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Abstract Dual hesitant fuzzy sets (DHFSs) are powerful

and efficient to express hesitant preferred and non-pre-

ferred information simultaneously. This paper focuses on

similarity measures for DHFSs. To do this, it first analyzes

the limitations of previous similarity measures for DHFSs.

Then, several new dual hesitant fuzzy similarity measures

are defined that can avoid the issues of previous ones. To

discriminate the importance of decision-making criteria,

several weighted similarity measures are further defined in

views of additive and 2-additive measures. When the

weighting information is not exactly known, optimization

methods for determining additive and 2-additive measures

are built, respectively. Furthermore, a method for multi-

criteria decision-making based on new weighted similarity

measures is developed. Finally, two numerical examples

are provided to show the utilization of the new method and

compare with previous methods.

Keywords Multi-criteria decision-making � DHFS �
Similarity measure � 2-Additive measure � Shapley value

1 Introduction

To cope with uncertain and fuzzy decision-making infor-

mation, fuzzy decision-making theory has been developed

into a hot researching topic. With the development of

decision-making theory, scholars noted that Zadeh’s fuzzy

sets [1] cannot express the non-preferred or hesitant deci-

sion-making information. To address this issue, Atanassov

[2] introduced the concept of Atannasov’s intuitionistic

fuzzy sets (AIFSs) that employs two real values in [0, 1] to

express the preferred and non-preferred judgments,

respectively. To further denote the uncertain judgments of

the decision-makers (DMs), Atanassov and Gargov [3]

defined interval-valued intuitionistic fuzzy sets (IVIFSs)

that are composed by two intervals in [0, 1] to separately

denote the uncertain preferred and non-preferred judg-

ments of DMs. On the other hand, Torra [4] presented the

concept of hesitant fuzzy sets to show the hesitancy of

DMs. Taking the advantages of these two types of fuzzy

sets, many extending forms are proposed such as intu-

itionistic multiplicative sets (IMSs) [5], interval-valued

intuitionistic multiplicative sets (IVIMSs) [6], linguistic

intuitionistic fuzzy sets (LIFVSs) [7], multiplicative lin-

guistic intuitionistic fuzzy sets (MLIFSs) [8], hesitant

multiplicative fuzzy sets (HMFSs) [9], interval-valued

hesitant fuzzy sets (IVHFSs) [10, 11], hesitant fuzzy lin-

guistic term sets (HFLTSs) [12], multiplicative hesitant

fuzzy linguistic sets (MHFLSs) [13], and interval linguistic

hesitant fuzzy sets (ILHFSs) [14]. At present, the theory

and application of decision-making with such types of

fuzzy information have achieved great success.

Although intuitionistic fuzzy sets and hesitant fuzzy sets

endow the DMs with more flexibility and greatly extend

the theory and application of decision-making, some

scholars noted that they still have some limitations to

express the recognitions of the DMs in some complex

situations. For example, none of them can express the

hesitant preferred and non-preferred judgements of the

DMs simultaneously. Therefore, Zhu et al. [15] introduced

the concept of dual hesitant fuzzy sets (DHFSs) that can be
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seen as a combination of intuitionistic fuzzy sets and

hesitant fuzzy sets. Then, the authors studied some basic

operations and defined the score and accuracy functions for

DHFSs. After the pioneer work of Zhu et al. [15], many

decision-making problems with dual hesitant fuzzy infor-

mation are proposed. For example, Wang et al. [16]

extended the intuitionistic fuzzy aggregation operator to

define two types of dual hesitant fuzzy aggregation oper-

ators: the dual hesitant fuzzy hybrid average (DHFHA)

operator and the dual hesitant fuzzy hybrid geometric

(DHFHG) operator. Using these two operators, the authors

offered a method to multi-attribute decision-making with

dual hesitant fuzzy information. Based on the Einstein

t-conorm and t-norm, Zhao et al. [17] proposed the Einstein

dual hesitant fuzzy (ordered) weighted averaging operator

and the Einstein dual hesitant fuzzy (ordered) weighted

geometric mean operator to calculate the comprehensive

attribute values of objects with dual hesitant fuzzy infor-

mation. Based on the Archimedean t-conorm and t-norm,

Wang et al. [18] defined several dual hesitant fuzzy power

aggregation operators including the weighted generalized

dual hesitant fuzzy power average (WGDHFPA) operator,

the weighted generalized dual hesitant fuzzy power geo-

metric (WGDHFPG) operator, the dual hesitant fuzzy

power ordered weighted average (DHFPOWA) operator

and the dual hesitant fuzzy power ordered weighted geo-

metric (DHFPOWG) operator. Considering the interactive

characteristics among attributes, Ren et al. [19] used the k-
measure to develop a dual hesitant fuzzy VIKOR method

for multi-criteria group decision-making. Furthermore, the

dual hesitant fuzzy Choquet operators are studied by Ju

et al. [20] and the dual hesitant fuzzy Shapley operators are

researched by Qu et al. [21]. Considering the correlations

among DHFEs, Yu et al. [22] defined the dual hesitant

fuzzy Heronian mean (DHFHM) operator and the dual

hesitant fuzzy geometric Heronian mean (DHFGHM)

operator. Then, the authors researched their application in

the supplier selection. Ren and Wei [23] used the defined

correctional score function to give the dice similarity

measure of DHFSs and then gave an approach to multi-

attribute decision-making. Zhang et al. [24] extended the

cosine similarity measure to DHFSs and defined a weighted

dual hesitant fuzzy cosine similarity measure. Furthermore,

similarity measures for DHFSs based on distance measures

are researched in the literature [12, 25, 26] and dual hesi-

tant fuzzy correlation coefficients are discussed in the lit-

erature [27–29]. It is noteworthy that most of previous

research about dual hesitant fuzzy similarity measures and

correlation coefficients needs DHFSs to have the same

length of their membership and non-membership degree

sets, respectively. Otherwise, extra values need to be added

to the shorter length membership and non-membership

degree sets. However, this procedure changes the original

DHFSs offered by the DMs [30]. Furthermore, different

rankings may be obtained by subjectively adding different

values to DHFSs. Thus, the rationality of this procedure

needs further study. Furthermore, all the above dual hesi-

tant fuzzy similarity measures are based on the assumption

that the weights of criteria are independent. However, this

assumption may be incorrect and there may be interactions

among them [19–21].

This paper continues to study decision-making with dual

hesitant fuzzy information and defines several new simi-

larity measures for DHFSs that allow the lengths of the

membership and non-membership degree sets to be dif-

ferent. Then, a method for decision-making with dual

hesitant fuzzy information is developed that can address

the situation where the weighting information with inter-

active characteristics is inexactly known. The main con-

tributions of this paper include: (1) new similarity

measures for DHFSs are defined that need not consider the

lengths of DHFSs and avoid the limitations of previous

ones; (2) mathematical programming models for deter-

mining the weighting information are offered; (3) new

method can address the situation where there are interac-

tive characteristics among criteria by the 2-additive mea-

sure [31] and the Shapley value [32]; (4) two numerical

examples are offered to show the special application of the

new method and comparative analysis is made.

This paper is organized as follows: Sect. 2 first reviews

the concept of DHFSs and an ordered relationship. Then, it

recalls several similarity measures for DHFSs and analyzes

their limitations in some cases. Section 3 defines several

new similarity measures for DHFSs based on different

viewpoints, which do not require DHFSs to have the same

length of their membership and non-membership degree

sets. Considering the difference between the weights of

criteria and the interactions, several 2-additive measure-

based Shapley weighted similarity measures are further

proposed. Section 4 builds several models for determining

the weighting information on the criteria set. Then, it offers

an algorithm for multi-criteria decision-making with

DHFSs. Section 5 offers two examples to show the appli-

cation of the new method and compare it with several

previous similarity measure-based methods. Conclusions

and future remarks are given in Sect. 6.

2 Basic Concepts

This section first reviews some basic concepts about

DHFSs. Then, it lists and analyzes previous similarity

measures for DHFSs.

In this paper, let X = {x1, x2, …, xn} be the set of

compared objects. To express the hesitant preferred and

non-preferred information, Zhu et al. [15] introduced
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DHFSs that employ several values in [0, 1] to express the

possible membership and non-membership degrees of a

judgment.

Definition 1 [15] A DHFS D on X is defined as

D ¼ xi; ~hðxiÞ; ~gðxiÞ
� ���xi 2 X
� �

, where ~hðxiÞ and ~gðxiÞ are

two sets of several values in [0, 1] that represent the pos-

sible membership and non-membership degrees of the

element xi 2 X to the set D, respectively. For each xi 2 X,

it has max
c2 ~hðxiÞ

cþ max
g2 ~gðxiÞ

g� 1. Furthermore, each element

dðxiÞ ¼ ~hðxiÞ; ~gðxiÞ
� �

in D is called a dual hesitant fuzzy

element (DHFE), denoted by d ¼ ~h; ~g
� �

such that

max
c2 ~h

cþmax
g2 ~g

g� 1.

For example, let X = {x1, x2, x3}. Then, a DHFS D on X

may be defined as:

D ¼ x1; 0:2; 0:4f g; 0:5f gf gh i; x2; 0:6f g; 0:2; 0:3f gf gh i; x3; 0:5; 0:6; 0:7f g; 0:2; 0:3f gf gh if g

Considering the order relationship between DHFEs, Zhu

et al. [15] offered the following ranking based on the score

and accuracy functions.

Definition 2 [15] Let d1 ¼ ~h1; ~g1
� �

and d2 ¼ ~h2; ~g2
� �

be

any two DHFEs. Then, their order relationship is defined

as:

(1) If sðd1Þ[ sðd2Þ, then d1 � d2;

(2) if sðd1Þ ¼ sðd2Þ, then
aðd1Þ[ aðd2Þ; d1 � d2

aðd1Þ ¼ aðd2Þ; d1 � d2

(

,

where sð�Þ is the score function, and að�Þ is the

accuracy function, defined by sðdÞ ¼ 1
j ~hj
P

c2 ~h c�
1
j ~gj
P

g2 ~g g and aðdÞ ¼ 1
j ~hj
P

c2 ~h cþ 1
j ~gj
P

g2 ~g g for any

DHFE d ¼ ~h; ~g
� �

, and j ~hj and j~gj are the cardinal-

ities of ~h and ~g, respectively.

For example, let d1 ¼ f0:3; 0:4; 0:5g; f0:2gh i and

d2 ¼ f0:4; 0:5g; f0:2; 0:3gh i. Then, their scores are sðd1Þ ¼
0:2 and sðd2Þ ¼ 0:2. Furthermore, their accuracies are

aðd1Þ ¼ 0:6 and sðd2Þ ¼ 0:7. According to Definition 2, we

derive d1 � d2.

Zhao et al. [33] noted that there are some situations

where the ranking method in Definition 2 cannot distin-

guish. Thus, Zhao et al. [33] further introduced an

improving ranking method.

Definition 3 [33] Let d1 ¼ ~h1; ~g1
� �

and d2 ¼ ~h2; ~g2
� �

be

any two DHFEs. Then, their order relationship is defined

as:

(1) If sðd1Þ[ sðd2Þ, then d1 � d2;

(2) If sðd1Þ ¼ sðd2Þ and aðd1Þ[ aðd2Þ, then d1 � d2;

(3) If sðd1Þ ¼ sðd2Þ and aðd1Þ ¼ aðd2Þ, then

pðd1Þ\pðd2Þ; d1 � d2

pðd1Þ ¼ pðd2Þ; d1 � d2

(

, where pð�Þ is the variance

degree, defined by pðdÞ ¼ 1
j ~hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ci;cj2 ~h

ci � cj
� 	2

s
þ

1
j ~gj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

gi;gj2 ~g

gi � gj
� 	2r

for any DHFE d ¼ ~h; ~g
� �

, and

j ~hj and j~gj are the cardinalities of ~h and ~g,

respectively.

For example, let d1 ¼ f0:3; 0:5g; f0:2; 0:4gh i and

d2 ¼ f0:3; 0:4; 0:5g; f0:3gh i. Then, we have sðd1Þ ¼
sðd2Þ ¼ 0:1 and aðd1Þ ¼ aðd2Þ ¼ 0:7. Therefore, Definition

2 is helpless in this case. Following Definition 3, we obtain

pðd1Þ ¼ 0:2 and pðd2Þ ¼ 0:0816. According to Definition

3, we derive d1 � d2.

To measure the similarity between DHFSs, Singh [25]

presented the following two similarity measures.

Definition 4 [25, 26] Let D1 ¼ xi; ~h1ðxiÞ; ~g1
��

ðxiÞijxi 2
Xg and D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ

� ���xi 2 X
� �

be any two

DHFSs. Then, the similarity measures are defined as

follows:

SGDdhfs
D1;D2ð Þ ¼ 1� GDdhfs D1;D2ð Þ; ð1Þ

and

SGHDdhfs
D1;D2ð Þ ¼ 1� GHDdhfs D1;D2ð Þ; ð2Þ

where

GDdhfs D1;D2ð Þ ¼ 1

2n

Xn

i¼1

1

lxi

Xlxi

j¼1

crðjÞ1 ðxiÞ � crðjÞ2 ðxiÞ
���

���
k
þ 1

mxi

Xmxi

k¼1

grðkÞ1 ðxiÞ � grðkÞ2 ðxiÞ
���

���
k

 !" #1
k

ð3Þ

is the generalized dual hesitant normalized distance

between D1 and D2, and

GHDdhfs D1;D2ð Þ ¼ 1

2n

Xn

i¼1

max max
1� j� lxi

crðjÞ1 ðxiÞ � crðjÞ2 ðxiÞ
���

���
k
; max
1� k�mxi

grðkÞ1 ðxiÞ � grðkÞ2 ðxiÞ
���

���
k


 �
 �" #1
k

ð4Þ

is the generalized dual hesitant normalized Hausdorff

distance between D1 and D2. Furthermore, k[ 0, lxi ¼
max j ~h1ðxiÞj; j ~h2ðxiÞj

� �
and mxi ¼ max j~g1ðxiÞj; j~g2ðxiÞjf g

for each xi 2 X, and rð�Þ is the permutation such that

crðjÞ1 ðxiÞ� crðjþ1Þ
1 ðxiÞ

crðjÞ2 ðxiÞ� crðjþ1Þ
2 ðxiÞ

(

for all j ¼ 1; 2; . . .; lxi � 1 and all

xi 2 X, and
grðkÞ1 ðxiÞ� grðkþ1Þ

1 ðxiÞ

grðkÞ2 ðxiÞ� grðkþ1Þ
2 ðxiÞ

(

for all k ¼

1; 2; . . .;mxi � 1 and all xi 2 X.
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Based on the Da operator for Atannasov’s intuitionistic

fuzzy sets [2] and the formula for determining the value of

a [34], Ren and Wei [23] presented a correctional score

function for DHFEs, by which the authors defined the dice

similarity measure of DHFSs.

Definition 5 [23] Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs.

Then, the weighted dice similarity measure of DHFSs is

defined as follows:

DSdhfs D1;D2ð Þ ¼
Xn

i¼1

wi
2SDa d1ðxiÞð ÞSDa d2ðxiÞð Þ

SDa d1ðxiÞð Þ2þSDa d2ðxiÞð Þ2
; ð5Þ

where wi is the weight of the object xi such that
Pn

i¼1 wi ¼
1 and wi � 0 for all i = 1, 2, …, n, d1ðxiÞ 2 D1 and d2ðxiÞ 2
D2 are DHFEs for xi 2 X to the DHFSs D1 and D2,

respectively, SDa is the correctional score function for

DHFEs, defined by SDa ¼
1þS ~hð ~hÞ�S ~gð ~gÞ

2
for any DHFE d ¼

~h; ~g
� �

such that S ~hð ~hÞ ¼ 1
j ~hj
P

c2 ~h cþ ap, S ~gð~gÞ ¼ 1
j ~gj
P

g2 ~g

gþ ð1� aÞp, p ¼ 1� 1
j ~hj
P

c2 ~h c� 1
j ~gj
P

g2 ~g g and

a ¼ 1
2
þ

1

j ~hj

P
c2 ~h

c� 1
j ~gj

P
g2 ~g

g

2
þ

1

j ~hj

P
c2 ~h

c� 1
j ~gj

P
g2 ~g

g

2
p

Furthermore, Singh [12] introduced another similarity

measure based on the distance measure between DHFSs.

Definition 6 [12] Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs.

Then, their similarity measure is defined as follows:

Sdhfs D1;D2ð Þ ¼ 1� 1
ffiffiffi
ns

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

/ ~h xið Þ þ / ~g xið Þ
� 	ss

s

; ð6Þ

where 0\s\þ1, / ~h xið Þ ¼ 1
2lxi

Plxi

j¼1

crðjÞ1 ðxiÞ � crðjÞ2 ðxiÞ
���

���,

/ ~g xið Þ ¼ 1
2mxi

Pmxi

k¼1

grðkÞ1 ðxiÞ � grðkÞ2 ðxiÞ
���

���, and lxi and mxi as

shown in Definition 4.

Deferent from the above dual hesitant fuzzy similarity

measures, Zhang et al. [24] proposed the following

weighted dual hesitant fuzzy cosine similarity measure:

Definition 7 [24] Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs.

Then, their weighted cosine similarity measure is defined

as follows:

CSdhfs D1;D2ð Þ ¼
Xn

i¼1

wi

Plxi

j¼1

crðjÞ1 ðxiÞcrðjÞ2 ðxiÞ þ
Pmxi

k¼1

grðkÞ1 ðxiÞgrðkÞ2 ðxiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Plxi

j¼1

crðjÞ1 ðxiÞ
� 2

þ
Pmxi

k¼1

grðkÞ1 ðxiÞ
� 2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Plxi

j¼1

crðjÞ2 ðxiÞ
� 2

þ
Pmxi

k¼1

grðkÞ2 ðxiÞ
� 2

s ;

ð7Þ

where wi is the weight of the object xi such that
Pn

i¼1 wi ¼
1 and wi � 0 for all i = 1, 2, …, n,, and lxi and mxi as shown

in Definition 4.

Remark 1 The similarity measures shown in Definitions

4, 6 and 7 require the considered DHFSs to have the same

length of the membership degree set and non-membership

degree set, respectively. Otherwise, we need to add extra

values to the shorter length membership and the non-

membership degree sets. However, this procedure changes

the original information offered by the DMs, namely, the

adjusted DHFSs are different from the original ones. To

show this issue, we offer the following example.

Example 1 Let d1 ¼ ~h1; ~g1
� �

¼ 0:15; 0:4f g; 0:3; 0:4;fh
0:5; 0:6gi and d2 ¼ ~h2; ~g2

� �
¼ 0:5; 0:6; 0:7f g; 0:25;fh

0:3gi. When we measure their similarity by Eq. (1), (2), or

(6), one extra value needs to be added to ~h1 ¼ 0:15; 0:4f g,
and two extra values need to be added to ~g2 ¼ 0:25; 0:3f g.
If 0.15 is added to ~h1, we derive ~h01 ¼ 0:15; 0:15; 0:4f g.
However, one can check that d1 ¼ ~h1; ~g1

� �
6¼ d01 ¼

~h01; ~g1
� �

because sðd1Þ ¼ �0:175 6¼ �0:217 ¼ sðd01Þ, by

which we have d1 � d01. If 0.4 is added to ~h1, we derive

~h001 ¼ 0:15; 0:4; 0:4f g. However, it has d1 ¼ ~h1; ~g1
� �

6¼
d001 ¼ ~h001; ~g1

� �
because sðd1Þ ¼ �0:175 6¼ �0:133 ¼sðd001Þ,

by which we have d1 � d001 .

Furthermore, if we add the values 0.15 and 0.25 to ~h1
and ~g2, respectively, then the similarity measures between

d1 and d2 based on Eqs. (1), (2), and (6) are GDdhfs

d1; d2ð Þ ¼ 0:573, GHDdhfs d1; d2ð Þ ¼ 0:55, and Sdhfs d1;ð
d2Þ ¼ 0:723, respectively, where k = p = 2. On the other

hand, if we add the values 0.4 and 0.3 to ~h1 and ~g2,

respectively, then the similarity measures between d1 and

d2 based on Eqs. (1), (2), and (6) are GDdhfs d1;ð
d2Þ ¼ 0:654,GHDdhfs d1; d2ð Þ ¼ 0:65, and Sdhfs d1; d2ð Þ ¼
0:777, respectively, where k = p = 2. One can find that

different results are obtained for different added values. In

these two cases where different values are added, the

corresponding cosine similarity measures between d1 and

d2 by Eq. (7) are CSdhfs d1; d2ð Þ ¼ 0:76 and CSdhfs d1;ð
d2Þ ¼ 0:85.

Based on the above discussion, we conclude that there

are two limitations of similarity measures given in Defi-

nitions 4, 6 and 7: (1) they change the original DHFSs; (2)

different results may be derived for different added values.

Remark 2 The issue of the dice similarity measure

offered in Definition 5 is that the dice similarity measure of

two different DHFSs may be equal to 1. For example, the

dice similarity measure of any two DHFSs with the same

mean values of the possible membership degrees and the
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possible non-membership degrees is equal to 1. Therefore,

the discriminability is insufficient.

Example 2 Let d1 ¼ ~h1; ~g1
� �

¼ 0:2; 0:3; 0:4f g; 0:3; 0:4;fh
0:5gi and d2 ¼ ~h2; ~g2

� �
¼ 0:3f g; 0:4f gh i, we have

DSdhfs d1; d2ð Þ ¼ 1. However, one can easily find that d1
and d2 are obviously different. Furthermore, we have d1 �
d2 following the ranking method in Definition 3.

In the calculation of the dice similarity measure of d1
and d2, one can check that it only uses one value in the

membership and non-membership degree sets of d1, which

are 0–3 and 0.4. This shows another issue of this similarity

measure, namely, it may only use part information of

DHFSs and cause information loss.

3 New Similarity Measures for DHFSs

This section contains two parts. The first part defines sev-

eral new similarity measures for DHFSs based on additive

measure and the second part introduces several new simi-

larity measures for DHFSs based on the Shapley value and

2-additive measure.

3.1 New Similarity Measures for DHFSs Based

on Additive Measure

To avoid the issues of previous similarity measures for

DHFSs, this part introduces several new similarity mea-

sures. First, we define the distance measure between one

point and a set as follows.

Definition 8 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs. For

any c1ðxiÞ 2 ~h1ðxiÞ and any xi 2 X, the distance measure

between c1ðxiÞ and ~h2ðxiÞ is defined as:

q c1ðxiÞ; ~h2ðxiÞ
� 	

¼ min
c2ðxiÞ2 ~h2ðxiÞ

jc1ðxiÞ � c2ðxiÞj; ð8Þ

and, for any g1ðxiÞ 2 ~g1ðxiÞ and any xi 2 X, the distance

measure between g1ðxiÞ and ~g2ðxiÞ is defined as:

q g1ðxiÞ; ~g2ðxiÞð Þ ¼ min
g2ðxiÞ2 ~g2ðxiÞ

jg1ðxiÞ � g2ðxiÞj: ð9Þ

Furthermore, for any c2ðxiÞ 2 ~h2ðxiÞ and any xi 2 X, the

distance measure between c2ðxiÞ and ~h1ðxiÞ is defined as:

q c2ðxiÞ; ~h1ðxiÞ
� 	

¼ min
c1ðxiÞ2 ~h1ðxiÞ

jc1ðxiÞ � c2ðxiÞj; ð10Þ

and, for any g2ðxiÞ 2 ~g2ðxiÞ and any xi 2 X, the distance

measure between g2ðxiÞ and ~g1ðxiÞ is defined as:

q g2ðxiÞ; ~g1ðxiÞð Þ ¼ min
g1ðxiÞ2 ~g1ðxiÞ

jg1ðxiÞ � g2ðxiÞj: ð11Þ

According to Definition 8, one can check that

q c1ðxiÞ; ~h2ðxiÞ
� 	

¼ q g1ðxiÞ; ~g2ðxiÞð Þ ¼ q c2ðxiÞ; ~h1ðxiÞ
� 	

¼
q g2ðxiÞ; ~g1ðxiÞð Þ¼ 0 if and only if c1ðxiÞ 2 ~h2ðxiÞ; g1ðxiÞ 2
~g2ðxiÞ; c2ðxiÞ 2 ~h1ðxiÞ; g2ðxiÞ 2 ~g1ðxiÞ.

There may be more than one value that satisfies Eqs. (8),

(9), (10) or (11). In this case, we adopt the corresponding

minimum value and offer the following expressions to

facilitate discussion:

For any c1ðxiÞ 2 ~h1ðxiÞ and any xi 2 X, let cc1ðxiÞ
2

ðxiÞ ¼
min c2ðxiÞ jc1ðxiÞ � c2ðxiÞj ¼jf q c1ðxiÞ; ~h2ðxiÞ

� 	
; c2ðxiÞ 2 ~h2

ðxiÞ:g.
For any g1ðxiÞ 2 ~g1ðxiÞ and any xi 2 X, let gg1ðxiÞ

2
ðxiÞ ¼

min g2ðxiÞf jg1ðxiÞ � g2ðxiÞj ¼ q g1ðxiÞ; ~g2ðxiÞð Þ; g2ðxiÞj
2 ~g2ðxiÞ:g.

For any c2ðxiÞ 2 ~h2ðxiÞ and any xi 2 X, let cc2ðxiÞ
1

ðxiÞ ¼
min c1ðxiÞ jc1ðxiÞ � c2ðxiÞj ¼ qjf c2ðxiÞ; ~h1ðxiÞ

� 	
; c1ðxiÞ 2

~h1 ðxiÞ:g.
For any g2ðxiÞ 2 ~g2ðxiÞ and any xi 2 X, let gg2ðxiÞ

1
ðxiÞ ¼

min g1ðxiÞ jg1ðxiÞ�jf g2ðxiÞj ¼ q g2ðxiÞ; ~g1ðxiÞð Þ; g1ðxiÞ 2
~g1ðxiÞ:g.
To show the concrete utilization of the above distance

measures and notations, we take the DHFEs offered in

Example 1 for instance, where d1 ¼ ~h1; ~g1
� �

¼ 0:15;fh
0:4g; 0:3; 0:4; 0:5; 0:6f gi and d2 ¼ ~h2; ~g2

� �
¼ 0:5; 0:6;fh

0:7g; 0:25; 0:3f gi.
Based on Eq. (8), we get

q 0:15; ~h2
� 	

¼ min
c22 ~h2

j0:15� c2j ¼ j0:15� 0:5j ¼ 0:35 for 0:15 2 ~h1

q 0:4; ~h2
� 	

¼ min
c22 ~h2

j0:4� c2j ¼ j0:4� 0:5j ¼ 0:1 for 0:4 2 ~h1

8
><

>:
.

Based on Eq. (9), we have
q 0:3; ~g2ð Þ ¼ min

g22 ~g2
j0:3� g2j ¼ j0:3� 0:3j ¼ 0 for 0:3 2 ~g1

q 0:4; ~g2ð Þ ¼ min
g22 ~g2

j0:4� g2j ¼ j0:4� 0:3j ¼ 0:1 for 0:4 2 ~g1

q 0:5; ~g2ð Þ ¼ min
g22 ~g2

j0:5� g2j ¼ j0:5� 0:3j ¼ 0:2 for 0:5 2 ~g1

q 0:6; ~g2ð Þ ¼ min
g22 ~g2

j0:6� g2j ¼ j0:6� 0:3j ¼ 0:3 for 0:6 2 ~g1

8
>>>>><

>>>>>:

.

Based on Eq. (10), we obtain

q 0:5; ~h1
� 	

¼ min
c12 ~h1

j0:5� c1j ¼ j0:5� 0:4j ¼ 0:1 for 0:5 2 ~h2

q 0:6; ~h1
� 	

¼ min
c12 ~h1

j0:6� c1j ¼ j0:6� 0:4j ¼ 0:2 for 0:6 2 ~h2

q 0:7; ~h1
� 	

¼ min
c12 ~h1

j0:7� c1j ¼ j0:7� 0:4j ¼ 0:3 for 0:7 2 ~h2

8
>>>>><

>>>>>:

.

Based on Eq. (11), we derive

q 0:25; ~g1ð Þ ¼ min
g12 ~g1

j0:25� g1j ¼ j0:25� 0:3j ¼ 0:05 for 0:25 2 ~g2

q 0:3; ~g1ð Þ ¼ min
g12 ~g1

j0:3� g1j ¼ j0:3� 0:3j ¼ 0 for 0:3 2 ~g2

8
<

:
.

If we replace 0.3 in ~g2 with 0.35, then we obtain

q 0:35; ~g1ð Þ ¼ min
g12 ~g1

j0:35� g1j ¼
j0:35� 0:3j
j0:35� 0:4j

�
¼ 0:05. In

this case, we have gg2¼0:35
1

¼ 0:3.
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According to Definition 8, we can further obtain the

following generalized normal distance measure between

DHFSs.

Definition 9 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs in X.

Then, the generalized normal distance measure between
~h1ðxiÞ and ~h2ðxiÞ is defined as:

qk ~h1ðxiÞ; ~h2ðxiÞ
� 	

¼ 1

2

1

j ~h1ðxiÞj
X

c1ðxiÞ2 ~h1ðxiÞ
jc1ðxiÞ � cc1ðxiÞ

2
ðxiÞjk þ

1

j ~h2ðxiÞj
X

c2ðxiÞ2 ~h2ðxiÞ
jc2ðxiÞ � cc2ðxiÞ

1
ðxiÞjk

 !1
k

:

ð12Þ

Meanwhile, the generalized normal distance measure

between ~g1ðxiÞ and ~g2ðxiÞ is defined as:

qk ~g1ðxiÞ; ~g2ðxiÞð Þ ¼ 1

2

1

j~g1ðxiÞj
X

g1ðxiÞ2 ~g1ðxiÞ
jg1ðxiÞ � gg1ðxiÞ

2
ðxiÞjk þ

1

j~g2ðxiÞj
X

g2ðxiÞ2 ~g2ðxiÞ
jg2ðxiÞ � gg2ðxiÞ

1
ðxiÞjk


 �1
k

:

ð13Þ

Furthermore, the generalized normal distance measure

between D1 and D2 is defined as:

qk D1;D2ð Þ ¼ 1

2n

X
xi2X

qk ~h1ðxiÞ; ~h2ðxiÞ
� 	

þ qk ~g1ðxiÞ; ~g2ðxiÞð Þ
� 	

: ð14Þ

Example 3 Let X = {x1, x2, x3}. The DHFSs D1 and D2 in

X are defined as follows:

D1 ¼ x1; f0:2; 0:3g; f0:5; 0:7gh i; x2; f0:6; 0:8g; f0:1gh i; x1; f0:5g; f0:2; 0:3; 0:4gh if g;
D2 ¼ x1; f0:4; 0:5g; f0:4gh i; x2; f0:5; 0:6g; f0:2; 0:3gh i; x1; f0:7; 0:8g; f0:1; 0:2gh if g:

Based on Eq. (14), the normal distance measures

between D1 and D2 for different values of k are

qk¼0:2 D1;D2ð Þ ¼ 0:5775, qk¼0:5 D1;D2ð Þ ¼ 0:3290, qk¼1

D1;D2ð Þ ¼ 0:1333, qk¼2 D1;D2ð Þ ¼ 0:0247, and qk¼5 D1;ð
D2Þ ¼ 0:0003.

To show the relationality of the normal distance mea-

sure, we offer the following the property.

Property 1 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

,

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

, and D3 ¼
xi; ~h3ðxiÞ; ~g3ðxiÞ
� ���xi 2 X
� �

be any three DHFSs in X.

Then, the generalized normal distance measure qk offered

in Definition 9 satisfies:

(i) 0� qk D1;D2ð Þ� 1;

(ii) qk D1;D2ð Þ ¼ 0 if and only if ~h1ðxiÞ ¼ ~h2ðxiÞ and

~g1ðxiÞ ¼ ~g2ðxiÞ for any xi 2 X;

(iii) qk D1;D2ð Þ ¼ qk D2;D1ð Þ.

Proof Following Eq. (14), one can easily check that the

conditions (i) and (iii) are true. As for (ii), for any given

xi 2 X, when qk D1;D2ð Þ ¼ 0, from Eqs. (12) and (13) we

know that

jc1ðxiÞ � cc1ðxiÞ
2

ðxiÞj ¼ 0 for any c1ðxiÞ 2 ~h1ðxiÞ;

jc2ðxiÞ � cc2ðxiÞ
1

ðxiÞj ¼ 0 for any c2ðxiÞ 2 ~h2ðxiÞ;

jg1ðxiÞ � gg1ðxiÞ
2

ðxiÞj ¼ 0 for any g1ðxiÞ 2 ~g1ðxiÞ;

jg2ðxiÞ � gg2ðxiÞ
1

ðxiÞj ¼ 0 for any g2ðxiÞ 2 ~g2ðxiÞ;

by which we know that there are c2ðxiÞ 2 ~h2ðxiÞ such that

c2ðxiÞ ¼ c1ðxiÞ for any c1ðxiÞ 2 ~h1ðxiÞ, c1ðxiÞ 2 ~h1ðxiÞ such
that c1ðxiÞ ¼ c2ðxiÞ for any c2ðxiÞ 2 ~h2ðxiÞ, g2ðxiÞ 2 ~g2ðxiÞ
such that g2ðxiÞ ¼ g1ðxiÞ for any g1ðxiÞ 2 ~g1ðxiÞ and

g1ðxiÞ 2 ~g1ðxiÞ such that g1ðxiÞ ¼ g2ðxiÞ for any

g2ðxiÞ 2 ~g2ðxiÞ. Thus, ~h1ðxiÞ ¼ ~h2ðxiÞ and ~g1ðxiÞ ¼ ~g2ðxiÞ.

The main feature of the generalized normal distance

measure given in Definition 9 is to permit the membership

and non-membership degree sets to have different lengths,

respectively. Following the defined generalized normal

distance measure between DHFSs, we further offer the

following generalized similarity measures.

Definition 10 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs in X.

Then, the generalized similarity measure Sk1 between them

is defined as follows:

Sk1 D1;D2ð Þ ¼ 1� qk D1;D2ð Þ: ð15Þ

In Example 3, the similarity measure between the

DHFSs D1 and D2 for different values of k are

Sk¼0:2
1 D1;D2ð Þ ¼ 0:4225, Sk¼0:5

1 D1;D2ð Þ ¼ 0:6710, Sk¼1
1

D1;D2ð Þ ¼ 0:8667, Sk¼2
1 D1;D2ð Þ ¼ 0:9753, and Sk¼5

1 D1;ð
D2Þ ¼ 0:9997.

Based on Property 1 for the generalized normal distance

measure, one can easily derive the following property for

the generalized similarity measure Sk1 as shown in Defini-

tion 10.

Property 2 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

,

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

, and D3 ¼
xi; ~h3ðxiÞ; ~g3ðxiÞ
� ���xi 2 X
� �

be any three DHFSs in X.

Then, the generalized similarity measure Sk1 offered in

Definition 10 satisfies:

(i) 0� Sk1 D1;D2ð Þ� 1;

(ii) Sk1 D1;D2ð Þ ¼ 1 if and only if ~h1ðxiÞ ¼ ~h2ðxiÞ and

~g1ðxiÞ ¼ ~g2ðxiÞ for any xi 2 X;
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(iii) Sk1 D1;D2ð Þ ¼ Sk1 D2;D1ð Þ.

Proof Following Eq. (15), one can easily check that the

conditions (i) and (iii) are true. As for (ii), for any given

xi 2 X, when Sk1 D1;D2ð Þ ¼ 1, we get qk D1;D2ð Þ ¼ 0.

According to Property 1, we know that the condition (ii) is

true.

Remark 3 The main features of the generalized similarity

measure offered in Definition 10 include: (i) it does not

need to add extra values that leads to change the original

information; (ii) it avoids the situation where different

results are derived for different added values; (iii) it does

not restrict to calculate the similarity measure by consid-

ering the corresponding ordered values; (iv) the second

condition in Property 1 makes it avoid the issue of the dice

similarity measure shown in Definition 5.

Different from the generalized similarity measure shown

in Definition 10 that is based on the defined generalized

normal distance measure, we further define the following

similarity measures.

Definition 11 Let D1 ¼ xi; ~h1ðxiÞ; ~g1ðxiÞ
� ���xi 2 X
� �

and

D2 ¼ xi; ~h2ðxiÞ; ~g2ðxiÞ
� ���xi 2 X
� �

be any two DHFSs.

Then, the Hausdorff normal similarity measure is defined

as follows:

SH D1;D2ð Þ ¼ 1

n

X
xi2X

4 � max
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�
�

�
�

n o
� max

c2ðxiÞ2 ~h2ðxiÞ
c2ðxiÞ � cc2ðxiÞ

1
ðxiÞ

�
�

�
�

n o
� max

g1ðxiÞ2 ~g1ðxiÞ
g1ðxiÞ � gg1ðxiÞ

2
ðxiÞ

�
�

�
�

n o
� max

g2ðxiÞ2 ~g2ðxiÞ
g2ðxiÞ � gg2ðxiÞ

1
ðxiÞ

�
�

�
�

n o

4 þ min
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�
�

�
�

n o
þ min

c2ðxiÞ2 ~h2ðxiÞ
c2ðxiÞ � cc2ðxiÞ

1
ðxiÞ

�
�

�
�

n o
þ min

g1ðxiÞ2 ~g1ðxiÞ
g1ðxiÞ � gg1ðxiÞ

2
ðxiÞ

�
�

�
�

n o
þ min

g2ðxiÞ2 ~g2ðxiÞ
g2ðxiÞ � gg2ðxiÞ

1
ðxiÞ

�
�

�
�

n o

ð16Þ

The correlation coefficient-based normal similarity

measure is defined as follows:

SCC D1;D2ð Þ ¼ 2

n

X
xi2X

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞcc1ðxiÞ2

ðxiÞ
� 

þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞcc2ðxiÞ1
ðxiÞ

� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞð Þ2þ cc1ðxiÞ

2
ðxiÞ

� 2
 �
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞð Þ2þ cc2ðxiÞ
1

ðxiÞ
� 2
 �;

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞgg1ðxiÞ2
ðxiÞ

� 
þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞgg2ðxiÞ1
ðxiÞ

� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞð Þ2þ gg1ðxiÞ
2

ðxiÞ
� 2
 �

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞð Þ2þ gg2ðxiÞ
1

ðxiÞ
� 2
 � :

ð17Þ

The minimax normal similarity measure is defined as

follows:

SMM D1;D2ð Þ ¼ 1

n

X
xi2X

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ ^ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ ^ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ ^ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ ^ gg2ðxiÞ
1

ðxiÞ
� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ _ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ _ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ _ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ _ gg2ðxiÞ
1

ðxiÞ
� 

ð18Þ

In Example 3, using the similarity measures listed in

Definition 11, we have SH D1;D2ð Þ ¼ 0:7547,

SCC D1;D2ð Þ ¼ 0:4672 and SMM D1;D2ð Þ ¼ 0:7167, where

D1 ¼ x1; f0:2; 0:3g; f0:5; 0:7gh i; x2; f0:6; 0:8g; f0:1gh i; x1; f0:5g; f0:2; 0:3; 0:4gh if g and

D2 ¼ x1; f0:4; 0:5g; f0:4gh i;f x2; f0:5; 0:6g; f0:2; 0:3gh i; x1; f0:7; 0:8g; f0:1; 0:2gh ig.

Remark 4 Based on Eqs. (16), (17), and (18), one can

easily check that the Hausdorff normal similarity measure,

the correlation coefficient-based normal similarity measure

and the minimax normal similarity measure satisfy the

conditions offered in Property 2. Furthermore, they also

own the characteristics listed in Remark 3. There are two

purposes to offer the similarity measures shown in Defi-

nition 11: (i) they offer the DMs with more choices, and (ii)

in practical decision-making problems, it is better to use

different similarity measures to show the stability of the

ranking results.

To discriminate the weights of criteria, we further define

their associated weighted similarity measures as follows:

The weighted generalized normal similarity measure is

Sk;w1 D1;D2ð Þ ¼ 1� 1

2

X
xi2X

wi q
k ~h1ðxiÞ; ~h2ðxiÞ
� 	

þ qk ~g1ðxiÞ; ~g2ðxiÞð Þ
� 	

:

ð19Þ

The weighted Hausdorff normal similarity measure is

SwH D1;D2ð Þ ¼
X

xi2X
wi

4� max
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�
�

�
�

n o
� max

c2ðxiÞ2 ~h2ðxiÞ
c2ðxiÞ � cc2ðxiÞ

1
ðxiÞ

�
�

�
�

n o
� max

g1ðxiÞ2 ~g1ðxiÞ
g1ðxiÞ � gg1ðxiÞ

2
ðxiÞ

�
�

�
�

n o
� max

g2ðxiÞ2 ~g2ðxiÞ
g2ðxiÞ � gg2ðxiÞ

1
ðxiÞ

�
�

�
�

n o

4þ min
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�� ��
n o

þ min
c2ðxiÞ2 ~h2ðxiÞ

c2ðxiÞ � cc2ðxiÞ
1

ðxiÞ
�� ��
n o

þ min
g1ðxiÞ2 ~g1ðxiÞ

g1ðxiÞ � gg1ðxiÞ
2

ðxiÞ
�� ��
n o

þ min
g2ðxiÞ2 ~g2ðxiÞ

g2ðxiÞ � gg2ðxiÞ
1

ðxiÞ
�� ��
n o:

ð20Þ

The weighted correlation coefficient-based normal

similarity measure is

SwCC D1;D2ð Þ ¼ 2
X

xi2X
wi

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞcc1ðxiÞ2

ðxiÞ
� 

þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞcc2ðxiÞ1
ðxiÞ

� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞð Þ2þ cc1ðxiÞ

2
ðxiÞ

� 2
 �
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞð Þ2þ cc2ðxiÞ
1

ðxiÞ
� 2
 �;

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞgg1ðxiÞ2
ðxiÞ

� 
þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞgg2ðxiÞ1
ðxiÞ

� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞð Þ2þ gg1ðxiÞ
2

ðxiÞ
� 2
 �

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞð Þ2þ gg2ðxiÞ
1

ðxiÞ
� 2
 �

ð21Þ

The weighted minimax normal similarity measure is

SwMM D1;D2ð Þ ¼
X

xi2X
wi

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ ^ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ ^ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ ^ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ ^ gg2ðxiÞ
1

ðxiÞ
� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ _ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ _ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ _ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ _ gg2ðxiÞ
1

ðxiÞ
� ;

ð22Þ

where w ¼ w1;w2; . . .;wnð Þ is a weight vector such thatPn
i¼1 wi ¼ 1 and wi � 0 for all i ¼ 1; 2; . . .; n, and other

notations as shown in Definitions 10 and 11.

3.2 New Similarity Measures for DHFSs Based

on the Shapley Value and 2-Additive Measure

As some scholars noted, criteria are interactive rather than

independent in some situations. In this case, the normal

similarity measures based on additive measure are unrea-

sonable. To cope with this issue, the Shapley value for

fuzzy measures is a good tool, which not only offers the

importance of each criterion, but also defines the impor-

tance of each combination of criteria. Nevertheless, it is not

easy to determine a fuzzy measure because it defines on the

power set. The 2-additive measure [31] is a good choice,

which reflects the interaction between each pair of criteria

and reduces the complexity of solving a fuzzy measure.

Based on these facts, the following offers the Shapley

weighted similarity measures based on the 2-additive
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measure. First, we review 2-additive measure and the

Shapley value for 2-additive measure.

Definition 12 [31] Let X = {x1, x2, …, xn} be the set of

compared objects. l is called a 2-additive measure if, for

any R 	 X with |R| � 2, we have

lðRÞ ¼
X

fxi;xjg	R
lðxi; xjÞ � ðjRj � 2Þ

X
xi2R

lðxiÞ;

ð23Þ

where lðxiÞ is the importance of the object xi, and lðxi; xjÞ
is the importance of the objects xi and xj for all i, j = 1, 2,

…, n with i 6¼ j.

The main feature of 2-additive measure is that it only

needs
nðnþ1Þ

2
variables to determine a fuzzy measure, while

2n � 2 variables are needed in general case.

For example, let X = {x1, x2, x3, x4}. Suppose that the 2-

additive measure l on X is defined as: lðx1Þ ¼ 0:4,

lðx2Þ ¼ 0:3, lðx3Þ ¼ 0:4, lðx4Þ ¼ 0:2, lðx1; x2Þ ¼ 0:6,

lðx1; x3Þ ¼ 0:7, lðx1; x4Þ ¼ 0:6, lðx2; x3Þ ¼ 0:5,

lðx2; x4Þ ¼ 0:6, and lðx3; x4Þ ¼ 0:6. According to Eq. (23),

we have lðx1; x2; x3Þ ¼ 0:7, lðx1; x2; x4Þ ¼ 0:9,

lðx1; x3; x4Þ ¼ 0:9, lðx2; x3; x4Þ ¼ 0:8, and lðXÞ ¼ 1.

Definition 13 [35] Let l be a 2-additive measure on X.

Then, the Shapley value for l on X is expressed as:

Shxiðl;XÞ ¼
3� n

2
lðxiÞ þ

1

2

X

xj2Xnfxig
lðxi; xjÞ � lðxjÞ
� 	

:

ð24Þ

With respect to the above example, following Eq. (24) the

Shapley values of xi, i = 1, 2, 3, 4, are Shx1ðl;
XÞ ¼ 0:3;Shx2ðl;XÞ ¼ 0:2 and Shx3ðl;XÞ ¼ Shx4ðl;
XÞ ¼ 0:25. Taking the Shapley value of x1 for example, we

have

Shx1ðl;XÞ ¼
3� 4

2
lðx1Þ þ

1

2
lðx1; x2Þ � lðx2Þ þ lðx1; x3Þ � lðx3Þ þ lðx1; x4Þ � lðx4Þð Þ

¼ � 1

2

 0:4þ 1

2
0:6� 0:3þ 0:7� 0:4þ 0:6� 0:2ð Þ

¼ �0:2þ 0:5

¼ 0:3:

To reflect the interactions and importance of criteria, the

2-additive measure-based Shapley weighted similarity

measures are defined as follows:

The 2-additive measure-based Shapley weighted gen-

eralized normal similarity measure is

Sk;Sh1 D1;D2ð Þ ¼ 1� 1

2

X
xi2X

Shxiðl;XÞ qk ~h1ðxiÞ; ~h2ðxiÞ
� 	

þ qk ~g1ðxiÞ; ~g2ðxiÞð Þ
� 	

:

ð25Þ

The 2-additive measure-based Shapley weighted Haus-

dorff normal similarity measure is

SShH D1;D2ð Þ ¼
X

xi2X
Shxiðl;XÞ

4� max
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�
�

�
�

n o
� max

c2ðxiÞ2 ~h2ðxiÞ
c2ðxiÞ � cc2ðxiÞ

1
ðxiÞ

�
�

�
�

n o
� max

g1ðxiÞ2 ~g1ðxiÞ
g1ðxiÞ � gg1ðxiÞ

2
ðxiÞ

�
�

�
�

n o
� max

g2ðxiÞ2 ~g2ðxiÞ
g2ðxiÞ � gg2ðxiÞ

1
ðxiÞ

�
�

�
�

n o

4þ min
c1ðxiÞ2 ~h1ðxiÞ

c1ðxiÞ � cc1ðxiÞ
2

ðxiÞ
�� ��
n o

þ min
c2ðxiÞ2 ~h2ðxiÞ

c2ðxiÞ � cc2ðxiÞ
1

ðxiÞ
�� ��
n o

þ min
g1ðxiÞ2 ~g1ðxiÞ

g1ðxiÞ � gg1ðxiÞ
2

ðxiÞ
�� ��
n o

þ min
g2ðxiÞ2 ~g2ðxiÞ

g2ðxiÞ � gg2ðxiÞ
1

ðxiÞ
�� ��
n o:

ð26Þ

The correlation coefficient and 2-additive measure-

based Shapley weighted normal similarity measure is

SShCC D1;D2ð Þ ¼ 2
X

xi2X
Shxiðl;XÞ

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞcc1ðxiÞ2

ðxiÞ
� 

þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞcc2ðxiÞ1
ðxiÞ

� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞð Þ2þ cc1ðxiÞ

2
ðxiÞ

� 2
 �
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞð Þ2þ cc2ðxiÞ
1

ðxiÞ
� 2
 �;

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞgg1ðxiÞ2
ðxiÞ

� 
þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞgg2ðxiÞ1
ðxiÞ

� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞð Þ2þ gg1ðxiÞ
2

ðxiÞ
� 2
 �

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞð Þ2þ gg2ðxiÞ
1

ðxiÞ
� 2
 � :

ð27Þ

The 2-additive measure-based Shapley weighted mini-

max normal similarity measure is

SShMM D1;D2ð Þ ¼
X

xi2X
Shxiðl;XÞ

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ ^ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ ^ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ ^ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ ^ gg2ðxiÞ
1

ðxiÞ
� 

P
c1ðxiÞ2 ~h1ðxiÞ c1ðxiÞ _ cc1ðxiÞ

2
ðxiÞ

� 
þ
P

c2ðxiÞ2 ~h2ðxiÞ c2ðxiÞ _ cc2ðxiÞ
1

ðxiÞ
� 

þ
P

g1ðxiÞ2 ~g1ðxiÞ g1ðxiÞ _ gg1ðxiÞ
2

ðxiÞ
� 

þ
P

g2ðxiÞ2 ~g2ðxiÞ g2ðxiÞ _ gg2ðxiÞ
1

ðxiÞ
� 

;

ð28Þ

where Shxiðl;XÞ is the Shapley value of the criterion xi for

the 2-additive measure l as shown in Eq. (24) for all i = 1,

2, …, n.

Following the above similarity measures for DHFSs, we

can obtain their associated similarity measures for DHFEs.

For example, for any two DHFEs d1 ¼ ~h1; ~g1
� �

and

d2 ¼ ~h2; ~g2
� �

, the generalized normal similarity measure is

Sk1 d1; d2ð Þ ¼ 1� 1

2
qk ~h1; ~h2
� 	

þ qk ~g1; ~g2ð Þ
� 	

; ð29Þ

where k[ 0, qk ~h1; ~h2
� 	

¼ 1
2

1
j ~h1j
P

c12 ~h1
jc1 � cc1

2
jk þ 1

j ~h2j

�

P
c22 ~h2

jc2 � cc2
1
jkÞ1

k, and qk ~g1; ~g2ð Þ ¼ 1
2
ð 1

j ~g1j
P

g12 ~g1
jg1�

gg1
2
jkþ : 1

j ~g2j
P

g22 ~g2
jg2 � gg2

1
jk
1

k

:

4 An Approach for Multi-criteria Decision-
Making with DHFSs

The part introduces a new multi-criteria decision-making

method with DHFSs based on the defined similarity mea-

sure. In this procedure, the weights of criteria are needed.

When they are incompletely known, we first need to

determine them.

4.1 Optimization models for ascertaining

the weighting information

This subsection builds optimization models for ascertain-

ing the weighting information based on the defined simi-

larity measures. Without loss of generality, suppose that

there are n alternatives and m criteria, denoted by X = {x1,

x2, …, xn} and C = {c1, c2, …, cm}, respectively. Let D ¼
dij
� 	

n
m
be the dual hesitant fuzzy decision matrix

(DHFDM) offered by the experts, where dij ¼ ~hij; ~gij
� �

is

the DHFE with ~hij and ~gij being the hesitant fuzzy preferred

and non-preferred judgements of the alternative xi for the
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criterion cj given by the experts for all i = 1, 2, …, n, and

all j = 1, 2, …, m.

For each criterion cj, we calculate the similarity measure

S dij; dkj
� 	

¼
Sk1 dij; dkj
� 	

; SH dij; dkj
� 	

; SCC dij; dkj
� 	

or SMM dij; dkj
� 	

using

Eqs. (15), (16), (17), or (18) for DHFEs dij and dkj, where i,

k = 1, 2, …, n with i 6¼ k. Then, the sum of the similarity

measures for the criterion cj is Scj ¼Pn�1
i¼1

Pn
k¼iþ1 S dij; dkj

� 	
. As well known, the bigger the

value of Scj is, the smaller the discrimination will be for

ranking alternatives. Therefore, the importance of such

criteria is relatively small. Based on this analysis, we build

the following model to determine the 2-additive measure

lðcjÞ; j ¼ 1; 2; . . .; n

lðck; cjÞ; k; j ¼ 1; 2; . . .; n with k 6¼ j

(

on the criteria set

C:

u� ¼ min
Xn

j¼1
Shcjðl;CÞ 
 Scj ;

Shcjðl;CÞ ¼
3� n

2
lðcjÞ þ

1

2

X

ck2Cnfcjg
lðcj; ckÞ � lðckÞ
� 	

P

ck2Tnfcjg
lðcj; ckÞ � lðckÞ
� 	

�ðjT j � 2ÞlðcjÞ; 8T 	 C; 8cj 2 T ; jT j � 2

P

fck ;cjg	C

lðck; cjÞ � ðjCj � 2Þ
P

cj2C
lðcjÞ ¼ 1

lðcjÞ� 0; j ¼ 1; 2; . . .; n
lðcjÞ 2 Wcj ; j ¼ 1; 2; . . .; n

8
>>>>>>>>>><

>>>>>>>>>>:

;

ðM� 1Þ

where the first constraint is Eq. (24), and the second to

fourth constraints are the sufficient and necessary condi-

tions for the 2-additive measure [31], and Wek is the known

weighting range of the criterion cj.

Model (M-1) can be further equivalently transformed

into the following model:

/� ¼ min
3� n

2

Xn

j¼1
lðcjÞ 
 Scj þ

1

2

Xn

j¼1

X

ck2Cnfcjg
lðcj; ckÞ � lðckÞ
� 	


 Scj

0

@

1

A;

P

ck2Tnfcjg
lðcj; ckÞ � lðckÞ
� 	

�ðjT j � 2ÞlðcjÞ; 8T 	 C; 8cj 2 T ; jT j � 2

P

fck ;cjg	C

lðck; cjÞ � ðjCj � 2Þ
P

cj2C
lðcjÞ ¼ 1

lðcjÞ� 0; j ¼ 1; 2; . . .; n
lðcjÞ 2 Wcj ; j ¼ 1; 2; . . .; n

8
>>>>><

>>>>>:

ðM� 2Þ

Solving model (M-2), we can obtain the 2-additive

measure on the criteria set C, where l�ðcjÞ and l�ðck; cjÞ
for all k, j = 1, 2, …, n with k 6¼ j. It is noteworthy that

when the importance of the experts is independent, then

model (M-2) recues to the following model for determining

the additive measure w ¼ wc1 ;wc2 ; . . .;wcnð Þ on the criteria

set C:

w� ¼ min
Xn

j¼1

wcj 
 Scj ;

Pn

j¼1

wcj ¼ 1

wcj � 0; j ¼ 1; 2; . . .; n
wcj 2 Wcj ; j ¼ 1; 2; . . .; n

8
>><

>>:
ðM� 3Þ

Once the 2-additive measure or additive measure on the

criteria set C is derived by solving model (M-2) or model

(M-3), we can apply the defined (Shapley) weighted sim-

ilarity measures to derive the ranking of objectives.

4.2 A New Algorithm for Dual Hesitant Fuzzy

Multi-criteria Decision-Making

Adopting the defined similaritymeasures and built models for

determining weighting information, we offer the following

algorithm tomulti-criteria decision-makingwith dual hesitant

fuzzy information in view of TOPSISI method [36].

Step 1 Let D ¼ dij
� 	

n
m
be the DHFDM, where dij ¼

~hij; ~gij
� �

is the DHFE with ~hij and ~gij being the

hesitant fuzzy preferred and non-preferred

judgement sets of the alternative xi for the

criterion cj for all i = 1, 2, …, n, and all j = 1, 2,

…, m;

Step 2 If the weighting information on the criteria set

C = {c1, c2, …, cn} is exactly known, ship to Step

3. Otherwise, we employ the built programming

model (M-2) or (M-3) to determine the optimal 2-

additive measure

l�ðcjÞ; j ¼ 1; 2; . . .; n

l�ðck; cjÞ; k; j ¼ 1; 2; . . .; n with k 6¼ j

(

or

additive measure w� ¼ w�
c1
;w�

c2
; . . .;w�

cn

� 
on the

criteria set C;

Step 3 Using the (Shapley) weighted normal similarity

measures to calculate the similarity measures

between the DHFS di ¼ di1; di2; . . .; dimf g and the

positive ideal DHFS dþ ¼ dþ1 ; d
þ
2 ; . . .; d

þ
m

� �
as

well as between the DHFS di ¼ di1; di2; . . .; dimf g
and the negative ideal DHFS d� ¼
d�1 ; d

�
2 ; . . .; d

�
m

� �
for each alternative xi, denoted

by S di; d
þð Þ and S di; d

�ð Þ, where dþj ¼
f1g; f0gh i and d�j ¼ f0g; f1gh i for all j = 1, 2,

…, m;

Step 4 Following the similarity measures S di; d
þð Þ and

S di; d
�ð Þ, we calculate the ranking values of

alternatives, where RðxiÞ ¼ S di;d
þð Þ

S di;d�ð ÞþS di;dþð Þ for all

i = 1, 2, …, n;

Step 5 End
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5 Two Illustrative Examples

To show the concrete application of the new method and

compare it with previous similarity measure-based meth-

ods, this section offers two examples.

Example 4 With the development of living standards, car

becomes an essential tool for people to travel. According to

the latest statistics, the number of motor vehicles in China

is 325 million. It has greatly changed the people’s lifestyle.

However, automobile is the main cause of urban traffic

congestion. To ease traffic congestion, China’s major cities

continue to improve and build subways. As well known,

the construction of Metro is complex and expensive.

Therefore, the choice of construction enterprises is very

important. After preliminary screening, four construction

enterprises are chosen as alternatives X = {x1, x2, x3, x4}.

To select the best construction enterprise, an expert team is

invited to offer their judgments following four main cri-

teria: c1: construction quality, c2: construction progress, c3:

construction cost, and c4: enterprise reputation. If the

experts fail to reach an agreement, more than one value for

some judgement is permitted. Furthermore, the experts can

offer their preferred and non-preferred membership degrees

to fully express their judgements. Considering these

aspects, DHFEs are good tools. Suppose that DHFEs about

construction enterprises for the considered criteria are

offered as shown in Table 1. Furthermore, the weights of

criteria are incompletely known, where Wc1 ¼ ½0:2; 0:4�;
Wc2 ¼ ½0:15; 0:25�; Wc3 ¼ ½0:1; 0:3� and Wc4 ¼ ½0:25; 0:35�.

To obtain the ranking of alternatives, the following

procedure is needed:

Step 1 Since the DHFDM D has been offered as shown

in Table 1, go to Step 2;

Step 2 Taking Eq. (15) for k = 1 for example, the

optimal 2-additive measure l� on the criteria

set C is shown in Table 2

Based on Eq. (24), the Shapley values of criteria

are

Shc1ðl;CÞ ¼ 0:0583; Shc2ðl;CÞ ¼ 0:0583; Shc3ðl;CÞ ¼ 0:325; Shc4ðl;CÞ ¼ 0:5584

Step 3 Using Eq. (25) for k = 1, the 2-additive

measure-based Shapley weighted normal

similarity measures are

S d1; d
þð Þ ¼ 0:8366

S d2; d
þð Þ ¼ 0:7896

S d3; d
þð Þ ¼ 0:8126

S d4; d
þð Þ ¼ 0:7757

8
>>><

>>>:

and

S d1; d
�ð Þ ¼ 0:7182

S d2; d
�ð Þ ¼ 0:7592

S d3; d
�ð Þ ¼ 0:7297

S d4; d
�ð Þ ¼ 0:7438

8
>>><

>>>:

:

Step 4 Following the weighted similarity measures

obtained in Step 3, the ranking values of

objectives are

Rðx1Þ ¼ 0:5381; Rðx2Þ ¼ 0:5098; Rðx3Þ ¼ 0:5269; Rðx4Þ ¼ 0:5105

Thus, the ranking is x1 � x3 � x4 � x2.

The above ranking is derived from the 2-additive mea-

sure-based Shapley weighted normal similarity measure for

k = 1, when different Shapley weighted normal similarity

measures are employed, the ranking values and orders are

derived as shown in Table 3.

Table 3 shows that different ranking values are obtained

for different Shapley weighted normal similarity measures.

However, the same ranking is derived for these similarity

measures.

Table 1 The DHFDM D ¼ dij
� 	

4
4

c1 c2 c3 c4

x1 {{0.2, 0.5}, {0.3, 0.4, 0.5}} {{0.3, 0.4, 0.5}, {0.3, 0.5}} {{0.2, 0.5}, {0.2, 0.4}} {{0.5, 0.6, 0.7}, {0.1, 0.3}}

x2 {{0.4, 0.6, 0.7}, {0.1, 0.2}} {{0.2, 0.5}, {0.3, 0.4}} {{0.4, 0.5, 0.6}, {0.3}} {{0.4}, {0.5, 0.6}}

x3 {{0.2, 0.4}, {0.4, 0.5, 0.6}} {{0.5, 0.6}, {0.2, 0.3, 0.4}} {{0.2, 0.3, 0.4}, {0.3, 0.5}} {{0.5, 0.7}, {0.2, 0.3}}

x4 {{0.2, 0.3, 0.4, 0.5}, {0.4}} {{0.5, 0.7}, {0.2, 0.3}} {{0.5, 0.7}, {0.2}} {{0.3, 0.4}, {0.5}}

Table 2 The optimal 2-

additive measure l� on the

criteria set C

Criteria The measure value Criteria The measure value Criteria The measure value

{c1} 0.2 {c1, c2} 0.2333 {c2, c3} 0.2333

{c2} 0.15 {c1, c3} 0.2333 {c2, c4} 0.4667

{c3) 0.1167 {c1, c4} 0.4667 {c3, c4} 1

{c4) 0.35
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In this example, if we assume that there is no interaction

among criteria. Similar to the above procedure, the ranking

values and orders for different weighted normal similarity

measures are obtained as shown in Table 4.

Table 4 shows that different ranking values and orders

are obtained for different weighted normal similarity

measures. Furthermore, all rankings based on the weighted

normal similarity measures are different to that derived

from the Shapley weighted normal similarity measures.

Furthermore, when we employ the previous weighted

similarity measures based on the weights obtained from our

method. The associated results are derived as shown in

Table 5.

Remark 5 Tables 3, 4 and 5 show that the alternative a1
should be selected as the best choice based on the Shapley

weighted similarity measures. However, the alternative a2

should be viewed as the best choice based on the weighted

similarity measures. The purpose for evaluating the best

construction enterprise based on the weighted similarity

measures is to show the necessity of determining the

weights of criteria considering interactions. Otherwise, we

may derive unreasonable ranking and make incorrect

choice. Because the offered criteria in Example 4 are

dependent, we suggest the DMs to use the Shapley

weighted similarity measures. For example, there is a

complementary interaction between c1: construction qual-

ity and c4: enterprise reputation, while there is a redundant

interaction between c1: construction quality and c3: con-

struction cost. However, if there is a clear explanation that

does not need to consider the interactions among criteria,

then the alternative a2 should be viewed as the best choice

in most cases.

Table 3 The ranking values and orders based on different Shapley weighted normal similarity measures

The Shapley weighted

normal similarity measures

The ranking

value Rðx1Þ
The ranking

value Rðx2Þ
The ranking

value Rðx3Þ
The ranking

value Rðx4Þ
Orders

Sk¼1;Sh
1

0.5381 0.5098 0.5269 0.5105 x1 � x3 � x4 � x2

Sk¼2;Sh
1

0.5245 0.5064 0.5174 0.5068 x1 � x3 � x4 � x2

Sk¼5;Sh
1

0.5184 0.5051 0.5134 0.5053 x1 � x3 � x4 � x2

Sk¼10;Sh
1

0.5167 0.5047 0.5122 0.5050 x1 � x3 � x4 � x2

SShH 0.6559 0.5053 0.6086 0.5449 x1 � x3 � x4 � x2

S;ShCC
0.6365 0.5162 0.5733 0.5620 x1 � x3 � x4 � x2

S;ShMM
0.6976 0.4998 0.6162 0.6115 x1 � x3 � x4 � x2

The optimal 2-additive measure based on the Shapley weighted generalized normal similarity measure for k = 1, 2, 5, 10, the Shapley weighted

Hausdorff normal similarity measure and the Shapley weighted minimax normal similarity measure is derived as shown in Table 2. However, the

optimal 2-additive measure based on the correlation coefficient-based Shapley weighted normal similarity measure is l�(c1) = 0.2, l�(c2)-
= 0.15,l�(c3) = 0.2,l�(c4) = 0.35, l�(c1, c2) = l�(c1, c3) = l�(c2, c3) = 0.275, l�(c1, c4) = 0.55, l�(c2, c4) = 0.425 and l�(c3, c4) = 1. Fur-

thermore, the Shapley values of criteria are Shc1 ðl;CÞ ¼ 0:1, Shc2ðl;CÞ ¼ 0:0375, Shc3 ðl;CÞ ¼ 0:325 and Shc4 ðl;CÞ ¼ 0:5375

Table 4 The ranking values and orders based on different weighted normal similarity measures

The weighted normal

similarity measures

The ranking

value Rðx1Þ
The ranking

value Rðx2Þ
The ranking

value Rðx3Þ
The ranking

value Rðx4Þ
Orders

Sk¼1;w
1

0.5205 0.5283 0.5085 0.5037 x2 � x1 � x3 � x4

Sk¼2;w
1

0.5133 0.5184 0.5056 0.5026 x2 � x1 � x3 � x4

Sk¼5;w
1

0.5102 0.5142 0.5045 0.5024 x2 � x1 � x3 � x4

Sk¼10;w
1

0.5091 0.5128 0.5040 0.5023 x2 � x1 � x3 � x4

SwH 0.5850 0.5955 0.5337 0.5168 x2 � x1 � x3 � x4

SwCC 0.5702 0.5896 0.5081 0.5497 x2 � x1 � x4 � x3

SwMM 0.6214 0.5488 0.5532 0.6363 x4 � x1 � x3 � x2

The optimal additive weight vector based on the weighted generalized normal similarity measure for k = 1, 2, 5, 10, the weighted Hausdorff

normal similarity measure and the weighted correlation coefficient-based normal similarity measure is w = (0.4, 0.1, 0.15, 0.35). Furthermore,

the optimal additive weight vector based on the weighted minimax normal similarity measure is w = (0.2, 0.3, 0.15, 0.35)

R. Yuan, F. Meng: New Similarity Measures for Dual Hesitant Fuzzy Sets… 1861

123



Besides the application of the new method in multi-

criteria decision-making, we can also use it to pattern

recognition. To show this clearly, we take the example in

[26] for instance.

Example 5 [26] Suppose that a new metal material B is

recognized following four criteria. The criteria values of

the recognized new metal material are denoted as:

D ¼ c1; 0:8f g; 0:2f gf gh i; c2; 0:8f g; 0:2f gf gh i; c3; 0:5f g; 0:2f gf gh i; c4; 0:7f g; 0:3f gf gh if g:

Furthermore, there are five types of minerals Ai, i = 1, 2,

3, 4, 5, where the criteria values are expressed using

DHFEs, listed in Table 6.

Furthermore, assume that the weights of the criteria are

incompletely known, where Wc1 ¼ ½0:3; 0:5�;Wc2 ¼ ½0:12;

0:32�;Wc3 ¼ ½0:08; 0:28� and Wc4 ¼ ½0:1; 0:3�. To recognize

which type of the recognized metal material belongs to, the

following procedure is needed.

Step 1 Similar to the analysis for multi-criteria decision-

making, we first calculate the similarity measure

S Di;Dj

� 	
between the criteria ci and cj, where Di

is the ith column of Table 6, i = 1, 2, 3, 4. For

example, using Eq. (15) for k = 1, the similarity

measures between each pair of criteria

are S D1;D2ð Þ ¼ 0:8; S D1;D3ð Þ ¼ 0:8;

S D1;D4ð Þ ¼ 0:7775; S D2;D3ð Þ ¼ 0:8175;

S D2;D4ð Þ ¼ 0:8133 and S D3;D4ð Þ ¼ 0:84.

Therefore, the sum of the similarity measure

for each criterion is Sc1 ¼ 2:3775, Sc2 ¼ 2:4308,

Sc3 ¼ 2:4575 and Sc4 ¼ 2:4308, respectively

Table 6 The DHFEs of the five types of minerals for the criteria

c1 c2 c3 c4

A1 {{0.5,0.6},{0.3}} {{0.2},{0.7,0.8}} {{0.3,0.4},{0.5,0.6}} {{0.5,0.6,0.7},{0.3}}

A2 {{0.8},{0.2}} {{0.6,0.7,0.8},{0.2}} {{0.1,0.2},{0.3}} {{0.2},{0.6,0.7,0.8}}

A3 {{0.7,0.8},{0.2}} {{0.2,0.3,0.4},{0.5}} {{0.4,0.5},{0.2}} {{0.2,0.4},{0.5,0.6}}

A4 {{0.3,0.4},{0.6}} {{0.4,0.5},{0.3,0.4}} {{0.3,0.4},{0.6}} {{0.4,0.5},{0.5}}

A5 {{0.7},{0.3}} {{0.4,0.5},{0.3,0.4}} {{0.3},{0.5,0.6,0.7}} {{0.5},{0.4,0.5}}

Table 5 The ranking values and orders based on previous similarity measures and the additive weight vector on criteria set C

The similarity measures The ranking

value Rðx1Þ
The ranking

value Rðx2Þ
The ranking

value Rðx3Þ
The ranking

value Rðx4Þ
Orders

SGDdhfs
D1;D2ð Þ for k = 1 0.5638 0.5721 0.5263 0.5113 x2 � x1 � x3 � x4

SGDdhfs
D1;D2ð Þ for k = 2 0.5335 0.5472 0.5086 0.4956 x2 � x1 � x3 � x4

SGDdhfs
D1;D2ð Þ for k = 5 0.4670 0.4921 0.4639 0.4516 x2 � x1 � x3 � x4

SGDdhfs
D1;D2ð Þ for k = 10 0.4083 0.4477 0.4187 0.4049 x2 � x3 � x1 � x4

SGHDdhfs
D1;D2ð Þ for k = 1 0.6575 0.6900 0.6675 0.6550 x2 � x3 � x1 � x4

SGHDdhfs
D1;D2ð Þ for k = 2 0.5156 0.5616 0.5298 0.5121 x2 � x3 � x1 � x4

SGHDdhfs
D1;D2ð Þ for k = 5 0.4037 0.4603 0.4211 0.3993 x2 � x3 � x1 � x4

SGHDdhfs
D1;D2ð Þ for k = 10 0.3609 0.4215 0.3795 0.3562 x2 � x3 � x1 � x4

DSdhfs D1;D2ð Þ 0.8423 0.8888 0.7812 0.8390 x2 � x1 � x4 � x3

Sdhfs D1;D2ð Þ 0.4955 0.500 0.4807 0.5140 x4 � x2 � x1 � x3

CSdhfs D1;D2ð Þ 0.5703 0.5954 0.5094 0.6147 x4 � x2 � x1 � x3

The similarity measures SGDdhfs
, SGHDdhfs

and CSdhfs in [24–26] are based on the condition of the weights of criteria being completely known. To

compare them with the new similarity measures, the results obtained from them are based on the weight vector w = (0.4, 0.1, 0.15, 0.35). For the

similarity measure DSdhfs, we here adopt the method offered by Ren and Wei [23]. Because Ren and Wei’s method determines the weights of

criteria by the prioritization between criteria, let c1 � c4 � c3 � c2 be the prioritization relationship for criteria, namely, c1: construction quality

is the most important criterion, while c2: construction progress is the least important criterion. Following Ren and Wei’s method, the normalized

weight matrix of criteria is ðwijÞ4
4 ¼

0:430:090:170:32

0:550:070:140:23

0:450:090:140:32

0:520:110:160:21

0

BBB@

1

CCCA
. For the similarity measure Sdhfs, the ranking values and order are based on

Algorithm 2 in [12], which considers all criteria to be equally important
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Step 2 Because the bigger the value of Scj is, the

smaller the discrimination will be. Therefore,

the importance of such criteria is relatively

small for recognizing the metal material. Using

model (M-2), the optimal 2-additive

measure l� on the criteria set C is shown

in Table 7

According to Eq. (24), the Shapley values of criteria are

Shc1ðl;CÞ ¼ 0:25; Shc2ðl;CÞ ¼ 0:04; Shc3ðl;CÞ
¼ 0:35; Shc4ðl;CÞ ¼ 0:36

Step 3 Using Eq. (25) for k = 1 to calculate the

similarity measure between each type of mineral

and the recognized material, we derive

Sk¼1
1 ðA1;BÞ ¼ 0:8491; Sk¼1

1 ðA2;BÞ ¼ 0:7716;

Sk¼1
1 ðA3;BÞ ¼ 0:8740; Sk¼1

1 ðA4;BÞ ¼ 0:7195;

Sk¼1
1 ðA5;BÞ ¼ 0:8113

Because of Sk¼1
1 ðA3;BÞ ¼ max

1� i� 5
Sk¼1
1 ðAi;BÞ, the recog-

nized material belongs to the third type of mineral A3.

When different Shapley weighted normal similarity

measures are employed, similarity measures are derived as

shown in Table 8.

Similar to Example 4, when we suppose that there is no

interaction among criteria, following model (M-3) and the

similarity measure for each criterion derived from Step 1,

the weight vector on criteria set is w = (0.5, 0.08, 0.12,

0.3). Using the weighted similarity measures, the similarity

measure between each type of mineral and the recognized

material is obtained as shown in Table 9.

Tables 8 and 9 all show that the recognized material

belongs to the third type of material A3 except for one case.

In this example, when the reviewed similarity measures

are employed, the similarity measure between each type of

mineral and the recognized material is shown in Table 10.

Remark 6 Tables 8, 9 and 10 indicate that the recognized

material belongs to the third type of material A3 based on

the Shapley weighted similarity measures. However, the

recognized material may belong to the second, third or

fourth type of material based on the weighted similarity

measures. This example also shows that different ranking

orders and best choices may be obtained based on the

Shapley weighted similarity measures and the weighted

similarity measures. Just as the analysis in Remark 5 for

Example 4, because there is no special explanation about

the independence of criteria, it is more reasonable to use

the Shapley weighted similarity measures. With this in

mind, the material should be recognized as the third type of

material A3.

Table 7 The optimal 2-

additive measure l� on the

criteria set C

Criteria The measure value Criteria The measure value Criteria The measure value

{c1} 0.5 {c1, c2} 0.58 {c2, c3} 0.36

{c2} 0.12 {c1, c3} 0.54 {c2, c4} 0.34

{c3) 0.28 {c1, c4} 0.58 {c3, c4} 1

{c4) 0.3

Table 8 The similarity measures based on different Shapley weighted normal similarity measures

The Shapley weighted

normal similarity

measures

The similarity

measure between A1

and B

The similarity

measure between A2

and B

The similarity

measure between A3

and B

The similarity

measure between A4

and B

The similarity

measure between A5

and B

Sk¼1;Sh
1

0.8491 0.7716 0.8740 0.7195 0.8113

Sk¼2;Sh
1

0.8798 0.8283 0.9024 0.7915 0.8609

Sk¼5;Sh
1

0.8848 0.8460 0.9094 0.8175 0.8766

Sk¼10;Sh
1

0.8824 0.8477 0.9074 0.8219 0.8772

SShH 0.7511 0.6555 0.7972 0.5711 0.6838

S;ShCC
0.8945 0.7650 0.9118 0.8000 0.8620

S;ShMM
0.7057 0.5772 0.7737 0.5544 0.6299

All results in Table 8 are based on the optimal 2-additive measure shown in Table 7
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To illustrate the differences between the new method

and previous ones based on similarity measures for DHFSs,

please see Table 11.

6 Conclusions

Considering the advantages of DHFSs and the limitations

of previous research about the similarity measures for

DHFSs, this paper introduced several new similarity mea-

sures that avoid the limitations of previous similarity

measures. To discriminate the differences of DHFEs for

different criteria, two types of weighted similarity mea-

sures are defined. One type is based on additive measure

Table 9 The similarity measures based on different weighted normal similarity measures

The weighted normal

similarity measures

The similarity

measure between A1

and B

The similarity

measure between A2

and B

The similarity

measure between A3

and B

The similarity

measure between A4

and B

The similarity

measure between A5

and B

Sk¼1;w
1

0.8393 0.8450 0.8760 0.6805 0.8503

Sk¼2;w
1

0.8751 0.8848 0.9039 0.7689 0.8902

Sk¼5;w
1

0.8831 0.8983 0.9108 0.8047 0.9044

Sk¼10;w
1

0.8815 0.8999 0.9090 0.8118 0.9065

SwH 0.7406 0.7714 0.8021 0.5345 0.7415

SwCC 0.9028 0.8599 0.9124 0.7498 0.9267

SwMM 0.7104 0.7418 0.7823 0.5156 0.7182

Table 10 The similarity measures based on previous similarity measures and the additive weight vector on criteria C

The similarity

measures

The similarity

measure

between A1 and B

The similarity

measure

between A2 and B

The similarity

measure

between A3 and B

The similarity

measure

between A4 and B

The similarity

measure

between A5 and B

SGDdhfs
D1;D2ð Þ for k = 1 0.8215 0.8340 0.8550 0.6670 0.8415

SGDdhfs
D1;D2ð Þ for k = 2 0.7968 0.8246 0.8329 0.6593 0.8354

SGDdhfs
D1;D2ð Þ for k = 5 0.7565 0.8098 0.7988 0.6425 0.8227

SGDdhfs
D1;D2ð Þ for k = 10 0.7301 0.8002 0.7745 0.6247 0.8130

SGHDdhfs
D1;D2ð Þ for k = 1 0.9165 0.9103 0.9350 0.8380 0.9250

SGHDdhfs
D1;D2ð Þ for k = 2 0.8887 0.9034 0.9112 0.8329 0.9164

SGHDdhfs
D1;D2ð Þ for k = 5 0.8657 0.8977 0.8885 0.8141 0.9070

SGHDdhfs
D1;D2ð Þ for k = 10 0.8568 0.8954 0.8796 0.8025 0.9032

DSdhfs D1;D2ð Þ 0.8607 0.8917 0.9009 0.8634 0.9281

Sdhfs D1;D2ð Þ 0.4877 0.5743 0.5598 0.4580 0.5459

CSdhfs D1;D2ð Þ 0.9231 0.8853 0.9141 0.8282 0.9382

The same reasons as Example 3, the results obtained from the similarity measures SGDdhfs
, SGHDdhfs

and CSdhfs are based on the weight vector

w = (0.5, 0.08, 0.12, 0.3). To calculate the weights of criteria for the similarity measure DSdhfs, let c1 � c2 � c4 � c3 be the prioritization

relationship for criteria which is derived from their known uncertain weighting information. Following Ren and Wei’s method, the normalized

weight matrix of criteria is ðwijÞ5
5 ¼

0:420:200:170:20

0:330:330:150:19

0:330:260:210:21

0:280:270:200:25

0:280:270:200:25

0

BBBBBB@

1

CCCCCCA

. For the similarity measure Sdhfs, the ranking values and orders are based on

Algorithm 2 [12], which considers all criteria to be equally important
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and the other follows the 2-additive measure-based Shap-

ley value. After that, a new method based on similarity

measures is proposed. The originalities include: (1) it offers

the first type of similarity measures for DHFSs that does

not change the original DHFSs and considers all informa-

tion offered by the decision-makers; (2) it is the first type of

similarity measures for DHFSs that can deal with the sit-

uation where there are interactions among DHFSs; (3) it is

the first similarity measure-based method that can deal with

the situation where the weighting information with inter-

active characteristics is incompletely known. Compared

with previous dual hesitant fuzzy similarity measures, the

new ones may need more computation and time. However,

with the help of computer, these problems can be ignored.

Furthermore, we think that it is worthwhile to do this for

deriving more objective and stable results. To show the

application of the new algorithm, a multi-criteria decision-

making problem and a pattern recognition problem are

provided. Meanwhile, the comparison analysis is given.

From the given algorithm in Subsection 4.2, one can check

that the new method is not offered for special decision-

making problems. As long as we derive the DHFDMs of

decision-making problems, we can use the new method to

address them.

It is noteworthy that this paper focuses on similarity

measures for DHFSs and we can similarly study other

measures for DHFSs such as distance measure and entropy.

Furthermore, we will continue to research other methods

for DHFSs including dual hesitant fuzzy PROMETHEE

method, dual hesitant fuzzy ELECTRE method, dual

hesitant fuzzy MULTIMOORA method and dual hesitant

fuzzy MACBETH. On the other hand, we shall study their

application in practice [37–39].
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