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Abstract This paper presents a comparative study between

the firefly algorithm (FA) and the galactic swarm opti-

mization (GSO) method, where the performance of both

methods is observed and tested in the optimization of a

fuzzy controller for path tracking of an autonomous mobile

robot. The main contribution of this work is finding the best

method that generates an optimal vector of values for the

membership function optimization of the fuzzy controller.

This with the goal of improving the performance of the

controller and thus the trajectory generated by the auton-

omous robot is closer to the desired trajectory. It should be

noted that the fuzzy controller that is optimized is an

interval type-2 fuzzy controller, which has a greater

capability for managing uncertainty than a type-1 fuzzy

controller. In this case, the limiting membership functions

in the interval type-2 fuzzy sets are themselves type-1

fuzzy sets that define the footprint of uncertainty. Type-2

fuzzy controllers have been shown in previous works to

handle better the control of robotic systems under noisy

and dynamic conditions and this is why their optimal

design is very important. Simulation results show that GSO

outperforms FA in the optimal design of interval type-2

fuzzy controllers.

Keywords Firefly algorithm � Galactic swarm

optimization � Fuzzy controller � Type-2 fuzzy systems �
Fuzzy sets

1 Introduction

Nowadays metaheuristics are being used for optimization

of fuzzy controllers, and these controllers need to be

optimized because in many cases they do not achieve the

optimal performance that is required for real-world appli-

cations. In most cases, these controllers are called type-1

fuzzy logic controllers (FLC) because they use the original

definition of fuzzy sets [1]. Fuzzy logic was originally

proposed by Lotfi Zadeh in [2], where the concepts of

fuzzy sets and fuzzy logic were introduced. In this case, the

elements of a set are given a numeric value as a measure of

the uncertainty in the so-called membership functions. The

membership functions are defined for a linguistic variable

of a fuzzy set. In addition to the original fuzzy logic (type-

1) that was proposed from the beginning, type-2 fuzzy

logic was also later developed, and arises with the purpose

of solving more complex problems, that is, with a higher

level of uncertainty, when compared to the problems that

can be solved with type-1 fuzzy logic [3].

Type-2 fuzzy sets were also introduced by Zadeh as an

extension of ordinary fuzzy sets (type-1). In a type-2 fuzzy

set the membership degrees are also fuzzy. In this sense, a

type-1 fuzzy set is a special case of a type-2 fuzzy set

because its secondary membership function is a subset with

a single element [4].

Type-2 fuzzy logic systems can be viewed as a collec-

tion of type-1 fuzzy logic systems; therefore, their ability

for uncertainty management is greater. The works in [5–8]

describe the use of type-2 fuzzy systems that provide very

good results in different control problems. In [9] the the-

oretical advances of type-2 fuzzy controllers are described,

and also what remains to be done in this area was outlined.

On the other hand, in [10] the difference between a type-1

and a type-2 fuzzy controller is explained in a very detailed
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fashion. In addition, this work described some limitations

of type-1 fuzzy controllers to solve problems with higher

levels of uncertainty, and the applications and benefits of

type-2 fuzzy controllers are also outlined.

Both type-1 and type-2 fuzzy systems have been pre-

viously optimized with metaheuristics, for example, the

optimization of type-1 fuzzy controllers is found in

[11–13], which deal with the optimization of fuzzy con-

trollers of autonomous mobile robots using the firefly

algorithm. Also in [14], GSO was used for the optimization

of a fuzzy controller of an autonomous robot following a

trajectory, where the dynamic adjustment of the most

important parameters for the operation of the GSO algo-

rithm is presented. In addition, in [15] the GSO algorithm

was used in the optimization of the water tank fuzzy

controller.

There are many fuzzy controller optimization papers,

using other metaheuristics. For example, in [16] the genetic

algorithm (GA) is used to evolve the architecture of a type-

2 fuzzy controller in robot navigation for real environ-

ments. Other authors have used fuzzy controllers of

autonomous robots following a trajectory as described in

[17], also there are more fuzzy controller applications

thanks to their efficiency and performance, as illustrated in

[18, 19], where a comparison is made between type-1 and

type-2 fuzzy controllers, and in [20] two fuzzy controllers

are used to control the liquid-level process in a tank.

The main motivation of this work is to introduce,

through the use of a metaheuristic algorithm, an opti-

mization method, where optimal performance can be

obtained for achieving satisfactory results in the control of

an autonomous mobile robot. It has been previously

observed that the use of parameter adjustment in meta-

heuristic algorithms for the optimization of mathematical

functions and control problems provides competitive

results, so in this work we propose using fuzzy logic to

perform the dynamic adjustment of the parameters of the

algorithms and measure their performance applied in the

optimization of the fuzzy controller of the autonomous

mobile robot.

The main contribution is the proposed optimization

methodology, as well as finding the optimal parameters for

the optimization of a type-2 fuzzy controller. In this case,

the control of the behavior of a robot following a trajectory

is considered, which aims at following a given trajectory

with a margin of error as low as possible, calculated by

means of an established metric. In addition, a comparison

of the optimization efficiency between two metaheuristic

algorithms, the firefly algorithm (FA) and galactic swarm

optimization (GSO) is considered. The reason for consid-

ering FA and GSO is that both algorithms have previously

shown good performance when applied to fuzzy controller

optimization problems.

The organization of this paper is as follows: Sect. 2

details the inspiration and equations required by the GSO

and FA algorithms to perform their search and optimiza-

tion. In Sect. 3 the proposed approach for the optimization

of the type-2 fuzzy controller of the autonomous mobile

robot is presented. In Sect. 4 the case study of the auton-

omous mobile robot is presented. Section 5 shows the

results obtained from the experiments developed with the

proposed approach for the autonomous mobile robot plant.

In Sect. 6, a discussion about the obtained results is pre-

sented. Finally, in Sect. 7 conclusions and future work are

outlined.

2 Background

In a review of the state of the art, some articles focused on

optimizing membership functions with FA and GSO were

found, but none of these works use the same parameters of

experimentation that are proposed here. Since the combi-

nation of these metaheuristics is rare in the literature, we

will compare the performance results of these algorithms

for this type of optimization problems.

In this section, we are presenting the relevant theory and

concepts for this work.

2.1 Firefly Algorithm (FA)

This method was inspired by the flickering fireflies, where

each firefly is attracted to another depending on the

intensity of light or brightness it generates. It was devel-

oped in 2008 by Xin She Yang [21, 22]. The firefly algo-

rithm has three main rules: Rule 1 stipulates that any firefly

can be attracted to another firefly regardless of their sex,

since in this method the fireflies are unisex. Rule 2

describes that the less glowing fireflies will be attracted to

the brightest firefly. Finally, Rule 3 states that the search

space is described by the objective function.

The FA has three equations that represent the movement

of the fireflies. The first one is called the attraction

equation:

b ¼ b0e
�cr2 ; ð1Þ

where b represents the attractiveness of a firefly; b0 is the

initial attractiveness in r = 0 2 [0,1]; e & 2.71828 is the

basis of the natural logarithms; r is the distance between

each of two fireflies, and c determines the variation of

attractiveness as the distance increases between the fireflies

2 [0, 1].

The movement equation is as follows:

xtþ1i ¼ xti þ b0e
�cr2ij xtj � xti

� �
þ at 2ti; ð2Þ
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where xtþ1i represents the next position; xti is the actual

position; b0e
�cr2ij xtj � xti

� �
represents the attraction; at is

the randomization with a being the parameter of random-

ness a 2 [0, 1], and 2ti represents the vector of random

numbers extracted from a Gaussian distribution.

The distance equation is expressed as:

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
k¼1

xi;k � xj;k
� �2

;

vuut ð3Þ

where rij represents the Euclidian distance between two

fireflies i and j; xi;k is the kth component of the spatial

coordinate; xi is the ith firefly, and d is the number of

dimensions.

2.2 Galactic Swarm Optimization (GSO)

Galactic swarm optimization (GSO) is a recently created

algorithm, which was proposed in 2016 by Muthiah-

Nakarajan and Noel [23]. Galactic swarm optimization

uses multiple exploration and exploitation cycles to carry

out its search process, thus offering greater opportunities to

find the global minimum.

In galactic swarm optimization, the concept of a swarm

is used, which is represented by a set of elements called

particles, as in the PSO algorithm, since it was taken as

inspiration to demonstrate this technique. In the GSO

algorithm the population is divided into M subpopulations

called subswarms. This metaheuristic consists of two levels

[20]. In the first level, the method starts to explore inde-

pendently in each of the subswarms, thus improving the

search for possible solutions. Since the GSO algorithm uses

the PSO algorithm as a basis, the velocity and position of

the particles are calculated according to the number of

iterations determined for the first level [24].

In the second level, a super swarm is formed based on

the best individuals of each of the subswarms, so that in the

end the best possible solution is obtained. In the same way

the calculation of the velocity and position of the particle is

used as in the level 1. The equations needed to calculate the

velocity and position of the GSO algorithm particles are

represented below [25].

Level 1:

V
ðiÞ
j  W1V

ðiÞ þ C1r1 P
ðiÞ
j � X

ðiÞ
j

� �
þ C2r2 gðiÞ � X

ðiÞ
j

� �
;

ð4Þ

X
ðiÞ
j  X

ið Þ
j þ V

ðiÞ
j ; ð5Þ

where Vj
(i) is the velocity of the individual; W1 represents

the inertia; C1 and C2 are the acceleration constants; r1 and

r2 are random numbers; Pj
(i) is the best personal associated

with the individual Xj
(i); g(i) represents the best global of the

subswarm Xi, and Xj
(i) position of the individual.

w1 ¼ 1� k

I1 þ 1
; ð6Þ

where is the current iteration number, an integer ranging

from 0 to I1; and I1 is the number of iterations of the first

level.

Level 2:

Y ið Þ 2 Y : i ¼ 1; 2; . . .;M

Y ið Þ ¼ g ið Þ;
ð7Þ

V ðiÞ  W2V
ðiÞ þ C3r3 PðiÞ � YðiÞ

� �
þ C4r4 g� YðiÞ

� �
;

ð8Þ

Y ðiÞ  Y ið Þ þ VðiÞ; ð9Þ

where V(i) is the velocity of the individual; W2 represents

the inertia in level 2; C3 and C4 are the acceleration con-

stants in level 2; r3 and r4 are random numbers; P(i) rep-

resents the personal best; g represents the global best, and

Y(i) the position of the individual.

3 Proposal

The main contribution of this work is the proposed opti-

mization methodology, as wells as its application for

finding the optimal parameters in the design of a type-2

fuzzy controller, which must control the behavior of an

autonomous mobile robot. The fuzzy controller aims at

following a given trajectory with a margin of error as

minimum as possible, calculated by means of an estab-

lished metric of control performance.

The most important difference between using the

dynamic adjustment of parameters in metaheuristic algo-

rithms with respect to the use of fixed parameters is that the

parameters selected for dynamic adjustment are modified

as the iterations proceed, which leads us to obtain better

solutions.

The methodology consists on using a metaheuristic

algorithm to perform the optimization of the membership

functions parameters of the type-2 fuzzy robot controller

for path following. In this case, we measure the type-2

fuzzy controller’s performance and return a result accord-

ing to the established performance metric and continue

with the optimization until a stopping criterion or a pre-

viously established number of iterations are met. This

methodology can be found in a summarized form in Fig. 1.

The optimization of the fuzzy controller is performed

with the original algorithms and their variants using

dynamic parameter adjustment in the GSO and FA
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algorithms. In the first case, for the optimization variants

we use type-1 fuzzy systems. The fuzzy system used for

parameter adjustment of the GSO algorithm uses ‘‘Itera-

tion’’ as input variable and as output variables the c3 and c4

parameters. Each of the variables is composed of three

triangular membership functions labeled as ‘‘low’’, ‘‘med-

ium’ and ‘‘high’’, as can be seen in Fig. 2. The fuzzy

system FA_T1 that performs parameter adjustment of the

FA uses the ‘‘Iteration’’ variable as input variable and as an

output variable the a parameter, and these variables are

composed of three triangular membership functions labeled

as ‘‘low’’, ‘‘medium’’ and ‘‘high’’, as illustrated in Fig. 3.

In the second variant, interval type-2 fuzzy systems are

used in FGSO IT2 and FA_T2, which are an extension of

the previously used type-1 fuzzy systems. The type-2 fuzzy

systems are formed with the same input and output vari-

ables, which are partitioned in the same way and sharing

the same form for the set of fuzzy rules. This fuzzy system

can be found in Figs. 4 and 5 as shown, respectively.

Fuzzy system rules were designed with the idea that

when the algorithms are in the initial iterations they can

explore and when they are in the last iterations they can

exploit.

Fuzzy rules for FGSO:

1. If (iteration is low) then (c3 is low) and (c4 is High),

2. If (iteration is medium) then (c3 is medium) and (c4 is

medium),

3. If (iteration is high) then (c3 is high) and (c4 is low).

Fuzzy rules for FA:

1. If (iteration is low) then (alpha is low),

2. If (iteration is medium) then (alpha is medium),

3. If (iteration is high) then (alpha is high).

Fig. 1 Proposed optimization method

Fig. 2 Type-1 fuzzy system for the GSO algorithm

E. Bernal et al.: Optimization of Type-2 Fuzzy Logic Controller Design… 45

123



Each individual or possible solution that is used in our

proposal is formed by the required parameters to auto-

matically generate the type-2 fuzzy controller avoiding

manually generating the fuzzy controller, in this way

expecting to obtain better results than those obtained using

the basis fuzzy controller. In Fig. 6, we can find the way in

which individuals are composed in the metaheuristic

algorithms [26–28].

Each individual contains the necessary parameters to

form the fuzzy controller. In this case, the controller has

two input variables, which are formed by two trapezoidal

membership functions and this correspond to 8 parameters

to form each and a triangular with six parameters giving a

Fig. 3 Type-1 fuzzy system for the FA

Fig. 4 Interval type-2 fuzzy system for the GSO algorithm
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total of 22 parameters per input variable. The output

variables consist of three triangular membership functions

which are formed with six parameters each, giving a total

of 18 parameters per output variable. Once all the param-

eters are obtained to form the input and output variables,

the fuzzy controller is built.

The structure of the individuals in the GSO and FA

algorithms help us to form the interval type-2 fuzzy con-

trollers, which are formed by triangular and trapezoidal

membership functions, and their equations and graphical

representation using type-2 fuzzy logic are presented

below.

The representation of the interval type-2 triangular

membership functions (itritype2) of the fuzzy controller

consists of 6 parameters an1, bn1, cn1, an2, bn2 and cn2,

where the parameter values satisfy an1\ an2, bn1\ bn2 and

cn1\ cn2 and this is shown as follows:

l xð Þ ¼ itritype2 x; an1; bn1; cn1; an2; bn2; cn2½ �ð Þ;
where an1\an2; bn1\bn2; cn1\cn2;

l1 xð Þ ¼ max min
x� a1
b1 � a1

;
c1 � x

c1 � b1

� �
; 0

� �
;

l2 xð Þ ¼ max min
x� a2
b2 � a2

;
c2 � x

c2 � b2

� �
; 0

� �
;

�l xð Þ ¼ max l1 xð Þ; l2 xð Þð Þ8x bn1; bn2ð Þ;
�l xð Þ ¼ 18xr bn1; bn2ð Þ;
l xð Þ ¼ min l1 xð Þ; l2 xð Þð Þ:

ð10Þ

In Figs. 7 and 8, we can find the graphical description of

the interval type-2 triangular and trapezoidal membership

functions, respectively.

The representation of the interval type-2 trapezoidal

membership functions (itrapatype2) of the fuzzy controller

consists of 8 parameters an1, bn1, cn1, dn1, an2, bn2, cn2 and

dn2, where an1\ an2, bn1\ bn2, cn1\ cn2a and dn1\ dn2 and

this is shown as follows:

Fig. 5 Interval type-2 fuzzy system for the FA

Fig. 6 Structure of individuals in the GSO algorithm and FA
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l xð Þ ¼ itrapatype2 x; an1; bn1; cn1; dn1; an2; bn2; cn2; dn2½ �ð Þ;
where an1\an2; bn1\bn2; cn1\cn2; dn1\dn2;

l1 xð Þ ¼ max min
x� an1
bn1 � an1

; 1;
dn1 � x

dn1 � cn1

� �
; 0

� �
;

l2 xð Þ ¼ max min
x� an2
bn2 � an2

; 1;
dn2 � x

dn2 � c2

� �
; 0

� �
;

�l xð Þ ¼
max l1 xð Þ; l2 xð Þð Þ 8x 62 b1; c2ð Þ
1 8x 2 b1; c2ð Þ;

	

l xð Þ ¼ min a;min l1 xð Þ; l2 xð Þð Þð Þ:
ð11Þ

4 Problem Description (Autonomous Mobile
Robot)

To test the proposed methodology, we consider the case of

controlling an autonomous mobile robot. For this particular

case, the main function of the fuzzy controller is to provide

control of the motors to minimize the error in an estab-

lished trajectory [29, 30].

The robot design for the case study can be found in

Fig. 9, which consists of 2 wheels that move by means of

motors and a passive wheel to give stability to the robot

during the motion. The operation of the robot is determined

by means of the following equations [31, 32]:

M qð Þ _vþ C q; _qð Þvþ Dv ¼ sþ P sð Þ; ð12Þ

_q ¼
cos h 0

sin h 0

0 1

2
4

3
5 v

w


 �
; ð13Þ

where [33] q = (x, y, h)T describes the position of the robot;
v = (v, w)T represents the linear and angular velocities;

s = (s1, s2) represents the torque that is applied to the

wheels;

P 2 R2 is the disturbance vector; M qð Þ 2 R2x2 represents

a positive inertia matrix; C q; _qð Þv describes the vector of

centripetal and Coriolis forces, and D 2 R2x2 is a diagonal

positive defined damping matrix.

The fuzzy controller of the mobile robot is formed by

two input variables labeled as the errors of the linear and

angular velocities, granulated into three membership

functions, two trapezoidal for the edges and one triangular

for the center labeled as negative, zero and positive,

respectively. The output variables are called torque1 and

torque2, which are granulated into three triangular mem-

bership functions labeled: negative, zero and positive

[34, 35]. Below we have a graphic description of the inputs

and outputs that form the interval type-2 fuzzy controller of

the mobile autonomous robot that, as mentioned above,

which are granulated with triangular and trapezoidal

membership functions. Figures 10, 11, 12 and 13 illustrate

the corresponding type-2 membership functions.

Fig. 7 Interval type-2 triangular membership function

Fig. 8 Interval type-2 trapezoidal membership function

Fig. 9 Mobile robot model
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The design of the fuzzy rules of the autonomous mobile

robot controller enables controlling the movement of the

robot following the established trajectory, so that the

movement is uniform and continuous. The fuzzy rules are

listed below:

1. If (ErrorLV is negative) and (ErrorAV is negative)

then (Torque1 is negative) and (Torque2 is negative),

2. If (ErrorLV is negative) and (ErrorAV is zero) then

(Torque1 is negative) and (Torque2 is zero),

3. If (ErrorLV is negative) and (ErrorAV is positive) then

(Torque1 is negative) and (Torque2 is positive),

4. If (ErrorLV is zero) and (ErrorAV is negative) then

(Torque1 is zero) and (Torque2 is negative),

5. If (ErrorLV is zero) and (ErrorAV is zero) then

(Torque1 is zero) and (Torque2 is zero),

6. If (ErrorLV is zero) and (ErrorAV is positive) then

(Torque1 is zero) and (Torque2 is positive),

7. If (ErrorLV is positive) and (ErrorAV is negative) then

(Torque1 is positive) and (Torque2 is negative),

8. If (ErrorLV is positive) and (ErrorAV is zero) then

(Torque1 is positive) and (Torque2 is zero),

9. If (ErrorLV is positive) and (ErrorAV is positive) then

(Torque1 is positive) and (Torque2 is positive).

These fuzzy rules are basically deciding the particular

actions on the left and right wheels according to the posi-

tion of the robot with respect to the desired trajectory.

5 Simulation Results

In this section, the results obtained from the fuzzy con-

troller optimization of the autonomous mobile robot are

presented. The methodology consists on using a meta-

heuristic algorithm to generate a vector of the necessary

parameters to form the membership functions of the

interval type-2 fuzzy controller that is optimized. For this

specific case, the metaheuristics are the galactic swarm

optimization and firefly algorithm and their variants with

dynamic adaptation of parameters using type-1 and intervalFig. 10 Membership functions of the linear velocity error

Fig. 11 Membership functions of the angular velocity error

Fig. 12 Membership functions of Torque 1

Fig. 13 Membership functions of Torque 2
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type-2 fuzzy systems. Table 1 shows the parameters used

in galactic swarm optimization and firefly algorithm to

perform the optimization of the fuzzy controller.

To measure the performance of the algorithms for the

optimization of the fuzzy controller, the mean squared

error (MSE) is used. Its equation is described below:

MSE ¼ 1

n

Xn
i¼1

Xi � Yið Þ2; ð14Þ

where Xi is the reference value at time I; the reference

values are given in [32]; Yi is the value produced by the

system at time I, and n is the number of samples considered

in the test.

Table 2 shows the performed experiments to obtain the

best optimized fuzzy system with the FA, where it can be

observed that the best error found is of 9:64� 10�02 and an

average of 3:20� 10þ00 was obtained.

Table 3 shows the performed experiments to obtain the

best optimized fuzzy system with the fuzzy firefly algo-

rithm, where it can be observed that the best error found is

of 9:93� 10�01 and an average of 1:67� 10þ00 was

obtained.

Table 4 shows the performed experiments to obtain the

best optimized fuzzy system with the interval Type-2 fuzzy

firefly algorithm, where it can be observed that the best

error found is of 9:64� 10�02 and an average of 1:06�
10þ00 is obtained.

Table 5 shows the performed experiments to obtain the

best optimized fuzzy system with the GSO algorithm,

where it can be observed that the best error found is of

5:05� 10�03 and an average of 1:17� 10þ00 was obtained.
Table 6 shows the performed experiments to obtain the

best optimized fuzzy system with the FGSO algorithm,

where it can be observed that the best error found is of

5:78� 10�06 and an average of 8:84� 10�01 was

achieved.

Table 7 shows the performed experiments to obtain the

best optimized the interval type-2 fuzzy system with GSO

algorithm, where it can be observed that the best error

found is of 1:39� 10�05 and an average of 8:35� 10�01

was achieved.

Table 8 shows the best, the worst, the average and

standard deviations after 30 executions with the FA and its

variants after having performed the fuzzy controller

optimization.

Table 9 shows the best, the worst, the average and

standard deviations after 30 executions with the GSO

Table 1 Parameters of the GSO and FA algorithms

Parameter GSO Parameter FA

Population 10 Population 50

Subpopulation 5 Iteration 750

Iteration 1 5 – –

Iteration 2 10 –

C1 and C2 2.5

C3 and C4 Dynamic

Table 2 Results for the FA

Experiment MSE Experiment MSE

1 2:52� 10�01 16 7:06� 10þ00

2 3:28� 10�01 17 7:08� 10þ00

3 5:72� 10�01 18 9:49� 10þ00

4 7:06� 10þ00 19 9:75� 10þ00

5 4:42� 10þ00 20 1:01� 10þ00

6 9:49� 10þ00 21 1:26� 10þ00

7 9:64� 10�02 22 2:68� 10þ00

8 2:52� 10�01 23 3:13� 10þ00

9 3:27� 10�01 24 3:15� 10þ00

10 5:25� 10�01 25 1:24� 12þ00

11 5:72� 10�01 26 7:35� 10þ00

12 1:13� 10þ00 27 1:21� 10þ00

13 3:84� 10þ00 28 1:34� 10þ00

14 4:42� 10þ00 29 1:16� 10þ00

15 4:43� 10þ00 30 1:29� 10þ00

Table 3 Results for the fuzzy FA

Experiment MSE Experiment MSE

1 1.67 �10þ00 16 6.63 �10�01

2 1.76 �10þ00 17 8.83 �10�01

3 3.24 �10�01 18 3.06 �10�01

4 7.45 �10�01 19 8.82 �10�01

5 9.70 �10�01 20 3.44 �10�01

6 3.06 �10�01 21 9.98 �10�01

7 1.37 �10þ00 22 3.22 �10�01

8 9.80 �10�01 23 3.31 �10�01

9 1.87 �10þ00 24 4.43 �10�01

10 1.89 �10þ00 25 8.34 �10�01

11 3.64 �10�01 26 9.22 �10�01

12 3.53 �10�01 27 7.73 �10�01

13 3.06 �10�01 28 3.46 �10�01

14 8.79 �10�01 29 9.93 �10�01

15 3.06 �10�01 30 3.06 �10�01
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algorithm and its variants after having performed the fuzzy

controller optimization.

Finally, the results obtained with the methods are pre-

sented in Figs. 14, 15, 16 and 17, respectively, where one

can note the differences between the desired trajectory and

the real one generated by the autonomous mobile robot

with the type-2 fuzzy logic controller.

5.1 Statistical Comparison

In order to validate the performance of the metaheuristic

algorithms used to test the proposed optimization

methodology of membership functions parameters of the

mobile robot fuzzy controller, a statistical comparison is

made to find evidence that the algorithms have performed

Table 4 Results for the interval Type-2 fuzzy FA

Experiment MSE Experiment MSE

1 1.27 �10þ00 16 1.06 �10þ00

2 1.90 �10þ00 17 3.28 �10�01

3 5.72 �10�01 18 1.06 �10þ00

4 1.60 �10þ00 19 8.75 �10�01

5 1.27 �10þ00 20 7.35 �10�01

6 4.04 �10�01 21 9.12 �10�01

7 1.14 �10þ00 22 7.47 �10�01

8 9.64 �10�02 23 9.34 �10�01

9 1.06 �10þ00 24 8.82 �10�01

10 1.09 �10þ00 25 7.45 �10�01

11 1.06 �10þ00 26 1.12 �10�01

12 2.53 �10�01 27 8.76 �10�01

13 1.06 �10þ00 28 9.98 �10�01

14 9.70 �10�01 29 7.45 �10�01

15 5.25 �10�01 30 3.38 �10�01

Table 5 Results for galactic swarm optimization (GSO)

Experiment MSE Experiment MSE

1 8:65� 10�01 16 3:41� 10�01

2 7:74� 10�02 17 7:14� 10�02

3 2:32� 10�01 18 7:40� 10�01

4 1:20� 10�01 19 1:44� 10þ00

5 2:23� 10�01 20 9:20� 10�01

6 1:96� 10þ00 21 1:19� 10þ00

7 1:63� 10�02 22 7:03� 10þ00

8 5:93� 10�03 23 4:71� 10þ00

9 4:67� 10�01 24 5:58� 10þ00

10 2:88� 10�01 25 8:64� 10�02

11 5:05� 10�03 26 8:46� 10�01

12 6:97� 10�01 27 3:54� 10þ00

13 2:91� 10�02 28 3:52� 10�01

14 6:65� 10�03 29 3:89� 10�01

15 3:35� 10�01 30 2:58� 10þ00

Table 6 Results for fuzzy galactic swarm optimization (FGSO1)

Experiment MSE Experiment MSE

1 4:57� 10�01 16 2:63� 10�05

2 1:60� 10�01 17 3:44� 10�01

3 1:68� 10�01 18 3:90� 10�02

4 1:40� 10�01 19 5:84� 10�01

5 5:78� 10�06 20 4:94� 10�01

6 3:63� 10�02 21 6:69� 10�01

7 1:59� 10�01 22 5:19� 10�01

8 6:08� 10�01 23 5:46� 10�02

9 2:33� 10�01 24 2:23� 10�02

10 3:08� 10�01 25 2:43� 10�02

11 1:45� 10�01 26 1:19� 10�01

12 1:73� 10�01 27 8:84� 10�01

13 1:25� 10�01 28 8:41� 10�01

14 3:74� 10�01 29 1:61� 10�01

15 8:11� 10�02 30 1:82� 10�01

Table 7 Results for interval Type-2 fuzzy galactic swarm opti-

mization (FGSO IT2)

Experiment MSE Experiment MSE

1 7:87� 10�01 16 2:67� 10�01

2 3:53� 10�01 17 4:16� 10�01

3 8:50� 10�03 18 8:35� 10�01

4 3:90� 10�03 19 3:80� 10�01

5 6:28� 10�01 20 6:60� 10�01

6 1:05� 10�02 21 1:39� 10�05

7 8:29� 10�02 22 7:40� 10�01

8 1:06� 10�01 23 1:19� 10�02

9 6:83� 10�01 24 1:38� 10�01

10 8:18� 10�01 25 1:38� 10�01

11 1:06� 10�01 26 3:40� 10�01

12 3:33� 10�01 27 2:29� 10�01

13 5:84� 10�01 28 3:13� 10�01

14 6:74� 10�01 29 1:25� 10�01

15 1:14� 10�02 30 1:58� 10�01
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well in the case study of the autonomous mobile robot

plant. Table 10 shows the representation of the values used

in the statistical test, to determine which method produced

better results in the optimization of membership function

parameters, generating a data vector, which helps to

improve the performance of the fuzzy controller for the

autonomous robot.

In Table 10, the null hypothesis (H0) states that the

average MSE error for the GSO algorithm and its variants

(l1) is greater than or equal to the average MSE error for

FA and its variants (l2). The alternative hypothesis (Ha)

states that the average MSE error for the GSO algorithm

Table 8 Best, worst and average for the FA and its variants

FA FA_T1 FA_T2

Best 9:64� 10�02 9:93� 10�01 9:64� 10�02

Worst 9:75� 10þ00 1:67� 10þ00 1:06� 10þ00

Average 3:20� 10þ00 7:81� 10�01 8:54� 10�01

Standard deviation 3:14� 10þ00 5:03� 10�01 4:09� 10�01

Table 9 Best, worst and average for the GSO algorithm and its

variants

GSO FGSO1 FGSO IT2

Best 5:05� 10�03 5:78� 10�06 1:39� 10�05

Worst 7:04� 10þ00 8:84� 10�01 8:35� 10�01

Average 1:10� 10þ00 2:70� 10�01 3:34� 10�01

Standard deviation 1:77� 10þ00 2:48� 10�01 2:81� 10�01

Fig. 14 The best result (9:64� 10�02) obtained with firefly algorithm
(FA) and its variants

Fig. 15 The worst result (9:75� 10þ00) obtained with firefly algo-

rithm (FA) and its variants

Fig. 16 The best result (5:78� 10�06) obtain with the GSO

algorithm and its variants

Fig. 17 The worst result (7:04� 10þ00) obtain with the GSO

algorithm and its variants
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and its variants (l1) is less than the average MSE error for

FA and its variants (l2).
Table 11 shows the averages, standard deviations and

values of z for each of the comparisons made, where the

GSO algorithm and its variants manage to obtain signifi-

cant evidence against the FA and its variants. As a con-

sequence H0 is rejected and Ha is accepted with a 95% of

the level of significance and a rejection zone for values

lower than - 1.645.

As mentioned above, the metaheuristic algorithms gen-

erate satisfactory results in optimization problems, and in

this paper we optimized a type-2 fuzzy controller which

controls autonomous robot navigation, and then the results

obtained in the experimentation are described. This

experimentation is made with two optimization methods

for the type-2 fuzzy controller to make a comparison of the

methods and thus, discover which one is the best. As can be

noted in Table 11, the method that produces the best results

according to the hypothesis testing is the galactic swarm

optimization, since the firefly algorithm gives a higher

difference error between the desired trajectory and the

actual trajectory generated by the robot. This algorithm has

shown in other optimization problems to give good results

as explained in [36, 37], although on the other hand, the

galactic swarm optimization proved to be better in terms of

the solution for this problem.

In addition, we also used the nonparametric Friedman

test to be even more confident about the validity of the

results. The Friedman test [38–40] is a nonparametric test

to compare multiple algorithms to find the best algorithm.

First, if we compare the original GSO and FA methods, we

find that there is a significant advantage of GSO with a

p value of 0.01 (see Table 12). Also, if we compare FGSO

and FA_T1, we find significant advantage of FGSO with a

p value of 0.00006 (see Table 13). Finally, we can compare

FGSO IT2 versus FA_T2 and we find significant advantage

of FGSO IT2 with a p value of 0.00006 (see Table 14).

In summary, we can state that there is sufficient statis-

tical evidence to say that the galactic swarm optimization

(and its variants) outperforms the firefly algorithm.

Table 10 Statistical test parameters [24, 35]

Parameter Value

H0 l1� l2
Ha l1\l2 (claim)

Level of significance 95%

A 0.05

Critical value - 1.645

Table 11 Results of the Z-test
for the GSO algorithm and the

FA

GSO FA Z value

Average Std Average Std

1:10� 10þ00 1:77� 10þ00 3:20� 10þ00 3:14� 10þ00 �4:85� 10þ00

FGSO FA_T1

2:70� 10�01 2:48� 10�01 7:81� 10�01 5:03� 10�01 �4:87� 10þ01

FGSO IT2 FA_T2

3:34� 10�01 2:81� 10�01 8:54� 10�01 4:09� 10�01 �6:34� 10þ01

Table 12 Friedman test in

comparing GSO versus FA
GSO vs FA

Test statistic p-value

6.53333 0.01059

Q ¼ 12n
k Kþ1ð Þ

P
j
R2
j �

k kþ1ð Þ2
3

" #

Table 13 Friedman test in comparing FGSO versus FA_T1

FGSO vs FA_T1

Test statistic p-value

16.13333 0.00006

Q ¼ 12n
k Kþ1ð Þ

P
j

R2
j �

k kþ1ð Þ2
3

" #

Q = 0.06666666 * 4292.0 - 270

Q = 16.13333
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6 Discussion

In the state of the art, we can find works related to the

optimization of membership functions, such as in [41]

where a comparative study of type-2 fuzzy particle swarm,

bee colony and bat algorithms in optimization of fuzzy

controllers is presented. This study makes a comparison

between three very promising methods in optimization of

fuzzy controllers, where their results for each of the algo-

rithms show the best, worst, average, standard deviation.

So having these results we can compare them with the

results obtained in this proposal, where we can discuss

which method has achieved better performance in the

optimization of fuzzy controllers. In Table 15, the results

of bee colony optimization are illustrated versus results of

Table 8 that represents firefly algorithm (FA), and it is

observed that the best value found by the original bee

colony optimization (BCO) algorithm, the best with type-1

fuzzy logic (BCO_T1), type-2 fuzzy logic (BCO_T2), but

on average and standard deviation the FA showed that its

performance is better in optimizing membership functions.

Regarding Table 16 which represents particle swarm

optimization (PSO particle swarm optimization with type-1

fuzzy logic (PSO_TI), particle swarm optimization with

type-2 fuzzy logic (PSO_T2), it is observed that the results

were better for PSO than for the FA in Table 8, but it must

be taken into account that the PSO with inertia weight

parameters, position update that helps improve the move-

ment of the particles to find the best overall, and the

traditional FA only uses a next position and a Gaussian

distribution.

In Table 17, the bat algorithm shows results that are

inferior in its optimization performance as shown in

Table 17 versus the FA of Table 8.

Table 9 shows the results obtained with GSO, which are

better when compared to Tables 15 and 17. As it is

observed, in general the proposed algorithms turn out to

have better performance than those found in the literature.

We have to mention that there are other related articles, but

they use the RMSE metric and not the MSE that is used in

this proposal.

Finally, we show in Table 18 a summary of all the

above-mentioned methods, and we can note that the best

fuzzy controller (highlighted in bold) is found by FGSO

IT2 with an error of 1.39 9 10-05. We can also notice that

PSO_T2 achieves the second best fuzzy controller with an

error of 1.90 9 10-04. From the optimal fuzzy control

design point of view this is very important because the goal

is finding the best possible controller. However, statisti-

cally speaking on average there is no significant difference

Table 15 Results of

performance the BCO
MSE [38] BCO BCO_T1 BCO_T2

Best 8:84� 10�03 1:50� 10�03 2.80 �10�03

Worst 106:81� 10þ00 61:91� 10þ00 65:46� 10þ00

Average 14:61� 10þ00 9:83� 10þ00 9:10� 10þ00

Standard deviation 23:34� 10þ00 14:69� 10þ00 16:67� 10þ00

Table 16 MSE results of PSO

MSE [38] PSO PSO_T1 PSO_T2

Best 1:39� 10�01 4:41� 10�03 1:90� 10�04

Worst 6:67� 10þ00 1:51� 10þ00 3:3� 10�01

Average 2:41� 10þ00 3:04� 10�01 3:22� 10�02

Standard deviation 2:97� 10þ00 3:19� 10�01 7:11� 10�02

Table 17 Results of the bat algorithm

MSE [38] BA BA_T1 BA_T2

Best 4� 10�03 1:47� 10�02 1:64� 10þ00

Worst 9:31� 10þ00 97:98� 10þ00 34:31� 10þ00

Average 4:02� 10þ00 36:80� 10þ00 20:47� 10þ00

Standard deviation 2:90� 10þ00 34:57� 10þ00 12:25� 10þ00

Table 14 Friedman test in comparing FGSO IT2 versus FA_T2

FGSO IT2 vs FA_T2

Test statistic p-value

16.13333 0.00006

Q ¼ 12n
k Kþ1ð Þ

P
j

R2
j �

k kþ1ð Þ2
3

" #

Q = 0.06666666 * 4148.0 - 270

Q = 16.13333
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between the type-2 fuzzy GSO variant and the type-2 fuzzy

PSO algorithm.

7 Conclusions

Fuzzy controllers are being widely used today, as they can

solve problems that were previously almost impossible to

deal with. As a conclusion of this paper it is explained that

the results that originated by the parameter optimization of

the type-2 fuzzy robot controller membership functions

were very satisfactory. In addition, the obtained controller

values proved to be very close to the robot’s desired tra-

jectory, observing with this, that the performance of a

fuzzy controller can be improved if a metaheuristic opti-

mization is applied. In this case, we used two meta-

heuristics that proved to be good in parameter optimization

of the membership functions.

The experimentation was carried out with the original

GSA and FA metaheuristics and their variants using type-1

and interval type-2 fuzzy systems for dynamic parameter

adjustment. In order to compare the variants, a statistical

test was performed between the original GSO algorithm

and the FA and their variants using type-1 and interval

type-2 fuzzy systems, where the GSO algorithm achieved

significant improvements when compared to the FA based

on the results shown in Table 11.

We can conclude that the parameter adjustment using

fuzzy logic in the GSO and FA algorithms applied to fuzzy

control is a good choice since competitive results were

obtained with these methods. In this regard, we plan to

continue investigating in this line of research and

depending on the behavior of the algorithms and the use of

type-1 and type-2 fuzzy logic, we will consider other types

of problems.

As future work, different variations of the fuzzy systems

for the dynamic adjustment of the parameters in the

metaheuristic algorithms will be considered and applied to

different control problems.

It is also planned to perform the dynamic tuning of the

parameters with generalized type-2 fuzzy systems and in

the same way to extend the controller to a generalized type-

2 fuzzy controller [42, 43]. In addition, a study of the

controllers by adding different levels of disturbances to the

plants could be done to measure the performance of the

proposed method under different situations.
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