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Abstract In light of the remarkable diversity of data,

arises an interesting and challenging problem of their

description and concise interpretation. In a nutshell, in the

proposed description pursued in this study, we consider a

framework of information granules. The study develops a

general scheme composed of two functional phases:

(i) clustering data and features forming segments of orig-

inal data and delivering a meaningful partition of data, and

(ii) development of information granules. In both phases,

we discuss a suite of performance indexes quantifying the

quality of segments of data and the resulting information

granules. Along this line, discussed are collections of

information granules and their mutual relationships. A

series of publicly available data sets is used in the exper-

iments—their granular signature is quantified, and the

quality of these findings is analyzed.

Keywords Information granules � Multiview perspective �
Clustering � Reconstruction � Classification � Prediction �
Granular signature of data

1 Introduction

Data analysis and data analytics, in general, are inherently

aimed at revealing and description of interpretable and

stable relationships among variables as well as quantifying

their changes over time and space. Along with large vol-

umes of data and their diversity, comes a genuine need to

develop a flexible, user-centric and computationally effi-

cient environment producing meaningful results.

The key research hypothesis is that in the realization of

the above stated agenda of data analytics, the concepts of a

multiview perspective [1–4] of data with the use of infor-

mation granules play a pivotal role both at the method-

ological as well as algorithmic level of ensuing constructs.

The formation and engagement of the multiview organi-

zation of processing of data contributes in a tangible way to

the efficient way of solving of a spectrum of tasks of data

analysis, especially facilitating a thorough user-centric

interpretation of results and producing readable yet fully

legitimate outcomes supported by the existing experimen-

tal evidence. The varying (adjustable) perspective deliv-

ered by information granules helps establish a sound

tradeoff between the representation capabilities of various

views at the data and the efficiency of fundamental cate-

gories of tasks of data science such as association analysis,

classification, prediction, link analysis and others.

Another important research hypothesis is that by

engaging the multiview perspective of data analytics of the

same data, we establish a coherent and holistic view of the

data and ensuing models under consideration. Data are

represented through a collection of information granules.

The diversity of the constructed granules manifests itself

by the fact that information granules are built based on

subsets of data and subsets of features while the quality of

granules is being assessed.
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The term multiview data analysis has been used in the

literature in the past, however this term comes with a dif-

ferent meaning. The study reported in [5] offers an inter-

esting view focused on feature selection. In our case, the

multiview character of information granules is concerned

with the perspective established with regard to mutual

organization involving some sections of the data and sub-

sets of features. Furthermore, the multiview is formed in

the conceptually appealing and computationally sound

setting of information granules.

A number of well-focused research aims of this study

are presented (subsequently leading to the formulation of a

coherent and comprehensive methodological framework of

the investigation):

i. A multiview formation of data subspaces leading to

dimensionality reduction, enhanced readability (in-

terpretability) of the data and increased efficiency of

ensuing analysis (such as e.g., prediction, association

analysis, or classification). The varying (adjustable)

levels of detail captured by the individual views

(perspectives) are helpful in reducing computing

overhead of individual optimization tasks.

ii. The multiview facets built for the data are also

concerned with granulation of the feature space,

therefore leading to so-called meta-features (viz.

collections of features, which exhibit some seman-

tics and offer a view at the data at the higher level of

abstraction). Both of these categories of views

outlined in (i)–(ii) give rise to information granules

of meta-features and information granules estab-

lished in the joint data-feature space. Each view

(perspective) gives rise to its focused perception of

the same data and ensuing results produced in this

setting.

iii. Formation of optimization criteria quantifying the

quality and practical relevance of the multiview

perspective at the data. The essential criteria fall

under the umbrella of representation capabilities of

the data (which are commonly linked to the

inevitable compression error) and the relevance of

the established cognitive perspective in solving main

categories of data analysis problems. An important

and intriguing problem comes with a way on how to

balance these two requirements and cope with their

conflicting nature (higher representation capabilities

do not directly translate into more efficient and

computationally sound performance of data

analysis).

iv. While numeric prototypes are sound initial descrip-

tors of segments of data and features, they are

elevated to granular counterparts, which in turn offer

better abstract and holistic descriptors of data.

The ultimate objective is to derive structural information

[6] in the data and feature (attribute) space and construct

information granules on combinations of subsets of data

and features. Their quality is evaluated in view of various

criteria depending on further use of information granules in

system modeling (classification and prediction) and data

representation. The constructed information granules are

ranked with respect to the pertinent performance criteria

(either reconstruction-based, prediction-oriented, or clas-

sification-based). An overall scheme of processing under-

lying a way of moving from data to information granules is

displayed in Fig. 1. Here, the main phases are highlighted

along with numeric and granular descriptors. The overall

scheme outlined here entails also a significant level of

originality as the comprehensive concept and its algorith-

mic environment have not been investigated.

The data-feature segmentation can be concisely captured

in the following way:

D1;F1ð Þ. . . Di;Fj

� �
; i ¼ 1; 2; . . .; c; j ¼ 1; 2; . . .; r;

ð1Þ

where the data and feature sets are exhaustive and mutually

exclusive, namely

[
c

i¼1
Di ¼ DDi \ Dj ¼ ;; i 6¼ j

[
r

i¼1
Fi ¼ FFi \ Fj ¼ ;; i 6¼ j

; ð2Þ

where c and r are the number of segments present in data

and feature space.

The study offers some original insights into the problem

of data description that have not been studied in the past:

(i) the development of information granules in the data and

feature space delivers a new focused view at the essence of

the overall data set; (ii) the ensuing information granules

built on a basis of numeric prototypes establish a so-called

granular blueprint of data and help focus on the essence of

Fig. 1 Overall processing scheme: from data to information gran-

ules; building data and feature views
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the relationships present there, and (iii) the construction of

classifiers and predictors at the granular level by engaging

information granules as a backbone of such constructs.

To systematically organize the presentation on the

concepts and their construction, the paper is structured as

follows. Section 2 elaborates on the development of sub-

sets of data and features (data views) with the use of fuzzy

clustering, Fuzzy C-Means (FCM) [7], being more specific.

Subsequently, in Sect. 3, the characterization of these

views is offered through several performance indexes, say

a reconstruction error, classification content and prediction

content of numeric representatives of data views. Section 4

is devoted to the construction of information granules

through the principle of justifiable granularity. Information

granules form a blueprint of classifiers and predictors;

these topics are covered in Sect. 5. Experiments using

publicly available data are presented in Sect. 6. Conclu-

sions and directions of future research are included in

Sect. 7.

2 Development of Subsets of Data (Clusters)
Through Clustering Completed in Data Space
and Feature Space

Information granules are commonly constructed with the

help of clustering techniques [8] regarded as a prerequisite

design vehicle. Clustering is regarded as a sound departure

point of further constructs. Here, we consider the Fuzzy

C-Means (FCM) algorithm as a representative of vehicle of

clustering. While the FCM is commonly used to cluster

data, it can be also considered to cluster features, viz. build

a collection of features. In what follows, we consider pat-

terns (data) x1, x2,…, xN expressed in the n-dimensional

space of real numbers Rn. Recall that clustering realized by

the FCM algorithm returns a collection of prototypes and a

partition matrix. The number of clusters in the data space is

set to c, and the number of clusters in the feature space is

set to r. In what follows, we recall the essence of building

data segments and feature segments.

2.1 Clustering in the Data Space

The FCM is guided by the following well-known objective

function:

Q ¼
Xc

i¼1

XN

k¼1
umikjjxk � vijj2; ð3Þ

where c stands for the number of clusters, m is a fuzzifi-

cation coefficient (m[ 1) and ||.|| is a weighted Euclidean

distance [9, 10], namely jja� bjj2 ¼
Pn

j¼1
ðaj�bjÞ2

r2
j

,

dim(a) = n with the weights being the standard deviations

of the corresponding variables. The optimization (viz.

partitioning the data) carried out in the data space is real-

ized iteratively: one starts with a randomly initialized

partition matrix U and then updates the parameters to be

optimized, viz. the partition matrix and the collection of the

prototypes v1, v2,…, vc.

Note that the partition matrix is fuzzy, viz. the entries

assume values in between 0 and 1. In other words, fuzzy

sets formed by the FCM embrace almost all data but with

some degrees of membership [11]. To form the constructed

subsets of data, we make them Boolean (two-valued) by

admitting those data which belong to the ith cluster to the

highest extent, viz. Di = {xk| uik= maxj=1,2,…,c ujk}.

In conclusion, one can regard the prototypes vi as the

concise numeric descriptors of Di. The prototypes are just a

manifestation of the data composing the clusters and as

such are the most meaningful outcomes of fuzzy clustering

to be used in further investigations.

2.2 Clustering in the Feature Space

When it comes to revealing structure in feature space, we

reformulate the problem and look at the objects that are

subject to clustering. Let us organize the original data into

vectors positioned in RN, namely z1, z2,…, zn, where zj-
= [xj1 xj2 … xjN], j = 1, 2,…, n.

The objective function guiding the process of clustering

of features (thus building subsets of features) is expressed

as follows:

Q ¼
Xc

i¼1

Xn

j¼1

gmij jjzj � tijj2: ð4Þ

Here, the distance is expressed as follows:

jjzj � tijj2 ¼
XN

k¼1

ðzjk � tikÞ2: ð5Þ

The partition matrix G conveys crucial information

about the subsets of features forming so-called met fea-

tures. The features belonging to the jth cluster to the

highest extent are denoted by Fj. In virtue of identifying

elements of the partition matrix F, the subsets Fj, Fl, etc.,

are mutually disjoint.

In summary, the results of clustering completed in the

data and feature space come as data sets ad feature sets. We

form all possible combinations of subsets produced by the

clustering completed in the data space and feature space.

For instance, the subset (Di, Fj) describes the data

belonging to Di and having features belonging to Fj.

Having c and r clusters in the data and feature space,

respectively, we have cr subsets (segments) in the Carte-

sian product of these two spaces. In what follows, we

evaluate the quality of such subsets; by computing the
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pertinent measures one can order the subsets and evaluate

their distribution.

3 Characterization of Data Views (Di, Fj)

The performance of each cluster (data view) can be eval-

uated in various ways. Depending upon applications, there

are several main indexes to be considered: (i) reconstruc-

tion error, (ii) classification content, and (iii) prediction

capabilities.

First, we elaborate on the reconstruction criterion. In

total there are cr information granules (clusters) each

associated with the reconstruction error. The results

obtained for the corresponding clusters are arranged in a

matrix form organizing results for all combinations of Di

and Fj.

3.1 Reconstruction Error

Denote the reconstruction error produced for (Di, Fj) by Vij,

i = 1, 2.., c; j = 1, 2,…, r.

This error expresses the representation capabilities of

the prototype vij associated with (Di, Fj) by computing the

following expression Vij:

Vij ¼
1

cardðDiÞ
1

cardðFjÞ
XN

k¼1
xk2Di

jjxk � vijjj2Fj
: ð6Þ

The same as in clustering algorithms, the distance ||.|| is

the weighted Euclidean involving the standard deviation of

the variables; let us emphasize that the calculations are

completed for features forming Fj. The prototype vij

standing in (6) is computed as follows:

vij;l ¼
1

Ni

X

xk2Di

xk; ð7Þ

where l runs through indexes of features forming Fj.

Obviously, the coordinates of vij stand for those variables

which form Fj. We organize the values of the reconstruc-

tion error into a c by r matrix form containing the values of

the Vij. Furthermore, the values of Vij can be arranged in an

increasing order by ranking the relevance of numeric

descriptors by starting from the most relevant ones (viz.

with the smallest values of this criterion).

Furthermore, depending on the nature of the data under

consideration, the quality of information granules can be

assessed by viewing their discriminatory and predictive

content (abilities).

3.2 Classification Content of Information Granule

When dealing with classification problem, one determines

a class content of information granule. Consider that in the

classification problem we encounter t classes x1, x2,…, xt.

The quality of the information granule (cluster) formed by

(Di, Fj) is assessed by looking at the distribution of data in

(Di, Fj) across different classes. With regard to the matrix

of segments of data and features, the result is the same

across the columns in the given row.

Then we calculate the probability of classes present in

this information granule pi= [pi1 pi2 …, pit], i = 1,2,…,c.

The less homogenous the information granule is, the higher

its vagueness becomes. The quantification is realized by

means of the entropy [12] measure defined as follows:

h uð Þ ¼ 2u; u 2 0; 1=2½ �
2 1 � uð Þ; u 2 1=2; 1½ �

�
: ð8Þ

The vagueness of the ith granule is expressed as follows:

Ci ¼
Xt

l¼1

h pilð Þ: ð9Þ

3.3 Predictive Content of Information Granules

Comparing the performance indexes is completed by

looking at the diversity of output data falling within the

bounds of the information granules. The diversity is

quantified by means of the variance of the output variable

of data falling within the bounds of (Di, Fj). In more detail,

recall that the data come in the form (xk, yk), where yk is the

output variable. We calculate the variance

r2
iy ¼

1

Ni � 1

X

xk ;ykð Þ2Di

yk � �yð Þ2; ð10Þ

where

�yi ¼
1

Ni

X

xk ;ykð Þ2Di

yk ð11Þ

and

Ri ¼ r2
iy ð12Þ

i = 1, 2,…,c.

4 Construction of Information Granules

The data subsets (segments) (Di, Fj) embracing some data

and formed over a certain collection of features give rise to

information granules. The granules are built with the use of

the principle of justifiable granularity [13–16].
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In a nutshell, this principle produces an information

granule in such a way it meets the requirements of cover-

age and specificity whose product is maximized; see Fig. 2.

The design of information granule is realized in such a

way that the granule is (i) experimentally justifiable and (ii)

is semantically sound. The experimental justification

means that there is enough data embraced (contained) in

the constructed granule making its existence legitimate in

terms of the experimental data (hence the aspect of

experimental justification). The semantic soundness states

that the granule has to exhibit some interpretation capa-

bilities and its precision needs to be sufficient enough. The

coverage is expressed in the following way:

covðGijÞ ¼
1

Nij
card xk 2 ðDi;FjÞjjjxk � vijjjFj

� njq
2
ij

n o
:

ð13Þ

The interpretation of the coverage criterion requires

some attention. This criterion quantifies the amount of

experimental evidence behind the constructed information

granule. In more detail, we count the number of data whose

distance computed over all features present in Fj, say

jjxk � vijjjFj
¼

Pnj
l¼1

ðxkl�vij;lÞ2

r2
il

, with ril being equal to the

standard deviation of data residing within the correspond-

ing segment of the data) equal or smaller than njq2
ij the

threshold implied by the radius of the constructed infor-

mation granule q2
ij.

The specificity regarded as a measure of precision is

given as follows:

spðGijÞ ¼ 1 � qij: ð14Þ

Note again that the highest specificity is achieved for the

radius set to zero. However, at this case, the coverage is

practically equal to zero. On the other hand, the highest

coverage implies a zero value of specificity. The increase

of coverage implies the decrease of specificity and vice

versa. If these conflicting criteria have to be optimized, one

has to proceed with a bi-criteria optimization or formulate

the problem as a scalar optimization by taking an aggregate

of the criteria. The product of coverage and specificity

could serve as a viable alternative here.

An information granule Vij associated with (Di, Fj) is the

pair (vij, qij), where the radius qij is optimized by consid-

ering the optimization problem

qij;opt ¼ arg Maxqij2 0;1½ � cov Gij

� �
sp Gij

� �� �
: ð15Þ

The higher the value of the optimized product of cov-

erage and specificity, the more suitable (relevant) the

constructed information granule becomes. Proceeding with

the constructed information granules (after maximization

of (13)), we can conveniently display them in the coverage-

specificity plane; see Fig. 3. The location of information

granules helps identify the best of them in terms of the

specificity and coverage criteria.

5 Granular Predictors and Classifiers

The collection of information granules Gij = (vij, qij), i = 1,

2,…, c; j = 1, 2…, r, forming the concise description of

data are regarded as building modules (blueprint) so that

they can give rise to granular predictors and classifiers. We

briefly outline the essence of the underlying architecture;

noticeable is a role of the granules as a skeleton of the

construct.

5.1 Predictors

Let us consider that for each information granule, there is a

numeric representative of the output variable. Any input x

is matched vis-a-vis the individual information granules

giving rise to the corresponding activation (matching)

levels u1, u2, …, ucr:

Fig. 2 From data segment to information granules

Fig. 3 Characterization of information granule in the coverage-

specificity plane
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uij ¼
1

Pc;r

i1¼1
j1¼1

jjx�vijjjFj
jjx�vi1 j1 jjFj

� �2=ðm�1Þ : ð16Þ

The prediction result is computed by taking a linear

combination of the numeric representatives of the indi-

vidual information granules and their radii, namely

ŷ ¼
Xc

i¼1

�ui �yi q̂ ¼
Xc

i¼1

�qi �yi; ð17Þ

where

�ui ¼
Xr

j¼1

uij;

�qi ¼
Xr

j¼1

qij:

ð18Þ

Thus, the prediction result arises as information granule

Ŷ ¼ ðŷ; q̂Þ:

5.2 Classifiers

As presented so far, each information granule comes with a

vector of probability of classes pi. pi= [pi1 pi2 …pit],

i = 1,2,…,c. They are coming as a result of counting the

number of patterns belonging to the individual classes [17].

More specifically, denoting by Ni the number of data

contained in Di, ni1, ni2,…, nit are the counts of number of

data belonging to the corresponding classes. The vector pi
is composed of the ratios

pi ¼
ni1
Ni

ni2
Ni

� � � nit
Ni

	 

: ð19Þ

The process of class assignment proceeds in a similar

way as discussed in case of predictors. The final class

membership p is computed in the following way:

p ¼
Xc

i¼1

�uipi: ð20Þ

Using the maximum rule, one selects this class i0 for

which the coordinate of p attains the highest value, viz.

i0 ¼ arg Maxi¼1;2;...;ppi:

In other words, i0 is the index of the largest coordinate

of the vector p.

5.3 Illustrative Example

In this example, we assume a synthetic data of six data

points of four features. The first three data points are from a

certain normal distribution (classification class 1), and the

next three from another normal distribution (classification

class 2).

X ¼

½�0:3748 �0:6411 2:8948 0:8533

0:9164 1:0290 2:1972 4:0396

1:0432 1:3009 �1:4089 2:4230

4:8278 2:9201 2:6086 6:5614

5:2599 2:2045 5:6848 7:7025

5:3587 1:3298 2:2939 9:2319�

X is clustered into c = 2 data clusters, and r = 2 feature

clusters as follows (Fig. 4).

Accordingly, we have four information granules: (D1,

F1), (D1, F2), (D2, F1), and, (D2, F2). The prototype of each

information granule is computed by averaging all its data

points. For example, the computation of v11 is illustrated in

Fig. 5.

Now using Eq. (16), we compute the membership

matrix uij. Figure 6 illustrates the semantics of uij.

X = [0.3748   -0.6411    2.8948    0.8533 

         0.9164    1.0290    2.1972    4.0396 

         1.0432    1.3009   -1.4089    2.4230 

         4.8278    2.9201    2.6086    6.5614 

         5.2599    2.2045    5.6848    7.7025 

         5.3587    1.3298    2.2939    9.2319]

=============== [[[[[[0.30.30.30.30.30.30.3777777744444448 888888 -0-0-0-0-0-0-0.6666.6.66444444411111111111111 2222222....8888888999999948484848484848  0.0000.0.000.0.000 8888888888888555555555555533333333333333333333333333

 0.90.90.90.90.90.90.9111111166666664444444 1111111....0000000222222299999990000000   2.12.12.12.12.12.12.1999999972727272727272 4.4.444.44.4.4.44.44 0000000000000333333333333396969696969696969696969696

 1.01.01.01.01.01.01.0444444433333332222222 1111111....3333333000000000000009999999 -------1111111...4444444000000089898989898989 2.2.2.2.2222.2.2.222.4444444444444222222222222230303030303030303030303030

 4.84.84.84.84.84.84.84.84.84.84.8222222222227777777777788888888888 22222222222.....9999999999922222222222000000000001111111111   2.62.62.62.62.62.62.62.62.62.62.6000000000008686868686868686868686  6.5614

 5.25.25.25.25.25.25.25.25.25.25.2555555555559999999999999999999999 22222222222......22222222222000000000004444444444455555555555   5.65.65.65.65.65.65.65.65.65.65.6888888888884848484848484848484848  7.7025

 5.35.35.35.35.35.35.35.35.35.35.3555555555558888888888877777777777 111111111....33333333333222222222229999999999988888888888   2.22.22.22.22.22.22.22 22.22.22.2999999999993939393939393939393939  9.2319]

Data cluster D1

Data cluster D2

Feature cluster F1 Feature cluster F2

Fig. 4 Clustering the synthetic data into (c = 2) data clusters and

(r = 2) feature clusters

Fig. 5 Computation of prototype vij for information granule (Di, Fj)

Fig. 6 The membership values uij
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Using Eq. (18), we compute the membership through

data clusters (�ui). For example, �ui is computed as shown in

Fig. 7.

Using Eq. (19), we compute (pi), the ratio of each

classification class in each data cluster Di. Then, using

Eq. (20), the assigned class to a certain data point Xi is

computed as shown in Fig. 8.

6 Experimental Studies

In this section, we elaborate on the development of infor-

mation granules and their quality. Both classification and

regression type of data are considered; see Table 1.

We proceed with the clustering algorithm in the data

space or feature space as described in Sect. 2. The number

of clusters in the data space is c while for clustering fea-

tures we consider r clusters. The clustering results are

transformed to the binary version. The values of these

numbers are selected based on the behavior of the objective

function versus the varying values of these parameters. For

each data set, we report the results in a certain format. The

numbers of segments in the data and feature space are

Membership of X1 to data granule D1  = 0.5373 + 0.3552 = 0.8925 

uij =  [0.5373    0.7970    0.0001    0.0569    0.0018    0.1170 

0.0892     0.0727    0.0000    0.6745    0.0180    0.6267 

 0.3552     0.1105    0.9998    0.0233    0.0006    0.0104 

 0.0183     0.0197    0.0000    0.2454    0.9796    0.2458] 

                                   Membership of X4 to data granule D2

= [0.8925    0.9076    1.0000    0.0802    0.0024    0.1274 

[ 333333333

0.0892

0.00.000.00.0 333333333555555555555555555222222222

[0.[0.[[0.[0[0[0[0[0.[0[ 555555555333333333737373737373737373

Fig. 7 The membership values �ui

Fig. 8 Classification class prediction

Table 1 Summary of data

Data set Purpose Number of

used features

Number of

instances

Number

of classes

Data type

Gender Voice [18] Determining male or female

based on voice characteristics

21 3168 2 Classification

Wine [19] Predicting wine quality 11 4898 7

Concrete compressive

strength [19]

Predicting concrete compressive

strength

8 1030 No classes Regression

Abalone [19] Predicting the age of abalone 7 4177

c
0 10 20 30 40 50

106

0

1

2

3

4

5

6

r
2 3 4 5 6 7 8 9

0

2000

4000

6000

8000

10000

12000

14000

Fig. 9 Performance indexes (objective functions) for successive values of c and r for the Gender Voice data set
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selected on a basis of the changes of the performance

indexes (objective functions) regarded as functions of c and

r; see Fig. 9. They are treated as functions of the number of

segments and tend to stabilize when moving towards

higher values of c and r. Now we will demonstrate our

scheme using one classification data set (Gender Voice

data set), and one regression data set (Concrete Data set),

then follow the same procedure for more data sets.

As we have cr information granules, the quality of

obtained information granules is reported by means of the

reconstruction index (6). The values of Vij computed with

the use of (6) for individual granules are presented in

Tables 2 and 3. It is clear from these tables, and based on

Fig. 9 that when the number of data clusters reaches 7 and

above, and when the number feature clusters reaches 4 and

above, we get a low value of the reconstruction error. This

Table 2 Vij (Gender voice data

set) for i = 1, 2,…, c; j = 1,

2,…,r

r/c 2 4 7

2 0.9034 0.6605

0.6469 0.8373

0.5702 0.3176

0.7180 0.1565

0.3774 0.2925

0.8934 0.6456

0.6500 0.2096

0.7109 0.1170

0.3406 0.2795

0.7655 0.5814

1.0411 0.4863

0.8444 0.1584

0.3761 0.1446

3 0.9034 0.0432 0.9692

0.6469 2.5030 0.0044

0.5702 0.5529 0.2000

0.7180 0.4607 0.0044

0.3774 0.8703 0.0037

0.8934 0.0091 0.9638

0.5106 0.2496 0.1061

0.6568 0.1177 0.0053

0.3533 0.4763 0.0038

0.8608 0.0011 0.9420

0.9346 0.0180 0.4124

0.7712 0.0745 0.2253

0.4830 0.2374 0.0029

4 0.9523 0.1212 0.0432 0.9692

0.6184 1.1015 2.5030 0.0044

0.5685 0.5966 0.5529 0.2000

0.7418 0.3369 0.4607 0.0044

0.3842 0.2686 0.8703 0.0037

0.9452 0.0653 0.0091 0.9638

0.6806 0.1611 0.1146 0.2571

0.7385 0.2695 0.3419 0.0045

0.3454 0.2638 0.8310 0.0038

0.8125 0.0144 0.0003 0.8720

1.1050 0.0185 0.0023 0.7283

0.8909 0.0998 0.0237 0.2258

0.3799 0.3156 0.1976 0.1181

Table 3 Vij (Concrete data set)

for i = 1, 2,…, c; j = 1, 2,…,r
r/c 2 4 7

2 53.9519 83.9738

35.6485 58.3637

35.9535 77.5321

40.2511 75.7059

30.5896 66.3636

16.1722 37.9906

43.4919 107.0560

17.5937 80.7913

27.6481 54.6669

34.6507 34.6476

21.8200 29.0736

25.9452 33.2534

12.8776 15.0407

3 47.3335 57.2611 83.9738

20.1269 43.4093 58.3637

39.0413 34.4096 77.5321

34.5679 43.0927 75.7059

20.0424 35.8632 66.3636

14.9211 16.7977 37.9906

32.2958 49.0899 107.0560

21.4409 15.6702 80.7913

11.6319 35.6563 54.6669

26.0518 38.9501 34.6476

13.2607 26.0997 29.0736

25.1975 26.3190 33.2534

13.5048 12.5640 15.0407
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Fig. 10 Vij starting from the best information granules for the Gender Voice data set

Fig. 11 Vij starting from the best information granules for the Concert data set
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Fig. 12 Entropy of information granules for the Gender Voice data set

Fig. 13 Variance of information granules for the Concert data set

Fig. 14 Characterization of information granules in the coverage and specificity space for the Gender Voice data set
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Table 4 Vij (Abalone data set)

for i = 1, 2,…, c; j = 1, 2,…,r
r/c 2 4 7

2 0.0810 0.0353

0.0875 0.0659

0.0203 0.0185

0.0389 0.0115

0.0198 0.0211

0.0550 0.0612

0.0090 0.0056

0.0231 0.0062

0.0083 0.0157

0.0089 0.0119

0.0097 0.0159

0.0153 0.0272

0.0384 0.0676

3 0.0668 0.0353 0.1095

0.0197 0.0659 0.2230

0.0119 0.0185 0.0370

0.0431 0.0115 0.0307

0.0091 0.0211 0.0413

0.0108 0.0612 0.1434

0.0079 0.0056 0.0114

0.0293 0.0062 0.0107

0.0064 0.0157 0.0122

0.0067 0.0119 0.0131

0.0062 0.0159 0.0167

0.0074 0.0272 0.0312

0.0081 0.0676 0.0990

4 0.0668 0.0312 0.1095 0.0476

0.0197 0.0476 0.2230 0.1207

0.0119 0.0178 0.0370 0.0207

0.0431 0.0102 0.0307 0.0151

0.0091 0.0172 0.0413 0.0326

0.0108 0.0432 0.1434 0.1152

0.0088 0.0069 0.0056 0.0114

0.0335 0.0252 0.0062 0.0107

0.0069 0.0059 0.0157 0.0122

0.0071 0.0064 0.0119 0.0131

0.0064 0.0060 0.0159 0.0167

0.0073 0.0074 0.0272 0.0312

0.0084 0.0078 0.0676 0.0990

Fig. 15 Characterization of information granules in the coverage and specificity space for the Concrete data set
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can be verified by computing the average reconstruction

error.

Figures 10 and 11 (bar plot) display the values of Vij

starting from the best information granules (viz. with the

lowest value of Vij). In general, the error is low for all

information granules when the values of both c and r are

relatively high (4 or higher for r, and 7 or higher for c).

In case of classification data, the quality of information

granules is evaluated with the aid of entropy (9). The

obtained values of entropy are shown in an increasing order

by proceeding with the lowest value; see Fig. 12. While for

the regression data, the quality of information granules is

evaluated with the aid of the variance (10) shown in an

increasing order by proceeding with the lowest value (see

Fig. 13). When the number of information granules

increases, the average variance and average vagueness

decrease.

Proceeding with the characterization of information

granules built on a basis of the numeric prototypes, we

display the optimal values of coverage and specificity (viz.

the values obtained when the product of coverage and

specificity achieved the highest value). Some selected

results are displayed in Figs. 14 and 15. It can be noted that

Table 5 Vij (WINE data set) for

i = 1, 2,…, c; j = 1, 2,…,r
r/c 7 10 12

2 0.9546 0.0369

0.8692 0.0245

0.8049 0.0297

0.8992 0.0358

0.9098 0.0341

0.8284 0.1261

0.8763 0.2865

0.8440 0.0270

0.8650 0.0314

0.7561 0.0257

0.8386 0.0289

0.8765 0.1214

0.8980 0.0349

1.0262 0.0573

0.8064 0.0223

1.0210 0.3428

0.7163 0.0329

0.7760 0.0279

0.8821 0.0311

0.8054 0.0176

0.8022 0.0182

0.9459 0.1191

0.7223 0.0201

0.9422 0.0482

0.8052 0.0183

1.0506 0.3546

0.9457 0.0260

0.9371 0.0349

0.7178 0.0275

3 0.9822 0.7062 0.0369

0.9190 0.4207 0.0245

0.8611 0.2993 0.0297

0.9058 0.8395 0.0358

0.9571 0.4848 0.0341

0.9002 0.1828 0.1261

0.7861 1.6882 0.2865

0.8794 0.5253 0.0270

0.9417 0.1750 0.0314

0.8157 0.2191 0.0257

0.9028 0.2611 0.0289

0.9561 0.1602 0.1214

0.9620 0.3221 0.0349

1.1128 0.2461 0.0573

0.8729 0.2075 0.0223

0.8767 2.3190 0.3428

0.7224 0.6612 0.0329

0.8240 0.4654 0.0293

0.9483 0.1421 0.0315

0.8718 0.2238 0.0179

0.9100 0.2190 0.0180

1.0340 0.1214 0.1197

0.7804 0.2047 0.0201

1.0179 0.2505 0.0486

0.8711 0.1716 0.0189

0.9137 2.2834 0.3546

0.9950 0.2298 0.0254

1.0014 0.3057 0.0350

0.7145 0.7469 0.0275

4 0.9171 1.0147 0.7062 0.0369

0.9449 0.9061 0.4207 0.0245

0.8289 0.8772 0.2993 0.0297

0.7000 1.0087 0.8395 0.0358

1.0137 0.9287 0.4848 0.0341

0.8503 0.9251 0.1828 0.1261

0.5762 0.8911 1.6882 0.2865

0.6911 0.9579 0.5180 0.0308

0.9490 0.9266 0.2321 0.0267

0.7574 0.7891 0.2527 0.0228

0.9051 0.9990 0.1542 0.1222

0.9396 0.8931 0.1763 0.0254

0.8565 1.0066 0.2959 0.0363

1.1349 1.1173 0.2515 0.0543

0.9366 0.9056 0.1794 0.0321

0.6464 0.9949 2.3199 0.3419

0.5407 0.8090 0.6305 0.0327

0.6461 0.8940 0.4577 0.0279

0.9948 0.9489 0.1429 0.0311

0.8495 0.8797 0.2275 0.0176

0.9281 0.8364 0.2188 0.0182

1.0286 1.0419 0.1215 0.1191

0.6962 0.8210 0.2088 0.0201

0.9750 1.0410 0.2510 0.0482

0.8900 0.8681 0.1728 0.0183

0.6365 1.0522 2.2834 0.3546

1.0706 1.0036 0.2241 0.0260

0.8423 1.0872 0.3211 0.0349

0.5316 0.8059 0.7477 0.0275

1742 International Journal of Fuzzy Systems, Vol. 22, No. 6, September 2020

123



Fig. 16 Vij starting from the best information granules for the Wine data set
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Fig. 18 Entropy of information granules for the Wine data set
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Fig. 19 Entropy of information granules for the Abalone data set

Fig. 20 Characterization of information granules in the coverage and specificity space for the Wine data set
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when the total number of information granules is high, the

average product of coverage and specificity becomes low.

Proceeding with the remaining data sets, we report the

results in a similar manner in Tables 4, 5 and Figs. 16, 17,

18, 19, 20 and 21. These tables and figures support all

conclusions we have reached by inspecting the above two

data sets.

7 Conclusions

The study was devoted to the concise development of data

by constructing their numeric representatives followed by

the augmentation of the prototypes expressed in terms of

information granules. The developed optimization envi-

ronment helps quantify the quality of information granules

(in terms of entropy and diversity) and numeric prototypes

(evaluated by means of the reconstruction error). Infor-

mation granules form a blueprint of data and constitute an

initial setting for a variety of constructs and classifiers,

predictors and association networks. It is worth stressing

that information granules are functional building modules

that are used as generic components in the development of

a plethora of models including predictors and classifiers.

Equally important is the fact that the study delivered a way

to quantify the quality of information granules with regard

to their classification or prediction capabilities. Likewise,

the multiview perspective at experimental data is essential

to cope with massive data as one constructs essential

information granules pertinent that are central to facilitate

an efficient way of building classifiers and predictors.

While Sect. 5 elaborates on the fundamentals of the

modeling constructs (which owing to the use of informa-

tion granules can be referred to as granular predictors,

granular classifiers, etc.), more detailed studies could fol-

low that focus on the detailed architectures and some fol-

lowing learning schemes.
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Appendix A

Used symbols

Symbol Description

Di Data cluster i

Fj Feature cluster j

r Number of feature clusters

c Number of data clusters

Q FCM objective variable

xk Data point k

zj Feature j

N Total number of data points

n Total number of features

vi Data cluster i prototype

m Fuzzification coefficient

uik The membership value of a data point xk to the data cluster i

gij The membership value of a feature zj to the feature cluster i

Vij Reconstruction error produced for (Di, Fj)

�k kFj
Distance completed for features forming Fj

qij The probability class j exists in information granule i

vij Data cluster i prototype computed by averaging cluster data

points just for features forming Fj

h Entropy

Ci Vagueness of the ith information granule

riy The variance of the output values of data cluster i

�yi The average of the output values of data cluster i

Ri

Nij Number of data points in information granule Gij : (Di, Fj)

cov Coverage

sp Specify

ŷ Predicted y value

q Predicted class
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