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Abstract Membership function estimation is one of the

less explored, albeit important, areas in fuzzy sets. This

paper aims to define a new family of fuzzy sets called

general continuous linguistic variables (GCLV), which

represents a linguistic variable rather than a set of linguistic

values. We refer to it as the principle of representation of

linguistic variables. They are based on the well-known

sigmoidal functions and contain at least three different

classes of membership functions, namely, an increasing

sigmoidal function, a decreasing sigmoidal function, and a

convex one. These diverse features are essential to repre-

sent linguistic values exhibiting different semantics. We

explore the properties of GCLV, including those ones over

that allow us to approximate every continuous membership

function. Finally, we illustrate the applicability of GCLV

as a fuzzy tool. This leads to the development of the

foundations of a new vehicle in fuzzy sets useful in data

mining and time series prediction.

Keywords Membership function � Sigmoidal function �
Linguistic variable � Data mining � Time series prediction

1 Introduction

Historically, studies on membership functions have been

limited in comparison with other topics studied in fuzzy

sets. Even though there exists a wide range of descriptions

of many of these functions, very often the design of fuzzy

tools does not consider what kind of membership function

is the most suitable for a given application.

The first approach comes with the idea of a fuzzy set [1].

Dombi paid attention to this problem in [2, 3], in which

common requirements concerning membership functions

were summarized. Some of them are listed below:

1. Membership functions are continuous.

2. All membership functions are either monotonically

increasing, or monotonically decreasing or can be

divided into parts where they are monotonically

increasing or decreasing.

3. The monotonous functions are either convex or

concave or there exists a point of inflexion which

divides the function into a convex and concave parts;

they are s-shaped functions or z-shaped functions.
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General criteria to construct membership functions inclu-

ded the following views [4, 5]: (1) likelihood view, (2)

random set view, (3) similarity view, (4) utility view and

(5) measurement view.

Usually, membership functions used in fuzzy systems,

like Fuzzy Inference Systems, are the simplest ones such as

trapezoidal and triangular; see [6, 7]. Other approaches

adjust the data by interpolation methods [8] or by linear

functions defined over some subintervals [9].

In [10], Valente de Oliveira advocated that inter-

pretable membership functions should satisfy the following

requirements:

1. The number of membership functions should be 7 � 2,

[11]. There exists some psychological justification

behind this: 7 � 2 is the number of entities that people

process in short-term memory.

2. Distinguishability. Every membership function should

represent a linguistic value with a clear semantics.

3. Normality. Membership functions should be normal.

4. Natural Zero Positioning. One of the membership

functions should represent the value ‘‘nearly zero’’ for

this end it is recommended to be unimodal, convex and

centered at zero.

5. Coverage. Every piece of data should have linguistic

representation.

Valente de Oliveira work’s purpose is somewhat similar to

the objective of this study. He notes that usually fuzzy

systems are concerned almost exclusively about accurate

results. However, this focal trend contradicts the essence of

fuzzy sets to obtain semantically sound (justified) results,

which are interpretable in the form of linguistic terms. He

proposes semantic constraints to optimize membership

functions. These constraints are the ones previously men-

tioned. In further investigations, we revisit these ideas.

Drakopoulos [12], developed a theory of sigmoidal

membership functions and his Sigmoidal Bubble Theo-

rem forms the basis to approximate every membership

function by sigmoidals. This method is used to approxi-

mate membership functions by piece-wise sigmoidal

functions. This approximation is limited with regard to the

semantic of the predicates, because it is difficult to interpret

a compound predicate based on the simple ones. It was

applied to pattern recognition [13].

Sigmoidal functions entail an assumption that the

change of the belief degree that ‘‘x is A’’ is proportional to

the belief degree that ‘‘x is A’’ and the belief degree that ‘‘x

is not A’’ [5]. It is a special type of similarity to construct a

membership function because it is a sort of distance

between some value and a desirable value c. It has been

widely used in artificial neural networks regarded as uni-

versal approximators [14].

This paper introduces a new parametrized family of

membership functions, called general continuous linguistic

variables (GCLV) based on four parameters, whose aim is

to adjust each GCLV from experimental data by optimizing

the truth value of compound predicates, such that the

GCLV are atoms with a semantic meaning.

Its advantages over other parametrized families are

outlined as follows:

1. It contains functions of at least three kind of shapes,

one is an strictly increasing membership function,

other is an strictly decreasing and the third is a convex

one which is strictly increasing in its first part and

strictly decreasing in its second part. These different

types of shape allow to represent different linguistic

values. Usually the families of membership functions

used in literature are of the same shape and lack of

expressiveness [15].

2. The members of the GCLVs are modified by linguistic

hedges. This property increases the expressiveness of

the results.

3. The GCLV incorporates the possibilities like universal

approximator relevant in the setting sigmoidal func-

tions. Every continuous membership function can be

approximated by the members of this family.

4. Its parameters have a meaning as presented in Dombi’s

approach.

5. It is possible that GCLVs satisfy the conditions

suggested by Valente de Oliveira in [10] to guarantee

the semantics.

We formulate the concept of a so-called principle of rep-

resentation of linguistic variables, which means that part of

the family of GCLVs represents a linguistic variable, like,

e.g., ‘‘age’’ or ‘‘height’’.

Each linguistic value is associated with a fuzzy set by an

specific 4-tuple of parameters, because of the different

shapes, it is possible to identify a single family with a

linguistic variable, in which the most important linguistic

values can be represented by fuzzy sets, only fixing the

values of four parameters. Therefore, the aim of adjusting

experimental data optimizing over the space of parameters

can be achieved.

Our motivation is to develop the foundations of a new

tool in fuzzy theory, which is useful in Data Mining. The

main novelty is that data can be adjusted from a data set

where the output is a linguistic value with many possible

different semantics. It is a type of linguistic mining com-

pleted by the optimization on the space of parameters.

The paper is organized as follows. Section 2 summarizes

the main concepts necessaries to understand this paper.

Section 3 contains the main definitions of the paper. Sec-

tion 4 explores the parametric meanings and properties of

the family according to Dombi’s theory. Section 5
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elaborates on a semantic approach, where algorithms are

designed to obtain linguistic interpretations of the mem-

bership functions.

Section 6 is dedicated to illustrate the possible appli-

cations of this new family in fuzzy tools. The paper is

concluded in Sect. 7.

2 Basic Concepts

It is well-known that the sigmoidal membership function

with parameters a[ 0 and c 2 R, is defined by the fol-

lowing expression:

sigmðx; a; cÞ ¼ 1

1 þ e�aðx�cÞ : ð1Þ

It is a solution to the differential equation:

dX

dt
¼ aXð1 � XÞ: ð2Þ

In other words, it is considered that the marginal increase

of the belief degree that ‘‘x is A’’ is proportional to the

belief degree that ‘‘x is A’’ and the belief degree that ‘‘x is

not A’’ [5].

It can be easily proved the following property being

extensively used in this paper:

1 � sigmðx; a; cÞ ¼ sigmðx;�a; cÞ:

Dombi’s work [2, 3] is dedicated to the membership

functions, in which a list of objectives behind the formation

of membership functions is identified:

1. On a theoretical basis,

2. Easy to calculate and fit to the problem,

3. Described by only a few parameters,

4. With parameters that are meaningful,

5. With a linearized form for the applications, and

6. With membership and operators closely connected.

Finally, four parameters are fixed to define a membership

function, two for the interval (a, b) where the function is

defined, k meaning the sharpness and m the decision level,

i.e., the value which is mapped by the membership function

to 0.5.

A membership function which satisfies the previous

conditions and additionally which contains properties of

negation, conjunction and disjunction operators was built.

The definition and a detailed study of t-norms are cov-

ered in [16]. T-norms offer an axiomatic formalization to

model conjunction. These axioms are commutativity,

associativity, monotonicity and a boundary condition

where 1 is the neutral element.

3 General Continuous Linguistic Variables

In this section, we introduce a new kind of parametric

membership functions with the characteristic that they can

take many shapes. The rationale of this approach is that

each shape, e.g., triangular, trapezoidal, Gaussian or sig-

moid, can be associated with only single semantic. More-

over, less accurate fuzzy systems are modeled with the

usage. Otherwise, many-shape membership functions can

be translated to many semantics provided of higher accu-

racy. The accuracy is the consequence of the flexibility of

those functions, which can adapt its shape to the data. The

formal definition is given in the following.

Definition 1 A general continuous linguistic variable

(GCLV) is defined as:

GCLVTðx; a; c;m;m0Þ

¼ T sigmmðx; a; cÞ; ð1 � sigmðx; a; cÞÞm0�mð Þ;
where m 2 ½0;m0�, m0 [ 0 is fixed, a[ 0, T is a t-norm

and sigmðx; a; cÞ is a sigmoidal membership function with

parameters a and c 2 R.

Remark 1 Here, we consider 00 ¼ 1.

See that the maximum of the GCLV can be smaller than

1, therefore, below another membership function is defined

which allows to change the range of the GCLV.

Definition 2 A scaled general continuous linguistic vari-

able (SGCLV) is defined by:

SGCLVC;Tðx; a; c;m;m0Þ ¼ C � GCLVTðx; a; c;m;m0Þ;

where C [ 0 is a scalar, constrained by the condition

SGCLVC;Tðx; a; c;m;m0Þ� 1.

Further, we define a kind of SGCLV function repre-

senting normal fuzzy sets. This kind of membership func-

tions are important for interpretability.

Definition 3 A normalized general continuous linguistic

variable (NGCLV) is defined in the following form:

NGCLVTðx; a; c;m;m0Þ ¼
GCLVTðx; a; c;m;m0Þ

M
;

where M is the maximum of the GCLV, if it exists.

Remark 2 limx!þ1 sigmðx; a; cÞ ¼ 1 and limx!�1
sigmðx; a; cÞ ¼ 0, hence, for m 2 ð0;m0Þ, limx!�1
GCLVTðx; a; c;m;m0Þ ¼ limx!þ1 GCLVTðx; a; c;m;m0Þ
¼ 0. m ¼ m0 or m ¼ 0 represent the sigmoidal and the

NOT sigmoidal, respectively, and M ¼ 1.

Proposition 1 The GCLVs have always an upper bound

in R.
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Proof First, let us consider m 2 ð0;m0Þ and some �[ 0.

There exists a compact interval [a, b] such that

GCLVTðx; a; c;m;m0Þ� �, taking into account the

remark above.

GCLVTðx; a; c;m;m0Þ has a maximum in [a, b]. This

follows from the continuity of the powered sigmoidals and

also the non-decreasing property of t-norms.

This property is evident when m ¼ 0;m0. h

Proposition 1 demonstrates that always exists M in

Definition 3 and the normalized membership functions can

be defined. Specially, in Proposition 2 we shall demon-

strate and give the explicit formulas of M and xmax, when T

is the product t-norm. These formulas allow efficiency and

accuracy in the application of NGCLVs in data mining.

Proposition 2 The GCLVTðx; a; c;m;m0Þ based on the

product t-norm has a maximum equals to M ¼
m
m0

� �m

1 � m
m0

� �m0�m

in xmax ¼ 1
a ln m

m0�m

� �
þ c, where

m 6¼ 0;m0.

Proof Let us recall X ¼ sigmðx; a; cÞ is the solution to the

differential equation dX
dt

¼ aXð1 � XÞ.

d

dt
ðXmð1 � XÞm0�mÞ

¼ mXm�1 dX

dt
ð1 � XÞm0�m

þ Xmðm0 � mÞð1 � XÞm0�m�1 � dX

dt

� �
:

Substituting dX
dt

by aXð1 � XÞ in the equation and grouping

some terms we have,

a mXmð1 � XÞm0�mþ1
�

�ðm0 � mÞXmþ1ð1 � XÞm0�m�

¼ aXmð1 � XÞm0�m mð1 � XÞ � ðm0 � mÞX½ �
¼ aXmð1 � XÞm0�mðm � m0XÞ:

Therefore, d
dt
ðXmð1 � XÞm0�mÞ ¼ 0 if and only if X ¼ m

m0
or

M ¼ m
m0

� �m

1 � m
m0

� �m0�m

. The trivial cases X ¼ 0 and X ¼
1 were excluded.

Now, let us calculate the second derivative:

a
d

dt
Xmð1 � XÞm0�mðm � m0XÞð Þ

¼ a
d

dt
ðXmð1 � XÞm0�mÞðm � m0XÞ

�

þXmð1 � XÞm�m0 �m0

dX

dt

� ��
:

Substituting X ¼ m
m0

, taking into account

d
dt

Xmð1 � XÞm0�mð ÞjX¼ m
m0

¼ 0 and a[ 0, if m 6¼ 0;m0

then the second derivative is negative and therefore M is a

maximum.

Finally, sigmðx; a; cÞ ¼ 1
1þe�aðx�cÞ implies sigmðx; a; cÞ ¼

m
m0

if xmax ¼ 1
a ln m

m0�m

� �
þ c. h

GCLVTðx; a; c;m;m0Þ is a family of membership func-

tions, which changes its shape according to the quartet of

parameters.

When m ¼ m0, we have a sigmoidal membership func-

tion, and m ¼ 0 corresponds to the NOT sigmoidal mem-

bership function.

Besides, for m 2 ð0;m0Þ we obtain the family of inter-

mediate membership functions, between the sigmoidal and

the NOT sigmoidal. Here, intermediate means that if xmax

maximizes one membership function Fðx; a; c;m;m0Þ of

the family for m 2 ð0;m0Þ, then it is finite, taking into

account that the NOT sigmoidal is maximum for �1, the

sigmoidal is maximum for þ1 and �1\xmax\þ 1.

Usually a membership function is considered equivalent

to a fuzzy set representing a linguistic value, therefore, a

family of membership functions can be considered a set of

fuzzy sets representing a linguistic variable. In this paper,

this assertion is justified by the multiple shapes we could

obtain, only changing four parameters.

For example, from a linguistic variable like ‘‘height’’,

three linguistic values can be obtained, fixing m0 ¼ 1, and

using the formula a ¼ aðb; cÞ, where aðb; cÞ ¼
lnð0:99Þ�lnð0:01Þ

c�b the quartets ðb ¼ 130; c ¼ 170; m ¼
m0 ¼ 1Þ, ðb ¼ 130; c ¼ 170; m0 ¼ 1; m ¼ 0:5Þ and

ðb ¼ 130; c ¼ 170; m0 ¼ 1; m ¼ 0Þ, they represent the

linguistic values: ‘‘tall’’, ‘‘medium’’ and ‘‘short’’, respec-

tively; see Fig. 1. We used the product t-norm and the

membership functions were normalized.

Let us define G X ; a; c; 1; 1
2

	 
� �
= NGCLVTðx; a; c;f

m; 1Þjx 2 X ; :

120 130 140 150 160 170 180 190 200 210 220 230
0
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Fig. 1 Three differently shaped general continuous linguistic

variables
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a 2 ½aa; ba�; c 2 ½ac; bc�;m 2 1; 1
2

	 


, where X is a

compact set, T is the product t-norm, ½aa; ba� � R	 and

½ac; bc� � R.

CMFðXÞ ¼ f ðxÞjf ðxÞ is a continuous membershipf
function on Xg.

Theorem 1 Let us define the set L such that f ðxÞ 2 L if

it satisfies one of the following conditions:

• f ðxÞ 2 G X ; a; c; 1; 1
2

	 
� �
,

• f ðxÞ ¼ 1 � gðxÞ, for some gðxÞ 2 G X ; a; c; 1; 1
2

	 
� �
,

• f ðxÞ ¼ maxðgðxÞ; hðxÞÞ, for some gðxÞ; hðxÞ 2 L,

• f ðxÞ ¼ minðgðxÞ; hðxÞÞ, for some gðxÞ; hðxÞ 2 L.

Then, L is dense in CMFðXÞ.

Proof Every sigmoidal membership function belongs to L
according to the first condition of the theorem.

If the sigmoidal belongs to L, then the NOT sigmoidal

also belongs to L, because of the second condition.

Here we considered a 2 R	 and not a[ 0, based on the

second condition of the theorem and the property

1 � sigmðx; a; cÞ ¼ sigmðx;�a; cÞ.
Therefore, the domain of a can be extended.

Let us note that when m ¼ 1
2
, the NGCLV is symmetrical

in a with respect to c, therefore, the image of one value is

invariant under a and �a. It is another justification to

define a 2 R	. Further, we prove this symmetry when

m ¼ 1
2
.

First, suppose x1; x2 2 X and v1; v2 2�0; 1½, x1 6¼ x2 and

v1 6¼ v2.

There exist c 2 R and a 2 R	 such that, those x1, x2, v1

and v2 satisfy the equations 1
1þe�aðx1�cÞ ¼ v1 and

1
1þe�aðx2�cÞ ¼ v2.

They are, a ¼ 1
x1�x2

ln
v1ð1�v2Þ
v2ð1�v1Þ

� �
and c ¼ 1

2

x1 þ x2 � 1
a ln v1v2

ð1�v1Þð1�v2Þ

� �� �
.

Now, suppose v1 ¼ 1 and v2 2�0; 1½. The membership

function NGCLVT x; a; x1;
1
2
; 1

� �
, where a ¼ 1

x2�x1

arccosh
2�v2

2

v2
2

� �
, belongs to L.

It fulfills NGCLVT x1; a; x1;
1
2
; 1

� �
¼ 1 and NGCLVT

x2; a; x1;
1
2
; 1

� �
¼ v2. Given v1 ¼ 0 and v2 2�0; 1½, we have

1 � NGCLVT x1; a; x1;
1
2
; 1

� �
¼ 0 and 1 � NGCLVTðx2; a;

x1;
1
2
; 1Þ ¼ v2, for a ¼ 1

x2�x1
arccosh 2�ð1�v2Þ2

ð1�v2Þ2

� �
. The change

of v1 by v2 maintains the validity of the proofs.

So far, we have proved that for every x1; x2 2 X and for

every v1; v2 2 ½0; 1�, where x1 6¼ x2, v1 6¼ v2, there exists a

membership function g(x) of L, such that gðx1Þ ¼ v1 and

gðx2Þ ¼ v2, except for v1 ¼ 1 and v2 ¼ 0.

To complete this proof remains to apply the Stone

Approximation Theorem, see [17], where the original

range R is restricted to [0, 1] and we excluded functions

F(x), where Fðx1Þ ¼ 1 and Fðx2Þ ¼ 0 for some x1; x2 2 X .

All the hypothesis of the Stone Theorem are satisfied. In

what follows, we provide the demonstration reproducing

the one that appeared in [17].

There exists a function gxyðzÞ 2 L, such that gxyðxÞ ¼
FðxÞ and gxyðyÞ ¼ FðyÞ. Let us fix �[ 0. F and gxy are

continuous, therefore, there exists an open neighborhood

U(y) of y, where gxyðzÞ[FðzÞ � � for all z 2 X \ UðyÞ.
Let us fix x and select a U(y) for each y 2 X . X is

compact and hence there exists a finite set of yis, such that

X 
 [n
i¼1UðyiÞ. From hxðzÞ ¼ supn

i¼1 gxyi
ðzÞ it follows that

hxðzÞ[FðzÞ � � and evidently hxðxÞ ¼ FðxÞ.
Besides, there exists an open neighborhood of x, V(x),

such that hxðzÞ\FðzÞ þ �. Again, we can select a finite set

of xjs where X 
 [m
j¼1VðxjÞ.

Define hðzÞ ¼ infm
j¼1 hjðzÞ. Evidently, h 2 L.

The two conditions hðzÞ[FðzÞ � � and hðzÞ\FðzÞ þ �

for all z 2 X yield jhðzÞ � FðzÞj\�.

It means that, every continuous membership function

MF(x) can be uniformly approximated by functions in L,

with the previous exceptions.

Now, suppose there exists a membership function

MF(x), such that for some x1; x2 2 X , MFðx1Þ ¼ 1 and

MFðx2Þ ¼ 0. This kind of function includes triangular and

trapezoidal membership functions.

Let us fix �[ 0 and define MFðxÞ such that

MFðxÞ ¼ MFðxÞ, for x 2 XnS, where S ¼
x 2 XjMFðSÞ ¼ 0f g in a way that MFðxÞ be continuous

and 0\ supS MFðxÞ\ �
2
. It is possible by a linear approx-

imation of MFðxÞ to MF(x) in every element of S; see

Fig. 2. There exists f ðxÞ 2 L, such that for every z 2 X ,

jMFðzÞ � f ðzÞj\ �
2
.

On the other hand, for every z 2 X ,

jMFðzÞ � MFðzÞj\ �
2
, therefore, for every z 2 X ,

jMFðzÞ � f ðzÞj � jMFðzÞ � MFðzÞj þ jMFðzÞ � f ðzÞj\�.

Hence, we can conclude that the theorem holds true even if

MF(x) equals to 1 and 0. h

See that the precedent proof is a variation of the so-

called Stone theorem [17]. Unlike [14, 12, 13], we do not

have to approximate using subintervals, neither do we use

other operators besides max, min or negation

NðxÞ ¼ 1 � x, to maintain the semantics of the results.

h

Remark 3 For application purposes, it is enough to con-

sider that X be compact (closed and bounded). It is very

unusual to model real-life variables x, such that x is near to

�1 or þ1. Besides, compact intervals could be defined

by two finite extrema as near as possible to �1 or þ1.
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Remark 4 For the sake of clarity, we will substitute

G X ; a; c; 1; 1
2

	 
� �
by G X ; a; c;mð Þ

¼ NGCLVTðx; a; c;m; 1Þjx 2 X ; a 2 ½aa; ba�;f
c 2 ½ac; bc�;m 2 ½0; 1�



in the theorem. The former is a

subset of the latter, and it is easy to see that the theorem

does not change its conclusions.

Remark 5 This theorem states the potential applicability

of the NGCLVs to approximate continuous membership

functions just using logical operators, like the strong

negation NðxÞ ¼ 1 � x (NOT), the biggest t-norm min

(AND), and the smallest t-conorm max (OR). Note that

they can approximate NGCLVs based on other t-norms.

This could yield a semantic approach to Fuzzy Inference

Systems (FIS) [18] or to interpretable Neural Networks

[19, 20]. These t-norms and t-conorms are associated with

compensatory operators; see [21], which enrich the appli-

cability of this approach.

Remark 6 Theorem 1 is valid for discontinuous MF(x),

with a finite number of jump discontinuities existing over a

compact set. Every jump discontinuity can be approxi-

mated linearly and then the theorem is applied.

We shall state the principle, so-called principle of rep-

resentation of linguistic variables, which is one of the

cornerstones of this study and asserts the following:

Let W be a linguistic variable over a continuous

variable set X . Every continuous fuzzy set in W can be

represented by a membership function in

NGCLVTðx; a; c;mÞ, where T is the product t-norm.

A simplified version of this principle is the following:

Given W a linguistic variable over a continuous

variable set X . At least the primary terms in W and its

linguistic modifiers can be represented by membership

functions in NGCLVTðx; a; c;mÞ, where T is the product

t-norm.

According to the Zadeh’s definition of linguistic vari-

able in [22], given the name of the linguistic variable, the

collection of its linguistic values and the universe of dis-

course, then for each linguistic value, we can determine a

compatibility function which belongs to

NGCLVTðx; a; c;mÞ, for certain a 2 R	, c 2 R and

m 2 ½0; 1�, T is the product t-norm.

An example of this principle can be seen in Fig. 1, in which

the linguistic variable ‘‘height’’ is represented by three para-

metrized membership functions, ‘‘tall’’ with the sigmoidal,

‘‘medium’’ with the function first increasing and later decreasing

and finally ‘‘short’’ represented by the NOT sigmoidal. Besides,

other linguistic values could be defined into the set

NGCLVTðx; a; c;mÞ, e.g., ‘‘very tall’’ and ‘‘very short’’.

Remark 7 Note that according to [10], it is enough to

consider a limited number of 7 � 2 entities to describe

concepts of well-defined semantics. On the other hand, also

other requirements in [10] are here fulfilled, like the

normality.

This flexibility differs from the parametrized family of

functions we can find in literature, [3] and [5], where every

function is different from each other, but in its shapes. This

is an advantage, because linguistic values can be modeled

and represented by fitting four parameters, it can be by

experimental data’s adjustment using a method of opti-

mization. Comparing with Drakopoulos’ work [12], where

a sigmoidal function is not sufficient to express a linguistic

variable, we use the GCLVs and the basic fuzzy operators

to approximate any continuous membership function.

Hence, compound predicates exhibit semantic meanings

originating from the simple ones. This is not possible when

considering a piece-wise approximation.

4 The Family of General Continuous Linguistic
Variables

This section aims to expose the parametric properties of the

GCLVs according to Dombi’s approach [2, 3].

Dombi’s approach utilizes four parameters to describe

the properties of the membership function, two for the

interval [a, b], k denotes the sharpness and m is the decision

level.

Different cases are always considered, for which the

parametrized functions have basically the same shape.

Fig. 2 Triangular sigmoidal function (solid line) and piece-wise

approximation (dashed line)
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GCLV is more general and introduces new parameters to

describe other characteristics of the family.

Here, the sharpness of the general continuous linguistic

variables is represented by a[ 0 . This is easily justified by

the differential equation dX
dt

¼ aXð1 � XÞ, where evidently

for sigmoidal membership functions, closer to 0 is a, lesser

is the sharpness and vice versa. On the other hand, the NOT

sigmoidal membership function is the solution for dX
dt

¼
�aXð1 � XÞ and satisfies the same property. Note that the

sign of a represents the tendency for non-decreasing or

non-increasing, while a ¼ 0 is a degenerated case, for

which these functions are constantly equal to 0.5.

Therefore, this is also true when the GCLV is not a

sigmoidal one. The degenerated case a ¼ 0 yields the

characteristic function. See Fig. 3, where three NGCLVs

representing the ‘‘height’’ are plotted, one from the quartet

ðb ¼ 130; c ¼ 170;m ¼ 0:5;m0 ¼ 1Þ (a ¼ 0:1149), other

from ðb ¼ 135; c ¼ 170;m ¼ 0:5;m0 ¼ 1Þ (a ¼ 0:1313)

and a third one from ðb ¼ 140; c ¼ 170;m ¼ 0:5;m0 ¼ 1Þ
(a ¼ 0:1532). Let us note that the sharpest is represented

there with a pointed line, which has a biggest a.

The decision level is not always easily calculated. m ¼ c
for the sigmoidal membership functions, i.e., these func-

tions map c onto 0.5.

Given a powered to m sigmoidal function,

m ¼ � 1

a
ln 2

1
m � 1

� �
þ c:

Proposition 3 Let a SGCLV, with m ¼ m0

2
. Every point

x 2 R has a symmetrical point with respect to c.

Proof Let us take x 2 R, the point �x ¼ cþ ðc� xÞ satis-

fies 1
1þe�aðx�cÞ ¼ 1

1þe�aðc�xÞ ¼ 1
1þeaðx�cÞ ¼ 1 � 1

1þe�aðx�cÞ and also,

1 � 1
1þe�aðx�cÞ ¼ 1 � 1

1þe�aðc�xÞ ¼ 1 � 1
1þeaðx�cÞ ¼ 1

1þe�aðx�cÞ.

Then, to complete the proof, remain to apply the commu-

tativity of t-norms and that the sigmoidal and the NOT

sigmoidal are powered to the same exponent m0

2
. h

Particularly, let consider when NGCLV is based on the

product t-norm and hence, we have to calculate the solution

of the equation
X

m0
2 ð1�XÞ

m0
2

M ¼ 1
2
. This is equivalent to calcu-

lating the solutions of the second degree equation X2 �

X þ M
2

� � 2
m0¼ 0 and those solutions are X ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 M

2ð Þ
2

m0

q

2

and X ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 M

2ð Þ
2

m0

q

2
, therefore

m ¼ 1

a
ln

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 M

2

� � 2
m0

q

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 M

2

� � 2
m0

q

0
B@

1
CAþ c; ð3Þ

and

m ¼ 1

a
ln

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 M

2

� � 2
m0

q

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 M

2

� � 2
m0

q

0
B@

1
CAþ c; ð4Þ

respectively.

The parameter m standing in the SGCLV represents the

shape of the function. We have pointed out that if m ¼ m0,

it is a sigmoidal function; if m ¼ 0 it is a NOT sigmoidal

and if m ¼ m0

2
, it is a symmetrical membership function. In

general, m 6¼ 0;m0 represent intermediate membership

functions.

Nearer is m to 0, 0\m\ m0

2
, more negative is its

skewness. On the other hand, nearer is m to m0,
m0

2
\m\m0 , more positive is its skewness.

When 0\m\ m0

2
, the sigmoidal function which is part

of the SGCLV becomes bigger than the other part, the NOT

sigmoidal and hence, the function is bigger to left than to

right with respect to c. Besides, m0

2
\m\m0 is the opposite.

See Fig. 4, where the product t-norm was used,

a ¼ 0:1149, c ¼ 170, m0 ¼ 1, from top to bottom m ¼ 0,

m ¼ 0:2, m ¼ 0:5, m ¼ 0:8 and m ¼ 1. Let us note the

sense of the deviation with respect to c.

SGCLVs incorporate many fuzzy concepts like hedges,

which define specific aggregation operators. Considering

the construction of the sigmoidal membership function

where it is assumed that the marginal increase of the belief

degree that ‘‘x is A’’ is proportional to the belief degree that

‘‘x is A’’ and the belief degree that ‘‘X is not A’’ [5], then,

the SGCLV in Definition 2 results from generalizing the

algebraic product by any t-norm and where the sigmoidal is

modified by hedges.

For example, in Definition 2 for C ¼ 1, if T is the pro-

duct t-norm, m0 ¼ 1 and m ¼ 1
2
, ‘‘X is A’’ and ‘‘X is not A’’

are aggregated with the geometric mean, a compensatory

one. Besides, for C ¼ 1, m0 ¼ 2 and m ¼ 1 it is aggregated

by the chosen t-norm T.
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Fig. 3 Three NGCLVs representing the ‘‘Height’’ in cm. a ¼ 0:1149

was used in the function with solid line, a ¼ 0:1313 for the dashed

line and a ¼ 0:1532 for the pointed line
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Other membership functions can be given for m ¼ m0,

e.g., m ¼ m0 ¼ 2, which means linguistically ‘‘very high’’.

If m ¼ 0 and m0 ¼ 2, it means ‘‘very low’’.

So far, the main advantages and properties of the

GCLVs have been stated, in the following we shall explore

the links of this family of membership functions with other

important approaches to model the uncertainty and

vagueness of the natural language.

5 Algorithms of Semantic Interpretation
with Linguistic Terms

This section is devoted to expose algorithms and reflexions

related to semantics expressed in form of linguistic terms,

which shall be further used. These concepts are closely

related to the interpretability, which constitute the initial

concept to analyze in this section.

Interpretability needs further discussion because it can-

not be carried out in a straightforward manner. Mencar

et al. studied this subject in [23]. The main challenge of

fuzzy models is that language of fuzziness should be

expressed preferably in natural language or other one

comprehensible to a group of human beings, namely:

experts, users and designers of fuzzy models. The com-

munication among these actors must be clear. Usually this

subject is limited to fuzzy systems.

The first attempt to associate linguistic values with the

aid of experts, was in [24]. This approach is valid, however

not always experts are able to explain consciously how

they evaluate and this task could be very difficult to

achieve successfully. This limitation of expert systems

becomes critical when the problem complexity increases.

Therefore, other kinds of methods include a combination of

expert knowledge with knowledge extracted from data, see

[25], or simply, only the extraction of knowledge from

data, see [26, 27]. Also, interpretable systems are fre-

quently less accurate, which is a drawback.

There exists a consensus that this problem is resolved

with a fuzzy partition, see [28]. The goal is to obtain an

interpretable fuzzy partition where some constraints must

be satisfied, some of them coming from commonsense and

others to satisfy the results of experiments in the frame-

work of the cognitive psychology. We have made reference

to the most important ones, like Distinguishability, Nor-

mality and Coverage.

The number of terms should not exceed the limit of

7 � 2 because this is the range for the number of entities

that one person could remember in its short-term memory,

[11]. Nevertheless, sometimes only three is an adequate

number of items, for instance, the test of Triglyceride is

described as ‘‘Normal’’, ‘‘High’’ or ‘‘Very High’’, but never

‘‘Small’’ or ‘‘Very Small’’.

On the other hand, the Natural Zero Positioning prin-

ciple will be more exact if ‘‘zero’’ is substituted by ‘‘neuter

value’’.

To validate the quality of the interpretable fuzzy parti-

tion, some criteria can be seen in [29]. See also [30], in

which indexes of interpretability are studied. Additionally,

according to [31], human beings reduce to only one ‘‘slice’’

the complicated shapes of fuzzy sets, when they combine

and process them. This empirical evidence has inspired the

definition of distances in [32, 33].

In the following, we propose one method, which is

context-dependent to the nature of problems exposed in the

next section. During the exposition, we will make reference

to some aspects of the previous and concise state of the art

of interpretability. Before explaining the method, it is

necessary to define some initial formulas and algorithms.

Let A and B be two fuzzy sets:

dinfðA;BÞ ¼ infðA0:5 \ DÞ � infðB0:5 \ DÞ; ð5Þ

dsupðA;BÞ ¼ supðA0:5 \ DÞ � supðB0:5 \ DÞ; ð6Þ

ginfðA;BÞ ¼ dinfðA;BÞj j; ð7Þ

gsupðA;BÞ ¼ dsupðA;BÞ
 ; ð8Þ

where A0:5 is the 0.5-cut of A, B0:5 is the 0.5-cut of B. The

restriction of these functions to domain D prevents us from

calculating with infinite 0.5-cuts, e.g., the 0.5-cuts of the

sigmoidal functions are ½c;þ1½. Thus, further in the

examples it is stated D ¼ �h
2
; 100 þ h

2

� �
, where h 2�0; 100½

and the domain is restricted to a finite interval.

We defined these functions to mimic the actual human

behavior, when they deal with fuzzy sets, according to

criteria in [31] that we explained above, they are simpler

than those defined in [32, 33].

120 130 140 150 160 170 180 190 200 210 220 230
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0.5
1
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0

0.5
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0.5
1

120 130 140 150 160 170 180 190 200 210 220 230
0

0.5
1

120 130 140 150 160 170 180 190 200 210 220 230
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0.5
1

Height (cm)

Fig. 4 Five NGCLVs representing the ‘‘Height’’ in cm with

a ¼ 0:1149. From top to bottom for m = 0, m = 0.2, m = 0.5, m =

0.8 and m = 1
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Given a fuzzy partition FPj ¼ lj
1; l

j
2; . . .; l

j
n

	 

and a

fuzzy set R corresponding to attribute j.

Let us define

i

¼ the smallest i; 1� i� njginfðR; l
j
iÞ is a minimum

n o
;

and

i

¼ the smallest i; 1� i� njgsupðR; l
j
iÞ is a minimum

n o
:

Additionally, let an index i such that

ginf R; lj
i

� �

¼ min ginf R; lj
i�1

� �
; ginf R; lj

iþ1

� �� �
;

i 6¼ 1. When i ¼ 1 and dinf R; l j
1

� �
[ 0, i ¼ 2, else, i ¼ 0.

Index i is such that

gsup R; lj

i

� �
¼ min gsup R; lj

i�1

� �
; gsup R; lj

iþ1

� �� �
;

i 6¼ n. If i ¼ n and dsup R; lj
n

� �
\0, i ¼ n � 1, else, i ¼ 0.

Let us note that because of both, A0:5 \ D and B0:5 \ D

are generally intervals then ginfðA;BÞ is the distance

between the lower limits of these two intervals and

gsupðA;BÞ is the distance between their upper limits. Thus,

given R a NGCLV and FPj a fuzzy partition of NGCLVs,

we have i is the index of the element in FPj satisfying it is

the nearest one to R according to ginfðR; liÞ, whereas, i is

the nearest one with respect to gsupðR; liÞ. On the other

hand, i determines the second nearer element to R in FPj .

Equivalently, i calculates the index corresponding to i. To

avoid any indefiniteness when indexes i or i are extreme

values like 1 or n, then we directly assign values to i and i

including 0 to meaning the index is outside of the scope of

the fuzzy partition.

Here we define two measures to be used in further

investigations, they are:

Dinf ¼
dinf R; lj

i

� �

ginf lj
i; l

j
i

� � if i 6¼ 0

0 otherwise;

8>>><
>>>:

ð9Þ

and

Dsup ¼
dsup R; lj

i

� �

gsup lj

i
; lj

i

� � if i 6¼ 0

0 otherwise:

8>>><
>>>:

ð10Þ

Dinf ;Dsup 2 ½�0:5; 0:5½. We were inspired by the concept of

symbolic translation introduced in the well-known 2-tuple

method; see [34].

Dn ¼ 1

nðn � 1Þ
X

k;l¼1;2;...;n;k 6¼l

dðlj
k; l

j
lÞ: ð11Þ

This is the sum of dissimilarities or distances between

every pair of fuzzy sets in FPj, where

dðlj
k; l

j
lÞ ¼

1

N

X
q¼1;2;...;N

lj
kðxj

qÞ � lj
lðxj

qÞ


: ð12Þ

N is the number of elements in the database. This is a

measure of dissimilarity as the opposite of the measure of

similarity based on the Łukasiewicz bi-implication

according to the approach in [35]. These distances are

basically the same of those used in [27].

Let lj
kðxÞ ¼ NGCLVðx; aj

k; c
j
k;mj

kÞ and lj
kþ1ðxÞ ¼

NGCLVðx; aj
kþ1; c

j
kþ1;mj

kþ1Þ be two consecutive fuzzy sets

in the current set of terms of the fuzzy partition. The

Algorithm of merging consists in the following.

Let us note that when we merge the fuzzy sets, Distin-

guishability, Normality, Coverage and hgt li \ li�1ð Þ ¼ 1
2

are still fulfilled. Let us observe that this equation means

that the height of the intersection of two successive fuzzy

sets is 1
2
; see [26]. One remarkable method can be found in

[36]. To merge fuzzy sets is an usual practice to obtain

interpretable fuzzy partitions.
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See that steps 1 and 2 are defined in [27] and we adapted

to NGCLV the other steps, where the former used trian-

gular membership functions. For step 2, let us recall that yj
k

and yj
kþ1 exist and the equations of yj

m, m ¼ k; k þ 1 cor-

respond to xmax in Proposition 2.

For step 3, let us note that the limits of both 0.5-cuts can

be calculated with the formula x1;2 ¼ c� 1
a arccoshð7Þ only

if m ¼ 0:5. When m 6¼ 0:5, these calculi must be carried

out numerically. We recommend for this case, to estimate

the two fixed points, X1 from equation X1 ¼

M
2
ð1 � X1Þm�1

� �1=m

and X2 from X2 ¼ 1 � M
2

X�m
2

� � 1
1�m,

where M is such expressed in Proposition 2.

The iterative process is designed as follows:

The values we want to estimate are

x1;2 ¼ c� 1
a ln

1�X1;2

X1;2

� �
.

On the other hand, in step 4 the interpolation is per-

formed with the help of any optimization algorithm (ge-

netic algorithm, hill climbing algorithm, among others), to

estimate a 2 ½a1; a2�, c 2 ½c1; c2�, and m 2 ½0; 1�, such that

distj ¼ F1ða; c;mÞ � 1ð Þ2þ F2ða; c;mÞ � 0:5ð Þ2þ
�

F3ða; c;mÞ � 0:5ð Þ2
�1=2

is a minimum.

Where F1ða; c;mÞ ¼ NGCLVðbyj
k; a; c;mÞ, F2ða; c;mÞ ¼

NGCLVðzj
1; a; c;mÞ, and F3ða;c;mÞ¼NGCLVðzj

2;a;c;mÞ.
To assign a linguistic phrase to the fuzzy set related to

one attribute, we designed the following algorithm:

Step 1 should be considered carefully. If experts use the

term ‘‘Normal’’ instead of ‘‘Medium’’ in the context of the

situation and also ‘‘Small’’ does not make sense, it is

preferable to select bn ¼ 3 and linguistic values {‘‘Normal’’,

‘‘High’’, ‘‘VeryHigh’’}, let us recall the example of the

Triglycerides.

If otherwise, experts use the term ‘‘Normal’’ instead of

‘‘Medium’’ and ‘‘Small’’ make sense, then we recommend

to fix bn ¼ 5 and the linguistic values {‘‘VerySmall’’,

‘‘Small’’, ‘‘Normal’’, ‘‘High’’, ‘‘VeryHigh’’}. An example

is the linguistic variable ‘‘Height’’, which in a medical

context of endocrine disorders, the term ‘‘Normal’’ makes

sense.
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However, in the census of the population’s height,

{‘‘VerySmall’’, ‘‘Small’’, ‘‘Middle’’, ‘‘High’’, ‘‘Ver-

yHigh’’} is more adequate.

The grammar developed in Step 2 is partially based on

that developed in [37].

In case the user wishes to include an attribute declared

as not interpretable in the precedent algorithm, we rec-

ommend to recalculate R with bigger alphas, however the

cost is the diminution of the accuracy. Also, the user should

consider if that fact means this attribute is irrelevant to the

semantic of the predicate.

We selected the basic scheme of the method described

in [27], called hierarchical fuzzy partitioning to create the

Algorithm to design linguistic terms. The new proposed

method is included in the first stage of the Algorithm of

translation a fuzzy set to a linguistic phrase described

above, considering that the original data are rescaled to [0,

100], and consists in the following steps:

This algorithm must be repeated for every attribute j.

Let us point out that in the step 1.1 we define

D ¼ �h
2
; 100 þ h

2

� �
, where h is the length of the 0.5-cut

intervals of every element in FPj. The intervals �h
2
; 0

� �
and

100; 100 þ h
2

� �
are outside of [0, 100], but to including

them in D guarantees these values are covered by half of

the two extreme fuzzy sets of FPj.

Therefore, in the initial partition we have D divided into

n sub-intervals, each sub-interval is subset of the 0.5-cut of

only one of the elements in FPj, which means that the

coverage is satisfied, i.e., every piece of data has a lin-

guistic representation. Additionally, let us recall that

lj
iðciðhÞÞ ¼ 1 because of the properties of the NGCLVs for

m ¼ 0:5, thus the normality is fulfilled. However, this

method ignores the ‘‘Natural Zero Positioning’’ require-

ment since it is a principle defined for fuzzy systems that

by their nature must contain a membership function that

evaluates the zero or ‘‘nearly zero’’ error, [10] , which is

not an objective of this tool. Finally, every membership

function represents a linguistic value with a semantic

‘‘approximately ciðhÞ’’, this semantic changes to the one

described in the Algorithm of translation a fuzzy set to a

linguistic phrase.

During each iteration of the Algorithm of merging, two

consecutive membership functions are merged into only

one, such that the new 0.5-cut is the union of the 0.5-cuts of

the merged functions; therefore, coverage is maintained.

The interpolation with the pair ðyj
k; 1Þ conserves the nor-

mality. The new membership function has the semantic

‘‘approximately yj
k’’, until the algorithm finishes, and then

the semantic in Algorithm of translation a fuzzy set to a

linguistic phrase is output.

In the original hierarchical fuzzy partitioning, the

algorithm starts with a clustering of data to ease the com-

putational cost. Here we propose other manner, but the

former is not excluded. We do not consider the proposed

algorithm as unique; on the contrary, we recommend to

analyze what is the more adequate one according to the

context.

6 Illustrative Examples

In this section, we offer an illustration of how the proposed

concepts can be applied to knowledge representation and

how useful can be the theory we developed.

Here, as a set of data of the first example, we use a well-

known problem to characterize the red wine quality by

physicochemical tests; see [38, 39]. A data mining problem

is resolved and our approach is consistent with this in

[40–42].
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The data mining in databases refers to the process of

discovering useful patterns from big volume of data

[40, 43]. In our approach, as in [40, 42], we aim to extract

high-level knowledge, expressed in natural language from

a low-level data.

Specially, we use a classification problem to illustrate

the usefulness of the proposed theory. A classification

problem consists in a set of examples ðx; yÞ 2 X � Y,

where X is the feature space and Y is the finite label space.

The objective is to develop a classifier to predict class

label.

In our example, we consider a space of eleven contin-

uous features of the red wine of the vinho verde from

Portugal, see [38] and URL http://www.ics.uci.edu/mlearn/

MLRepository.html. They are physicochemical tests and

we want to find the model which maps them into the set of

subjective quality labels. The objective is to estimate the

quality of future red wines, not by experts, but by mea-

suring physicochemical characteristics. Moreover, with our

model we are able to output the results in linguistic values,

which is the usual way that people express and understand

the knowledge.

Example 1 This example consists of a sample of 1,599

vinho verde red wines from Portugal. There exist 11

attributes representing physicochemical tests and the last

attribute represents the quality of the wine according to

experts criterion. These attributes are summarized as

follows:

1. Fixed acidity (g(tartaric acid)/dm3),

2. Volatile acidity (g(acetic acid)/dm3),

3. Citric acid (g/dm3),

4. Residual sugar (g/dm3),

5. Chlorides (g(sodium chloride)/dm3),

6. Free sulfur dioxide (mg/dm3),

7. Total sulfur dioxide (mg/dm3),

8. Density (g/cm3),

9. pH,

10. Sulphates (g(potassium sulphate)/dm3),

11. Alcohol (vol.%),

12. Quality in a scale of 0 (very bad) to 10 (excellent)

measured by the median of at least 3 experts

criterion.

We proceed with ‘linguistic mining’, i.e., we express the

linguistic value ‘high quality’ by means of the physico-

chemical properties given in the form of linguistic values,

and we shall proceed to adjust the data of the database.

Following the order above, the notations we will use for

the attributes are: F, V, C, R, Ch, Fs, T, D, P, S, A and Q.

Each datum xAt;i corresponding to the attribute At and

index i is normalized in the form

NxAt;i ¼ xAt;i�minAt;jðxAt;jÞ
maxAt;jðxAt;jÞ�minAt;jðxAt;jÞ � 100. In other words, the data

are rescaled to the interval [0, 100].

We resolve this problem by means of the optimization

problem of parameters on the following rule:

FðNx1Þ ^ VðNx2Þ ^ CðNx3Þ ^ RðNx4Þ ^ ChðNx5Þ^ð
FsðNx6Þ ^ TðNx7Þ ^ DðNx8Þ ^ PðNx9Þ ^ SðNx10Þ
^ AðNx11ÞÞ $ QðNx12Þ;

where we refer to the notation of the attribute followed by

parenthesis we mean there exists a linguistic variable rep-

resenting this attribute for this predicate.

We selected this rule because of its intuitive meaning,

i.e., we want to find when ‘high quality’ is equivalent to

these physicochemical properties. It is a more restrictive

version of an IF-THEN rule. However, other rules can be

used and tested, furthermore, a set of rules can be tested

and the one among them having the biggest truth value can

be selected; see [40, 42].

According to the principle of representation of linguistic

variables, these linguistic variables can be associated with

NGCLVs. Hence, this rule can be also represented as:

1̂1

i¼1

NGCLVðNxi; ai; ci;miÞ
 !

$ NGCLVðNx12; a12; c12;m12Þ;
ð15Þ

where NGCLVðNxi; ai; ci;miÞ for i ¼ 1; 2; . . .11 corre-

spond to the attributes of the physicochemical properties

and NGCLVðNx12; a12; c12;m12Þ corresponds to the qual-

ity. We used the Łukasiewicz bi-implication x $ y :¼
1 � x � yj j and ^ is the t-norm min. Moreover, we use the

notation NGCLV and not NGCLVT , because we under-

stand T is the product t-norm.

We are studying the linguistic value ‘high quality’,

therefore we fix c12 ¼ 40 (associated with quality 5 in the

original scale). Let us recall that this has the truth value of

0.5, whereas m12 ¼ 1 represents the term ‘high’.

Our task is to determine the values of as, cs and ms

standing in Eq. 15, where the objective function is the

arithmetic mean of this formula evaluated in every nor-

malized element of the data set.

The problem consists on maximizing this objective

function. Finally, to complete the definition of the problem,

we established the constraint of the values of parameters as

the following: ai 2 ½0:05; 3� i ¼ 1; 2; . . .12; ci 2 ½5; 95� i ¼
1; 2; . . .11 and mi 2 ½0; 1� i ¼ 1; 2; . . .11.

The restriction over a is heuristically justified to obtain

membership functions sufficiently fuzzified, whereas the

restriction over c assures that membership functions make

sense. This example aims to find linguistic values with

semantics for every one of the physicochemical attributes.
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We used the optimization package in Octave 4.2.1 to

calculate the optimum of the problem, specially the func-

tion sqp, which is a sequential quadratic programming

solver for nonlinear problems. The results are summarized

in Table 1.

The value of the objective function obtained here is

0.8908.

To check the efficacy of the method, we estimated the

value of the quality for every set of objects in the test set. If

the nth object in the test set has values Nx1, Nx2, Nx3, Nx4,

Nx5, Nx6, Nx7, Nx8, Nx9, Nx10 and Nx11, we apply the

following steps:

1. We evaluate these values in their corresponding

membership functions estimated in the training phase.

2. We estimate the real value q in [0, 100] which

maximizes the predicate of the equivalence in Eq. 15,

where q is evaluated in NGCLVðNx12; a12; 40; 1Þ.
3. The value of q is rescaled to its original scale using the

formula Q ¼ 3 þ q
20

, where Q is the value of the quality

in the interval [0, 10].

4. The estimated value is compared with the actual value

in the test set. We set an absolute error tolerance s; see

[39]. For example, if s ¼ 0:25, the estimated value is

3.1 and the actual value is 3, because

3:1 � 3j j ¼ 0:1� s ¼ 0:25, then 3.1 is classified as

quality 3.

To validate the results, Cortez et al. [39] applied the

method of fivefold cross-validation, see [39, 44]. This

method consists on 5 runs, where every element of the

data set is used in the test set in only one of the

iterations and is used in the training set for the

remaining. Therefore, every element in the data set is

used once in the test set and registered.

This experiment was repeated 20 times per fold, hence

they realized 100 experiments in total. They applied a

t Student‘s test for a confidence interval with 95% of

confidence level.

To test the efficacy of the proposed method, we used

the fivefold cross-validation repeated 20 times, as well.

We selected to apply the fivefold cross-validation

instead of the most common tenfold cross-validation,

because the former one was used in [39] and here we

aim to compare our approach to the methods used by

Cortez et al.

Besides, for comparison we included the Tsukamoto

Fuzzy Model [18]. The results are shown in the same

way as that in [39]. We restricted the values of a 2
½0:05; 0:1� to obtain higher precision of the classifica-

tion results.

The Tsukamoto Fuzzy Model is a Fuzzy Inference

System that we applied with just one IF-THEN rule.

Here, we included NGCLVs instead of particular

shaped membership functions.

In Table 2, we compare the results with other methods,

the Linguistic Mining (LM), with the Multiple Regres-

sion (MR), the Neural Network (NN) and the Support

Vector Machine (SVM), according to [39] and for the

Tsukamoto Fuzzy Model (TFM). Let us observe that

the results of the proposed method is summarized in

the last row, whereas both TFM and LM are based on

the NGCLV. The table reports the percent of true

positives depending on s after applying five methods of

classification using the fivefold cross-validation, where

the error is also provided according to the t Student‘s

test with 95% of confidence. To the best of our

knowledge, so far the more accurate solution of the red

wine problem appears in [39], where Cortez et al. use

the Support Vector Machine method as can be seen in

Table 2.

On the other hand, 0:89060 � 0:000744 is the expected

truth value for this problem.

Let us remark that for guaranteeing the accuracy of the

results, it is necessary to restrict the as to the interval

[0.05, 0.1], although the ms and cs do not need to be

Table 1 Parameters calculated for the 12 attributes of the red wine in

the training set

Attribute/parameters a c m

Fixed acidity 0.0500 27.6974 0.6136

Volatile acidity 0.0529 36.6582 0.2188

Citric acid 0.0511 10.5564 0.7571

Residual sugar 0.0892 89.1991 0.0818

Chlorides 0.0515 18.8155 0.6894

Free sulfur dioxide 0.0500 5.3044 0.8486

Total sulfur dioxide 0.1193 5.0000 0.7561

Density 0.0500 7.6488 0.8160

pH 0.2110 5.2944 0.9864

Sulphates 0.1302 9.7902 0.9467

Alcohol 0.0500 26.8961 0.9088

Quality 0.0500 40.0000 1.0000

Table 2 Linguistic mining method compared with MR, NN, SVM

and TFM

Method s ¼ 0:25 s ¼ 0:50 s ¼ 1:00

MR 31:2 � 0:2 59:1 � 0:1 88:6 � 0:1

NN 31:1 � 0:7 59:1 � 0:3 88:8 � 0:2

SVM 43:2 � 0:6 62:4 � 0:4 89:0 � 0:2

TFM 39:0 � 1:2 55:3 � 0:4 83:5 � 0:3

LM 39:2 � 5:2 55:0 � 1:7 83:4 � 0:9
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restricted so radically. That is to say, LM and TFM are

sensible to the parameters as. This is because for classifi-

cation it is necessary that two contiguous values of the

attributes have different truth values, and smaller a is in

GCLV more this property is fulfilled. We corroborated this

fact experimentally. Nevertheless, the user can perform a

rigorous sensitivity analysis of the methods we propose

here with respect to parameter a.

According to Table 2, our results are comparable to the

most classical ones.

The Tsukamoto Fuzzy Model gives an almost similar

results of LM, except for the expected error. Our main

motivation to include the Linguistic Mining is to illustrate

that the theory of GCLV can be extended to other predi-

cates beyond the classical IF-THEN rules proper of the

Fuzzy Inference Systems like TFM, in this case the pred-

icate 15.

The most important advantage over the other methods is

that the result can be expressed in natural language. Next,

we use methods defined in Sect. 5 for translating the

precedent results to natural language. Additionally, we

justify the steps of the method. Further we applied this

method to the example of the red wine.

Applying the precedent method to the example of the

red wine, the contribution of experts is mostly helpless

because the physicochemical attributes are objective

parameters.

Now, let us apply the method to the problem of red

wine. Firstly, we do not include four attributes with fuzzy

sets in Table 1, because their 0.5-cuts cover or almost cover

completely the domain [0, 100] percent. They are, ‘Citric

acid’ with ½�15:683; 110:582� as 0.5-cut, ‘Chlorides’ with

½�13:207; 99:930�, ‘Free sulfur dioxide’ with

½�13:172; 152:947� and ‘Density’ with ½�13:841; 134:695�.
See that for Support Vector Machine model in [39], ‘Citric

acid’, ‘Density’ and ‘Chlorides’ are the less important

attributes.

To calculate the 0.5-cuts, e.g., of the ‘Citric acid’ with

parameters a ¼ 0:0511, c ¼ 10:5564 and m ¼ 0:7571, first

we have M ¼ mmð1 � mÞ1�m ¼ 0:57442. Later we calcu-

late numerically the fixed points by iterating the equations

X1 ¼ M
2
ð1 � X1Þm�1

� �1=m

and X2 ¼ 1 � M
2

X�m
2

� � 1
1�m with

variables X1 and X2, respectively; see Eqs. 13 and 14.

Finally, we obtain the limits of the 0.5-cut interval by the

equations x1;2 ¼ c� 1
a ln

1�X1;2

X1;2

� �
.

A summary of the method applied to the problem is

given below, where the Algorithm to design linguistic

terms is used:

1 Design a priori one set of terms. Apply the Algorithm

to design linguistic terms.

1:1 We chose h ¼ 10 for every attribute.

1:2 We chose n̂ ¼ 5 for every attribute. The term

‘normal’ seems to be not adequate in this

context.

1:3 The initial partition for every attribute is,

FPj ¼ lj
1; l

j
2; . . .; l

j
11

	 

, j ¼ 1; 2; 4; 7; 9; 10; 11,

lj
i ¼ NGCLV x; 2

h arccoshð7Þ; ci; 0:5
� �

and

ci ¼ ði � 1Þ10.

1:4 If n[ 5 apply the Algorithm of merging when

necessary and other formulas and definitions. If

n ¼ 5 finish.

1:5 Update FPj, now with cardinality n-1.

1:6 Go to step 1.4.

2. Apply the step 2 of Algorithm of translation from

fuzzy set to linguistic phrase.

3. Calculate Dinf and Dsup.

For the sake of simplicity, we summarize the main results.

For instance, Fig. 8 describes graphically the process to

merge the attribute ‘Alcohol’. Each function resulting from

merging is represented in bold lines. Let us note that this

process conserves Distinguishability, Normality, Coverage

and hgt li \ li�1ð Þ ¼ 1
2
.

The Algorithm of merging applied in Fig. 8 is described

in what follows, with the aim of illustrating this process for

j = 11:

1 We selected h ¼ 10 and n̂ ¼ 5. Thus, D ¼ ½�5; 105�,
aið10Þ ¼ 2

10
arccoshð7Þ ¼ 0:52678, and

n ¼ 100
h

� �
þ 1 ¼ 11. Note the smaller h is, the bigger

the accuracy of the method is.

The initial partition consists of

FP11 ¼ l11
1 ; l11

2 ; . . .; l11
11

	 

, where

l11
i ðxÞ ¼ NGCLV x; 0:52678; ci; 0:5ð Þ; c1 ¼ 0, c2 ¼ 10,

. . ., c11 ¼ 100.

2. n[ 5, so the Algorithm of merging is applied. Then,

we calculate Di
n of Eqs. 11 and 12 corresponding to the

distance between all the elements of the fuzzy

partition, after one pair of consecutive members of

FP11 is merged. Finally, the pair that maximizes Di
n is

selected, and it is the pair l11
9 and l11

10 with

Dn ¼ 0:0048471.

For merging every pair, specifically l11
9 and l11

10, we

calculated the core of l11
9 and l11

10 with the formula

xmax ¼ 1
a ln m

1�m

� �
þ c in Prop 2. Then, y11

9 ¼
coreðl11

9 Þ ¼ 80 and y11
10 ¼ coreðl11

10Þ ¼ 90. Next, both

w11
9 ¼

P
q¼1;2;...;N l11

9 ðx11
q Þ and w11

10 ¼P
q¼1;2;...;N l11

10ðx11
q Þ are calculated, where x11

q are the

data corresponding to this variable in the database.

Then, we calculated by11
9 ¼ w11

9
y11

9
þw11

10
y11

10

w11
9
þw11

10

¼ 82:493.
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Later, we calculated the recurrent equations X1 ¼
g1ðX1Þ and X2 ¼ g2ðX2Þ by using Eqs. 13 and 14 for

l11
9 and l11

10. From l11
9 we selected the lower limit of

the 0.5-cut, which is z11
1 ¼ 75 and from l11

10 we selected

the upper limit that is z11
2 ¼ 95. Finally, we interpolate

the three ordered pairs (82.493, 1), (75, 0.5) and

(95, 0.5) through a NGCLV and the obtained param-

eters were �a ¼ 0:33285, �c ¼ 78:81824 and

�m ¼ 0:77262.

Now n = 10. The new function has index 9. The rest of

the steps are represented in Fig. 8.

The result of the LM for the attribute ‘Alcohol’ is

R11ðxÞ ¼ NGCLVðx; 0:0500; 26:8961; 0:9088Þ, as

shown in Table 1 and thus its 0.5-cut is the interval

IA ¼ ½14:334; 245:855�. Additionally, the 0.5-cuts of

the membership functions in the interpretable partition

are: I1 ¼ ½�5; 15�, I2 ¼ ½15; 25�, I3 ¼ ½25; 45�,
I4 ¼ ½45; 55�, and I5 ¼ ½55; 104:9995�. Comparing the

lower limit of IA with those of Ii, we have

�5\14:334\15 and for the upper limits

104:9995\245:855. Therefore, according to Eqs. 5

and 7, dinfðR11; l11
1 Þ ¼ 14:334 � ð�5Þ ¼ 19:334,

dinfðR11; l11
2 Þ ¼ 14:334 � 15 ¼ �0:666,

ginfðR11; l11
1 Þ ¼ 19:334, and ginfðR11; l11

2 Þ ¼ 0:666.

Comparing the lower limits, IA is nearer to I2 than I1

and i ¼ 2. Between Ii�1 ¼ I1 and Iiþ1 ¼ I3, IA is nearer

to I1, thus i ¼ 1, therefore we calculated

ginfðl11
1 ; l11

2 Þ ¼ absð�5 � 15Þ ¼ 20. Then, since

Eq. 9 D11
inf ¼ � 0:666

20
¼ �0:0333. Similarly, we calcu-

lated i ¼ 5, i ¼ 0 because of dsupðR11; l11
2 Þ ¼

245:855 � 104:9995 ¼ 140:86[ 0 and then D11
sup ¼ 0.

In Fig. 9, the results of Linguistic Mining are depicted in

solid lines over the linguistic system, they can be observed

in Figs. 5, 6 and 7 calculated from Table 1. Finally, in

Table 3 it is associated every attribute with Dinf and Dsup,

whereas in Table 4 linguistic phrases are associated with

attributes.

Let us remark that similarly to the 2-tuple method, the

obtained values in Table 3 consist in 2-tuples with one

linguistic value and one numeric symbolic translation

value, which are Dinf and Dsup. The absolute value of the

symbolic translations means the displacement with respect

to the fuzzy set is represented by the linguistic value,

whereas the sign means the direction, namely, to left, to

Fig. 5 Membership functions resulting from the solution of the

problem, corresponding, from top to bottom, to Fixed acidity, Volatile

acidity, Citric acid and Residual sugar

Fig. 6 Membership functions resulting from the solution of the

problem, corresponding, from top to bottom, to Chlorides, Free sulfur

dioxide, Total sulfur dioxide and Density

Fig. 7 Membership functions resulting from the solution of the

problem, corresponding, from top to bottom, to pH, Sulphates,

Alcohol and high Quality

Table 3 Labels per attribute. ‘VS’ is ‘Very Small’, ‘S’ is ‘Small’, ‘H’

is ‘High’, and ‘VH’ is ‘Very High’

Attribute (Labelinf , Dinf ) (Labelsup, Dsup)

Fixed acidity (VS, 0) (VH, - 0.17065)

Volatile acidity (VS, 0) (H, - 0.16827)

Residual sugar (VS, 0) (H, 0.068358)

Total sulfur dioxide (VS, 0) (S, 0.27041 )

pH (VS, 0.32060) (VH, 0)

Sulphates (S, 0.15837) (VH, 0)

Alcohol (S, - 0.033321) (VH, 0)
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right or non-displacement. Particularly, two 2-tuples are

introduced instead of only one, to represent the range of

possible interpretations of the variables: e.g., the obtained

result for the Alcohol is interpreted at least as ‘Small’ with

a displacement on the left equals to 0.033321; additionally,

it is at most ‘Very High’ with non-displacement.

Next the step 2 of the Algorithm of translation a fuzzy

set to a linguistic phrase is applied. Then, revisiting the

example of the Alcohol we have that i ¼ 2[ 1, which is

the corresponding index for ‘Small’ and i ¼ bn ¼ 5, which

is the corresponding index for ‘Very High’, thus according

to the algorithm the output is ‘at least small’.

As a consequence, we have the following linguistic rule:

If ‘Volatile acidity’ is ‘at most high’ and ‘Residual

sugar’ is ‘at most high’ and ‘Total sulfur dioxide’ is ‘at

most small’ and ‘Sulphates’ are ‘at least small’ and ‘Al-

cohol’ is ‘at least small’, then ‘Quality’ of wine is ‘High’.

Let us note that ‘Fixed acidity’ and ‘pH’ correspond to

the case (e) of the Algorithm of translation a fuzzy set to a

linguistic phrase. They ranged from ‘VS’ to ‘VH’, which

does not express any useful information about their con-

ditions, thus we used the symbol ‘–’ in Table 4 to mean that

the results are not interpretable.

It can be seen that because we used 0.5-cuts for calcu-

lation, the results are conservative. If we use the core of

fuzzy sets instead of 0.5-cuts in precedent methods, we

would obtain the better possible results per attribute, we

only have to adapt the proposed method to the core of

fuzzy sets.

Therefore, Eqs. 5 and 6 become in

dinfðA;BÞ ¼ dsupðA;BÞ ¼ A1 � B1, where A1 and B1 are the

unique values of the cores of A and B, respectively. They

are calculated with the formula of xmax in Proposition 2.

Then, Eqs. 9 and 10 convert into one single value. In the

Table 4 Linguistic interpretations per attribute

Attribute Interpretation

Fixed acidity –

Volatile acidity ‘At most high’

Residual sugar ‘At most high’

Total sulfur dioxide ‘At most small’

pH –

Sulphates ‘At least small’

Alcohol ‘At least small’

Fig. 8 Depiction of the interpretable fuzzy partition for the alcohol (on right and bottom) from an initial partition (on left and top). Functions in

bold lines are calculated from merging
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step 2 of the Algorithm of translation a fuzzy set to a

linguistic phrase, tj
inf ¼ tj

sup and the obtained linguistic

value is also unique. When A0:5 is substituted by A1 and

B0:5 by B1, we lose accuracy and improve on inter-

pretability because Rj is associated with only one element

of the interpretable system.

Therefore, as a consequence of Table 5, we can say that

‘Quality’ of wine is the ‘Highest’ when ‘Volatile acidity’ is

‘very small’ and ‘Residual sugar’ is ‘medium’ and ‘Total

sulfur dioxide’ is ‘very small’ and ‘Sulphates’ are ‘med-

ium’ and ‘Alcohol’ is ‘very high’. Let us note that now D is

redefined for the core of the fuzzy sets and it is unique,

because fuzzy sets are unimodal.

These results confirm the oenological theory, according

to [39] an increase in the alcohol, a decrease of volatile

acidity or a more or less high level of sulphates improve the

quality of the wine, like in our conclusions. However, our

approach is more informative, for example, the ideal values

of alcohol, volatile acidity and sulphates are given

approximately as we can see in the figures and as we

expressed in natural language.

Let us remark that we have only illustrated the potentials

of the precedent methods. They can be substituted or

adapted according to the requirements of the problem and

users.

Let us note that the statements expressed in natural

language are more useful and expressive for generalization

and understanding than the black box models such as

Support Vector Machines, Multiple Regression and Neural

Networks studied in [39].

Example 2 This example is dedicated to illustrating the

application of NGCLVs in the prediction of Gas Furnace

behavior in the time series corresponding to the variable X

Fig. 9 Labeled interpretable fuzzy partitions (dashed lines) of, from

top to bottom and from left to right, ‘Fixed acidity’, ‘Volatile acidity’,

‘Residual sugar’, ‘Total sulfur dioxide’, ‘pH’, ‘Sulphates’, ‘Alcohol’

and ‘High quality’. LM results are in solid lines. The thick lines

represent the range of functions of the fuzzy partition covered by the

LM result

Table 5 Best options to obtain the highest quality of wine per

attribute

Attribute (Label, D)

Volatile acidity (VS, 0.35008)

Residual sugar (M, 0.15524)

Total sulfur dioxide (VS, 0.41952)

Sulphates (M, 0.14829)

Alcohol (VH, 0)

‘VS’ is ‘Very Small’, ‘M’ is ‘Middle’, and ‘VH’ is ‘Very High’
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that measure the gas rate in cubic feet per minute, as it can

be seen in Box et al. see [45].

For the solution we designed a two-rule Fuzzy Inference

System, where we denote by G (t) the membership function

of the gas rate in cubic feet per minute for time t. The IF-

THEN rules are as follows:

Rule

1:

IF G(t-2) is A1 AND G(t-1) is A2 AND G(t) is A3

THEN G(t?1) is C1,

Rule

2:

IF G(t-2) is B1 AND G(t-1) is B2 AND G(t) is B3

THEN G(t?1) is C2,

where A1, A2, A3, B1, B2, and B3 are NGCLVs, which

depend on the triples of parameters aA1
; cA1

;mA1

� �
,

aA2
; cA2

;mA2

� �
, aA3

; cA3
;mA3

� �
, aB1

; cB1
;mB1

� �
,

aB2
; cB2

;mB2

� �
, and aB3

; cB3
;mB3

� �
. C1 depends on

aC1
; 0; 1ð Þ and C2 depends on aC2

; 0; 0ð Þ, to mean ‘‘HIGH

gas rate’’ and ‘‘LOW gas rate’’, respectively.

To find these NGCLVs, we applied the Tsukamoto FIS

method, and the parameters of the NGCLVs were calcu-

lated using the sqp function of Octave 4.2.1 restricting

a 2 ½0:05; 3�, c 2 ½�2:716; 2:834�, and m 2 ½0; 1�. We did

not pre-process the data to preserve the 0 as the neutral

value.

We selected the first 193 quartets as training set and the

remaining 97 as a test set, which were compared with the

real values. The mean absolute error (MAE) was used as

error. The results are summarized in Table 6.

Let us give a more detailed approach to explain the

Tsukamoto FIS method applied to this problem. Let Xk,

Xkþ1 and Xkþ2 be three successive measured values of the

gas rate, taking the parameters a, c and m, corresponding to

A1, A2, A3, C1, B1, B2, B3, and C2, according to Table 6.

We have to forecast the value of the gas rate Xkþ3. For this

end, a1 ¼ A1ðXkÞ, a2 ¼ A2ðXkþ1Þ, a3 ¼ A3ðXkþ2Þ,
b1 ¼ B1ðXkÞ, b2 ¼ B2ðXkþ1Þ, b3 ¼ B3ðXkþ2Þ are calculated.

The next step is to find a ¼ min a1; a2; a3f g and

b ¼ min b1; b2; b3f g. The predicted value of Xkþ3 is cal-

culated by the formula bXkþ3 ¼ aC�1
1

ðaÞþbC�1
2

ðbÞ
aþb

, where C�1
1 ð�Þ

and C�1
2 ð�Þ are the inverse functions of C1 and C2,

respectively. We calculated the parameters such that the

mean of distances between bXkþ3 and the actual Xkþ3 for

every value in the data set is a minimum. These parameters

are those obtained in Table 6.

Membership functions are plotted in Fig. 10, where the

membership functions corresponding to A1, A2, A3 on top

and B1, B2, and B3 on bottom are drawn to the left. The

membership functions of the conclusions C1 and C2 are on

the right. The MAE obtained from comparing the predicted

results with the real ones was 0.18268. Let us see Fig. 11,

where the time series predicted values are depicted with

dotted lines and the real values are depicted with solid

lines.

This result was compared with a traditional statistical

method that is the linear autoregression, in this case the

Adaptive Autoregression; see details in [46]. For this, the

aar function of Octave 4.2.1 was used of the tsa package,

with model order parameters [3, 0], and Mode [1, 2].

In addition, the nnet-0.1.13 package was used to model

Artificial Neural Networks in Octave 4.2.1. A hidden

neuron and an output neuron were used. For train-

ing,‘‘tansig’’ was used to represent the Tansig transfer

function of ith layer, ‘‘trainlm’’ for backpropagation net-

work training function. Table 7 shows MAEs of every

method. Let us observe that the estimation here proposed is

approximately equal to that of ANN.

This example serves to illustrate some advantages for

using NGCLVs, which are the following:

• Simplicity The design consisted of only two rules, each

of them contains only three premises. If a pre-trained

offline Adaptive Neuro-Fuzzy Inference System

(ANFIS) is applied, it is necessary to have more

membership functions for each premise and for each

rule, which means more parameters to estimate, and

thus more computational time to invest; see [18].

• Accuracy Comparing with non-interpretable methods,

such as ANN or AAR, errors are sufficiently compa-

rable with the most accurate of them.

• Interpretability The Algorithm of translation a fuzzy

set to a linguistic phrase guarantees that a linguistic

label can be associated with the obtained results.

Table 6 Parameters of the trained Tsukamoto FIS method

Attribute/parameters a c m

A1 0.050000 0.918379 0.255712

A2 0.146526 - 0.475558 0.762909

A3 0.209266 - 0.983681 0.815305

C1 0.166896 0 1

B1 0.058777 0.294116 0.619224

B2 0.247053 - 0.036347 0.501238

B3 0.227709 - 0.141662 0.436818

C2 0.367199 0 0
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• Versatility They can be used to solve classification

problems, as well as prediction. No other type of Data

Mining problem is ruled out. They can be used in FIS

with one or more rules.

7 Concluding Remarks

In this paper, we have presented the study of general

continuous linguistic variables. A number of main con-

clusions could be drawn:

We formulated the principle of representation of lin-

guistic variables, which asserts that every family of

NGCLV can be associated with a linguistic variable,

because it contains differently shaped membership func-

tions. That is to say, the main linguistic values in the lin-

guistic variable can be represented by a family of NGCLV

and to do this we have to fix m0 and vary the values of the

other three parameters. This flexibility is advantageous in

the context of problems of Data Mining.

Fig. 11 Predicted and actual values of gas rate per time. Actual

values are represented with solid lines, predicted values are repre-

sented with dashed lines

Table 7 MAE of two traditional methods, Adaptive Autoregression

and Neural Networks, and Tsukamoto Fuzzy Method based on

NGCLVs

Method MAE

AAR 0.74213

ANN 0.16510

TFM 0.18268

Fig. 10 Two-rule Fuzzy Inference System representing gas rate per time. The three-premise membership-functions are on the left, conclusions

membership-functions are on the right. The first rule is on top, the second rule is on bottom
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We demonstrated that every continuous membership

function can be approximated by members of the family or

formulas based on the operators of min, max and negation

to maintain the semantics. We worked with m0 ¼ 1, a[ 0,

c 2 R and m 2 ½0; 1� and the product t-norm. The proof was

based on a variant of the Stone theorem.

We illustrated the applicability of the proposed theory in

Data Mining and prediction. We showed the relationship of

NGCLV with the Dombi’s theory. In future works we will

study theoretical relationships between NGCLVs and type-

2 fuzzy sets, as well as an in-depth research of potential

areas of application of this theory.
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21. Espı́n-Andrade, R.A., González-Caballero, E., Pedrycz, W.,
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