
Adaptive Interval Type-2 Fuzzy Fixed-time Control
for Underwater Walking Robot with Error Constraints
and Actuator Faults Using Prescribed Performance Terminal
Sliding-mode Surfaces

Hongde Qin1 • He Yang1 • Yanchao Sun1 • Yuang Zhang1

Received: 2 March 2020 / Revised: 23 July 2020 / Accepted: 20 August 2020 / Published online: 14 October 2020

� Taiwan Fuzzy Systems Association 2020

Abstract Underwater walking robot (UWR) is a kind of

autonomous underwater vehicles which can walk under-

water. In this work, the fixed-time tracking control problem

of UWR with external disturbances, error constraints, and

actuator faults is investigated. An interval type-2 fuzzy

neural network approximator is designed to tackle nonlin-

ear uncertainties, and a novel prescribed performance ter-

minal sliding-mode surface is proposed to handle error

constraints. Furthermore, two fault-tolerant controllers are

given, where one is nonsingular and the other has higher

steady-state precision. According to Lyapunov theory, the

proposed controllers can guarantee that system states will

converge to the expected values in a fixed time. Simulation

results demonstrate the effectiveness of the proposed con-

trol strategies.

Keywords Underwater walking robot � Interval type-2
fuzzy logic system � Error constraint � Fixed-time control �
Fault-tolerant control

1 Introduction

Over the past decades, autonomous underwater vehicles

(AUVs) have been successfully applied in many fields,

such as offshore oil and gas development [1], marine sci-

entific research [2], and underwater structure inspection

[3]. Most of the existing AUVs are screw-propelled.

However, screw-propelled AUVs can hardly keep

themselves safe near the coast, seabed, and underwater

structures, where the terrains are rough [4]. Underwater

walking robot (UWR) is a kind of bionic AUVs which is

inspired by multi-legged animals [5]. By letting its each leg

track a desired trajectory, UWR can walk on rough terrains

underwater, which makes it have a broad prospect in many

ocean applications.

Tracking errors of UWR’s each leg should be con-

strained such that the legs will not collide with each other

in the unknown underwater environment. Therefore, solv-

ing the control problems with error constraints of AUV,

especially UWR has both theoretical and engineering val-

ues. Barrier Lyapunov function (BLF) is a common tech-

nique to deal with error constraints. There are many

relevant researches [6–9] based on log-type and tan-type

BLFs, and some other types are proposed in [10–12]. A

log-type BLF was used to handle the tracking problem of

AUV with constant error constraints in [13]. Fuzzy logic

system (FLS) is a common technique to model nonlinear

functions for underwater robot control [14]. The expert

judgement can be integrated into FLS [15]. Compared with

the neural network technique [16] [17], FLS has a smaller

amount of computation due to making full use of engineer

experience. In [18], a type-1 FLS was proposed to estimate

and compensate the nonlinear uncertainties of AUV, and a

controller based on the tan-type BLF was developed to

ensure output constraints not violated. However, compared

with type-2 FLS, type-1 FLS tackles the uncertainties less

efficiently due to crisp antecedents and consequents of the

rule base [19, 20]. Type-2 FLS has demonstrated out-

standing performance in dealing with uncertainties [21].

Compared with type-1 FLS, type-2 FLS has better fuzzy

dynamic adaptation in different applications [22]. There-

fore, type-2 FLS can estimate and compensate the non-

linear uncertainties of UWR’s leg more efficiently. Type-2
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FLS has superior performance in modeling and control

[23]. In [24], the footprint of uncertainty in interval type-2

fuzzy sets was studied by nonlinear control theory, and it

was theoretically explained that the controllers based on

interval type-2 FLS can achieve better control perfor-

mance. In [25], type-2 FLS was used to deduce center of

mass correction to compensate for the error caused by

model uncertainties and external disturbances, and an

optimized control algorithm was proposed for bipedal

robots. In [26], an interval type-2 fuzzy neural network

(IT2FNN) approximator was proposed to approximate

unknown nonlinear functions, and an adaptive backstep-

ping controller was designed for a flexible-joint manipu-

lator. Due to the high performance of interval type-2 FLS

to deal with uncertain and nonlinear dynamics, an interval

type-2 fuzzy logic controller was designed for the control

of human-like robots’ hydraulic actuator in [27]. In [28],

general forms of interval type-2 FLSs were discussed and a

type-2 FLS whose secondary grades can be nonconvex

type-1 fuzzy sets was proposed. There are many works on

type-2 fuzzy control for robots [29–33]. Prescribed per-

formance (PP) is another method which is different from

BLF. For handling error constraints, PP control

scheme transforms the constrained system into an equiva-

lent unconstrained system by introducing a performance

function [34, 35]. Ref. [36] proposed a tracking control

algorithm based on PP method for AUV with error con-

straints. A robust controller based on PP method and neural

network technique was proposed in [37], and it guaranteed

the tracking errors of AUV satisfied the prescribed con-

straints. In [38], PP control scheme was used to deal with

error constraints. Although the error constraint problem is

discussed, BLF and PP both have complex processes of

controller design and stability analysis. For UWR’s leg

control, we expect to develop a simpler control strategy.

In addition to error constraints, there are still several

challenges in practice. First, the control schemes for AUV

in [39–41] were asymptotic, which implied that system

states would not converge to the expected values until

settling time was infinite. Due to the infinite settling time,

the controller which only guarantees asymptotic conver-

gence will adversely affect the control performance of

UWR’s leg. To achieve finite-time convergence, finite-time

approaches have been developed in recent years [42]. Ref.

[43] proposed a robust finite-time attitude controller based

on the sliding-mode control (SMC) method. In [44], FLS

was used to compensate uncertainties, and a finite-time

control strategy based on nonsingular terminal sliding-

mode control (TSMC) method was proposed for AUV.

However, with the finite-time approach, the upper bound of

settling time is influenced by the initial values of system

states and cannot be determined in advance. Fixed-time

control strategies which guarantee the upper bound of

settling time to be independent of the initial conditions

were proposed in [45] and [46]. Ref. [47] developed a

fixed-time control scheme based on TSMC for nonlinear

systems. However, there are few researches about fixed-

time approaches for ocean robots [48]. Actuator fault is

another main challenge for the control of UWR’s leg in

practice. In [49], a backstepping controller was designed

for an underwater robot to track a desired spatial trajectory,

and an additional fault detection unit was proposed to deal

with actuator faults. Ref. [50] proposed a fault diagnosis

method based on the Gaussian particle filter to address the

actuator faults of AUV. However, it needed priori threshold

values to identify the faults. However, both the fault

detection and the fault diagnosis will increase the risk of

system instability since the fault compensation time is

delayed. In [51], type-2 FLS was used to approximate the

nonlinear uncertainties caused by actuator faults, and an

adaptive backstepping controller was proposed. In [52–54],

adaptive technique and SMC method were used to handle

the fault-tolerant control problem of AUV, and no addi-

tional observer was required to provide the feedback of

fault information. However, how to design a novel fault-

tolerant control scheme with fixed-time stability and error

constraints for UWR’s leg is still a difficulty.

This paper mainly investigates the fixed-time tracking

control of UWR’s leg with error constraints and actuator

faults. Meanwhile, environment disturbance and unmod-

eled dynamics are also taken into account. First, an interval

type-2 fuzzy neural network (IT2FNN) approximator is

designed to tackle nonlinear uncertainties. In the controller

design, we propose a nonsingular control strategy based on

prescribed performance terminal sliding-mode control

(PPTSMC) method. Furthermore, an integral PPTSMC

strategy is proposed to reduce steady-state errors. The main

contributions and originality of this study are stated as

follows:

1. A novel prescribed performance terminal sliding-mode

surface (PPTSMS) is designed to solve the error

constraint problem. Due to the PPTSMS, state vari-

ables never violate the constraints of performance

functions. What’s more, the settling time of the state

variables have a fixed bound once the surface has been

reached.

2. Two PPTSMC strategies are proposed. They are robust

and can guarantee fixed-time convergence, where one

is nonsingular and the other has higher steady-state

precision. Compared with the fixed-time approaches

combined with BLF method and PP method, the fixed-

time error constraint controller based on PPTSMC has

an easier design process.

3. For each control strategy, the nonlinear uncertainties

are approximated and compensated by an IT2FNN
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approximator, and the adaptive law is developed to

handle the approximation errors.

4. We consider the actuator faults in the tracking control

of UWR’s leg, and the additional observer which will

increase the computational burden of the system is not

required.

The rest of this research is organized as follows. Sec-

tion 2 presents the background and preliminaries. Two

controllers based on PPTSMC method are proposed in

Sect. 3. In Sect. 4, we take simulation studies to demon-

strate the effectiveness of the proposed methods. The

conclusion of this research is given in Sects. 5.

2 Background and Preliminaries

2.1 Basic Mathematical Notations

Notations used in this study are defined in Table 1

2.2 Dynamical Model

Since the UWR needs to work on the rough underwater

terrains, structural reliability and hydraulic property should

be considered in the design process of UWR. Therefore, an

UWR inspired by the crab is presented in Fig. 1. To walk

underwater, each leg of UWR is required to track its own

desired trajectory. One effective design of the UWR’s legs

is shown in Fig. 2. The dynamics of UWR’s leg with

p links can be described by Euler–Lagrange equation as

follow

M qð Þ€qþ C q; _qð Þ _qþ g qð Þ ¼ sþ x ð1Þ

where q; _q; €q 2 Rp denote the generalized coordinate,

velocity, and acceleration, respectively, M qð Þ 2 Rp�p

represents the symmetric positive definite inertia matrix,

C q; _qð Þ 2 Rp�p represents the Coriolis and centrifugal

matrix, g qð Þ 2 Rp represents the gravitational force, s 2
Rp is the control input, and x 2 Rp is the external dis-

turbance (including environment disturbance and unmod-

eled dynamics).

Property 1 The inverse of the matrix M qð Þ is bounded,

and there exists a positive constant km such that

M�1 qð Þ
�
�

�
�� km.

Assumption 1 The external disturbance x is bounded,

and there exists a positive constant kx such that xk k� kx.

Actuator fault is a common problem during the control

process of the UWR’s leg. The additional control input due

to the actuator faults is defined as Ds. Thus, the real control
input acting on the UWR’s leg is changed from s to sþ Ds.

sþ Ds ¼ q tð Þsþ sb tð Þ ð2Þ

where q tð Þ 2 Rp�p is a diagonal matrix consisting of

qi tð Þ 2 0; 1½ �, i ¼ 1; 2; . . .p as diagonal elements, which is

used to describe the actuator effectiveness, and sb tð Þ 2 Rp

represents the actuator bias faults.

Assumption 2 The additional control input Ds is boun-

ded, and there exists a positive constant kd such that

Dsk k� kd.

Rewriting the dynamics model (1), we have

€q ¼ M�1 qð Þ s� C q; _qð Þ _q� g qð Þð Þ þ d ð3Þ

where d ¼ M�1 qð Þ Dsþ xð Þ represents nonlinear uncer-

tainties. From Property 1, Assumptions 1, 2, we can obtain

that d is bounded.

Fig. 1 UWR model

Fig. 2 UWR’s leg model

Table 1 Notations and definitions

Notation Definition

xk k 1-norm of the vector x 2 Rn

0n n-dimensional column vector with all elements being 0

sgn �ð Þ
sign function, sgn �ð Þ ¼

1; �[ 0

0; � ¼ 0

�1; �\0

8

<

:

sigk �ð Þ sigk �ð Þ ¼ �j jksgn �ð Þ for k[ 0
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2.3 Definitions and Lemmas

Definition 1 [34] A smooth function q tð Þ : Rþ ! R is

called a performance function if

1. q tð Þ is positive and decreasing,

2. lim
t!1

q tð Þ ¼ q1, where q1 is a positive constant.

Lemma 1 [55] Consider the system _x ¼ f x tð Þð Þ , x 0ð Þ ¼
x0 2 Rn , f 0nð Þ ¼ 0, where f : U0 ! Rn is a continuous

function defined in an open neighborhood U0 of the origin.

Suppose that there exists a Lyapunov function V xð Þ : U0 !
Rþ such that _V xð Þ� � a0Vp0 xð Þ þ b0V

g0 xð Þð Þk0þ#0,

where _V xð Þ ¼ oV xð Þ
ot , a0; b0; p0; g0; k0; h0 2 Rþ, p0k0\1,

and g0k0 [ 1. Then the system is practically fixed-time

stable. The setting time T satisfies T � 1

a
k0
0
h
k0
0

1�p0k0ð Þ
þ

1
bk0hk0 g0k0�1ð Þ, and the convergence neighborhood

can be presented as lim
t!T

V xð Þ�min a
� 1

p0

0
#0

1�h
k0
0

� � 1
k0p0

;

(�
�
�
�
�

(

b
� 1

p0

0
#0

1�h
k0
0

� � 1
k0g0

)

:

)

, where 0\h0\1.

Remark 1 With proper parameters, Lemma 1 can guar-

antee the state variables to converge to an arbitrarily small

neighborhood of the origin.

Lemma 2 [56] For xi 2 R, i ¼ 1; 2; . . .; n, we have

Xn

i¼1

xij jk0 �

Pn

i¼1

xij j
� �k0

; 0\k0 � 1

n1�k0
Pn

i¼1

xij j
� �k0

; k0 [ 1

8

>>><

>>>:

2.4 Problem Formulation

Aiming at solving the tracking control problem of the

UWR’s leg, this research considers the dynamical model

(3) with external disturbances, error constraints, and actu-

ator faults, and designs control laws such that

1. Tracking errors are guaranteed to converge in a fixed time.

2. Tracking errors never violate the constraints of

performance functions.

3. The system remains stable whether the actuators fault or not.

3 Control Law Design

To solve the control problem as previously mentioned, we

propose two control algorithms and present our main

contributions in this section. First, an IT2FNN

approximator is proposed for the UWR’s leg with uncer-

tainties. Then a novel terminal sliding-mode surface is

proposed, which is inspired by the BLF technique and the

PP technique. Moreover, a novel nonsingular PPTSMC

strategy with global fixed-time stability is proposed. Fur-

thermore, a novel integral PPTSMC strategy is given to

reduce steady-state errors. The details are as follows.

3.1 IT2FNN Approximator

In the study, an IT2FNN is used to deal with the nonlinear

uncertainties d as a result of its good approximation

capabilities. We propose the IT2FNN approximator as

shown in Fig. 3, and we have

d ¼ WTuþ h ð4Þ

where WT ¼ w1;w2; . . .;wn½ � ¼ w0
1;w

0
2; . . .;w

0
p

� �T2
Rp�N is the ideal weight matrix, h 2 Rp is the approxi-

mation error, and u ¼ u1;u2; . . .;un½ �T2 RN is the acti-

vation function vector with

ui ¼
f
i
þ �fi

Rn
j¼1 f

j
þ �fj

� 	 ; i ¼ 1; 2; . . .;N ð5Þ

where f
i
and �fi denote the lower and upper bounds of the ith

rule’s firing strength for the input x1; x2; . . .; xm, respec-
tively, and there are

f
i
¼
Ym

k¼1

lXi
k
xkð Þ ð6Þ

�fi ¼
Ym

k¼1

l �Xi
k
xkð Þ ð7Þ

Fig. 3 IT2FNN system
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where lXi
k
xkð Þ and l �Xi

k
xkð Þ denote the lower and upper

membership functions (MF), respectively. Gaussian mem-

bership function is used in this study, as shown in Fig. 4.

Remark 2 The two most commonly used MFs for

IT2FNN are Gaussian function and trapezoidal function.

The Gaussian MF is always continuous. The trapezoidal

MF is easier to analyze than the Gaussian MF but requires

more parameters.

Assumption 3 Each link of the UWR’s leg has similar

dynamic characteristics. Thus the similar IF–THEN rules

which have the same antecedents but different consequents

can be used for each link.

The ith rule (i ¼ 1; 2; . . .;N) in the IT2FNN approxi-

mator is defined as

Ri : if x1 is ~Xi
1 and x2 is ~Xi

2 and. . . and xm is ~Xi
m; then yi

¼ wi

ð8Þ

where x1; x2; . . .; xm½ � ¼ qT; _qT½ �, ~Xi
k, k ¼ 1; 2; . . .;m denote

the interval type-2 fuzzy sets, and wi is the coefficient

vector of output yi.

Remark 3 (8) is a simplification of Takagi–Sugeno-Kang

rule, which combines with Assumption 3. The choices of

rules’ antecedents relay on practical experience and the

values of rules’ consequents wi will be given by the

adaptive technique later.

Assumption 4 The approximation error h is bounded, and
there exists a positive constant K such that hk k�K.

Remark 4 Type-2 FLS tackles the uncertainties more

efficiently than type-1 FLS due to regarding fuzzy sets as

fuzzy membership. Interval type-2 FLS and general type-2

FLS are two major kinds of type-2 FLS. Interval type-2

FLS has a simpler structure due to its fuzzy membership,

which means it has the less computational burden.

3.2 Design of Nonsingular PPTSMC Strategy

We first define the following tracking error

e ¼ q� qd ð9Þ

where e ¼ e1; e2; . . .; ep
� �T

, and qd 2 Rp denotes the

desired trajectory.

To prevent constraint violation, we propose a novel

PPTSMS for the ith link (i ¼ 1; 2; . . .; p) of the UWR’s leg

as follows

si ¼ � k1r eið Þ
ln ei=ai tð Þj j þ k2 _ei ð10Þ

where k1; k2 [ 0, ai tð Þ is a performance function, and r is a

smooth function defined as

r xð Þ ¼ eax � 1

eax þ 1
; a[ 0 ð11Þ

Assumption 5 The initial values of tracking errors do not

violate the constraints of performance functions, that is

ei 0ð Þj j\ai 0ð Þ.

Lemma 3 Tracking errors never violate the constraints of

performance functions due to the PPTSMS (10). Once state

variables reach the surface si ¼ 0, tracking errors are

guaranteed to converge in a fixed time Tsi. The settling time

Tsi is independent of the initial conditions and satisfies.

Tsi\
k2ai 0ð Þ
k1r nið Þ ð12Þ

where ni 2 0; ai 0ð Þð Þ is a positive constant, which relies on

a.

Proof Choose the Lyapunov function as follow

Vi ¼
1

2
s2i ð13Þ

From (10, 13), and Assumption 5, the initial value of the

Lyapunov function Vi 0ð Þ is a positive constant. According

to Lyapunov’s stability theory, we have Vi tð Þ�Vi 0ð Þ.
While Vi ! þ1 when ei ! �ai tð Þ, which is contradic-

tory. Thus, tracking errors never violate the constraints of

performance functions, that is, ei tð Þj j\ai tð Þ.
Differentiating (10), we can obtain that

_si ¼ wi þ k2 €ei ð14Þ

where wi ¼ �k1
ln ei=ai tð Þj j exp aeið Þþ1ð Þ

2a exp aeið Þ _ei
exp aeið Þþ1

� _eiai tð Þ�eia
0
i tð Þ

ln ei=ai tð Þj jai tð Þ

�

exp aeið Þ�1

eij j

	

. It can be found that (10) is nonsingular due to

ln ei
ai tð Þ

�
�
�

�
�
� 6¼ 0 and lim

ei!0

exp aeið Þ�1

ei
¼ a.

When state variables arrive at the sliding surface si ¼ 0,

from (10), we have

ck
i xk

0

1

Fig. 4 Gaussian membership function
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dei
dt

¼ k1r eið Þ
k2 ln ei=ai tð Þj j ð15Þ

and the solution of (15) Tsi satisfies

Tsi ¼
Z0

ei 0ð Þ

k2 ln ei=ai tð Þj j
k1r eið Þ dei\

Z0

ai 0ð Þ

k2 ln ei=ai 0ð Þj j
k1r eið Þ dei

¼ k2
k1r nið Þ

Z0

ai 0ð Þ

ln ei=ai 0ð Þj jdei ¼
k2ai 0ð Þ
k1r nið Þ

ð16Þ

From (16), Tsi is independent of the initial conditions.

Above all, the proof of Lemma 3 is completed.

Remark 5 r xð Þ can be considered as a smooth sign

function. What’s more, the higher the value of a is, the

fewer the differences between r xð Þ and sgn xð Þ there are.

When the value of a is high enough, we can practically

regard r xð Þ as sgn xð Þ, and then we have r nið Þ ¼ 1 and

Tsi ¼ k2ai 0ð Þ=k1.
We propose a nonsingular PPTSMC strategy based on

(10) as follows

s ¼ sn þ sd ð17Þ

sn ¼ C q; _qð Þ _qþ g qð Þ

þM qð Þ €qd �
1

k2
wþ jsigl sð Þ þ ksigm sð Þð Þ

� �

ð18Þ

sd ¼ �M qð Þ Ŵ
T
uþ K̂sgn sð Þ

� 	

ð19Þ

where j; k[ 0; 0\l\1; m[ 1, w ¼ w1;w2; . . .;wp

� �T
,

s ¼ s1; s2; . . .; sp
� �T

, Ŵ and K̂ denote the estimation values

of W and K, respectively, and adaptive laws are design as

follows

_̂
W ¼ c1 usT � d1Ŵ


 �

ð20Þ
_̂K ¼ c2 sk k � d2K̂


 �

ð21Þ

where c1; c2; d1; d2 [ 0.

The nonsingular PPTSMC strategy is shown in Fig. 5.

Theorem 1 For the UWR’s leg (3) with external distur-

bances, error constraints, and actuator faults, if Assump-

tions 1, 23, 45 hold, the nonsingular PPTSMC strategy

designed as (17, 18, 19, 20, 21) guarantees that the

tracking error e will converge to a neighborhood of the

origin in fixed-time. Meanwhile, the constraints on position

tracking errors ai tð Þ, i ¼ 1; 2; . . .; p are never violated.

Proof

Step 1: Consider the following Lyapunov function

V1 ¼
1

2
sTsþ k2

2c1
tr ~W

T ~W
� 	

þ k2
2c2

~K2 ð22Þ

where ~W ¼ W� Ŵ, ~K ¼ K� K̂.
Taking the derivative of (22), we have

_V1¼�jsTsigl sð Þ�ksTsigm sð Þþk2 sT ~W
T
u�tr ~W

T
usT

� 	� 	

þ k2d1tr ~W
T
Ŵ

� 	

þk2d2 ~KK̂þk2 sTh�K sk k

 �

��jsTsigl sð Þ�ksTsigm sð Þþk2 sT ~W
T
u�tr ~W

T
usT

� 	� 	

þ k2d1tr ~W
T
Ŵ

� 	

þk2d2 ~KK̂

ð23Þ

where sT ~W
T
u is a scalar, then we can obtain

sT ~W
T
u ¼ tr sT ~W

T
u

� 	

¼ tr ~W
T
usT

� 	

ð24Þ

Notice that these inequalities hold

Fig. 5 Nonsingular PPTSMC strategy
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tr ~W
T
Ŵ

� 	

¼ tr ~W
T
W

� 	

� tr ~W
T ~W

� 	

� 1

2
tr WTW

 �

� 1

2
tr ~W

T ~W
� 	

ð25Þ

~KK̂ ¼ ~KK � ~K2 � 1

2
K2 � 1

2
~K2 ð26Þ

For x� 0, the following inequality holds

�x
mþ1
2 � � xþ 2

mþ 1

� � 2
m�1

� 2

mþ 1

� �mþ1
m�1

ð27Þ

Substituting (24, 25, 26) into (23) and combining with

(27), we have

_V1 ��jsTsigl sð Þ � ksTsigm sð Þ � k2d1
2

tr ~W
T ~W

� 	

� k2d2
2

~K2

þ k2d1
2

tr WTW

 �

þ k2d2
2

K2

��ksTsigm sð Þ � k2d1
2

tr ~W
T ~W

� 	

� k2d2
2

~K2

þ k2d1
2

tr WTW

 �

þ k2d2
2

K2

��ksTs� k2d1
2

tr ~W
T ~W

� 	

� k2d2
2

~K2 þ #1

��r1V1 þ #1

ð28Þ

where r1 ¼ min 2k; d1c1; d2c2f g, and

#1 ¼ pk 2
mþ1

� 	 2
m�1� 2

mþ1

� 	mþ1
m�1

� �

þ k2d1
2
tr WTW

 �

þ k2d2
2
K2.

Thus s; ~W; ~K are uniformly ultimately bounded, and there

are positive constants D1 and D2 such that tr ~W
T ~W

� 	

�D1

and ~K2 �D2.

Step 2: For x� 0, the following inequality holds

x
lþ1
2 � x� lþ 1

2

� �lþ1
1�l

� lþ 1

2

� � 2
1�l

ð29Þ

Combining with (24, 25, 26, 29), and Lemma 2, (23) can

be rewritten as

_V1��jsTsigl sð Þ�ksTsigm sð Þ�k2d1
2

tr ~W
T ~W

� 	

�k2d2
2

~K2þk2d1
2

tr WTW

 �

þk2d2
2

K2

��2
lþ1
2 j

1

2
sTs

� �lþ1
2

� d1c1ð Þ
lþ1
2

k2
2c1

tr ~W
T ~W

� 	� �lþ1
2

� d2c2ð Þ
lþ1
2

k2
2c2

~K2

� �lþ1
2

�2
mþ1
2 kp

1�m
2

1

2
sTs

� �mþ1
2

� k2
2c1

tr ~W
T ~W

� 	� �mþ1
2

� k2
2c2

~K2

� �mþ1
2

þ#2

��r2V
lþ1
2

1 �r3V
mþ1
2

1 þ#2

ð30Þ

where r2 ¼ min 2
lþ1
2 j; d1c1ð Þ

lþ1
2 ; d2c2ð Þ

lþ1
2

n o

,

r3 ¼ 3
1�m
2 min 2

mþ1
2 kp

1�m
2 ; 1

n o

, and #2 ¼ k2d1
2
tr WTW

 �

þ

k2d2
2
K2 þ 2 lþ1

2


 �lþ1

1� l� 2 lþ1
2


 � 2
1�lþ k2D1

2c1

� 	mþ1
2 þ k2D2

2c2

� 	mþ1
2

.

According to Lemma 1, the state variables q and _q of the

UWR’s leg will converge to the sliding surface s ¼ 0p in

the fixed time Tv1, and Tv1 satisfies

Tv1 �
2

r2h1 1� lð Þ þ
2

r3h1 m� 1ð Þ ð31Þ

where 0\h1\1. From (31) and Lemma 3, the global

settling time T1 satisfies

T1\
2

r2h1 1� lð Þ þ
2

r3h1 m� 1ð Þ þmax
k2ai 0ð Þ
k1r anið Þ

� �

; i

¼ 1; 2; . . .; p

ð32Þ

Therefore, the tracking errors e of the UWR’s leg will

converge to a neighborhood of the origin in the fixed time,

and the proof of Theorem 1 is completed.

3.3 Design of Integral PPTSMC Strategy

To reduce steady-state errors, we rewrite (10) as follow

sIi ¼
Z

� k1r aeið Þ
ln ei=ai tð Þj j þ k2 _ei

� �

ð33Þ

Comparing (33) with (10), we can obtain the following

lemma according to Lemma 3.

Lemma 4 Tracking errors e never violate the constraints

of performance functions due to the PPTSMS (33). Once

state variables reach the surface sIi ¼ 0, tracking errors

are guaranteed to converge in a fixed time TsIi. The settling

time TsIi is independent of the initial conditions, and

satisfies

TsIi\
k2ai 0ð Þ
k1r nið Þ ð34Þ

We propose an integral PPTSMC strategy based on (33)

as follows

s ¼ sn þ sd ð35Þ
sn¼C q; _qð Þ _qþg qð Þ

þM qð Þ €qdþ
1

k2
_f�sI�w�j2sig

l s�fð Þ�k2sig
m s�fð Þ

� 	� � ð36Þ

sd ¼ �M qð Þ Ŵ
T
uþ K̂sgn s� fð Þ

� 	

ð37Þ

where sI ¼ sI1; sI2; . . .; sIp
� �T

, f ¼ �j1sigl sIð Þ � k1sigm sIð Þ
is a virtual control variable, and adaptive laws are design as

follows

_̂W ¼ c1 u s� fð ÞT�d1Ŵ
� 	

ð38Þ

_̂K ¼ c2 s� fk k � d2K̂

 �

ð39Þ
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where c1; c2; d1; d2 [ 0.

The integral PPTSMC strategy is shown in Fig. 6.

Theorem 2 For the UWR’s leg which is described by (3),

the external disturbances, error constraints, and actuator

faults are considered. If Assumptions 1, 23, 45 hold, the

integral PPTSMC strategy designed as (35, 36, 37, 38, 39)

guarantees the global fixed-time stability. Meanwhile, the

constraints ai tð Þ, i ¼ 1; 2; . . .; p on position tracking error e

are never violated.

Proof

Step 1: Consider the following Lyapunov function

V2 ¼
1

2
sTI sI þ

1

2
s� fð ÞT s� fð Þ þ k2

2c1
tr ~W

T ~W
� 	

þ k2
2c2

~K2

ð40Þ

Taking the derivative of (40) from (24, 25, 26, 27), we

have

_V2 ¼ �j1s
T
I sig

l sIð Þ � k1s
T
I sig

m sIð Þ � j2 s� fð ÞTsigl s� fð Þ

�k2 s� fð ÞTsigm s� fð Þ þ k2d1tr ~W
T
Ŵ

� 	

þ k2d2 ~KK̂

þk2 s� fð ÞTh� K s� fk k
� 	

��k1s
T
I sig

m sIð Þ � k2 s� fð ÞTsigm s� fð Þ

� k2d1
2

tr ~W
T ~W

� 	

� k2d2
2

~K2

þ k2d1
2

tr WTW

 �

þ k2d2
2

K2

��k1s
T
I sI � k2 s� fð ÞT s� fð Þ � k2d1

2
tr ~W

T ~W
� 	

� k2d2
2

~K2 þ #3

��r4V2 þ #3

ð41Þ

where r4 ¼ min 2k1; 2k2; d1c1; d2c2f g, and #3 ¼

p k1 þ k2ð Þ 2
mþ1

� 	 2
m�1� 2

mþ1

� 	mþ1
m�1

� �

þ k2d1
2

tr WTW

 �

þ k2d2
2
K2.

Thus, sI ; s; ~W; ~K are uniformly ultimately bounded, and

there are positive constants D3 and D4 such that

tr ~W
T ~W

� 	

�D3 and ~K2 �D4.

Step 2: Combining with (24, 25, 26, 29), and Lemma 2,

(41) can be rewritten as

_V2��2
lþ1
2 j1

1

2
sTI sI

� �lþ1
2

�2
lþ1
2 j2

1

2
s�fð ÞT s�fð Þ

� �lþ1
2

� d1c1ð Þ
lþ1
2

k2
2c1

tr ~W
T ~W

� 	� �lþ1
2

� d2c2ð Þ
lþ1
2

k2
2c2

~K2

� �lþ1
2

�2
mþ1
2 k1p

1�m
2

1

2
sTI sI

� �mþ1
2

�2
mþ1
2 k2p

1�m
2

1

2
s�fð ÞT s�fð Þ

� �mþ1
2

� k2
2c1

tr ~W
T ~W

� 	� �mþ1
2

� k2
2c2

~K2

� �mþ1
2

þ#4

��r5V
lþ1
2

2 �r6V
mþ1
2

2 þ#4

ð42Þ

Where r5 ¼ min 2
lþ1
2 j1; 2

lþ1
2 j2; d1c1ð Þ

lþ1
2 ; d2c2ð Þ

lþ1
2

n o

;

r6 ¼ 4
1�m
2 min 2

mþ1
2 k1p

1�m
2 ;

n

2
mþ1
2 k2p

1�m
2 ; 1g,#4 ¼ k2d1

2
tr WTW

 �

þ k2d2
2
K2 þ 2 lþ1

2


 �lþ1
1�l� 2 lþ1

2


 � 2
1�lþ k2D3

2c1

� 	mþ1
2 þ k2D4

2c2

� 	mþ1
2

.

According to Lemma 1, the state variables q and _q of the

UWR’s leg will converge to sliding surface sI ¼ 0p in the

fixed time Tv2, and Tv2 satisfies

Tv2 �
2

r5h2 1� lð Þ þ
2

r6h2 m� 1ð Þ ð43Þ

where 0\h2\1. From (43) and Lemma 4, the global

settling time T1 satisfies

Fig. 6 Integral PPTSMC strategy
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T2\
2

r5h2 1� lð Þ þ
2

r6h2 m� 1ð Þþmax
k2ai 0ð Þ
k1r anið Þ

� �

; i

¼ 1; 2; . . .; p

ð44Þ

Thus the tracking error e of UWR’s leg will converge to

zero in a fixed time, which implies the proof of Theorem 2

is completed.

4 Numerical Simulations

To illustrate the effectiveness of the two proposed control

strategies, simulation results for a two links UWR’s leg are

presented in this section. The dynamics of the two links

UWR’s leg can be described by (3), and the details are as

follows q ¼ q1; q2½ �T,

M qð Þ ¼ h1 þ h2 þ 2h3 cos q2 h2 þ h3 cos q2
h2 þ h3 cos q2 h2

� 


,

C q; _qð Þ ¼ �h3 sin q2ð Þ _q2 �h3 sin q2ð Þ _q1 þ _q2ð Þ
h3 sin q2ð Þ _q1 0

� 


,

G qð Þ ¼ h4g cos q1 þ h5g cos q1 þ q2ð Þ
h5g cos q1 þ q2ð Þ

� 


,

q tð Þ ¼ diag q1 tð Þ; q2 tð Þð Þ, sb tð Þ ¼ sb1 tð Þ; sb2 tð Þ½ �T,
x ¼ 5% � M qð Þ€qþ C q; _qð Þ _qþ g qð Þ½ �

where h1 ¼ J1 þ m2l
2
1, h2 ¼ 0:25m2l

2
2 þ J2,

h3 ¼ 0:5m2l1l2, h4 ¼ 0:5m1 þ m2ð Þl1, h5 ¼ 0:5m2l2 , g ¼
9:8 m s�2 is the gravitational acceleration, J1 ¼
0:21 kg m2 , J2 ¼ 0:42 kg �m2, m1 ¼ 1:02 kg,

m2 ¼ 1:12 kg, l1 ¼ l2 ¼ 1 m denote the moments of

inertia, masses, and lengths of each link, respectively.

4.1 Simulation Results For Nonsingular PPTSMC

Strategy

We consider the following case. For each link of UWR’s

leg, the initial values of state variables are given as

q1 0ð Þ ¼ 4
5
p rad, q2 0ð Þ ¼ � 2

3
p rad,

_q1 0ð Þ ¼ _q2 0ð Þ ¼ 0 rad s�1, and the desired trajectories are

set as q1 tð Þ ¼ p
20
sin ptð Þ þ p

10
rad, q2 tð Þ ¼ p

15
sin ptð Þ rad.

We assume that actuators will have fault once t¼10 s, and

the details of faults are as follows

q1 tð Þ ¼ q2 tð Þ ¼ 1 t\10 s

0:6 t� 10 s

�

; sb1 tð Þ

¼ 0 t\10 s

15N t� 10 s

�

; sb2 tð Þ ¼ 0 t\10 s

5N t� 10 s

�

For IT2FNN approximator, we choose Gaussian mem-

bership functions and the following rules

X̂i
k ¼

lXi
k
xkð Þ ¼ exp �

xk � cik

 �2

2ri1k

 !

l �Xi
k
xkð Þ ¼ exp �

xk � cik

 �2

2ri2k

 !

8

>>>><

>>>>:

ð45Þ

where i ¼ 1; 2; 3; 4, k ¼ 1; 2; 3; 4, ri1k ¼ 1, ri2k ¼ 2,

c11 ¼ c12 ¼ c13 ¼ c14 ¼ c21 ¼ c22 ¼ c33 ¼ c34 ¼ 4, and

c23 ¼ c24 ¼ c31 ¼ c32 ¼ c41 ¼ c42 ¼ c43 ¼ c44 ¼ �4. The initial

value of Ŵ is 04�2, and the initial value of K̂ is 0. The

following performance function is chosen

a1 tð Þ ¼ a2 tð Þ ¼ b1 exp �b2tð Þ þ b3 ð46Þ

where b1 ¼ 3, b2 ¼ 1, and b3 ¼ 0:01.
The parameters of the controller proposed in Sect. 3.2

are selected as a ¼ 100, k1 ¼ 1, k2 ¼ 1, l ¼ 0:6, m ¼ 1:4,

j ¼ 30, k ¼ 5, c1 ¼ 0:5, c2 ¼ 0:5, d1 ¼ 0:5, and d2 ¼ 0:5.

The simulation results are shown in Figs. 7, 8, 9, where

Figs. 7, 8 denote the tracking errors for the links 1 and link

2 of UWR’s leg, respectively, and Fig. 9 denotes the inputs

of two joints of UWR’s leg.

From Figs. 7, 8, we can find that e1 and e2 can converge

to a small neighborhood of zero in about two seconds in the

control of nonsingular PPTSMC strategy. For the two links

of UWR’s leg, the initial values of their generalized

coordinates are different, so are their desired trajectories.
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But the tracking errors can converge to zero within the

same time due to the fixed-time stability. Meanwhile,

overshoot is small, which indicates the error constraints are

guaranteed in the initial stage of control. When the actua-

tors have faults at t¼10 s, e1 and e2 increase but remain

bounded. It indicates that those constraints can prescribe

the tracking control performances of UWR’s leg when the

general disturbances vary. Moreover, e1 and e2 never vio-

late the constraints of performance functions during the

control process, which indicates those constraints are rep-

resentatives for the tracking performance of UWR’s leg. As

shown in Fig. 9, the maximum amplitude of control input s
is reached during the initial phase, and s remains bounded

whether actuator faults happened or not. It indicates the

feasibility of the nonsingular PPTSMC strategy.

4.2 Simulation results for integral PPTSMC

strategy

We consider the same case as Sect. 4.1. The parameters of

the controller proposed in Sect. 3.3 are selected as

a ¼ 100, k1 ¼ 1, k2 ¼ 1, l ¼ 0:6, m ¼ 1:4, j1 ¼ 8,

j2 ¼ 40, k1 ¼ 10, k2 ¼ 10, c1 ¼ 0:5, c2 ¼ 0:5, d1 ¼ 0:5,

and d2 ¼ 0:5. The simulation results are shown in Figs. 10,

11, 12, where Figs. 10, 11 denote the tracking errors for the

link 1 and link 2 of UWR’s leg, respectively, and Fig. 12

denotes the inputs of two joints of UWR’s leg.

As we can see from Figs. 10, 11, e1 and e2 converge to a

small neighborhood of zero in 2 s, which indicates the

fixed-time stability is guaranteed. When actuators have

faults, the variations of tracking errors are very small and

the tracking errors satisfy the error constraints. It indicates

that the tracking control accuracy of UWR’s leg will not be

affected by abrupt disturbances. What’s more, high steady-

state precision is guaranteed in the control of integral

PPTSMC strategy. From Fig. 12, the control input s
remains bounded during the whole control process,

although it has an abrupt change at t¼10 s. It indicates the

feasibility of the integral PPTSMC strategy.

4.3 Performance Comparisons Results

To illustrate the advantages of the two proposed PPTSMC

strategies, we compare them with adaptive sliding-mode

control (ASMC) strategy (47, 48) and adaptive fast termi-

nal sliding-mode control (AFTSMC) strategy (49, 50). The

adaptive laws of ASMC and AFTSMC are selected as the

same form of PPTSMC. While the ASMC is asymptotic

stability and the AFTSMC is finite-time stability.

s ¼ C q; _qð Þ _qþ g qð Þ

þM qð Þ €qd �
k3
k4

_e� D̂sign sLð Þ � kLsL

� �

ð47Þ
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_̂D ¼ c3s
T
Lsign sLð Þ � c4D̂ ð48Þ

where sL ¼ k3eþ k4 _e, D is the unknown bound of non-

linear uncertainties d, D̂ denotes the estimation values of

D, .

s¼C q; _qð Þ _qþg qð ÞþM qð Þ €qd�
lT
k5

sig2�lT _eð Þþk6mT ej jmT sig2�lT _eð Þ

 �

� �

�M qð Þ D̂sign sTð ÞþkTsig
jT sTð Þ


 �

ð49Þ
_̂D ¼ c5s

T
Tsign sTð Þ � c6D̂ ð50Þ

where sT ¼ eþ k5sig
lT _eð Þ þ k2sig

mT eð Þ,
k5; k6; c5; c6; kT ; [ 0, 1\lT\mT\2, 0\jT\1.

For the quantitative analyses of those four control

algorithms, we define some indexes as follows

1. Reference error E: the 1-norm of the tracking error,

E¼ ek k.

2. Root mean square error E1: E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN

i¼1

E2 tið Þ
s

, N

denotes the step number of simulation, E tið Þ is the

reference error in ith step.

3. Rough error E2: the maximum value of reference error

E when UWR’s leg realizes the tracking control.

4. Arrival time T0: the time when the reference error E

converges to the rough error E2.

We consider the following simulation setup which is

different from Sects. 4.1 and 4.2. For each link of UWR’s

leg, the initial values of state variables are set as

q1 0ð Þ ¼ p
15

rad, q2 0ð Þ ¼ p
10

rad, _q1 0ð Þ ¼ _q2 0ð Þ ¼ 0 rad�
s�1, and the desired trajectories are given as

q1 tð Þ ¼ p
10
sin p

2
t


 �

þ p
20

rad, q2 tð Þ ¼ p
15
sin pt þ p

5


 �

þ p
10

rad.

The actuators will have fault on t¼12 s, and the fault

parameters are

q1 tð Þ ¼ q2 tð Þ ¼ 1 t\10 s

0:7 t� 10 s

�

; sb1 tð Þ

¼ 0 t\10 s

5 N t� 10 s

�

; sb2 tð Þ ¼ 0

The parameters of nonsingular PPTSMC strategy and

integral PPTSMC strategy are the same as those in

Sect. 4.1, respectively. The parameters of ASMC strategy

are set as k3 ¼ 10, k4 ¼ 15, c3 ¼ 1, c4 ¼ 0:1, kT ¼ 1. The

parameters of AFTSMC strategy are given as k5 ¼ 15,

k6 ¼ 35, c5 ¼ 1, c6 ¼ 0:1, kT ¼ 35, lT ¼ 1:8, mT ¼ 1:9,

jT ¼ 0:8. The simulation results are shown in Table 2.

From Table 2, it can be found that the accuracy of the

two proposed PPTSMC strategies is higher than the ASMC

strategy and the AFTSMC strategy. Although the

AFTSMC strategy has the shortest arrival time, its accu-

racy is not as high as PPTSMC strategies. Among the four

algorithms, the integral PPTSMC strategy has the highest

accuracy.

5 Conclusion

In the presence of environmental disturbance and unmod-

eled dynamics, a nonsingular PPTSMC strategy and an

integral PPTSMC strategy are proposed to deal with the

tracking control problem of UWR’s leg with error con-

straints and actuator faults. Moreover, IT2FNN is utilized

to tackle nonlinear uncertainties. Specifically, by intro-

ducing a novel PPTSMS, tracking errors never violate the

constraints of performance functions. Due to the error

constraint performance of PPTSMS, the design processes

of controllers based on PPTSMC are simpler than those

based on BLF or PP methods. Fixed-time stability is

proofed by Lyapunov theory, which indicates the upper

bound of settling time is not influenced by the initial values

of system states. Simulation results demonstrate that the

two proposed control strategies are effective whether the

actuator faults happened or not, and the comparative

analysis demonstrates that the two proposed control

strategies have higher accuracy than ASMC strategy and

AFTSMC strategy. In the future, we will try to apply the

two proposed control algorithms in this study to some other

underwater systems. Moreover, we will improve the per-

formance of our control algorithms, for example, consid-

ering the asymmetric error constraints.
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