFS based on IF-THEN rules cannot only

guarantee the accuracy and stability of the model but

also give full play to the strong interpretability of the

FS, which has reference for understanding the mapping

relationship between input and output of the model

[43].

Figure 5 confirms the observations made from Fig. 4.

Particularly, RLODFS-S3, RLODFS-S2, RLODFS-S1,

and DBN converged much faster and to smaller values than

BP, LSTM, RBF, and RLODFS-S0. Although RLODFS-

S1 and RLODFS-S2 may not always outperform

RLODFS-S3, their performance were more stable than

RLODFS-S3, which explain indirectly that RLODFS-S1

and RLODFS-S2 have better generalization performance.

The tenfold cross-validation method [44] was used to

further verify the proposed method. The results of the test

sets are shown in Table 5.

Milton Friedman [45, 46] developed a non-parametric

statistical test to detect the differences in multiple tests.

Here, we performed the Friedman ranking test on all data

sets listed in Table 1. Figures 6 and 7 present the ranking

results of these 10 algorithms on all datasets in the Fried-

man ranking test. We can see from Table 5 and Figs. 6 and

7, RLODFS-S2 and RlODFS-S3 have the best rankings.

RBF and RLODFS-S1 rank second in scores only after

RLODFS-S1, and the score and ranking of WM are the

lowest. Simulation results demonstrate that the proposed

method outperforms other enhancement methods in terms

of Errormax, SMAPE, MSE, and rankings.

In conclusion, these results also show that RLODFS is

significantly superior to other competing models. The dif-

ference being statistically significant.

Table 5 The average 12 datasets of the different methods on the quality under tenfold cross-validation.

Methods Errormin Errormax STD MAE SMAPE MSE Score

BP - 4.169910-2 3.165910-2 1.836910-2 3.333910-2 3.768910-3 6.556910-2 18.68

RBF - 4.017910-2 2.529910-2 1.449910-2 1.573910-2 3.695910-2 6.666910-2 21.23

WM - 1.36831021 8.518910-2 1.576910-2 1.019910-2 1.955910-2 2.964910-1 13.61

GRNN - 5.089910-2 1.819910-2 1.153310-2 1.695910-2 6.081910-2 4.831910-2 16.36

LSTM - 3.859910-2 2.391910-2 2.683910-2 6.237310-3 5.112910-2 6.558910-2 17.29

DBN - 5.208910-2 2.433910-2 2.831910-2 6.319910-3 3.106910-2 4.090910-2 20.62

RLODFS-S0 - 6.360910-2 1.925310-1 2.948910-2 1.225910-2 4.692910-2 5.060910-2 19.74

RLODFS-S1 - 5.493910-2 3.329910-2 1.503910-2 4.169910-2 3.183910-3 4.024910-2 21.73

RLODFS-S2 - 6.632910-2 4.906910-2 1.515910-2 8.189910-3 4.433910-2 4.082910-2 22.08

RLODFS-S3 - 6.053910-2 4.825910-2 1.437910-2 6.624910-3 3.037310-3 3.068310-2 24.74

Best Model WM RLODFS-S0 GRNN LSTM RLODFS-S3 RLODFS-S3 RLODFS-S3

Bold numbers indicate the algorithm has the best indicators
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6 Conclusion

Interpretability decreases rapidly as the rules increase.

Therefore, based on the interpretability of FS and the

advantages of DCNN, a hierarchical RLODFS and algo-

rithms were developed to overcome the input–output

transition black box of DCNN, and evaluations show the

method’s superiority.

• It is highly interpretability. A FS can be described by a

series of fuzzy IF-THEN rules, whose structure and

parameters have clear physical significance. If there are

errors in the FS, they can be corrected directly by

finding the corresponding fuzzy rules and changing it.

• It is simple in representation, fast in run-

ning, easy to use, and has the ability to effectively

construct models for massive datasets. The FS has

overlapping and parallel structure which overcome the

Fig. 5 The average test RMSEs of the seven algorithms on the 12 datasets
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curse of dimension and local loop search has been

increased the opportunity of finding better combination

of different variables.

• Its correctness verification is flexible and easy to be

implemented. The system is constructed by a bottom-up

fashion and trained in a layerwise to speed up the

computation.

The selection of grouping unit h, input sharing d, the
number of fuzzy sets, and layers can be easily adjusted to

improve the performance: (1) does not take up too much

memory; (2) suitable for datasets of varying size and

dimensionality.

In the future, intelligent algorithms will be adopted to

optimize the structure and parameters of RLODFS, further

reducing the rules and improving the performance of the

system. Additionally, a post hoc test [46, 47] will be

applied to verify our algorithms,we believe that fuzzy

systems can be combined with deep learning to become

deep fuzzy systems, so as to obtain a new idea and solution

with high interpretability and strong robustness in dealing

with complex high-dimensional systems. Some preliminary

studies on deep fuzzy modeling we have done show that

this idea has great development potential and may become

a new deep learning algorithm.
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